WO2019229872A1 - Leak detection device and leak detection method - Google Patents

Leak detection device and leak detection method Download PDF

Info

Publication number
WO2019229872A1
WO2019229872A1 PCT/JP2018/020722 JP2018020722W WO2019229872A1 WO 2019229872 A1 WO2019229872 A1 WO 2019229872A1 JP 2018020722 W JP2018020722 W JP 2018020722W WO 2019229872 A1 WO2019229872 A1 WO 2019229872A1
Authority
WO
WIPO (PCT)
Prior art keywords
leak detection
filtration membrane
container
gas
liquid
Prior art date
Application number
PCT/JP2018/020722
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 近
ステファン シュランクラー
アジャイ クマール シン
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to PCT/JP2018/020722 priority Critical patent/WO2019229872A1/en
Publication of WO2019229872A1 publication Critical patent/WO2019229872A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Definitions

  • the present invention relates to a leak detection apparatus and a leak detection method. More specifically, the present invention relates to an apparatus and a method for detecting a leak of a filtration membrane that can detect micro defects such as pinholes existing in the filtration membrane with high sensitivity.
  • Membrane separation using a filtration membrane is used in many fields as a simple and low-consumption material separation method.
  • Such membrane separation is basically based on the principle of sieving a substance to be subjected to filtration according to the size of the pores present in the membrane. Therefore, it is important for the performance of the membrane that the pores of a desired size are uniform.
  • defects may occur in the filtration membrane during the manufacturing process and use of the filtration membrane.
  • the most typical one is a defect called a pinhole, which is a relatively large hole with respect to the original hole of the filtration membrane. If there is a pinhole, the substance passing through the pinhole is not subjected to the sieving action, so that the substance to be excluded is mixed into the filtered substance and the separation efficiency is lowered.
  • one space partitioned by the filtration membrane is pressurized with gas and the other is filled with liquid.
  • a method using the surface tension of a liquid is known in which the presence or absence of a pinhole is examined by applying a pressure that flows out from the hole and measuring the flow rate of the gas leaking from the pinhole portion.
  • Patent Document 1 Japanese Patent Laid-Open No. 1-307409 discloses a method for directly measuring the gas flow rate on the supply side (raw solution side) after a certain time after the start of pressurization, the gas on the hollow fiber side (filtrate side), Three measurement methods are shown: a method for measuring the flow rate of the liquid extruded by the above method, or a method for measuring a decrease in the liquid level on the hollow fiber side (filtrate side) (see Patent Document 1).
  • Patent Document 2 Japanese Patent Laid-Open No. 60-94105 describes a method for measuring a pressure change due to gas leakage by a pressure drop on the stock solution side or a gas leak (corresponding to the amount of gas supplied). Two measurement methods, that is, a direct measurement method using a gas flow meter attached to the side, are shown (see Patent Document 2).
  • Patent Document 3 Japanese Patent Application Laid-Open No. 5-157654 discloses a method in which an airtight gas chamber is provided on the filtrate side and the gas leakage is measured by the pressure increase on the leaked side (Patent Document 3). reference).
  • the method of measuring the amount of liquid extruded with gas and the method of reading a pressure change by providing a gas chamber on the liquid enclosure side can indirectly measure a slight gas flow rate with high accuracy.
  • the pressurized membrane expands significantly or when precise measurement is required that cannot ignore the expansion of the membrane, the outflow or pressure of the gas due to the outflow of liquid or pressure change due to the expansion of the membrane Since it occurs simultaneously with the change and usually cannot be distinguished, there is a problem that the measurement accuracy is lowered.
  • one of the spaces partitioned by the membrane is pressurized with a gas such that the gas does not flow out of a normal hole, and the other space is filled with a liquid.
  • a gas such that the gas does not flow out of a normal hole
  • the other space is filled with a liquid.
  • the user when actually performing a filtration treatment of a solution using a sterilized filtration membrane, the user removes the cap from the liquid passage port of the filtration membrane module (a container with a nozzle or a port containing the filtration membrane) Since the tube of the liquid processing circuit is connected to the liquid passage port, the sterilization state of the filtration membrane module (aseptic state, that is, the state where the internal and external partition walls are not opened after sterilization processing) is impaired. There was a fear. Leak detection is performed before the use of the filtration membrane, but according to conventional leak detection technology, when performing a leak test on a filtration membrane used under aseptic conditions for virus removal or the like, the filtration membrane is removed. In some cases, the separation membrane device (also referred to as “filtering device” or “filtration system” in this specification) is taken out from the sterilized state and destroyed.
  • the separation membrane device also referred to as “filtering device” or “filtration system” in this specification
  • the present invention can accurately and efficiently detect leaks, and can detect leaks in filtration membranes used in aseptic conditions. It is an object of the present invention to provide a leak detection device and a leak detection method that can be carried out under aseptic conditions.
  • one aspect of the present invention is a leak detection device that detects a leak of a filtration membrane, A container that is separated into two spaces by having a filtration membrane installed therein; A liquid storage container for storing the liquid supplied to the container; A first connecting pipe connecting the liquid storage container and one space in the container; A gas supply device for supplying gas to the container; A second connection pipe connecting the gas supply device and the container; Closing means provided on the first connecting pipe and / or the second connecting pipe; A detection member for detecting leakage from the filtration membrane of the gas supplied by the gas supply device; It is an apparatus provided with.
  • a filtration membrane to be detected is installed in a container, and gas is supplied to one of the spaces (regions) separated by the filtration membrane. At this time, from one region of the filtration membrane, If it is detected that gas leaks to the other region, it can be determined that a leak has occurred.
  • this leak detection apparatus including a container in which a filtration membrane is installed, a liquid supply apparatus that supplies liquid to the container, and the like is configured to constitute a filtration apparatus or a filtration system.
  • the leak test of the filtration membrane can be performed in the filtration device or the filtration system, the leak test is not performed by taking out the virus removal membrane alone and destroying the aseptic condition, but performing the filtration device or filtration. It can be carried out aseptically without removing it from the system.
  • the leak detection device of the above aspect may further include a control member that controls the gas supply device, the detection member, and the closing means.
  • the detection member may include a pressure detector.
  • the detection member may be a differential pressure gauge.
  • the detection member may include an air chamber.
  • the leak detection device of the above aspect may include a means for keeping the volume in the air chamber constant.
  • the detection member may be a flow meter.
  • the detection member may be configured with a member that can be subjected to stationary sterilization and / or stationary cleaning.
  • the filtration membrane may be a virus removal membrane.
  • the filtration membrane module including the filtration membrane and the container may include an aseptic connection member.
  • the filtration membrane may be a hollow fiber membrane.
  • a leak detection method is a leak detection method of a filtration membrane using the leak detection device of the above aspect, A filling step of filling a secondary chamber with a liquid in a container having two spaces separated by a filtration membrane; One of the spaces is pressurized with a gas supplied from a gas supply device, and a detection step of detecting leakage of the gas from the filtration membrane is included.
  • the filling step may be performed by supplying a liquid from a liquid storage container.
  • the leak detection method of the above aspect may include a discharge step of discharging the liquid filled in one space after the filling step.
  • the leak detection method of the above aspect may be automatically controlled by a control unit provided in the leak detection apparatus.
  • a leak detection apparatus and a leak detection method that can detect leaks accurately and efficiently, and can perform leak detection of filtration membranes used in aseptic conditions under aseptic conditions. Can be provided.
  • Example 2 It is a graph which shows the relationship between the diameter of the pinhole of a filter in Example 1, and the pressure rise value at the time of performing the leak test of the said filter.
  • Example 2 it is a graph which shows the relationship between the diameter of the pinhole of a filter, and the leakage flow rate of the gas at the time of performing the leak test of the said filter.
  • the leak detection device is a device that performs a leak test of a filtration membrane and detects whether or not a defect such as a pinhole has occurred in the filtration membrane.
  • the leak test here refers to, for example, a test in which the filtration membrane is pressurized from the inside while the filtration membrane is wetted with a liquid to check whether gas leaks from the membrane (see FIG. 1).
  • a hollow fiber membrane When, for example, a hollow fiber membrane is used as a filtration membrane, the hollow fiber membrane is attached to the inside of the housing (container) 10, and the hollow fiber membrane is pressurized with gas in a state where the inside of the housing 10 is filled with a liquid. Measure the coming gas visually or with a sensor. In the case of visual observation, it is determined whether or not open bubbles are generated. In the case of a sensor, a method of measuring the flow rate of pressurized gas on the pressurized side across the hollow fiber membrane, or leakage to the liquid filling side. A method of measuring a change in pressure due to air can be used (see FIG. 1). In addition, the types of gas leaking from the filtration membrane include jets from leaked parts (defects such as pinholes) (visible) and diffuse flows from normal parts without defects (not visible) There are two types.
  • FIG. 2 shows the leak detection apparatus according to the first embodiment.
  • the leak detection device 1 of the present embodiment includes a housing 10, a liquid storage container 20, a liquid supply pipe 30, a gas compression apparatus 40, a gas supply pipe 50, a drain pipe 55, a liquid collection pipe 58, a pump 61, valves 62 to 66, A filtration device (separation device) that includes a pressure detector 70, a control unit 80, etc., and performs virus removal or the like using a filtration membrane, and in the separation device, the filtration membrane is removed from the device.
  • the apparatus is configured as a device capable of performing a leak test without being taken out.
  • the housing 10 is a container that is separated into two spaces or regions by installing the filtration membrane M therein.
  • the interior of the housing 10 is divided into two spaces, a columnar region inside the hollow fiber membrane and a cylindrical region outside the hollow fiber membrane.
  • the state or region before filtration is referred to as primary (side), and the state or region after filtration is referred to as secondary (side).
  • the columnar region inside the hollow fiber membrane is the primary side (primary chamber) and the cylindrical region outside the inside of the housing 10. Is the secondary side (secondary chamber).
  • the housing 10 of this embodiment includes a cylindrical body 14 having a circular cross section and a pair of headers 15 attached to each of the open ends (see FIG. 1 and the like).
  • the headers 15 (15a, 15b) are provided at both ends of the body portion 14 of the housing 10, respectively.
  • Each header 15 (15a, 15b) is formed with nozzles 16a, 16b serving as fluid inlets and outlets (see FIG. 1).
  • Ports 17 a and 17 b are formed on the side of the body 14 of the housing 10.
  • FIG. 1 the center axis
  • FIG. The direction along the central axis P is the longitudinal direction of the housing (tubular container). Further, the direction around the central axis P is the circumferential direction (circulation direction).
  • the housing 10 of the present embodiment is installed with the central axis P being vertical (see FIG. 2 and the like). Of course, this is merely an example, and the orientation is not particularly limited.
  • the liquid storage container 20 is a container in which a liquid (for example, protein solution) supplied to the housing 10 is stored.
  • a liquid for example, protein solution
  • the liquid storage container referred to in this specification can include not only a container that does not deform regardless of the liquid storage amount, but also a container that deforms according to the liquid storage amount (for example, a bag-like material such as a plastic bag).
  • the liquid storage container 20 and the housing 10 are connected to each other by a liquid supply pipe (first connection pipe) 30 formed of, for example, a tube.
  • the liquid in the liquid storage container 20 is supplied through the liquid supply pipe 30 to one space in the housing 10 partitioned by the hollow fiber membrane M.
  • a liquid feeding pump 61 and a valve (closing means) 62 for opening and closing the liquid supply pipe 30 are provided.
  • the gas compression apparatus (for example, an apparatus including an air compressor or a gas cylinder) 40 functions as a gas supply apparatus that supplies gas to the housing 10.
  • the gas compression device 40 of the present embodiment pressurizes air and supplies the air into the housing 10 through a gas supply pipe (second connecting pipe) 50.
  • the gas supply pipe 50 is constituted by a tube, for example, and connects the gas compression device 40 and the housing 10.
  • the air sent out from the gas compression device 40 is adjusted to a pressure that does not flow out from a normal hole by a pressure regulator (not shown), and is partitioned by the hollow fiber membrane M in the container 10 through the gas supply pipe 50. Is supplied to the other space.
  • the gas supply pipe 50 is provided with a sterilization film 52 and a valve 63.
  • the sterilization film 52 includes a filter that removes bacteria from the supplied air.
  • the valve 63 is a valve (closing means) for opening and closing the gas supply pipe 50.
  • an air regulator is used as the pressure regulator.
  • the liquid collection pipe 58 is a pipe used when collecting the filtered liquid, and one end side is connected to the port 17b of the housing 10 and the other end side is connected to a liquid collection container (not shown).
  • a valve 66 is provided in the middle of the liquid collection pipe 58.
  • the pressure detector 70 is a device that functions as a detection member that detects whether or not the gas (air) supplied from the gas compression device 40 leaks from the hollow fiber membrane M.
  • Series 35X HT Kelvin
  • an air chamber (gas chamber) 72 is provided in the exhaust pipe 55 connected to one port 17a of the housing 10, and a valve 64 is provided upstream and a valve is provided downstream. 65 is provided (see FIG. 2 and the like).
  • the pressure detector 70 detects a pressure change (pressure increase) in the air chamber 72 under the condition that the valve 64 is opened and the valve 65 is closed.
  • the pressure detector 70 may be a measuring instrument that can detect a change in the internal pressure of the air chamber 72, and a differential pressure gauge can also be used. Further, it is not necessary to provide the air chamber 72 separately. In that case, the volume in the exhaust pipe 55 is kept constant by closing the valve 65, and the pressure detector 70 directly connected to the exhaust pipe 55 is used. What is necessary is just to detect the pressure change in the exhaust pipe 55.
  • the air chamber 72 may be provided with means for keeping the volume in the air chamber 72 constant.
  • the flow of liquid for example, water
  • the valve 65 is opened, the flow accompanying the expansion of the filtration membrane M is discharged to remove the pressure rise, and the space up to the valve 65 is automatically filled with liquid, thereby sealing gas.
  • Such a means can be configured by a mechanism that keeps the volume of the space constant. According to this means, a minute leak can be accurately detected.
  • the control unit 80 performs operation control of pumps, valves, etc., and reception of signals such as detection results of the pressure detector 70.
  • the control unit 80 according to the present embodiment is connected to the pump 61, the valve 62, the valve 63, the valve 64, the valve 65, the valve 66, and the pressure detector 70, and operates these or displays information on the detected pressure.
  • Receive see FIG. 2.
  • the control unit 80 stores a computer that transmits an operation signal to each device or receives a detection signal, a program for causing the computer to execute a leak test execution procedure, and the like. Consists of memory, etc.
  • the leak test can be performed under automatic control by using an automatic control program for automatically performing the leak test.
  • the filtration membrane M or the filtration membrane module is attached to the separation membrane device (filtration device or filtration system).
  • the filtration membrane M or the filtration membrane module is sterilized in advance by steam sterilization or the like and is in a sterilized state.
  • the sterility may be impaired by opening the connection part.
  • stationary sterilization (SIP) and / or stationary cleaning (CIP) is performed to sterilize the inside of the separation membrane device (filtration device or filtration system).
  • SIP stationary sterilization
  • CIP stationary cleaning
  • the detection member is comprised with the member in which stationary sterilization (SIP) and / or stationary cleaning (CIP) are possible.
  • a member made of stainless steel or fluororesin can be used, but is not limited thereto.
  • the filtration membrane module can be installed in a separation membrane device (a filtration device or a filtration system) sterilized in advance with an aseptic connection member such as an aseptic connector.
  • a separation membrane device a filtration device or a filtration system
  • an aseptic connection member such as an aseptic connector.
  • aseptic conditions can be maintained without performing stationary sterilization (SIP) and / or stationary cleaning (CIP).
  • the secondary side (secondary chamber) of the filtration device is filled with liquid (water) (step SP1). Specifically, with the valve 63 of the gas supply pipe 50 and the valve 66 of the liquid collection pipe 58 closed, the valve 62 of the liquid supply pipe 30 and the valves 64 and 65 of the discharge pipe 55 are opened, and the pump 61 is driven to supply the liquid in the liquid storage container 20 (in this embodiment, water) (see FIG. 3).
  • the liquid is supplied to the primary side of the housing 10 through the nozzle 16b, passes through the filtration membrane M, is supplied to the secondary side (secondary chamber), and is further discharged to the outside through the discharge pipe 55 from the port 17a.
  • step SP1 it is implemented for the purpose of filling the secondary side (secondary chamber) with liquid (water).
  • step SP1 it is implemented for the purpose of filling the secondary side (secondary chamber) with liquid (water).
  • step SP1 it is implemented for the purpose of filling the secondary side (secondary chamber) with liquid (water).
  • step SP1 it is implemented for the purpose of filling the secondary side (secondary chamber) with liquid (water).
  • both the primary side (primary chamber) and the secondary side (secondary chamber) are filled with liquid (water). (See FIG. 3).
  • step SP3 When the filling of the liquid (water) into the secondary chamber is completed (Yes in step SP2), the primary space is pressurized with gas (step SP3). Specifically, the valve 62 of the liquid supply pipe 30 is closed, the valve 63 of the gas supply pipe 50 is opened, and the gas compressing device 40 is driven to supply gas (in this embodiment, air) (FIG. 4). reference). The gas is supplied to the primary side of the housing 10 through the nozzle 16a. The primary side is kept pressurized with gas until the system is stabilized (stabilization time), and then the valve 65 of the exhaust pipe 55 is closed and the process proceeds to the measurement step (step SP4).
  • gas in this embodiment, air
  • step SP4 It is detected whether or not the gas supplied to the primary side has leaked from the filtration membrane M (step SP4).
  • the measured values are not zero due to gas diffusion, etc., so the average and standard deviation ( ⁇ ) of these values are measured, and preset standards If a value exceeding the value is detected, it is determined that gas leakage has occurred (Yes in step SP4), and it is determined that the filtration membrane M is defective (step SP5).
  • a reference value at this time for example, a value of average + 3 ⁇ or higher, a value of average + 4 ⁇ or higher, a value of average + 5 ⁇ or higher, a value of average + 6 ⁇ or higher, or the like can be used as a determination reference.
  • a value of average + 3 ⁇ or higher, a value of average + 4 ⁇ or higher, a value of average + 5 ⁇ or higher, a value of average + 6 ⁇ or higher, or the like can be used as a determination reference.
  • the pressure change value is small, it is determined that no gas leaks from the defective portion (No in step SP4), and it is determined that the filtration membrane M has no defect (pass) (step SP6).
  • the filtration membrane M determined as having no defect is used as it is.
  • a membrane separation operation can be performed (see FIG. 6). That is, after the liquid in the liquid storage container 20 is replaced with a liquid to be filtered (in the case of the present embodiment, a protein solution) (the replacement with the protein solution is performed by directly replacing the solution in the liquid storage container 20 with the protein solution).
  • Or may be performed by preparing a plurality of liquid storage containers in parallel and switching and flowing the solution line according to the steps), and the valve 63 and the exhaust pipe of the gas supply pipe 50
  • the valves 64 and 65 of 55 are closed, the valve 62 of the supply pipe 30 and the valve 66 of the liquid collection pipe 58 are opened, and the pump 61 is driven to supply the liquid in the liquid storage container 20.
  • the liquid is supplied to the primary side of the housing 10 through the nozzle 16b, passes through the filtration membrane M determined to have no defect (passed), is supplied to the secondary side (secondary chamber), and is separated from the membrane. Liquid is fed from the port 17b through the liquid collection tube 58 to a liquid collection container (not shown) (see FIG. 6).
  • the filtration membrane M that is the target of leak detection is installed in the circuit of the separation membrane apparatus (filtration apparatus or filtration system) (in the housing 10) ( In the set-up state, gas is supplied to one of the spaces (regions) separated by the filtration membrane M. At this time, it is detected that gas leaks from one region of the filtration membrane M to the other region. If so, it can be determined that a leak has occurred.
  • the present embodiment including a container (housing 10) in which the filtration membrane M is installed, a liquid supply device (liquid supply pipe 30, pump 61) for supplying liquid to the container (housing 10), and the like.
  • the leak detection device 1 of the embodiment has a structure that can constitute a separation membrane device (filtration device or filtration system) as it is, the leakage test of the filtration membrane M is performed in the separation membrane device (filtration device or filtration system). Realized. For this reason, the leak test is not carried out by taking out the virus removal membrane alone and destroying the aseptic condition, but performing it while maintaining the aseptic condition without removing it from the separation membrane device (filtration device or filtration system). Can do.
  • the filtration membrane M includes a virus removal membrane having particularly high virus removal performance and high protein permeation performance.
  • virus removal film detection of pinholes with high accuracy is desired because of the required high removal capability.
  • the leak detection apparatus 1 as in the present embodiment such high accuracy detection is simple and efficient. Can be realized.
  • the virus removal membrane a membrane made of regenerated cellulose, PVDF, PES, or the like can be used.
  • the form of the virus removal membrane may be a flat membrane or a hollow fiber membrane.
  • the above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention.
  • the configuration in which the pump 61 that functions as the liquid feeding unit and the valve 63 that functions as the closing unit is provided in the liquid supply system, but this is only a preferable example.
  • the pump 61 can be configured to function as a closing means without using the valve 62.
  • a cylindrical hollow fiber membrane is used as the filtration membrane M
  • a flat membrane-like filtration membrane may be employed other than the hollow fiber membrane.
  • the primary chamber 11, the secondary chamber 12 (see FIG. 1), the body portion 14, the header 15, the nozzle 16, the port 17, and the like of the housing 10 are appropriately set according to the filtration membrane M. sell.
  • a container that is separated into two spaces or regions by installing the filtration membrane M therein is illustrated, but when separated into “two” here, Includes literally two spaces, as well as the case of “two” spaces when physically separated by three or more.
  • the pressure detector 70 is used as a device for detecting the presence or absence of gas leakage from the filtration membrane M has been described (see FIG. 5), but this is also only a preferred example.
  • a fluid detection device can be used in addition to such a pressure detection device.
  • An example is as follows. That is, when the gas supplied to the primary side leaks from the filtration membrane M, the fluid flow is also generated inside the gas supply pipe 50. Therefore, although a detailed description is omitted, a flow meter (see reference numeral 70 ′ in FIGS. 1 and 5) that detects the flow of the fluid is employed instead of the pressure detector, and the flow of the fluid in the gas supply pipe 50 and the like is determined. By sensing, it is possible to detect gas leakage from the filtration membrane M.
  • the filtration membrane module (a module including the housing 10 and the filtration membrane M provided in the housing 10) in a state in which a liquid is filled in advance ( It is also possible to carry out a leak test by immediately pressurizing after being placed in a separation membrane device (filtration device or filtration system) with a sterile connecting member such as a sterile connector.
  • the aseptic connector (indicated by reference numeral 90 in FIG. 1) is not shown in detail, but for example, a tubular insertion portion to be inserted into the connection tube, a flange-like connection portion, a connection surface provided on the connection surface, and the pipeline is sealed.
  • a sealing tape is provided.
  • the aseptic connector 90 includes a male type and a female type, and a combination of a pair of identical shapes.
  • the connection surface of one sterile connector 90 and the connection surface of the other sterile connector 90 are fitted together. And the like, such that the sealing tape interposed between the connecting surfaces is pulled out and the tubes are connected to each other while maintaining the sterility (for example, Japanese Patent No. 6285961) ,reference).
  • the sterile connector By attaching the sterile connector to the filtration membrane M in advance, it can be connected to a pipe or the like while maintaining the sterile condition.
  • the leak detection apparatus 1 having the configuration described in the above embodiment, nine filters (hollow fiber membranes M) having pinholes and seven filters (hollow fiber membranes M) having no pinholes are targeted for leak detection.
  • a leak test was performed.
  • the measured filter is “Planova” manufactured by Asahi Kasei Medical Corporation. “BioEX” (registered trademark) having a membrane area of 1 m 2 was used.
  • As the filter having a pinhole a hollow fiber membrane M in which a pinhole having a size of 4.4 to 7.7 ⁇ m was formed using a krypton fluoride (KrF) excimer laser was employed.
  • KrF krypton fluoride
  • a filter is attached to the leak detection device 1, then the pump 61 is operated to send water from the liquid storage container 20 to the housing 10, and further, the filter (hollow fiber membrane M) is passed through the housing 10.
  • the inside was filled with water.
  • water filled in the primary side of the filter is discharged from a drain nozzle (not shown) provided between the pump 61 and the header 16 on the liquid supply pipe 30 disposed, for example, downward in the housing 10.
  • the valve 62 and the valve 63 are operated to drive the gas compressing device 40 (an air cylinder may be used instead of driving the gas compressing device 40) to send compressed air to the housing 10 and pressurize the filter. did.
  • the sterility at the time of drainage was ensured by providing a sterilization filter in said drainage nozzle.
  • the measurement conditions were a pressure of 343 kPa and a stabilization time of 300 seconds.
  • the test liquid pushed out by the expansion or gas of the filter passes through the air chamber 72 (volume: 29 mL) provided outside the housing 10 and is on the side of the air chamber 72.
  • the state in which the valves 64 and 65 of the exhaust pipe 55 were opened so as to flow out of the system from the exhaust pipe provided on the side see Table 1).
  • Example 1 The amount of leak was measured using a pressure detector (differential pressure gauge) 70 connected to the air chamber 72. After the stabilization time, the valve 65 was closed, and the pressure increase value after 30 seconds was read. The results are shown in FIG. A filter with a pinhole showed a higher pressure rise value than a filter without a pinhole, and the larger the pinhole diameter, the higher the pressure rise value. It can be seen from FIG. 8 that the presence or absence of a pinhole can be easily determined from the magnitude of the pressure increase value.
  • Example 2 A flow meter 70 ′ was installed in the gas supply pipe 50 connecting the gas compression device 40 (an air cylinder may be used) and the housing 10 (see FIGS. 1 and 5), and the amount of leakage was measured.
  • the valves 64 and 65 were kept open even after the stabilization time had elapsed, and the volume flow rate value for 60 seconds was read.
  • the results are shown in FIG.
  • a filter with a pinhole showed a higher volumetric flow rate value than a filter without a pinhole, and the larger the pinhole diameter, the higher the volumetric flow rate value. From FIG. 9, it can be seen that the presence or absence of pinholes can be easily determined from the magnitude of the leakage flow rate value.
  • the present invention is suitable for application to a leak detection device and a leak detection method for detecting a leak of a filtration membrane.
  • SYMBOLS 1 Leak detection apparatus, 10 ... Housing (container), 11 ... Primary chamber (one space), 12 ... Secondary chamber (the other space), 14 ... trunk
  • Valve, 65 Valve (means for keeping the volume in the air chamber constant), 66... Valve, 70... Pressure detector (detection member), 70 ′. ... Control part, 90 ... Aseptic connector (sterile connection member) , M ... Hollow fiber membrane (filtration membrane)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

An aspect of the present application comprises a leak detection device (1) for detecting leaks from a filtration membrane M, the device being provided with: a container (10) that is separated into two spaces due to the filtration membrane M being disposed therein; a liquid storage container (20) for storing liquid to be supplied to the container (10); a first connection pipe (30) for connecting the liquid storage container (20) with either one of the spaces inside the container (10); a gas supply device (40) for supplying a gas to the container (10); a second connection pipe (50) for connecting the gas supply device (40) to the container (10); closing means (61, 62, 63) provided in the first connection pipe (30) and/or the second connection pipe (50); and a detection member (70) for detecting leaking of the gas supplied by the gas supply device (40) from the filtration membrane M.

Description

リーク検出装置およびリーク検出方法Leak detection device and leak detection method
 本発明は、リーク検出装置およびリーク検出方法に関する。より詳細には、本発明は、濾過膜に存在するピンホールなどの微小欠陥を高感度で検出することのできる、濾過膜のリークを検出する装置及びその方法に関する。 The present invention relates to a leak detection apparatus and a leak detection method. More specifically, the present invention relates to an apparatus and a method for detecting a leak of a filtration membrane that can detect micro defects such as pinholes existing in the filtration membrane with high sensitivity.
 濾過膜を用いた膜分離は、簡便でエネルギー消費の少ない物質分離方法として多方面で使用されている。このような膜分離は、基本的にその膜に存在する孔の大きさにより濾過に供される物質の篩分けを行うことをその動作原理としている。従って、目的とする大きさの孔が均一であることが膜の性能上重要な意味を持つ。 Membrane separation using a filtration membrane is used in many fields as a simple and low-consumption material separation method. Such membrane separation is basically based on the principle of sieving a substance to be subjected to filtration according to the size of the pores present in the membrane. Therefore, it is important for the performance of the membrane that the pores of a desired size are uniform.
 一方、濾過膜の製造工程や使用中に濾過膜に欠陥が発生することがある。その最も代表的なものがピンホールと呼ばれる欠陥であり、濾過膜本来の孔に対して比較的大きな孔が存在することである。ピンホールが存在すると、そのピンホールを通過する物質は篩分けの作用を受けないことになるので、濾過された物質中に本来排除されるべき物質が混入してしまい、分離効率が低下する。 On the other hand, defects may occur in the filtration membrane during the manufacturing process and use of the filtration membrane. The most typical one is a defect called a pinhole, which is a relatively large hole with respect to the original hole of the filtration membrane. If there is a pinhole, the substance passing through the pinhole is not subjected to the sieving action, so that the substance to be excluded is mixed into the filtered substance and the separation efficiency is lowered.
 濾過膜の微小な欠陥であるピンホールを検出する方法として、濾過膜で仕切られた一方の空間を気体で加圧し、他方を液体で充填し、正常な孔からは気体が流出しないが、ピンホールからは流出するような圧力をかけ、ピンホール部分から漏洩してくる気体の流量を測定することにより、ピンホールの有無を調べるという液体の表面張力を利用する方法が知られている。 As a method of detecting pinholes that are minute defects in the filtration membrane, one space partitioned by the filtration membrane is pressurized with gas and the other is filled with liquid. A method using the surface tension of a liquid is known in which the presence or absence of a pinhole is examined by applying a pressure that flows out from the hole and measuring the flow rate of the gas leaking from the pinhole portion.
 例えば、特許文献1(特開平1-307409号公報)には、加圧開始後に一定時間後の供給側(原液側)の気体流量を直接測定する方法、中空糸側(濾液側)の、気体により押出される液体の流量を測定する方法、又は中空糸側(濾液側)の液面の低下を測定する方法の3つの測定方法が示されている(特許文献1参照)。 For example, Patent Document 1 (Japanese Patent Laid-Open No. 1-307409) discloses a method for directly measuring the gas flow rate on the supply side (raw solution side) after a certain time after the start of pressurization, the gas on the hollow fiber side (filtrate side), Three measurement methods are shown: a method for measuring the flow rate of the liquid extruded by the above method, or a method for measuring a decrease in the liquid level on the hollow fiber side (filtrate side) (see Patent Document 1).
 また、特許文献2(特開昭60-94105号公報)には、気体の漏れによる圧力変化を原液側の圧力低下で測定する方法又は気体の漏れ(供給された気体の量に相当)を原液側に取り付けた気体流量計により直接測定する方法の2つの測定方法が示されている(特許文献2参照)。 Patent Document 2 (Japanese Patent Laid-Open No. 60-94105) describes a method for measuring a pressure change due to gas leakage by a pressure drop on the stock solution side or a gas leak (corresponding to the amount of gas supplied). Two measurement methods, that is, a direct measurement method using a gas flow meter attached to the side, are shown (see Patent Document 2).
 更に、特許文献3(特開平5-157654号公報)には、濾液側に気密な気体室を設け、気体の漏れを漏洩した側の圧力上昇で測定する方法が示されている(特許文献3参照)。 Further, Patent Document 3 (Japanese Patent Application Laid-Open No. 5-157654) discloses a method in which an airtight gas chamber is provided on the filtrate side and the gas leakage is measured by the pressure increase on the leaked side (Patent Document 3). reference).
 しかし、ピンホールが小さい場合、又はその数が少ない場合には、漏れ出てくる気体量も小さいために、従来、気体流量を直接計測する方法ではわずかな気体の流量を精度良く直接計器で測定することは難しいことがあった。 However, if the number of pinholes is small or the number is small, the amount of gas that leaks is small, so the conventional method of directly measuring the gas flow rate measures the slight gas flow rate with a direct instrument with high accuracy. It was difficult to do.
 また、気体で押出された液体の量を計測する方法や液体封入側に気体室を設けて圧力変化を読み取る方法は、わずかな気体の流量を間接的に精度良く測定することが可能であるが、加圧した膜が顕著に膨張する場合や膜の膨張を無視できない精密な測定が要求される場合などには、膜の膨張による液体の流出や圧力変化が漏れ出てくる気体による流出や圧力変化と同時に起こり、通常これらは区別できないため、測定精度が低下してしまうという問題を有する。 In addition, the method of measuring the amount of liquid extruded with gas and the method of reading a pressure change by providing a gas chamber on the liquid enclosure side can indirectly measure a slight gas flow rate with high accuracy. When the pressurized membrane expands significantly or when precise measurement is required that cannot ignore the expansion of the membrane, the outflow or pressure of the gas due to the outflow of liquid or pressure change due to the expansion of the membrane Since it occurs simultaneously with the change and usually cannot be distinguished, there is a problem that the measurement accuracy is lowered.
 かかる問題に対しては、従来、膜で仕切られた一方の空間を、気体で、該気体が正常な孔からは流出しないような圧力で加圧し、他方の空間を液体で充填して、濾過膜のピンホールから漏洩してくる気体の流量を、気体で押し出された液体の流量を計測することにより、又は、液体封入側に気体室を設けてその圧力変化を読みとることにより、ピンホールなどの欠陥による濾過膜のリークを検出するための装置及びその検出方法を改良すること、すなわち加圧による濾過膜の膨張が測定精度を低下せしめるという問題を解決することが試みられてきた(例えば、特許文献4参照)。 In order to solve this problem, conventionally, one of the spaces partitioned by the membrane is pressurized with a gas such that the gas does not flow out of a normal hole, and the other space is filled with a liquid. By measuring the flow rate of the gas leaking from the pinhole of the membrane, by measuring the flow rate of the liquid pushed out by the gas, or by providing a gas chamber on the liquid enclosure side and reading the pressure change, pinhole etc. Attempts have been made to improve the apparatus and detection method for detecting a leak of a filtration membrane due to a defect of the filter, that is, to solve the problem that the expansion of the filtration membrane due to pressurization reduces the measurement accuracy (for example, (See Patent Document 4).
特開平1-307409号公報Japanese Patent Laid-Open No. 1-307409 特開昭60-94105号公報JP-A-60-94105 特開平5-157654号公報JP-A-5-157654 特許第3502912号公報Japanese Patent No. 3502912
 しかし、滅菌された濾過膜を用いて実際に溶液の濾過処理等を行うときには、ユーザーが濾過膜モジュール(濾過膜が収容された、ノズル又はポート付きの容器)の通液口からキャップを外し、その通液口に液処理回路のチューブを接続していることから、濾過膜モジュールの滅菌状態(無菌状態、すなわち、滅菌処理後、装置内部と外部の隔壁を開放していない状態)が損なわれるおそれがあった。リーク検出は濾過膜の使用前に行うものであるが、従来のリーク検出技術によれば、ウイルス除去などのために無菌状態下で用いられる濾過膜のリーク試験を行う際に、当該濾過膜を分離膜装置(本明細書では、「濾過装置」又は「濾過システム」ともいう)から取り出し、無菌状態を破壊した状況下で行わざるを得ない場合があった。 However, when actually performing a filtration treatment of a solution using a sterilized filtration membrane, the user removes the cap from the liquid passage port of the filtration membrane module (a container with a nozzle or a port containing the filtration membrane) Since the tube of the liquid processing circuit is connected to the liquid passage port, the sterilization state of the filtration membrane module (aseptic state, that is, the state where the internal and external partition walls are not opened after sterilization processing) is impaired. There was a fear. Leak detection is performed before the use of the filtration membrane, but according to conventional leak detection technology, when performing a leak test on a filtration membrane used under aseptic conditions for virus removal or the like, the filtration membrane is removed. In some cases, the separation membrane device (also referred to as “filtering device” or “filtration system” in this specification) is taken out from the sterilized state and destroyed.
 そこで、従来のリーク検出技術では無菌状態を保つことが困難であることに鑑み、本発明は、精度良く効率的にリーク検出することができ、尚かつ、無菌状態で用いられる濾過膜のリーク検出を無菌状態下で実施することを可能とするリーク検出装置およびリーク検出方法を提供することを目的とする。 Therefore, in view of the difficulty in maintaining sterility with conventional leak detection technology, the present invention can accurately and efficiently detect leaks, and can detect leaks in filtration membranes used in aseptic conditions. It is an object of the present invention to provide a leak detection device and a leak detection method that can be carried out under aseptic conditions.
 かかる課題を解決するべく、本発明の一態様は、濾過膜のリークを検出するリーク検出装置であって、
 濾過膜が内部に設置されることによって2つの空間に隔てられる容器と、
 容器に供給される液体を貯蔵する液体貯蔵容器と、
 該液体貯蔵容器と容器内の一方の空間とを接続する第一の接続管と、
 容器に気体を供給する気体供給装置と、
 気体供給装置と容器とを接続する第二の接続管と、
 第一の接続管及び/又は第二の接続管に設けられた閉止手段と、
 気体供給装置によって供給された気体の濾過膜からの漏出を検出する検出部材と、
を備える装置である。
In order to solve such a problem, one aspect of the present invention is a leak detection device that detects a leak of a filtration membrane,
A container that is separated into two spaces by having a filtration membrane installed therein;
A liquid storage container for storing the liquid supplied to the container;
A first connecting pipe connecting the liquid storage container and one space in the container;
A gas supply device for supplying gas to the container;
A second connection pipe connecting the gas supply device and the container;
Closing means provided on the first connecting pipe and / or the second connecting pipe;
A detection member for detecting leakage from the filtration membrane of the gas supplied by the gas supply device;
It is an apparatus provided with.
 かかるリーク検出装置によれば、検出対象となる濾過膜を容器内に設置し、当該濾過膜によって隔てられた空間(領域)の一方へ気体を供給し、このとき、濾過膜の一方の領域から他方の領域へ気体が漏出することが検出されれば、リークが生じていると判断することができる。 According to such a leak detection device, a filtration membrane to be detected is installed in a container, and gas is supplied to one of the spaces (regions) separated by the filtration membrane. At this time, from one region of the filtration membrane, If it is detected that gas leaks to the other region, it can be determined that a leak has occurred.
 しかも、内部に濾過膜が設置される容器や、該容器に液体を供給する液体供給装置などを備えたこのリーク検出装置は、濾過装置又は濾過システムを構成しうる構成となっている。別言すれば、濾過装置又は濾過システムにおいて濾過膜のリーク試験を行うことができるので、リーク試験を、ウイルス除去膜単体を取り出し無菌状態を破壊して実施するといった形ではなく、濾過装置又は濾過システムから取り出すことなく無菌状態のままで実施することができる。 In addition, this leak detection apparatus including a container in which a filtration membrane is installed, a liquid supply apparatus that supplies liquid to the container, and the like is configured to constitute a filtration apparatus or a filtration system. In other words, since the leak test of the filtration membrane can be performed in the filtration device or the filtration system, the leak test is not performed by taking out the virus removal membrane alone and destroying the aseptic condition, but performing the filtration device or filtration. It can be carried out aseptically without removing it from the system.
 上記態様のリーク検出装置は、気体供給装置と、検出部材と、閉止手段と、を制御する制御部材をさらに備えるものであってもよい。 The leak detection device of the above aspect may further include a control member that controls the gas supply device, the detection member, and the closing means.
 上記態様のリーク検出装置において、検出部材が圧力検出器を備えていてもよい。 In the leak detection device of the above aspect, the detection member may include a pressure detector.
 上記態様のリーク検出装置において、検出部材が差圧計であってもよい。 In the leak detection device of the above aspect, the detection member may be a differential pressure gauge.
 上記態様のリーク検出装置において、検出部材がエアチャンバーを備えていてもよい。 In the leak detection device of the above aspect, the detection member may include an air chamber.
 上記態様のリーク検出装置は、エアチャンバー内の体積を一定に保つ手段を備えていてもよい。 The leak detection device of the above aspect may include a means for keeping the volume in the air chamber constant.
 上記態様のリーク検出装置において、検出部材が流量計であってもよい。 In the leak detection device of the above aspect, the detection member may be a flow meter.
 上記態様のリーク検出装置において、検出部材が定置滅菌及び/又は定置洗浄が可能な部材で構成されていても良い。 In the leak detection apparatus of the above aspect, the detection member may be configured with a member that can be subjected to stationary sterilization and / or stationary cleaning.
 上記態様のリーク検出装置において、濾過膜がウイルス除去膜であってもよい。 In the leak detection device of the above aspect, the filtration membrane may be a virus removal membrane.
 上記態様のリーク検出装置において、濾過膜と容器からなる濾過膜モジュールが、無菌接続部材を備えていてもよい。 In the leak detection device of the above aspect, the filtration membrane module including the filtration membrane and the container may include an aseptic connection member.
 上記態様のリーク検出装置において、濾過膜が中空糸膜であってもよい。 In the leak detection device of the above aspect, the filtration membrane may be a hollow fiber membrane.
 本発明の一態様に係るリーク検出方法は、上記態様のリーク検出装置を用いる濾過膜のリーク検出方法であって、
 濾過膜によって隔てられた二つの空間を備える容器に、二次室を液体で充填する充填工程と、
 一方の空間を気体供給装置から供給される気体により加圧して、該気体の濾過膜からの漏出を検出する検出工程と、を含む、というものである。
A leak detection method according to an aspect of the present invention is a leak detection method of a filtration membrane using the leak detection device of the above aspect,
A filling step of filling a secondary chamber with a liquid in a container having two spaces separated by a filtration membrane;
One of the spaces is pressurized with a gas supplied from a gas supply device, and a detection step of detecting leakage of the gas from the filtration membrane is included.
 上記態様のリーク検出方法において、充填工程が液体貯蔵容器から液体を供給することで充填を行うものであってもよい。 In the leak detection method of the above aspect, the filling step may be performed by supplying a liquid from a liquid storage container.
 上記態様のリーク検出方法は、充填工程の後、一方の空間に充填された液体を排出する排出工程を含むものであってもよい。 The leak detection method of the above aspect may include a discharge step of discharging the liquid filled in one space after the filling step.
 上記態様のリーク検出方法は、リーク検出装置に設けられた制御部により自動で制御されるものであってもよい。 The leak detection method of the above aspect may be automatically controlled by a control unit provided in the leak detection apparatus.
 本発明によれば、精度良く効率的にリーク検出することができ、尚かつ、無菌状態で用いられる濾過膜のリーク検出を無菌状態下で実施することを可能とするリーク検出装置およびリーク検出方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a leak detection apparatus and a leak detection method that can detect leaks accurately and efficiently, and can perform leak detection of filtration membranes used in aseptic conditions under aseptic conditions. Can be provided.
リーク検出装置の概略を示す図である。It is a figure which shows the outline of a leak detection apparatus. リーク検出装置の回路構成例を示す図である。It is a figure which shows the circuit structural example of a leak detection apparatus. 濾過装置の二次側に水を充填する工程について説明する図である。It is a figure explaining the process of filling the secondary side of a filtration apparatus with water. 加圧(安定化時間)工程について説明する図である。It is a figure explaining a pressurization (stabilization time) process. 加圧(測定)して気体漏出を検出する工程について説明する図である。It is a figure explaining the process which pressurizes (measures) and detects gas leakage. リークテスト実施後、欠陥なし(合格)と判定した濾過膜を用いてそのまま引き続き実施する膜分離作業について説明する図である。It is a figure explaining the membrane separation operation | work implemented as it is as it is using the filtration membrane determined to be defect-free (pass) after a leak test implementation. リークテストの一例を示すフローチャートである。It is a flowchart which shows an example of a leak test. 実施例1における、フィルターのピンホールの直径と当該フィルターをリークテストした場合の圧力上昇値との関係を示すグラフである。It is a graph which shows the relationship between the diameter of the pinhole of a filter in Example 1, and the pressure rise value at the time of performing the leak test of the said filter. 実施例2における、フィルターのピンホールの直径と当該フィルターをリークテストした場合の気体の漏出流量との関係を示すグラフである。In Example 2, it is a graph which shows the relationship between the diameter of the pinhole of a filter, and the leakage flow rate of the gas at the time of performing the leak test of the said filter.
 添付図面を参照して、本発明の好適な実施形態について説明する。 A preferred embodiment of the present invention will be described with reference to the accompanying drawings.
 リーク検出装置は、濾過膜のリークテストを実施し、当該濾過膜にピンホール等の欠陥が生じていないかどうかを検出する装置である。ここでいうリークテストとは、例えば、濾過膜を液体で湿潤させた状態で当該濾過膜を内側から加圧し、気体が膜から漏れ出てくるか否かを確認するテストのことをいう(図1参照)。 The leak detection device is a device that performs a leak test of a filtration membrane and detects whether or not a defect such as a pinhole has occurred in the filtration membrane. The leak test here refers to, for example, a test in which the filtration membrane is pressurized from the inside while the filtration membrane is wetted with a liquid to check whether gas leaks from the membrane (see FIG. 1).
 濾過膜として例えば中空糸膜を対象とする場合、ハウジング(容器)10の内部に中空糸膜を取り付け、該ハウジング10内を液体で満たした状態で中空糸膜を気体で加圧し、漏れ出てくる気体を目視またはセンサーで測定する。なお、目視の場合は連続気泡の発生があるか否で判別し、センサーの場合は、中空糸膜を隔てて加圧側の加圧気体の流速を測定する方法や、液体充填側に漏れ出てきた空気による圧力の変化を測定する方法を利用することができる(図1参照)。また、濾過膜から漏れ出てくる気体の種類には、リーク部(ピンホール等の欠陥部)からの噴流(目視することが可能)と、欠陥のない通常部からの拡散流(目視不可)の2種類がある。 When, for example, a hollow fiber membrane is used as a filtration membrane, the hollow fiber membrane is attached to the inside of the housing (container) 10, and the hollow fiber membrane is pressurized with gas in a state where the inside of the housing 10 is filled with a liquid. Measure the coming gas visually or with a sensor. In the case of visual observation, it is determined whether or not open bubbles are generated. In the case of a sensor, a method of measuring the flow rate of pressurized gas on the pressurized side across the hollow fiber membrane, or leakage to the liquid filling side. A method of measuring a change in pressure due to air can be used (see FIG. 1). In addition, the types of gas leaking from the filtration membrane include jets from leaked parts (defects such as pinholes) (visible) and diffuse flows from normal parts without defects (not visible) There are two types.
 図2等に、第1実施形態に係るリーク検出装置を示す。本実施形態のリーク検出装置1は、ハウジング10、液体貯蔵容器20、液体供給管30、気体圧縮装置40、気体供給管50、排管55、集液管58、ポンプ61、バルブ62~66、圧力検出器70、制御部80等を備えており、濾過膜を使ってウイルス除去等を行うための濾過装置(分離装置)であって、尚かつ、当該分離装置内において、装置から濾過膜を取り出さずにリークテストを実施することができる装置として構成されている。 FIG. 2 shows the leak detection apparatus according to the first embodiment. The leak detection device 1 of the present embodiment includes a housing 10, a liquid storage container 20, a liquid supply pipe 30, a gas compression apparatus 40, a gas supply pipe 50, a drain pipe 55, a liquid collection pipe 58, a pump 61, valves 62 to 66, A filtration device (separation device) that includes a pressure detector 70, a control unit 80, etc., and performs virus removal or the like using a filtration membrane, and in the separation device, the filtration membrane is removed from the device. The apparatus is configured as a device capable of performing a leak test without being taken out.
 ハウジング10は、濾過膜Mが内部に設置されることによって2つの空間ないし領域に隔てられる容器である。例えば本実施形態のごとく濾過膜Mとして筒状の中空糸膜を用いる場合、ハウジング10の内部は、中空糸膜の内側の柱状領域と、その外側の筒状領域の2つの空間に隔てられる。 The housing 10 is a container that is separated into two spaces or regions by installing the filtration membrane M therein. For example, when a cylindrical hollow fiber membrane is used as the filtration membrane M as in this embodiment, the interior of the housing 10 is divided into two spaces, a columnar region inside the hollow fiber membrane and a cylindrical region outside the hollow fiber membrane.
 なお、本明細書では、濾過膜Mをウイルス除去等のフィルターとして濾過装置において用いる場合における、濾過前の状態あるいは領域を一次(側)、濾過後の状態あるいは領域を二次(側)と称する。濾過の際、中空糸膜の内側から外側へ流体を流す本実施形態の場合、ハウジング10の内部のうち、中空糸膜の内側の柱状領域は一次側(一次室)、その外側の筒状領域は二次側(二次室)となる。濾過の際の流体の流れを逆にすれば、一次と二次とが入れ替わることはいうまでもない。 In the present specification, when the filtration membrane M is used as a virus removal filter in a filtration device, the state or region before filtration is referred to as primary (side), and the state or region after filtration is referred to as secondary (side). . In the case of this embodiment in which fluid flows from the inside to the outside of the hollow fiber membrane during filtration, the columnar region inside the hollow fiber membrane is the primary side (primary chamber) and the cylindrical region outside the inside of the housing 10. Is the secondary side (secondary chamber). Needless to say, if the flow of the fluid during filtration is reversed, the primary and secondary are interchanged.
 本実施形態のハウジング10は、横断面が円形である筒状の胴部14と、開口端のそれぞれに取り付けられる一対のヘッダー15とを備える(図1等参照)。ヘッダー15(15a,15b)は、ハウジング10の胴部14の両端それぞれに設けられる。各ヘッダー15(15a,15b)には流体の出入り口となるノズル16a,16bが形成されている(図1参照)。ハウジング10の胴部14の側部にはポート17a,17bが形成されている。 The housing 10 of this embodiment includes a cylindrical body 14 having a circular cross section and a pair of headers 15 attached to each of the open ends (see FIG. 1 and the like). The headers 15 (15a, 15b) are provided at both ends of the body portion 14 of the housing 10, respectively. Each header 15 (15a, 15b) is formed with nozzles 16a, 16b serving as fluid inlets and outlets (see FIG. 1). Ports 17 a and 17 b are formed on the side of the body 14 of the housing 10.
 なお、図1では、筒状容器であるハウジング10の中心軸を符号Pで示す。中心軸Pに沿った方向がハウジング(筒状容器)の長手方向である。また、中心軸Pを中心として周回する方向が周方向(周回方向)である。本実施形態のハウジング10は、中心軸Pを鉛直にした状態で設置されるが(図2等参照)、もちろんこれは一例にすぎず、向きが特に限定されることはない。 In addition, in FIG. 1, the center axis | shaft of the housing 10 which is a cylindrical container is shown with the code | symbol P. FIG. The direction along the central axis P is the longitudinal direction of the housing (tubular container). Further, the direction around the central axis P is the circumferential direction (circulation direction). The housing 10 of the present embodiment is installed with the central axis P being vertical (see FIG. 2 and the like). Of course, this is merely an example, and the orientation is not particularly limited.
 液体貯蔵容器20は、ハウジング10に供給される液体(例えばタンパク質溶液)が貯蔵されている容器である。液体貯蔵量に関わらず変形しない容器はもちろんのこと、液体貯蔵量に応じて変形するもの(例えばプラスチックバッグのような袋状物)も本明細書でいう液体貯蔵容器に含まれうる。 The liquid storage container 20 is a container in which a liquid (for example, protein solution) supplied to the housing 10 is stored. The liquid storage container referred to in this specification can include not only a container that does not deform regardless of the liquid storage amount, but also a container that deforms according to the liquid storage amount (for example, a bag-like material such as a plastic bag).
 液体貯蔵容器20とハウジング10は、例えばチューブで構成される液体供給管(第一の接続管)30で接続されている。液体貯蔵容器20の液体は、この液体供給管30を通じて、ハウジング10内の、中空糸膜Mで仕切られた一方の空間へ供給される。かかる液体供給管30を含む供給系、例えば当該液体供給管30上には、送液用のポンプ61と、液体供給管30を開閉するバルブ(閉止手段)62が設けられている。 The liquid storage container 20 and the housing 10 are connected to each other by a liquid supply pipe (first connection pipe) 30 formed of, for example, a tube. The liquid in the liquid storage container 20 is supplied through the liquid supply pipe 30 to one space in the housing 10 partitioned by the hollow fiber membrane M. On a supply system including the liquid supply pipe 30, for example, the liquid supply pipe 30, a liquid feeding pump 61 and a valve (closing means) 62 for opening and closing the liquid supply pipe 30 are provided.
 気体圧縮装置(例えば、エアコンプレッサー、あるいは気体ボンベ等を含む装置)40は、ハウジング10に気体を供給する気体供給装置として機能する。本実施形態の気体圧縮装置40は、空気を加圧し、気体供給管(第二の接続管)50を通じてハウジング10内に当該空気を供給する。 The gas compression apparatus (for example, an apparatus including an air compressor or a gas cylinder) 40 functions as a gas supply apparatus that supplies gas to the housing 10. The gas compression device 40 of the present embodiment pressurizes air and supplies the air into the housing 10 through a gas supply pipe (second connecting pipe) 50.
 気体供給管50は、例えばチューブで構成されており、気体圧縮装置40とハウジング10とを接続している。気体圧縮装置40から送り出された空気は、圧力調整器(不図示)によって正常な孔からは流出しないような圧力に調整され、この気体供給管50を通じて容器10内の、中空糸膜Mで仕切られたもう一方の空間へ供給される。かかる気体供給管50には、除菌膜52と、バルブ63とが設けられている。除菌膜52は、供給される空気中から菌を取り除くフィルター等で構成される。バルブ63は、気体供給管50を開閉するバルブ(閉止手段)である。圧力調整器としては、例えば、エアレギュレータが使用される。 The gas supply pipe 50 is constituted by a tube, for example, and connects the gas compression device 40 and the housing 10. The air sent out from the gas compression device 40 is adjusted to a pressure that does not flow out from a normal hole by a pressure regulator (not shown), and is partitioned by the hollow fiber membrane M in the container 10 through the gas supply pipe 50. Is supplied to the other space. The gas supply pipe 50 is provided with a sterilization film 52 and a valve 63. The sterilization film 52 includes a filter that removes bacteria from the supplied air. The valve 63 is a valve (closing means) for opening and closing the gas supply pipe 50. For example, an air regulator is used as the pressure regulator.
 集液管58は、濾過後の液体を集液する際に用いられる管で、一端側がハウジング10のポート17bに接続され、他端側は集液容器(図示省略)に接続される。集液管58の途中にはバルブ66が設けられている。 The liquid collection pipe 58 is a pipe used when collecting the filtered liquid, and one end side is connected to the port 17b of the housing 10 and the other end side is connected to a liquid collection container (not shown). A valve 66 is provided in the middle of the liquid collection pipe 58.
 圧力検出器70は、気体圧縮装置40から供給された気体(空気)が中空糸膜Mから漏出するかどうか検出する検出部材として機能する装置である。圧力検出器70としては、Series 35X HT(Keller社)を好適に用いることができる。本実施形態のリーク検出装置1においては、ハウジング10の一方のポート17aに接続される排管55にエアチャンバー(気体室)72が設けられ、また、その上流側にバルブ64、下流側にバルブ65がそれぞれ設けられている(図2等参照)。圧力検出器70は、バルブ64が開弁,65が閉弁した状態下でエアチャンバー72の圧力変化(圧力上昇)を検出する。圧力検出器70は、エアチャンバー72の内圧の変化を検出できる計測器であればよく、差圧計を利用することもできる。また、エアチャンバー72を別途設けなくてもよく、その場合にはバルブ65を閉じることにより排管55内の体積を一定に保っておき、排管55に直接接続された圧力検出器70により、排管55内の圧力変化を検出すればよい。 The pressure detector 70 is a device that functions as a detection member that detects whether or not the gas (air) supplied from the gas compression device 40 leaks from the hollow fiber membrane M. As the pressure detector 70, Series 35X HT (Keller) can be suitably used. In the leak detection device 1 of the present embodiment, an air chamber (gas chamber) 72 is provided in the exhaust pipe 55 connected to one port 17a of the housing 10, and a valve 64 is provided upstream and a valve is provided downstream. 65 is provided (see FIG. 2 and the like). The pressure detector 70 detects a pressure change (pressure increase) in the air chamber 72 under the condition that the valve 64 is opened and the valve 65 is closed. The pressure detector 70 may be a measuring instrument that can detect a change in the internal pressure of the air chamber 72, and a differential pressure gauge can also be used. Further, it is not necessary to provide the air chamber 72 separately. In that case, the volume in the exhaust pipe 55 is kept constant by closing the valve 65, and the pressure detector 70 directly connected to the exhaust pipe 55 is used. What is necessary is just to detect the pressure change in the exhaust pipe 55.
 なお、エアチャンバー72に、当該エアチャンバー72内の体積を一定に保つ手段が併設されていてもよい。詳しい図示は省略するが、リークテストのとき気体圧縮装置40を使って気体で加圧する際、濾過膜Mの膨張等により生じる液体(例えば水)の流れと、これに伴う液体充填部分の圧力上昇とを、このような手段を用いて除去することが好ましい。具体的には、例えばバルブ65を開弁して濾過膜Mの膨張に伴う流れを排出して圧力の上昇を除去し、更にバルブ65までの空間を自動的に液体で満たすことにより、密閉気体空間の容積を一定に保つ機構でこのような手段を構成することができる。この手段によれば、微少な漏れも的確に検出することが可能となる。 The air chamber 72 may be provided with means for keeping the volume in the air chamber 72 constant. Although detailed illustration is omitted, the flow of liquid (for example, water) generated due to the expansion of the filtration membrane M and the accompanying pressure increase in the liquid filling portion when the gas is pressurized with the gas compression device 40 during the leak test Are preferably removed using such means. Specifically, for example, the valve 65 is opened, the flow accompanying the expansion of the filtration membrane M is discharged to remove the pressure rise, and the space up to the valve 65 is automatically filled with liquid, thereby sealing gas. Such a means can be configured by a mechanism that keeps the volume of the space constant. According to this means, a minute leak can be accurately detected.
 制御部80は、ポンプ、バルブなどの動作制御、圧力検出器70の検出結果等の信号受信等を行う。本実施形態の制御部80は、ポンプ61、バルブ62、バルブ63、バルブ64、バルブ65、バルブ66、圧力検出器70と接続されていて、これらを動作させ、あるいは検出された圧力に関する情報を受信する(図2参照)。特に詳しい図示はしないが、制御部80は、各装置へ動作信号を送信しあるいは検出信号を受信するコンピューター、該コンピューターにリークテストの実施手順等を実行させるためのプログラム、該プログラムが格納されるメモリー等で構成される。なお、リークテストを自動で実施する自動制御プログラムを用いる等により、リークテストを自動制御下で実施することができる。 The control unit 80 performs operation control of pumps, valves, etc., and reception of signals such as detection results of the pressure detector 70. The control unit 80 according to the present embodiment is connected to the pump 61, the valve 62, the valve 63, the valve 64, the valve 65, the valve 66, and the pressure detector 70, and operates these or displays information on the detected pressure. Receive (see FIG. 2). Although not shown in detail, the control unit 80 stores a computer that transmits an operation signal to each device or receives a detection signal, a program for causing the computer to execute a leak test execution procedure, and the like. Consists of memory, etc. The leak test can be performed under automatic control by using an automatic control program for automatically performing the leak test.
 上記のごとき構成のリーク検出装置1において中空糸膜Mのリークテストを実施する際の手順について一例を挙げつつ説明する(図3~図7参照)。 The procedure for performing the leak test of the hollow fiber membrane M in the leak detection apparatus 1 having the above-described configuration will be described with an example (see FIGS. 3 to 7).
[濾過膜のセットアップ]
 濾過膜M又は濾過膜モジュールを分離膜装置(濾過装置又は濾過システム)に取り付ける。濾過膜M又は濾過膜モジュールは、蒸気滅菌等によりあらかじめ滅菌され、無菌状態となっているが、分離膜装置に取り付ける際に、接続部を開放することにより無菌状態が損なわれる恐れがある場合は、濾過膜M又は濾過膜モジュールを分離膜装置に取り付けた後、定置滅菌(SIP)及び/又は定置洗浄(CIP)を行い分離膜装置(濾過装置又は濾過システム)内を滅菌し、無菌状態とすることが可能である。上記の実施形態においては、検出部材は定置滅菌(SIP)及び/又は定置洗浄(CIP)可能な部材で構成されていることが好ましい。例えばステンレス材やフッ素樹脂からなる部材が使用できるが、これに限定されない。
[Filter membrane setup]
The filtration membrane M or the filtration membrane module is attached to the separation membrane device (filtration device or filtration system). The filtration membrane M or the filtration membrane module is sterilized in advance by steam sterilization or the like and is in a sterilized state. However, when attaching to the separation membrane device, the sterility may be impaired by opening the connection part. After the filtration membrane M or the filtration membrane module is attached to the separation membrane device, stationary sterilization (SIP) and / or stationary cleaning (CIP) is performed to sterilize the inside of the separation membrane device (filtration device or filtration system). Is possible. In said embodiment, it is preferable that the detection member is comprised with the member in which stationary sterilization (SIP) and / or stationary cleaning (CIP) are possible. For example, a member made of stainless steel or fluororesin can be used, but is not limited thereto.
 また、濾過膜モジュールは、予め滅菌された分離膜装置(濾過装置又は濾過システム)に無菌コネクター等の無菌接続部材で設置することもできる。この場合は濾過膜モジュールを取り付けた後に、定置滅菌(SIP)及び/又は定置洗浄(CIP)を行わずとも無菌状態を維持することができる。 Further, the filtration membrane module can be installed in a separation membrane device (a filtration device or a filtration system) sterilized in advance with an aseptic connection member such as an aseptic connector. In this case, after the filtration membrane module is attached, aseptic conditions can be maintained without performing stationary sterilization (SIP) and / or stationary cleaning (CIP).
[二次側水充填]
 濾過装置の二次側(二次室)を液体(水)で充填する(ステップSP1)。具体的には、気体供給管50のバルブ63と、集液管58のバルブ66とを閉じた状態のまま、液体供給管30のバルブ62と、排管55のバルブ64,65を開き、ポンプ61を駆動して、液体貯蔵容器20の液体を(本実施形態の場合、水)を供給する(図3参照)。液体は、ノズル16bを通じてハウジング10の一次側に供給され、濾過膜Mを通過して二次側(二次室)に供給され、さらに、ポート17aから排管55を通じて外部に排液される。
[Secondary water filling]
The secondary side (secondary chamber) of the filtration device is filled with liquid (water) (step SP1). Specifically, with the valve 63 of the gas supply pipe 50 and the valve 66 of the liquid collection pipe 58 closed, the valve 62 of the liquid supply pipe 30 and the valves 64 and 65 of the discharge pipe 55 are opened, and the pump 61 is driven to supply the liquid in the liquid storage container 20 (in this embodiment, water) (see FIG. 3). The liquid is supplied to the primary side of the housing 10 through the nozzle 16b, passes through the filtration membrane M, is supplied to the secondary side (secondary chamber), and is further discharged to the outside through the discharge pipe 55 from the port 17a.
 なお、このような充填工程(ステップSP1)では、二次側(二次室)を液体(水)で充填することを目的として実施されるが、本実施形態のごとき構成のリーク検出装置1においては、装置の構成上、液体貯蔵容器20から液体を供給して充填する場合には、一次側(一次室)、二次側(二次室)の両空間とも液体(水)で充填される(図3参照)。 In addition, in such a filling process (step SP1), it is implemented for the purpose of filling the secondary side (secondary chamber) with liquid (water). However, in the leak detection apparatus 1 configured as in the present embodiment, When the liquid is supplied and filled from the liquid storage container 20 due to the structure of the apparatus, both the primary side (primary chamber) and the secondary side (secondary chamber) are filled with liquid (water). (See FIG. 3).
[加圧(安定化)]
 二次室への液体(水)の充填が完了したら(ステップSP2にてYes)、一次側の空間を気体で加圧する(ステップSP3)。具体的には、液体供給管30のバルブ62を閉じ、気体供給管50のバルブ63を開き、気体圧縮装置40を駆動して、気体(本実施形態の場合、空気)を供給する(図4参照)。気体は、ノズル16aを通じてハウジング10の一次側に供給される。系が安定化した時間(安定化時間)となるまで、気体によって一次側を加圧した状態に保ち、その後、排管55のバルブ65を閉じて測定のステップ(ステップSP4)に移行する。
[Pressurization (stabilization)]
When the filling of the liquid (water) into the secondary chamber is completed (Yes in step SP2), the primary space is pressurized with gas (step SP3). Specifically, the valve 62 of the liquid supply pipe 30 is closed, the valve 63 of the gas supply pipe 50 is opened, and the gas compressing device 40 is driven to supply gas (in this embodiment, air) (FIG. 4). reference). The gas is supplied to the primary side of the housing 10 through the nozzle 16a. The primary side is kept pressurized with gas until the system is stabilized (stabilization time), and then the valve 65 of the exhaust pipe 55 is closed and the process proceeds to the measurement step (step SP4).
 なお、ここでの詳細な説明は省略するが、液体の充填工程の後、加圧(安定化)工程へ移行する前に一方の空間(一次側、一次室)に充填された液体を排出する排出工程を実施してから次の加圧(安定化)工程へ移行することとしてもよい。 In addition, although detailed description here is abbreviate | omitted, after the liquid filling process, before moving to a pressurization (stabilization) process, the liquid with which one space (primary side, primary chamber) was filled is discharged | emitted. It is good also as shifting to the following pressurization (stabilization) process after implementing a discharge process.
[加圧(測定)]
 一次側に供給した気体が濾過膜Mから漏出しているかどうかを検出する(ステップSP4)。漏出している場合、気体がポート17から漏れてエアチャンバー72の内圧が変化する(上昇する)ので、この圧力の変化量を圧力検出器70でセンシングする。通常、ピンホール等の欠陥のない正常な濾過膜であっても気体の拡散等により、測定値は零ではないので、これらの値の平均及び標準偏差(σ)を測定し、あらかじめ設定した基準値を超えた値を検出したら、気体の漏出が生じたと判断し(ステップSP4にてYes)、濾過膜Mに欠陥があると判定する(ステップSP5)。なお、このときの基準値として、たとえば、平均+3σ以上の値、平均+4σ以上の値、平均+5σ以上の値、平均+6σ以上の値等を判断の基準とすることができる。一方、圧力変化値が小さい場合には、欠陥部からの気体の漏出が生じていないと判断し(ステップSP4にてNo)、濾過膜Mに欠陥なし(合格)と判定する(ステップSP6)。
[Pressure (Measurement)]
It is detected whether or not the gas supplied to the primary side has leaked from the filtration membrane M (step SP4). When leaking, gas leaks from the port 17 and the internal pressure of the air chamber 72 changes (increases), and the pressure detector 70 senses the amount of change in this pressure. Usually, even normal filtration membranes without defects such as pinholes, the measured values are not zero due to gas diffusion, etc., so the average and standard deviation (σ) of these values are measured, and preset standards If a value exceeding the value is detected, it is determined that gas leakage has occurred (Yes in step SP4), and it is determined that the filtration membrane M is defective (step SP5). In addition, as a reference value at this time, for example, a value of average + 3σ or higher, a value of average + 4σ or higher, a value of average + 5σ or higher, a value of average + 6σ or higher, or the like can be used as a determination reference. On the other hand, when the pressure change value is small, it is determined that no gas leaks from the defective portion (No in step SP4), and it is determined that the filtration membrane M has no defect (pass) (step SP6).
 上記のごとくリークテストを実施し、濾過膜Mに欠陥なし(合格)と判定した場合(ステップSP6)、本実施形態のリーク検出装置においては、当該欠陥なしと判定した濾過膜Mを用いてそのまま膜分離作業を実施することができる(図6参照)。すなわち、液体貯蔵容器20の液体を濾過したい液体(本実施形態の場合、タンパク質溶液)に交換した後(なお、タンパク質溶液への交換は、液体貯蔵容器20内の溶液を直接タンパク質溶液に交換することによって行ってもよいし、複数の液体貯蔵容器を並列に準備しておき、ステップに応じて溶液のラインを切り替え、流すことによって行ってもよい)、気体供給管50のバルブ63と排管55のバルブ64,65を閉じ、供給管30のバルブ62と集液管58のバルブ66を開けた状態とし、ポンプ61を駆動して、液体貯蔵容器20の液体を供給する。液体は、ノズル16bを通じてハウジング10の一次側に供給され、欠陥なし(合格)と判定された濾過膜Mを通過して二次側(二次室)に供給され、膜分離された状態で、ポート17bから集液管58を通じて集液容器(図示省略)へ送液させる(図6参照)。 When the leak test is performed as described above and it is determined that there is no defect (pass) in the filtration membrane M (step SP6), in the leak detection device of the present embodiment, the filtration membrane M determined as having no defect is used as it is. A membrane separation operation can be performed (see FIG. 6). That is, after the liquid in the liquid storage container 20 is replaced with a liquid to be filtered (in the case of the present embodiment, a protein solution) (the replacement with the protein solution is performed by directly replacing the solution in the liquid storage container 20 with the protein solution). Or may be performed by preparing a plurality of liquid storage containers in parallel and switching and flowing the solution line according to the steps), and the valve 63 and the exhaust pipe of the gas supply pipe 50 The valves 64 and 65 of 55 are closed, the valve 62 of the supply pipe 30 and the valve 66 of the liquid collection pipe 58 are opened, and the pump 61 is driven to supply the liquid in the liquid storage container 20. The liquid is supplied to the primary side of the housing 10 through the nozzle 16b, passes through the filtration membrane M determined to have no defect (passed), is supplied to the secondary side (secondary chamber), and is separated from the membrane. Liquid is fed from the port 17b through the liquid collection tube 58 to a liquid collection container (not shown) (see FIG. 6).
 以上、説明したごとき本実施形態のリーク検出装置1によれば、リーク検出の対象である濾過膜Mを、分離膜装置(濾過装置又は濾過システム)の回路中(のハウジング10内)に設置(セットアップ)した状態で、当該濾過膜Mによって隔てられた空間(領域)の一方へ気体を供給し、このとき、濾過膜Mの一方の領域から他方の領域へ気体が漏出することが検出されれば、リークが生じていると判断することができる。 As described above, according to the leak detection apparatus 1 of the present embodiment as described above, the filtration membrane M that is the target of leak detection is installed in the circuit of the separation membrane apparatus (filtration apparatus or filtration system) (in the housing 10) ( In the set-up state, gas is supplied to one of the spaces (regions) separated by the filtration membrane M. At this time, it is detected that gas leaks from one region of the filtration membrane M to the other region. If so, it can be determined that a leak has occurred.
 また、このリーク検出装置1においては、リークテスト実施後の濾過膜Mをそのまま用いて溶液(タンパク質溶液等)の液体濾過(膜分離)を実施することが可能である。したがって、リークテストによって濾過実施の対象である濾過膜Mの無菌状態を破壊せずに済むことから、無菌状態を保ったままリークテストを経て濾過を実施するという一連の工程を行うことが可能である。別言すれば、内部に濾過膜Mが設置される容器(ハウジング10)や、該容器(ハウジング10)に液体を供給する液体供給装置(液体供給管30、ポンプ61)などを備えた本実施形態のリーク検出装置1は、そのまま分離膜装置(濾過装置又は濾過システム)を構成しうる構造であることから、分離膜装置(濾過装置又は濾過システム)において濾過膜Mのリーク試験を行うことを実現している。このため、リークテストを、ウイルス除去膜単体を取り出し無菌状態を破壊して実施するといった形ではなく、分離膜装置(濾過装置又は濾過システム)から取り出すことなく無菌状態を維持したままで実施することができる。 Further, in this leak detection apparatus 1, it is possible to perform liquid filtration (membrane separation) of a solution (protein solution or the like) using the filtration membrane M after the leak test as it is. Therefore, since it is not necessary to destroy the aseptic state of the filtration membrane M that is the subject of filtration by the leak test, it is possible to perform a series of steps of performing filtration through the leak test while maintaining the aseptic state. is there. In other words, the present embodiment including a container (housing 10) in which the filtration membrane M is installed, a liquid supply device (liquid supply pipe 30, pump 61) for supplying liquid to the container (housing 10), and the like. Since the leak detection device 1 of the embodiment has a structure that can constitute a separation membrane device (filtration device or filtration system) as it is, the leakage test of the filtration membrane M is performed in the separation membrane device (filtration device or filtration system). Realized. For this reason, the leak test is not carried out by taking out the virus removal membrane alone and destroying the aseptic condition, but performing it while maintaining the aseptic condition without removing it from the separation membrane device (filtration device or filtration system). Can do.
 本実施形態は、どのような濾過膜Mをも対象としうるが、濾過膜Mには、とりわけ高いウイルス除去性能と高いタンパク質透過性能を持つウイルス除去膜のようなものもある。ウイルス除去膜に関しては、その要求される高い除去能力からピンホールの精度の高い検出が望まれており、本実施形態のごときリーク検出装置1によればそのような高精度の検出が簡便かつ効率的に実現することが可能である。ウイルス除去膜としては、再生セルロース、PVDF、PESなどを原料とした膜を用いることができる。また、ウイルス除去膜の形態は平膜であってもよく、中空糸膜であってもよい。 Although this embodiment can be applied to any filtration membrane M, the filtration membrane M includes a virus removal membrane having particularly high virus removal performance and high protein permeation performance. With regard to the virus removal film, detection of pinholes with high accuracy is desired because of the required high removal capability. According to the leak detection apparatus 1 as in the present embodiment, such high accuracy detection is simple and efficient. Can be realized. As the virus removal membrane, a membrane made of regenerated cellulose, PVDF, PES, or the like can be used. Moreover, the form of the virus removal membrane may be a flat membrane or a hollow fiber membrane.
 なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上記の実施形態においては、液体供給系に、送液手段として機能するポンプ61と、閉止手段として機能するバルブ63とを設けた構成を説明したがこれは好適な一例にすぎない。ポンプ61によって液体供給管30を閉止することができる場合には、バルブ62を用いずに、当該ポンプ61を閉止手段としても機能させる構成とすることができる。 The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiment, the configuration in which the pump 61 that functions as the liquid feeding unit and the valve 63 that functions as the closing unit is provided in the liquid supply system, but this is only a preferable example. When the liquid supply pipe 30 can be closed by the pump 61, the pump 61 can be configured to function as a closing means without using the valve 62.
 また、上記の実施形態においては、濾過膜Mとして筒状の中空糸膜を用いる例を示したがこれも好適な一例にすぎない。例えば、中空糸膜以外として、平膜状の濾過膜を採用してもよい。なお、ここでは特に説明しないが、ハウジング10の一次室11、二次室12(図1参照)、胴部14、ヘッダー15、ノズル16、ポート17等は、濾過膜Mに応じて適宜設定されうる。 In the above embodiment, an example in which a cylindrical hollow fiber membrane is used as the filtration membrane M has been shown, but this is also only a suitable example. For example, a flat membrane-like filtration membrane may be employed other than the hollow fiber membrane. Although not specifically described here, the primary chamber 11, the secondary chamber 12 (see FIG. 1), the body portion 14, the header 15, the nozzle 16, the port 17, and the like of the housing 10 are appropriately set according to the filtration membrane M. sell.
 また、上記の実施形態においては、ハウジング10の一例として、濾過膜Mが内部に設置されることによって2つの空間ないしは領域に隔てられる容器を例示したが、ここでいう「2つ」に隔てるとは、文字通り2つに隔てる他、物理的に3つ以上に隔てる場合における「2つ」の空間を意味する場合を含む。 In the above-described embodiment, as an example of the housing 10, a container that is separated into two spaces or regions by installing the filtration membrane M therein is illustrated, but when separated into “two” here, Includes literally two spaces, as well as the case of “two” spaces when physically separated by three or more.
 また、上記の実施形態においては、濾過膜Mからの気体の漏出の有無を検出する装置として圧力検出器70を用いた場合について説明したが(図5参照)、これも好適な一例にすぎない。例えば、気体漏出を検出する部材として、このような圧力検出装置の他、流体検出装置を利用することも可能である。例示すれば以下のとおりである。すなわち、一次側に供給した気体が濾過膜Mから漏出している場合には併せて気体供給管50の内側にて流体の流れが生じてもいる。そこで、詳細な説明は省くが、圧力検出器に代えて流体の流れを検出する流量計(図1、図5中の符号70'参照)を採用し、気体供給管50等における流体の流れをセンシングすることによって、濾過膜Mからの気体の漏出を検出することが可能である。 In the above embodiment, the case where the pressure detector 70 is used as a device for detecting the presence or absence of gas leakage from the filtration membrane M has been described (see FIG. 5), but this is also only a preferred example. . For example, as a member for detecting gas leakage, a fluid detection device can be used in addition to such a pressure detection device. An example is as follows. That is, when the gas supplied to the primary side leaks from the filtration membrane M, the fluid flow is also generated inside the gas supply pipe 50. Therefore, although a detailed description is omitted, a flow meter (see reference numeral 70 ′ in FIGS. 1 and 5) that detects the flow of the fluid is employed instead of the pressure detector, and the flow of the fluid in the gas supply pipe 50 and the like is determined. By sensing, it is possible to detect gas leakage from the filtration membrane M.
 また、上記の実施形態においては、液体貯蔵容器20の液体をハウジング10内に供給する形態を説明したがこれも好適な一例にすぎない。この他、例えば、詳しい図示は省略するが、濾過膜モジュール(ハウジング10と、該ハウジング10内に設けられた濾過膜Mを含むモジュール)の内部に予め液体を充填した状態の該濾過膜モジュール(蒸気滅菌等により無菌状態となっている)を、分離膜装置(濾過装置又は濾過システム)に無菌コネクター等の無菌接続部材で設置後に即加圧してリークテストを実施することも可能である。 In the above-described embodiment, the form in which the liquid in the liquid storage container 20 is supplied into the housing 10 has been described, but this is also only a suitable example. In addition, for example, although detailed illustration is omitted, the filtration membrane module (a module including the housing 10 and the filtration membrane M provided in the housing 10) in a state in which a liquid is filled in advance ( It is also possible to carry out a leak test by immediately pressurizing after being placed in a separation membrane device (filtration device or filtration system) with a sterile connecting member such as a sterile connector.
 無菌コネクター(図1中において符号90で示す)は、詳しい図示はしていないが、例えば接続チューブ内に挿入される管状の挿入部、フランジ状の接続部、接続面に設けられ管路を封鎖する封鎖テープ等を備えている。無菌コネクター90には、オス型とメス型を有するもの、同一形状の一対を組み合わせられるものがあり、例えば一方の無菌コネクター90の接続面ともう一方の無菌コネクター90の接続面とを嵌合させて固定し、その接続面の間に介在された封鎖テープを引き抜いて、無菌状態を維持しながら互いのチューブを接続する、等の構造のものが採用される(例えば、特許第6285961号公報等、参照)。上記の無菌コネクターをあらかじめ濾過膜Mに取り付けることにより、無菌状態を維持しながら配管等に接続することができる。 The aseptic connector (indicated by reference numeral 90 in FIG. 1) is not shown in detail, but for example, a tubular insertion portion to be inserted into the connection tube, a flange-like connection portion, a connection surface provided on the connection surface, and the pipeline is sealed. A sealing tape is provided. The aseptic connector 90 includes a male type and a female type, and a combination of a pair of identical shapes. For example, the connection surface of one sterile connector 90 and the connection surface of the other sterile connector 90 are fitted together. And the like, such that the sealing tape interposed between the connecting surfaces is pulled out and the tubes are connected to each other while maintaining the sterility (for example, Japanese Patent No. 6285961) ,reference). By attaching the sterile connector to the filtration membrane M in advance, it can be connected to a pipe or the like while maintaining the sterile condition.
 上記実施形態において説明した構成を備えるリーク検出装置1を用いて、ピンホールがあるフィルター(中空糸膜M)9本とピンホールがないフィルター(中空糸膜M)7本をリーク検出対象としたリーク検査を行った。測定したフィルターは旭化成メディカル株式会社製「Planova BioEX」(登録商標)で、膜面積1mのものを用いた。ピンホールがあるフィルターとしては、中空糸膜Mに、フッ化クリプトン(KrF)エキシマレーザーを用いて、4.4~7.7μmの大きさのピンホールを形成したものを採用した。 Using the leak detection apparatus 1 having the configuration described in the above embodiment, nine filters (hollow fiber membranes M) having pinholes and seven filters (hollow fiber membranes M) having no pinholes are targeted for leak detection. A leak test was performed. The measured filter is “Planova” manufactured by Asahi Kasei Medical Corporation.   “BioEX” (registered trademark) having a membrane area of 1 m 2 was used. As the filter having a pinhole, a hollow fiber membrane M in which a pinhole having a size of 4.4 to 7.7 μm was formed using a krypton fluoride (KrF) excimer laser was employed.
 測定手順としては、まずフィルターをリーク検出装置1に取り付け、次いで、ポンプ61を動作させて液体貯蔵容器20から水をハウジング10へと送り、さらにフィルター(中空糸膜M)を通過させてハウジング10内を水で充填した。その後、ハウジング10の例えば下方へと向かって配置された液体供給管30上のポンプ61とヘッダー16の間に設けられた排液ノズル(図示省略)よりフィルターの一次側に充填された水を排出した後、バルブ62、バルブ63を動作させ、気体圧縮装置40を駆動して(気体圧縮装置40を駆動する代わりに空気ボンベを用いてもよい)ハウジング10に圧縮空気を送り、フィルターを加圧した。なお、上記の排液ノズルに滅菌フィルターを設けることによっては排液時の無菌性を担保した。 As a measurement procedure, first, a filter is attached to the leak detection device 1, then the pump 61 is operated to send water from the liquid storage container 20 to the housing 10, and further, the filter (hollow fiber membrane M) is passed through the housing 10. The inside was filled with water. Thereafter, water filled in the primary side of the filter is discharged from a drain nozzle (not shown) provided between the pump 61 and the header 16 on the liquid supply pipe 30 disposed, for example, downward in the housing 10. After that, the valve 62 and the valve 63 are operated to drive the gas compressing device 40 (an air cylinder may be used instead of driving the gas compressing device 40) to send compressed air to the housing 10 and pressurize the filter. did. In addition, the sterility at the time of drainage was ensured by providing a sterilization filter in said drainage nozzle.
 測定条件は、加圧圧力は343kPa、安定化時間を300秒とした。また安定化時間内のフィルターの加圧中は、フィルターの膨張や気体により押し出された試験液が、ハウジング10の外側に設けられたエアチャンバー72(容積29mL)を経由し、エアチャンバー72の側方に設けられた排管から系外に流出するよう、排管55のバルブ64、65を開けた状態を保持した(表1参照)。
Figure JPOXMLDOC01-appb-T000001
The measurement conditions were a pressure of 343 kPa and a stabilization time of 300 seconds. During the pressurization of the filter within the stabilization time, the test liquid pushed out by the expansion or gas of the filter passes through the air chamber 72 (volume: 29 mL) provided outside the housing 10 and is on the side of the air chamber 72. The state in which the valves 64 and 65 of the exhaust pipe 55 were opened so as to flow out of the system from the exhaust pipe provided on the side (see Table 1).
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 エアチャンバー72に接続された圧力検出器(差圧計)70を用いて、リーク量の測定を行った。安定化時間経過後、バルブ65を閉止し、30秒後における圧力上昇値を読み取った。結果を図8に示す。ピンホールがあるフィルターではピンホールがないフィルターよりも高い圧力上昇値を示し、ピンホール直径が大きいほど高い圧力上昇値を示した。図8より、圧力上昇値の大きさからピンホールの有無は容易に判別できることがわかる。
[Example 1]
The amount of leak was measured using a pressure detector (differential pressure gauge) 70 connected to the air chamber 72. After the stabilization time, the valve 65 was closed, and the pressure increase value after 30 seconds was read. The results are shown in FIG. A filter with a pinhole showed a higher pressure rise value than a filter without a pinhole, and the larger the pinhole diameter, the higher the pressure rise value. It can be seen from FIG. 8 that the presence or absence of a pinhole can be easily determined from the magnitude of the pressure increase value.
[実施例2]
 気体圧縮装置40(空気ボンベを利用してもよい)とハウジング10を繋ぐ気体供給管50に流量計70'を設置し(図1、図5参照)、リーク量の測定を行った。安定時間経過後もバルブ64、65は開けた状態を保持し、60秒間の体積流量値を読み取った。結果を図9に示す。ピンホールがあるフィルターではピンホールがないフィルターよりも高い体積流量値を示し、ピンホール直径が大きいほど高い体積流量値を示した。図9より、漏出流量値の大きさからピンホールの有無は容易に判別できることがわかる。
[Example 2]
A flow meter 70 ′ was installed in the gas supply pipe 50 connecting the gas compression device 40 (an air cylinder may be used) and the housing 10 (see FIGS. 1 and 5), and the amount of leakage was measured. The valves 64 and 65 were kept open even after the stabilization time had elapsed, and the volume flow rate value for 60 seconds was read. The results are shown in FIG. A filter with a pinhole showed a higher volumetric flow rate value than a filter without a pinhole, and the larger the pinhole diameter, the higher the volumetric flow rate value. From FIG. 9, it can be seen that the presence or absence of pinholes can be easily determined from the magnitude of the leakage flow rate value.
 本発明は、濾過膜のリークを検出するリーク検出装置、リーク検出方法に適用して好適である。 The present invention is suitable for application to a leak detection device and a leak detection method for detecting a leak of a filtration membrane.
1…リーク検出装置、10…ハウジング(容器)、11…一次室(一方の空間)、12…二次室(他方の空間)、14…胴部、15(15a,15b)…ヘッダー、16(16a,16b)…ノズル、17(17a,17b)…ポート、20…液体貯蔵容器、30…液体供給管(第一の接続管)、40…気体圧縮装置(気体供給装置)、50…気体供給管(第二の接続管)、52…除菌膜、55…排管、58…集液管、61…ポンプ(閉止手段)、62…バルブ(閉止手段)、63…バルブ(閉止手段)、64…バルブ、65…バルブ(エアチャンバー内の体積を一定に保つ手段)、66…バルブ、70…圧力検出器(検出部材)、70'…流量計(検出部材)、72…エアチャンバー、80…制御部、90…無菌コネクター(無菌接続部材)、M…中空糸膜(濾過膜) DESCRIPTION OF SYMBOLS 1 ... Leak detection apparatus, 10 ... Housing (container), 11 ... Primary chamber (one space), 12 ... Secondary chamber (the other space), 14 ... trunk | drum, 15 (15a, 15b) ... Header, 16 ( 16a, 16b) ... Nozzle, 17 (17a, 17b) ... Port, 20 ... Liquid storage container, 30 ... Liquid supply pipe (first connecting pipe), 40 ... Gas compression device (gas supply device), 50 ... Gas supply Pipe (second connecting pipe), 52 ... sanitizing membrane, 55 ... draining pipe, 58 ... collecting pipe, 61 ... pump (closing means), 62 ... valve (closing means), 63 ... valve (closing means), 64... Valve, 65... Valve (means for keeping the volume in the air chamber constant), 66... Valve, 70... Pressure detector (detection member), 70 ′. ... Control part, 90 ... Aseptic connector (sterile connection member) , M ... Hollow fiber membrane (filtration membrane)

Claims (15)

  1.  濾過膜のリークを検出するリーク検出装置であって、
     前記濾過膜が内部に設置されることによって2つの空間に隔てられる容器と、
     前記容器に供給される液体を貯蔵する液体貯蔵容器と、
     前記該液体貯蔵容器と前記容器内の一方の空間とを接続する第一の接続管と、
     前記容器に気体を供給する気体供給装置と、
     前記気体供給装置と前記容器とを接続する第二の接続管と、
     前記第一の接続管及び/又は前記第二の接続管に設けられた閉止手段と、
     前記気体供給装置によって供給された気体の前記濾過膜からの漏出を検出する検出部材と、
    を備える、リーク検出装置。
    A leak detection device for detecting a leak of a filtration membrane,
    A container that is separated into two spaces by installing the filtration membrane inside;
    A liquid storage container for storing the liquid supplied to the container;
    A first connecting pipe connecting the liquid storage container and one space in the container;
    A gas supply device for supplying gas to the container;
    A second connecting pipe connecting the gas supply device and the container;
    Closing means provided on the first connecting pipe and / or the second connecting pipe;
    A detection member for detecting leakage of the gas supplied by the gas supply device from the filtration membrane;
    A leak detection apparatus comprising:
  2.  前記気体供給装置と、前記検出部材と、前記閉止手段と、を制御する制御部材をさらに備える、請求項1に記載のリーク検出装置。 The leak detection device according to claim 1, further comprising a control member that controls the gas supply device, the detection member, and the closing means.
  3.  前記検出部材が、圧力検出器を備える、請求項1又は2に記載のリーク検出装置。 The leak detection device according to claim 1 or 2, wherein the detection member includes a pressure detector.
  4.  前記検出部材が、差圧計である、請求項1又は2に記載のリーク検出装置。 The leak detection device according to claim 1 or 2, wherein the detection member is a differential pressure gauge.
  5.  前記検出部材が、エアチャンバーを備える、請求項1~4のいずれか一項に記載のリーク検出装置。 The leak detection device according to any one of claims 1 to 4, wherein the detection member includes an air chamber.
  6.  前記エアチャンバー内の体積を一定に保つ手段を備える、請求項5に記載のリーク検出装置。 The leak detection apparatus according to claim 5, further comprising means for keeping a volume in the air chamber constant.
  7.  前記検出部材が、流量計である、請求項1又は2に記載のリーク検出装置。 The leak detection device according to claim 1 or 2, wherein the detection member is a flow meter.
  8.  前記検出部材が、定置滅菌(SIP)及び/又は定置洗浄(CIP)が可能な部材からなる請求項1~7のいずれか一項に記載のリーク検出装置。 The leak detection device according to any one of claims 1 to 7, wherein the detection member is a member capable of stationary sterilization (SIP) and / or stationary cleaning (CIP).
  9.  前記濾過膜が、ウイルス除去膜である、請求項1~8のいずれか一項に記載のリーク検出装置。 The leak detection device according to any one of claims 1 to 8, wherein the filtration membrane is a virus removal membrane.
  10.  前記濾過膜と前記容器からなる濾過膜モジュールが、無菌接続部材を備える、請求項1~9のいずれか一項に記載のリーク検出装置。 The leak detection device according to any one of claims 1 to 9, wherein a filtration membrane module including the filtration membrane and the container includes an aseptic connection member.
  11.  前記濾過膜が、中空糸膜である、請求項1~10のいずれか一項に記載のリーク検出装置。 The leak detection device according to any one of claims 1 to 10, wherein the filtration membrane is a hollow fiber membrane.
  12.  請求項1~11のいずれか一項に記載のリーク検出装置を用いる、濾過膜のリーク検出方法であって、
     前記濾過膜によって隔てられた二つの空間を備える前記容器に、二次室を液体で充填する充填工程と、
     前記一方の空間を前記気体供給装置から供給される気体により加圧して、該気体の前記濾過膜からの漏出を検出する検出工程と、を含む、濾過膜のリーク検出方法。
    A leak detection method for a filtration membrane using the leak detection device according to any one of claims 1 to 11,
    A filling step of filling a secondary chamber with a liquid in the container having two spaces separated by the filtration membrane;
    A detection step of pressurizing the one space with a gas supplied from the gas supply device and detecting leakage of the gas from the filtration membrane.
  13.  前記充填工程が前記液体貯蔵容器から液体を供給することで充填を行う、請求項12に記載の濾過膜のリーク検出方法。 The filtration membrane leak detection method according to claim 12, wherein the filling step performs filling by supplying a liquid from the liquid storage container.
  14.  前記充填工程の後、前記一方の空間に充填された液体を排出する排出工程を含む、請求項12又は13に記載の濾過膜のリーク検出方法。 The method for detecting a leak of a filtration membrane according to claim 12 or 13, further comprising a discharge step of discharging the liquid filled in the one space after the filling step.
  15.  前記リーク検出装置に設けられた制御部により自動で制御される、請求項12~14のいずれか一項に記載の濾過膜のリーク検出方法。 The filtration membrane leak detection method according to any one of claims 12 to 14, wherein the leak detection device is automatically controlled by a control unit provided in the leak detection device.
PCT/JP2018/020722 2018-05-30 2018-05-30 Leak detection device and leak detection method WO2019229872A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020722 WO2019229872A1 (en) 2018-05-30 2018-05-30 Leak detection device and leak detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020722 WO2019229872A1 (en) 2018-05-30 2018-05-30 Leak detection device and leak detection method

Publications (1)

Publication Number Publication Date
WO2019229872A1 true WO2019229872A1 (en) 2019-12-05

Family

ID=68697907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020722 WO2019229872A1 (en) 2018-05-30 2018-05-30 Leak detection device and leak detection method

Country Status (1)

Country Link
WO (1) WO2019229872A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111751260A (en) * 2020-06-30 2020-10-09 南京航空航天大学 Device and method for measuring cross section area and porosity of ceramic-based fiber bundle composite material
CN114713037A (en) * 2022-06-10 2022-07-08 北京先通国际医药科技股份有限公司 Online filter membrane integrity testing device and method and application thereof
JP7452893B2 (en) 2021-07-26 2024-03-19 ポール・コーポレーション Method and system for filter device integrity testing

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190605A (en) * 1987-02-02 1988-08-08 Daicel Chem Ind Ltd Steam sterilization of hollow yarn-type ultrafiltration membrane module
JPH04348252A (en) * 1991-01-16 1992-12-03 House Food Ind Co Ltd Method and device for inspecting integrity of membrane filter
JPH0557157A (en) * 1991-09-03 1993-03-09 Daicel Chem Ind Ltd Drying method for hollow fiber membrane separation module and the module
JPH05157654A (en) * 1991-12-03 1993-06-25 Asahi Chem Ind Co Ltd Leakage inspection method of film-separation device
WO1998029184A1 (en) * 1996-12-27 1998-07-09 Asahi Kasei Kogyo Kabushiki Kaisha Device and method for detecting leakage of filter film
JP2008149205A (en) * 2006-12-14 2008-07-03 Asahi Kasei Medical Co Ltd Perfectness testing automatic measuring instrument of membrane type virus removing filter
JP2008229471A (en) * 2007-03-20 2008-10-02 Metawater Co Ltd Washing method of membrane filtration system
WO2015099015A1 (en) * 2013-12-27 2015-07-02 旭化成メディカル株式会社 Membrane module device, package body, liquid processing system, steam sterilization method, and system configuration method
JP2017109080A (en) * 2015-11-18 2017-06-22 ビー.ブラウン アビタム アーゲーB. Braun Avitum Ag Method of sterilizing and testing integrity of dialyzer
JP2018508341A (en) * 2014-12-30 2018-03-29 イー・エム・デイー・ミリポア・コーポレイシヨン Sterile filter vent valve and port for integrity testing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190605A (en) * 1987-02-02 1988-08-08 Daicel Chem Ind Ltd Steam sterilization of hollow yarn-type ultrafiltration membrane module
JPH04348252A (en) * 1991-01-16 1992-12-03 House Food Ind Co Ltd Method and device for inspecting integrity of membrane filter
JPH0557157A (en) * 1991-09-03 1993-03-09 Daicel Chem Ind Ltd Drying method for hollow fiber membrane separation module and the module
JPH05157654A (en) * 1991-12-03 1993-06-25 Asahi Chem Ind Co Ltd Leakage inspection method of film-separation device
WO1998029184A1 (en) * 1996-12-27 1998-07-09 Asahi Kasei Kogyo Kabushiki Kaisha Device and method for detecting leakage of filter film
JP2008149205A (en) * 2006-12-14 2008-07-03 Asahi Kasei Medical Co Ltd Perfectness testing automatic measuring instrument of membrane type virus removing filter
JP2008229471A (en) * 2007-03-20 2008-10-02 Metawater Co Ltd Washing method of membrane filtration system
WO2015099015A1 (en) * 2013-12-27 2015-07-02 旭化成メディカル株式会社 Membrane module device, package body, liquid processing system, steam sterilization method, and system configuration method
JP2018508341A (en) * 2014-12-30 2018-03-29 イー・エム・デイー・ミリポア・コーポレイシヨン Sterile filter vent valve and port for integrity testing
JP2017109080A (en) * 2015-11-18 2017-06-22 ビー.ブラウン アビタム アーゲーB. Braun Avitum Ag Method of sterilizing and testing integrity of dialyzer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111751260A (en) * 2020-06-30 2020-10-09 南京航空航天大学 Device and method for measuring cross section area and porosity of ceramic-based fiber bundle composite material
CN111751260B (en) * 2020-06-30 2021-12-21 南京航空航天大学 Device and method for measuring cross section area and porosity of ceramic-based fiber bundle composite material
JP7452893B2 (en) 2021-07-26 2024-03-19 ポール・コーポレーション Method and system for filter device integrity testing
CN114713037A (en) * 2022-06-10 2022-07-08 北京先通国际医药科技股份有限公司 Online filter membrane integrity testing device and method and application thereof

Similar Documents

Publication Publication Date Title
WO2019229872A1 (en) Leak detection device and leak detection method
JP6072288B2 (en) Method and apparatus used for double sterile filtration
RU2113706C1 (en) Method checking integrity of filtration element and filtration unit
JPH09164198A (en) Method to inspect at least one strainer being provided in dialysis solution system of device for external blood processing
JP2001190938A (en) Method of detecting breakage of water treating membrane
JPH0779835B2 (en) Hemodialysis device with sterilizer
KR101826591B1 (en) Liquid recovery filter
JP2007509712A (en) Method and apparatus for improved priming, integrity and head height for medical fluid systems
WO2012124425A1 (en) Hemodialysis device
JP3502912B2 (en) Apparatus and method for detecting leakage of filtration membrane
US11633697B2 (en) Disposable device for filtering a large medium volume
JP3401139B2 (en) Leak test method and test apparatus for hollow fiber membrane module
CN113551845B (en) Inorganic membrane assembly detection device and method
WO1998035749A1 (en) Cross-filter apparatus
JP2007296516A (en) Method and apparatus for detecting leakage in membrane filtration system
US20240042392A1 (en) Integrity test for a double filter capsule
JP5673266B2 (en) Method for inspecting dialyzer in hemodialyzer and hemodialyzer
CN108697990B (en) Method and device for checking the presence of a leak in a dialyzer
JP2007007539A (en) Leak detection method of membrane separator
JP2004237281A (en) Membrane separation apparatus, and state detecction method for the apparatus
JP7244310B2 (en) Hollow fiber membrane module leak test method, pure water production method, and pure water production apparatus
JP2002320829A (en) Method for inspecting perfectibility of membrane module
JP2022156976A (en) Abnormality detection method of filtration membrane
JP2003190747A (en) Leak detection method for hollow-fiber membrane module
JP4267197B2 (en) Method for testing sterilization filter of hemodialysis machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP