WO2019230056A1 - Body hair trimmer - Google Patents

Body hair trimmer Download PDF

Info

Publication number
WO2019230056A1
WO2019230056A1 PCT/JP2019/004329 JP2019004329W WO2019230056A1 WO 2019230056 A1 WO2019230056 A1 WO 2019230056A1 JP 2019004329 W JP2019004329 W JP 2019004329W WO 2019230056 A1 WO2019230056 A1 WO 2019230056A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
amount
magnetic block
load
control
Prior art date
Application number
PCT/JP2019/004329
Other languages
French (fr)
Japanese (ja)
Inventor
竜平 坂本
保至 浅井
俊治 橋本
隆文 大羽
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019230056A1 publication Critical patent/WO2019230056A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B19/00Clippers or shavers operating with a plurality of cutting edges, e.g. hair clippers, dry shavers
    • B26B19/28Drive layout for hair clippers or dry shavers, e.g. providing for electromotive drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors

Definitions

  • the present invention relates to a hair cutting device.
  • hair cutting devices such as electric razors and hair trimmers equipped with a linear actuator having a stator and a mover.
  • the mover of the linear actuator is controlled by a voltage or current applied to the stator or an electromagnet included in the mover, and performs a linear reciprocating motion with respect to the stator.
  • a blade for cutting body hair is attached to the mover. And it is comprised so that body hair may be cut
  • the linear actuator disclosed in Patent Document 1 controls the movement of the mover using the current supply time. Therefore, if an excess or deficiency occurs in the amount of current supplied to the mover, the operation stability of the mover decreases. Specifically, the amplitude of the mover decreases. Thereby, there exists a possibility that the shaving taste of a linear actuator may be impaired.
  • the present invention provides a hair cutting device that improves the stability of operation.
  • the hair cutting apparatus includes a first magnetic block and a second magnetic block that interlocks a blade that cuts hair, and the first magnetic block and the second magnetic block are among the first magnetic block and the second magnetic block.
  • These include linear actuators in which one is an electromagnet and the other is a permanent magnet or an electromagnet.
  • the hair cutting device controls a control value that is a voltage value or a current value for energizing the linear actuator to reciprocate the second magnetic block, and a second when the blade cuts the hair.
  • a load detection unit that detects the load applied to the magnetic block for each period in the reciprocating motion of the second magnetic block is included. The control unit changes the control amount based on the first feedback control amount based on the load amount detected by the load detection unit.
  • This configuration can provide a hair cutting device that can improve the stability of operation.
  • FIG. 1 is an external view of a hair cutting device according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the outer blade and the inner blade according to the embodiment together with the skin.
  • FIG. 3 is a block diagram showing a functional configuration of the same hair cutting device.
  • FIG. 4 is a circuit diagram of the same hair cutting device.
  • FIG. 5 is a diagram illustrating the timing at which the drive amount detection unit included in the hair cutting apparatus detects the drive amount.
  • FIG. 6 is a flowchart for explaining the processing procedure of the hair cutting apparatus.
  • FIG. 7 is a timing chart showing a first example of the operation of the same hair cutting device.
  • FIG. 8 is a diagram showing a specific example of the movement of the mover in the first example.
  • FIG. 9 is a timing chart showing a second example of the operation of the same hair cutting device.
  • FIG. 10 is a timing chart showing a third example of the operation of the same hair cutting device.
  • FIG. 1 is an external view showing a hair cutting device 100 according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the outer blade 160 and the inner blade 170 according to the embodiment together with the skin.
  • the hair cutting device 100 of embodiment is a device which cuts hairs 200, such as a heel, for example, such as an electric razor.
  • FIG. 1 illustrates an example of a hair cutting device 100 that grips the body 110 and slides the outer blade 160 while pressing the outer blade 160 against the skin surface 210 such as the face to cut (shave) wrinkles that are the body hair 200. Show.
  • the hair cutting device 100 includes an inner blade 170 that slides along the inner surface of each outer blade 160.
  • the main body 110 of the hair cutting device 100 accommodates therein a drive device that drives the inner blade 170, a power supply device that supplies power to the drive device, a control device that controls these devices, and the like.
  • a drive device is a linear actuator 10 (see FIG. 3).
  • the main body 110 is provided with a power switch 130, a display unit 140 for displaying the state of the hair cutting device 100, and the like on the outer surface. Furthermore, the main body 110 includes a grip portion 120 that is a portion that the user holds, and a head portion 150 to which the outer blade 160 is detachably attached.
  • the head unit 150 is configured to be able to freely change the angle with respect to the grip unit 120. As a result, the head unit 150 can swing.
  • the linear actuator 10 which is an example of a drive device is accommodated inside the head unit 150, and is connected so as to interlock with an inner blade 170 which is a movable blade.
  • the connected inner blade 170 reciprocates (specifically, linear reciprocating motion) with respect to the outer blade 160 by driving the driving device. That is, the hair cutting device 100 displaces the inner blade 170 that is in sliding contact with the inner surface of the outer blade 160 relative to the outer blade 160. Accordingly, the hair 200 inserted into the blade hole 161 formed in the outer blade 160 is configured to be cut by the reciprocating motion of the inner blade 170.
  • FIG. 3 is a block diagram showing a functional configuration of the hair cutting device 100 according to the embodiment.
  • FIG. 4 is a circuit diagram of the hair cutting device 100.
  • the hair cutting device 100 includes a linear actuator 10 including a stator 11 that constitutes a first magnetic block and a mover 12 that constitutes a second magnetic block, in a head unit 150. .
  • the stator 11 is composed of, for example, an electromagnet or a permanent magnet, and is fixed to the frame 13.
  • the mover 12 is configured to be movable with respect to the stator 11, for example, an electromagnet or a permanent magnet.
  • the mover 12 is connected to the frame 13 via a spring 14 and is configured to be able to reciprocate.
  • At least one of the stator 11 and the mover 12 is composed of an electromagnet.
  • a configuration in which the stator 11 has an electromagnet and the mover 12 has a permanent magnet 12a will be described as an example.
  • the electromagnet is configured, for example, by winding a winding 11a around a sintered body of a magnetic material or a structure in which an iron plate of a magnetic material is laminated.
  • the electromagnet of the stator 11 and the permanent magnet 12a of the mover 12 are arranged so as to be spaced apart from each other. Further, the electromagnet of the stator 11 and the permanent magnet 12a of the mover 12 are magnetized in a direction parallel to the reciprocating motion direction shown in FIG.
  • the first magnetic block is a fixed stator 11 and the second magnetic block is a movable element 12 reciprocally movable with respect to the first magnetic block.
  • the first magnetic block is a fixed stator 11 and the second magnetic block is a movable element 12 reciprocally movable with respect to the first magnetic block.
  • the first magnetic block is a fixed stator 11 and the second magnetic block as the mover 12.
  • the first magnetic block and the second magnetic block may be a mover.
  • both the first magnetic block and the second magnetic block may be movers.
  • outer blade 160 shown in FIG. 2 is disposed on the frame 13, and the inner blade 170 shown in FIG. 2 is attached to the mover 12. At this time, when outer blade 160 contacts skin surface 210, body hair 200 on skin surface 210 is introduced into blade hole 161 formed in outer blade 160, as shown in FIG. 2. The introduced body hair 200 is sandwiched and cut between the fixed outer blade 160 and the inner blade 170 that reciprocates.
  • the drive circuit 30 constitutes a circuit that causes the mover 12 to reciprocate.
  • the drive circuit 30 is electrically connected to the winding 11 a of the stator 11.
  • the drive circuit 30 operates based on the power supply voltage Vcc from the power supply 20 and supplies a drive current Id to the winding 11a.
  • the drive circuit 30 is configured by a full bridge circuit including a plurality of switching elements such as MOSFETs (Metal Oxide SemiConductor Field Effect Transistor).
  • the winding 11 a of the stator 11 is electrically connected between a plurality of switching elements of the drive circuit 30.
  • the drive circuit 30 selectively turns on the plurality of switching elements alternately based on a PWM (Pulse Width Modulation) signal from the control output unit 42.
  • PWM Pulse Width Modulation
  • the drive circuit 30 switches the direction of the drive current Id flowing through the winding 11a.
  • the mover 12 reciprocates by switching the direction in which the drive current Id flows.
  • the microcomputer 50 is a microcomputer that operates the drive circuit 30. When functionally classified, the microcomputer 50 includes a control unit 40, a drive amount detection unit 60, a load detection unit 70, and the like, as shown in FIG.
  • the control unit 40 controls the voltage value or current value to be applied to the linear actuator 10 as a control amount, and causes the mover 12 to reciprocate. Specifically, first, the control unit 40 determines a control amount that is a voltage value or a current value for energizing the winding 11 a of the stator 11. And the control part 40 supplies with electricity to the coil
  • control unit 40 when functionally classified, includes an amplitude control unit 41, a control output unit 42, an addition unit 43, a memory 44, a filter unit 80, and the like.
  • the amplitude control unit 41 of the control unit 40 controls a control amount that is a voltage value or a current value for energizing the linear actuator 10.
  • the amplitude control unit 41 first acquires the output value of the control amount from the linear actuator 10 from the detection circuit 90. Further, the amplitude control unit 41 calculates a second feedback control amount from the acquired output value and a preset target value. Then, the control amount is changed based on the calculated second feedback control amount.
  • the amplitude control unit 41 may control the linear actuator 10 by executing known PID (Proportional-Integral-Differential) control.
  • the target value may be set to an arbitrary value in advance.
  • the set target value may be stored in advance in the memory 44 of the control unit 40, for example.
  • the control output unit 42 of the control unit 40 performs PWM (Pulse Width Modulation) control on the drive current Id to the winding 11a based on the control amount acquired from the amplitude control unit 41. That is, the control output unit 42 outputs a PWM signal to the drive circuit 30. Specifically, the control output unit 42 generates the PWM signal so that the drive current Id having a frequency synchronized with the mechanical resonance frequency of the linear actuator 10 is supplied to the winding 11a.
  • the mechanical resonance frequency of the linear actuator 10 is determined by the weight of the mover 12, the spring constant of the spring 14, and the like.
  • a constant voltage generated by the constant voltage power supply 21 is supplied to the control output unit 42 as an operating voltage based on the power supply voltage Vcc from the power supply 20.
  • the permanent magnet 12a disposed on the mover 12 reciprocates while bending the spring 14 in accordance with the direction in which the drive current Id flows. It is driven in the direction (left-right direction in FIG. 3). That is, the control output unit 42 switches the direction in which the drive current Id flows by control at an appropriate timing. Thereby, the needle
  • the addition unit 43 of the control unit 40 changes the control amount based on the drive amount of the mover 12 detected by the drive amount detection unit 60 and the load amount of the mover 12 determined by the load detection unit 70 and the filter unit 80.
  • the first feedback control amount is output to the amplitude control unit 41.
  • the memory 44 of the control unit 40 stores information such as the speed and amplitude of the mover 12 detected by the detection circuit 90.
  • the memory 44 is composed of, for example, a RAM (Random Access Memory).
  • the drive amount detection unit 60 of the microcomputer 50 detects at least one of the displacement, speed, and acceleration of the mover 12 as the drive amount of the mover 12.
  • the drive amount detection unit 60 is electrically connected to the winding 11 a of the stator 11 through the detection circuit 90.
  • the drive amount detector 60 acquires the amplitude, speed, and displacement of the mover 12 from the detection circuit 90 that acquires the induced electromotive force (specifically, the induced electromotive voltage) generated in the winding 11a.
  • the drive amount detector 60 detects an induced electromotive voltage generated in the winding 11 a of the stator 11 as a drive amount of the mover 12 due to the reciprocating motion of the mover 12.
  • the drive amount detector 60 detects the drive amount of the mover 12 for each cycle of the reciprocating motion of the mover 12, for example.
  • the filter unit 80 of the control unit 40 multiplies the load value (load amount) applied to the mover 12 by a predetermined gain and outputs the result to the amplitude control unit 41. Specifically, for example, when the load amount detected by the load detection unit 70 exceeds a preset first threshold value, the filter unit 80 increases the speed at the reciprocal center of the reciprocating motion of the mover 12. Change the control amount. Further, the filter unit 80 changes the control amount so that the speed at the center of reciprocation of the mover 12 becomes small when the load amount detected by the load detection unit 70 falls below a preset second threshold value, for example. .
  • a circuit for driving the linear actuator 10 of the hair cutting device 100 is configured.
  • FIG. 5 is a diagram illustrating the timing at which the drive amount detection unit 60 of the hair cutting device 100 detects the drive amount.
  • FIG. 5A shows the displacement (amplitude) of the mover 12 with respect to time (driving time).
  • FIG. 5B shows a change in the induced electromotive voltage detected by the drive amount detector 60 with respect to time.
  • (c) of FIG. 5 shows the change of the drive current Id with respect to time.
  • the drive amount detection unit 60 (see FIG. 3) is an amplified signal of the induced electromotive voltage generated in the winding 11a of the stator 11 based on the output value of the control amount from the linear actuator 10 acquired from the detection circuit 90. The time when an amplification voltage becomes the same as a reference voltage (for example, 0 V) is detected. Then, the drive amount detection unit 60 determines the detected time as a turning point where the amplitude of the movable element 12 that reciprocates is reversed.
  • a reference voltage for example, 0 V
  • the induced electromotive voltage is output in the form of a sine wave according to the change in magnetic flux generated by the reciprocating motion of the mover 12. Therefore, the induced electromotive voltage changes according to the amplitude of the mover 12, the speed of vibration, the direction of vibration, and the like. Specifically, when the vibration direction changes at the turning point of the reciprocating motion of the mover 12, the amplitude of the mover 12 is maximum, that is, the speed is zero. When the speed of the mover 12 becomes zero, the change in magnetic flux disappears, so the induced electromotive voltage becomes zero. Therefore, the driving amount detection unit 60 compares the zero point of the induced electromotive voltage with the reference voltage, and identifies the turning point of the reciprocating motion of the mover 12.
  • the drive amount detection unit 60 calculates at least one of the amplitude, speed, and displacement of the mover 12 from the time interval between zero points of the induced electromotive voltage that is repeatedly detected.
  • the drive amount detection unit 60 for example, any arbitrary timing (time interval) at which the drive current Id becomes zero during one cycle of the reciprocating motion of the mover 12.
  • the induced electromotive voltage may be acquired selectively.
  • the load detection part 70 (refer FIG. 3) of the microcomputer 50 detects the load amount added to the needle
  • the load detection unit 70 detects and calculates the load amount for each cycle of the reciprocating motion of the mover 12 from the drive amount and the control amount detected by the drive amount detection unit 60 of the control unit 40. To do.
  • the control amount input to the winding 11a of the stator 11 from the control output unit 42 via the drive circuit 30 and the drive amount detected by the drive amount detection unit 60 are input to the load detection unit 70.
  • the load detection part 70 is a needle
  • the amount of load applied during one cycle of the mover 12 is determined by the following three forces.
  • the first force is a force such as an external force applied to the mover 12 in order to drive the mover 12 during one cycle of the mover 12.
  • the second force is a force stored in the spring 14 that connects the mover 12 to the frame 13 or a force released from the spring 14.
  • the third force is a viscous force depending on a loss of the spring 14, a force that attenuates the reciprocating motion of the mover 12 due to air resistance, and the like.
  • the external force applied to the mover 12 as the first force is calculated from the load amount detected by the load detection unit 70.
  • the second force that is, the force stored in the spring 14 or the force released from the spring 14 is determined by the spring constant of the spring 14, the amplitude of the current cycle of the mover 12, and the previous cycle. It is calculated from the difference between the amplitude. Further, the viscous force that attenuates the reciprocating motion of the mover 12 as the third force is calculated from the viscosity coefficient of the spring 14 and the amplitude of the mover 12.
  • the changed control amount for controlling the linear actuator 10 is calculated from the second feedback control amount by the known PID control and the first feedback control amount calculated from the load amount.
  • the amplitude control unit 41 calculates the second feedback control amount from the output value of the control amount from the linear actuator 10 acquired via the detection circuit 90 and the target value preset for the acquired output value. Is calculated.
  • the first feedback control amount includes the above-described three forces, for example, the load applied to the mover 12, the force accumulated in or released from the spring 14, and the viscous force of the spring 14. It is calculated from the sum of
  • the load detection unit 70 of the microcomputer 50 calculates the load amount of the mover 12 for each cycle in the reciprocating motion of the mover 12 from the induced electromotive voltage acquired via the drive amount detection unit 60. Further, the drive amount detection unit 60 calculates the force stored in the spring 14 or the force released from the spring 14 and the viscous force of the spring 14 from the induced electromotive voltage acquired via the detection circuit 90. .
  • the addition unit 43 of the control unit 40 includes the load amount acquired via the load detection unit 70 and the drive amount detection unit 60, the force stored in the spring 14 or the force released from the spring 14, and the spring 14 Add the value with the viscous force. Then, the adding unit 43 outputs the added value as a first feedback control amount to the amplitude control unit 41 for each cycle in the reciprocating motion of the mover 12.
  • the amplitude control unit 41 of the control unit 40 outputs the sum of the first feedback control amount calculated by the addition unit 43 and the above-described second feedback control amount to the control output unit 42. Thereby, the control amount of the needle
  • the value of the reciprocating motion is specifically at least one of displacement, speed, and acceleration.
  • the detection circuit 90 constitutes a circuit that detects an output value (at least one of a current value and a voltage value) of a control amount from the linear actuator 10 and an induced electromotive force generated by the reciprocating motion of the mover 12. .
  • the detection circuit 90 is connected to the drive circuit 30 and the winding 11a via a power line connecting the drive circuit 30 and the winding 11a of the stator 11, and detects an induced electromotive force (induced electromotive voltage).
  • the detection circuit 90 includes, for example, an amplifier circuit 91, a comparison circuit 92, a comparison circuit 93, and the like. Note that the detection circuit 90 may be configured by, for example, an optical sensor that can detect at least one of the displacement, speed, and acceleration of the mover 12.
  • the amplifying circuit 91 of the detecting circuit 90 amplifies the voltage across the winding 11a of the stator 11, that is, the induced electromotive voltage generated in the winding 11a, and generates an amplified voltage. Then, the amplifier circuit 91 outputs the generated amplified voltage to the comparison circuit 92 and the comparison circuit 93.
  • the comparison circuit 92 of the detection circuit 90 compares, for example, a set reference voltage with the amplified voltage. Then, the comparison circuit 92 outputs the comparison result (for example, voltage difference) to the amplitude control unit 41. Thereby, the amplitude control unit 41 acquires the timing of one reciprocation in the reciprocating motion of the mover 12 via the comparison circuit 92.
  • the comparison circuit 93 of the detection circuit 90 compares the amplified voltage with a reference voltage that is lower than the set reference voltage by a predetermined voltage. Then, the comparison circuit 93 outputs a comparison result (for example, a voltage difference) to the drive amount detection unit 60. Accordingly, the drive amount detection unit 60 calculates the drive amount of the mover 12 from the comparison result output from the comparison circuit 93 and detects the drive amount of the mover 12.
  • the reference voltage and the predetermined voltage may be set to arbitrary values in advance.
  • FIG. 6 is a flowchart for explaining the processing procedure of the hair cutting device 100.
  • the control unit 40 drives the mover 12 with an arbitrary control amount (step S101). Specifically, the amplitude control unit 41 outputs an arbitrary control amount to the control output unit 42.
  • the control output unit 42 drives the movable element 12 by outputting a drive current Id from the drive circuit 30 based on the output arbitrary control amount. Thereby, the needle
  • the drive amount detector 60 detects the drive amount of the mover 12 that has started reciprocating motion (step S102). Specifically, the drive amount detection unit 60 detects an induced electromotive force (induced electromotive voltage) generated by driving the mover 12 as a drive amount of the mover 12 via the detection circuit 90.
  • induced electromotive force induced electromotive voltage
  • the load detection unit 70 detects the amount of load applied to the mover 12 when the inner blade 170 cuts the body hair 200 (step S103). Specifically, the load detection unit 70 detects the load applied to the mover 12 based on the detected drive amount of the mover 12.
  • the control unit 40 changes the control amount so that the target value is arbitrarily determined in advance based on the load amount detected by the load detection unit 70 and the control amount acquired from the control output unit 42.
  • Step S104 the control unit 40 determines that the control amount output by the control output unit 42 in the next cycle of the mover 12 from the first feedback control amount and the second feedback control amount becomes the target value. Change the control amount.
  • the first feedback control amount is a control amount based on the load amount on the mover 12 detected by the load detection unit 70.
  • the second feedback control amount is a control amount based on the control amount acquired from the control output unit 42 and the output value of the control amount acquired from the linear actuator 10 acquired from the detection circuit 90.
  • the processing of the hair cutting device 100 is executed.
  • FIG. 7 is a timing chart showing a first example of the operation of the hair cutting device 100.
  • FIG. 7A is a graph showing a change in the speed (speed) of the mover 12 when the control amount is not changed.
  • FIG. 7B is a graph showing changes in the magnitude (load amount) of the load applied to the mover 12 when the mover 12 is reciprocated as shown in FIG.
  • (c) of FIG. 7 compares the change in the amplitude of the mover 12 in the comparative example in which the control amount is not changed and in the first embodiment in which the control amount is changed based on the load amount. It is a graph shown.
  • the comparative example shown in (c) of FIG. 7 and Example 1 are both graphs when PID control is executed.
  • FIG. 7 Each plot on the horizontal axis of each graph in FIG. 7 indicates the period of one reciprocation of the mover 12. That is, FIG. 7 illustrates an example in which the mover 12 has reciprocated 26 times (26 cycles). Specifically, in section A in FIG. 7, the state in which the mover 12 is caught by the hair and the amplitude is reduced is continued for a plurality of periods. On the other hand, in section B, the state in which the mover 12 cuts the hair a plurality of times in the state shown in the upper diagram is repeated a plurality of times.
  • the time required for one reciprocation of the mover 12 is, for example, 4 milliseconds.
  • the time of 1 period is not specifically limited, You may set arbitrarily.
  • the speed of the mover 12 in the initial period at the start of driving is set to a target value.
  • the speed is, for example, the speed at the reciprocal center of the reciprocating motion of the mover 12.
  • the speed will be described as an example, but the same applies to acceleration or amplitude. The same applies to FIGS. 9 and 10 described later.
  • the target value may be stored in advance in the memory 44 or the like of the control unit 40 according to the displacement (for example, amplitude), speed (speed), or acceleration detected by the drive amount detection unit 60. .
  • the change in the speed of the mover 12 as in the sections A and B is repeated after the sections C and D. That is, when the inner blade 170 cuts the body hair 200, the load by the body hair 200 is applied to the mover 12 through the inner blade 170. Therefore, the speed of the mover 12 is lower than the target value. Thereby, the sharpness of the body hair 200 by the inner blade 170 (and outer blade 160) is also lowered.
  • the load detection unit 70 detects the load applied to the inner blade 170 (mover 12), and the control unit 40 is detected by the load detection unit 70.
  • the control amount of the mover 12 is changed based on the load amount.
  • the control amount of the mover 12 is changed based on the load amount.
  • mover 12 can be suppressed.
  • FIG. 8 is a diagram illustrating a specific example of the movement of the mover 12 of the hair cutting device 100.
  • the horizontal axis of the graph shown in FIG. 8 is time, and the vertical axis is the amplitude of the mover 12.
  • the graph of FIG. 8 shows that the movable element 12 with respect to time when a load amount of, for example, 900 mN is applied to the movable element 12 from one cycle before the reciprocating motion of the movable element 12 from 0 seconds as the reference time. Changes in the amplitude of are shown.
  • the amplitude of the mover 12 of the comparative example is greatly reduced from about ⁇ 1.0 mm to about ⁇ 0.2 mm until about 0.01 seconds, in other words, about three cycles.
  • the mover 12 of Example 1 has an amplitude that decreases only from about ⁇ 1.0 mm to about ⁇ 0.5 mm, indicating that the attenuation is small.
  • control unit 40 controls the linear actuator 10 by changing the control amount based on the load applied to the mover 12.
  • movement specifically the amplitude at the time of the reciprocating motion of the needle
  • movement (specifically the amplitude at the time of the reciprocating motion of the needle
  • FIG. 9 is a timing chart showing a second example of the operation of the hair cutting device 100.
  • FIG. 9A is a graph showing a change in the speed of the mover 12 when the control amount is not changed.
  • FIG. 9B is a graph showing a change in the magnitude (load amount) of the load applied to the mover 12 when the mover 12 is reciprocated as shown in FIG. 9A.
  • (c) of FIG. 9 is a comparative example showing the case where the control amount is not changed, the first embodiment showing the case where the control amount is changed based on the load amount, and the mover 12 in the second embodiment. It is a graph which shows the change of an amplitude in comparison.
  • the second embodiment shows a change in the amplitude of the mover 12 when the control amount is changed based on the first threshold th1 in addition to the control of the first embodiment.
  • all of the comparative example, Example 1, and Example 2 shown in (c) of FIG. 9 are graphs when the PID control is executed.
  • FIG. 9 Each plot on the horizontal axis of each graph in FIG. 9 indicates the period of one reciprocation of the mover 12. That is, like FIG. 7 of the first example, FIG. 9 illustrates an example in which the mover 12 has reciprocated 26 times (26 cycles). Note that FIGS. 9A and 9B are the same graphs as FIGS. 7A and 7B and will not be described.
  • Example 2 shown in FIG. 9C first, the load applied to the mover 12 detected by the load detection unit 70 in the filter unit 80 of the control unit 40 is shown in advance in FIG. It is detected whether or not the set first threshold value th1 is exceeded. Then, when the load amount detected by the load detection unit 70 exceeds the first threshold th1, the control unit 40 changes the control amount so that the speed at the reciprocal center of the reciprocating motion of the mover 12 is increased.
  • mover 12 which the control part 40 changes is not specifically limited. In the case of Example 2 of the second example, the control unit 40 changes the control amount so that the speed at the reciprocal center of the reciprocating motion of the mover 12 is, for example, 1.5 times.
  • the mover 12 of the second embodiment returns to the target value speed earlier than the mover 12 of the first embodiment ( It is understood that it converges.
  • the first threshold th1 may be set to an arbitrary value in advance. Further, the first threshold th1 may be stored in advance in the memory 44 of the control unit 40, for example.
  • FIG. 10 is a timing chart showing a third example of the operation of the hair cutting device 100.
  • FIG. 10A is a graph showing a change in the speed of the mover 12 when the control amount is not changed.
  • FIG. 10B is a graph showing a change in the magnitude (load amount) of the load applied to the mover 12 when the mover 12 is reciprocated as shown in FIG.
  • (c) of FIG. 10 shows the comparative example of the case where the control amount is not changed, the second embodiment showing the case where the control amount is changed based on the load amount, and the mover 12 in the third embodiment.
  • It is a graph which shows the change of an amplitude in comparison.
  • the second embodiment shows a change in the amplitude of the movable element 12 when the control amount is changed based on the first threshold th1 in addition to the control of the first embodiment.
  • the third embodiment is a graph showing a change in the amplitude of the movable element 12 when the control amount is changed based on the second threshold th2 in addition to the control of the second embodiment.
  • all of the comparative example, Example 2, and Example 3 shown in FIG. 10C are graphs when the PID control is executed.
  • FIG. 10 Each plot on the horizontal axis of each graph in FIG. 10 indicates the period of one reciprocation of the mover 12. That is, like FIGS. 7 and 9 in the first example and the second example, FIG. 10 illustrates an example in which the mover 12 reciprocates 26 times (26 cycles). Note that FIGS. 10A and 10B are the same graphs as FIGS. 7A and 7B and will not be described.
  • Example 3 shown in FIG. 10C first, the load applied to the movable element 12 detected by the load detection unit 70 in the filter unit 80 of the control unit 40 is shown in FIG. It is detected whether or not a preset first threshold th1 is exceeded. Then, when the load amount detected by the load detection unit 70 exceeds the first threshold th1, the control unit 40 changes the control amount so that the speed at the reciprocal center of the reciprocating motion of the mover 12 is increased. At this time, similarly to the second example, the control unit 40 changes the control amount so that the speed at the reciprocal center of the reciprocating motion of the mover 12 is, for example, 1.5 times.
  • the control unit 40 changes the control amount so that the speed of the reciprocation center of the mover 12 becomes small.
  • mover 12 which the control part 40 changes is not specifically limited. In the case of Example 3 of the third example, the control unit 40 changes the control amount so that the speed at the reciprocal center of the reciprocating motion of the mover 12 is, for example, 0.5 times.
  • the mover 12 of the third embodiment has a speed of the target value faster than the mover 12 of the second embodiment. It turns out that it returns (converges).
  • Example 2 of the second example control is performed only so that the speed of the mover 12 is increased based on the load amount. Therefore, depending on the state of the load amount, as shown in FIG. 9C, for example, the speed may be excessively decreased in the section B and the section D.
  • the control unit 40 changes the control amount so that the speed of the reciprocation center of the mover 12 becomes small, for example, when it falls below the second threshold th2. This suppresses a rapid speed change of the mover 12 when the speed of the mover 12 approaches the target value. As a result, the undershoot and / or overshoot of the speed of the mover 12 can be more reliably suppressed.
  • the second threshold th2 may be set to an arbitrary value in advance.
  • the second threshold th2 may be stored in advance in the memory 44 of the control unit 40, for example.
  • the hair cutting device 100 of the embodiment is a second magnetic block that interlocks the stator 11 that is the first magnetic block and the inner blade 170 that is the blade that cuts the hair 200.
  • a linear actuator 10 having a mover 12, one of the stator 11 and the mover 12 being an electromagnet and the other being a permanent magnet or an electromagnet is included.
  • the inner blade 170 cuts the body hair 200 and the control unit 40 that reciprocates the mover 12 by controlling a control value that is a voltage value or a current value for energizing the linear actuator 10.
  • a load detecting unit 70 that detects the amount of load applied to the mover 12 is included.
  • the control unit 40 is configured to change the control amount based on the first feedback control amount based on the load amount detected by the load detection unit 70.
  • the load detection unit 70 detects the amount of load applied to the mover 12 by the body hair 200 introduced into the blade hole 161 of the body hair cutting device 100.
  • the control unit 40 can control, for example, the amplitude of the mover 12 according to the detected load amount. That is, the hair cutting device 100 changes the control amount of the mover 12 based on the first feedback control amount corresponding to the load amount.
  • body hairs 200 such as a heel, are introduced into the blade hole 161, and the responsiveness at the time of cut
  • mover 12 can be suppressed.
  • the hair cutting device 100 can further improve the stability of the operation of the linear actuator 10 (specifically, the reciprocating motion of the mover 12).
  • the hair cutting device 100 further includes a drive amount detector 60 that detects at least one of the displacement, speed, and acceleration of the mover 12 as a drive amount.
  • the drive amount detector 60 detects the drive amount for each cycle in the reciprocating motion of the mover 12.
  • the load detection unit 70 may be configured to detect the load amount for each cycle in the reciprocating motion of the mover 12 from the drive amount and the control amount detected by the drive amount detection unit 60.
  • the number of detections of the driving amount of the mover 12 can be suppressed. At the same time, the load applied to the mover 12 can be easily detected.
  • the drive amount detector 60 may be configured to detect the induced electromotive force generated by the reciprocating motion of the mover 12 as the drive amount.
  • the drive amount detection unit 60 can detect the drive amount of the mover 12 without providing another sensor or the like in order to detect the drive amount. Thereby, the hair cutting device 100 can be reduced in size.
  • the control unit 40 increases the speed at the reciprocation center of the reciprocation of the mover 12.
  • the control amount may be changed.
  • control unit 40 is configured so that even when the mover 12 decelerates due to a load applied when the mover 12 (specifically, the inner blade 170 interlocked with the mover 12) cuts the body hair 200.
  • the mover 12 can be quickly accelerated. Thereby, when cutting the hair 200 with the hair cutting device 100, the responsiveness to the intermittent load applied to the mover 12 can be improved.
  • control unit 40 changes the control amount so that the speed of the reciprocation center of the mover 12 becomes small when the load amount detected by the load detection unit 70 is less than a preset second threshold th2. You may comprise.
  • control unit 40 gradually reduces the speed of the mover 12 even when the load applied when the mover 12 cuts the hair 200 is rapidly attenuated and the mover 12 is accelerated rapidly. Can be attenuated. Thereby, when cutting the hair 200 with the hair cutting device 100, the responsiveness to the intermittent load applied to the mover 12 can be further improved.
  • control unit 40 acquires the output value of the control amount from the linear actuator 10, and changes the control amount based on the second feedback control amount calculated from the preset target value for the acquired output value. You may comprise.
  • the stability of the operation of the hair cutting device 100 is further improved.
  • all or some of the components such as the control unit 40 may be configured by dedicated hardware. Moreover, you may implement
  • FIG. Each component is executed by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. It may be realized.
  • a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. It may be realized.
  • constituent elements such as the control unit 40 may be composed of one or more electronic circuits.
  • the one or more electronic circuits may be general-purpose circuits or dedicated circuits.
  • the one or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), or an LSI (Large Scale Integration).
  • the IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration. That is, the system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration) may be called, but these are also included in the IC or LSI.
  • An FPGA Field Programmable Gate Array programmed after the manufacture of the LSI can also be used for the same purpose as the IC or LSI.
  • the general or specific aspect of the present invention may be realized via a system, apparatus, method, integrated circuit, or computer program. Further, it may be realized by a computer-readable non-transitory recording medium such as an optical disk, an HDD, or a semiconductor memory in which a computer program is stored. Further, the system, apparatus, method, integrated circuit, computer program, recording medium, and the like may be implemented in any combination.
  • the present invention can be used for a hair cutting device such as an electric hair clipper or an electric razor for cutting hair.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Dry Shavers And Clippers (AREA)
  • Control Of Linear Motors (AREA)

Abstract

A body hair trimmer (100) includes a linear actuator (10) comprising a stator (11), and a rotor (12) that coordinates blades for cutting body hair. One of the stator (11) and the rotor (12) is constituted by an electromagnet, and the other is constituted by a permanent magnet (12a) or an electromagnet. The trimmer also includes a control unit (40) that causes the rotor (12) to reciprocally move by controlling a control value constituted by a voltage value or current value applied to the linear actuator (10), and a load detection unit (70) that, for every cycle of reciprocal motion of the rotor (12), detects the load placed upon the rotor (12) when the blades cut body hair. The control unit (40) alters the control value on the basis of a first feedback control value based on the load calculated by the load detection unit (70). As a result, a body hair trimmer (100) of improved stability of operation is provided.

Description

体毛切断装置Hair cutting device
 本発明は、体毛切断装置に関する。 The present invention relates to a hair cutting device.
 従来、固定子及び可動子を有するリニアアクチュエータを備える電気かみそりやヘアトリマー等の体毛切断装置がある。リニアアクチュエータの可動子は、固定子又は可動子が有する電磁石に通電する電圧又は電流によって制御され、固定子に対して直線往復運動を行う。可動子には、体毛を切断する刃が取り付けられる。そして、可動する刃により、体毛を切断するように構成される(例えば、特許文献1参照)。 Conventionally, there are hair cutting devices such as electric razors and hair trimmers equipped with a linear actuator having a stator and a mover. The mover of the linear actuator is controlled by a voltage or current applied to the stator or an electromagnet included in the mover, and performs a linear reciprocating motion with respect to the stator. A blade for cutting body hair is attached to the mover. And it is comprised so that body hair may be cut | disconnected by the movable blade (for example, refer patent document 1).
 特許文献1に開示されるリニアアクチュエータは、電流供給時間を用いて、可動子の動きを制御する。そのため、可動子に供給する電流量等に過不足が発生すると、可動子の動作の安定性が低下する。具体的には、可動子の振幅が低下する。これにより、リニアアクチュエータの剃り味が損なわれる虞がある。 The linear actuator disclosed in Patent Document 1 controls the movement of the mover using the current supply time. Therefore, if an excess or deficiency occurs in the amount of current supplied to the mover, the operation stability of the mover decreases. Specifically, the amplitude of the mover decreases. Thereby, there exists a possibility that the shaving taste of a linear actuator may be impaired.
特開2014-155421号公報JP 2014-155421 A
 本発明は、動作の安定性を向上させる体毛切断装置を提供する。 The present invention provides a hair cutting device that improves the stability of operation.
 本発明の一態様に係る体毛切断装置は、第1の磁性ブロック、及び、体毛を切断する刃を連動させる第2の磁性ブロックを有し、第1の磁性ブロック及び第2の磁性ブロックのうちの、一方が電磁石で、他方が永久磁石又は電磁石で構成されるリニアアクチュエータを含む。さらに、体毛切断装置は、リニアアクチュエータに通電させる電圧値又は電流値である制御量を制御して、第2の磁性ブロックを往復運動させる制御部と、体毛を刃が切断する際に第2の磁性ブロックに加わる負荷量を、第2の磁性ブロックの往復運動における1周期ごとに検知する負荷検知部を含む。制御部は、負荷検知部が検知する負荷量に基づく第1フィードバック制御量に基づいて、制御量を変更する。 The hair cutting apparatus according to one aspect of the present invention includes a first magnetic block and a second magnetic block that interlocks a blade that cuts hair, and the first magnetic block and the second magnetic block are among the first magnetic block and the second magnetic block. These include linear actuators in which one is an electromagnet and the other is a permanent magnet or an electromagnet. Further, the hair cutting device controls a control value that is a voltage value or a current value for energizing the linear actuator to reciprocate the second magnetic block, and a second when the blade cuts the hair. A load detection unit that detects the load applied to the magnetic block for each period in the reciprocating motion of the second magnetic block is included. The control unit changes the control amount based on the first feedback control amount based on the load amount detected by the load detection unit.
 この構成によれば、動作の安定性を向上可能な体毛切断装置を提供できる。 This configuration can provide a hair cutting device that can improve the stability of operation.
図1は、実施の形態に係る体毛切断装置の外観図である。FIG. 1 is an external view of a hair cutting device according to an embodiment. 図2は、実施の形態に係る外刃及び内刃を、肌とともに示す断面図である。FIG. 2 is a cross-sectional view showing the outer blade and the inner blade according to the embodiment together with the skin. 図3は、同体毛切断装置の機能構成を示すブロック図である。FIG. 3 is a block diagram showing a functional configuration of the same hair cutting device. 図4は、同体毛切断装置の回路図である。FIG. 4 is a circuit diagram of the same hair cutting device. 図5は、同体毛切断装置が備える駆動量検知部が駆動量を検知するタイミングを説明する図である。FIG. 5 is a diagram illustrating the timing at which the drive amount detection unit included in the hair cutting apparatus detects the drive amount. 図6は、同体毛切断装置の処理手順を説明するフローチャートである。FIG. 6 is a flowchart for explaining the processing procedure of the hair cutting apparatus. 図7は、同体毛切断装置の動作の第1例を示すタイミングチャートである。FIG. 7 is a timing chart showing a first example of the operation of the same hair cutting device. 図8は、同第1例における可動子の動きの具体例を示す図である。FIG. 8 is a diagram showing a specific example of the movement of the mover in the first example. 図9は、同体毛切断装置の動作の第2例を示すタイミングチャートである。FIG. 9 is a timing chart showing a second example of the operation of the same hair cutting device. 図10は、同体毛切断装置の動作の第3例を示すタイミングチャートである。FIG. 10 is a timing chart showing a third example of the operation of the same hair cutting device.
 以下、本発明の実施の形態に係る体毛切断装置について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ及びステップの順序等は、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, the hair cutting device according to the embodiment of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a specific example of the present invention. Accordingly, numerical values, shapes, materials, components, arrangement and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図で、必ずしも厳密に図示したものではない。また、各図において、同じ構成部材については、同じ符号を付している。 Each figure is a schematic diagram and is not necessarily illustrated strictly. Moreover, in each figure, the same code | symbol is attached | subjected about the same structural member.
 (実施の形態)
 [概要]
 まず、図1及び図2を参照して、実施の形態に係る体毛切断装置の概要について、説明する。
(Embodiment)
[Overview]
First, with reference to FIG.1 and FIG.2, the outline | summary of the hair cutting device which concerns on embodiment is demonstrated.
 図1は、実施の形態に係る体毛切断装置100を示す外観図である。図2は、実施の形態に係る外刃160及び内刃170を、肌とともに示す断面図である。 FIG. 1 is an external view showing a hair cutting device 100 according to an embodiment. FIG. 2 is a cross-sectional view showing the outer blade 160 and the inner blade 170 according to the embodiment together with the skin.
 なお、実施の形態の体毛切断装置100は、例えば電気カミソリ等の、髭等の体毛200を切断する装置である。そこで、図1には、本体110をユーザが把持し、外刃160を顔等の肌面210に押し付けながら滑らせて体毛200である髭を切断(剃る)する体毛切断装置100を例に図示している。 In addition, the hair cutting device 100 of embodiment is a device which cuts hairs 200, such as a heel, for example, such as an electric razor. Accordingly, FIG. 1 illustrates an example of a hair cutting device 100 that grips the body 110 and slides the outer blade 160 while pressing the outer blade 160 against the skin surface 210 such as the face to cut (shave) wrinkles that are the body hair 200. Show.
 具体的には、体毛切断装置100は、外刃160のそれぞれの内側の面に沿って摺動する内刃170を備える。 Specifically, the hair cutting device 100 includes an inner blade 170 that slides along the inner surface of each outer blade 160.
 体毛切断装置100の本体110は、内部に、内刃170を駆動する駆動装置、駆動装置に電源を供給する電源装置、これらを制御する制御装置等を収容する。駆動装置は、例えばリニアアクチュエータ10(図3参照)などで例示される。 The main body 110 of the hair cutting device 100 accommodates therein a drive device that drives the inner blade 170, a power supply device that supplies power to the drive device, a control device that controls these devices, and the like. An example of the drive device is a linear actuator 10 (see FIG. 3).
 また、本体110は、外面に、図1に示すように、電源スイッチ130、及び、体毛切断装置100の状態を表示する表示部140等が配設される。さらに、本体110は、ユーザが手に持つ部分である把持部120と、着脱自在に外刃160が取り付けられるヘッド部150と、を備える。ヘッド部150は、把持部120に対して、自在に角度を変えることが可能に構成される。これにより、ヘッド部150の首振り動作が可能となる。 Further, as shown in FIG. 1, the main body 110 is provided with a power switch 130, a display unit 140 for displaying the state of the hair cutting device 100, and the like on the outer surface. Furthermore, the main body 110 includes a grip portion 120 that is a portion that the user holds, and a head portion 150 to which the outer blade 160 is detachably attached. The head unit 150 is configured to be able to freely change the angle with respect to the grip unit 120. As a result, the head unit 150 can swing.
 駆動装置の一例であるリニアアクチュエータ10は、ヘッド部150の内方に収容され、可動する刃である内刃170と連動するように連結される。駆動装置の駆動により、連結された内刃170は、外刃160に対して、往復運動(具体的には、直線往復運動)する。つまり、体毛切断装置100は、外刃160の内面に摺接させる内刃170を、外刃160に対して、相対的に変位させる。これにより、外刃160に形成された刃孔161内に挿入される体毛200を、内刃170の往復運動により切断するように構成される。 The linear actuator 10 which is an example of a drive device is accommodated inside the head unit 150, and is connected so as to interlock with an inner blade 170 which is a movable blade. The connected inner blade 170 reciprocates (specifically, linear reciprocating motion) with respect to the outer blade 160 by driving the driving device. That is, the hair cutting device 100 displaces the inner blade 170 that is in sliding contact with the inner surface of the outer blade 160 relative to the outer blade 160. Accordingly, the hair 200 inserted into the blade hole 161 formed in the outer blade 160 is configured to be cut by the reciprocating motion of the inner blade 170.
 [構成]
 次に、図3及び図4を参照して、体毛切断装置100のリニアアクチュエータ10を駆動させるための具体的な構成例について、説明する。
[Constitution]
Next, a specific configuration example for driving the linear actuator 10 of the hair cutting device 100 will be described with reference to FIGS. 3 and 4.
 図3は、実施の形態に係る体毛切断装置100の機能構成を示すブロック図である。図4は、体毛切断装置100の回路図である。 FIG. 3 is a block diagram showing a functional configuration of the hair cutting device 100 according to the embodiment. FIG. 4 is a circuit diagram of the hair cutting device 100.
 図3に示すように、体毛切断装置100は、第1の磁性ブロックを構成する固定子11と、第2の磁性ブロックを構成する可動子12を含むリニアアクチュエータ10を、ヘッド部150内に備える。 As shown in FIG. 3, the hair cutting device 100 includes a linear actuator 10 including a stator 11 that constitutes a first magnetic block and a mover 12 that constitutes a second magnetic block, in a head unit 150. .
 固定子11は、例えば電磁石、又は永久磁石で構成され、フレーム13に固定される。 The stator 11 is composed of, for example, an electromagnet or a permanent magnet, and is fixed to the frame 13.
 可動子12は、固定子11に対して可動可能な、例えば電磁石、又は永久磁石で構成される。可動子12は、ばね14を介してフレーム13に連結され、往復運動可能に構成される。 The mover 12 is configured to be movable with respect to the stator 11, for example, an electromagnet or a permanent magnet. The mover 12 is connected to the frame 13 via a spring 14 and is configured to be able to reciprocate.
 固定子11及び可動子12の少なくとも一方は、電磁石で構成される。なお、本実施の形態では、固定子11が電磁石を有し、可動子12が永久磁石12aを有する構成を例に説明する。 At least one of the stator 11 and the mover 12 is composed of an electromagnet. In the present embodiment, a configuration in which the stator 11 has an electromagnet and the mover 12 has a permanent magnet 12a will be described as an example.
 電磁石は、例えば磁性材料の焼結体、又は、磁性材料の鉄板を積層した構造体に、巻線11aを巻回して構成される。 The electromagnet is configured, for example, by winding a winding 11a around a sintered body of a magnetic material or a structure in which an iron plate of a magnetic material is laminated.
 固定子11の電磁石と、可動子12の永久磁石12aとは、離間して、且つ、対向して配置される。また、固定子11の電磁石と、可動子12の永久磁石12aとは、図3に示す往復運動方向に平行な方向に着磁されている。 The electromagnet of the stator 11 and the permanent magnet 12a of the mover 12 are arranged so as to be spaced apart from each other. Further, the electromagnet of the stator 11 and the permanent magnet 12a of the mover 12 are magnetized in a direction parallel to the reciprocating motion direction shown in FIG.
 本実施の形態では、第1の磁性ブロックを位置が固定された固定子11とし、第2の磁性ブロックを第1の磁性ブロックに対して往復運動可動な可動子12として、以下に説明する。なお、第1の磁性ブロックを固定子11とし、第2の磁性ブロックを可動子12とする必要は、特に、無い。例えば、第1の磁性ブロック及び第2の磁性ブロックのうち、少なくとも一方が可動子であればよい。さらに、第1の磁性ブロック及び第2の磁性ブロックのいずれもが、可動子であってもよい。 In the present embodiment, the following description will be made assuming that the first magnetic block is a fixed stator 11 and the second magnetic block is a movable element 12 reciprocally movable with respect to the first magnetic block. There is no particular need to use the first magnetic block as the stator 11 and the second magnetic block as the mover 12. For example, at least one of the first magnetic block and the second magnetic block may be a mover. Further, both the first magnetic block and the second magnetic block may be movers.
 また、図2に示す外刃160はフレーム13に配設され、図2に示す内刃170は可動子12に取り付けられる。このとき、外刃160が肌面210に接触すると、図2に示すように、肌面210の体毛200が、外刃160に形成される刃孔161に導入される。導入された体毛200は、固定された外刃160と、往復運動する内刃170とに挟まれ、切断される。 Further, the outer blade 160 shown in FIG. 2 is disposed on the frame 13, and the inner blade 170 shown in FIG. 2 is attached to the mover 12. At this time, when outer blade 160 contacts skin surface 210, body hair 200 on skin surface 210 is introduced into blade hole 161 formed in outer blade 160, as shown in FIG. 2. The introduced body hair 200 is sandwiched and cut between the fixed outer blade 160 and the inner blade 170 that reciprocates.
 駆動回路30は、可動子12を往復動作させる回路を構成する。駆動回路30は、固定子11の巻線11aと電気的に接続される。駆動回路30は、電源20からの電源電圧Vccに基づいて動作し、巻線11aに駆動電流Idを供給する。駆動回路30は、例えばMOSFET(Metal Oxide SemiConductor Field Effect Transistor)等の、複数のスイッチング素子からなるフルブリッジ回路で構成される。 The drive circuit 30 constitutes a circuit that causes the mover 12 to reciprocate. The drive circuit 30 is electrically connected to the winding 11 a of the stator 11. The drive circuit 30 operates based on the power supply voltage Vcc from the power supply 20 and supplies a drive current Id to the winding 11a. The drive circuit 30 is configured by a full bridge circuit including a plurality of switching elements such as MOSFETs (Metal Oxide SemiConductor Field Effect Transistor).
 具体的には、固定子11の巻線11aは、駆動回路30の複数のスイッチング素子間に電気的に接続される。駆動回路30は、複数のスイッチング素子を、選択的に、制御出力部42からのPWM(Pulse Width Modulation)信号に基づいて、交互にオンする。これにより、駆動回路30は、巻線11aに流す駆動電流Idの方向を切り替える。その結果、駆動電流Idの流れる方向の切り替えにより、可動子12が往復運動する。 Specifically, the winding 11 a of the stator 11 is electrically connected between a plurality of switching elements of the drive circuit 30. The drive circuit 30 selectively turns on the plurality of switching elements alternately based on a PWM (Pulse Width Modulation) signal from the control output unit 42. Thereby, the drive circuit 30 switches the direction of the drive current Id flowing through the winding 11a. As a result, the mover 12 reciprocates by switching the direction in which the drive current Id flows.
 マイコン50は、駆動回路30を動作させるマイクロコンピュータである。マイコン50は、機能的に分類すると、図4に示すように、制御部40と、駆動量検知部60と、負荷検知部70などを含む。 The microcomputer 50 is a microcomputer that operates the drive circuit 30. When functionally classified, the microcomputer 50 includes a control unit 40, a drive amount detection unit 60, a load detection unit 70, and the like, as shown in FIG.
 制御部40は、リニアアクチュエータ10に通電させる電圧値又は電流値を制御量として制御して、可動子12を往復運動させる。具体的には、まず、制御部40は、固定子11の巻線11aに通電させる電圧値、又は電流値である制御量を決定する。そして、制御部40は、決定した制御量に基づいて、駆動回路30を介して、巻線11aに通電する。これにより、可動子12が往復運動する。 The control unit 40 controls the voltage value or current value to be applied to the linear actuator 10 as a control amount, and causes the mover 12 to reciprocate. Specifically, first, the control unit 40 determines a control amount that is a voltage value or a current value for energizing the winding 11 a of the stator 11. And the control part 40 supplies with electricity to the coil | winding 11a via the drive circuit 30 based on the determined control amount. Thereby, the needle | mover 12 reciprocates.
 さらに、制御部40は、機能的に分類すると、振幅制御部41と、制御出力部42と、加算部43と、メモリ44と、フィルタ部80などを含む。 Further, when functionally classified, the control unit 40 includes an amplitude control unit 41, a control output unit 42, an addition unit 43, a memory 44, a filter unit 80, and the like.
 制御部40の振幅制御部41は、リニアアクチュエータ10に通電させる電圧値、又は電流値である制御量を、制御する。この場合、振幅制御部41は、まず、リニアアクチュエータ10からの制御量の出力値を、検出回路90から取得する。さらに、振幅制御部41は、取得した出力値と、予め設定された目標値とから、第2フィードバック制御量を算出する。そして、算出された第2フィードバック制御量に基づいて、制御量を変更する。なお、振幅制御部41は、既知のPID(Proportional-Integral-Differential)制御を実行して、リニアアクチュエータ10を制御してもよい。ここで、上記目標値は、予め任意の値に設定すればよい。そして、設定された目標値は、例えば制御部40のメモリ44に、予め記憶していてもよい。 The amplitude control unit 41 of the control unit 40 controls a control amount that is a voltage value or a current value for energizing the linear actuator 10. In this case, the amplitude control unit 41 first acquires the output value of the control amount from the linear actuator 10 from the detection circuit 90. Further, the amplitude control unit 41 calculates a second feedback control amount from the acquired output value and a preset target value. Then, the control amount is changed based on the calculated second feedback control amount. The amplitude control unit 41 may control the linear actuator 10 by executing known PID (Proportional-Integral-Differential) control. Here, the target value may be set to an arbitrary value in advance. The set target value may be stored in advance in the memory 44 of the control unit 40, for example.
 制御部40の制御出力部42は、振幅制御部41から取得した制御量に基づいて、巻線11aへの駆動電流Idを、PWM(Pulse Width Modulation)制御する。つまり、制御出力部42は、駆動回路30にPWM信号を出力する。具体的には、制御出力部42は、リニアアクチュエータ10の機械的な共振周波数に同期した周波数の駆動電流Idが、巻線11aに供給されるように、PWM信号を生成する。ここで、リニアアクチュエータ10の機械的な共振周波数は、可動子12の重量、ばね14のばね定数等によって決定される。このとき、制御出力部42には、図3に示すように、電源20からの電源電圧Vccに基づいて、定電圧電源21で生成された定電圧が、動作電圧として供給される。 The control output unit 42 of the control unit 40 performs PWM (Pulse Width Modulation) control on the drive current Id to the winding 11a based on the control amount acquired from the amplitude control unit 41. That is, the control output unit 42 outputs a PWM signal to the drive circuit 30. Specifically, the control output unit 42 generates the PWM signal so that the drive current Id having a frequency synchronized with the mechanical resonance frequency of the linear actuator 10 is supplied to the winding 11a. Here, the mechanical resonance frequency of the linear actuator 10 is determined by the weight of the mover 12, the spring constant of the spring 14, and the like. At this time, as shown in FIG. 3, a constant voltage generated by the constant voltage power supply 21 is supplied to the control output unit 42 as an operating voltage based on the power supply voltage Vcc from the power supply 20.
 そして、PWM信号に基づいて駆動電流Idが巻線11aに流れると、可動子12に配設された永久磁石12aが、駆動電流Idの流れる方向に応じて、ばね14を撓ませながら、往復運動方向(図3における左右方向)に駆動される。つまり、制御出力部42は、制御によって駆動電流Idの流れる方向を、適宜なタイミングで切り換える。これにより、可動子12が往復運動される。 When the drive current Id flows through the winding 11a based on the PWM signal, the permanent magnet 12a disposed on the mover 12 reciprocates while bending the spring 14 in accordance with the direction in which the drive current Id flows. It is driven in the direction (left-right direction in FIG. 3). That is, the control output unit 42 switches the direction in which the drive current Id flows by control at an appropriate timing. Thereby, the needle | mover 12 is reciprocated.
 制御部40の加算部43は、駆動量検知部60で検知した可動子12の駆動量と、負荷検知部70及びフィルタ部80で決定した可動子12の負荷量に基づいて制御量を変更する第1フィードバック制御量とを、振幅制御部41へ出力する。 The addition unit 43 of the control unit 40 changes the control amount based on the drive amount of the mover 12 detected by the drive amount detection unit 60 and the load amount of the mover 12 determined by the load detection unit 70 and the filter unit 80. The first feedback control amount is output to the amplitude control unit 41.
 制御部40のメモリ44は、検出回路90で検出された可動子12の、速度、振幅等の情報を記憶する。メモリ44は、例えばRAM(Random Access Memory)などで構成される。 The memory 44 of the control unit 40 stores information such as the speed and amplitude of the mover 12 detected by the detection circuit 90. The memory 44 is composed of, for example, a RAM (Random Access Memory).
 また、マイコン50の駆動量検知部60は、可動子12の、変位、速度、及び、加速度のうちの、少なくとも1つを、可動子12の駆動量として検知する。具体的には、駆動量検知部60は、検出回路90を介して、固定子11の巻線11aと電気的に接続される。これにより、駆動量検知部60は、巻線11aに生じる誘導起電力(具体的には、誘導起電圧)を取得する検出回路90から、可動子12の振幅、速度、及び、変位を取得する。より具体的には、駆動量検知部60は、可動子12の往復運動により、固定子11の巻線11aに発生する誘導起電圧を、可動子12の駆動量として検知する。このとき、駆動量検知部60は、例えば可動子12の往復運動における1周期ごとに、可動子12の駆動量を検知する。 Further, the drive amount detection unit 60 of the microcomputer 50 detects at least one of the displacement, speed, and acceleration of the mover 12 as the drive amount of the mover 12. Specifically, the drive amount detection unit 60 is electrically connected to the winding 11 a of the stator 11 through the detection circuit 90. As a result, the drive amount detector 60 acquires the amplitude, speed, and displacement of the mover 12 from the detection circuit 90 that acquires the induced electromotive force (specifically, the induced electromotive voltage) generated in the winding 11a. . More specifically, the drive amount detector 60 detects an induced electromotive voltage generated in the winding 11 a of the stator 11 as a drive amount of the mover 12 due to the reciprocating motion of the mover 12. At this time, the drive amount detector 60 detects the drive amount of the mover 12 for each cycle of the reciprocating motion of the mover 12, for example.
 制御部40のフィルタ部80は、可動子12に加わる負荷の値(負荷量)に、所定のゲインを乗じて、振幅制御部41へ出力する。具体的には、フィルタ部80は、例えば負荷検知部70が検知した負荷量が予め設定された第1閾値を上回った場合、可動子12の往復運動の往復中心における速さが大きくなるように、制御量を変更する。また、フィルタ部80は、例えば負荷検知部70が検知した負荷量が予め設定された第2閾値を下回った場合、可動子12の往復中心における速さが小さくなるように、制御量を変更する。 The filter unit 80 of the control unit 40 multiplies the load value (load amount) applied to the mover 12 by a predetermined gain and outputs the result to the amplitude control unit 41. Specifically, for example, when the load amount detected by the load detection unit 70 exceeds a preset first threshold value, the filter unit 80 increases the speed at the reciprocal center of the reciprocating motion of the mover 12. Change the control amount. Further, the filter unit 80 changes the control amount so that the speed at the center of reciprocation of the mover 12 becomes small when the load amount detected by the load detection unit 70 falls below a preset second threshold value, for example. .
 以上にように、体毛切断装置100のリニアアクチュエータ10を駆動させる回路は構成される。 As described above, a circuit for driving the linear actuator 10 of the hair cutting device 100 is configured.
 次に、上述した駆動量検知部60が駆動量として、誘導起電力(具体的には、誘導起電圧)を検知するタイミングについて、図5を参照して、説明する。 Next, the timing at which the drive amount detection unit 60 described above detects an induced electromotive force (specifically, an induced electromotive voltage) as a drive amount will be described with reference to FIG.
 図5は、体毛切断装置100の駆動量検知部60が駆動量を検知するタイミングを説明する図である。 FIG. 5 is a diagram illustrating the timing at which the drive amount detection unit 60 of the hair cutting device 100 detects the drive amount.
 具体的には、図5の(a)は、時間(駆動時間)に対する可動子12の変位(振幅)を示す。図5の(b)は、時間に対する駆動量検知部60が検知する誘導起電圧の変化を示す。さらに、図5の(c)は、時間に対する駆動電流Idの変化を示す。 Specifically, FIG. 5A shows the displacement (amplitude) of the mover 12 with respect to time (driving time). FIG. 5B shows a change in the induced electromotive voltage detected by the drive amount detector 60 with respect to time. Further, (c) of FIG. 5 shows the change of the drive current Id with respect to time.
 まず、駆動量検知部60(図3参照)は、検出回路90から取得したリニアアクチュエータ10からの制御量の出力値に基づいて、固定子11の巻線11aで生じる誘導起電圧の増幅信号である増幅電圧が、基準電圧(例えば、0V)と、同電圧になった時間を検出する。そして、駆動量検知部60は、検出した時間を、往復運動する可動子12の振幅が反転する折り返し点として、判断する。 First, the drive amount detection unit 60 (see FIG. 3) is an amplified signal of the induced electromotive voltage generated in the winding 11a of the stator 11 based on the output value of the control amount from the linear actuator 10 acquired from the detection circuit 90. The time when an amplification voltage becomes the same as a reference voltage (for example, 0 V) is detected. Then, the drive amount detection unit 60 determines the detected time as a turning point where the amplitude of the movable element 12 that reciprocates is reversed.
 このとき、誘導起電圧は、可動子12の往復運動により生じる磁束の変化に応じて正弦波状で出力される。そのため、誘導起電圧は、可動子12の振幅、振動の速度、及び、振動の方向等に応じて、変化する。具体的には、可動子12の往復運動の折り返し地点で振動方向が変化する際、可動子12の振幅は最大、つまり速度はゼロになる。可動子12の速度がゼロになると、磁束の変化がなくなるため、誘導起電圧はゼロになる。そこで、駆動量検知部60は、誘導起電圧のゼロ点を、基準電圧と比較して、可動子12の往復運動の折り返し地点を特定する。そして、駆動量検知部60は、繰り返し検知される誘導起電圧のゼロ点間の時間間隔から、可動子12の振幅、速度、変位の少なくとも一つを、算出する。なお、駆動量検知部60は、図5の(c)に示すように、例えば可動子12の往復運動の1周期中における駆動電流Idがゼロとなる、いずれかの任意のタイミング(時間区間)で、選択的に、誘導起電圧を取得してもよい。 At this time, the induced electromotive voltage is output in the form of a sine wave according to the change in magnetic flux generated by the reciprocating motion of the mover 12. Therefore, the induced electromotive voltage changes according to the amplitude of the mover 12, the speed of vibration, the direction of vibration, and the like. Specifically, when the vibration direction changes at the turning point of the reciprocating motion of the mover 12, the amplitude of the mover 12 is maximum, that is, the speed is zero. When the speed of the mover 12 becomes zero, the change in magnetic flux disappears, so the induced electromotive voltage becomes zero. Therefore, the driving amount detection unit 60 compares the zero point of the induced electromotive voltage with the reference voltage, and identifies the turning point of the reciprocating motion of the mover 12. Then, the drive amount detection unit 60 calculates at least one of the amplitude, speed, and displacement of the mover 12 from the time interval between zero points of the induced electromotive voltage that is repeatedly detected. In addition, as shown in FIG. 5C, the drive amount detection unit 60, for example, any arbitrary timing (time interval) at which the drive current Id becomes zero during one cycle of the reciprocating motion of the mover 12. Thus, the induced electromotive voltage may be acquired selectively.
 また、マイコン50の負荷検知部70(図3参照)は、体毛200を内刃170が切断する際に可動子12に加わる負荷量を、可動子12の往復運動における1周期ごとに、検知する。具体的には、負荷検知部70は、制御部40の駆動量検知部60が検知した駆動量、及び制御量から、可動子12の往復運動における1周期ごとに、負荷量を検知し、算出する。 Moreover, the load detection part 70 (refer FIG. 3) of the microcomputer 50 detects the load amount added to the needle | mover 12 when the inner hair 170 cuts the body hair 200 for every period in the reciprocating motion of the needle | mover 12. FIG. . Specifically, the load detection unit 70 detects and calculates the load amount for each cycle of the reciprocating motion of the mover 12 from the drive amount and the control amount detected by the drive amount detection unit 60 of the control unit 40. To do.
 つまり、負荷検知部70には、例えば制御出力部42から駆動回路30を介して固定子11の巻線11aに入力された制御量と、駆動量検知部60で検出した駆動量が入力される。そして、負荷検知部70は、入力された制御量と駆動量とに基づいて、体毛切断装置100の切断部(図2の刃孔161)に導入された体毛200の切断する際に生じる可動子12の負荷(負荷量)を、往復運動する可動子12の1周期ごとに、検知する。 That is, for example, the control amount input to the winding 11a of the stator 11 from the control output unit 42 via the drive circuit 30 and the drive amount detected by the drive amount detection unit 60 are input to the load detection unit 70. . And the load detection part 70 is a needle | mover produced when cutting the hair 200 introduced into the cutting part (blade hole 161 of FIG. 2) of the hair cutting device 100 based on the input control amount and drive amount. 12 loads (load amounts) are detected for each period of the reciprocating mover 12.
 具体的には、可動子12の1周期中に印加される負荷量は、以下に示す、3つの力により求められる。第1の力は、可動子12の1周期中に、可動子12を駆動するために、可動子12に加わる外力などの力である。第2の力は、可動子12をフレーム13に連結する、ばね14に蓄えられる力、又は、ばね14から放出される力である。第3の力は、ばね14の損失、空気抵抗にともなう可動子12の往復運動を減衰させる力等に依存する粘性力などである。このとき、第1の力である可動子12に加わる外力は、負荷検知部70で検知する負荷量により算出される。また、第2の力である、ばね14に蓄えられる力、又は、ばね14から放出される力は、ばね14のばね定数と、可動子12の現在の周期の振幅と一つ前の周期の振幅と、の差分から算出される。さらに、第3の力である可動子12の往復運動を減衰させる粘性力は、ばね14の粘性係数と、可動子12の振幅とから算出される。 Specifically, the amount of load applied during one cycle of the mover 12 is determined by the following three forces. The first force is a force such as an external force applied to the mover 12 in order to drive the mover 12 during one cycle of the mover 12. The second force is a force stored in the spring 14 that connects the mover 12 to the frame 13 or a force released from the spring 14. The third force is a viscous force depending on a loss of the spring 14, a force that attenuates the reciprocating motion of the mover 12 due to air resistance, and the like. At this time, the external force applied to the mover 12 as the first force is calculated from the load amount detected by the load detection unit 70. Further, the second force, that is, the force stored in the spring 14 or the force released from the spring 14 is determined by the spring constant of the spring 14, the amplitude of the current cycle of the mover 12, and the previous cycle. It is calculated from the difference between the amplitude. Further, the viscous force that attenuates the reciprocating motion of the mover 12 as the third force is calculated from the viscosity coefficient of the spring 14 and the amplitude of the mover 12.
 つまり、リニアアクチュエータ10を制御する変更後の制御量は、既知のPID制御による第2フィードバック制御量と、上記負荷量から算出される第1フィードバック制御量と、から算出される。このとき、振幅制御部41は、検出回路90を介して取得したリニアアクチュエータ10からの制御量の出力値と、取得した出力値に対して予め設定された目標値とから、第2フィードバック制御量を算出する。具体的には、第1フィードバック制御量は、上述した3つの力、例えば可動子12に加わる負荷量と、ばね14に蓄積、又は、ばね14から放出される力と、ばね14の粘性力との和から、算出される。 That is, the changed control amount for controlling the linear actuator 10 is calculated from the second feedback control amount by the known PID control and the first feedback control amount calculated from the load amount. At this time, the amplitude control unit 41 calculates the second feedback control amount from the output value of the control amount from the linear actuator 10 acquired via the detection circuit 90 and the target value preset for the acquired output value. Is calculated. Specifically, the first feedback control amount includes the above-described three forces, for example, the load applied to the mover 12, the force accumulated in or released from the spring 14, and the viscous force of the spring 14. It is calculated from the sum of
 また、マイコン50の負荷検知部70は、駆動量検知部60を介して取得した誘導起電圧から、可動子12の負荷量を、可動子12の往復運動における1周期ごとに、算出する。さらに、駆動量検知部60は、検出回路90を介して取得した誘導起電圧から、ばね14に蓄えられる力、又は、ばね14から放出される力と、ばね14の粘性力と、を算出する。 Further, the load detection unit 70 of the microcomputer 50 calculates the load amount of the mover 12 for each cycle in the reciprocating motion of the mover 12 from the induced electromotive voltage acquired via the drive amount detection unit 60. Further, the drive amount detection unit 60 calculates the force stored in the spring 14 or the force released from the spring 14 and the viscous force of the spring 14 from the induced electromotive voltage acquired via the detection circuit 90. .
 制御部40の加算部43は、負荷検知部70、及び駆動量検知部60を介して取得した負荷量と、ばね14に蓄えられる力、又は、ばね14から放出される力と、ばね14の粘性力との値を加算する。そして、加算部43は、加算した値を、第1フィードバック制御量として、可動子12の往復運動における1周期ごとに、振幅制御部41へ出力する。 The addition unit 43 of the control unit 40 includes the load amount acquired via the load detection unit 70 and the drive amount detection unit 60, the force stored in the spring 14 or the force released from the spring 14, and the spring 14 Add the value with the viscous force. Then, the adding unit 43 outputs the added value as a first feedback control amount to the amplitude control unit 41 for each cycle in the reciprocating motion of the mover 12.
 制御部40の振幅制御部41は、加算部43により算出された第1フィードバック制御量と、上述した第2フィードバック制御量との和を、制御出力部42に出力する。これにより、次の周期に出力する可動子12の制御量が、変更される。つまり、振幅制御部41は、可動子12の往復運動における1周期ごとに、可動子12の往復運動の値が、目標値か否かを比較し、判断する。そして、振幅制御部41は、目標値でない場合、目標値となるように、制御出力部42に出力する制御量を変更する。なお、往復運動の値は、具体的には、変位、速度、及び、加速度のうちの、少なくともいずれか1つである。 The amplitude control unit 41 of the control unit 40 outputs the sum of the first feedback control amount calculated by the addition unit 43 and the above-described second feedback control amount to the control output unit 42. Thereby, the control amount of the needle | mover 12 output in the following period is changed. That is, the amplitude control unit 41 compares and determines whether or not the value of the reciprocating motion of the movable element 12 is a target value for each cycle in the reciprocating motion of the movable element 12. And the amplitude control part 41 changes the control amount output to the control output part 42 so that it may become a target value, when it is not a target value. Note that the value of the reciprocating motion is specifically at least one of displacement, speed, and acceleration.
 また、検出回路90は、リニアアクチュエータ10からの制御量の出力値(電流値及び電圧値の少なくとも一方)と、可動子12の往復運動により発生する誘導起電力と、を検出する回路を構成する。検出回路90は、駆動回路30と固定子11の巻線11aとを接続する電力線を介して、駆動回路30および巻線11aと接続され、誘導起電力(誘導起電圧)を検出する。検出回路90は、例えば増幅回路91と、比較回路92、及び比較回路93などを含む。なお、検出回路90は、可動子12の変位、速度、及び、加速度の少なくとも1つを、検出可能な、例えば光学センサ等により構成してもよい。 The detection circuit 90 constitutes a circuit that detects an output value (at least one of a current value and a voltage value) of a control amount from the linear actuator 10 and an induced electromotive force generated by the reciprocating motion of the mover 12. . The detection circuit 90 is connected to the drive circuit 30 and the winding 11a via a power line connecting the drive circuit 30 and the winding 11a of the stator 11, and detects an induced electromotive force (induced electromotive voltage). The detection circuit 90 includes, for example, an amplifier circuit 91, a comparison circuit 92, a comparison circuit 93, and the like. Note that the detection circuit 90 may be configured by, for example, an optical sensor that can detect at least one of the displacement, speed, and acceleration of the mover 12.
 検出回路90の増幅回路91は、固定子11の巻線11aの両端の電圧、つまり巻線11aに生じる誘導起電圧を増幅し、増幅電圧を生成する。そして、増幅回路91は、生成した増幅後の増幅電圧を、比較回路92、及び比較回路93に出力する。 The amplifying circuit 91 of the detecting circuit 90 amplifies the voltage across the winding 11a of the stator 11, that is, the induced electromotive voltage generated in the winding 11a, and generates an amplified voltage. Then, the amplifier circuit 91 outputs the generated amplified voltage to the comparison circuit 92 and the comparison circuit 93.
 検出回路90の比較回路92は、例えば設定された基準電圧と、増幅電圧とを比較する。そして、比較回路92は、比較結果(例えば、電圧差)を、振幅制御部41に出力する。これにより、振幅制御部41は、比較回路92を介して、可動子12の往復運動における1往復のタイミングを、取得する。 The comparison circuit 92 of the detection circuit 90 compares, for example, a set reference voltage with the amplified voltage. Then, the comparison circuit 92 outputs the comparison result (for example, voltage difference) to the amplitude control unit 41. Thereby, the amplitude control unit 41 acquires the timing of one reciprocation in the reciprocating motion of the mover 12 via the comparison circuit 92.
 さらに、検出回路90の比較回路93は、設定された基準電圧よりも、所定電圧、低い基準電圧と、増幅電圧とを比較する。そして、比較回路93は、比較結果(例えば、電圧差)を、駆動量検知部60に出力する。これにより、駆動量検知部60は、比較回路93から出力された比較結果から、可動子12の駆動量を算出して、可動子12の駆動量を検知する。なお、上記基準電圧、及び、所定電圧は、予め任意の値に設定されていてもよい。 Further, the comparison circuit 93 of the detection circuit 90 compares the amplified voltage with a reference voltage that is lower than the set reference voltage by a predetermined voltage. Then, the comparison circuit 93 outputs a comparison result (for example, a voltage difference) to the drive amount detection unit 60. Accordingly, the drive amount detection unit 60 calculates the drive amount of the mover 12 from the comparison result output from the comparison circuit 93 and detects the drive amount of the mover 12. The reference voltage and the predetermined voltage may be set to arbitrary values in advance.
 [処理手順]
 次に、図3および図4を参照しながら、図6を用いて、実施の形態の体毛切断装置100が体毛200を切断する際の処理手順(制御動作)について、説明する。
[Processing procedure]
Next, a processing procedure (control operation) when the hair cutting device 100 according to the embodiment cuts the hair 200 will be described using FIG. 6 with reference to FIGS. 3 and 4.
 図6は、体毛切断装置100の処理手順を説明するフローチャートである。 FIG. 6 is a flowchart for explaining the processing procedure of the hair cutting device 100.
 まず、図6に示すように、制御部40は、任意の制御量で、可動子12を駆動する(ステップS101)。具体的には、振幅制御部41は、任意の制御量を制御出力部42に出力する。制御出力部42は、出力された任意の制御量に基づいて、駆動回路30から駆動電流Idを出力して、可動子12を駆動する。これにより、可動子12は、出力された駆動電流Idに応じて、往復運動を開始する。 First, as shown in FIG. 6, the control unit 40 drives the mover 12 with an arbitrary control amount (step S101). Specifically, the amplitude control unit 41 outputs an arbitrary control amount to the control output unit 42. The control output unit 42 drives the movable element 12 by outputting a drive current Id from the drive circuit 30 based on the output arbitrary control amount. Thereby, the needle | mover 12 starts reciprocation according to the output drive current Id.
 次に、駆動量検知部60は、往復運動を開始した、可動子12の駆動量を検知する(ステップS102)。具体的には、駆動量検知部60は、検出回路90を介して、可動子12の駆動により発生した誘導起電力(誘導起電圧)を、可動子12の駆動量として、検知する。 Next, the drive amount detector 60 detects the drive amount of the mover 12 that has started reciprocating motion (step S102). Specifically, the drive amount detection unit 60 detects an induced electromotive force (induced electromotive voltage) generated by driving the mover 12 as a drive amount of the mover 12 via the detection circuit 90.
 次に、負荷検知部70は、体毛200を内刃170が切断する際に、可動子12に加わる負荷量を検知する(ステップS103)。具体的には、負荷検知部70は、検知された可動子12の駆動量に基づいて、可動子12に加わる負荷量を検知する。 Next, the load detection unit 70 detects the amount of load applied to the mover 12 when the inner blade 170 cuts the body hair 200 (step S103). Specifically, the load detection unit 70 detects the load applied to the mover 12 based on the detected drive amount of the mover 12.
 次に、制御部40は、負荷検知部70が検知した負荷量と、制御出力部42から取得した制御量とに基づいて、予め任意に定められた目標値となるように、制御量を変更する(ステップS104)。具体的には、制御部40は、第1フィードバック制御量および第2フィードバック制御量から、可動子12の次の周期に制御出力部42が出力する制御量が、上記目標値となるように、制御量を変更する。ここで、第1フィードバック制御量は、負荷検知部70が検知した、可動子12に対する負荷量に基づく制御量である。また、第2フィードバック制御量は、制御出力部42から取得した制御量、及び、検出回路90から取得したリニアアクチュエータ10からの制御量の出力値に基づく制御量である。 Next, the control unit 40 changes the control amount so that the target value is arbitrarily determined in advance based on the load amount detected by the load detection unit 70 and the control amount acquired from the control output unit 42. (Step S104). Specifically, the control unit 40 determines that the control amount output by the control output unit 42 in the next cycle of the mover 12 from the first feedback control amount and the second feedback control amount becomes the target value. Change the control amount. Here, the first feedback control amount is a control amount based on the load amount on the mover 12 detected by the load detection unit 70. The second feedback control amount is a control amount based on the control amount acquired from the control output unit 42 and the output value of the control amount acquired from the linear actuator 10 acquired from the detection circuit 90.
 以上にように、体毛200を切断する際に、体毛切断装置100の処理が実行される。 As described above, when the hair 200 is cut, the processing of the hair cutting device 100 is executed.
 [具体例]
 次に、図7~図10を参照して、体毛切断装置100の具体的な動作について、第1例から第3例を例に、説明する。
[Concrete example]
Next, the specific operation of the hair cutting device 100 will be described with reference to FIGS. 7 to 10 by taking the first to third examples as examples.
 (第1例)
 まず、体毛切断装置100の具体的な動作の第1例について、図7および図8を用いて、説明する。
(First example)
First, a first example of a specific operation of the hair cutting device 100 will be described with reference to FIGS. 7 and 8.
 図7は、体毛切断装置100の動作の第1例を示すタイミングチャートである。 FIG. 7 is a timing chart showing a first example of the operation of the hair cutting device 100.
 具体的には、図7の(a)は、制御量を変更しない場合における、可動子12の速度(速さ)の変化を示すグラフである。図7の(b)は、図7の(a)のように可動子12を往復運動させた場合における、可動子12に加わる負荷の大きさ(負荷量)の変化を示すグラフである。さらに、図7の(c)は、制御量を変更しない場合を示す比較例、及び制御量を負荷量に基づいて変更した場合を示す実施例1における、可動子12の振幅の変化を、比較して示すグラフである。なお、図7の(c)に示す比較例、及び実施例1は、いずれも、PID制御を実行している場合のグラフである。 Specifically, FIG. 7A is a graph showing a change in the speed (speed) of the mover 12 when the control amount is not changed. FIG. 7B is a graph showing changes in the magnitude (load amount) of the load applied to the mover 12 when the mover 12 is reciprocated as shown in FIG. Furthermore, (c) of FIG. 7 compares the change in the amplitude of the mover 12 in the comparative example in which the control amount is not changed and in the first embodiment in which the control amount is changed based on the load amount. It is a graph shown. In addition, the comparative example shown in (c) of FIG. 7 and Example 1 are both graphs when PID control is executed.
 図7の各グラフの横軸の各プロットは、可動子12の1往復の周期を示す。つまり、図7は、可動子12が26往復(26周期)した例を図示している。具体的には、図7の区間Aでは、可動子12が毛に引っ掛かり振幅が低下した状態が、複数周期、続くことを示している。一方、区間Bでは、上段図に示す状態で、可動子12が毛を複数回切断する状態が、複数回繰り返されることを示している。 7 Each plot on the horizontal axis of each graph in FIG. 7 indicates the period of one reciprocation of the mover 12. That is, FIG. 7 illustrates an example in which the mover 12 has reciprocated 26 times (26 cycles). Specifically, in section A in FIG. 7, the state in which the mover 12 is caught by the hair and the amplitude is reduced is continued for a plurality of periods. On the other hand, in section B, the state in which the mover 12 cuts the hair a plurality of times in the state shown in the upper diagram is repeated a plurality of times.
 実施の形態の体毛切断装置100の場合、可動子12の1往復にかかる時間(1周期の時間)は、例えば4ミリ秒である。なお、1周期の時間は、特に限定されず、任意に設定してもよい。 In the case of the hair cutting device 100 of the embodiment, the time required for one reciprocation of the mover 12 (time of one cycle) is, for example, 4 milliseconds. In addition, the time of 1 period is not specifically limited, You may set arbitrarily.
 まず、図7の(a)に示すように、駆動開始時の、初期の周期における可動子12の速度は、目標値に設定されている。速度は、例えば可動子12の往復動作の往復中心における速度である。 First, as shown in FIG. 7A, the speed of the mover 12 in the initial period at the start of driving is set to a target value. The speed is, for example, the speed at the reciprocal center of the reciprocating motion of the mover 12.
 なお、図7の(a)及び(c)のグラフでは、速度を例に説明するが、加速度、又は、振幅でも同様である。また、後述する、図9、及び図10においても、同様である。さらに、目標値は、駆動量検知部60が検知する変位(例えば、振幅)、速度(速さ)、又は、加速度に応じて、制御部40のメモリ44等に、予め記憶させていてもよい。 In the graphs of FIGS. 7A and 7C, the speed will be described as an example, but the same applies to acceleration or amplitude. The same applies to FIGS. 9 and 10 described later. Further, the target value may be stored in advance in the memory 44 or the like of the control unit 40 according to the displacement (for example, amplitude), speed (speed), or acceleration detected by the drive amount detection unit 60. .
 次に、図7の(b)に示すように、区間Aにおいて、可動子12と接続される内刃170には、体毛200の切断による負荷が加わる。そのため、図7の(a)に示すように、区間Aにおいて、体毛200による負荷により、可動子12の速度が、目標値より減衰(減速)する。 Next, as shown in FIG. 7B, in the section A, a load due to cutting of the body hair 200 is applied to the inner blade 170 connected to the mover 12. Therefore, as shown in FIG. 7A, in the section A, the speed of the mover 12 is attenuated (decelerated) from the target value due to the load of the body hair 200.
 次に、図7の(b)に示す区間Bにおいて、可動子12と接続される内刃170に加わる負荷は、体毛200の切断の完了により、無くなる。そのため、図7の(a)に示す区間Bにおいて、可動子12の速度は、目標値に戻る。 Next, in the section B shown in FIG. 7B, the load applied to the inner blade 170 connected to the mover 12 disappears when the cutting of the body hair 200 is completed. Therefore, in the section B shown in FIG. 7A, the speed of the mover 12 returns to the target value.
 そして、体毛切断装置100は、制御量を変更しない場合、区間A及び区間Bのような可動子12の速度の変化が、区間C及び区間D以降も繰り返される。つまり、可動子12には、内刃170が体毛200を切断する際に、内刃170を介して体毛200による負荷が加わる。そのため、可動子12の速度が、目標値よりも低下する。これにより、内刃170(及び外刃160)による体毛200の切れ味も、また低下する。 When the controlled amount is not changed in the hair cutting device 100, the change in the speed of the mover 12 as in the sections A and B is repeated after the sections C and D. That is, when the inner blade 170 cuts the body hair 200, the load by the body hair 200 is applied to the mover 12 through the inner blade 170. Therefore, the speed of the mover 12 is lower than the target value. Thereby, the sharpness of the body hair 200 by the inner blade 170 (and outer blade 160) is also lowered.
 そこで、実施の形態の体毛切断装置100は、まず、負荷検知部70で、内刃170(可動子12)に加わる負荷量を検知する、そして、制御部40は、負荷検知部70が検知した負荷量に基づいて、可動子12の制御量を変更する。 Therefore, in the hair cutting device 100 of the embodiment, first, the load detection unit 70 detects the load applied to the inner blade 170 (mover 12), and the control unit 40 is detected by the load detection unit 70. The control amount of the mover 12 is changed based on the load amount.
 つまり、図7の(c)に示すように、負荷量に基づいて、可動子12の制御量を変更する。これにより、実施例1で示すように、可動子12の速度の目標値からのずれを、抑制できる。 That is, as shown in FIG. 7C, the control amount of the mover 12 is changed based on the load amount. Thereby, as shown in Example 1, the shift | offset | difference from the target value of the speed of the needle | mover 12 can be suppressed.
 以下、図7の(c)に示す、負荷量に基づいて、可動子12の制御量を変更する実施例1と、変更しない比較例の、可動子12の動きについて、図8を参照して、説明する。 Hereinafter, the movement of the mover 12 in the first embodiment in which the control amount of the mover 12 is changed based on the load amount shown in FIG. ,explain.
 図8は、体毛切断装置100の可動子12の動きの具体例を示す図である。なお、図8に示すグラフの横軸は時間で、縦軸は可動子12の振幅である。また、図8のグラフは、基準とする時間の0秒よりも、可動子12の往復運動の1周期前から、例えば900mNの負荷量を可動子12に加えた場合の、時間に対する可動子12の振幅の変化を示す。 FIG. 8 is a diagram illustrating a specific example of the movement of the mover 12 of the hair cutting device 100. The horizontal axis of the graph shown in FIG. 8 is time, and the vertical axis is the amplitude of the mover 12. Further, the graph of FIG. 8 shows that the movable element 12 with respect to time when a load amount of, for example, 900 mN is applied to the movable element 12 from one cycle before the reciprocating motion of the movable element 12 from 0 seconds as the reference time. Changes in the amplitude of are shown.
 図8に示すように、基準時間である0秒以降、比較例、及び実施例1のいずれも、可動子12に加わる負荷により、振幅が小さくなる。このとき、比較例の可動子12は、0.01秒程度まで、言い換えると3周期程度まで、振幅が±1.0mmから±0.2mm程度まで大きく下がっている。一方、実施例1の可動子12は、振幅が±1.0mmから±0.5mm程度までしか下がらず、減衰量が小さいことがわかる。 As shown in FIG. 8, after 0 seconds, which is the reference time, in both the comparative example and the example 1, the amplitude decreases due to the load applied to the mover 12. At this time, the amplitude of the mover 12 of the comparative example is greatly reduced from about ± 1.0 mm to about ± 0.2 mm until about 0.01 seconds, in other words, about three cycles. On the other hand, the mover 12 of Example 1 has an amplitude that decreases only from about ± 1.0 mm to about ± 0.5 mm, indicating that the attenuation is small.
 つまり、制御部40は、可動子12に加わる負荷量に基づいて、制御量を変更して、リニアアクチュエータ10の制御を実行する。これにより、リニアアクチュエータ10の動作(具体的には、可動子12の往復運動時の振幅)の安定性を向上できることがわかる。 That is, the control unit 40 controls the linear actuator 10 by changing the control amount based on the load applied to the mover 12. Thereby, it turns out that the stability of the operation | movement (specifically the amplitude at the time of the reciprocating motion of the needle | mover 12) of the linear actuator 10 can be improved.
 (第2例)
 次に、体毛切断装置100の具体的な動作の第2例について、図9を用いて、説明する。
(Second example)
Next, a second example of the specific operation of the hair cutting device 100 will be described with reference to FIG.
 図9は、体毛切断装置100の動作の第2例を示すタイミングチャートである。 FIG. 9 is a timing chart showing a second example of the operation of the hair cutting device 100.
 具体的には、図9の(a)は、制御量を変更しない場合における、可動子12の速度の変化を示すグラフである。図9の(b)は、図9の(a)のように可動子12を往復運動させた場合における、可動子12に加わる負荷の大きさ(負荷量)の変化を示すグラフである。さらに、図9の(c)は、制御量を変更しない場合を示す比較例と、制御量を負荷量に基づいて変更した場合を示す実施例1、及び、実施例2における、可動子12の振幅の変化を、比較して示すグラフである。ここで、実施例2は、実施例1の制御に加えて、さらに第1閾値th1に基づいて、制御量を変更した場合における、可動子12の振幅の変化を示す。なお、図9の(c)に示す比較例、実施例1、及び、実施例2は、いずれも、PID制御を実行している場合のグラフである。 Specifically, FIG. 9A is a graph showing a change in the speed of the mover 12 when the control amount is not changed. FIG. 9B is a graph showing a change in the magnitude (load amount) of the load applied to the mover 12 when the mover 12 is reciprocated as shown in FIG. 9A. Furthermore, (c) of FIG. 9 is a comparative example showing the case where the control amount is not changed, the first embodiment showing the case where the control amount is changed based on the load amount, and the mover 12 in the second embodiment. It is a graph which shows the change of an amplitude in comparison. Here, the second embodiment shows a change in the amplitude of the mover 12 when the control amount is changed based on the first threshold th1 in addition to the control of the first embodiment. In addition, all of the comparative example, Example 1, and Example 2 shown in (c) of FIG. 9 are graphs when the PID control is executed.
 図9の各グラフの横軸の各プロットは、可動子12の1往復の周期を示す。つまり、第1例の図7と同様に、図9は可動子12が26往復(26周期)した例を図示している。なお、図9の(a)、(b)は、図7の(a)、(b)と同じグラフであるため、説明を省略する。 9 Each plot on the horizontal axis of each graph in FIG. 9 indicates the period of one reciprocation of the mover 12. That is, like FIG. 7 of the first example, FIG. 9 illustrates an example in which the mover 12 has reciprocated 26 times (26 cycles). Note that FIGS. 9A and 9B are the same graphs as FIGS. 7A and 7B and will not be described.
 図9の(c)に示す実施例2では、まず、制御部40のフィルタ部80で、負荷検知部70が検知した、可動子12に加わる負荷量が、図9の(b)に示す予め設定された第1閾値th1を上回ったか否かを検出する。そして、制御部40は、負荷検知部70が検知した負荷量が第1閾値th1を上回った場合、可動子12の往復運動の往復中心における速度が大きくなるように、制御量を変更する。なお、制御部40が変更する可動子12の速度は、特に限定されない。第2例の実施例2の場合、制御部40は、可動子12の往復運動の往復中心における速度を、例えば1.5倍とするように、制御量を変更する。 In Example 2 shown in FIG. 9C, first, the load applied to the mover 12 detected by the load detection unit 70 in the filter unit 80 of the control unit 40 is shown in advance in FIG. It is detected whether or not the set first threshold value th1 is exceeded. Then, when the load amount detected by the load detection unit 70 exceeds the first threshold th1, the control unit 40 changes the control amount so that the speed at the reciprocal center of the reciprocating motion of the mover 12 is increased. In addition, the speed of the needle | mover 12 which the control part 40 changes is not specifically limited. In the case of Example 2 of the second example, the control unit 40 changes the control amount so that the speed at the reciprocal center of the reciprocating motion of the mover 12 is, for example, 1.5 times.
 これにより、図9の(c)の、例えば区間A、及び区間Cに示すように、実施例2の可動子12は、実施例1の可動子12よりも、早く目標値の速度に戻る(収束する)ことがわかる。 Accordingly, as shown in, for example, the section A and the section C in FIG. 9C, the mover 12 of the second embodiment returns to the target value speed earlier than the mover 12 of the first embodiment ( It is understood that it converges.
 なお、第1閾値th1は、予め任意の値に設定すればよい。また、第1閾値th1は、例えば制御部40のメモリ44などに予め記憶させていてもよい。 The first threshold th1 may be set to an arbitrary value in advance. Further, the first threshold th1 may be stored in advance in the memory 44 of the control unit 40, for example.
 (第3例)
 次に、体毛切断装置100の具体的な動作の第3例について、図10を用いて、説明する。
(Third example)
Next, a third example of the specific operation of the hair cutting device 100 will be described with reference to FIG.
 図10は、体毛切断装置100の動作の第3例を示すタイミングチャートである。 FIG. 10 is a timing chart showing a third example of the operation of the hair cutting device 100.
 具体的には、図10の(a)は、制御量を変更しない場合における、可動子12の速度の変化を示すグラフである。図10の(b)は、図10の(a)のように可動子12を往復運動させた場合における、可動子12に加わる負荷の大きさ(負荷量)の変化を示すグラフである。さらに、図10の(c)は、制御量を変更しない場合を示す比較例と、制御量を負荷量に基づいて変更した場合を示す実施例2、及び、実施例3における、可動子12の振幅の変化を、比較して示すグラフである。ここで、実施例2は、第1例の実施例1の制御に加えて、さらに第1閾値th1に基づいて、制御量を変更した場合における、可動子12の振幅の変化を示す。また、実施例3は、上記実施例2の制御に加えて、さらに第2閾値th2に基づいて、制御量を変更した場合における、可動子12の振幅の変化を示すグラフである。なお、図10の(c)に示す比較例、実施例2、及び、実施例3は、いずれも、PID制御を実行している場合のグラフである。 Specifically, FIG. 10A is a graph showing a change in the speed of the mover 12 when the control amount is not changed. FIG. 10B is a graph showing a change in the magnitude (load amount) of the load applied to the mover 12 when the mover 12 is reciprocated as shown in FIG. Furthermore, (c) of FIG. 10 shows the comparative example of the case where the control amount is not changed, the second embodiment showing the case where the control amount is changed based on the load amount, and the mover 12 in the third embodiment. It is a graph which shows the change of an amplitude in comparison. Here, the second embodiment shows a change in the amplitude of the movable element 12 when the control amount is changed based on the first threshold th1 in addition to the control of the first embodiment. Further, the third embodiment is a graph showing a change in the amplitude of the movable element 12 when the control amount is changed based on the second threshold th2 in addition to the control of the second embodiment. In addition, all of the comparative example, Example 2, and Example 3 shown in FIG. 10C are graphs when the PID control is executed.
 図10の各グラフの横軸の各プロットは、可動子12の1往復の周期を示す。つまり、第1例および第2例の図7および図9と同様に、図10は可動子12が26往復(26周期)した例を図示している。なお、図10の(a)、(b)は、図7の(a)、(b)と同じグラフであるため、説明を省略する。 10 Each plot on the horizontal axis of each graph in FIG. 10 indicates the period of one reciprocation of the mover 12. That is, like FIGS. 7 and 9 in the first example and the second example, FIG. 10 illustrates an example in which the mover 12 reciprocates 26 times (26 cycles). Note that FIGS. 10A and 10B are the same graphs as FIGS. 7A and 7B and will not be described.
 図10の(c)に示す実施例3では、まず、制御部40のフィルタ部80で、負荷検知部70が検知した、可動子12に加わる負荷量が、図10の(b)に示す、予め設定された第1閾値th1を上回ったか否かを検出する。そして、制御部40は、負荷検知部70が検知した負荷量が第1閾値th1を上回った場合、可動子12の往復運動の往復中心における速度が大きくなるように、制御量を変更する。このとき、制御部40は、第2例と同様に、可動子12の往復運動の往復中心における速度を、例えば1.5倍とするように、制御量を変更する。 In Example 3 shown in FIG. 10C, first, the load applied to the movable element 12 detected by the load detection unit 70 in the filter unit 80 of the control unit 40 is shown in FIG. It is detected whether or not a preset first threshold th1 is exceeded. Then, when the load amount detected by the load detection unit 70 exceeds the first threshold th1, the control unit 40 changes the control amount so that the speed at the reciprocal center of the reciprocating motion of the mover 12 is increased. At this time, similarly to the second example, the control unit 40 changes the control amount so that the speed at the reciprocal center of the reciprocating motion of the mover 12 is, for example, 1.5 times.
 さらに、制御部40のフィルタ部80で、負荷検知部70が検知した、可動子12に加わる負荷量が、図10の(b)に示す、予め設定された第2閾値th2を下回ったか否かを検出する。そして、制御部40は、負荷検知部70が検知した負荷量が第2閾値th2を下回った場合、可動子12の往復中心の速度が小さくなるように、制御量を変更する。なお、制御部40が変更する可動子12の速度は、特に限定されない。第3例の実施例3の場合、制御部40は、可動子12の往復運動の往復中心における速度を、例えば0.5倍とするように、制御量を変更する。 Further, whether or not the load applied to the mover 12 detected by the load detection unit 70 in the filter unit 80 of the control unit 40 is lower than a preset second threshold th2 shown in FIG. 10B. Is detected. Then, when the load amount detected by the load detection unit 70 falls below the second threshold th2, the control unit 40 changes the control amount so that the speed of the reciprocation center of the mover 12 becomes small. In addition, the speed of the needle | mover 12 which the control part 40 changes is not specifically limited. In the case of Example 3 of the third example, the control unit 40 changes the control amount so that the speed at the reciprocal center of the reciprocating motion of the mover 12 is, for example, 0.5 times.
 これにより、図10の(c)の、例えば区間B、及び区間Dに示すように、実施例3の可動子12は、実施例2の可動子12よりも、さらに、早く目標値の速度に戻る(収束する)ことがわかる。 Accordingly, as shown in, for example, the section B and the section D in FIG. 10C, the mover 12 of the third embodiment has a speed of the target value faster than the mover 12 of the second embodiment. It turns out that it returns (converges).
 つまり、第2例の実施例2では、負荷量に基づいて、可動子12の速さが大きくなるようにしか制御していない。そのため、負荷量の状態によっては、図9の(c)に示すように、例えば区間B、及び区間Dにおいて、速度が下がりすぎてしまう場合が発生する。 That is, in Example 2 of the second example, control is performed only so that the speed of the mover 12 is increased based on the load amount. Therefore, depending on the state of the load amount, as shown in FIG. 9C, for example, the speed may be excessively decreased in the section B and the section D.
 そこで、第3例の実施例3では、制御部40は、例えば第2閾値th2を下回った場合、可動子12の往復中心の速度が小さくなるように、制御量を変更する。これにより、可動子12の速度が目標値に近づいている場合における、可動子12の急激な速度変化を抑制する。その結果、可動子12の速度のアンダーシュート、及び/又は、オーバーシュートを、より確実に抑制できる。 Therefore, in Example 3 of the third example, the control unit 40 changes the control amount so that the speed of the reciprocation center of the mover 12 becomes small, for example, when it falls below the second threshold th2. This suppresses a rapid speed change of the mover 12 when the speed of the mover 12 approaches the target value. As a result, the undershoot and / or overshoot of the speed of the mover 12 can be more reliably suppressed.
 なお、第2閾値th2は、予め任意の値に設定すればよい。また、第2閾値th2は、例えば制御部40のメモリ44などに予め記憶させていてもよい。 The second threshold th2 may be set to an arbitrary value in advance. The second threshold th2 may be stored in advance in the memory 44 of the control unit 40, for example.
 [効果等]
 以上のように、実施の形態の体毛切断装置100は、第1の磁性ブロックである固定子11、及び、体毛200を切断する刃である内刃170を連動させる、第2の磁性ブロックである可動子12を有し、固定子11、及び可動子12のうちの、一方が電磁石で、他方が永久磁石、又は電磁石で構成されるリニアアクチュエータ10を含む。さらに、体毛切断装置100は、リニアアクチュエータ10に通電させる電圧値、又は電流値である制御量を制御して、可動子12を往復運動させる制御部40と、体毛200を内刃170が切断する際に可動子12に加わる負荷量を検知する負荷検知部70を含む。制御部40は、負荷検知部70が検知した負荷量に基づく第1フィードバック制御量に基づいて、制御量を変更するように構成される。
[Effects]
As described above, the hair cutting device 100 of the embodiment is a second magnetic block that interlocks the stator 11 that is the first magnetic block and the inner blade 170 that is the blade that cuts the hair 200. A linear actuator 10 having a mover 12, one of the stator 11 and the mover 12 being an electromagnet and the other being a permanent magnet or an electromagnet is included. Further, in the hair cutting device 100, the inner blade 170 cuts the body hair 200 and the control unit 40 that reciprocates the mover 12 by controlling a control value that is a voltage value or a current value for energizing the linear actuator 10. In this case, a load detecting unit 70 that detects the amount of load applied to the mover 12 is included. The control unit 40 is configured to change the control amount based on the first feedback control amount based on the load amount detected by the load detection unit 70.
 この構成によれば、負荷検知部70は、体毛切断装置100の刃孔161に導入された体毛200により可動子12に加わる負荷量を検出する。これにより、制御部40は、検出した負荷量に応じて、可動子12の、例えば振幅などの制御を行うことができる。つまり、体毛切断装置100は、負荷量に応じた第1フィードバック制御量に基づいて、可動子12の制御量を変更する。これにより、髭等の体毛200が刃孔161に導入され、切断する際の応答性が、向上する。さらに、可動子12の振幅(又は、速度)の低下を抑制できる。その結果、体毛切断装置100は、リニアアクチュエータ10の動作(具体的には、可動子12の往復運動)の安定性を、さらに向上させることができる。 According to this configuration, the load detection unit 70 detects the amount of load applied to the mover 12 by the body hair 200 introduced into the blade hole 161 of the body hair cutting device 100. Thereby, the control unit 40 can control, for example, the amplitude of the mover 12 according to the detected load amount. That is, the hair cutting device 100 changes the control amount of the mover 12 based on the first feedback control amount corresponding to the load amount. Thereby, body hairs 200, such as a heel, are introduced into the blade hole 161, and the responsiveness at the time of cut | disconnect improves. Furthermore, the fall of the amplitude (or speed) of the needle | mover 12 can be suppressed. As a result, the hair cutting device 100 can further improve the stability of the operation of the linear actuator 10 (specifically, the reciprocating motion of the mover 12).
 また、体毛切断装置100は、可動子12の変位、速度、及び、加速度のうちの、少なくとも1つを、駆動量として検知する駆動量検知部60を、さらに備える。駆動量検知部60は、可動子12の往復運動における1周期ごとに駆動量を検知する。そして、負荷検知部70は、駆動量検知部60が検知した駆動量、及び制御量から、可動子12の往復運動における1周期ごとに、負荷量を検知するように構成してもよい。 The hair cutting device 100 further includes a drive amount detector 60 that detects at least one of the displacement, speed, and acceleration of the mover 12 as a drive amount. The drive amount detector 60 detects the drive amount for each cycle in the reciprocating motion of the mover 12. The load detection unit 70 may be configured to detect the load amount for each cycle in the reciprocating motion of the mover 12 from the drive amount and the control amount detected by the drive amount detection unit 60.
 この構成によれば、可動子12の駆動量の検出回数を抑制できる。同時に、簡便に、可動子12に加わる負荷量を検出できる。 According to this configuration, the number of detections of the driving amount of the mover 12 can be suppressed. At the same time, the load applied to the mover 12 can be easily detected.
 また、駆動量検知部60は、可動子12の往復運動により発生する誘導起電力を駆動量として検知するように構成してもよい。 Further, the drive amount detector 60 may be configured to detect the induced electromotive force generated by the reciprocating motion of the mover 12 as the drive amount.
 この構成によれば、駆動量検知部60は、駆動量を検知するために、新たに別のセンサ等を設けることなく、可動子12の駆動量を検知できる。これにより、体毛切断装置100を、小型化できる。 According to this configuration, the drive amount detection unit 60 can detect the drive amount of the mover 12 without providing another sensor or the like in order to detect the drive amount. Thereby, the hair cutting device 100 can be reduced in size.
 また、制御部40は、負荷検知部70が検知した可動子12の負荷量が、予め設定された第1閾値th1を上回った場合、可動子12の往復運動の往復中心における速度が大きくなるように、制御量を変更するように構成してもよい。 In addition, when the load amount of the mover 12 detected by the load detection unit 70 exceeds the preset first threshold th1, the control unit 40 increases the speed at the reciprocation center of the reciprocation of the mover 12. Alternatively, the control amount may be changed.
 この構成によれば、制御部40は、可動子12(具体的には、可動子12に連動する内刃170)が体毛200を切断する際に加わる負荷により、可動子12が減速する場合でも、可動子12を、速やかに加速させることができる。これにより、体毛切断装置100で体毛200を切断する際に、可動子12に加わる断続的な負荷に対する応答性を向上できする。 According to this configuration, the control unit 40 is configured so that even when the mover 12 decelerates due to a load applied when the mover 12 (specifically, the inner blade 170 interlocked with the mover 12) cuts the body hair 200. The mover 12 can be quickly accelerated. Thereby, when cutting the hair 200 with the hair cutting device 100, the responsiveness to the intermittent load applied to the mover 12 can be improved.
 また、制御部40は、負荷検知部70が検知した負荷量が予め設定された第2閾値th2を下回った場合、可動子12の往復中心の速度が小さくなるように、制御量を変更するように構成してもよい。 Further, the control unit 40 changes the control amount so that the speed of the reciprocation center of the mover 12 becomes small when the load amount detected by the load detection unit 70 is less than a preset second threshold th2. You may comprise.
 この構成によれば、制御部40は、可動子12が体毛200を切断する際に加わる負荷量が急激に減衰し、可動子12が急激に加速された場合でも、可動子12の速度を緩やかに減衰させることができる。これにより、体毛切断装置100で体毛200を切断する際に、可動子12に加わる断続的な負荷に対する応答性を、より向上できる。 According to this configuration, the control unit 40 gradually reduces the speed of the mover 12 even when the load applied when the mover 12 cuts the hair 200 is rapidly attenuated and the mover 12 is accelerated rapidly. Can be attenuated. Thereby, when cutting the hair 200 with the hair cutting device 100, the responsiveness to the intermittent load applied to the mover 12 can be further improved.
 また、制御部40は、リニアアクチュエータ10からの制御量の出力値を取得し、取得した出力値に対する予め設定された目標値とから算出される第2フィードバック制御量に基づいて、制御量を変更するように構成してもよい。 Further, the control unit 40 acquires the output value of the control amount from the linear actuator 10, and changes the control amount based on the second feedback control amount calculated from the preset target value for the acquired output value. You may comprise.
 この構成によれば、体毛切断装置100の動作の安定性が、さらに向上する。 According to this configuration, the stability of the operation of the hair cutting device 100 is further improved.
 (その他の実施の形態)
 以上、本実施の形態に係る体毛切断装置100について、上記実施の形態に基づいて説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other embodiments)
As mentioned above, although the hair cutting device 100 concerning this Embodiment was demonstrated based on the said embodiment, this invention is not limited to the said embodiment.
 例えば、上記実施の形態において、制御部40等の構成要素の全部、又は、一部を、専用のハードウェアで構成してもよい。また、制御部40の各構成要素に適したソフトウェアプログラムを実行することによって実現してもよい。各構成要素は、CPU(Central Processing Unit)、又は、プロセッサ等のプログラム実行部が、HDD(Hard Disk Drive)、又は、半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することにより実現してもよい。 For example, in the above embodiment, all or some of the components such as the control unit 40 may be configured by dedicated hardware. Moreover, you may implement | achieve by running the software program suitable for each component of the control part 40. FIG. Each component is executed by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. It may be realized.
 また、制御部40等の構成要素は、1つ以上の電子回路で構成してもよい。1つ以上の電子回路は、汎用的な回路でもよく、さらに専用の回路でもよい。 Further, the constituent elements such as the control unit 40 may be composed of one or more electronic circuits. The one or more electronic circuits may be general-purpose circuits or dedicated circuits.
 なお、1つ以上の電子回路には、例えば半導体装置、IC(Integrated Circuit)、又は、LSI(Large Scale Integration)等を含んでもよい。IC、又は、LSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC、又は、LSIと呼んでいるが、集積の度合いによって呼び方が変わる。つまり、システムLSI、VLSI(Very Large Scale Integration)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれないが、それらも、IC、又は、LSIに含まれる。また、LSIの製造後にプログラムされるFPGA(Field Programmable Gate Array)も、IC、又は、LSIと同じ目的で使うこともできる。 The one or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), or an LSI (Large Scale Integration). The IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration. That is, the system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration) may be called, but these are also included in the IC or LSI. An FPGA (Field Programmable Gate Array) programmed after the manufacture of the LSI can also be used for the same purpose as the IC or LSI.
 また、本発明の全般的、又は具体的な態様は、システム、装置、方法、集積回路、又は、コンピュータプログラムを介して、実現してもよい。さらに、コンピュータプログラムが記憶された光学ディスク、HDD、若しくは半導体メモリ等のコンピューで読み取り可能な、非一時的な記録媒体で実現してもよい。また、システム、装置、方法、集積回路、コンピュータプログラム、及び記録媒体などを、任意に組み合わせて実現してもよい。 The general or specific aspect of the present invention may be realized via a system, apparatus, method, integrated circuit, or computer program. Further, it may be realized by a computer-readable non-transitory recording medium such as an optical disk, an HDD, or a semiconductor memory in which a computer program is stored. Further, the system, apparatus, method, integrated circuit, computer program, recording medium, and the like may be implemented in any combination.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素、及び機能を任意に組み合わせることで実現される形態も、本発明に含まれる。 In addition, it is realized by arbitrarily combining the components and functions in each embodiment without departing from the spirit of the present invention, and forms obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. This form is also included in the present invention.
 本発明は、体毛を切断する電動バリカン、電気カミソリ等の体毛切断装置に利用可能である。 The present invention can be used for a hair cutting device such as an electric hair clipper or an electric razor for cutting hair.
 10  リニアアクチュエータ
 11  固定子(第1の磁性ブロック)
 11a  巻線
 12  可動子(第2の磁性ブロック)
 12a  永久磁石
 13  フレーム
 14  ばね
 20  電源
 21  定電圧電源
 30  駆動回路
 40  制御部
 41  振幅制御部
 42  制御出力部
 43  加算部
 44  メモリ
 50  マイコン
 60  駆動量検知部
 70  負荷検知部
 80  フィルタ部
 90  検出回路
 91  増幅回路
 92,93  比較回路
 100  体毛切断装置
 110  本体
 120  把持部
 130  電源スイッチ
 140  表示部
 150  ヘッド部
 160  外刃
 161  刃孔
 170  内刃(刃)
 200  体毛
 210  肌面
 A,B,C,D  区間
 Id  駆動電流
 th1  第1閾値
 th2  第2閾値
10 Linear actuator 11 Stator (first magnetic block)
11a Winding 12 Mover (second magnetic block)
12a Permanent magnet 13 Frame 14 Spring 20 Power supply 21 Constant voltage power supply 30 Drive circuit 40 Control unit 41 Amplitude control unit 42 Control output unit 43 Addition unit 44 Memory 50 Microcomputer 60 Drive amount detection unit 70 Load detection unit 80 Filter unit 90 Detection circuit 91 Amplifier circuit 92, 93 Comparison circuit 100 Hair cutting device 110 Main body 120 Gripping part 130 Power switch 140 Display part 150 Head part 160 Outer blade 161 Blade hole 170 Inner blade (blade)
200 Body Hair 210 Skin A, B, C, D Section Id Drive Current th1 First Threshold Th2 Second Threshold

Claims (6)

  1. 第1の磁性ブロック、及び、体毛を切断する刃を連動させる第2の磁性ブロックを有し、前記第1の磁性ブロック及び前記第2の磁性ブロックのうちの、一方が電磁石で、他方が永久磁石、又は電磁石で構成されるリニアアクチュエータと、
    前記リニアアクチュエータに通電させる電圧値又、は電流値である制御量を制御して、前記第2の磁性ブロックを往復運動させる制御部と、
    前記体毛を前記刃が切断する際に前記第2の磁性ブロックに加わる負荷量を、前記第2の磁性ブロックの往復運動における1周期ごとに検知する負荷検知部と、を備え、
    前記制御部は、前記負荷検知部が検知した前記負荷量に基づく第1フィードバック制御量に基づいて、前記制御量を変更する、
    体毛切断装置。
    A first magnetic block and a second magnetic block that interlocks a blade that cuts body hair, one of the first magnetic block and the second magnetic block being an electromagnet and the other being permanent A linear actuator composed of a magnet or an electromagnet;
    A control unit that reciprocates the second magnetic block by controlling a control amount that is a voltage value or a current value to be passed through the linear actuator;
    A load detection unit that detects a load applied to the second magnetic block when the blade cuts the body hair for each cycle in the reciprocating motion of the second magnetic block;
    The control unit changes the control amount based on a first feedback control amount based on the load amount detected by the load detection unit,
    Hair cutting device.
  2. 前記第2の磁性ブロックの変位、速度、及び、加速度のうちの、少なくとも1つを、駆動量として検知する駆動量検知部を、さらに備え、
    前記駆動量検知部は、前記第2の磁性ブロックの往復運動における1周期ごとに前記駆動量を検知し、
    前記負荷検知部は、前記駆動量検知部が検知した前記駆動量及び前記制御量から、前記第2の磁性ブロックの往復運動における1周期ごとに、前記負荷量を検知する、
    請求項1に記載の体毛切断装置。
    A drive amount detector that detects at least one of the displacement, speed, and acceleration of the second magnetic block as a drive amount;
    The drive amount detection unit detects the drive amount for each cycle in the reciprocating motion of the second magnetic block,
    The load detection unit detects the load amount for each cycle in the reciprocating motion of the second magnetic block from the drive amount and the control amount detected by the drive amount detection unit.
    The hair cutting device according to claim 1.
  3. 前記駆動量検知部は、前記第2の磁性ブロックの往復運動により発生する誘導起電力を、前記駆動量として検知する、
    請求項2に記載の体毛切断装置。
    The drive amount detector detects an induced electromotive force generated by a reciprocating motion of the second magnetic block as the drive amount;
    The body hair cutting device according to claim 2.
  4. 前記制御部は、前記負荷検知部が検知した前記第2の磁性ブロックの前記負荷量が、予め設定された第1閾値を上回った場合、前記第2の磁性ブロックの往復運動の往復中心における速度が大きくなるように、前記制御量を変更する、
    請求項1から請求項3のいずれか1項に記載の体毛切断装置。
    When the load amount of the second magnetic block detected by the load detection unit exceeds a preset first threshold value, the control unit determines the speed at the reciprocal center of the reciprocating motion of the second magnetic block. Change the control amount so that the
    The hair cutting device according to any one of claims 1 to 3.
  5. 前記制御部は、前記負荷検知部が検知した前記第2の磁性ブロックの前記負荷量が、予め設定された第2閾値を下回った場合、前記第2の磁性ブロックの往復中心の速度が小さくなるように、前記制御量を変更する、
    請求項1から請求項4のいずれか1項に記載の体毛切断装置。
    When the load amount of the second magnetic block detected by the load detection unit falls below a preset second threshold, the control unit reduces the speed of the reciprocal center of the second magnetic block. So as to change the control amount,
    The hair cutting device according to any one of claims 1 to 4.
  6. 前記制御部は、前記リニアアクチュエータからの前記制御量の出力値を取得し、取得した前記出力値に対する予め設定された目標値とから算出される第2フィードバック制御量に基づいて、前記制御量を変更する、
    請求項1から請求項5のいずれか1項に記載の体毛切断装置。
    The control unit acquires an output value of the control amount from the linear actuator, and calculates the control amount based on a second feedback control amount calculated from a preset target value for the acquired output value. change,
    The hair cutting device according to any one of claims 1 to 5.
PCT/JP2019/004329 2018-06-01 2019-02-07 Body hair trimmer WO2019230056A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-105985 2018-06-01
JP2018105985A JP6909981B2 (en) 2018-06-01 2018-06-01 Hair cutting device

Publications (1)

Publication Number Publication Date
WO2019230056A1 true WO2019230056A1 (en) 2019-12-05

Family

ID=68698109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004329 WO2019230056A1 (en) 2018-06-01 2019-02-07 Body hair trimmer

Country Status (2)

Country Link
JP (1) JP6909981B2 (en)
WO (1) WO2019230056A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313749A (en) * 1994-03-28 1995-12-05 Matsushita Electric Works Ltd Reciprocating electric razor
JP2004104987A (en) * 2002-07-16 2004-04-02 Matsushita Electric Ind Co Ltd Motor driver
JP2012152237A (en) * 2011-01-21 2012-08-16 Panasonic Corp Electric razor
WO2014125772A1 (en) * 2013-02-13 2014-08-21 パナソニック 株式会社 Hair removal tool
JP2015211508A (en) * 2014-04-24 2015-11-24 パナソニックIpマネジメント株式会社 Vibration type actuator, control device for the same, dynamo-electric device having vibration type actuator and program for vibration type actuator
JP2018007950A (en) * 2016-07-15 2018-01-18 マクセルホールディングス株式会社 Electric shaver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313749A (en) * 1994-03-28 1995-12-05 Matsushita Electric Works Ltd Reciprocating electric razor
JP2004104987A (en) * 2002-07-16 2004-04-02 Matsushita Electric Ind Co Ltd Motor driver
JP2012152237A (en) * 2011-01-21 2012-08-16 Panasonic Corp Electric razor
WO2014125772A1 (en) * 2013-02-13 2014-08-21 パナソニック 株式会社 Hair removal tool
JP2015211508A (en) * 2014-04-24 2015-11-24 パナソニックIpマネジメント株式会社 Vibration type actuator, control device for the same, dynamo-electric device having vibration type actuator and program for vibration type actuator
JP2018007950A (en) * 2016-07-15 2018-01-18 マクセルホールディングス株式会社 Electric shaver

Also Published As

Publication number Publication date
JP2019208726A (en) 2019-12-12
JP6909981B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP3674216B2 (en) Drive control method for linear vibration motor
US7425770B2 (en) Vibration wave motor
JP5290320B2 (en) STRUCTURE HAVING VIBRATION MOTOR AND METHOD OF CONTROLLING VIBRATION MOTOR
JP3932741B2 (en) Vibration type linear actuator
US6651538B2 (en) Microtome
US20090243520A1 (en) Method for controlling operation of a linear vibration motor
EP2106018A1 (en) Electrocmagnetic actuator driving method
JP5895154B2 (en) Driving method of linear actuator
JP3382070B2 (en) Control device for linear vibration motor
JP2011062725A (en) Press machine and method of controlling the same
DE502005007845D1 (en) DEVICE FOR REGULATING THE ANCHOR SHAFT IN A REVERSING LINEAR ACTUATOR
EP2875918B1 (en) Epilator and method for driving epilator
JP2006042895A (en) Electric razor
WO2019230056A1 (en) Body hair trimmer
JP6008197B2 (en) Hair removal equipment
JP2009240044A (en) Electromagnetic actuator and electric shaver
Espinosa et al. Closed-loop controller for eliminating the contact bounce in DC core contactors
JP5092206B2 (en) Linear actuator positioning control method and apparatus
JP3468011B2 (en) Startup control method for linear vibration motor
JP5688559B2 (en) Electric razor and its control device
JP6040043B2 (en) Linear actuator
US20160226364A1 (en) Electric Hair Clipper/Trimmer
Ahrens et al. Development of a Miniaturized, Electromagnetically Actuated Punch
YOSHIMOTO et al. Dynamic characteristic analysis and experimental verification of 2-DoF resonant actuator under feedback control
JP3382062B2 (en) Linear vibration motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810076

Country of ref document: EP

Kind code of ref document: A1