WO2019208212A1 - Resist underlayer film formation composition, resist underlayer film and method for forming same, and method for forming pattern - Google Patents

Resist underlayer film formation composition, resist underlayer film and method for forming same, and method for forming pattern Download PDF

Info

Publication number
WO2019208212A1
WO2019208212A1 PCT/JP2019/015534 JP2019015534W WO2019208212A1 WO 2019208212 A1 WO2019208212 A1 WO 2019208212A1 JP 2019015534 W JP2019015534 W JP 2019015534W WO 2019208212 A1 WO2019208212 A1 WO 2019208212A1
Authority
WO
WIPO (PCT)
Prior art keywords
underlayer film
resist underlayer
aromatic ring
composition
forming
Prior art date
Application number
PCT/JP2019/015534
Other languages
French (fr)
Japanese (ja)
Inventor
毅由 安陪
大貴 中津
信也 峯岸
直矢 野坂
慎也 中藤
翼 阿部
崇 片切
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020207030072A priority Critical patent/KR20210005595A/en
Priority to JP2020516195A priority patent/JP7255589B2/en
Publication of WO2019208212A1 publication Critical patent/WO2019208212A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a resist underlayer film forming composition, a resist underlayer film, a forming method thereof, and a pattern forming method.
  • a multilayer resist process is used in which a resist film formed on a substrate via a resist underlayer such as an organic underlayer film or a silicon-containing film is exposed and developed to form a resist pattern.
  • the resist underlayer film is etched using the resist pattern as a mask, and the substrate is further etched using the obtained resist underlayer film pattern as a mask, thereby forming a desired pattern on the substrate and obtaining a patterned substrate.
  • the resist underlayer film and the composition for forming a resist underlayer film of the present invention are the above-described organic underlayer film and a composition for forming the same.
  • the resist underlayer film forming composition used for the formation of the organic underlayer film in the multilayer resist process is required to have good coating properties, and the formed resist underlayer film (organic underlayer film) has heat resistance and etching. It is required to have excellent resistance.
  • the present invention has been made based on the circumstances as described above, and its purpose is to provide a resist underlayer film forming composition capable of forming a resist underlayer film having excellent heat resistance, etching resistance, and film defect suppression properties, and a resist underlayer.
  • An object of the present invention is to provide a method for forming a film and a resist underlayer film and a pattern forming method.
  • the invention made in order to solve the above problems includes an aromatic ring, a compound having a nitrogen atom bonded to a carbon atom of the aromatic ring (hereinafter also referred to as “[A] compound”), a solvent (hereinafter referred to as “[B ] [Solvent] ", and the above-mentioned [A] compound is a composition for forming a resist underlayer film represented by the following formula (1) or the following formula (2).
  • R 1 is a substituted or unsubstituted n-valent hydrocarbon group having 1 to 70 carbon atoms.
  • R 3 and R 4 are each independently a substituted or unsubstituted carbon number.
  • at least one of R 1 , R 3 and R 4 has an aromatic ring, and is a group bonded to the nitrogen atom in the above formula (1) at a carbon atom of the aromatic ring. It is an integer of ⁇ 10.
  • n is 2 or more, the plurality of R 3 are the same or different, and the plurality of R 4 are the same or different.
  • R 2 ′ is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 3 ′ is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. However, at least one of R 2 ′ and R 3 ′ has an aromatic ring and is a group bonded to the nitrogen atom in the above formula (2) at the carbon atom of the aromatic ring.
  • m is an integer of 1 to 10. When m is 2 or more, the plurality of R 2 ′ are the same or different and the plurality of R 3 ′ are the same or different.
  • Another invention made to solve the above problems is a resist underlayer film formed from the resist underlayer film forming composition.
  • Still another invention made in order to solve the above-mentioned problem comprises a step of directly or indirectly applying a resist underlayer film forming composition to a substrate, wherein the resist underlayer film forming composition comprises a compound [A] And [B] a method for forming a resist underlayer film containing a solvent.
  • Still another invention made in order to solve the above-described problems includes a step of directly or indirectly applying a composition for forming a resist underlayer film on a substrate, and a resist underlayer film formed by the above coating step directly or indirectly.
  • a pattern forming method comprising a step of indirectly forming a resist pattern and a step of performing etching using the resist pattern as a mask, wherein the composition for forming a resist underlayer film contains a compound [A] and a solvent [B] It is.
  • the composition for forming a resist underlayer film of the present invention can form a resist underlayer film having excellent heat resistance, etching resistance, and film defect suppression properties.
  • the resist underlayer film of the present invention is excellent in heat resistance, etching resistance and film defect suppression.
  • a resist underlayer film having excellent heat resistance, etching resistance, and film defect suppression properties can be formed.
  • a patterned substrate having a good pattern shape can be obtained by using such an excellent resist underlayer film. Therefore, these can be suitably used for manufacturing semiconductor devices and the like that are expected to be further miniaturized in the future.
  • composition for forming resist underlayer film>
  • the resist underlayer film forming composition contains a compound [A] and a solvent [B].
  • the said composition may contain arbitrary components in the range which does not impair the effect of this invention. Hereinafter, each component will be described.
  • the compound [A] is a compound represented by the following formula (1) or the following formula (2) (hereinafter, the compound represented by the formula (1) is also referred to as “[A1] compound”, and represented by the formula (2)). The compound obtained is also referred to as “[A2] compound”).
  • R 1 is a substituted or unsubstituted n-valent hydrocarbon group having 1 to 70 carbon atoms.
  • R 3 and R 4 are each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom, or R 3 and R 4 are combined with each other and bonded to each other. It is a part of a ring structure having 3 to 20 ring members that is formed with a nitrogen atom. However, at least one of R 1 , R 3 and R 4 has an aromatic ring and is a group bonded to the nitrogen atom in the above formula (1) at the carbon atom of the aromatic ring.
  • n is an integer of 1 to 10. When n is 2 or more, the plurality of R 3 are the same or different, and the plurality of R 4 are the same or different.
  • R 2 ′ is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 3 ′ is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom.
  • at least one of R 2 ′ and R 3 ′ has an aromatic ring and is a group bonded to the nitrogen atom in the above formula (2) at the carbon atom of the aromatic ring.
  • m is an integer of 1 to 10. When m is 2 or more, the plurality of R 2 ′ are the same or different and the plurality of R 3 ′ are the same or different.
  • the composition By containing the [A] compound, the composition can form a resist underlayer film that is excellent in heat resistance, etching resistance, and film defect suppression.
  • the reason why the composition exhibits the above-described effect by having the above-described configuration is not necessarily clear, but can be estimated as follows, for example. That is, the [A] compound has an aromatic ring to which an amino group having a high electron donating ability is bonded. The compound [A] having such a structure is easily oxidized and easily generates radical active species. As a result, the resist underlayer film forming composition can form a resist underlayer film having a denser crosslink. It is considered that a resist underlayer film having excellent heat resistance and etching resistance and excellent film defect suppression properties can be formed.
  • the [A1] compound and the [A2] compound will be described.
  • Examples of the n-valent hydrocarbon group having 1 to 70 carbon atoms represented by R 1 include 1 to 70 carbon atoms such as alkanes such as methane, ethane, propane and butane, and alkenes such as ethene, propene, butene and pentene. Chain hydrocarbons, cyclopropanes such as cyclopropane, cyclobutane, cyclopentane, cycloalkane such as cyclohexane, norbornane and adamantane, cycloalkenes such as cyclopropene, cyclobutene, cyclopentene, cycloalkene such as cyclohexene and norbornene, etc.
  • alkanes such as methane, ethane, propane and butane
  • alkenes such as ethene, propene, butene and pentene.
  • Chain hydrocarbons cyclopropanes such as
  • Groups obtained by removing n hydrogen atoms from hydrocarbons such as aromatic hydrocarbons having 6 to 70 carbon atoms such as hydrogen, benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, dimethylnaphthalene, anthracene, and other arenes. Can be mentioned.
  • Examples of the substituent for the n-valent hydrocarbon group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, alkoxy groups such as methoxy group, ethoxy group and propoxy group, methoxycarbonyl group and ethoxycarbonyl.
  • alkoxycarbonyl groups such as alkoxycarbonyl groups such as methoxycarbonyloxy group and ethoxycarbonyloxy group, acyl groups such as formyl group, acetyl group, propionyl group, butyryl group and benzoyl group, cyano group, nitro group and the like. It is done.
  • R 1 is preferably a group containing an aromatic ring (hereinafter also referred to as “group (1)”).
  • group (1) an aromatic carbocyclic ring is preferable.
  • the aromatic carbocycle include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyrene ring, tetracene ring, pentacene ring, and fluorene ring.
  • the group (1) is preferably a group in which the nitrogen atom in the above formula (1) is bonded to the aromatic carbocycle of R 1 (hereinafter also referred to as “group (1-1)”).
  • Examples of the group (1-1) include a group represented by the following formula (3).
  • Ar 1 is a group obtained by removing (p + a) hydrogen atoms on the aromatic ring from an arene having 6 to 70 carbon atoms.
  • R A is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, or a halogen atom.
  • p is an integer of 0 to 20. When p is 2 or more, a plurality of RA are the same or different.
  • a is an integer of 1 to 10. * Indicates a binding site with the nitrogen atom in the above formula (1).
  • Examples of the C6-C70 arene that gives Ar 1 include benzene, naphthalene, anthracene, phenanthrene, tetracene, pyrene, biphenyl, dimethylbiphenyl, diphenylbiphenyl, fluorene, and the like.
  • Organic group refers to a group containing at least one carbon atom.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by RA include, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms and a divalent hetero atom between carbon-carbon of the hydrocarbon group.
  • divalent heteroatom-containing group examples include —CO—, —CS—, —NH—, —O—, —S—, and combinations thereof.
  • Examples of the monovalent heteroatom-containing group include a hydroxy group, a sulfanyl group, a cyano group, a nitro group, and a halogen atom.
  • p is preferably 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • a is preferably from 1 to 5, and more preferably 2 or 3.
  • Examples of the group (1-1) include groups represented by the following formulas.
  • each R is independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms. * Is synonymous with the above formula (3).
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 3 or R 4 include carbons such as alkanes such as methane, ethane, propane, and butane, alkenes such as ethene, propene, butene, and pentene. 1-20 chain hydrocarbons, cycloalkanes such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, norbornane, adamantane, etc., and cycloalkenes such as cycloalkene such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene, etc.
  • hydrocarbons such as aromatic hydrocarbons having 6 to 20 carbon atoms such as cyclic hydrocarbons, arenes such as benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, dimethylnaphthalene and anthracene. Groups and the like.
  • Examples of the substituent for the monovalent hydrocarbon group for R 3 and R 4 include the same groups as those exemplified as the substituent for the n-valent hydrocarbon group for R 1 .
  • Examples of the substituent when the monovalent hydrocarbon group of R 3 and R 4 is an aromatic hydrocarbon group include alkanes such as methane, ethane, propane, and butane, alkenes such as ethene, propene, butene, and pentene C 1-20 chain hydrocarbons such as cycloalkanes such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, norbornane, adamantane, etc., cycloalkenes such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene, etc.
  • a group obtained by removing one hydrogen atom from a hydrocarbon of 20 alicyclic hydrocarbons is preferred, and a group obtained by removing one hydrogen atom from an alkane such as methane, ethane, propane, or butane is more preferred.
  • Examples of the ring structure having 3 to 20 ring members constituted by R 3 and R 4 include azacycloalkane structures such as an azacyclopentane structure and an azacyclohexane structure.
  • At least one of R 3 and R 4 is a substituted or unsubstituted monovalent hydrocarbon having 1 to 20 carbon atoms, or R 3 and R 4 are bonded to each other by combining R 3 and R 4 with each other. It is preferably a part of a ring structure having 3 to 20 ring members formed together with a nitrogen atom, and R 3 and R 4 are substituted or unsubstituted monovalent hydrocarbon having 1 to 20 carbon atoms, Or, it is more preferable that R 3 and R 4 are part of a ring structure having 3 to 20 ring members formed together with the nitrogen atom to which they are combined with each other.
  • the monovalent hydrocarbon group of R 3 and R 4 is a chain hydrocarbon group or an alicyclic hydrocarbon group, an unsubstituted chain hydrocarbon group or an unsubstituted alicyclic hydrocarbon group It is preferable that
  • At least one of R 1 , R 3 and R 4 has an aromatic ring, and is bonded to the nitrogen atom in the above formula (1) at the carbon atom of the aromatic ring.
  • n 2 is preferable.
  • n 5 is preferable and 3 is more preferable.
  • Examples of the compound [A1] include compounds represented by the following formulas (i1-1) to (i1-10) (hereinafter also referred to as “compounds (i1-1) to (i1-10)”). .
  • Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms represented by R 2 ′ include those exemplified as the n-valent hydrocarbon group having 1 to 70 carbon atoms of R 1 in the above formula (1). , N is 2 and the group has 1 to 20 carbon atoms.
  • Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 3 ′ include, for example, monovalent hydrocarbon having 1 to 20 carbon atoms exemplified as R 3 in the above formula (1). Examples thereof include the same group as the group.
  • Examples of the substituent of the divalent hydrocarbon group of R 2 ′ and the monovalent hydrocarbon group of R 3 ′ include the groups exemplified as the substituent of the n-valent hydrocarbon group of R1 in the above formula (1) The same group etc. are mentioned.
  • R 2 ′ is preferably a substituted or unsubstituted divalent hydrocarbon group, and more preferably a substituted or unsubstituted arenediyl group.
  • R 3 ′ is preferably a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and more preferably an unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • At least one of R 2 ′ and R 3 ′ has an aromatic ring, and is bonded to the nitrogen atom in the above formula (2) at the carbon atom of the aromatic ring.
  • m As the lower limit of m, 2 is preferable and 3 is more preferable. As an upper limit of m, 6 is preferable and 5 is more preferable.
  • Examples of the compound [A2] include compounds represented by the following formulas (i2-1) to (i2-5) (hereinafter also referred to as “compounds (i2-1) to (i2-5)”). .
  • the lower limit of the molecular weight of the [A] compound is preferably 300, more preferably 400, and even more preferably 500.
  • the upper limit of the molecular weight is preferably 4,000, more preferably 2,000, and further preferably 1,500.
  • the compound [A] can be synthesized by a known method.
  • the compound [A1] is, for example, a method in which an aldehyde compound such as 1-pyrenecarbaldehyde and an aromatic amine compound such as N, N-diethylaniline are subjected to dehydration condensation in the presence of an acid such as sulfuric acid, N, N′—
  • An aromatic secondary amine compound such as di-p-tolyl-3,3′-dimethylbenzidine, an aromatic halide such as 4-ethyliodobenzene, copper powder and a base such as potassium carbonate in the presence of 3
  • the [A2] compound is, for example, 2 such as 5,11,17,23-tetra-t-butyl-25,26,27,28-tetramethoxy-2,8,14,20-tetraazacalix [4] arene.
  • the upper limit of the hydrogen atom content constituting the [A] compound is preferably 12.0% by mass, more preferably 11.0% by mass, and even more preferably 10.0% by mass. As a minimum of the content rate of the above-mentioned hydrogen atom, it is 0.1 mass%, for example. [A] By making the hydrogen atom content rate which comprises a compound into the said range, the heat resistance of a resist underlayer film can be improved more. [A] The content of hydrogen atoms constituting the compound is a value calculated from the molecular formula of the [A] compound.
  • the lower limit of the content ratio of the [A] compound is preferably 50% by mass, more preferably 70% by mass, and still more preferably 85% by mass with respect to all components other than the [B] solvent of the composition.
  • the upper limit of the content is, for example, 100% by mass.
  • the lower limit of the content ratio of the [A] compound in the composition is preferably 1% by mass, more preferably 3% by mass, and still more preferably 5% by mass.
  • 50 mass% is preferable, 30 mass% is more preferable, and 15 mass% is further more preferable.
  • a solvent will not be specifically limited if it can melt
  • solvents examples include alcohol solvents, ketone solvents, ether solvents, ester solvents, nitrogen-containing solvents, and the like.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the alcohol solvent examples include monoalcohol solvents such as methanol, ethanol and n-propanol, and polyhydric alcohol solvents such as ethylene glycol and 1,2-propylene glycol.
  • ketone solvents examples include chain ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and cyclic ketone solvents such as cyclohexanone.
  • ether solvents include chain ether solvents such as n-butyl ether, cyclic ether solvents such as tetrahydrofuran, and polyhydric alcohol partial ether solvents such as diethylene glycol monomethyl ether.
  • ester solvents include carbonate solvents such as diethyl carbonate, acetic acid monoester solvents such as methyl acetate and ethyl acetate, lactone solvents such as ⁇ -butyrolactone, acetic acid diethylene glycol monomethyl ether, and acetic acid propylene glycol monomethyl ether.
  • Examples thereof include monohydric alcohol partial ether carboxylate solvents, and lactic acid ester solvents such as methyl lactate and ethyl lactate.
  • nitrogen-containing solvent examples include chain nitrogen-containing solvents such as N, N-dimethylacetamide and cyclic nitrogen-containing solvents such as N-methylpyrrolidone.
  • the solvent preferably contains an ester solvent or a ketone solvent.
  • an ester solvent having a glycol structure is more preferable from the viewpoint of improving coatability.
  • ester solvent having a glycol structure examples include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl ether acetate.
  • propylene glycol monomethyl ether acetate is particularly preferable.
  • the composition may contain an oxidizing agent, a crosslinking agent, an acid generator, a surfactant, an adhesion assistant, and the like as optional components. These optional components can be used alone or in combination of two or more.
  • the oxidizing agent is a component that promotes crosslinking of the [A] compound by an oxidation reaction.
  • the composition contains an oxidizing agent, the crosslinking reaction of the [A] compound is promoted, and the hardness of the resist underlayer film to be formed can be further increased.
  • An oxidizing agent can be used individually by 1 type or in combination of 2 or more types.
  • oxidizing agent examples include oxopiperidinium salt compounds such as 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium trifluoro
  • oxopiperidinium salt compounds such as 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium trifluoro
  • onium salt compounds such as romethanesulfonate.
  • the said composition contains an oxidizing agent
  • an oxidizing agent as an upper limit of content of an oxidizing agent, 30 mass parts is preferable with respect to 100 mass parts of [A] compounds, and 10 mass parts is more preferable.
  • 1 mass part is preferred and 3 mass parts is more preferred.
  • the cross-linking agent is a component that forms a cross-linking bond between components such as the compound [A] in the composition by the action of heat or acid, or that forms a cross-linked structure by itself.
  • the composition contains a crosslinking agent, the hardness of the resist underlayer film to be formed can be increased.
  • a crosslinking agent can be used individually by 1 type or in combination of 2 or more types.
  • crosslinking agent examples include polyfunctional (meth) acrylate compounds, epoxy compounds, hydroxymethyl group-substituted phenol compounds, alkoxyalkyl group-containing phenol compounds, and compounds having an alkoxyalkylated amino group.
  • the said composition contains a crosslinking agent
  • a crosslinking agent as an upper limit of content of a crosslinking agent, 100 mass parts is preferable with respect to 100 mass parts of [A] compounds, and 50 mass parts is more preferable. As a minimum of the above-mentioned content, 5 mass parts is preferred and 10 mass parts is more preferred.
  • the [A] compound, the [B] solvent, and, if necessary, optional components are mixed in a predetermined ratio, and preferably the obtained mixture is filtered through a membrane filter of 0.1 ⁇ m or less.
  • the lower limit of the concentration of the composition is preferably 0.1% by mass, more preferably 1% by mass, further preferably 3% by mass, and particularly preferably 5% by mass.
  • concentration 50 mass% is preferable, 30 mass% is more preferable, 20 mass% is further more preferable, 15 mass% is especially preferable.
  • the resist underlayer film is formed from the composition. Since the resist underlayer film is formed from the composition, it has excellent heat resistance, film defect suppression properties, and etching resistance.
  • the method of forming the resist underlayer film includes a step of coating the composition directly or indirectly on a substrate (hereinafter, also referred to as “coating step”), and a coating film formed by the above coating step.
  • a heating step hereinafter also referred to as “heating step”.
  • the method for forming the resist underlayer film since the above-described composition is used, it is possible to form a resist underlayer film having excellent heat resistance, film defect suppression properties, and etching resistance. Hereinafter, each step will be described.
  • composition is applied directly or indirectly to the substrate.
  • the substrate examples include a silicon wafer and a wafer coated with aluminum.
  • the coating method of the said composition is not specifically limited, For example, it can implement by appropriate methods, such as spin coating, cast coating, and roll coating.
  • This step is an arbitrary step of heating the coating film formed by the coating step.
  • the heating of the coating film is usually performed in the air, but may be performed in a nitrogen atmosphere.
  • heating temperature of the above-mentioned coating film 100 ° C is preferred and 200 ° C is preferred.
  • an upper limit of the heating temperature of the said coating film 600 degreeC is preferable and 500 degreeC is preferable.
  • heating time of the above-mentioned coating film 15 seconds are preferred and 30 seconds are preferred.
  • the upper limit of the heating time of the coating film is preferably 600 seconds, and more preferably 300 seconds.
  • the coating film Before the coating film is heated at a temperature of 200 ° C. or higher and 600 ° C. or lower, it may be preheated at a temperature of 60 ° C. or higher and 150 ° C. or lower. As a minimum of heating time in preliminary heating, 10 seconds are preferred and 30 seconds are more preferred. The upper limit of the heating time is preferably 300 seconds, and more preferably 180 seconds.
  • the lower limit to the average thickness of the resist underlayer film to be formed is preferably 30 nm, more preferably 50 nm, and even more preferably 100 nm.
  • the upper limit of the average thickness is preferably 3,000 nm, more preferably 2,000 nm, and even more preferably 500 nm.
  • the pattern forming method includes a step of applying the composition directly or indirectly to the substrate (coating step) and a step of forming a resist pattern directly or indirectly on the resist underlayer film formed by the coating step. (Hereinafter also referred to as “resist pattern forming step”) and a step of performing etching using the resist pattern as a mask (hereinafter also referred to as “etching step”).
  • the pattern forming method since the resist underlayer film having excellent heat resistance, etching resistance and film defect suppression property is used, a patterned substrate having a good pattern shape can be obtained.
  • the pattern forming method may include a step of forming a silicon-containing film directly or indirectly on the resist underlayer film (hereinafter also referred to as “silicon-containing film forming step”) as necessary.
  • silicon-containing film forming step a step of forming a silicon-containing film directly or indirectly on the resist underlayer film
  • the pattern forming method usually includes a step of heating the coating film formed by the coating step (hereinafter also referred to as “heating step”). Thereby, a resist underlayer film is formed. This step is the same as the coating step in the resist underlayer film forming method described above.
  • the coating film formed by the coating step may be heated. This step is the same as the heating step in the method for forming the resist underlayer film described above.
  • Silicon-containing film formation process In this step, a silicon-containing film is formed directly or indirectly on the resist underlayer film formed by the coating step.
  • the silicon-containing film can be formed by coating a composition for forming a silicon-containing film, chemical vapor deposition (CVD), atomic layer deposition (ALD), or the like.
  • a method for forming a silicon-containing film by coating a silicon-containing film-forming composition include, for example, a coating film formed by directly or indirectly applying a silicon-containing film-forming composition to the resist underlayer film. Can be cured by exposure and / or heating.
  • As a commercial item of the said composition for silicon-containing film formation "NFC SOG01", “NFC SOG04", “NFC SOG080" (above, JSR Corporation) etc. can be used, for example.
  • a silicon oxide film, a silicon nitride film, a silicon oxynitride film, and an amorphous silicon film can be formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
  • Examples of the radiation used for the exposure include electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, X-rays and ⁇ rays, particle beams such as electron beams, molecular beams and ion beams.
  • the temperature at the time of heating a coating film 90 ° C is preferred, 150 ° C is more preferred, and 200 ° C is still more preferred.
  • 550 degreeC is preferable, 450 degreeC is more preferable, and 300 degreeC is further more preferable.
  • time to heat a coating film 10 seconds are preferred and 30 seconds are more preferred.
  • the upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
  • average thickness of a silicon content film formed 1 nm is preferred, 10 nm is more preferred, and 20 nm is still more preferred.
  • the upper limit of the average thickness is preferably 20,000 nm, more preferably 1,000 nm, and even more preferably 100 nm.
  • resist pattern formation process In this step, a resist pattern is formed directly or indirectly on the resist underlayer film.
  • Examples of the method for performing this step include a method using a resist composition.
  • the solvent in the coating film is volatilized by pre-baking. Then, a resist film is formed.
  • the resist composition examples include a positive or negative chemically amplified resist composition containing a radiation-sensitive acid generator, a positive resist composition containing an alkali-soluble resin and a quinonediazide-based photosensitizer, and an alkali-soluble composition.
  • examples thereof include a negative resist composition containing a resin and a crosslinking agent.
  • the lower limit of the concentration of the resist composition is preferably 0.3% by mass, and more preferably 1% by mass.
  • concentration 50 mass% is preferable and 30 mass% is more preferable.
  • the resist composition is generally filtered through a filter having a pore size of 0.2 ⁇ m or less, for example, and used for forming a resist film. In this step, a commercially available resist composition can be used as it is.
  • the coating method of the resist composition is not particularly limited, and examples thereof include a spin coating method.
  • the pre-baking temperature is appropriately adjusted according to the type of resist composition to be used, but the lower limit of the temperature is preferably 30 ° C., more preferably 50 ° C. As an upper limit of the said temperature, 200 degreeC is preferable and 150 degreeC is more preferable.
  • the lower limit of the pre-baking time is preferably 10 seconds, and more preferably 30 seconds.
  • the upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
  • the formed resist film is exposed by selective radiation irradiation.
  • electromagnetic waves such as visible light, ultraviolet light, far ultraviolet light, X-rays, ⁇ -rays, electron beams, molecular beams, It is appropriately selected from particle beams such as ion beams.
  • far ultraviolet rays are preferable, and KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), F 2 excimer laser light (wavelength 157 nm), Kr 2 excimer laser light (wavelength 147 nm), ArKr excimer laser light. (Wavelength 134 nm) or extreme ultraviolet light (wavelength 13.5 nm, etc., EUV) is more preferable, and KrF excimer laser light, ArF excimer laser light, or EUV is more preferable.
  • post-baking can be performed to improve resolution, pattern profile, developability, and the like.
  • the post-baking temperature is appropriately adjusted according to the type of resist composition to be used, but the lower limit of the temperature is preferably 50 ° C., more preferably 70 ° C. As an upper limit of the said temperature, 200 degreeC is preferable and 150 degreeC is more preferable.
  • the lower limit of the post-bake time is preferably 10 seconds, and more preferably 30 seconds.
  • the upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
  • the exposed resist film is developed with a developer to form a resist pattern.
  • This development may be alkali development or organic solvent development.
  • the developer in the case of alkali development, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyl Diethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5 -Basic aqueous solutions such as diazabicyclo [4.3.0] -5-nonene.
  • TMAH tetramethylammonium hydroxide
  • a water-soluble organic solvent such as alcohols such as methanol and ethanol, a surfactant, and the like
  • examples of the developer include various organic solvents exemplified as the [B] solvent of the above composition.
  • the resist pattern is formed by washing and drying.
  • a method for performing the resist pattern forming step in addition to the method using the resist composition described above, a method using a nanoimprint method, a method using a self-organizing composition, and the like can also be used.
  • etching is performed using the resist pattern as a mask.
  • the number of times of etching may be one time or a plurality of times, that is, the etching may be sequentially performed using a pattern obtained by etching as a mask, but a plurality of times is preferable from the viewpoint of obtaining a pattern having a better shape.
  • the etching is sequentially performed in the order of the silicon-containing film, the lower layer film, and the substrate.
  • the etching method include dry etching and wet etching. Among these, dry etching is preferable from the viewpoint of improving the shape of the substrate pattern. For this dry etching, for example, gas plasma such as oxygen plasma is used. After the etching, a patterned substrate having a predetermined pattern is obtained.
  • Dry etching can be performed using, for example, a known dry etching apparatus.
  • the etching gas used for dry etching can be appropriately selected depending on the mask pattern, the elemental composition of the film to be etched, and the like.
  • an inert gas such as Ar is used. These gases can also be mixed and used.
  • a fluorine-based gas is usually used.
  • the mask pattern of the resist underlayer film is used in a process of forming a via hole in a silicon oxide film (interlayer insulating film) on the substrate by fluorine-based gas etching, and therefore is required to have excellent fluorine-based gas etching resistance.
  • the average thickness of the resist underlayer film was measured using a spectroscopic ellipsometer (“M2000D” manufactured by JA WOOLLAM).
  • a resin represented by the following formula (a-1) was synthesized by the following method. Under a nitrogen atmosphere, 250.0 g of 4-cresol, 125.0 g of 37% by mass formalin and 2 g of oxalic anhydride were added to the reaction vessel, reacted at 100 ° C. for 3 hours, and at 180 ° C. for 1 hour, and then under reduced pressure. Unreacted monomer was removed to obtain a resin represented by the following formula (a-1).
  • composition for forming resist underlayer film ⁇ Preparation of composition for forming resist underlayer film>
  • [A] compound, [B] solvent, [C] oxidizing agent and [D] cross-linking agent used for the preparation of the resist underlayer film forming composition are shown below.
  • C-1 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium trifluoromethanesulfonate (compound represented by the following formula (C-1))
  • C-2 Bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate (compound represented by the following formula (C-2))
  • Example 1-1 [A] 10 parts by mass of (A-1) as a compound was dissolved in 90 parts by mass of (B-1) as a [B] solvent. The obtained solution was filtered through a membrane filter having a pore diameter of 0.1 ⁇ m to prepare a resist underlayer film forming composition (J-1).
  • Example 1-10 and Comparative Example 1-1 Resist underlayer film forming compositions (J-2) to (J-10) and (CJ) were prepared in the same manner as in Example 1-1 except that the components of the types and contents shown in Table 1 were used. -1) was prepared. “-” In Table 1 indicates that the corresponding component was not used.
  • the prepared resist underlayer film forming composition is applied onto a silicon wafer having a diameter of 8 inches by spin coating, and baked at 250 ° C. for 60 seconds in an air atmosphere to form a resist underlayer film.
  • a substrate with a resist underlayer film was obtained.
  • the resist underlayer film of the substrate with the resist underlayer film is scraped to recover the powder, and the resist underlayer film powder is used for measurement by a TG-DTA apparatus ("TG-DTA2000SR" from NETZSCH). The mass before heating was measured. Next, using the above TG-DTA apparatus, the sample was heated to 400 ° C.
  • M L ⁇ (m1 ⁇ m2) / m1 ⁇ ⁇ 100
  • M L is a mass reduction rate (%)
  • m1 is the pre-heating the mass (mg)
  • m @ 2 is the mass (mg) at 400 ° C..
  • the heat resistance is better as the mass reduction rate of the powder as the sample is smaller, because there are fewer sublimates and decomposition products of the resist underlayer film that are generated when the resist underlayer film is heated.
  • the heat resistance is “A” (very good) when the mass reduction rate is less than 5%, “B” (good) when it is 5% or more and less than 10%, and “C” (when it is 10% or more). Bad).
  • a ratio with respect to Comparative Example 2-1 was calculated based on the etching rate of Comparative Example 2-1, and used as a measure of etching resistance.
  • the etching resistance was evaluated as “A” (good) when the ratio was 0.98 or more and less than 1.00, and “B” (bad) when the ratio was 1.00 or more. “-” In the column of etching resistance in Table 2 indicates that it is a criterion for evaluation.
  • a silicon-containing film-forming composition (“NFC SOG080” from JSR Co., Ltd.) was applied on the obtained substrate with a resist underlayer film by a spin coating method, and then at 200 ° C. for 60 seconds in an air atmosphere. Heating (firing) was performed to form a silicon-containing film having an average thickness of 50 nm to obtain a substrate with a silicon-containing film. The obtained substrate with a silicon-containing film was further heated (baked) at 450 ° C. for 60 seconds, and then the surface of the silicon-containing film was observed with an optical microscope. Film defect suppression was evaluated as “A” (good) when no cracking or peeling of the silicon-containing film was observed, and “B” (bad) when cracking or peeling of the silicon-containing film was observed. .
  • the resist underlayer film formed from the resist underlayer film forming composition of the example is excellent in heat resistance, etching resistance, and film defect suppression.
  • the resist underlayer film formed from the composition for forming a resist underlayer film of the comparative example has poor heat resistance and film defect suppression properties, and has poor etching resistance.
  • a silicon-containing film forming composition (“JSR Co., Ltd.” NFC SOG080 ”) was applied by a spin coating method, and then heated (fired) at 200 ° C for 60 seconds in an air atmosphere to form a silicon-containing film having an average thickness of 50 nm, thereby obtaining a substrate with a silicon-containing film.
  • a resist composition for ArF (“AR1682J” from JSR Co., Ltd.) is applied on the silicon-containing film by a spin coating method, and heated (baked) at 130 ° C. for 60 seconds in an air atmosphere.
  • a resist film having an average thickness of 200 nm was formed. Thereafter, the resist film was passed through a one-to-one line-and-space mask pattern with a target size of 100 nm using a Nikon ArF excimer laser exposure apparatus (lens numerical aperture 0.78, exposure wavelength 193 nm). Then, after changing the exposure amount, the exposure was performed (heating) at 130 ° C. for 60 seconds in an air atmosphere, and using an aqueous 2.38 mass% tetramethylammonium hydroxide (TMAH) solution at 25 ° C. for 1 minute. Developed, washed with water and dried.
  • TMAH tetramethylammonium hydroxide
  • the composition for forming a resist underlayer film of the present invention can form a resist underlayer film having excellent heat resistance, etching resistance, and film defect suppression properties.
  • the resist underlayer film of the present invention is excellent in heat resistance, etching resistance and film defect suppression.
  • a resist underlayer film having excellent heat resistance, etching resistance, and film defect suppression properties can be formed.
  • a patterned substrate having a good pattern shape can be obtained by using such an excellent resist underlayer film. Therefore, these can be suitably used for manufacturing semiconductor devices and the like that are expected to be further miniaturized in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The purpose of the present invention is to provide a resist underlayer film formation composition with which it is possible to form a resist underlayer film having excellent heat resistance, etching resistance, and film defect inhibition. The present invention is a resist underlayer film formation composition containing: a compound having an aromatic ring, and a nitrogen atom that is bonded with a carbon atom of the aromatic ring; and a solvent, wherein the compound is represented by formula (1) or (2). In formula (1), R1 is a substituted or unsubstituted C1-70 n-valent hydrocarbon group. R3 and R4 are each independently a substituted or unsubstituted C1-20 monovalent hydrocarbon group or a hydrogen atom, or R3 and R4 are part of a 3- to 20-member ring structure constituted by joining the same to each other and bonding these with a nitrogen atom. At least one of R1, R3, and R4 is a group having an aromatic ring, the group being bonded to the nitrogen atom in formula (1) by a carbon atom of the aromatic ring.

Description

レジスト下層膜形成用組成物、レジスト下層膜及びその形成方法並びにパターン形成方法Resist underlayer film forming composition, resist underlayer film, method for forming the same, and pattern forming method
 本発明は、レジスト下層膜形成用組成物、レジスト下層膜及びその形成方法並びにパターン形成方法に関する。 The present invention relates to a resist underlayer film forming composition, a resist underlayer film, a forming method thereof, and a pattern forming method.
 半導体デバイスの製造にあたっては、例えば、基板上に有機下層膜、ケイ素含有膜等のレジスト下層を介して積層されたレジスト膜を露光及び現像してレジストパターンを形成する多層レジストプロセスが用いられている。このプロセスでは、このレジストパターンをマスクとしてレジスト下層膜をエッチングし、得られたレジスト下層膜パターンをマスクとしてさらに基板をエッチングすることで、基板に所望のパターンを形成し、パターニングされた基板を得ることができる(特開2004-177668号公報参照)。 In the manufacture of semiconductor devices, for example, a multilayer resist process is used in which a resist film formed on a substrate via a resist underlayer such as an organic underlayer film or a silicon-containing film is exposed and developed to form a resist pattern. . In this process, the resist underlayer film is etched using the resist pattern as a mask, and the substrate is further etched using the obtained resist underlayer film pattern as a mask, thereby forming a desired pattern on the substrate and obtaining a patterned substrate. (See JP 2004-177668 A).
特開2004-177668号公報JP 2004-177668 A
 本発明のレジスト下層膜及びレジスト下層膜形成用組成物は、上述の有機下層膜及びこれを形成する組成物である。多層レジストプロセスにおける有機下層膜の形成に用いられるレジスト下層膜形成用組成物は塗工性が良好であることが求められると共に、形成されるレジスト下層膜(有機下層膜)は、耐熱性及びエッチング耐性に優れることが要求される。また、多層レジストプロセスにおいて、ケイ素含有膜の表面にひび割れ、剥がれ等の欠陥の発生の抑制に優れること、すなわち、ケイ素含有膜の膜欠陥抑制性に優れることも必要である。 The resist underlayer film and the composition for forming a resist underlayer film of the present invention are the above-described organic underlayer film and a composition for forming the same. The resist underlayer film forming composition used for the formation of the organic underlayer film in the multilayer resist process is required to have good coating properties, and the formed resist underlayer film (organic underlayer film) has heat resistance and etching. It is required to have excellent resistance. In addition, in the multilayer resist process, it is also necessary to be excellent in suppressing the occurrence of defects such as cracks and peeling on the surface of the silicon-containing film, that is, excellent in the film defect suppression of the silicon-containing film.
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、耐熱性、エッチング耐性及び膜欠陥抑制性に優れるレジスト下層膜を形成できるレジスト下層膜形成用組成物、レジスト下層膜、レジスト下層膜の形成方法並びにパターン形成方法を提供することにある。 The present invention has been made based on the circumstances as described above, and its purpose is to provide a resist underlayer film forming composition capable of forming a resist underlayer film having excellent heat resistance, etching resistance, and film defect suppression properties, and a resist underlayer. An object of the present invention is to provide a method for forming a film and a resist underlayer film and a pattern forming method.
 上記課題を解決するためになされた発明は、芳香環及びこの芳香環の炭素原子に結合する窒素原子を有する化合物(以下、「[A]化合物」ともいう)と、溶媒(以下、「[B]溶媒」ともいう)とを含有し、上記[A]化合物が、下記式(1)又は下記式(2)で表されるレジスト下層膜形成用組成物である。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Rは、置換又は非置換の炭素数1~70のn価の炭化水素基である。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~20の1価の炭化水素基若しくは水素原子であるか、又はR及びRが互いに合わせられこれらが結合する窒素原子と共に構成される環員数3~20の環構造の一部である。但し、R、R及びRの少なくとも1つは、芳香環を有し、この芳香環の炭素原子で上記式(1)中の窒素原子に結合する基である。nは、1~10の整数である。nが2以上の場合、複数のRは同一又は異なり、複数のRは同一又は異なる。
 式(2)中、R2’は、置換若しくは非置換の炭素数1~20の2価の炭化水素基である。R3’は、置換若しくは非置換の炭素数1~20の1価の炭化水素基又は水素原子である。但し、R2’及びR3’の少なくとも1つは、芳香環を有し、この芳香環の炭素原子で上記式(2)中の窒素原子に結合する基である。mは、1~10の整数である。mが2以上の場合、複数のR2’は同一又は異なり、複数のR3’は同一又は異なる。)
The invention made in order to solve the above problems includes an aromatic ring, a compound having a nitrogen atom bonded to a carbon atom of the aromatic ring (hereinafter also referred to as “[A] compound”), a solvent (hereinafter referred to as “[B ] [Solvent] ", and the above-mentioned [A] compound is a composition for forming a resist underlayer film represented by the following formula (1) or the following formula (2).
Figure JPOXMLDOC01-appb-C000004
(In Formula (1), R 1 is a substituted or unsubstituted n-valent hydrocarbon group having 1 to 70 carbon atoms. R 3 and R 4 are each independently a substituted or unsubstituted carbon number. A monovalent hydrocarbon group of 1 to 20 or a hydrogen atom, or a part of a ring structure of 3 to 20 ring members composed of R 3 and R 4 together with the nitrogen atom to which they are bonded However, at least one of R 1 , R 3 and R 4 has an aromatic ring, and is a group bonded to the nitrogen atom in the above formula (1) at a carbon atom of the aromatic ring. It is an integer of ~ 10. When n is 2 or more, the plurality of R 3 are the same or different, and the plurality of R 4 are the same or different.
In the formula (2), R 2 ′ is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. R 3 ′ is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. However, at least one of R 2 ′ and R 3 ′ has an aromatic ring and is a group bonded to the nitrogen atom in the above formula (2) at the carbon atom of the aromatic ring. m is an integer of 1 to 10. When m is 2 or more, the plurality of R 2 ′ are the same or different and the plurality of R 3 ′ are the same or different. )
 上記課題を解決するためになされた別の発明は、当該レジスト下層膜形成用組成物から形成されるレジスト下層膜である。 Another invention made to solve the above problems is a resist underlayer film formed from the resist underlayer film forming composition.
 上記課題を解決するためになされたさらに別の発明は、基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程を備え、上記レジスト下層膜形成用組成物が、[A]化合物及び[B]溶媒を含有するレジスト下層膜の形成方法である。 Still another invention made in order to solve the above-mentioned problem comprises a step of directly or indirectly applying a resist underlayer film forming composition to a substrate, wherein the resist underlayer film forming composition comprises a compound [A] And [B] a method for forming a resist underlayer film containing a solvent.
 上記課題を解決するためになされたさらに別の発明は、基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程と、上記塗工工程により形成されたレジスト下層膜に対し直接又は間接にレジストパターンを形成する工程と、上記レジストパターンをマスクとしたエッチングを行う工程とを備え、上記レジスト下層膜形成用組成物が、[A]化合物及び[B]溶媒を含有するパターン形成方法である。 Still another invention made in order to solve the above-described problems includes a step of directly or indirectly applying a composition for forming a resist underlayer film on a substrate, and a resist underlayer film formed by the above coating step directly or indirectly. A pattern forming method comprising a step of indirectly forming a resist pattern and a step of performing etching using the resist pattern as a mask, wherein the composition for forming a resist underlayer film contains a compound [A] and a solvent [B] It is.
 本発明のレジスト下層膜形成用組成物は、耐熱性、エッチング耐性及び膜欠陥抑制性に優れるレジスト下層膜を形成することができる。本発明のレジスト下層膜は、耐熱性、エッチング耐性及び膜欠陥抑制性に優れている。本発明のレジスト下層膜の形成方法によれば、耐熱性、エッチング耐性及び膜欠陥抑制性に優れるレジスト下層膜を形成することができる。本発明のパターン形成方法によれば、このような優れたレジスト下層膜を用いることにより、良好なパターン形状を有するパターニングされた基板を得ることができる。従って、これらは、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。 The composition for forming a resist underlayer film of the present invention can form a resist underlayer film having excellent heat resistance, etching resistance, and film defect suppression properties. The resist underlayer film of the present invention is excellent in heat resistance, etching resistance and film defect suppression. According to the method for forming a resist underlayer film of the present invention, a resist underlayer film having excellent heat resistance, etching resistance, and film defect suppression properties can be formed. According to the pattern forming method of the present invention, a patterned substrate having a good pattern shape can be obtained by using such an excellent resist underlayer film. Therefore, these can be suitably used for manufacturing semiconductor devices and the like that are expected to be further miniaturized in the future.
<レジスト下層膜形成用組成物>
 当該レジスト下層膜形成用組成物(以下、単に「組成物」ともいう)は、[A]化合物と[B]溶媒とを含有する。当該組成物は、本発明の効果を損なわない範囲において、任意成分を含有していてもよい。以下、各成分について説明する。
<Composition for forming resist underlayer film>
The resist underlayer film forming composition (hereinafter also simply referred to as “composition”) contains a compound [A] and a solvent [B]. The said composition may contain arbitrary components in the range which does not impair the effect of this invention. Hereinafter, each component will be described.
<[A]化合物>
 [A]化合物は、下記式(1)又は下記式(2)で表される化合物(以下、式(1)で表される化合物を「[A1]化合物」ともいい、式(2)で表される化合物を「[A2]化合物」ともいう)である。
<[A] Compound>
The compound [A] is a compound represented by the following formula (1) or the following formula (2) (hereinafter, the compound represented by the formula (1) is also referred to as “[A1] compound”, and represented by the formula (2)). The compound obtained is also referred to as “[A2] compound”).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(1)中、Rは、置換又は非置換の炭素数1~70のn価の炭化水素基である。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~20の1価の炭化水素基若しくは水素原子であるか、又はR及びRが互いに合わせられこれらが結合する窒素原子と共に構成される環員数3~20の環構造の一部である。但し、R、R及びRの少なくとも1つは、芳香環を有し、この芳香環の炭素原子で上記式(1)中の窒素原子に結合する基である。nは、1~10の整数である。nが2以上の場合、複数のRは同一又は異なり、複数のRは同一又は異なる。 In the above formula (1), R 1 is a substituted or unsubstituted n-valent hydrocarbon group having 1 to 70 carbon atoms. R 3 and R 4 are each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom, or R 3 and R 4 are combined with each other and bonded to each other. It is a part of a ring structure having 3 to 20 ring members that is formed with a nitrogen atom. However, at least one of R 1 , R 3 and R 4 has an aromatic ring and is a group bonded to the nitrogen atom in the above formula (1) at the carbon atom of the aromatic ring. n is an integer of 1 to 10. When n is 2 or more, the plurality of R 3 are the same or different, and the plurality of R 4 are the same or different.
 上記式(2)中、R2’は、置換若しくは非置換の炭素数1~20の2価の炭化水素基である。R3’は、置換若しくは非置換の炭素数1~20の1価の炭化水素基又は水素原子である。但し、R2’及びR3’の少なくとも1つは、芳香環を有し、この芳香環の炭素原子で上記式(2)中の窒素原子に結合する基である。mは、1~10の整数である。mが2以上の場合、複数のR2’は同一又は異なり、複数のR3’は同一又は異なる。 In the above formula (2), R 2 ′ is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. R 3 ′ is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. However, at least one of R 2 ′ and R 3 ′ has an aromatic ring and is a group bonded to the nitrogen atom in the above formula (2) at the carbon atom of the aromatic ring. m is an integer of 1 to 10. When m is 2 or more, the plurality of R 2 ′ are the same or different and the plurality of R 3 ′ are the same or different.
 当該組成物は、[A]化合物を含有することで、耐熱性、エッチング耐性及び膜欠陥抑制性に優れるレジスト下層膜を形成することができる。当該組成物が、上記構成を備えることで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[A]化合物は、電子供与能が高いアミノ基が結合している芳香環を有する。このような構造を有する[A]化合物は酸化され易く、ラジカル活性種を発生し易く、その結果、当該レジスト下層膜形成用組成物は、より密な架橋を有するレジスト下層膜を形成することができ、耐熱性及びエッチング耐性に優れ、かつ膜欠陥抑制性に優れるレジスト下層膜を形成することができると考えられる。
 以下、[A1]化合物及び[A2]化合物について説明する。
By containing the [A] compound, the composition can form a resist underlayer film that is excellent in heat resistance, etching resistance, and film defect suppression. The reason why the composition exhibits the above-described effect by having the above-described configuration is not necessarily clear, but can be estimated as follows, for example. That is, the [A] compound has an aromatic ring to which an amino group having a high electron donating ability is bonded. The compound [A] having such a structure is easily oxidized and easily generates radical active species. As a result, the resist underlayer film forming composition can form a resist underlayer film having a denser crosslink. It is considered that a resist underlayer film having excellent heat resistance and etching resistance and excellent film defect suppression properties can be formed.
Hereinafter, the [A1] compound and the [A2] compound will be described.
[[A1]化合物]
 [A1]化合物は、上記式(1)で表される化合物である。
[[A1] Compound]
[A1] The compound is a compound represented by the above formula (1).
 Rで表される炭素数1~70のn価の炭化水素基としては、例えばメタン、エタン、プロパン、ブタン等のアルカン、エテン、プロペン、ブテン、ペンテン等のアルケンなどの炭素数1~70の鎖状炭化水素、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、ノルボルナン、アダマンタン等のシクロアルカン、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、ノルボルネン等のシクロアルケンなどの炭素数3~70の脂環式炭化水素、ベンゼン、トルエン、キシレン、メシチレン、ナフタレン、メチルナフタレン、ジメチルナフタレン、アントラセン等のアレーンなどの炭素数6~70の芳香族炭化水素などの炭化水素からn個の水素原子を除いた基などが挙げられる。 Examples of the n-valent hydrocarbon group having 1 to 70 carbon atoms represented by R 1 include 1 to 70 carbon atoms such as alkanes such as methane, ethane, propane and butane, and alkenes such as ethene, propene, butene and pentene. Chain hydrocarbons, cyclopropanes such as cyclopropane, cyclobutane, cyclopentane, cycloalkane such as cyclohexane, norbornane and adamantane, cycloalkenes such as cyclopropene, cyclobutene, cyclopentene, cycloalkene such as cyclohexene and norbornene, etc. Groups obtained by removing n hydrogen atoms from hydrocarbons such as aromatic hydrocarbons having 6 to 70 carbon atoms such as hydrogen, benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, dimethylnaphthalene, anthracene, and other arenes. Can be mentioned.
 上記n価の炭化水素基の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基等のアルコキシカルボニルオキシ基、ホルミル基、アセチル基、プロピオニル基、ブチリル基、ベンゾイル基等のアシル基、シアノ基、ニトロ基などが挙げられる。 Examples of the substituent for the n-valent hydrocarbon group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, alkoxy groups such as methoxy group, ethoxy group and propoxy group, methoxycarbonyl group and ethoxycarbonyl. Examples include alkoxycarbonyl groups such as alkoxycarbonyl groups such as methoxycarbonyloxy group and ethoxycarbonyloxy group, acyl groups such as formyl group, acetyl group, propionyl group, butyryl group and benzoyl group, cyano group, nitro group and the like. It is done.
 Rとしては、芳香環を含む基(以下、「基(1)」ともいう)が好ましい。芳香環としては、芳香族炭素環が好ましい。芳香族炭素環としては、例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、テトラセン環、ペンタセン環、フルオレン環等が挙げられる。 R 1 is preferably a group containing an aromatic ring (hereinafter also referred to as “group (1)”). As the aromatic ring, an aromatic carbocyclic ring is preferable. Examples of the aromatic carbocycle include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyrene ring, tetracene ring, pentacene ring, and fluorene ring.
 基(1)としては、上記式(1)における窒素原子がRの芳香族炭素環に結合する基(以下、「基(1-1)」ともいう)が好ましい。 The group (1) is preferably a group in which the nitrogen atom in the above formula (1) is bonded to the aromatic carbocycle of R 1 (hereinafter also referred to as “group (1-1)”).
 基(1-1)としては、例えば下記式(3)で表される基等が挙げられる。 Examples of the group (1-1) include a group represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(3)中、Arは、炭素数6~70のアレーンから芳香環上の(p+a)個の水素原子を除いた基である。Rは、炭素数1~20の1価の有機基、ヒドロキシ基又はハロゲン原子である。pは、0~20の整数である。pが2以上の場合、複数のRは同一又は異なる。aは、1~10の整数である。*は、上記式(1)における窒素原子との結合部位を示す。 In the above formula (3), Ar 1 is a group obtained by removing (p + a) hydrogen atoms on the aromatic ring from an arene having 6 to 70 carbon atoms. R A is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, or a halogen atom. p is an integer of 0 to 20. When p is 2 or more, a plurality of RA are the same or different. a is an integer of 1 to 10. * Indicates a binding site with the nitrogen atom in the above formula (1).
 Arを与える炭素数6~70のアレーンとしては、例えばベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、ピレン、ビフェニル、ジメチルビフェニル、ジフェニルビフェニル、フルオレン等が挙げられる。 Examples of the C6-C70 arene that gives Ar 1 include benzene, naphthalene, anthracene, phenanthrene, tetracene, pyrene, biphenyl, dimethylbiphenyl, diphenylbiphenyl, fluorene, and the like.
 「有機基」とは、少なくとも1個の炭素原子を含む基をいう。Rで表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を有する基、上記炭化水素基及び上記2価のヘテロ原子含有基を有する基が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等が挙げられる。 “Organic group” refers to a group containing at least one carbon atom. Examples of the monovalent organic group having 1 to 20 carbon atoms represented by RA include, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms and a divalent hetero atom between carbon-carbon of the hydrocarbon group. A group having a group, a group obtained by substituting a part or all of the hydrogen atoms of the hydrocarbon group and the group having a divalent heteroatom-containing group with a monovalent heteroatom-containing group, and the like.
 2価のヘテロ原子含有基としては、例えば-CO-、-CS-、-NH-、-O-、-S-、これらを組み合わせた基等が挙げられる。 Examples of the divalent heteroatom-containing group include —CO—, —CS—, —NH—, —O—, —S—, and combinations thereof.
 1価のヘテロ原子含有基としては、例えばヒドロキシ基、スルファニル基、シアノ基、ニトロ基、ハロゲン原子等が挙げられる。 Examples of the monovalent heteroatom-containing group include a hydroxy group, a sulfanyl group, a cyano group, a nitro group, and a halogen atom.
 pとしては、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。
 aとしては、1~5が好ましく、2又は3がより好ましい。
p is preferably 0 to 2, more preferably 0 or 1, and still more preferably 0.
a is preferably from 1 to 5, and more preferably 2 or 3.
 基(1-1)としては、例えば下記式で表される基等が挙げられる。 Examples of the group (1-1) include groups represented by the following formulas.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式中、Rは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基である。*は、上記式(3)と同義である。 In the above formula, each R is independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms. * Is synonymous with the above formula (3).
 R又はRで表される炭素数1~20の1価の炭化水素基としては、例えばメタン、エタン、プロパン、ブタン等のアルカン、エテン、プロペン、ブテン、ペンテン等のアルケンなどの炭素数1~20の鎖状炭化水素、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、ノルボルナン、アダマンタン等のシクロアルカン、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、ノルボルネン等のシクロアルケンなどの炭素数3~20の脂環式炭化水素、ベンゼン、トルエン、キシレン、メシチレン、ナフタレン、メチルナフタレン、ジメチルナフタレン、アントラセン等のアレーンなどの炭素数6~20の芳香族炭化水素などの炭化水素から1個の水素原子を除いた基などが挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 3 or R 4 include carbons such as alkanes such as methane, ethane, propane, and butane, alkenes such as ethene, propene, butene, and pentene. 1-20 chain hydrocarbons, cycloalkanes such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, norbornane, adamantane, etc., and cycloalkenes such as cycloalkene such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene, etc. One hydrogen atom was removed from hydrocarbons such as aromatic hydrocarbons having 6 to 20 carbon atoms such as cyclic hydrocarbons, arenes such as benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, dimethylnaphthalene and anthracene. Groups and the like.
 R及びRの1価の炭化水素基の置換基としては、例えば上記Rのn価の炭化水素基の置換基として例示した基と同様の基等が挙げられる。R及びRの1価の炭化水素基が、芳香族炭化水素基である場合の置換基としては、メタン、エタン、プロパン、ブタン等のアルカン、エテン、プロペン、ブテン、ペンテン等のアルケンなどの炭素数1~20の鎖状炭化水素、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、ノルボルナン、アダマンタン等のシクロアルカン、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、ノルボルネン等のシクロアルケンなどの炭素数3~20の脂環式炭化水素の炭化水素から1個の水素原子を除いた基が好ましく、メタン、エタン、プロパン、ブタン等のアルカンから1個の水素原子を除いた基がより好ましい。 Examples of the substituent for the monovalent hydrocarbon group for R 3 and R 4 include the same groups as those exemplified as the substituent for the n-valent hydrocarbon group for R 1 . Examples of the substituent when the monovalent hydrocarbon group of R 3 and R 4 is an aromatic hydrocarbon group include alkanes such as methane, ethane, propane, and butane, alkenes such as ethene, propene, butene, and pentene C 1-20 chain hydrocarbons such as cycloalkanes such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, norbornane, adamantane, etc., cycloalkenes such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene, etc. A group obtained by removing one hydrogen atom from a hydrocarbon of 20 alicyclic hydrocarbons is preferred, and a group obtained by removing one hydrogen atom from an alkane such as methane, ethane, propane, or butane is more preferred.
 R及びRが構成する環員数3~20の環構造としては、例えばアザシクロペンタン構造、アザシクロヘキサン構造等のアザシクロアルカン構造などが挙げられる。 Examples of the ring structure having 3 to 20 ring members constituted by R 3 and R 4 include azacycloalkane structures such as an azacyclopentane structure and an azacyclohexane structure.
 R及びRの少なくとも一方が置換若しくは非置換の炭素数1~20の1価の炭化水素であるか、又はR及びRが、R及びRが互いに合わせられこれらが結合する窒素原子と共に構成される環員数3~20の環構造の一部であることが好ましく、R及びRが、置換若しくは非置換の炭素数1~20の1価の炭化水素であるか、又はR及びRが互いに合わせられこれらが結合する窒素原子と共に構成される環員数3~20の環構造の一部であることがより好ましい。 At least one of R 3 and R 4 is a substituted or unsubstituted monovalent hydrocarbon having 1 to 20 carbon atoms, or R 3 and R 4 are bonded to each other by combining R 3 and R 4 with each other. It is preferably a part of a ring structure having 3 to 20 ring members formed together with a nitrogen atom, and R 3 and R 4 are substituted or unsubstituted monovalent hydrocarbon having 1 to 20 carbon atoms, Or, it is more preferable that R 3 and R 4 are part of a ring structure having 3 to 20 ring members formed together with the nitrogen atom to which they are combined with each other.
 R及びRの1価の炭化水素基が、鎖状炭化水素基又は脂環式炭化水素基である場合には、非置換の鎖状炭化水素基又は非置換の脂環式炭化水素基であることが好ましい。 When the monovalent hydrocarbon group of R 3 and R 4 is a chain hydrocarbon group or an alicyclic hydrocarbon group, an unsubstituted chain hydrocarbon group or an unsubstituted alicyclic hydrocarbon group It is preferable that
 R、R及びRの少なくとも1つは、芳香環を有し、この芳香環の炭素原子で上記式(1)中の窒素原子に結合する。 At least one of R 1 , R 3 and R 4 has an aromatic ring, and is bonded to the nitrogen atom in the above formula (1) at the carbon atom of the aromatic ring.
 nの下限としては、2が好ましい。nの上限としては、5が好ましく、3がより好ましい。 As the lower limit of n, 2 is preferable. As an upper limit of n, 5 is preferable and 3 is more preferable.
 [A1]化合物としては、例えば下記式(i1-1)~(i1-10)で表される化合物(以下、「化合物(i1-1)~(i1-10)」ともいう)等が挙げられる。 Examples of the compound [A1] include compounds represented by the following formulas (i1-1) to (i1-10) (hereinafter also referred to as “compounds (i1-1) to (i1-10)”). .
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
   
 これらの中で、化合物(i1-1)~(i1-4)が好ましい。 Of these, compounds (i1-1) to (i1-4) are preferred.
[[A2]化合物]
 [A2]化合物は、上記式(2)で表される化合物である。
[[A2] Compound]
[A2] The compound is a compound represented by the above formula (2).
 R2’で表される炭素数1~20の2価の炭化水素基としては、例えば上記式(1)のRの炭素数1~70のn価の炭化水素基として例示した基のうち、nが2かつ炭素数が1~20の基等が挙げられる。 Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms represented by R 2 ′ include those exemplified as the n-valent hydrocarbon group having 1 to 70 carbon atoms of R 1 in the above formula (1). , N is 2 and the group has 1 to 20 carbon atoms.
 R3’で表される置換又は非置換の炭素数1~20の1価の炭化水素基としては、例えば上記式(1)におけるRとして例示した炭素数1~20の1価の炭化水素基と同様の基等が挙げられる。 Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 3 ′ include, for example, monovalent hydrocarbon having 1 to 20 carbon atoms exemplified as R 3 in the above formula (1). Examples thereof include the same group as the group.
 R2’の2価の炭化水素基並びにR3’の1価の炭化水素基の置換基としては、例えば上記式(1)におけるR1のn価の炭化水素基の置換基として例示した基と同様の基等が挙げられる。 Examples of the substituent of the divalent hydrocarbon group of R 2 ′ and the monovalent hydrocarbon group of R 3 ′ include the groups exemplified as the substituent of the n-valent hydrocarbon group of R1 in the above formula (1) The same group etc. are mentioned.
 R2’としては、置換又は非置換の2価の炭化水素基が好ましく、置換又は非置換のアレーンジイル基がより好ましい。
 R3’としては、置換又は非置換の炭素数1~20の1価の炭化水素基が好ましく、炭素数1~20の非置換の1価の炭化水素基がより好ましい。
R 2 ′ is preferably a substituted or unsubstituted divalent hydrocarbon group, and more preferably a substituted or unsubstituted arenediyl group.
R 3 ′ is preferably a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and more preferably an unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.
 R2’及びR3’の少なくとも1つは、芳香環を有し、この芳香環の炭素原子で上記式(2)中の窒素原子に結合する。 At least one of R 2 ′ and R 3 ′ has an aromatic ring, and is bonded to the nitrogen atom in the above formula (2) at the carbon atom of the aromatic ring.
 mの下限としては、2が好ましく、3がより好ましい。mの上限としては、6が好ましく、5がより好ましい。 As the lower limit of m, 2 is preferable and 3 is more preferable. As an upper limit of m, 6 is preferable and 5 is more preferable.
 [A2]化合物としては、例えば下記式(i2-1)~(i2-5)で表される化合物(以下、「化合物(i2-1)~(i2-5)」ともいう)等が挙げられる。 Examples of the compound [A2] include compounds represented by the following formulas (i2-1) to (i2-5) (hereinafter also referred to as “compounds (i2-1) to (i2-5)”). .
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 [A]化合物の分子量の下限としては、300が好ましく、400がより好ましく、500がさらに好ましい。上記分子量の上限としては、4,000が好ましく、2,000がより好ましく、1,500がさらに好ましい。[A]化合物の分子量を上記範囲とすることで、レジスト下層膜の膜欠陥抑制性をより向上させることができる。[A]化合物は1種単独で又は2種以上を組み合わせて用いることができる。[A]化合物が2種以上である場合、[A]化合物の分子量は、数平均の分子量をいう。 The lower limit of the molecular weight of the [A] compound is preferably 300, more preferably 400, and even more preferably 500. The upper limit of the molecular weight is preferably 4,000, more preferably 2,000, and further preferably 1,500. By setting the molecular weight of the compound [A] within the above range, the film defect suppression property of the resist underlayer film can be further improved. [A] A compound can be used individually by 1 type or in combination of 2 or more types. [A] When there are two or more compounds, the molecular weight of the [A] compound refers to the number average molecular weight.
[[A]化合物の合成方法]
 [A]化合物は、公知の方法により合成することができる。[A1]化合物は、例えば1-ピレンカルバルデヒド等のアルデヒド化合物と、N,N-ジエチルアニリン等の芳香族アミン化合物とを、硫酸等の酸存在下、脱水縮合させる方法、N,N’-ジ-p-トリル-3,3’-ジメチルベンジジン等の芳香族2級アミン化合物と、4-エチルヨードベンゼン等の芳香族ハロゲン化物とを、銅粉と、炭酸カリウム等の塩基存在下、3級アミノ基化させる方法、1,3,5-トリ(フルオレン-2-イル)ベンゼン等のフルオレン化合物と、N,N-ジメチルアミノベンズアルデヒド等のアルデヒド化合物とを、テトラブチルアンモニウムブロミド等のアンモニウム塩と、水酸化ナトリウム等の塩基存在下、脱水縮合させる方法などにより合成することができる。[A2]化合物は、例えば5,11,17,23-テトラ-t-ブチル-25,26,27,28-テトラメトキシ-2,8,14,20-テトラアザカリックス[4]アレーン等の2級アミノ基含有アザカリックスアレーン化合物と、ヨウ化ブチル等の有機ハロゲン化物とを、2,6-t-ブチル-4-メチルピリジン等の塩基存在下、3級アミノ基化させる方法などにより合成することができる。
[[A] Compound Synthesis Method]
The compound [A] can be synthesized by a known method. The compound [A1] is, for example, a method in which an aldehyde compound such as 1-pyrenecarbaldehyde and an aromatic amine compound such as N, N-diethylaniline are subjected to dehydration condensation in the presence of an acid such as sulfuric acid, N, N′— An aromatic secondary amine compound such as di-p-tolyl-3,3′-dimethylbenzidine, an aromatic halide such as 4-ethyliodobenzene, copper powder and a base such as potassium carbonate in the presence of 3 A method of forming a secondary amino group, a fluorene compound such as 1,3,5-tri (fluoren-2-yl) benzene and an aldehyde compound such as N, N-dimethylaminobenzaldehyde, an ammonium salt such as tetrabutylammonium bromide And a method of dehydration condensation in the presence of a base such as sodium hydroxide. The [A2] compound is, for example, 2 such as 5,11,17,23-tetra-t-butyl-25,26,27,28-tetramethoxy-2,8,14,20-tetraazacalix [4] arene. Synthesize a tertiary amino group-containing azacalixarene compound with an organic halide such as butyl iodide in the presence of a base such as 2,6-t-butyl-4-methylpyridine. be able to.
 [A]化合物を構成する水素原子含有率の上限としては、12.0質量%が好ましく、11.0質量%がより好ましく、10.0質量%がさらに好ましい。上記水素原子の含有率の下限としては、例えば0.1質量%である。[A]化合物を構成する水素原子含有率を上記範囲とすることで、レジスト下層膜の耐熱性をより向上させることができる。[A]化合物を構成する水素原子含有率は、[A]化合物の分子式から算出した値である。 The upper limit of the hydrogen atom content constituting the [A] compound is preferably 12.0% by mass, more preferably 11.0% by mass, and even more preferably 10.0% by mass. As a minimum of the content rate of the above-mentioned hydrogen atom, it is 0.1 mass%, for example. [A] By making the hydrogen atom content rate which comprises a compound into the said range, the heat resistance of a resist underlayer film can be improved more. [A] The content of hydrogen atoms constituting the compound is a value calculated from the molecular formula of the [A] compound.
 [A]化合物の含有割合の下限としては、当該組成物の[B]溶媒以外の全成分に対して、50質量%が好ましく、70質量%がより好ましく、85質量%がさらに好ましい。上記含有割合の上限は、例えば100質量%である。 The lower limit of the content ratio of the [A] compound is preferably 50% by mass, more preferably 70% by mass, and still more preferably 85% by mass with respect to all components other than the [B] solvent of the composition. The upper limit of the content is, for example, 100% by mass.
 当該組成物における[A]化合物の含有割合の下限としては、1質量%が好ましく、3質量%がより好ましく、5質量%がさらに好ましい。上記含有割合の上限としては、50質量%が好ましく、30質量%がより好ましく、15質量%がさらに好ましい。 The lower limit of the content ratio of the [A] compound in the composition is preferably 1% by mass, more preferably 3% by mass, and still more preferably 5% by mass. As an upper limit of the said content rate, 50 mass% is preferable, 30 mass% is more preferable, and 15 mass% is further more preferable.
<[B]溶媒>
 [B]溶媒は、[A]化合物及び必要に応じて含有する任意成分を溶解又は分散することができれば特に限定されない。
<[B] Solvent>
[B] A solvent will not be specifically limited if it can melt | dissolve or disperse | distribute the [A] compound and the arbitrary component contained as needed.
 [B]溶媒としては、例えばアルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、含窒素系溶媒等が挙げられる。[B]溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。 [B] Examples of the solvent include alcohol solvents, ketone solvents, ether solvents, ester solvents, nitrogen-containing solvents, and the like. [B] A solvent can be used individually by 1 type or in combination of 2 or more types.
 アルコール系溶媒としては、例えばメタノール、エタノール、n-プロパノール等のモノアルコール系溶媒、エチレングリコール、1,2-プロピレングリコール等の多価アルコール系溶媒などが挙げられる。 Examples of the alcohol solvent include monoalcohol solvents such as methanol, ethanol and n-propanol, and polyhydric alcohol solvents such as ethylene glycol and 1,2-propylene glycol.
 ケトン系溶媒としては、例えばメチルエチルケトン、メチルイソブチルケトン等の鎖状ケトン系溶媒、シクロヘキサノン等の環状ケトン系溶媒などが挙げられる。 Examples of ketone solvents include chain ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and cyclic ketone solvents such as cyclohexanone.
 エーテル系溶媒としては、例えばn-ブチルエーテル等の鎖状エーテル系溶媒、テトラヒドロフラン等の環状エーテル系溶媒、ジエチレングリコールモノメチルエーテル等の多価アルコール部分エーテル系溶媒などが挙げられる。 Examples of ether solvents include chain ether solvents such as n-butyl ether, cyclic ether solvents such as tetrahydrofuran, and polyhydric alcohol partial ether solvents such as diethylene glycol monomethyl ether.
 エステル系溶媒としては、例えばジエチルカーボネート等のカーボネート系溶媒、酢酸メチル、酢酸エチル等の酢酸モノエステル系溶媒、γ-ブチロラクトン等のラクトン系溶媒、酢酸ジエチレングリコールモノメチルエーテル、酢酸プロピレングリコールモノメチルエーテル等の多価アルコール部分エーテルカルボキシレート系溶媒、乳酸メチル、乳酸エチル等の乳酸エステル系溶媒などが挙げられる。 Examples of ester solvents include carbonate solvents such as diethyl carbonate, acetic acid monoester solvents such as methyl acetate and ethyl acetate, lactone solvents such as γ-butyrolactone, acetic acid diethylene glycol monomethyl ether, and acetic acid propylene glycol monomethyl ether. Examples thereof include monohydric alcohol partial ether carboxylate solvents, and lactic acid ester solvents such as methyl lactate and ethyl lactate.
 含窒素系溶媒としては、例えばN,N-ジメチルアセトアミド等の鎖状含窒素系溶媒、N-メチルピロリドン等の環状含窒素系溶媒などが挙げられる。 Examples of the nitrogen-containing solvent include chain nitrogen-containing solvents such as N, N-dimethylacetamide and cyclic nitrogen-containing solvents such as N-methylpyrrolidone.
 [B]溶媒としては、エステル系溶媒又はケトン系溶媒を含有することが好ましい。エステル系溶媒としては、塗工性をより良好にする観点から、グリコール構造を有するエステル系溶媒がより好ましい。 [B] The solvent preferably contains an ester solvent or a ketone solvent. As the ester solvent, an ester solvent having a glycol structure is more preferable from the viewpoint of improving coatability.
 グリコール構造を有するエステル系溶媒としては、例えば酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル等が挙げられる。これらの中でも、特に、酢酸プロピレングリコールモノメチルエーテルが好ましい。 Examples of the ester solvent having a glycol structure include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl ether acetate. Among these, propylene glycol monomethyl ether acetate is particularly preferable.
<任意成分>
 当該組成物は、任意成分として、酸化剤、架橋剤、酸発生剤、界面活性剤、密着助剤等を含有してもよい。これらの任意成分は、1種単独で又は2種以上を組み合わせて用いることができる。
<Optional component>
The composition may contain an oxidizing agent, a crosslinking agent, an acid generator, a surfactant, an adhesion assistant, and the like as optional components. These optional components can be used alone or in combination of two or more.
[酸化剤]
 酸化剤は、酸化反応により[A]化合物の架橋を促進する成分である。当該組成物が酸化剤を含有することで[A]化合物の架橋反応が促進され、形成されるレジスト下層膜の硬度をより高めることができる。酸化剤は、1種単独で又は2種以上を組み合わせて用いることができる。
[Oxidant]
The oxidizing agent is a component that promotes crosslinking of the [A] compound by an oxidation reaction. When the composition contains an oxidizing agent, the crosslinking reaction of the [A] compound is promoted, and the hardness of the resist underlayer film to be formed can be further increased. An oxidizing agent can be used individually by 1 type or in combination of 2 or more types.
 酸化剤としては、例えば4-アセトアミド-2,2,6,6-テトラメチル-1-オキソピペリジニウムトリフルオロメタンスルホネート等のオキソピペリジニウム塩化合物、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等のオニウム塩化合物などが挙げられる。 Examples of the oxidizing agent include oxopiperidinium salt compounds such as 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium trifluoro Examples include onium salt compounds such as romethanesulfonate.
 当該組成物が酸化剤を含有する場合、酸化剤の含有量の上限としては、[A]化合物100質量部に対して、30質量部が好ましく、10質量部がより好ましい。上記含有量の下限としては、1質量部が好ましく、3質量部がより好ましい。 When the said composition contains an oxidizing agent, as an upper limit of content of an oxidizing agent, 30 mass parts is preferable with respect to 100 mass parts of [A] compounds, and 10 mass parts is more preferable. As a minimum of the above-mentioned content, 1 mass part is preferred and 3 mass parts is more preferred.
[架橋剤]
 架橋剤は、熱や酸の作用により、当該組成物中の[A]化合物等の成分同士の架橋結合を形成するか、又は自らが架橋構造を形成する成分である。当該組成物が架橋剤を含有する場合、形成されるレジスト下層膜の硬度を高めることができる。架橋剤は、1種単独で又は2種以上を組み合わせて用いることができる。
[Crosslinking agent]
The cross-linking agent is a component that forms a cross-linking bond between components such as the compound [A] in the composition by the action of heat or acid, or that forms a cross-linked structure by itself. When the composition contains a crosslinking agent, the hardness of the resist underlayer film to be formed can be increased. A crosslinking agent can be used individually by 1 type or in combination of 2 or more types.
 架橋剤としては、例えば多官能(メタ)アクリレート化合物、エポキシ化合物、ヒドロキシメチル基置換フェノール化合物、アルコキシアルキル基含有フェノール化合物、アルコキシアルキル化されたアミノ基を有する化合物等が挙げられる。 Examples of the crosslinking agent include polyfunctional (meth) acrylate compounds, epoxy compounds, hydroxymethyl group-substituted phenol compounds, alkoxyalkyl group-containing phenol compounds, and compounds having an alkoxyalkylated amino group.
 当該組成物が架橋剤を含有する場合、架橋剤の含有量の上限としては、[A]化合物100質量部に対して、100質量部が好ましく、50質量部がより好ましい。上記含有量の下限としては、5質量部が好ましく、10質量部がより好ましい。 When the said composition contains a crosslinking agent, as an upper limit of content of a crosslinking agent, 100 mass parts is preferable with respect to 100 mass parts of [A] compounds, and 50 mass parts is more preferable. As a minimum of the above-mentioned content, 5 mass parts is preferred and 10 mass parts is more preferred.
[組成物の調製方法]
 当該組成物は、[A]化合物、[B]溶媒、及び必要に応じて、任意成分を所定の割合で混合し、好ましくは得られた混合物を0.1μm以下のメンブランフィルター等で濾過することにより調製できる。当該組成物の濃度の下限としては、0.1質量%が好ましく、1質量%がより好ましく、3質量%がさらに好ましく、5質量%が特に好ましい。上記濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、20質量%がさらに好ましく、15質量%が特に好ましい。
[Method for Preparing Composition]
In the composition, the [A] compound, the [B] solvent, and, if necessary, optional components are mixed in a predetermined ratio, and preferably the obtained mixture is filtered through a membrane filter of 0.1 μm or less. Can be prepared. The lower limit of the concentration of the composition is preferably 0.1% by mass, more preferably 1% by mass, further preferably 3% by mass, and particularly preferably 5% by mass. As an upper limit of the said density | concentration, 50 mass% is preferable, 30 mass% is more preferable, 20 mass% is further more preferable, 15 mass% is especially preferable.
<レジスト下層膜>
 当該レジスト下層膜は、当該組成物から形成される。当該レジスト下層膜は、上述の当該組成物から形成されるので、耐熱性、膜欠陥抑制性及びエッチング耐性に優れている。
<Resist underlayer film>
The resist underlayer film is formed from the composition. Since the resist underlayer film is formed from the composition, it has excellent heat resistance, film defect suppression properties, and etching resistance.
<レジスト下層膜の形成方法>
 当該レジスト下層膜の形成方法は、基板に直接又は間接に当該組成物を塗工する工程(以下、「塗工工程」ともいう)と、通常、上記塗工工程により形成された塗工膜を加熱する工程(以下、「加熱工程」ともいう)とを備える。
<Method for forming resist underlayer film>
The method of forming the resist underlayer film includes a step of coating the composition directly or indirectly on a substrate (hereinafter, also referred to as “coating step”), and a coating film formed by the above coating step. A heating step (hereinafter also referred to as “heating step”).
 当該レジスト下層膜の形成方法によれば、上述の当該組成物を用いるので、上述の耐熱性、膜欠陥抑制性及びエッチング耐性に優れるレジスト下層膜を形成することができる。以下、各工程について説明する。 According to the method for forming the resist underlayer film, since the above-described composition is used, it is possible to form a resist underlayer film having excellent heat resistance, film defect suppression properties, and etching resistance. Hereinafter, each step will be described.
[塗工工程]
 本工程では、基板に直接又は間接に当該組成物を塗工する。
[Coating process]
In this step, the composition is applied directly or indirectly to the substrate.
 基板としては、例えばシリコンウエハ、アルミニウムで被覆したウエハ等が挙げられる。また、当該組成物の塗工方法は特に限定されず、例えば回転塗工、流延塗工、ロール塗工等の適宜の方法で実施することができる。 Examples of the substrate include a silicon wafer and a wafer coated with aluminum. Moreover, the coating method of the said composition is not specifically limited, For example, it can implement by appropriate methods, such as spin coating, cast coating, and roll coating.
[加熱工程]
 本工程は、上記塗工工程により形成された塗工膜を加熱する任意の工程である。
[Heating process]
This step is an arbitrary step of heating the coating film formed by the coating step.
 上記塗工膜の加熱は、通常、大気下で行われるが、窒素雰囲気下で行ってもよい。上記塗工膜の加熱温度の下限としては、100℃が好ましく、200℃が好ましい。上記塗工膜の加熱温度の上限としては、600℃が好ましく、500℃が好ましい。上記塗工膜の加熱時間の下限としては、15秒が好ましく、30秒が好ましい。上記塗工膜の加熱時間の上限としては、600秒が好ましく、300秒がより好ましい。 The heating of the coating film is usually performed in the air, but may be performed in a nitrogen atmosphere. As a minimum of heating temperature of the above-mentioned coating film, 100 ° C is preferred and 200 ° C is preferred. As an upper limit of the heating temperature of the said coating film, 600 degreeC is preferable and 500 degreeC is preferable. As a minimum of the heating time of the above-mentioned coating film, 15 seconds are preferred and 30 seconds are preferred. The upper limit of the heating time of the coating film is preferably 600 seconds, and more preferably 300 seconds.
 上記塗工膜を200℃以上600℃以下の温度で加熱する前に、60℃以上150℃以下の温度で予備加熱してもよい。予備加熱における加熱時間の下限としては、10秒が好ましく、30秒がより好ましい。上記加熱時間の上限としては、300秒が好ましく、180秒がより好ましい。 Before the coating film is heated at a temperature of 200 ° C. or higher and 600 ° C. or lower, it may be preheated at a temperature of 60 ° C. or higher and 150 ° C. or lower. As a minimum of heating time in preliminary heating, 10 seconds are preferred and 30 seconds are more preferred. The upper limit of the heating time is preferably 300 seconds, and more preferably 180 seconds.
 形成されるレジスト下層膜の平均厚みとの下限としては、30nmが好ましく、50nmがより好ましく、100nmがさらに好ましい。上記平均厚みの上限としては、3,000nmが好ましく、2,000nmがより好ましく、500nmがさらに好ましい。 The lower limit to the average thickness of the resist underlayer film to be formed is preferably 30 nm, more preferably 50 nm, and even more preferably 100 nm. The upper limit of the average thickness is preferably 3,000 nm, more preferably 2,000 nm, and even more preferably 500 nm.
<パターン形成方法>
 当該パターン形成方法は、基板に直接又は間接に当該組成物を塗工する工程(塗工工程)と、上記塗工工程により形成されたレジスト下層膜に対し直接又は間接にレジストパターンを形成する工程(以下、「レジストパターン形成工程」ともいう)と、上記レジストパターンをマスクとしたエッチングを行う工程(以下、「エッチング工程」ともいう)とを備える。
<Pattern formation method>
The pattern forming method includes a step of applying the composition directly or indirectly to the substrate (coating step) and a step of forming a resist pattern directly or indirectly on the resist underlayer film formed by the coating step. (Hereinafter also referred to as “resist pattern forming step”) and a step of performing etching using the resist pattern as a mask (hereinafter also referred to as “etching step”).
 当該パターン形成方法によれば、上述の耐熱性、エッチング耐性及び膜欠陥抑制性に優れたレジスト下層膜を用いるので、良好なパターン形状を有するパターニングされた基板を得ることができる。 According to the pattern forming method, since the resist underlayer film having excellent heat resistance, etching resistance and film defect suppression property is used, a patterned substrate having a good pattern shape can be obtained.
 当該パターン形成方法は、必要に応じて、上記レジスト下層膜に対し直接又は間接にケイ素含有膜を形成する工程(以下、「ケイ素含有膜形成工程」ともいう)を備えていてもよい。以下、各工程について説明する。 The pattern forming method may include a step of forming a silicon-containing film directly or indirectly on the resist underlayer film (hereinafter also referred to as “silicon-containing film forming step”) as necessary. Hereinafter, each step will be described.
[塗工工程]
 本工程では、基板に直接又は間接に当該組成物を塗工する。当該パターン形成方法は、通常、上記塗工工程により形成された塗工膜を加熱する工程(以下、「加熱工程」ともいう)を備える。これによりレジスト下層膜が形成される。本工程は、上述の当該レジスト下層膜の形成方法における塗工工程と同様である。
[Coating process]
In this step, the composition is applied directly or indirectly to the substrate. The pattern forming method usually includes a step of heating the coating film formed by the coating step (hereinafter also referred to as “heating step”). Thereby, a resist underlayer film is formed. This step is the same as the coating step in the resist underlayer film forming method described above.
[加熱工程]
 本工程では、上記塗工工程により形成された塗工膜を加熱してもよい。本工程は、上述の当該レジスト下層膜の形成方法における加熱工程と同様である。
[Heating process]
In this step, the coating film formed by the coating step may be heated. This step is the same as the heating step in the method for forming the resist underlayer film described above.
[ケイ素含有膜形成工程]
 本工程では、上記塗工工程により形成されたレジスト下層膜に対し直接又は間接にケイ素含有膜を形成する。
[Silicon-containing film formation process]
In this step, a silicon-containing film is formed directly or indirectly on the resist underlayer film formed by the coating step.
 ケイ素含有膜は、ケイ素含有膜形成用組成物の塗工、化学蒸着(CVD)法、原子層堆積(ALD)等により形成することができる。ケイ素含有膜をケイ素含有膜形成用組成物の塗工により形成する方法としては、例えばケイ素含有膜形成用組成物を当該レジスト下層膜に対し直接又は間接に塗工して形成された塗工膜を、露光及び/又は加熱することにより硬化等させる方法が挙げられる。上記ケイ素含有膜形成用組成物の市販品としては、例えば「NFC SOG01」、「NFC SOG04」、「NFC SOG080」(以上、JSR(株))等を用いることができる。化学蒸着(CVD)法、原子層堆積(ALD)により、酸化ケイ素膜、窒化ケイ素膜、酸化窒化ケイ素膜、アモルファスケイ素膜を形成することができる。 The silicon-containing film can be formed by coating a composition for forming a silicon-containing film, chemical vapor deposition (CVD), atomic layer deposition (ALD), or the like. Examples of a method for forming a silicon-containing film by coating a silicon-containing film-forming composition include, for example, a coating film formed by directly or indirectly applying a silicon-containing film-forming composition to the resist underlayer film. Can be cured by exposure and / or heating. As a commercial item of the said composition for silicon-containing film formation, "NFC SOG01", "NFC SOG04", "NFC SOG080" (above, JSR Corporation) etc. can be used, for example. A silicon oxide film, a silicon nitride film, a silicon oxynitride film, and an amorphous silicon film can be formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
 上記露光に用いられる放射線としては、例えば可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。 Examples of the radiation used for the exposure include electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, X-rays and γ rays, particle beams such as electron beams, molecular beams and ion beams.
 塗工膜を加熱する際の温度の下限としては、90℃が好ましく、150℃がより好ましく、200℃がさらに好ましい。上記温度の上限としては、550℃が好ましく、450℃がより好ましく、300℃がさらに好ましい。塗工膜を加熱する時間の下限としては、10秒が好ましく、30秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。形成されるケイ素含有膜の平均厚みの下限としては、1nmが好ましく、10nmがより好ましく、20nmがさらに好ましい。上記平均厚みの上限としては、20,000nmが好ましく、1,000nmがより好ましく、100nmがさらに好ましい。 As a minimum of the temperature at the time of heating a coating film, 90 ° C is preferred, 150 ° C is more preferred, and 200 ° C is still more preferred. As an upper limit of the said temperature, 550 degreeC is preferable, 450 degreeC is more preferable, and 300 degreeC is further more preferable. As a minimum of time to heat a coating film, 10 seconds are preferred and 30 seconds are more preferred. The upper limit of the time is preferably 600 seconds, and more preferably 300 seconds. As a minimum of average thickness of a silicon content film formed, 1 nm is preferred, 10 nm is more preferred, and 20 nm is still more preferred. The upper limit of the average thickness is preferably 20,000 nm, more preferably 1,000 nm, and even more preferably 100 nm.
[レジストパターン形成工程]
 本工程では上記レジスト下層膜に対し直接又は間接にレジストパターンを形成する。この工程を行う方法としては、例えばレジスト組成物を用いる方法等が挙げられる。
[Resist pattern formation process]
In this step, a resist pattern is formed directly or indirectly on the resist underlayer film. Examples of the method for performing this step include a method using a resist composition.
 上記レジスト組成物を用いる方法では、具体的には、得られるレジスト膜が所定の厚みとなるようにレジスト組成物を塗工した後、プレベークすることによって塗工膜中の溶媒を揮発させることにより、レジスト膜を形成する。 In the method using the resist composition, specifically, after the resist composition is applied so that the obtained resist film has a predetermined thickness, the solvent in the coating film is volatilized by pre-baking. Then, a resist film is formed.
 上記レジスト組成物としては、例えば感放射線性酸発生剤を含有するポジ型又はネガ型の化学増幅型レジスト組成物、アルカリ可溶性樹脂とキノンジアジド系感光剤とを含有するポジ型レジスト組成物、アルカリ可溶性樹脂と架橋剤とを含有するネガ型レジスト組成物等が挙げられる。 Examples of the resist composition include a positive or negative chemically amplified resist composition containing a radiation-sensitive acid generator, a positive resist composition containing an alkali-soluble resin and a quinonediazide-based photosensitizer, and an alkali-soluble composition. Examples thereof include a negative resist composition containing a resin and a crosslinking agent.
 上記レジスト組成物の濃度の下限としては、0.3質量%が好ましく、1質量%がより好ましい。上記濃度の上限としては、50質量%が好ましく、30質量%がより好ましい。また、上記レジスト組成物は、一般に、例えば孔径0.2μm以下のフィルターで濾過して、レジスト膜の形成に供される。なお、本工程では、市販のレジスト組成物をそのまま使用することもできる。 The lower limit of the concentration of the resist composition is preferably 0.3% by mass, and more preferably 1% by mass. As an upper limit of the said density | concentration, 50 mass% is preferable and 30 mass% is more preferable. In addition, the resist composition is generally filtered through a filter having a pore size of 0.2 μm or less, for example, and used for forming a resist film. In this step, a commercially available resist composition can be used as it is.
 レジスト組成物の塗工方法としては特に限定されず、例えば回転塗工法等が挙げられる。また、プレベークの温度としては、使用されるレジスト組成物の種類等に応じて適宜調整されるが、上記温度の下限としては、30℃が好ましく、50℃がより好ましい。上記温度の上限としては、200℃が好ましく、150℃がより好ましい。プレベークの時間の下限としては、10秒が好ましく、30秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。 The coating method of the resist composition is not particularly limited, and examples thereof include a spin coating method. The pre-baking temperature is appropriately adjusted according to the type of resist composition to be used, but the lower limit of the temperature is preferably 30 ° C., more preferably 50 ° C. As an upper limit of the said temperature, 200 degreeC is preferable and 150 degreeC is more preferable. The lower limit of the pre-baking time is preferably 10 seconds, and more preferably 30 seconds. The upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
 次に、選択的な放射線照射により上記形成されたレジスト膜を露光する。露光に用いられる放射線としては、レジスト組成物に使用される感放射線性酸発生剤の種類に応じて、可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線から適切に選択される。これらの中で、遠紫外線が好ましく、KrFエキシマレーザー光(248nm)、ArFエキシマレーザー光(193nm)、Fエキシマレーザー光(波長157nm)、Krエキシマレーザー光(波長147nm)、ArKrエキシマレーザー光(波長134nm)又は極端紫外線(波長13.5nm等、EUV)がより好ましく、KrFエキシマレーザー光、ArFエキシマレーザー光又はEUVがさらに好ましい。 Next, the formed resist film is exposed by selective radiation irradiation. As radiation used for exposure, depending on the type of radiation-sensitive acid generator used in the resist composition, electromagnetic waves such as visible light, ultraviolet light, far ultraviolet light, X-rays, γ-rays, electron beams, molecular beams, It is appropriately selected from particle beams such as ion beams. Among these, far ultraviolet rays are preferable, and KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), F 2 excimer laser light (wavelength 157 nm), Kr 2 excimer laser light (wavelength 147 nm), ArKr excimer laser light. (Wavelength 134 nm) or extreme ultraviolet light (wavelength 13.5 nm, etc., EUV) is more preferable, and KrF excimer laser light, ArF excimer laser light, or EUV is more preferable.
 上記露光後、解像度、パターンプロファイル、現像性等を向上させるためポストベークを行うことができる。このポストベークの温度としては、使用されるレジスト組成物の種類等に応じて適宜調整されるが、上記温度の下限としては、50℃が好ましく、70℃がより好ましい。上記温度の上限としては、200℃が好ましく、150℃がより好ましい。ポストベークの時間の下限としては、10秒が好ましく、30秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。 After the exposure, post-baking can be performed to improve resolution, pattern profile, developability, and the like. The post-baking temperature is appropriately adjusted according to the type of resist composition to be used, but the lower limit of the temperature is preferably 50 ° C., more preferably 70 ° C. As an upper limit of the said temperature, 200 degreeC is preferable and 150 degreeC is more preferable. The lower limit of the post-bake time is preferably 10 seconds, and more preferably 30 seconds. The upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
 次に、上記露光されたレジスト膜を現像液で現像してレジストパターンを形成する。この現像は、アルカリ現像であっても有機溶媒現像であってもよい。現像液としては、アルカリ現像の場合、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等の塩基性水溶液が挙げられる。これらの塩基性水溶液には、例えばメタノール、エタノール等のアルコール類などの水溶性有機溶媒、界面活性剤等を適量添加することもできる。また、有機溶媒現像の場合、現像液としては、例えば上述の組成物の[B]溶媒として例示した種々の有機溶媒等が挙げられる。 Next, the exposed resist film is developed with a developer to form a resist pattern. This development may be alkali development or organic solvent development. As the developer, in the case of alkali development, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyl Diethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5 -Basic aqueous solutions such as diazabicyclo [4.3.0] -5-nonene. An appropriate amount of a water-soluble organic solvent such as alcohols such as methanol and ethanol, a surfactant, and the like can be added to these basic aqueous solutions. In the case of organic solvent development, examples of the developer include various organic solvents exemplified as the [B] solvent of the above composition.
 上記現像液での現像後、洗浄し、乾燥することによって、所定のレジストパターンが形成される。 After development with the developer, the resist pattern is formed by washing and drying.
 レジストパターン形成工程を行う方法として、上述のレジスト組成物を用いる方法以外にも、ナノインプリント法を用いる方法、自己組織化組成物を用いる方法等も用いることができる。 As a method for performing the resist pattern forming step, in addition to the method using the resist composition described above, a method using a nanoimprint method, a method using a self-organizing composition, and the like can also be used.
[エッチング工程]
 本工程では、上記レジストパターンをマスクとしたエッチングを行う。エッチングの回数としては1回でも、複数回、すなわちエッチングにより得られるパターンをマスクとして順次エッチングを行ってもよいが、より良好な形状のパターンを得る観点からは、複数回が好ましい。複数回のエッチングを行う場合、ケイ素含有膜、下層膜、基板の順に順次エッチングを行う。エッチングの方法としては、ドライエッチング、ウエットエッチング等が挙げられる。これらの中で、基板のパターンの形状をより良好なものとする観点から、ドライエッチングが好ましい。このドライエッチングには、例えば酸素プラズマ等のガスプラズマ等が用いられる。上記エッチングの後、所定のパターンを有するパターニングされた基板が得られる。
[Etching process]
In this step, etching is performed using the resist pattern as a mask. The number of times of etching may be one time or a plurality of times, that is, the etching may be sequentially performed using a pattern obtained by etching as a mask, but a plurality of times is preferable from the viewpoint of obtaining a pattern having a better shape. When performing the etching a plurality of times, the etching is sequentially performed in the order of the silicon-containing film, the lower layer film, and the substrate. Examples of the etching method include dry etching and wet etching. Among these, dry etching is preferable from the viewpoint of improving the shape of the substrate pattern. For this dry etching, for example, gas plasma such as oxygen plasma is used. After the etching, a patterned substrate having a predetermined pattern is obtained.
 ドライエッチングは、例えば公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、マスクパターンや、エッチングされる膜の元素組成等により、適宜選択することができ、例えばCHF、CF、C、C、SF等のフッ素系ガス、Cl、BCl等の塩素系ガス、O、O、HO等の酸素系ガス、H、NH、CO、CO、CH、C、C、C、C、C、C、HF、HI、HBr、HCl、NO、NH、BCl等の還元性ガス、He、N、Ar等の不活性ガスなどが用いられる。これらのガスは混合して用いることもできる。レジスト下層膜のパターンをマスクとして基板をエッチングする場合には、通常、フッ素系ガスが用いられる。例えば、レジスト下層膜のマスクパターンは、フッ素系ガスエッチングにより、基板上のシリコン酸化膜(層間絶縁膜)にビアホールを形成する工程に用いられるので、フッ素系ガスエッチング耐性に優れることが求められる。 Dry etching can be performed using, for example, a known dry etching apparatus. The etching gas used for dry etching can be appropriately selected depending on the mask pattern, the elemental composition of the film to be etched, and the like. For example, CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6 Fluorine gas such as Cl 2 , chlorine gas such as Cl 2 and BCl 3 , oxygen gas such as O 2 , O 3 and H 2 O, H 2 , NH 3 , CO, CO 2 , CH 4 and C 2 H 2 Reducing gases such as C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , BCl 3 , He, N 2. An inert gas such as Ar is used. These gases can also be mixed and used. When the substrate is etched using the resist underlayer film pattern as a mask, a fluorine-based gas is usually used. For example, the mask pattern of the resist underlayer film is used in a process of forming a via hole in a silicon oxide film (interlayer insulating film) on the substrate by fluorine-based gas etching, and therefore is required to have excellent fluorine-based gas etching resistance.
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各種物性値の測定方法を以下に示す。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The measuring method of various physical property values is shown below.
[レジスト下層膜の平均厚み]
 レジスト下層膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて測定した。
[Average thickness of resist underlayer]
The average thickness of the resist underlayer film was measured using a spectroscopic ellipsometer (“M2000D” manufactured by JA WOOLLAM).
<[A]化合物の合成>
 [A]化合物としての化合物(A-1)~(A-5)を下記方法により合成した。
<Synthesis of [A] Compound>
Compounds (A-1) to (A-5) as [A] compounds were synthesized by the following method.
[合成例1-1]
 温度計、コンデンサー及びマグネチックスターラーを備えた3口フラスコに、窒素雰囲気下、1-ピレンカルバルデヒド20.0g及びN,N-ジエチルアニリン259.3gを仕込み、室温にて溶解させた。96質量%硫酸0.4gを30分かけて滴下した。滴下終了後、60℃に加温して10時間反応させた。反応終了後、本反応溶液を多量の水に加えた後、メチルイソブチルケトン(MIBK)60g及びテトラヒドロフラン(THF)30gを加えて抽出を行った。水洗を3回実施した後、有機相を600gのヘキサンに投入し再沈澱した。得られた沈澱物を60℃で一晩減圧乾燥することで下記化合物(A-1)(分子量511)を得た。
[Synthesis Example 1-1]
Under a nitrogen atmosphere, 20.0 g of 1-pyrenecarbaldehyde and 259.3 g of N, N-diethylaniline were charged in a three-necked flask equipped with a thermometer, a condenser and a magnetic stirrer and dissolved at room temperature. 0.4 g of 96 mass% sulfuric acid was added dropwise over 30 minutes. After completion of dropping, the mixture was heated to 60 ° C. and reacted for 10 hours. After completion of the reaction, the reaction solution was added to a large amount of water, and then extracted by adding 60 g of methyl isobutyl ketone (MIBK) and 30 g of tetrahydrofuran (THF). After washing three times with water, the organic phase was poured into 600 g of hexane and reprecipitated. The resulting precipitate was dried under reduced pressure at 60 ° C. overnight to obtain the following compound (A-1) (molecular weight 511).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[合成例1-2]
 温度計、コンデンサー及びマグネチックスターラーを備えた3口フラスコに、アルゴン雰囲気下、N,N’-ジ-p-トリル-3,3’-ジメチルベンジジン3.93g、4-エチルヨードベンゼン4.73g、銅粉0.1g、炭酸カリウム1.38g及び20mLのニトロベンゼンを加え、アルゴンをバブリングさせながら撹拌し、水をニトロベンゼンとの共沸で取り除きながら24時間還流させた。反応液を濾過後に、ニトロベンゼンを留去し、アルミナカラムクロマトグラフィーで精製し下記化合物(A-2)(分子量601)を得た。
[Synthesis Example 1-2]
In a three-necked flask equipped with a thermometer, a condenser and a magnetic stirrer, 3.93 g of N, N′-di-p-tolyl-3,3′-dimethylbenzidine and 4.73 g of 4-ethyliodobenzene were added under an argon atmosphere. Then, 0.1 g of copper powder, 1.38 g of potassium carbonate and 20 mL of nitrobenzene were added, stirred while bubbling argon, and refluxed for 24 hours while removing water by azeotropy with nitrobenzene. After the reaction solution was filtered, nitrobenzene was distilled off and purified by alumina column chromatography to obtain the following compound (A-2) (molecular weight 601).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[合成例1-3]
 反応容器に、窒素雰囲気下、2-アセチルフルオレン20.0g及びm-キシレン20.0gを仕込み、110℃にて溶解させた。次いで、ドデシルベンゼンスルホン酸3.14gを添加し、140℃に加熱して16時間反応させた。反応終了後、本反応溶液にキシレン80gを加えて希釈した後、50℃に冷却し、500gのメタノールに投入し再沈殿した。得られた沈殿物をトルエンで洗浄した後、固体をろ紙で回収し、乾燥して下記式(b-1)で表される化合物(b-1)を得た。
[Synthesis Example 1-3]
In a nitrogen atmosphere, 20.0 g of 2-acetylfluorene and 20.0 g of m-xylene were charged in a reaction vessel and dissolved at 110 ° C. Next, 3.14 g of dodecylbenzenesulfonic acid was added and heated to 140 ° C. to react for 16 hours. After completion of the reaction, the reaction solution was diluted by adding 80 g of xylene, cooled to 50 ° C., and poured into 500 g of methanol for reprecipitation. The obtained precipitate was washed with toluene, and then the solid was collected with a filter paper and dried to obtain a compound (b-1) represented by the following formula (b-1).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 反応容器に、窒素雰囲気下、上記化合物(b-1)10.0g、N,N-ジメチルアミノベンズアルデヒド8.23g及びトルエン50gを加え、撹拌した後、50質量%水酸化ナトリウム水溶液25.2g及びテトラブチルアンモニウムブロミド1.7gを加え、92℃で12時間反応させた。反応液を50℃に冷却した後、テトラヒドロフラン25gを加えた。水相を除去した後、1質量%シュウ酸水溶液50gを加えて分液抽出を行った後、ヘキサンに投入し再沈殿した。得られた沈殿物をろ紙で回収し、乾燥して下記化合物(A-3)(分子量964)を得た。 Under a nitrogen atmosphere, 10.0 g of the above compound (b-1), 8.23 g of N, N-dimethylaminobenzaldehyde and 50 g of toluene were added to the reaction vessel and stirred, and then 25.2 g of a 50 mass% aqueous sodium hydroxide solution and 1.7 g of tetrabutylammonium bromide was added and reacted at 92 ° C. for 12 hours. After cooling the reaction solution to 50 ° C., 25 g of tetrahydrofuran was added. After removing the aqueous phase, 50 g of a 1% by mass oxalic acid aqueous solution was added to perform liquid separation extraction, and the resultant was poured into hexane for reprecipitation. The resulting precipitate was collected with a filter paper and dried to obtain the following compound (A-3) (molecular weight 964).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[合成例1-4]
 反応容器に、窒素雰囲気下で、2,7-ジ-(N,N-ジフェニルアミノ)-9H-フルオレン5.00g、1-ブロモヘキサン3.63g及びトルエン50gを加え、撹拌した後、50質量%水酸化ナトリウム水溶液25.2g及びテトラブチルアンモニウムブロミド1.7gを加え、92℃で12時間反応させた。反応液を50℃に冷却した後、テトラヒドロフラン25gを加えた。水相を除去した後、1質量%シュウ酸水溶液50gを加えて分液抽出を行った後、ヘキサンに投入し再沈殿した。得られた沈殿物をろ紙で回収し、乾燥して下記化合物(A-4)(分子量669)を得た。
[Synthesis Example 1-4]
Under a nitrogen atmosphere, 5.00 g of 2,7-di- (N, N-diphenylamino) -9H-fluorene, 3.63 g of 1-bromohexane and 50 g of toluene were added to the reaction vessel and stirred, and then 50 masses. 25.2 g of a sodium hydroxide aqueous solution and 1.7 g of tetrabutylammonium bromide were added and reacted at 92 ° C. for 12 hours. After cooling the reaction solution to 50 ° C., 25 g of tetrahydrofuran was added. After removing the aqueous phase, 50 g of a 1% by mass oxalic acid aqueous solution was added to perform liquid separation extraction, and the resultant was poured into hexane for reprecipitation. The resulting precipitate was collected with a filter paper and dried to obtain the following compound (A-4) (molecular weight 669).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[合成例1-5]
 反応容器に、窒素雰囲気下で、5,11,17,23-テトラ-t-ブチル-25,26,27,28-テトラメトキシ-2,8,14,20-テトラアザカリックス[4]アレーン10g、ヨウ化ブチル20g、2,6-t-ブチル-4-メチルピリジン11.5g及びN,N-ジメチルアセトアミド100gを仕込み、40℃で48時間反応させた。冷却後にシクロヘキサノン60g、MIBK40g、5質量%塩酸水でそれぞれ洗浄し、MIBKを留去し、シクロヘキサノンで希釈して、下記化合物(A-5)(分子量933)の10質量%溶液を得た。
[Synthesis Example 1-5]
In a reaction vessel, 10 g of 5,11,17,23-tetra-t-butyl-25,26,27,28-tetramethoxy-2,8,14,20-tetraazacalix [4] arene in a nitrogen atmosphere Then, 20 g of butyl iodide, 11.5 g of 2,6-t-butyl-4-methylpyridine and 100 g of N, N-dimethylacetamide were charged and reacted at 40 ° C. for 48 hours. After cooling, each was washed with 60 g of cyclohexanone, 40 g of MIBK, and 5% by mass hydrochloric acid, and MIBK was distilled off and diluted with cyclohexanone to obtain a 10% by mass solution of the following compound (A-5) (molecular weight 933).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[合成例2-1]
 下記式(a-1)で表される樹脂を以下の方法により合成した。反応容器に、窒素雰囲気下、4-クレゾール250.0g、37質量%ホルマリン125.0g及び無水シュウ酸2gを加え、100℃で3時間、180℃で1時間反応させた後、減圧下にて未反応モノマーを除去し、下記式(a-1)で表される樹脂を得た。
[Synthesis Example 2-1]
A resin represented by the following formula (a-1) was synthesized by the following method. Under a nitrogen atmosphere, 250.0 g of 4-cresol, 125.0 g of 37% by mass formalin and 2 g of oxalic anhydride were added to the reaction vessel, reacted at 100 ° C. for 3 hours, and at 180 ° C. for 1 hour, and then under reduced pressure. Unreacted monomer was removed to obtain a resin represented by the following formula (a-1).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
<レジスト下層膜形成用組成物の調製>
 レジスト下層膜形成用組成物の調製に用いた[A]化合物、[B]溶媒、[C]酸化剤及び[D]架橋剤について以下に示す。
<Preparation of composition for forming resist underlayer film>
The [A] compound, [B] solvent, [C] oxidizing agent and [D] cross-linking agent used for the preparation of the resist underlayer film forming composition are shown below.
[[A]化合物]
 実施例:上記合成した化合物(A-1)~(A-5)
 比較例:上記合成した樹脂(a-1)
[[A] Compound]
Example: Compounds (A-1) to (A-5) synthesized above
Comparative example: Resin (a-1) synthesized above
[[B]溶媒]
 B-1:酢酸プロピレングリコールモノメチルエーテル
 B-2:シクロヘキサノン
[[B] solvent]
B-1: Propylene glycol monomethyl ether acetate B-2: Cyclohexanone
[[C]酸化剤]
 C-1:4-アセトアミド-2,2,6,6-テトラメチル-1-オキソピペリジニウムトリフルオロメタンスルホネート(下記式(C-1)で表される化合物)
 C-2:ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート(下記式(C-2)で表される化合物)
[[C] oxidizing agent]
C-1: 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium trifluoromethanesulfonate (compound represented by the following formula (C-1))
C-2: Bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate (compound represented by the following formula (C-2))
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[[D]架橋剤]
 D-1:1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(下記式(D-1)で表される化合物)
[[D] Crosslinking agent]
D-1: 1,3,4,6-tetrakis (methoxymethyl) glycoluril (compound represented by the following formula (D-1))
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[実施例1-1]
 [A]化合物としての(A-1)10質量部を[B]溶媒としての(B-1)90質量部に溶解した。得られた溶液を孔径0.1μmのメンブランフィルターで濾過して、レジスト下層膜形成用組成物(J-1)を調製した。
[Example 1-1]
[A] 10 parts by mass of (A-1) as a compound was dissolved in 90 parts by mass of (B-1) as a [B] solvent. The obtained solution was filtered through a membrane filter having a pore diameter of 0.1 μm to prepare a resist underlayer film forming composition (J-1).
[実施例1-2~1-10及び比較例1-1]
 下記表1に示す種類及び含有量の各成分を使用した以外は実施例1-1と同様に操作して、レジスト下層膜形成用組成物(J-2)~(J-10)及び(CJ-1)を調製した。表1中の「-」は、該当する成分を使用しなかったことを示す。
[Examples 1-2 to 1-10 and Comparative Example 1-1]
Resist underlayer film forming compositions (J-2) to (J-10) and (CJ) were prepared in the same manner as in Example 1-1 except that the components of the types and contents shown in Table 1 were used. -1) was prepared. “-” In Table 1 indicates that the corresponding component was not used.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
<レジスト下層膜の形成>
[実施例2-1~2-10及び比較例2-1]
 上記調製したレジスト下層膜形成用組成物を、シリコンウエハ(基板)上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を用い、回転塗工法により塗工した。次に、大気雰囲気下にて、下記表2に示す加熱温度(℃)及び加熱時間(sec)で加熱(焼成)した後、23℃で60秒間冷却することにより、平均厚み200nmのレジスト下層膜を形成して、基板上にレジスト下層膜が形成されたレジスト下層膜付き基板を得た。
<Formation of resist underlayer film>
[Examples 2-1 to 2-10 and Comparative Example 2-1]
The prepared resist underlayer film forming composition was coated on a silicon wafer (substrate) by a spin coating method using a spin coater (“CLEAN TRACK ACT12” from Tokyo Electron Ltd.). Next, after heating (baking) at a heating temperature (° C.) and a heating time (sec) shown in Table 2 below in an air atmosphere, the resist underlayer film having an average thickness of 200 nm is cooled at 23 ° C. for 60 seconds. The substrate with the resist underlayer film in which the resist underlayer film was formed on the substrate was obtained.
<評価>
 上記得られたレジスト下層膜形成用組成物及びレジスト下層膜付き基板を用い、下記項目について下記方法で評価を行った。評価結果を下記表2に合わせて示す。
<Evaluation>
Using the obtained composition for forming a resist underlayer film and a substrate with a resist underlayer film, the following items were evaluated by the following methods. The evaluation results are shown in Table 2 below.
[耐熱性]
 上記調製したレジスト下層膜形成用組成物を、直径8インチのシリコンウエハ上にスピンコート法により塗工し、大気雰囲気下にて、250℃で60秒間焼成(ベーク)してレジスト下層膜を形成し、レジスト下層膜付き基板を得た。次に、このレジスト下層膜付き基板のレジスト下層膜を削ることにより粉体を回収し、レジスト下層膜の粉体をTG-DTA装置(NETZSCH社の「TG-DTA2000SR」)による測定で使用する容器に入れ、加熱前の質量を測定した。次に、上記TG-DTA装置を用いて、窒素雰囲気下、10℃/分の昇温速度にて400℃まで加熱し、400℃における粉体の質量を測定した。そして、下記式により質量減少率(%)を測定し、この質量減少率を耐熱性の尺度とした。
 M={(m1-m2)/m1}×100
 ここで、上記式中、Mは、質量減少率(%)であり、m1は、加熱前の質量(mg)であり、m2は、400℃における質量(mg)である。
 耐熱性は、試料となる粉体の質量減少率が小さいほど、レジスト下層膜の加熱時に発生する昇華物やレジスト下層膜の分解物が少なく、良好である。すなわち、質量減少率が小さいほど、高い耐熱性であることを示す。耐熱性は、質量減少率が5%未満の場合は「A」(極めて良好)と、5%以上10%未満の場合は「B」(良好)と、10%以上の場合は「C」(不良)と評価した。
[Heat-resistant]
The prepared resist underlayer film forming composition is applied onto a silicon wafer having a diameter of 8 inches by spin coating, and baked at 250 ° C. for 60 seconds in an air atmosphere to form a resist underlayer film. Thus, a substrate with a resist underlayer film was obtained. Next, the resist underlayer film of the substrate with the resist underlayer film is scraped to recover the powder, and the resist underlayer film powder is used for measurement by a TG-DTA apparatus ("TG-DTA2000SR" from NETZSCH). The mass before heating was measured. Next, using the above TG-DTA apparatus, the sample was heated to 400 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen atmosphere, and the mass of the powder at 400 ° C. was measured. And mass reduction rate (%) was measured by the following formula, and this mass reduction rate was used as a measure of heat resistance.
M L = {(m1−m2) / m1} × 100
Here, in the above formula, M L is a mass reduction rate (%), m1 is the pre-heating the mass (mg), m @ 2 is the mass (mg) at 400 ° C..
The heat resistance is better as the mass reduction rate of the powder as the sample is smaller, because there are fewer sublimates and decomposition products of the resist underlayer film that are generated when the resist underlayer film is heated. That is, the smaller the mass reduction rate, the higher the heat resistance. The heat resistance is “A” (very good) when the mass reduction rate is less than 5%, “B” (good) when it is 5% or more and less than 10%, and “C” (when it is 10% or more). Bad).
[エッチング耐性]
 上記得られたレジスト下層膜付き基板におけるレジスト下層膜を、エッチング装置(東京エレクトロン(株)の「TACTRAS」)を用いて、CF/Ar=110/440sccm、PRESS.=30MT、HF RF(プラズマ生成用高周波電力)=500W、LF RF(バイアス用高周波電力)=3000W、DCS=-150V、RDC(ガスセンタ流量比)=50%、30secの条件にて処理し、処理前後のレジスト下層膜の平均厚みからエッチング速度(nm/分)を算出した。次いで、比較例2-1のエッチング速度を基準として比較例2-1に対する比率を算出し、エッチング耐性の尺度とした。エッチング耐性は、上記比率が0.98以上1.00未満の場合は「A」(良好)と、1.00以上の場合は「B」(不良)と評価した。表2中のエッチング耐性の欄の「-」は評価の基準であることを示す。
[Etching resistance]
The resist underlayer film in the substrate with the resist underlayer film obtained above was subjected to CF 4 / Ar = 110/440 sccm, PRESS. Using an etching apparatus (“TACTRAS” of Tokyo Electron Ltd.). = 30 MT, HF RF (High Frequency Power for Plasma Generation) = 500 W, LF RF (High Frequency Power for Bias) = 3000 W, DCS = -150 V, RDC (Gas Center Flow Ratio) = 50%, 30 sec. The etching rate (nm / min) was calculated from the average thickness of the resist underlayer films before and after. Next, a ratio with respect to Comparative Example 2-1 was calculated based on the etching rate of Comparative Example 2-1, and used as a measure of etching resistance. The etching resistance was evaluated as “A” (good) when the ratio was 0.98 or more and less than 1.00, and “B” (bad) when the ratio was 1.00 or more. “-” In the column of etching resistance in Table 2 indicates that it is a criterion for evaluation.
[膜欠陥抑制性]
 上記得られたレジスト下層膜付き基板上に、ケイ素含有膜形成用組成物(JSR(株)の「NFC SOG080」)を回転塗工法により塗工した後、大気雰囲気下にて200℃で60秒間加熱(焼成)し、平均厚み50nmのケイ素含有膜を形成し、ケイ素含有膜付き基板を得た。上記得られたケイ素含有膜付き基板を、さらに450℃で60秒間加熱(焼成)した後、光学顕微鏡でケイ素含有膜の表面を観察した。膜欠陥抑制性は、ケイ素含有膜のひび割れ又は剥がれが見られなかった場合は「A」(良好)と、ケイ素含有膜のひび割れ又は剥がれが見られた場合は「B」(不良)と評価した。
[Membrane defect suppression]
A silicon-containing film-forming composition (“NFC SOG080” from JSR Co., Ltd.) was applied on the obtained substrate with a resist underlayer film by a spin coating method, and then at 200 ° C. for 60 seconds in an air atmosphere. Heating (firing) was performed to form a silicon-containing film having an average thickness of 50 nm to obtain a substrate with a silicon-containing film. The obtained substrate with a silicon-containing film was further heated (baked) at 450 ° C. for 60 seconds, and then the surface of the silicon-containing film was observed with an optical microscope. Film defect suppression was evaluated as “A” (good) when no cracking or peeling of the silicon-containing film was observed, and “B” (bad) when cracking or peeling of the silicon-containing film was observed. .
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表2の結果から分かるように、実施例のレジスト下層膜形成用組成物から形成されたレジスト下層膜は、耐熱性、エッチング耐性及び膜欠陥抑制性に優れている。これに対し、比較例のレジスト下層膜形成用組成物から形成されたレジスト下層膜は、耐熱性及び膜欠陥抑制性が不良であり、エッチング耐性は劣っていた。 As can be seen from the results in Table 2, the resist underlayer film formed from the resist underlayer film forming composition of the example is excellent in heat resistance, etching resistance, and film defect suppression. On the other hand, the resist underlayer film formed from the composition for forming a resist underlayer film of the comparative example has poor heat resistance and film defect suppression properties, and has poor etching resistance.
[レジストパターン形成]
 上記得られたレジスト下層膜形成用組成物(J-1)~(J-10)を用いて形成されたレジスト下層膜付き基板上に、ケイ素含有膜形成用組成物(JSR(株)の「NFC SOG080」)を回転塗工法により塗工した後、大気雰囲気下にて200℃で60秒間加熱(焼成)し、平均厚み50nmのケイ素含有膜を形成し、ケイ素含有膜付き基板を得た。次に、上記ケイ素含有膜上に、ArF用レジスト組成物(JSR(株)の「AR1682J」)を回転塗工法により塗工し、大気雰囲気下にて130℃で60秒間加熱(焼成)して、平均厚み200nmのレジスト膜を形成した。その後、レジスト膜を、(株)ニコンのArFエキシマレーザー露光装置(レンズ開口数0.78、露光波長193nm)を用いて、ターゲットサイズが100nmの1対1のラインアンドスペースのマスクパターンを介して、露光量を変化させて露光した後、大気雰囲気下にて130℃で60秒間加熱(焼成)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用いて、25℃で1分間現像し、水洗、乾燥した。上記レジスト膜を、走査型電子顕微鏡((株)日立ハイテクノロジーズの「CG-4000」)にて観察することにより、ラインパターンの線幅が30nmから100nmである200nmピッチのラインアンドスペースのレジストパターンが形成されていることを確認した。
[Resist pattern formation]
On the substrate with the resist underlayer film formed using the resist underlayer film forming compositions (J-1) to (J-10) obtained above, a silicon-containing film forming composition (“JSR Co., Ltd.” NFC SOG080 ") was applied by a spin coating method, and then heated (fired) at 200 ° C for 60 seconds in an air atmosphere to form a silicon-containing film having an average thickness of 50 nm, thereby obtaining a substrate with a silicon-containing film. Next, a resist composition for ArF (“AR1682J” from JSR Co., Ltd.) is applied on the silicon-containing film by a spin coating method, and heated (baked) at 130 ° C. for 60 seconds in an air atmosphere. A resist film having an average thickness of 200 nm was formed. Thereafter, the resist film was passed through a one-to-one line-and-space mask pattern with a target size of 100 nm using a Nikon ArF excimer laser exposure apparatus (lens numerical aperture 0.78, exposure wavelength 193 nm). Then, after changing the exposure amount, the exposure was performed (heating) at 130 ° C. for 60 seconds in an air atmosphere, and using an aqueous 2.38 mass% tetramethylammonium hydroxide (TMAH) solution at 25 ° C. for 1 minute. Developed, washed with water and dried. By observing the resist film with a scanning electron microscope (“CG-4000” manufactured by Hitachi High-Technologies Corporation), a line-and-space resist pattern having a line width of 30 nm to 100 nm and having a line width of 30 nm to 100 nm. It was confirmed that was formed.
 本発明のレジスト下層膜形成用組成物は、耐熱性、エッチング耐性及び膜欠陥抑制性に優れるレジスト下層膜を形成することができる。本発明のレジスト下層膜は、耐熱性、エッチング耐性及び膜欠陥抑制性に優れている。本発明のレジスト下層膜の形成方法によれば、耐熱性、エッチング耐性及び膜欠陥抑制性に優れるレジスト下層膜を形成することができる。本発明のパターン形成方法によれば、このような優れたレジスト下層膜を用いることにより、良好なパターン形状を有するパターニングされた基板を得ることができる。従って、これらは、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。 The composition for forming a resist underlayer film of the present invention can form a resist underlayer film having excellent heat resistance, etching resistance, and film defect suppression properties. The resist underlayer film of the present invention is excellent in heat resistance, etching resistance and film defect suppression. According to the method for forming a resist underlayer film of the present invention, a resist underlayer film having excellent heat resistance, etching resistance, and film defect suppression properties can be formed. According to the pattern forming method of the present invention, a patterned substrate having a good pattern shape can be obtained by using such an excellent resist underlayer film. Therefore, these can be suitably used for manufacturing semiconductor devices and the like that are expected to be further miniaturized in the future.

Claims (12)

  1.  芳香環及びこの芳香環の炭素原子に結合する窒素原子を有する化合物と、
     溶媒と
     を含有し、
     上記化合物が、下記式(1)又は下記式(2)で表されるレジスト下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、置換又は非置換の炭素数1~70のn価の炭化水素基である。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~20の1価の炭化水素基若しくは水素原子であるか、又はR及びRが互いに合わせられこれらが結合する窒素原子と共に構成される環員数3~20の環構造の一部である。但し、R、R及びRの少なくとも1つは、芳香環を有し、この芳香環の炭素原子で上記式(1)中の窒素原子に結合する基である。nは、1~10の整数である。nが2以上の場合、複数のRは同一又は異なり、複数のRは同一又は異なる。
     式(2)中、R2’は、置換若しくは非置換の炭素数1~20の2価の炭化水素基である。R3’は、置換若しくは非置換の炭素数1~20の1価の炭化水素基又は水素原子である。但し、R2’及びR3’の少なくとも1つは、芳香環を有し、この芳香環の炭素原子で上記式(2)中の窒素原子に結合する基である。mは、1~10の整数である。mが2以上の場合、複数のR2’は同一又は異なり、複数のR3’は同一又は異なる。)
    A compound having an aromatic ring and a nitrogen atom bonded to a carbon atom of the aromatic ring;
    Containing a solvent and
    A composition for forming a resist underlayer film, wherein the compound is represented by the following formula (1) or the following formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R 1 is a substituted or unsubstituted n-valent hydrocarbon group having 1 to 70 carbon atoms. R 3 and R 4 are each independently a substituted or unsubstituted carbon number. A monovalent hydrocarbon group of 1 to 20 or a hydrogen atom, or a part of a ring structure of 3 to 20 ring members composed of R 3 and R 4 together with the nitrogen atom to which they are bonded However, at least one of R 1 , R 3 and R 4 has an aromatic ring, and is a group bonded to the nitrogen atom in the above formula (1) at a carbon atom of the aromatic ring. It is an integer of ~ 10. When n is 2 or more, the plurality of R 3 are the same or different, and the plurality of R 4 are the same or different.
    In the formula (2), R 2 ′ is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. R 3 ′ is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. However, at least one of R 2 ′ and R 3 ′ has an aromatic ring and is a group bonded to the nitrogen atom in the above formula (2) at the carbon atom of the aromatic ring. m is an integer of 1 to 10. When m is 2 or more, the plurality of R 2 ′ are the same or different and the plurality of R 3 ′ are the same or different. )
  2.  上記式(1)におけるR及びRの少なくとも一方が置換若しくは非置換の炭素数1~20の1価の炭化水素基であるか、又はR及びRが、R及びRが互いに合わせられこれらが結合する窒素原子と共に構成される環員数3~20の環構造の一部である請求項1に記載のレジスト下層膜形成用組成物。 In the above formula (1), at least one of R 3 and R 4 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, or R 3 and R 4 are R 3 and R 4 are The composition for forming a resist underlayer film according to claim 1, wherein the composition is a part of a ring structure having 3 to 20 ring members constituted together with nitrogen atoms to which they are bonded.
  3.  上記式(1)におけるR及びRが、置換若しくは非置換の炭素数1~20の1価の炭化水素基であるか、又はR及びRが互いに合わせられこれらが結合する窒素原子と共に構成される環員数3~20の環構造の一部である請求項2に記載のレジスト下層膜形成用組成物。 R 3 and R 4 in the above formula (1) are substituted or unsubstituted monovalent hydrocarbon groups having 1 to 20 carbon atoms, or nitrogen atoms to which R 3 and R 4 are combined with each other and bonded to each other The composition for forming a resist underlayer film according to claim 2, wherein the composition is a part of a ring structure having 3 to 20 ring members.
  4.  上記式(1)におけるnが2以上である請求項1、請求項2又は請求項3に記載のレジスト下層膜形成用組成物。 4. The resist underlayer film forming composition according to claim 1, wherein n in the above formula (1) is 2 or more.
  5.  上記式(1)におけるRが芳香族炭素環を含む請求項1から請求項4のいずれか1項に記載のレジスト下層膜形成用組成物。 The composition for forming a resist underlayer film according to any one of claims 1 to 4, wherein R 1 in the formula (1) includes an aromatic carbocyclic ring.
  6.  上記式(1)における窒素原子がRの芳香族炭素環に結合する請求項5に記載のレジスト下層膜形成用組成物。 Resist underlayer film forming composition according to claim 5 wherein the nitrogen atom in the formula (1) is attached to an aromatic carbocyclic ring R 1.
  7.  上記化合物の分子量が4,000以下である請求項1から請求項6のいずれか1項に記載のレジスト下層膜形成用組成物。 The composition for forming a resist underlayer film according to any one of claims 1 to 6, wherein the compound has a molecular weight of 4,000 or less.
  8.  上記化合物の含有割合が、上記溶媒以外の全成分に対して50質量%以上である請求項1から請求項7のいずれか1項に記載のレジスト下層膜形成用組成物。 The composition for forming a resist underlayer film according to any one of claims 1 to 7, wherein a content ratio of the compound is 50% by mass or more based on all components other than the solvent.
  9.  請求項1から請求項8のいずれか1項に記載のレジスト下層膜形成用組成物から形成されるレジスト下層膜。 A resist underlayer film formed from the resist underlayer film forming composition according to any one of claims 1 to 8.
  10.  基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程
     を備え、
     上記レジスト下層膜形成用組成物が、
     芳香環及びこの芳香環の炭素原子に結合する窒素原子を有する化合物、及び
     溶媒
     を含有し、
     上記化合物が、下記式(1)又は下記式(2)で表されるレジスト下層膜の形成方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、Rは、置換又は非置換の炭素数1~70のn価の炭化水素基である。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~20の1価の炭化水素基若しくは水素原子であるか、又はR及びRが互いに合わせられこれらが結合する窒素原子と共に構成される環員数3~20の環構造の一部である。但し、R、R及びRの少なくとも1つは、芳香環を有し、この芳香環の炭素原子で上記式(1)中の窒素原子に結合する基である。nは、1~10の整数である。nが2以上の場合、複数のRは同一又は異なり、複数のRは同一又は異なる。
     式(2)中、R2’は、置換若しくは非置換の炭素数1~20の2価の炭化水素基である。R3’は、置換若しくは非置換の炭素数1~20の1価の炭化水素基又は水素原子である。但し、R2’及びR3’の少なくとも1つは、芳香環を有し、この芳香環の炭素原子で上記式(2)中の窒素原子に結合する基である。mは、1~10の整数である。mが2以上の場合、複数のR2’は同一又は異なり、複数のR3’は同一又は異なる。)
    A step of applying a resist underlayer film forming composition directly or indirectly to a substrate,
    The resist underlayer film forming composition is
    An aromatic ring and a compound having a nitrogen atom bonded to a carbon atom of the aromatic ring, and a solvent,
    A method for forming a resist underlayer film, wherein the compound is represented by the following formula (1) or the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (1), R 1 is a substituted or unsubstituted n-valent hydrocarbon group having 1 to 70 carbon atoms. R 3 and R 4 are each independently a substituted or unsubstituted carbon number. A monovalent hydrocarbon group of 1 to 20 or a hydrogen atom, or a part of a ring structure of 3 to 20 ring members composed of R 3 and R 4 together with the nitrogen atom to which they are bonded However, at least one of R 1 , R 3 and R 4 has an aromatic ring, and is a group bonded to the nitrogen atom in the above formula (1) at a carbon atom of the aromatic ring. It is an integer of ~ 10. When n is 2 or more, the plurality of R 3 are the same or different, and the plurality of R 4 are the same or different.
    In the formula (2), R 2 ′ is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. R 3 ′ is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. However, at least one of R 2 ′ and R 3 ′ has an aromatic ring and is a group bonded to the nitrogen atom in the above formula (2) at the carbon atom of the aromatic ring. m is an integer of 1 to 10. When m is 2 or more, the plurality of R 2 ′ are the same or different and the plurality of R 3 ′ are the same or different. )
  11.  基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程と、
     上記塗工工程により形成されたレジスト下層膜に対し直接又は間接にレジストパターンを形成する工程と、
     上記レジストパターンをマスクとしたエッチングを行う工程と
     を備え、
     上記レジスト下層膜形成用組成物が、
     芳香環及びこの芳香環の炭素原子に結合する窒素原子を有する化合物、及び
     溶媒
     を含有し、
     上記化合物が、下記式(1)又は下記式(2)で表されるパターン形成方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、Rは、置換又は非置換の炭素数1~70のn価の炭化水素基である。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~20の1価の炭化水素基若しくは水素原子であるか、又はR及びRが互いに合わせられこれらが結合する窒素原子と共に構成される環員数3~20の環構造の一部である。但し、R、R及びRの少なくとも1つは、芳香環を有し、この芳香環の炭素原子で上記式(1)中の窒素原子に結合する基である。nは、1~10の整数である。nが2以上の場合、複数のRは同一又は異なり、複数のRは同一又は異なる。
     式(2)中、R2’は、置換若しくは非置換の炭素数1~20の2価の炭化水素基である。R3’は、置換若しくは非置換の炭素数1~20の1価の炭化水素基又は水素原子である。但し、R2’及びR3’の少なくとも1つは、芳香環を有し、この芳香環の炭素原子で上記式(2)中の窒素原子に結合する基である。mは、1~10の整数である。mが2以上の場合、複数のR2’は同一又は異なり、複数のR3’は同一又は異なる。)
    Applying the resist underlayer film forming composition directly or indirectly to the substrate;
    Forming a resist pattern directly or indirectly with respect to the resist underlayer film formed by the coating step;
    Etching using the resist pattern as a mask, and
    The resist underlayer film forming composition is
    An aromatic ring and a compound having a nitrogen atom bonded to a carbon atom of the aromatic ring, and a solvent,
    The pattern formation method by which the said compound is represented by following formula (1) or following formula (2).
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (1), R 1 is a substituted or unsubstituted n-valent hydrocarbon group having 1 to 70 carbon atoms. R 3 and R 4 are each independently a substituted or unsubstituted carbon number. A monovalent hydrocarbon group of 1 to 20 or a hydrogen atom, or a part of a ring structure of 3 to 20 ring members composed of R 3 and R 4 together with the nitrogen atom to which they are bonded However, at least one of R 1 , R 3 and R 4 has an aromatic ring, and is a group bonded to the nitrogen atom in the above formula (1) at a carbon atom of the aromatic ring. It is an integer of ~ 10. When n is 2 or more, the plurality of R 3 are the same or different, and the plurality of R 4 are the same or different.
    In the formula (2), R 2 ′ is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. R 3 ′ is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. However, at least one of R 2 ′ and R 3 ′ has an aromatic ring and is a group bonded to the nitrogen atom in the above formula (2) at the carbon atom of the aromatic ring. m is an integer of 1 to 10. When m is 2 or more, the plurality of R 2 ′ are the same or different and the plurality of R 3 ′ are the same or different. )
  12.  レジストパターンを形成する工程の前に、
     上記塗工工程により形成されたレジスト下層膜に対し直接又は間接にケイ素含有膜を形成する工程を備える請求項11に記載のパターン形成方法。
    Before the process of forming the resist pattern,
    The pattern formation method of Claim 11 provided with the process of forming a silicon-containing film directly or indirectly with respect to the resist underlayer film formed by the said coating process.
PCT/JP2019/015534 2018-04-23 2019-04-10 Resist underlayer film formation composition, resist underlayer film and method for forming same, and method for forming pattern WO2019208212A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207030072A KR20210005595A (en) 2018-04-23 2019-04-10 Composition for forming a resist underlayer film, a resist underlayer film and a method for forming the same, and a method for forming a pattern
JP2020516195A JP7255589B2 (en) 2018-04-23 2019-04-10 Composition for forming resist underlayer film, resist underlayer film, method for forming same, and method for forming pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-082615 2018-04-23
JP2018082615 2018-04-23

Publications (1)

Publication Number Publication Date
WO2019208212A1 true WO2019208212A1 (en) 2019-10-31

Family

ID=68294571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015534 WO2019208212A1 (en) 2018-04-23 2019-04-10 Resist underlayer film formation composition, resist underlayer film and method for forming same, and method for forming pattern

Country Status (3)

Country Link
JP (1) JP7255589B2 (en)
KR (1) KR20210005595A (en)
WO (1) WO2019208212A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054337A1 (en) * 2019-09-17 2021-03-25 Jsr株式会社 Composition, resist underlayer film, method for forming resist underlayer film, method for producing patterned substrate, and compound
WO2023048021A1 (en) * 2021-09-24 2023-03-30 日産化学株式会社 Resist underlayer film-forming composition
WO2023112672A1 (en) * 2021-12-15 2023-06-22 Jsr株式会社 Semiconductor substrate production method and composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279957A (en) * 1990-03-28 1991-12-11 Fuji Photo Film Co Ltd Positive type photoresist composition
JP2008164806A (en) * 2006-12-27 2008-07-17 Jsr Corp Resist undercoat forming composition and pattern forming method
WO2014208324A1 (en) * 2013-06-24 2014-12-31 Jsr株式会社 Composition for film formation use, resist underlayer film and method for formation thereof, pattern formation method, and compound
WO2015170736A1 (en) * 2014-05-08 2015-11-12 三菱瓦斯化学株式会社 Lithographic film formation material, composition for lithographic film formation, lithographic film, pattern formation method, and purification method
JP2016044272A (en) * 2014-08-25 2016-04-04 Jsr株式会社 Composition for forming film, film and manufacturing method and compound of substrate having formed pattern
JP2018100249A (en) * 2016-12-21 2018-06-28 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Novel compound, semiconductor material, and methods for manufacturing coating and semiconductor using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914493B2 (en) 2002-11-27 2007-05-16 東京応化工業株式会社 Underlayer film forming material for multilayer resist process and wiring forming method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279957A (en) * 1990-03-28 1991-12-11 Fuji Photo Film Co Ltd Positive type photoresist composition
JP2008164806A (en) * 2006-12-27 2008-07-17 Jsr Corp Resist undercoat forming composition and pattern forming method
WO2014208324A1 (en) * 2013-06-24 2014-12-31 Jsr株式会社 Composition for film formation use, resist underlayer film and method for formation thereof, pattern formation method, and compound
WO2015170736A1 (en) * 2014-05-08 2015-11-12 三菱瓦斯化学株式会社 Lithographic film formation material, composition for lithographic film formation, lithographic film, pattern formation method, and purification method
JP2016044272A (en) * 2014-08-25 2016-04-04 Jsr株式会社 Composition for forming film, film and manufacturing method and compound of substrate having formed pattern
JP2018100249A (en) * 2016-12-21 2018-06-28 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Novel compound, semiconductor material, and methods for manufacturing coating and semiconductor using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054337A1 (en) * 2019-09-17 2021-03-25 Jsr株式会社 Composition, resist underlayer film, method for forming resist underlayer film, method for producing patterned substrate, and compound
WO2023048021A1 (en) * 2021-09-24 2023-03-30 日産化学株式会社 Resist underlayer film-forming composition
WO2023112672A1 (en) * 2021-12-15 2023-06-22 Jsr株式会社 Semiconductor substrate production method and composition

Also Published As

Publication number Publication date
JP7255589B2 (en) 2023-04-11
KR20210005595A (en) 2021-01-14
JPWO2019208212A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
TWI422979B (en) Composition for resist underlayer film,process for forming resist underlayer film, patterning process,and fullerene derivative
JP7207330B2 (en) Composition for forming resist underlayer film, resist underlayer film, method for forming same, and method for producing patterned substrate
CN105051609B (en) Resist underlayer film composition and pattern formation method using same
TW201324057A (en) Resist-underlayer-film-forming composition used in multilayer resist process, resist underlayer film, method for forming same, and pattern-formation method
JP7255589B2 (en) Composition for forming resist underlayer film, resist underlayer film, method for forming same, and method for forming pattern
JP7207321B2 (en) Composition for forming resist underlayer film, resist underlayer film and method for forming same, method for producing patterned substrate, and compound
KR20190114839A (en) Compound, composition for forming organic film, substrate for manufacturing semiconductor apparatus, method for forming organic film, and patterning process
US20220197144A1 (en) Composition, resist underlayer film, method of forming film, method of producing patterned substrate, and compound
JP2021081686A (en) Composition for hard mask formation and method for manufacturing electronic component, and compound and resin
WO2022270484A1 (en) Semiconductor substrate production method and composition
JP7272364B2 (en) COMPOSITION FOR FORMING RESIST UNDERLAYER FILM, RESIST UNDERLAYER FILM AND METHOD FOR FORMING SAME, PATTERN FORMING METHOD AND COMPOUND AND MANUFACTURING METHOD THEREOF
JP2020166043A (en) Composition for forming resist underlayer film, resist underlayer film, method for forming resist underlayer film, and method for producing patterned substrate
JP7439823B2 (en) Composition for forming resist underlayer film, resist underlayer film, method for forming resist underlayer film, and method for manufacturing patterned substrate
JP2020196771A (en) Composition, resist underlayer film, method for forming resist underlayer film, and method for producing patterned substrate
WO2022131002A1 (en) Production method for semiconductor substrate, composition, and resist underlayer film
WO2022191037A1 (en) Method for manufacturing semiconductor substrate, composition, polymer, and method for producing polymer
TWI838503B (en) Composition for forming an anti-corrosion agent underlayer film, anti-corrosion agent underlayer film, method for forming an anti-corrosion agent underlayer film, method for producing a patterned substrate, and compound
TWI838580B (en) Composition, anti-corrosion agent bottom layer film, method for forming anti-corrosion agent bottom layer film, method for manufacturing patterned substrate, and compound
WO2024085030A1 (en) Method for producing semiconductor substrate and composition
WO2024070728A1 (en) Method for producing semiconductor substrate, composition and polymer
WO2022191062A1 (en) Method for producing semiconductor substrate, composition, polymer and method for producing polymer
JP2022048532A (en) Method for producing patterned substrate, composition and polymer
JP2023059024A (en) Method for producing semiconductor substrate and composition
WO2023112672A1 (en) Semiconductor substrate production method and composition
JP2023174082A (en) Photosensitive composition and method for producing semiconductor substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792852

Country of ref document: EP

Kind code of ref document: A1