WO2019207935A1 - Power system control system and power system control method - Google Patents

Power system control system and power system control method Download PDF

Info

Publication number
WO2019207935A1
WO2019207935A1 PCT/JP2019/006927 JP2019006927W WO2019207935A1 WO 2019207935 A1 WO2019207935 A1 WO 2019207935A1 JP 2019006927 W JP2019006927 W JP 2019006927W WO 2019207935 A1 WO2019207935 A1 WO 2019207935A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power system
output
controller
variable
Prior art date
Application number
PCT/JP2019/006927
Other languages
French (fr)
Japanese (ja)
Inventor
亮 坪田
渡辺 雅浩
小海 裕
喜仁 木下
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019207935A1 publication Critical patent/WO2019207935A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to a system and method for controlling a power system, and more particularly to a system that enables control for protecting a power system including a power source that generates power using renewable energy from a failure.
  • Synchronous machines may accelerate and step out due to lightning strikes and accidents occurring in the power system, resulting in instability of the power system. Therefore, there is a power system stabilization technique for maintaining the stability of the power system even if there is a failure or accident in the power system.
  • This stabilization technology models the power system and uses this model to analyze the power system.
  • the stabilization technology creates a control plan for controlling the output of the generator, for example, before a failure occurs in the power system.
  • a control plan is automatically implemented to prevent the power system from becoming unstable.
  • Patent Document 1 discloses a power system stabilization device that updates a power system model based on measured values of a power system and periodically updates a control plan.
  • Patent Document 1 discloses that this power system stabilizing device includes a power source such as wind power generation or solar power generation as a control target.
  • an object of the present invention is to provide a power system control system that can obtain a power system stabilization effect as expected by a control plan even with a power source based on renewable energy.
  • the present invention provides a power system control system that maintains the stability of the power system by controlling the output of the power supply of the power system.
  • the power system control system includes a plurality of variable power sources that generate power based on renewable energy and whose output varies depending on the state of the renewable energy.
  • the power system control system includes a memory and a controller that executes a program recorded in the memory. The controller integrates the probability distribution of the fluctuations of the outputs of the plurality of variable power supplies, and based on the integrated probability distribution so that the stability of the power system can be maintained from a failure assumed in the power system. Then, a control plan for controlling the output of each of the plurality of variable power supplies is created.
  • an electric power system control system that can obtain the effect of stabilizing the electric power system as expected by the control plan even if the power source is based on renewable energy.
  • FIG. 1 shows an example of a hardware block configuration in which the power system control system is applied to the power system 1.
  • the power system control system includes a computing device 100 and a power supply control device 200, and the computing device 100 and the power supply control device 200 are connected to each other via a communication network 900.
  • the power system 1 is connected to the communication network 900.
  • the arithmetic device 100 creates control information of the power system 1, and the power control device 200 controls the power source of the power system, in particular, the variable power source based on the control information.
  • the fluctuating power source is a power source that generates power based on renewable energy such as wind power generation or solar power generation, and whose output fluctuates depending on environmental conditions such as weather and weather.
  • the arithmetic device 100 creates model data of the power system 1 at predetermined intervals, and is assumed to be a failure that can occur in the power system 1, hereinafter referred to as an assumed failure, but uses a model for each of a plurality of assumed failures. Analysis, and create stabilization measures. Based on the created stabilization measure, the power supply control device 200 executes a power system stabilization measure such as disconnecting, stopping, or limiting the output of the generator and / or the variable power supply. “Failure” may be understood as a term that includes accidents, malfunctions, failures, and the like.
  • the power system 1 includes a generator 4, a transformer 9, one or a plurality of measuring devices 10, and a plurality of variable power sources 23 (23 a, 23 b, 23 c). It is connected.
  • a plurality of nodes (buses) 3 are connected to the branch 2.
  • Reference numeral 7 denotes a relay. Since each of the plurality of variable power supplies and the relay of each of the plurality of variable power supplies are connected to the communication network 900, each of the plurality of variable power supplies is disconnected from the power system by the power supply control device 200, or , Can be stopped, or output can be limited. The same applies to the generator 4.
  • the node is connected to a large power source such as a thermal power generator, a hydroelectric power generator or a nuclear power generator.
  • the branch may be connected to another power source capable of controlling the output, such as a secondary battery or a fuel cell.
  • the measurement device 10 transmits measurement data to the communication module 106 of the arithmetic device 100 and the communication module 206 of the power supply control device 200 via the communication network 900.
  • the measurement data may include a unique number for identifying the data and a time stamp.
  • the measuring device 10 may be VT, PT, or CT that measures at least one of node voltage, branch current, power factor, active power, and reactive power.
  • the measuring device 10 may exist in a bus or a power transmission line in addition to the power system 1.
  • the computing device 100 has a configuration in which a controller (CPU) 102, a memory 103, an input module 104 such as a keyboard and a mouse, an output module 105, a communication module 106, and a plurality of databases are connected to a bus line 101.
  • the plurality of databases includes a program database 130, a system model database 131, and a contingency database 132.
  • the program database 130 includes an analysis model creation program, a stability analysis program, and a control amount calculation program.
  • the controller 102 reads these programs into the memory 103 and executes them. The contents of these programs will be described later.
  • the display module 105 may be, for example, a display, a printer, or an audio output device.
  • the input module 104 may be, for example, a keyboard switch, a pointing device such as a mouse, a touch panel, or a voice instruction device.
  • the communication module 106 includes a circuit for connecting to the communication network 900 and a communication protocol.
  • the controller 102 reads a predetermined program from the program database 130 and executes it.
  • the controller 102 may be configured as one or a plurality of semiconductor chips, or may be configured as a computer device such as a calculation server.
  • the memory 103 stores a computer program read from the program database 130, data and calculation results necessary for calculation by the controller 102, image data, and the like.
  • the system model database 131 includes the configuration of the power system, line impedance, ground capacitance, active power, reactive power, voltage, voltage phase angle, current, power factor, data necessary for state estimation (such as threshold value of bat data), The generator data, data necessary for power flow calculation, and data necessary for transient calculation are stored.
  • the administrator of the arithmetic device 100 may input these information into the system model database by the input module 104.
  • the contingency database 132 includes data of one or a plurality of contingencies.
  • An assumed failure is a group of events that occur in the power system. For example, a one-line ground fault in a transmission line, energization interruption (opening) of a transmission line due to activation of a protection relay or a system stabilization relay, disconnection of a power plant, Or the load is dropped.
  • each of the plurality of contingency failures includes a table 2000 including an event occurrence time, an event occurrence location, and an aspect.
  • the power supply control device 200 has a configuration in which a controller (CPU) 202, a memory 203, a communication module 206, and a plurality of databases are connected to a bus line 201.
  • the plurality of databases includes a program database 230 and an output fluctuation database 231.
  • the program database 230 stores a controllable amount calculation program and a control amount distribution program.
  • the controller 202 reads these programs into the memory 203 and executes them. The contents of these programs will be described later.
  • the output fluctuation database 231 has information related to output fluctuation of the variable power supply controlled by the power supply control device 200.
  • the output fluctuation database 231 includes information on probability distributions for power supply output fluctuations for each of a plurality of variable power supplies.
  • the controller 202 of the power supply control device 200 constantly monitors the variable power supply 23a, the variable power supply 23b, and the variable power supply 23c, collects the history of output of the variable power supply that varies depending on the weather and weather as measurement data, and calculates the amount of change. Calculate, add statistical processing to this, and record in the output fluctuation database 231. Since the output of the generator 4 does not change due to weather or weather, the power supply control device 200 may not record the output fluctuation of the generator in the output fluctuation database 231.
  • FIG. 4 is a flowchart thereof.
  • the arithmetic device 100 executes an analysis model creation process S1, a stability determination process S2, and a control plan creation process S3.
  • the power supply control device 200 executes a controllable amount calculation process S4 and a control amount distribution S5.
  • the controller 102 of the arithmetic device 100 and the controller 202 of the power supply control device 200 start the flowchart of FIG. 4 every predetermined time.
  • the communication module 106 of the arithmetic device 100 receives the power system measurement data D1 from the measurement device 10 via the communication network.
  • the controller 102 executes the analysis model creation program (analysis model creation processing S1), fetches the aforementioned system data from the system model database 131, and creates the analysis model data D2 by state estimation or the like based on the measurement data D1. To do.
  • the state estimation is a technique for estimating various electrical quantities at a specific time with respect to measurement time discrepancies and measurement errors included in measurement data, for example, “Lars Holten, Anders Gjelsvlk, Sverre Adam, F. F. Wu , And Wen-Hs Iung E. Liu, “Comparison of Different Methods for State Estimation”, IEEE Transaction on Power Systems, Vol. 3, pp. 1798-1806, 1988 ”.
  • the controller 102 based on the analysis model creation program, the electrical quantities obtained by the state estimation described above, the electrical characteristic data of the equipment included in the system model database 131, and the generator included in the system model database 131
  • the analysis model data D2 is created by combining the dynamic characteristic data of the control system.
  • the analysis model data is a data group for analyzing the stability of the power system.
  • the controller 102 records the analysis model data in the memory 103.
  • the controller 102 executes a stability analysis program to determine the stability of the power system (stability determination processing S2).
  • the controller 102 reads the analysis model data from the memory 103, reads a plurality of contingency data from the contingency database 132, analyzes whether the operation can be performed while maintaining the current state of the power system after each contingency, and assumes Determine whether the power system is stable or unstable at the time of failure.
  • the controller 102 determines whether or not the operation of the power system can be maintained, for example, by calculating the behavior of the power system after the assumed failure by transient calculation.
  • the transient calculation for example, Yasuji Sekine “Power System Transient Analysis” pp. 377-392 is known.
  • the controller 102 determines that the behavior of the power system after the failure obtained by the transient calculation is, for example, that the voltage keeps decreasing or the operating angle of the generator exceeds a predetermined threshold due to the acceleration of the generator. The power system becomes unstable and it is determined that the operation of the power system cannot be maintained.
  • the controller 102 sequentially reads out the assumed failure data from the assumed failure database 132 and determines whether or not the power system is stable. When the controller 102 determines that the power system is unstable based on the read-out assumed failure data, the controller 102 executes a control amount calculation program to control the control amount, for example, the generator 4, And / or a control plan for setting the output limit amount of the variable power sources 23a, 23b, and 23c is created (control plan creation process S3).
  • the controller 102 refers to the controllable amount D3 in the control plan creation process S3.
  • the controllable amount is a range, width, or upper limit in which the power supply can limit its output.
  • the limit amount of the control plan is set within the range of the controllable amount.
  • the control plan may be determined by a method described in JP-A-2015-130777. Since the output of the generator 4 is not affected by weather or weather, the controllable amount of the generator 4 may be the current output of the generator. That is, the controller 102 can limit the output of the generator with the current output of the generator as the upper limit.
  • the controllable amount D3 of the variable power supply becomes an output after fluctuating due to the influence of weather and weather.
  • the controller 202 of the power supply control device 200 calculates the controllable amount of the variable power supply based on the current output of the variable power supply and the output fluctuation database 23 (controllable amount calculation process S4).
  • the controllable amount calculated by integrating the outputs of the plurality of variable power sources is larger than the value obtained by calculating the controllable amount for each of the plurality of variable power sources and summing the controllable amounts.
  • the controller 202 of the power supply control device 200 calculates the controllable amount of the generator 4 and the controllable amounts of the variable power sources 23 a, 23 b, and 23 c and records them in the memory 203.
  • control plan creation process S4 a control plan for how much the output is increased or decreased with respect to the assumed failure taken in from the assumed failure database 131 is created (control plan creation process S4), and this is recorded in a predetermined area of the memory 103.
  • a plurality of contingencies and control plans for the contingencies may be recorded in the form of a table, for example.
  • the controller 102 updates the table every time the flowchart of FIG. 4 is executed. Therefore, the table has the latest control plan.
  • the controller 102 When the process of S3 is completed, the controller 102 returns to the power system stability determination process S2, and applies the power system stability process S2 for the next assumed failure. If the controller 102 determines in this process that the power system is stable, the controller 102 proceeds to the process of S6, and has the verification of the stability of the power system been performed for all the assumed faults registered in the assumed fault database? Determine whether or not.
  • the controller 102 When the controller 102 affirms S6, it refers to the memory 103 and determines whether or not a control plan is stored for at least one contingency failure. If this is affirmed, the controller 102 transmits the control plan for each contingency to the power supply control device 200 as control plan data D4 for all contingencies, and ends the flowchart. When the controller 102 determines that there is no control plan for all the assumed failures, the controller 102 ends the flowchart without transmitting to the power supply control device 200.
  • the controller 202 of the power supply control device 200 stores the control plan data D4 received from the memory 203 and the arithmetic device 100. Furthermore, the controller 202 receives the measurement value and the activation signal of the protection relay as the measurement data D1, and determines whether or not a failure has occurred in the power system by determining whether or not the measurement data D1 is within the normal value range. Is determined (S7). When the controller 202 determines that the measured value is within the specified range, the controller 202 ends the flowchart assuming that there is no failure in the power system.
  • the controller 202 determines that a failure has occurred in the power system, the measurement data D1 is compared with a plurality of assumed failures.
  • the controller 202 may acquire the information of the contingency database 132 through the communication network 900 using the communication module 206.
  • the controller 202 determines that the measurement data D1 does not correspond to any conceivable failure, the flowchart ends. At this time, the controller 202 may execute a predetermined measure in order to stabilize the power system.
  • the controller 202 determines that the measurement data D1 corresponds to at least one assumed failure among a plurality of assumed failures, the controller 202 refers to the memory 203 and determines whether a control plan is set for the assumed failure. To do. If the determination is negative, the controller 202 ends the flowchart. At this time, the controller 202 may execute a predetermined measure in order to stabilize the power system.
  • the controller 202 executes the control amount distribution program, and first, based on the control plan data D4.
  • the output limit amount for stabilizing the power system is distributed to the generator 4 and / or the variable power sources 23a, 23b, and 23c (control amount distribution processing S5).
  • the controller 202 determines that a failure occurring in the power system corresponds to the assumed failure, if the control plan is not set for this assumed failure, the flowchart is terminated and a predetermined value is used to stabilize the power system. Countermeasures may be implemented. It is preferable that the allocation is performed without any bias to the generator 4 and / or the variable power sources 23a, 23b, and 23c. For example, the limit amount may be apportioned according to the power generation output.
  • the controller 202 what is necessary is just to allocate the output decrease of 10 MW to 23a, the output decrease of 26 MW to the variable power source 23b, and the output decrease of 24 MW to the variable power source 23c.
  • controller 202 has been described that the allocation described above is determined according to the output of the variable power supply.
  • the power supply control device 200 holds a history of past distributions, and a plurality of variable power supplies.
  • the accumulated allocation amount may be made equal.
  • the controller 202 transmits the distributed control amount to the generator 4 and the variable power sources 23a, 23b, and 23c, and ends the flowchart.
  • the generator 4 and the variable power sources 23a, 23b, and 23c limit or increase the output according to the transmitted control amount.
  • FIG. 5 is a flowchart of this, and the controller 202 refers to the output fluctuation database 231 based on the controllable amount calculation program, and acquires the statistical information of the output fluctuations of the variable power supplies 23a, 23b, and 23c ( S500).
  • FIG. 6 shows that the probability distribution of fluctuation from the current output is a normal distribution for each of the variable power supplies 23a, 23b, and 23c.
  • the controller 202 obtains the average value and variance of the normal distribution for each variable power source, and based on these, the probability distribution of the output fluctuation of the integrated output obtained by integrating the outputs of the variable power sources 23a, 23b, and 23c is normal. According to the distribution (FIG. 6: 600), the average value and the variance are calculated (S502).
  • the output of the three variations Power The normal distribution (FIG. 6: 600) of the integrated model in which the probability distribution of fluctuation is integrated is expressed by the following Equation 1.
  • the average of the integrated model is “ ⁇ a + ⁇ b + ⁇ c”, and the variance is “( ⁇ a 2 + ⁇ b 2 + ⁇ c 2 ) 1/2 ”.
  • the difference between the variance ( ⁇ a + ⁇ b + ⁇ c ) in the probability distribution of each of the variable power source 23a, the variable power source 23b, and the variable power source 23c and the variance in the probability distribution of the integrated model is expressed by the following equation 2. become.
  • the controller 202 obtains the controllable amount based on the output of the integrated model rather than obtaining the controllable amount based on the outputs of the variable power source 23a, the variable power source 23b, and the variable power source 23c. Many can be set.
  • the controller 202 In order to calculate the controllable amount of the integrated model, the controller 202 needs to estimate the amount by which the output of the integrated model fluctuates before the next calculation timing. Therefore, the controller 202 sets a threshold value ( ⁇ ) (S504), and assumes that there is an output variation within the range of the threshold value, and based on the current output of the integrated model (sum of outputs of a plurality of variable power supplies). Subtracting the fluctuation of the output is the controllable amount of the integrated model.
  • threshold value
  • the threshold value may be, for example, the total value (602 in FIG. 6) of the probability distribution at the lower end of the probability distribution of the integrated power supply model. For example, if this threshold is set to 2.5%, the value obtained by subtracting this from the current output is the controllable amount of the integrated model. (S506).
  • the controller 202 of the power supply control device 200 may transmit this controllable amount to the arithmetic device 100 via the communication network 900 so that the arithmetic device 100 can create a control plan.
  • the threshold value is not limited to the aforementioned value (2.5%).
  • the threshold value may be appropriately selected according to the characteristics of the variable power source, the performance of the power system, the weather, the characteristics of the weather, and the like. According to the above description, the fluctuation field probability distribution of the output of the fluctuation power source follows the normal distribution, but the present invention is not limited to this.
  • the number of variable power supplies is not limited to three, but may be two or more.
  • the arithmetic device 100 may display the controllable amount and the output of the variable power source on the display module 105. The arithmetic device 100 may determine whether or not the calculated controllable amount is within a normal value range, and may remove the uncontrollable control amount. An administrator may do this using the input module 104.
  • the power system control system When the weather changes between when the power system control system creates a control plan and when the power system actually fails and when this control plan is implemented, the output of the variable power source will fluctuate. In this case, even if the control plan is applied to the power system, the stability of the power system cannot be maintained as expected. However, according to the above-described embodiment, the power system control system creates a control plan in anticipation of fluctuations in the output of the variable power source. Therefore, the weather changes between the creation of the control plan and the execution of the control plan. However, the stability of the power system can be maintained as expected.
  • the power system control system described above calculates the controllable amount by predicting the output variation based on the probability distribution of the model that integrates the outputs of the multiple variable power supplies. It can be made larger than the controllable amount calculated by predicting the fluctuation of the output of each of the plurality of variable power supplies based on the probability distribution of each power supply.
  • a power supply control device may exist for each of a plurality of power supplies.
  • the controllable amount calculation process S4 and the control amount distribution process S5 have been described as being performed by the power supply control device 200, but either one may be executed by the arithmetic device 100, or both may be executed by the arithmetic device 100. May be.
  • the arithmetic device 100 and the power supply control device 200 may be a single device.
  • the power system control system may create a plurality of control plans for the contingency failure.
  • the power system control system may use the storage of the output of the variable power source in the storage battery as a limited amount for the variable power source or as a substitute for a part thereof.
  • setting the controllable amount for a plurality of variable power sources is performed by generating a model in which the plurality of variable power sources are integrated in one step (one stage). It may be possible to set a unified model from a plurality of variable power sources by a plurality of steps. For example, a unified model of a plurality of variable power supplies (variable power supplies 23a and 23b) may be set, and then a model in which another variable power supply (23c) is added to the variable power supply of this unified model may be generated.
  • a determination module for determining whether or not the power supply system can be stabilized against an assumed failure, and if this cannot be stabilized, control is performed.
  • a control amount correction module for changing the amount may be provided.
  • the control amount when the system regenerates model data at each predetermined timing and generates a control amount for the variable power supply differs from the control amount that the power supply control device 200 distributes to each of the plurality of variable power supplies. This is because the degree of stabilization may deteriorate.
  • the embodiment described above is not intended to limit the present invention, and the embodiment may be changed as appropriate.
  • Power system 2 Transmission line 3: Bus line 4: Power supply 7: Circuit breaker (relay) 9: Transformer 10: Measuring instrument 100: Arithmetic device 101: Communication bus line 102: Controller 103: Memory 104: Input module 105: Display module 106: Communication module 130: Program database 131: System model database 132: Assumed failure database 200 : Power supply control device 201: Communication bus line 202: Controller 203: Memory 206: Communication unit 230: Program database 231: Output fluctuation database 900: Communication network

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

A power system generates power, as a power supply, on the basis of renewable energy and is provided with a plurality of fluctuating power supplies, the outputs of which fluctuate depending on the state of the renewable energy. This power system control system integrates the probability distribution of the output fluctuation of each of the plurality of fluctuating power supplies and creates, on the basis of the integrated probability distribution, a control plan for controlling the output of each of the plurality of fluctuating power supplies so as to be able to maintain the stability of a power system to an assumed failure in the power system.

Description

電力系統制御システム、及び、電力系統制御方法Power system control system and power system control method
 本発明は、電力系統を制御するためのシステムとその方法に係り、特に、再生可能エネルギーを利用して発電をする電源を備える電力系統を障害から保護するための制御を可能にするシステムに関する。 The present invention relates to a system and method for controlling a power system, and more particularly to a system that enables control for protecting a power system including a power source that generates power using renewable energy from a failure.
 電力系統に生じる落雷や事故等の障害を原因として、同期機が加速して脱調し、その結果、電力系統が不安定化することがある。そこで、電力系統に故障や事故があっても電力系統の安定性を維持するための電力系統の安定化技術が存在する。  Synchronous machines may accelerate and step out due to lightning strikes and accidents occurring in the power system, resulting in instability of the power system. Therefore, there is a power system stabilization technique for maintaining the stability of the power system even if there is a failure or accident in the power system.
 この安定化技術は、電力系統をモデル化し、このモデルを用いて電力系統を解析する。そして、安定化技術は、解析結果に基づいて、脱調を防ぐため、例えば、発電機の出力を制御する制御案を、電力系統に障害が発生する前に作成しておき、電力系統に障害が発生したことを検知すると自動で制御案を実施して、電力系統が不安定化することを防止している。例えば、特許文献1には、電力系統の計測値に基づいて電力系統モデルを更新し、制御案を周期的に更新する電力系統安定化装置が開示されている。この電力系統安定化装置は制御対象に風力発電や太陽光発電等の電源を含めていることが、特許文献1に示されている。 This stabilization technology models the power system and uses this model to analyze the power system. In order to prevent out-of-step based on the analysis result, the stabilization technology creates a control plan for controlling the output of the generator, for example, before a failure occurs in the power system. When it is detected that a problem has occurred, a control plan is automatically implemented to prevent the power system from becoming unstable. For example, Patent Document 1 discloses a power system stabilization device that updates a power system model based on measured values of a power system and periodically updates a control plan. Patent Document 1 discloses that this power system stabilizing device includes a power source such as wind power generation or solar power generation as a control target.
特開2015-130777号公報Japanese Patent Laying-Open No. 2015-130777
 太陽光発電、風力発電等を対象とする電源は天候や気象の影響を常時受けているため、安定化装置が電力系統の計測値に基づいて再生可能エネルギーによる電源の出力の制御案を作成しても、それを実行するまでの間に電源の出力が変化してしまう。そこで、本発明は、再生可能エネルギーに基く電源であっても、制御案によって期待した通りの、電力系統の安定化効果が得られるようにした電力系統制御システムを提供することを目的とする。 Since power sources for solar power generation, wind power generation, etc. are constantly affected by the weather and weather, the stabilization device creates a control plan for the output of the power source using renewable energy based on the measured values of the power system. However, the output of the power supply changes until it is executed. Accordingly, an object of the present invention is to provide a power system control system that can obtain a power system stabilization effect as expected by a control plan even with a power source based on renewable energy.
 前記目的を達成するために、本発明は、電力系統の電源の出力を制御することによって、前記電力系統の安定性を維持する電力系統制御システムであって、前記電力系統は、前記電源として、再生可能エネルギーに基づいて発電し、再生可能エネルギーの状態によって出力が変動する変動電源を複数備え、前記電力系統制御システムは、メモリと、当該メモリに記録されたプログラムを実行するコントローラと、を備え、前記コントローラは、前記複数の変動電源夫々の出力の変動の確率分布を統合し、前記電力系統に想定される故障から当該電力系統の安定性を維持できるように、前記統合した確率分布に基づいて、前記複数の変動電源の夫々の出力を制御する制御案を作成することを特徴とする。 In order to achieve the above object, the present invention provides a power system control system that maintains the stability of the power system by controlling the output of the power supply of the power system. The power system control system includes a plurality of variable power sources that generate power based on renewable energy and whose output varies depending on the state of the renewable energy. The power system control system includes a memory and a controller that executes a program recorded in the memory. The controller integrates the probability distribution of the fluctuations of the outputs of the plurality of variable power supplies, and based on the integrated probability distribution so that the stability of the power system can be maintained from a failure assumed in the power system. Then, a control plan for controlling the output of each of the plurality of variable power supplies is created.
 本発明によれば、再生可能エネルギーに基く電源であっても、制御案によって期待した通りの、電力系統の安定化効果が得られる電力系統制御システムを実現することができる。 According to the present invention, it is possible to realize an electric power system control system that can obtain the effect of stabilizing the electric power system as expected by the control plan even if the power source is based on renewable energy.
電力系統制御システムを電力系統に適用したハードウェアの構成例のブロック図である。It is a block diagram of the hardware structural example which applied the power system control system to the power system. 電力系統制御システムの想定故障データベースの構成例である。It is an example of a structure of the assumption failure database of an electric power system control system. 電力系統制御システムの出力変動データベースの構成例である。It is an example of a structure of the output fluctuation database of an electric power system control system. 電力系統制御システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of an electric power system control system. 変動電源に対する可制御量を算出する処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the process which calculates the controllable amount with respect to a variable power supply. 変動電源の出力の変動の確率分布を示すグラフである。It is a graph which shows the probability distribution of the fluctuation | variation of the output of a fluctuation | variation power supply.
 次に、本発明の実施形態について説明する。図1は、電力系統制御システムを電力系統1に適用したハードウェアのブロック構成例を示す。電力系統制御システムは、演算装置100と電源制御装置200とを備え、演算装置100と電源制御装置200とは通信網900を介して互いに接続されている。通信網900には電力系統1が接続されている。 Next, an embodiment of the present invention will be described. FIG. 1 shows an example of a hardware block configuration in which the power system control system is applied to the power system 1. The power system control system includes a computing device 100 and a power supply control device 200, and the computing device 100 and the power supply control device 200 are connected to each other via a communication network 900. The power system 1 is connected to the communication network 900.
 演算装置100は電力系統1の制御情報を作成し、電源制御装置200は制御情報に基いて電力系統の電源、特に、変動電源を制御する。変動電源とは、風力発電、太陽光発電等、再生可能エネルギーに基いて発電を行うもので、気象や天候等の環境の状態に依って出力が変動してしまう電源である。 The arithmetic device 100 creates control information of the power system 1, and the power control device 200 controls the power source of the power system, in particular, the variable power source based on the control information. The fluctuating power source is a power source that generates power based on renewable energy such as wind power generation or solar power generation, and whose output fluctuates depending on environmental conditions such as weather and weather.
 演算装置100は、所定間隔で電力系統1のモデルデータを作成し、電力系統1に発生し得ることが想定される故障、以後、これを想定故障というが、複数の想定故障毎にモデルを用いた解析を行い、安定化対策を作成する。作成された安定化対策に基づいて、電源制御装置200が発電機、及び/又は、変動電源の解列、停止、又は、出力制限等の電力系統の安定化対策を実行する。“故障”は、事故、不調、そして、障害等を含む用語として理解されてよい。 The arithmetic device 100 creates model data of the power system 1 at predetermined intervals, and is assumed to be a failure that can occur in the power system 1, hereinafter referred to as an assumed failure, but uses a model for each of a plurality of assumed failures. Analysis, and create stabilization measures. Based on the created stabilization measure, the power supply control device 200 executes a power system stabilization measure such as disconnecting, stopping, or limiting the output of the generator and / or the variable power supply. “Failure” may be understood as a term that includes accidents, malfunctions, failures, and the like.
 電力系統1は、発電機4と、変圧器9と、一つ又は複数の計測装置10と、複数の変動電源23(23a、23b、23c)と、を備え、これらはブランチ(線路)2によって接続されている。ブランチ2には複数のノード(母線)3が接続されている。符号7はリレーである。複数の変動電源の夫々、そして、複数の変動電源夫々のリレーは、通信網900に接続されているため、電源制御装置200によって、複数の変動電源の夫々は、電力系統から解列され、又は、停止され、又は、出力制限がされ得るようになっている。発電機4も同様である。ノードは、火力発電機や水力発電機や原子力発電機などの大型電源に接続されている。ブランチには、出力を制御できる、他の電源、例えば、二次電池、燃料電池等が接続されてもよい。 The power system 1 includes a generator 4, a transformer 9, one or a plurality of measuring devices 10, and a plurality of variable power sources 23 (23 a, 23 b, 23 c). It is connected. A plurality of nodes (buses) 3 are connected to the branch 2. Reference numeral 7 denotes a relay. Since each of the plurality of variable power supplies and the relay of each of the plurality of variable power supplies are connected to the communication network 900, each of the plurality of variable power supplies is disconnected from the power system by the power supply control device 200, or , Can be stopped, or output can be limited. The same applies to the generator 4. The node is connected to a large power source such as a thermal power generator, a hydroelectric power generator or a nuclear power generator. The branch may be connected to another power source capable of controlling the output, such as a secondary battery or a fuel cell.
 計測装置10は、通信網900を介して演算装置100の通信モジュール106と電源制御装置200の通信モジュール206に計測データを送信する。計測データは、データを識別するための固有番号と、タイムスタンプとを含んでもよい。計測装置10は、ノード電圧、ブランチ電流、力率、有効電力、及び、無効電力の少なくとも一つを計測するVT、PT、又は、CTでよい。計測装置10は、電力系統1内に存在する他、母線、又は、送電線に存在してもよい。 The measurement device 10 transmits measurement data to the communication module 106 of the arithmetic device 100 and the communication module 206 of the power supply control device 200 via the communication network 900. The measurement data may include a unique number for identifying the data and a time stamp. The measuring device 10 may be VT, PT, or CT that measures at least one of node voltage, branch current, power factor, active power, and reactive power. The measuring device 10 may exist in a bus or a power transmission line in addition to the power system 1.
 演算装置100は、バス線101に、コントローラ(CPU)102、メモリ103、キーボードやマウス等の入力モジュール104、出力モジュール105、通信モジュール106、複数のデータベースが接続した構成を備える。複数のデータベースは、プログラムデータベース130、系統モデルデータベース131、想定故障データベース132とを含んでいる。プログラムデータベース130は、解析モデル作成プログラム、安定性解析プログラム、そして、制御量算出プログラムを備える。コントローラ102は、これらプログラムをメモリ103に読み込んで実行する。これらのプログラムの内容は後述する。 The computing device 100 has a configuration in which a controller (CPU) 102, a memory 103, an input module 104 such as a keyboard and a mouse, an output module 105, a communication module 106, and a plurality of databases are connected to a bus line 101. The plurality of databases includes a program database 130, a system model database 131, and a contingency database 132. The program database 130 includes an analysis model creation program, a stability analysis program, and a control amount calculation program. The controller 102 reads these programs into the memory 103 and executes them. The contents of these programs will be described later.
 表示モジュール105は、例えば、ディスプレイ、プリンタ、又は、音声出力デバイスでよい。入力モジュール104は、例えば、キーボードスイッチ、マウス等のポインティング装置、タッチパネル、又は、音声指示装置よい。通信モジュール106は、通信網900に接続するための回路、及び、通信プロトコルを備える。 The display module 105 may be, for example, a display, a printer, or an audio output device. The input module 104 may be, for example, a keyboard switch, a pointing device such as a mouse, a touch panel, or a voice instruction device. The communication module 106 includes a circuit for connecting to the communication network 900 and a communication protocol.
 コントローラ102は、プログラムデータベース130から所定のプログラムを読み込んで実行する。コントローラ102は、一つまたは複数の半導体チップとして構成されもよいし、または、計算サーバのようなコンピュータ装置として構成されてもよい。メモリ103は、プログラムデータベース130から読み出されたコンピュータプログラム、コントローラ102の演算に必要なデータ及び演算結果、又は、画像データ等を記憶する。 The controller 102 reads a predetermined program from the program database 130 and executes it. The controller 102 may be configured as one or a plurality of semiconductor chips, or may be configured as a computer device such as a calculation server. The memory 103 stores a computer program read from the program database 130, data and calculation results necessary for calculation by the controller 102, image data, and the like.
 系統モデルデータベース131は、電力系統の構成、線路インピーダンス、対地静電容量、有効電力、無効電力、電圧、電圧位相角、電流、力率、状態推定に必要なデータ(バットデータの閾値など)、発電機データ、潮流計算に必要なデータ、及び、過渡計算に必要なデータを格納する。演算装置100の管理者は、これら情報を入力モジュール104によって系統モデルデータベースに入力してよい。 The system model database 131 includes the configuration of the power system, line impedance, ground capacitance, active power, reactive power, voltage, voltage phase angle, current, power factor, data necessary for state estimation (such as threshold value of bat data), The generator data, data necessary for power flow calculation, and data necessary for transient calculation are stored. The administrator of the arithmetic device 100 may input these information into the system model database by the input module 104.
 想定故障データベース132は、一つ又は複数の想定故障のデータを含む。想定故障とは、電力系統に生じるイベント群であり、例えば、送電線の一線地絡故障や、保護リレーや系統安定化リレーの起動による送電線の通電遮断(開放)、発電所の解列、又は、負荷の脱落である。図2に示すように、複数の想定故障の夫々は、イベント発生の時刻、イベント発生の箇所、及び、様相からなるテーブル2000を備える。 The contingency database 132 includes data of one or a plurality of contingencies. An assumed failure is a group of events that occur in the power system. For example, a one-line ground fault in a transmission line, energization interruption (opening) of a transmission line due to activation of a protection relay or a system stabilization relay, disconnection of a power plant, Or the load is dropped. As shown in FIG. 2, each of the plurality of contingency failures includes a table 2000 including an event occurrence time, an event occurrence location, and an aspect.
 電源制御装置200は、バス線201に、コントローラ(CPU)202、メモリ203、通信モジュール206、及び、複数のデータベースが接続した構成を備える。複数のデータベースは、プログラムデータベース230と、出力変動データベース231と、を備える。 The power supply control device 200 has a configuration in which a controller (CPU) 202, a memory 203, a communication module 206, and a plurality of databases are connected to a bus line 201. The plurality of databases includes a program database 230 and an output fluctuation database 231.
 プログラムデータベース230には、可制御量算出プログラム、制御量配分プログラムが格納される。コントローラ202は、これらプログラムをメモリ203に読み込んで実行する。これらプログラムの内容は後述する。 The program database 230 stores a controllable amount calculation program and a control amount distribution program. The controller 202 reads these programs into the memory 203 and executes them. The contents of these programs will be described later.
 出力変動データベース231は、電源制御装置200が制御する変動電源の出力変動に関する情報を持つ。出力変動データベース231は、例えば、図3に示すように、複数の変動電源毎に電源の出力変動に対する確率分布の情報を有する。電源制御装置200のコントローラ202は、変動電源23a、変動電源23b、及び、変動電源23cを常時監視して、気象や天候によって変動する変動電源の出力の履歴を計測データとして収集して変動量を算出し、これに統計的処理を加えて出力変動データベース231に記録する。なお、発電機4は気象や天候によって出力が変化しないために、電源制御装置200は、発電機の出力変動を出力変動データベース231に記録しないでもよい。 The output fluctuation database 231 has information related to output fluctuation of the variable power supply controlled by the power supply control device 200. For example, as shown in FIG. 3, the output fluctuation database 231 includes information on probability distributions for power supply output fluctuations for each of a plurality of variable power supplies. The controller 202 of the power supply control device 200 constantly monitors the variable power supply 23a, the variable power supply 23b, and the variable power supply 23c, collects the history of output of the variable power supply that varies depending on the weather and weather as measurement data, and calculates the amount of change. Calculate, add statistical processing to this, and record in the output fluctuation database 231. Since the output of the generator 4 does not change due to weather or weather, the power supply control device 200 may not record the output fluctuation of the generator in the output fluctuation database 231.
 次に、電力系統制御システムの動作(電力系統安定化処理)の例について説明する。図4は、そのフローチャートである。演算装置100は、解析モデル作成処理S1、安定性判定処理S2、及び、制御案作成処理S3を実行する。電源制御装置200は、可制御量算出処理S4、そして、制御量分配S5を実行する。 Next, an example of the operation of the power system control system (power system stabilization processing) will be described. FIG. 4 is a flowchart thereof. The arithmetic device 100 executes an analysis model creation process S1, a stability determination process S2, and a control plan creation process S3. The power supply control device 200 executes a controllable amount calculation process S4 and a control amount distribution S5.
 演算装置100のコントローラ102、そして、電源制御装置200のコントローラ202は、所定時間毎に図4のフローチャートを開始する。演算装置100の通信モジュール106は、通信網を介して、計測装置10から電力系統の計測データD1を受信する。コントローラ102は、解析モデル作成プログラムを実行して(解析モデル作成処理S1)、系統モデルデータベース131から既述の系統データを取り込み、計測データD1に基づいて、状態推定等によって解析モデルデータD2を作成する。 The controller 102 of the arithmetic device 100 and the controller 202 of the power supply control device 200 start the flowchart of FIG. 4 every predetermined time. The communication module 106 of the arithmetic device 100 receives the power system measurement data D1 from the measurement device 10 via the communication network. The controller 102 executes the analysis model creation program (analysis model creation processing S1), fetches the aforementioned system data from the system model database 131, and creates the analysis model data D2 by state estimation or the like based on the measurement data D1. To do.
 電力系統の安定性の判断のためには、特定時間において、全ての母線及び送電線について、電圧の大きさ、電圧の位相、有効電力、そして、無効電力等の電気諸量が必要である。計測データに含まれる、計測時刻の不一致、計測誤差、に対して、特定時間の電気諸量を推定する技術が状態推定であり、例えば「Lars Holten,Anders Gjelsvlk,Sverre Adam,F. F. Wu,and Wen-Hs Iung E. Liu,“Comparison of Different Methods for State Estimation”,IEEE Transaction on Power Systems,Vol.3,pp.1798-1806,1988」に記載されている。 To determine the stability of the power system, electrical quantities such as voltage magnitude, voltage phase, active power, and reactive power are required for all buses and transmission lines at a specific time. The state estimation is a technique for estimating various electrical quantities at a specific time with respect to measurement time discrepancies and measurement errors included in measurement data, for example, “Lars Holten, Anders Gjelsvlk, Sverre Adam, F. F. Wu , And Wen-Hs Iung E. Liu, “Comparison of Different Methods for State Estimation”, IEEE Transaction on Power Systems, Vol. 3, pp. 1798-1806, 1988 ”.
 コントローラ102は、解析モデル作成プログラムに基づいて、既述の状態推定によって得られた電気諸量と、系統モデルデータベース131に含まれる設備の電気的特性データと、系統モデルデータベース131に含まれる発電機や制御系の動特性データを合わせて、解析モデルデータD2を作成する。解析モデルデータとは、電力系統の安定性を解析するためのデータ群である。コントローラ102は、解析モデルデータをメモリ103に記録する。 The controller 102, based on the analysis model creation program, the electrical quantities obtained by the state estimation described above, the electrical characteristic data of the equipment included in the system model database 131, and the generator included in the system model database 131 The analysis model data D2 is created by combining the dynamic characteristic data of the control system. The analysis model data is a data group for analyzing the stability of the power system. The controller 102 records the analysis model data in the memory 103.
 次に、コントローラ102は、安定性解析プログラを実行して電力系統の安定性を判定する(安定性判定処理S2)。コントローラ102は、メモリ103から解析モデルデータを読み込み、想定故障データベース132から複数の想定故障データを読み込み、各想定故障後に電力系統の現在の状態を維持しながら運転できるか可否を解析して、想定故障時に電力系統が安定か不安定かを判定する。 Next, the controller 102 executes a stability analysis program to determine the stability of the power system (stability determination processing S2). The controller 102 reads the analysis model data from the memory 103, reads a plurality of contingency data from the contingency database 132, analyzes whether the operation can be performed while maintaining the current state of the power system after each contingency, and assumes Determine whether the power system is stable or unstable at the time of failure.
 コントローラ102は、例えば、過渡計算によって想定故障後の電力系統の挙動を計算することによって、電力系統の運転が維持できるか否かを判定する。過渡計算として、例えば、関根泰次「電力系統過渡解析論」pp.377-392が知られている。コントローラ102は、過渡計算によって得られた、故障後の電力系統の挙動が、例えば、電圧が下がり続ける、又は、発電機の加速によって発電機の操作角が予め定めた閾値を超えることを判定すると、電力系統が不安定化して電力系統の運転を維持できないと判断する。 The controller 102 determines whether or not the operation of the power system can be maintained, for example, by calculating the behavior of the power system after the assumed failure by transient calculation. As the transient calculation, for example, Yasuji Sekine “Power System Transient Analysis” pp. 377-392 is known. When the controller 102 determines that the behavior of the power system after the failure obtained by the transient calculation is, for example, that the voltage keeps decreasing or the operating angle of the generator exceeds a predetermined threshold due to the acceleration of the generator. The power system becomes unstable and it is determined that the operation of the power system cannot be maintained.
 コントローラ102は、想定故障データベース132から想定故障データを順番に読み出して電力系統の安定性の可否を判定する。コントローラ102は、読み出した想定故障データに基づいて、電力系統が不安定であると判断すると、制御量算出プログラムを実行して、電力系統を安定化するための制御量、例えば、発電機4、及び/又は、変動電源23a,23b,23cの出力の制限量を設定する制御案を作成する(制御案作成処理S3)。 The controller 102 sequentially reads out the assumed failure data from the assumed failure database 132 and determines whether or not the power system is stable. When the controller 102 determines that the power system is unstable based on the read-out assumed failure data, the controller 102 executes a control amount calculation program to control the control amount, for example, the generator 4, And / or a control plan for setting the output limit amount of the variable power sources 23a, 23b, and 23c is created (control plan creation process S3).
 コントローラ102は、制御案作成処理S3において、可制御量D3を参照する。可制御量とは、電源がその出力を制限できる範囲、幅、又は、上限である。制御案の制限量は可制御量の範囲で設定される。制御案は、特開2015-130777号公報に記載の方法によって決められてよい。発電機4の出力は、天候や気象の影響を受けないため、発電機4の可制御量は発電機の現在の出力でよい。即ち、コントローラ102は、発電機の現在の出力を上限として、発電機の出力を制限することができる。 The controller 102 refers to the controllable amount D3 in the control plan creation process S3. The controllable amount is a range, width, or upper limit in which the power supply can limit its output. The limit amount of the control plan is set within the range of the controllable amount. The control plan may be determined by a method described in JP-A-2015-130777. Since the output of the generator 4 is not affected by weather or weather, the controllable amount of the generator 4 may be the current output of the generator. That is, the controller 102 can limit the output of the generator with the current output of the generator as the upper limit.
 一方、変動電源23a,23b,23cの出力は天候や気象の影響を受けて変動するため、変動電源の可制御量D3は、天候や気象の影響を受けて変動した後の出力になる。電源制御装置200のコントローラ202は、変動電源の現在の出力と、出力変動データベース23とに基づいて変動電源の可制御量を計算する(可制御量算出処理S4)。ところで、複数の変動電源夫々に対して可制御量を計算し、その可制御量を合計した値よりも、複数の変動電源の出力を統合して計算した可制御量の方が大きい。即ち、後者の方が、想定故障に対する電力系統の安定化に対する貢献度が大きいことになる。この詳細は後述する。電源制御装置200のコントローラ202は、発電機4の可制御量、そして、変動電源23a,23b,23cの可制御量を計算してメモリ203に記録する。 On the other hand, since the outputs of the variable power supplies 23a, 23b, and 23c fluctuate due to the influence of weather and weather, the controllable amount D3 of the variable power supply becomes an output after fluctuating due to the influence of weather and weather. The controller 202 of the power supply control device 200 calculates the controllable amount of the variable power supply based on the current output of the variable power supply and the output fluctuation database 23 (controllable amount calculation process S4). By the way, the controllable amount calculated by integrating the outputs of the plurality of variable power sources is larger than the value obtained by calculating the controllable amount for each of the plurality of variable power sources and summing the controllable amounts. In other words, the latter has a greater contribution to the stabilization of the power system with respect to the assumed failure. Details of this will be described later. The controller 202 of the power supply control device 200 calculates the controllable amount of the generator 4 and the controllable amounts of the variable power sources 23 a, 23 b, and 23 c and records them in the memory 203.
 コントローラ102は、安定性判定処理S2において、電力系統が安定でないことを判定すると、電源制御装置200から、発電機4の可制御量、そして、変動電源23a,23b,23cの可制御量の提供を受けて、想定故障データベース131から取り込んだ想定故障に対して、どの出力をどの程度増減するかの制御案を作成し(制御案作成処理S4)、これをメモリ103の所定領域に記録する。メモリ103の当該所定領域には、複数の想定故障と、各想定故障の制御案が、例えばテーブルの形式で記録されていてよい。コントローラ102は、図4のフローチャートを実行する毎にテーブルを更新する。したがって、テーブルは最新の制御案を備える。 When the controller 102 determines that the power system is not stable in the stability determination process S2, the controller 102 provides the controllable amount of the generator 4 and the controllable amounts of the variable power sources 23a, 23b, and 23c from the power supply control device 200. In response to this, a control plan for how much the output is increased or decreased with respect to the assumed failure taken in from the assumed failure database 131 is created (control plan creation process S4), and this is recorded in a predetermined area of the memory 103. In the predetermined area of the memory 103, a plurality of contingencies and control plans for the contingencies may be recorded in the form of a table, for example. The controller 102 updates the table every time the flowchart of FIG. 4 is executed. Therefore, the table has the latest control plan.
 コントローラ102はS3の処理を終了すると、電力系統安定性判定処理S2に戻り、次の想定故障について電力系統安定性処理S2を適用する。コントローラ102はこの処理において、電力系統が安定であることを判定すると、S6の処理に移行して、想定故障データベースに登録された全ての想定故障について、電力系統の安定性の検証を実行したか否かを判定する。 When the process of S3 is completed, the controller 102 returns to the power system stability determination process S2, and applies the power system stability process S2 for the next assumed failure. If the controller 102 determines in this process that the power system is stable, the controller 102 proceeds to the process of S6, and has the verification of the stability of the power system been performed for all the assumed faults registered in the assumed fault database? Determine whether or not.
 コントローラ102はS6を肯定するとメモリ103を参照して、少なくとも一つの想定故障について制御案が記憶されているか否かを判定する。コントローラ102は、これを肯定すると、全ての想定故障について、想定故障毎の制御案を制御案データD4として、電源制御装置200に送信してフローチャートを終了する。コントローラ102は、全ての想定故障について制御案が無いことを判定すると、電源制御装置200に送信することなくフローチャートを終了する。 When the controller 102 affirms S6, it refers to the memory 103 and determines whether or not a control plan is stored for at least one contingency failure. If this is affirmed, the controller 102 transmits the control plan for each contingency to the power supply control device 200 as control plan data D4 for all contingencies, and ends the flowchart. When the controller 102 determines that there is no control plan for all the assumed failures, the controller 102 ends the flowchart without transmitting to the power supply control device 200.
 一方、電源制御装置200のコントローラ202は、メモリ203、演算装置100から受信した制御案データD4を記憶する。さらに、コントローラ202は、計測値や保護リレーの起動信号を計測データD1として受信し、計測データD1が正常値の範囲内か否かを判定することによって、電力系統に故障が発生したか否かを判定する(S7)。コントローラ202は、計測値が規定内であることを判定すると、電力系統に故障はないとしてフローチャートを終了する。 On the other hand, the controller 202 of the power supply control device 200 stores the control plan data D4 received from the memory 203 and the arithmetic device 100. Furthermore, the controller 202 receives the measurement value and the activation signal of the protection relay as the measurement data D1, and determines whether or not a failure has occurred in the power system by determining whether or not the measurement data D1 is within the normal value range. Is determined (S7). When the controller 202 determines that the measured value is within the specified range, the controller 202 ends the flowchart assuming that there is no failure in the power system.
 一方、コントローラ202が電力系統に故障が発生したことを判定すると、計測データD1と複数の想定故障とを比較する。コントローラ202は、通信モジュール206によって、想定故障データベース132の情報を通信網900を介して取得すればよい。コントローラ202は計測データD1がどの想定故障にも対応しないことを判定するとこのフローチャートを終了する。この際、コントローラ202は、電力系統を安定化するために、所定の対策を実行してもよい。 On the other hand, when the controller 202 determines that a failure has occurred in the power system, the measurement data D1 is compared with a plurality of assumed failures. The controller 202 may acquire the information of the contingency database 132 through the communication network 900 using the communication module 206. When the controller 202 determines that the measurement data D1 does not correspond to any conceivable failure, the flowchart ends. At this time, the controller 202 may execute a predetermined measure in order to stabilize the power system.
 次いで、コントローラ202は計測データD1が複数の想定故障のうち、少なくとも一つの想定故障に対応することを判定すると、メモリ203を参照して当該想定故障について制御案が設定されているか否かを判定する。コントローラ202は、この判定を否定するとフローチャートを終了する。この際、コントローラ202は、電力系統を安定化するために、所定の対策を実行してもよい。 Next, when the controller 202 determines that the measurement data D1 corresponds to at least one assumed failure among a plurality of assumed failures, the controller 202 refers to the memory 203 and determines whether a control plan is set for the assumed failure. To do. If the determination is negative, the controller 202 ends the flowchart. At this time, the controller 202 may execute a predetermined measure in order to stabilize the power system.
 一方、コントローラ202は、この判定を肯定判定して、電力系統に発生した故障に制御案が設定されていることを確認すると、制御量分配プログラムを実行して、先ず、制御案データD4に基づいて、電力系統を安定化するための出力の制限量を発電機4、及び/又は、変動電源23a,23b,23cに分配する(制御量分配処理S5)。 On the other hand, when the controller 202 affirms this determination and confirms that the control plan is set for the failure that has occurred in the power system, the controller 202 executes the control amount distribution program, and first, based on the control plan data D4. Thus, the output limit amount for stabilizing the power system is distributed to the generator 4 and / or the variable power sources 23a, 23b, and 23c (control amount distribution processing S5).
 コントローラ202が電力系統に発生した故障を想定故障に該当すると判定しても、この想定故障に制御案が設定されていない場合は、フローチャートを終了し、電力系統を安定化するために、所定の対策を実行してもよい。前記割り振りは、発電機4、及び/又は、変動電源23a,23b,23cに対して、偏りなく行なわれることが好ましい。例えば、制限量が発電出力に応じて按分されればよい。 Even if the controller 202 determines that a failure occurring in the power system corresponds to the assumed failure, if the control plan is not set for this assumed failure, the flowchart is terminated and a predetermined value is used to stabilize the power system. Countermeasures may be implemented. It is preferable that the allocation is performed without any bias to the generator 4 and / or the variable power sources 23a, 23b, and 23c. For example, the limit amount may be apportioned according to the power generation output.
 例えば、変動電源全体に対して、60MWの出力低下が要求された場合で、変動電源23a、変動電源23b、変動電源23cの出力が夫々、50MW、130MW、120MWの場合、コントローラ202は、変動電源23aに10MWの出力低下、変動電源23bに26MWの出力低下、変動電源23cに24MWの出力低下を割り振ればよい。 For example, when the output reduction of 60 MW is requested for the entire variable power supply, and the outputs of the variable power supply 23a, the variable power supply 23b, and the variable power supply 23c are 50 MW, 130 MW, and 120 MW, respectively, the controller 202 What is necessary is just to allocate the output decrease of 10 MW to 23a, the output decrease of 26 MW to the variable power source 23b, and the output decrease of 24 MW to the variable power source 23c.
 なお、コントローラ202は、既述の割り振りについて、変動電源の出力に応じて、割り振り決めることを説明したが、電源制御装置200が、過去の分配の履歴を保持し、複数の変動電源の間で、累積した割り振り量が等しくなるようにしてもよい。コントローラ202は、分配した制御量を発電機4、及び、変動電源23a,23b,23cに送信してフローチャートを終了する。発電機4、及び、変動電源23a,23b,23cは、送信された制御量にしたがって、出力を制限、又は、増加させる。 Note that the controller 202 has been described that the allocation described above is determined according to the output of the variable power supply. However, the power supply control device 200 holds a history of past distributions, and a plurality of variable power supplies. The accumulated allocation amount may be made equal. The controller 202 transmits the distributed control amount to the generator 4 and the variable power sources 23a, 23b, and 23c, and ends the flowchart. The generator 4 and the variable power sources 23a, 23b, and 23c limit or increase the output according to the transmitted control amount.
 次に、変動電源23a,23b,23cに対する可制御量を算出する処理(図4のS4)を詳細に説明する。図5は、そのフローチャートであって、コントローラ202は、可制御量算出プログラムに基づいて、出力変動データベース231を参照して、変動電源23a,23b,23c夫々の出力変動の統計情報を取得する(S500)。 Next, the process of calculating the controllable amount for the variable power sources 23a, 23b, 23c (S4 in FIG. 4) will be described in detail. FIG. 5 is a flowchart of this, and the controller 202 refers to the output fluctuation database 231 based on the controllable amount calculation program, and acquires the statistical information of the output fluctuations of the variable power supplies 23a, 23b, and 23c ( S500).
 図6に、変動電源23a,23b,23c夫々について、現出力からの変動の確率分布が正規分布であることを示す。コントローラ202は、各変動電源について、正規分布の平均値と分散を取得し、そして、これらに基づいて、変動電源23a,23b,23c夫々の出力を統合した統合出力の出力変動の確率分布が正規分布(図6:600)に従うとして、平均値と分散を算出する(S502)。変動電源23a、変動電源23b、変動電源23c夫々の出力変動の確率分布に於ける平均と分散を、μa、μb、μc、σa、σb、σcとすると、三つの変動電源の出力の変動の確率分布が統合された統合モデルの正規分布(図6:600)は、下記の式1によって表現される。 FIG. 6 shows that the probability distribution of fluctuation from the current output is a normal distribution for each of the variable power supplies 23a, 23b, and 23c. The controller 202 obtains the average value and variance of the normal distribution for each variable power source, and based on these, the probability distribution of the output fluctuation of the integrated output obtained by integrating the outputs of the variable power sources 23a, 23b, and 23c is normal. According to the distribution (FIG. 6: 600), the average value and the variance are calculated (S502). Fluctuation power 23a, fluctuation power 23b, and an in average probability distribution of the output fluctuation of the fluctuation power 23c respectively dispersed, μa, μb, μc, σa 2, σb 2, When .sigma.c 2, the output of the three variations Power The normal distribution (FIG. 6: 600) of the integrated model in which the probability distribution of fluctuation is integrated is expressed by the following Equation 1.
Figure JPOXMLDOC01-appb-M000001
 統合モデルの平均は“μa+μb+μc”であり、分散は“(σ 2+σ 2+σ 21/2”である。変動電源23a、変動電源23b、変動電源23c夫々の確率分布に於ける分散の和(σ+σ+σ)と統合モデルの確率分布に於ける分散との差分は、次の式2のようになる。
Figure JPOXMLDOC01-appb-M000001
The average of the integrated model is “μa + μb + μc”, and the variance is “(σ a 2 + σ b 2 + σ c 2 ) 1/2 ”. The difference between the variance (σ a + σ b + σ c ) in the probability distribution of each of the variable power source 23a, the variable power source 23b, and the variable power source 23c and the variance in the probability distribution of the integrated model is expressed by the following equation 2. become.
Figure JPOXMLDOC01-appb-M000002
 この差分があることは、統合モデルにおいて、出力に大きな変動が生じる確率を低下させ、統合モデルによって、複数の変動電源に対する可制御量を大きくとることができることを示している。即ち、コントローラ202は、変動電源23a、変動電源23b、変動電源23c夫々の出力に基づいて可制御量を求める場合よりも、統合モデルの出力に基づいて可制御量を求める方が可制御量を多く設定できる。
Figure JPOXMLDOC01-appb-M000002
The presence of this difference indicates that the probability of large fluctuations in the output is reduced in the integrated model, and the controllable amount for a plurality of variable power supplies can be increased by the integrated model. That is, the controller 202 obtains the controllable amount based on the output of the integrated model rather than obtaining the controllable amount based on the outputs of the variable power source 23a, the variable power source 23b, and the variable power source 23c. Many can be set.
 コントローラ202は、統合モデルの可制御量を算出するために、統合モデルの出力が、次の計算のタイミングまでに変動してしまう量を見積る必要がある。そこで、コントローラ202は閾値(α)を設定し(S504)、この閾値の範囲内で出力の変動があることを想定し、統合モデルの現在の出力(複数の変動電源夫々の出力の和)から出力の変動分を引いたものが統合モデルの可制御量になる。 In order to calculate the controllable amount of the integrated model, the controller 202 needs to estimate the amount by which the output of the integrated model fluctuates before the next calculation timing. Therefore, the controller 202 sets a threshold value (α) (S504), and assumes that there is an output variation within the range of the threshold value, and based on the current output of the integrated model (sum of outputs of a plurality of variable power supplies). Subtracting the fluctuation of the output is the controllable amount of the integrated model.
 閾値は、例えば、統合電源モデルの確率分布下端の確率分布の合計値(図6の602)でよい。この閾値を、例えば、2.5%に設定すると、式3のαを次の計算タイミングまでに変化する統合モデルの変動量として、これを現在の出力から引いた値が統合モデルの可制御量になる(S506)。電源制御装置200のコントローラ202は、この可制御量を、演算装置100が制御案を作成できるように、通信網900を介して演算装置100に送信すればよい。 The threshold value may be, for example, the total value (602 in FIG. 6) of the probability distribution at the lower end of the probability distribution of the integrated power supply model. For example, if this threshold is set to 2.5%, the value obtained by subtracting this from the current output is the controllable amount of the integrated model. (S506). The controller 202 of the power supply control device 200 may transmit this controllable amount to the arithmetic device 100 via the communication network 900 so that the arithmetic device 100 can create a control plan.
Figure JPOXMLDOC01-appb-M000003
 閾値は既述の値(2.5パーセント)に限らない。閾値の値は変動電源の特性、電力系統の性能、天候や気象の特性等によって適宜選択されてよい。既述の説明によれば、変動電源の出力の変動野確率分布が正規分布に従うこととしたが、これに限定されない。変動電源の数は三つに限らず、二つ以上であればよい。演算装置100は、可制御量と変動電源の出力を表示モジュール105に表示してもよい。演算装置100は、算出した可制御量が正常値の範囲にあるか否かを判定し、適当でない可制御量を外してもよい。管理者が入力モジュール104を用いてこれを実施してよい。
Figure JPOXMLDOC01-appb-M000003
The threshold value is not limited to the aforementioned value (2.5%). The threshold value may be appropriately selected according to the characteristics of the variable power source, the performance of the power system, the weather, the characteristics of the weather, and the like. According to the above description, the fluctuation field probability distribution of the output of the fluctuation power source follows the normal distribution, but the present invention is not limited to this. The number of variable power supplies is not limited to three, but may be two or more. The arithmetic device 100 may display the controllable amount and the output of the variable power source on the display module 105. The arithmetic device 100 may determine whether or not the calculated controllable amount is within a normal value range, and may remove the uncontrollable control amount. An administrator may do this using the input module 104.
 電力系統制御システムが制御案を作成してから、電力系統に実際に故障が発生してこの制御案を実施するまでの間に天候が変化すると変動電源の出力が変動してしまう。この場合、電力系統に制御案を適用しても期待通りに電力系統の安定を維持することができない。しかしながら、既述の実施形態によれば、電力系統制御システムは変動電源の出力の変動を見込んで制御案を作成するため、制御案を作成してから制御案を実施する間に天候が変化しても期待通りに電力系統の安定を維持することができる。そして、既述の電力系統制御システムは複数の変動電源の出力を統合したモデルの確率分布に基いて出力の変動を予測して可制御量を計算するため、この可制御量を、複数の変動電源夫々の確率分布に基いて複数変動電源夫々の出力の変動を予測して計算された可制御量よりも、大きくとることができる。 When the weather changes between when the power system control system creates a control plan and when the power system actually fails and when this control plan is implemented, the output of the variable power source will fluctuate. In this case, even if the control plan is applied to the power system, the stability of the power system cannot be maintained as expected. However, according to the above-described embodiment, the power system control system creates a control plan in anticipation of fluctuations in the output of the variable power source. Therefore, the weather changes between the creation of the control plan and the execution of the control plan. However, the stability of the power system can be maintained as expected. The power system control system described above calculates the controllable amount by predicting the output variation based on the probability distribution of the model that integrates the outputs of the multiple variable power supplies. It can be made larger than the controllable amount calculated by predicting the fluctuation of the output of each of the plurality of variable power supplies based on the probability distribution of each power supply.
 既述の実施形態において、複数の電源の夫々に対して、電源制御装置が存在していてもよい。また、可制御量算出処理S4および制御量配分処理S5を電源制御装置200が行うように説明したが、いずれかを演算装置100が実行するようにしてもよいし、両方を演算装置100が実行してもよい。またさらに、演算装置100と電源制御装置200とを単一のデバイスとしてもよい。また、電力系統制御システムは、想定故障に対する制御案を複数作成してもよい。またさらに、電力系統制御システムは、蓄電池に変動電源の出力を蓄電することを、変動電源に対する制限量、或いは、その一部の代用として用いてもよい。 In the above-described embodiment, a power supply control device may exist for each of a plurality of power supplies. In addition, the controllable amount calculation process S4 and the control amount distribution process S5 have been described as being performed by the power supply control device 200, but either one may be executed by the arithmetic device 100, or both may be executed by the arithmetic device 100. May be. Furthermore, the arithmetic device 100 and the power supply control device 200 may be a single device. Moreover, the power system control system may create a plurality of control plans for the contingency failure. Furthermore, the power system control system may use the storage of the output of the variable power source in the storage battery as a limited amount for the variable power source or as a substitute for a part thereof.
 既述した実施形態では、複数の変動電源に対する可制御量を設定することを、複数の変動電源を一つのステップ(一段)にて統合したモデルを生成することにより実行した。複数の変動電源から統一モデルを設定することを複数のステップによって可能にしてもよい。例えば、複数の変動電源(変動電源23a,23b)の統一モデルを設定し、次いで、この統一モデルの変動電源に他の変動電源(23c)を加えたモデルを生成するようにしてもよい。 In the above-described embodiment, setting the controllable amount for a plurality of variable power sources is performed by generating a model in which the plurality of variable power sources are integrated in one step (one stage). It may be possible to set a unified model from a plurality of variable power sources by a plurality of steps. For example, a unified model of a plurality of variable power supplies ( variable power supplies 23a and 23b) may be set, and then a model in which another variable power supply (23c) is added to the variable power supply of this unified model may be generated.
 またさらに、電源制御装置200に、制御量を各変動電源に配分する前に、想定故障に対して電源システムを安定化できるか否かを判定する判定モジュールと、これを安定化できない場合、制御量を変更する制御量補正モジュールを持たせてもよい。システムが所定タイミング毎にモデルデータを作り直して変動電源に対する制御量を生成した場合の当該制御量と,電源制御装置200が複数の変動電源の夫々に配分する制御量が異なり、これによって、システムの安定化の程度が悪化するおそれがあるためである。以上説明した実施形態は本発明を限定するためのものではなく、実施形態を適宜変更してもよい。 Still further, before allocating the control amount to each variable power supply to the power supply control device 200, a determination module for determining whether or not the power supply system can be stabilized against an assumed failure, and if this cannot be stabilized, control is performed. A control amount correction module for changing the amount may be provided. The control amount when the system regenerates model data at each predetermined timing and generates a control amount for the variable power supply differs from the control amount that the power supply control device 200 distributes to each of the plurality of variable power supplies. This is because the degree of stabilization may deteriorate. The embodiment described above is not intended to limit the present invention, and the embodiment may be changed as appropriate.
1:電力系統
2:送電線
3:母線
4:電源
7:遮断機(リレー)
9:変圧器
10:計測器
100:演算装置
101:通信バス線
102:コントローラ
103:メモリ
104:入力モジュール
105:表示モジュール
106:通信モジュール
130:プログラムデータベース
131:系統モデルデータベース
132:想定故障データベース
200:電源制御装置
201:通信バス線
202:コントローラ
203:メモリ
206:通信部
230:プログラムデータベース
231:出力変動データベース
900:通信網
1: Power system 2: Transmission line 3: Bus line 4: Power supply 7: Circuit breaker (relay)
9: Transformer 10: Measuring instrument 100: Arithmetic device 101: Communication bus line 102: Controller 103: Memory 104: Input module 105: Display module 106: Communication module 130: Program database 131: System model database 132: Assumed failure database 200 : Power supply control device 201: Communication bus line 202: Controller 203: Memory 206: Communication unit 230: Program database 231: Output fluctuation database 900: Communication network

Claims (10)

  1.  電力系統の電源の出力を制御することによって、前記電力系統の安定性を維持する電力系統制御システムであって、
     前記電力系統は、前記電源として、再生可能エネルギーに基づいて発電し、再生可能エネルギーの状態によって出力が変動する変動電源を複数備え、
     前記電力系統制御システムは、メモリと、当該メモリに記録されたプログラムを実行するコントローラと、を備え、
     前記コントローラは、
     前記複数の変動電源夫々の出力の変動の確率分布を統合し、
     前記電力系統に想定される故障から当該電力系統の安定性を維持できるように、前記統合した確率分布に基づいて、前記複数の変動電源の夫々の出力を制御する制御案を作成する、
     電力系統制御システム。
    A power system control system that maintains the stability of the power system by controlling the output of the power supply of the power system,
    The power system, as the power source, includes a plurality of variable power sources that generate power based on renewable energy and whose output varies depending on the state of the renewable energy,
    The power system control system includes a memory and a controller that executes a program recorded in the memory,
    The controller is
    Integrating the probability distribution of fluctuations in the output of each of the plurality of variable power sources;
    Create a control plan for controlling the output of each of the plurality of variable power sources based on the integrated probability distribution so that the stability of the power system can be maintained from a failure assumed in the power system.
    Power system control system.
  2.  前記メモリは前記電力系統の構成情報を記憶し、
     前記コントローラは、
     前記メモリから前記構成情報を読み込み、
     前記電力系統の計測データを取り込み、
     前記計測データと前記構成情報とに基づいて、前記電力系統の安定性を解析するためのモデルを作り、
     当該モデルに基づいて前記制御案を算出する、
     請求項1記載の電力系統制御システム。
    The memory stores configuration information of the power system,
    The controller is
    Reading the configuration information from the memory;
    Capture measurement data of the power system,
    Based on the measurement data and the configuration information, create a model for analyzing the stability of the power system,
    Calculating the control plan based on the model;
    The power system control system according to claim 1.
  3.  前記メモリは前記電力系統に対して想定される故障のシナリオを記憶し、
     前記コントローラは、
     前記メモリから前記故障のシナリオを読み込み、
     前記統合した確率分布に基づいて、前記複数の変動電源に対して出力を制限できる可制御量を算出し、
     前記モデルと、前記故障のシナリオと、前記可制御量と、に基づいて、前記制御案を作成する、
     請求項2記載の電力系統制御システム。
    The memory stores possible failure scenarios for the power system;
    The controller is
    Read the failure scenario from the memory;
    Based on the integrated probability distribution, a controllable amount capable of limiting the output for the plurality of variable power sources is calculated,
    Creating the control proposal based on the model, the failure scenario, and the controllable amount;
    The power system control system according to claim 2.
  4.  前記制御案は、前記複数の変動電源に対する出力の制限量を含み、
     前記コントローラは、
     前記想定した故障が前記電力系統に発生した際に、前記制限量を前記複数の変動電源に配分し、当該配分された制限量を前記複数の変動電源夫々に割り当てる、
     請求項3記載の電力系統制御システム。
    The control plan includes a limit amount of output for the plurality of variable power sources,
    The controller is
    When the assumed failure occurs in the power system, the limit amount is allocated to the plurality of variable power sources, and the allocated limit amount is allocated to each of the plurality of variable power sources.
    The power system control system according to claim 3.
  5.  前記コントローラは、
     前記可制御量の範囲で前記制限量を設定する、
     請求項4記載の電力系統制御システム。
    The controller is
    Setting the limit amount within the controllable amount range;
    The power system control system according to claim 4.
  6.  前記コントローラは、
     前記複数の変動電源夫々の現在の出力に基づいて、前記制限量を前記複数の変動電源に配分する、
     請求項4記載の電力系統制御システム。
    The controller is
    Distributing the limit amount to the plurality of variable power sources based on the current output of each of the plurality of variable power sources;
    The power system control system according to claim 4.
  7.  前記メモリは、前記複数の変動電源毎に出力の変動の履歴情報を記憶する、
     請求項1記載の電力系統制御システム。
    The memory stores output fluctuation history information for each of the plurality of fluctuation power supplies.
    The power system control system according to claim 1.
  8.  前記確率分布は前記複数の変動電源夫々の出力の変動量の正規分布である、
     請求項1記載の電力系統制御システム。
    The probability distribution is a normal distribution of fluctuation amounts of outputs of the plurality of variable power sources.
    The power system control system according to claim 1.
  9.  前記統合した確率分布に基づいて前記複数の変動電源に対して算出された可制御量は、前記複数の変動電源夫々の確率分布に基づいて算出された可制御量より大きい値である、
     請求項3記載の電力系統制御システム。
    The controllable amount calculated for the plurality of variable power sources based on the integrated probability distribution is larger than the controllable amount calculated based on the probability distribution of each of the plurality of variable power sources.
    The power system control system according to claim 3.
  10.  電力系統制御システムが電力系統の電源の出力を制御することによって、前記電力系統の安定性を維持する電力系統制御方法であって、
     前記電力系統は、前記電源として、再生可能エネルギーに基づいて発電し、再生可能エネルギーの状態によって出力が変動する変動電源を複数備え、
     前記電力系統制御システムは、
     前記複数の変動電源夫々の出力の変動の確率分布を統合し、
     前記電力系統に想定される故障から当該電力系統の安定性を維持できるように、前記統合した確率分布に基づいて、前記複数の変動電源の夫々の出力を制御する制御案を作成する、
     電力系統制御方法。
    A power system control method for maintaining the stability of the power system by controlling the output of the power source of the power system by the power system control system,
    The power system, as the power source, includes a plurality of variable power sources that generate power based on renewable energy and whose output varies depending on the state of the renewable energy,
    The power system control system is:
    Integrating the probability distribution of fluctuations in the output of each of the plurality of variable power supplies
    Create a control plan for controlling each output of the plurality of variable power sources based on the integrated probability distribution so that the stability of the power system can be maintained from a failure assumed in the power system,
    Power system control method.
PCT/JP2019/006927 2018-04-27 2019-02-22 Power system control system and power system control method WO2019207935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018087596A JP2019193539A (en) 2018-04-27 2018-04-27 Power system control system and power system control method
JP2018-087596 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019207935A1 true WO2019207935A1 (en) 2019-10-31

Family

ID=68294476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006927 WO2019207935A1 (en) 2018-04-27 2019-02-22 Power system control system and power system control method

Country Status (2)

Country Link
JP (1) JP2019193539A (en)
WO (1) WO2019207935A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270030A1 (en) * 2021-06-24 2022-12-29 株式会社日立製作所 Power system operation plan support system, power system operation plan support method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434093B2 (en) 2020-07-22 2024-02-20 株式会社東芝 Power system stabilization device, power system stabilization method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034444A (en) * 2010-07-28 2012-02-16 Toshiba Corp Power supply-demand planning device and method thereof
JP2015130777A (en) * 2014-01-09 2015-07-16 株式会社東芝 Electric power supply system stabilizing unit
JP2016158347A (en) * 2015-02-24 2016-09-01 株式会社日立製作所 Power transmission plant plan support system and method
JP2017046506A (en) * 2015-08-28 2017-03-02 株式会社日立製作所 Voltage reactive power control system
JP2019030065A (en) * 2017-07-26 2019-02-21 株式会社東芝 Power system reliability evaluation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034444A (en) * 2010-07-28 2012-02-16 Toshiba Corp Power supply-demand planning device and method thereof
JP2015130777A (en) * 2014-01-09 2015-07-16 株式会社東芝 Electric power supply system stabilizing unit
JP2016158347A (en) * 2015-02-24 2016-09-01 株式会社日立製作所 Power transmission plant plan support system and method
JP2017046506A (en) * 2015-08-28 2017-03-02 株式会社日立製作所 Voltage reactive power control system
JP2019030065A (en) * 2017-07-26 2019-02-21 株式会社東芝 Power system reliability evaluation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270030A1 (en) * 2021-06-24 2022-12-29 株式会社日立製作所 Power system operation plan support system, power system operation plan support method, and program

Also Published As

Publication number Publication date
JP2019193539A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6427090B2 (en) Power generation amount prediction device, power generation amount prediction method, system stabilization device, and system stabilization method
Preece et al. Risk-based small-disturbance security assessment of power systems
JP7240156B2 (en) Power supply and demand planning device
WO2019207935A1 (en) Power system control system and power system control method
Krishnan et al. Resilient cyber infrastructure for the minimum wind curtailment remedial control scheme
WO2018186001A1 (en) Power system stabilization device and power system stabilization method
Hosseinimoghadam et al. Improving the sharing of reactive power in an islanded microgrid based on adaptive droop control with virtual impedance
US11316345B2 (en) Predictive voltage stability of a power system post-contingency
US11133674B2 (en) System operation support device and method in power system, and wide-area monitoring protection control system
US20230012079A1 (en) Renewable energy system stabilization system and system stabilization support method
KR101338125B1 (en) Intelligent and Adaptive Protection System for Varying Power System Conditions to Prevent Transient Instability
KR102348138B1 (en) Apparatus for determining stability margin of online generator special protection system and method thereof
WO2019198353A1 (en) Power system stabilization device, power system stabilization method, and power system stabilization system
KR101126174B1 (en) Voltage management system and voltage management method
WO2019097672A1 (en) Power system monitoring device, power system monitoring method, and program
KR102536044B1 (en) Apparatus for computing inertia of electric power system
KR102413512B1 (en) System for operating Direct Current distribution grid, and Method thereof
KR102572939B1 (en) Indirect voltage control system and method using power sensitivity
CN117374986B (en) Power grid thermal stability quota calculation method, device, equipment and medium
WO2024089997A1 (en) Future system snapshot creation system and future system snapshot creation method
CN110763951B (en) Fastest change detection model construction method for power transmission line power failure detection and identification
JP6996998B2 (en) Power system monitoring device
Boroczky et al. Real-time transient security assessment in Australia at NEMMCO
Madani et al. Frontiers of synchrophasor solutions deployment
JP2008148487A (en) System stabilization control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792767

Country of ref document: EP

Kind code of ref document: A1