WO2019205299A1 - 视觉测量系统结构参数标定和仿射坐标系构建方法与系统 - Google Patents

视觉测量系统结构参数标定和仿射坐标系构建方法与系统 Download PDF

Info

Publication number
WO2019205299A1
WO2019205299A1 PCT/CN2018/095337 CN2018095337W WO2019205299A1 WO 2019205299 A1 WO2019205299 A1 WO 2019205299A1 CN 2018095337 W CN2018095337 W CN 2018095337W WO 2019205299 A1 WO2019205299 A1 WO 2019205299A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
coordinates
intersection
coordinate
world
Prior art date
Application number
PCT/CN2018/095337
Other languages
English (en)
French (fr)
Inventor
王建仑
刘文生
张成林
郑鸿旭
何灿
苏日娜
姜良宇
Original Assignee
中国农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业大学 filed Critical 中国农业大学
Priority to US16/969,340 priority Critical patent/US20210041236A1/en
Publication of WO2019205299A1 publication Critical patent/WO2019205299A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2504Calibration devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Definitions

  • the present invention relates to the field of digital photogrammetry technology, and more particularly to a method and system for constructing a visual measurement system structural parameter calibration and an affine coordinate system.
  • the visual measurement system can meet the above requirements to a certain extent, digital photogrammetry combined with digital image analysis methods have been widely used in three-dimensional measurement.
  • the two-axis rotary-lens-camera integrated system (hereinafter referred to as the cloud mirror system or the hand-eye system) is a visual measurement system constructed by non-measurement equipment, which has been widely used in industry, construction and biomedicine. application.
  • As a photogrammetric instrument for the on-site environment in agricultural and other industrial operations it can easily and inexpensively acquire digital images of objects in the field of view, and can perform analytical and non-standard 3D measurement operations.
  • the key to the visual measurement system analysis and the unmarked 3D measurement operation is the establishment of the affine coordinate system of the cloud mirror.
  • the coordinate of the pan-tilt rotation center and the integrated structural parameters integrated with the camera and the lens are the precise establishment of the cloud mirror.
  • the calibration of the two-degree-of-freedom hand-eye system due to the collinear intersection adjustment method used in the parameter determination process, can only obtain the world coordinates of the focus, which is not enough to further accurately calculate the structural parameters of the hand-eye system. And often use the motion structure vector to directly obtain, but can not control the calibration accuracy, resulting in the affine relationship of the hand-eye coordinate system can not be accurately calibrated, affecting the accuracy of visual measurement.
  • control points, structured light, and laser assist are generally used to improve accuracy.
  • the unsatisfactory correction of control points, structured light and laser-assisted method can result in the affine relationship of the hand-eye coordinate system not being accurately calibrated, which affects the accuracy of visual measurement.
  • the present invention provides a visual measurement system structural parameter calibration and an affine coordinate system construction method and system for effectively improving the parameter calibration accuracy of the target visual measurement system motion structure, thereby More accurate representation of the affine relationship of the target vision measurement system, improve the accuracy of visual measurement, thereby achieving accurate measurement without calibration based on the structural parameters of the vision measurement system.
  • the present invention provides a calibration method for a structural parameter of a visual measurement system and a method for constructing an affine coordinate system, comprising: S1, obtaining a intersection point coordinate by a beam traverse collinear intersection; S2, acquiring coordinates of the intersection point Projecting point world coordinates of the front point of the main point; S3, using a plurality of different label images, performing steps S1 and S2 cyclically, acquiring pairs of intersection point coordinates and world coordinates of the front projection point; S4, based on the coordinates of the plurality of sets of the intersection points
  • the world coordinate pair of the front projection point is subjected to the beam adjustment tangential co-ball secondary rendezvous, and the pan-tilt rotation center coordinates and structural parameters of the vision measurement system are obtained through iterative calculation; S5, based on the coordinates of the pan-tilt rotation center and The structural parameters establish an affine space coordinate system based on the pan-tilt rotation center.
  • the present invention provides a visual measurement system structural parameter calibration and an affine coordinate system construction system, comprising: a first intersection calculation module for obtaining a intersection point coordinate by a beam adjustment rear collinear intersection; a front projection point a world coordinate calculation module, configured to acquire a world coordinate of a front projection point of the main point corresponding to the coordinate of the intersection point; and a plurality of pairs of point acquisition modules, configured to control the world coordinate of the first intersection operation module and the front projection point
  • the calculation module acquires a plurality of sets of intersection point coordinates and a front projection point world coordinate pair according to the plurality of different annotation images; and a second intersection calculation module is configured to perform the world coordinate pair based on the plurality of sets of the intersection point coordinates and the front projection point
  • the invention provides a visual measurement system structural parameter calibration and an affine coordinate system construction method and system, based on the beam adjustment collinear intersection to obtain a plurality of intersection point coordinates and corresponding front principal point world coordinates, according to the intersection point Coordinates and the world coordinates of the front main point are used to perform beam adjustment and tangential collinear two-crossing, to solve the structural parameters of the visual measurement system and the coordinates of the rotation center of the gimbal. Based on this, the eigen-coordinate system of the visual measurement system is constructed. Effectively improve the calibration accuracy of the target motion measurement system's motion structure, thereby more accurately representing the affine relationship of the target vision measurement system, and improving the visual measurement accuracy.
  • FIG. 1 is a flow chart of a method for calibrating a structural parameter of a vision measurement system and a method for constructing an affine coordinate system according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a two-degree-of-freedom hand-eye motion structure parameter calibration and an affine coordinate system in a visual measurement system structural parameter calibration and an affine coordinate system construction method according to an embodiment of the present invention
  • FIG. 3 is a three-dimensional diagram of calibration of a two-degree-of-freedom hand-eye motion structure parameter and an affine coordinate system in a structure measurement parameter calibration and an affine coordinate system construction method according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a structure parameter calibration and an affine coordinate system construction system of a vision measurement system according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of a structure parameter calibration and an affine coordinate system construction apparatus for a vision measurement system according to an embodiment of the present invention.
  • the embodiment provides a calibration method for a structural measurement system and a method for constructing an affine coordinate system.
  • a calibration parameter and affine coordinates of a visual measurement system are provided.
  • a flow chart of the construction method including:
  • this step passes through the collinear intersection of the beam, writes the posterior collinear condition equation, and uses the adjustment algorithm to calculate the coordinates of the intersection point corresponding to each image, that is, the focus of the first intersection.
  • a beam rear collinear intersection is performed, and the beam adjustment is performed by an observation based on the correction of the weight of the observation matrix.
  • the front main point is the front control calibration point.
  • a plurality of image points and a front main point corresponding to the image points are selected for beam adjustment and collinear intersection calculation, and the intersection point coordinates of the resection points corresponding to the image are obtained. That is, for the same frame image, the collinear relationship of the front main point, the corresponding image point, and the rear intersection point is used to write the collinear equation, and the beam collinear intersection calculation is performed. Then, the beam adjustment calculation process is corrected by the observation weight matrix, and the iterative result satisfying the set standard is obtained as the final resection point coordinate by the beam adjustment iterative operation.
  • S2 Obtain a world coordinate of a front projection point of the main point corresponding to the coordinates of the intersection point.
  • the step is based on the coordinates of the intersection point obtained by the specific calibration image and the main optical axis obtained at the same time, and the front main point corresponding to the intersection point along the main optical axis is obtained.
  • the target board projects the world coordinates.
  • the coordinates of the intersection point are obtained by the traverse intersection of the beam adjustment, and the optical coordinates of the principal point are used to solve the world coordinates of the front principal point corresponding to the coordinates of the intersection point.
  • the step of S3 further includes: traversing all the labeled images, repeating steps S1 and S2, obtaining a point set of intersection point coordinates F(X f , Y f , Z f ), and a corresponding correction system.
  • the world coordinates of the front main point corresponding to the coordinates of the first intersection point of the photographed image of each of the photographed positions are respectively calculated, and systematic error correction is performed thereon.
  • each image of the plurality of images is traversed.
  • the collinear intersection condition is intersected by the beam
  • the rear collinear conditional equation is written
  • the adjustment algorithm is used to calculate the intersection of each image.
  • Point coordinates Then, according to the optical characteristics of the front principal point, the world coordinates of the front principal point corresponding to the coordinates of the intersection point obtained are obtained.
  • the resection corresponding to the multi-frame image is respectively used.
  • the point coordinates and their corresponding front-point main point world coordinates are used to perform beam adjustment and co-ball secondary rendezvous.
  • intersection point coordinate F and the world coordinate A of the front principal point form a straight line, and are tangent to the vector sphere of the rotation vector P, and the tangent point is P.
  • multiple tangent lines are established, and the tangential ball condition equations are written, and the beam tangential tangential ball intersection is performed to obtain the structural parameters of the target vision measurement system and the world coordinates of the pan-tilt rotation center.
  • the structural parameters of the target vision measurement system and the world coordinates of the pan-tilt rotation center are obtained by the iterative operation of the beam adjustment co-ball intersection.
  • the affine coordinate system under different viewing angles of the target visual measurement system is constructed according to the calibrated structural parameters and the pan-tilt rotation center.
  • the calibrated pan-tilt rotation center is taken as the coordinate origin, and the pan-tilt is rotated continuously to reach the required angles of view, and the affine coordinate system is constructed according to the structural parameters of the target vision measurement system in each view.
  • the embodiment of the invention provides a calibration system structure parameter calibration and an affine coordinate system construction method, which is based on the intersection of the beam adjustment and the coordinates of the intersection point and the world coordinates of the front principal point, according to the intersection point. Coordinates and the world coordinates of the front main point are used to perform beam adjustment and tangential collinear two-crossing, to solve the structural parameters of the visual measurement system and the coordinates of the rotation center of the gimbal. Based on this, the eigen-coordinate system of the visual measurement system is constructed. Effectively improve the calibration accuracy of the target motion measurement system's motion structure, so as to more accurately represent the affine relationship of the target vision measurement system, improve the visual measurement accuracy, and achieve accurate measurement without calibration based on the structural parameters of the vision measurement system.
  • the step of S1 further comprises: establishing a collinear conditional equation for a set of corresponding projection points on the two planes of the calibration plate and the calibration image, performing beam adjustment calculation, and acquiring one of the intersection points Coordinate F(X f , Y f , Z f ):
  • W is the observation weight matrix used to introduce the correction system error
  • W [(c 11 X+c 12 ), (c 21 Y+c 22 ), (c 31 Z+c 32 )];
  • the initial value of the coordinates of the front point of the collinear intersection after the beam is estimated (X f 0 , Y f 0 , Z f 0 );
  • a 1 is the first observation matrix and W is the observed weight matrix introducing the error correction component
  • W is the observed weight matrix introducing the error correction component
  • W [(c 11 X+c 12 ), (c 21 Y+c 22 ), (c 31 Z+c 32 )]
  • X, Y, and Z represent the image-side parameter variables of the collinear condition equation in the collinear intersection of the beam
  • c 11 , c 12 , c 31 , c 22 , c 31 , and c 32 represent the correction coefficient
  • X 1 For the outer orientation element increment vector
  • L 1 is the linearization transformation vector of the error equation constant term
  • intersection point coordinate increment Taking the three corner elements in the outer orientation element increment vector as the intersection point coordinate increment, and based on the intersection point coordinate initial value (X f 0 , Y f 0 , Z f 0 ) and the intersection point coordinate Incremental, coordinate iterative operation is performed to obtain the intersection point coordinates F(X f , Y f , Z f ).
  • the initial values of the intersection coordinates (X f 0 , Y f 0 , Z f 0 ) of the collinear intersection after the beam are estimated according to the actual calibration experimental equipment conditions, and are collinear according to the existing beam rear.
  • the beam adjustment calculation is performed.
  • the error equation of the beam adjustment is:
  • V 1 A 1 X 1 - L 1 ;
  • V 1 [v 1x ,v 1y ] T
  • L 1 [l 1x ,l 1y ] T
  • a 1 is the first observation matrix and W is the observed weight matrix introducing the error correction component
  • W [(c 11 X+c 12 ), (c 21 Y+c 22 ), (c 31 Z+c 32 )]
  • X, Y, and Z represent the parameter variables of the collinear condition equation in the collinear intersection of the beam
  • c 11 , c 12 , c 31 , c 22 , c 31 , and c 32 represent the correction coefficient
  • X 1 is the outer
  • L 1 is a collinear conditional equation linearization transformation vector.
  • the three angular element components in the outer orientation element increment vector X 1 correspond to the three coordinate component increments of the intersection point coordinates.
  • intersection point coordinate increment data can be obtained according to the above processing steps.
  • the initial values (X f 0 , Y f 0 , Z f 0 ) of the intersection point of the collinear intersection after the beam are determined, and the intersection point coordinate increment data corresponding to each image (dX f , dY f , After dZ f ), the iterative operation is performed according to the given iterative formula, and the intersection point coordinates (X f , Y f , Z f ) after the systematic error correction are obtained.
  • the step of S2 further comprises: correcting the calibration image coordinates of the principal point by correcting the observed distortion matrix of the optical distortion based on the coordinates of the intersection point, and utilizing the optics of the principal point
  • the characteristic is obtained by calculating the world coordinates of the principal point on the calibration plate by the calibration image coordinates of the corrected principal point, and acquiring the world coordinates of the front projection point.
  • the correction is performed in the process of obtaining the world coordinates of the front principal point, and the correction is obtained.
  • the initial image coordinates are corrected by the observation weight matrix, and then the world coordinates of the front principal point are calculated; wherein the observation weight matrix is used to correct the optical distortion.
  • step of S4 further comprises:
  • X f , Y f , and Z f are the intersection point coordinate components of the collinear intersection after the beam adjustment
  • (X O , Y O , Z O ) is the intersection point coordinate of the beam adjustment co-ball intersection, ie, the gimbal Rotation center world coordinates
  • d z0 and R are structural parameters of the target vision measurement system
  • V 2 A 2 X 2 -L 2 ;
  • V 2 [v x ,v y ] T ;
  • v x a 11 dX O + a 12 dY O + a 13 dZ O + a 14 d(d z0 ) + a 15 dR - l x ;
  • v y a 21 dX O + a 22 dY O + a 23 dZ O + a 24 d(d z0 ) + a 25 dR-l y ;
  • X 2 [dX O dY O dZ O d(d z0 )dR] T ;
  • W is the observed weight matrix introducing the error correction component
  • W [(c 11 X+c 12 ), (c 21 Y+c 22 ), (c 31 Z+c 32 )]
  • X, Y, and Z represent the front principal point parameter variables of the tangent conditional equation in the beam tangent co-ball intersection calculation
  • c 11 , c 12 , c 31 , c 22 , c 31 , and c 32 represent the correction coefficient
  • X 2 is a rotation center coordinate and a structural parameter increment vector
  • L 2 is a tangent-linear spherical conditional equation linear transformation vector
  • W [(c 11 X+c 12 ), (c 21 Y+c 22 ), (c 31 Z+c 32 )];
  • the operation flow of performing the second ball rendezvous and performing the iterative operation is:
  • R i R i-1 +dR i ;
  • the corrected correction values dX O , dY O , dZ O of the spherical center coordinates and the correction number d(d z0 ) and dR of the calculated structural parameters are compared with the specified tolerances, and the accuracy is completed, the iteration ends, and the spherical center coordinates are output.
  • W is the observed weight matrix introducing the error correction component
  • W [(c 11 X+c 12 ), (c 21 Y+c 22 ), (c 31 Z+c 32 )]
  • X, Y, and Z represent image-parameter parameter variables of the tangent conditional equation in beam tangential co-spherical intersection calculation
  • c 11 , c 12 , c 31 , c 22 , c 31 , and c 32 represent correction coefficients
  • X 2 For the rotation center coordinate and the structural parameter increment vector, L 2 is a tangent-symbol spherical condition equation linearization transformation vector;
  • the iterative operation is performed to obtain the structural parameters of the target vision measurement system and the pan/tilt Rotate the center world coordinates.
  • intersection point set F(X f , Y f , Z f ) obtained by the line intersection and the front main point point set A (X, Y, Z) are a set of corresponding projection points, which are respectively two and two with the space point P (X p , Y p , Z p ) corresponds.
  • FIG. 3 is a three-dimensional diagram of a two-degree-of-freedom hand-eye motion structure parameter calibration and an affine coordinate system in a structural measurement parameter calibration and an affine coordinate system construction method according to an embodiment of the present invention, with a pan-tilt rotation center O as an imitation
  • the coordinate origin of the coordinate system taking into account the corresponding vector of each F i component in F(X f , Y f , Z f ) Is made by vector Rotate to get.
  • the intersection point that is, the structural parameters of the target vision measurement system and the coordinate solution of the world coordinates of the pan-tilt rotation center can be obtained.
  • the world coordinates O(X O , Y O , Z O ) of the intersection center of the rotation center after the systematic error correction are obtained by stepwise iteration, and the structural parameters d z0 and R are solved at the same time.
  • the initial structural parameters d z0 0 and R 0 of the target visual measurement system and the initial pan-tilt rotation are estimated according to an estimated value of the structural parameter of the target visual measurement system and an estimated coordinate solution of the pan-tilt rotation center world coordinate.
  • Central world coordinate O 0 (X O 0 , Y O 0 , Z O 0 );
  • the initial pan/tilt rotation center world coordinates (X O 0 , Y O 0 , Z O 0 ), the rotation center coordinate increment with And the structural parameter increment And dR i , using the approximation of the previous iteration to superimpose the current rotation center coordinate increment and the structural parameter increment, performing an iterative operation until the rotation center coordinate increment and the structural parameter increment reach the set precision:
  • R i R i-1 +dR i ;
  • U i represents the current iteration pan/tilt rotation center world coordinate or structural parameter
  • U i-1 represents the approximation of the previous iteration pan/tilt rotation center world coordinate or structural parameter
  • dU i represents the current rotation center coordinate increment or structural parameter Incremental
  • U is taken as X O , Y O , Z O , d z0 or R.
  • intersection point coordinates F(X f , Y f , Z f ) corresponding to each different image is calculated point by point according to the above embodiment, and the coordinates of the different intersection points constitute a set of intersection points.
  • the calculated rotation center coordinate increment with And structural parameter increments And dR i are compared with the specified tolerances, determine whether the iteration reaches the set precision, and end the iterative operation when the set precision is reached, and output the rotation center coordinates O(X O , Y O , Z O ) and the structural parameter d z0 and R.
  • the step of S5 further comprises: determining an initial focus F 0 according to a given fixed focus f i and the structural parameters d z0 and R; corresponding to the coordinates of the pan-tilt rotation center The point is the coordinate origin, and the pan/tilt is rotated one by one, and the focus F i of each corresponding view is sequentially acquired, and the affine coordinate system of each corresponding view is established.
  • the initial point F 0 of the first viewing angle is determined according to the structural parameter d z0 i and the rotating structural parameter R calibrated by steps S1 to S4 .
  • Coordinate (focus) the initial focus F 0 (X f0 , Y f0 , Z f0 ).
  • the gimbal is rotated to the second viewing angle, and the coordinates of the focal point F 1 at the second viewing angle corresponding to the initial focus F 0 (X f0 , Y f0 , Z f0 ) at the first viewing angle are:
  • the rotation center O of the pan/tilt (or hand-eye system) is used as the coordinate origin, and the pan/tilt is continuously rotated to reach the required angles of view, and the focal points F i of the corresponding angles of view are sequentially obtained to establish the affine at different angles of view.
  • the coordinate system realizes visual measurement of multi-angle unmarked forward intersection.
  • the rotation center O is used as the origin, and the rotation continues.
  • the affine coordinate system of different viewing angles is sequentially established to realize the visual measurement of the multi-angle non-standard front intersection.
  • the present embodiment provides the following optimization technical solution processing flow, but does not limit the scope of the present invention.
  • Step 1 Select one of the plurality of labeled images, and use the front point and the corresponding image point coordinates to perform a beam adjustment after the collinear intersection to obtain the intersection point coordinates;
  • Step 2 Calculate the world coordinates of the front projection point of the corresponding front main point for the acquired intersection point coordinates
  • Step 3 traversing the remaining frame images in the plurality of the labeled images, and performing steps 1 and 2 in a loop to obtain the coordinates of the intersection point corresponding to each image and the world coordinate pair of the front projection point of the image main point;
  • Step 4 using the acquired coordinates of the plurality of intersection points and the front world coordinate pair of the main point, performing a tangential joint second rendezvous, and obtaining the coordinates and structural parameters of the pan-tilt rotation center of the target vision measurement system by iterative calculation;
  • Step 5 Using the structural parameters of the target vision measurement system and the rotation center point of the gimbal, an affine space coordinate system based on the rotation center of the gimbal is established.
  • the embodiment provides a calibration system structure parameter calibration and affine coordinate system construction system.
  • a structural measurement parameter calibration and affine of a vision measurement system according to an embodiment of the present invention is provided.
  • Schematic diagram of the coordinate system construction system including: first intersection calculation module 1, front projection point world coordinate calculation module 2, multi-group point pair acquisition module 3, second intersection operation module 4, and affine space coordinate system construction module 5. among them,
  • the first intersection calculation module 1 is configured to obtain the intersection point coordinates by the beam adjustment rear collinear intersection;
  • the front projection point world coordinate calculation module 2 is configured to acquire the forward projection point world coordinates of the main point corresponding to the intersection point coordinates;
  • the multi-set point pair obtaining module 3 is configured to control the first intersection intersection operation module and the front projection point world coordinate calculation module, and acquire a plurality of sets of intersection point coordinates and a front projection point world coordinate pair according to the plurality of different annotation images;
  • the second intersection calculation module 4 is configured to perform a beam adjustment tangential co-ball second intersection based on the plurality of sets of the intersection point coordinates and the front projection point world coordinate pair, and obtain the pan/tilt of the vision measurement system through iterative calculation
  • the affine space coordinate system construction module 5 is configured to establish an affine space coordinate system based on the pan-tilt rotation center based on the pan-tilt rotation center coordinates and the structural parameter.
  • At least the first intersection calculation module 1, the front projection point world coordinate calculation module 2, and the multi-group point pair acquisition module are respectively set in the calibration system. 3.
  • Each functional module is connected by communication, and data can be transmitted to each other. It should be understood that related functional modules in the system can be implemented by a hardware processor.
  • the first intersection calculation module 1 intersects the collinear intersection of the beam, writes the posterior collinear condition equation, and uses the adjustment algorithm to calculate the coordinates of the intersection point corresponding to each image. That is, for each image, the beam rear collinear intersection is performed based on any image point on the image and the front point corresponding to any image point, and the intersection point coordinates are obtained by the iterative calculation of the beam adjustment based on the observation weight correction.
  • the front projection point world coordinate calculation module 2 obtains the world coordinates of the corresponding front projection main point based on the optical characteristics of the image main point and the projection of the principal point coordinates along the main optical axis.
  • the point pair acquisition module 3 needs to observe a plurality of pairs of corresponding points in the plurality of images by using the target vision measurement system, and calculate the more accurate focus coordinates by the beam adjustment collinear resection.
  • the plurality of sets of point pair acquisition modules 3 first cross the collinear intersection after the beam, and write the collinear condition Equations, and use the adjustment algorithm to calculate the coordinates of the corresponding resection points in each image. Then, the plurality of pairs of point pair acquisition modules 3 obtain the coordinates of the intersection point and the world coordinates of the corresponding front projection main point on the main optical axis where the main point is located, based on the optical characteristics of the front main point.
  • the optical characteristics of the principal points are the same as those in the foregoing method embodiments. For reference, refer to the foregoing method class embodiments, and details are not described herein again.
  • the second rendezvous operation module 4 utilizes the multi-frame The frame intersection image corresponding to the coordinates of the resection point and the corresponding front main point world coordinates are used for the second beam intersection.
  • the second intersection calculation module 4 performs a beam-to-ball intersection, and writes a tangent-co-ball conditional equation. Then, the second intersection operation module 4 performs an iterative calculation on the basis of the coordinates of the plurality of intersection points and the world coordinate of the front principal point, and acquires the structural parameters of the target vision measurement system and the world coordinates of the pan-tilt rotation center.
  • the affine space coordinate system construction module 5 is different according to the calibration structural parameters and the gimbal rotation center to construct the target vision measurement system.
  • An affine coordinate system from a perspective For example, the calibrated pan-tilt rotation center is taken as the coordinate origin, and the pan-tilt is rotated by continuous rotation to sequentially reach the required angles of view, and the affine coordinate system is constructed according to the structural parameters of the target vision measurement system in each view.
  • the embodiment of the invention provides a visual measurement system structure parameter calibration and an affine coordinate system construction system.
  • a plurality of intersection point coordinates and corresponding front principal point world coordinates are obtained in accordance with the beam adjustment collinear intersection.
  • the beam adjustment tangential two-coincidation second intersection solves the structural parameters of the vision measurement system and the coordinates of the pan-tilt rotation center, and accordingly performs the visual measurement system affine coordinates
  • the construction of the system can effectively improve the calibration accuracy of the target motion measurement system's motion structure, thereby more accurately representing the affine relationship of the target vision measurement system, improving the visual measurement accuracy, and achieving the accuracy-free calibration based on the structural parameters of the vision measurement system. measuring.
  • the first intersection operation module 1 is specifically configured to: establish a collinear conditional equation for a set of corresponding projection points on the two planes of the calibration plate and the calibration image, perform beam adjustment calculation, and obtain one intersection point.
  • W is the observation weight matrix used to introduce the correction system error
  • W [(c 11 X+c 12 ), (c 21 Y+c 22 ), (c 31 Z+c 32 )];
  • the front projection point world coordinate calculation module 2 is specifically configured to: use the optical characteristic of the main point to correct the calibration image coordinate of the main point by correcting the optical distortion of the observation value based on the intersection point coordinates, and Correcting the calibration image coordinates of the main point, correcting the world coordinates of the main point on the calibration plate, and acquiring the world coordinates of the front projection point.
  • the second intersection operation module 4 is specifically configured to:
  • X f , Y f , and Z f are the intersection point coordinate components of the collinear intersection after the beam adjustment
  • (X O , Y O , Z O ) is the intersection point coordinate of the beam adjustment co-ball intersection, ie, the gimbal Rotation center world coordinates
  • d z0 and R are structural parameters of the target vision measurement system
  • V 2 A 2 X 2 -L 2 ;
  • V 2 [v x ,v y ] T ;
  • v x a 11 dX O + a 12 dY O + a 13 dZ O + a 14 d(d z0 ) + a 15 dR - l x ;
  • v y a 21 dX O + a 22 dY O + a 23 dZ O + a 24 d(d z0 ) + a 25 dR-l y ;
  • X 2 [dX O dY O dZ O d(d z0 )dR] T ;
  • W is the observation weight matrix used to introduce the correction system error
  • W [(c 11 X+c 12 ), (c 21 Y+c 22 ), (c 31 Z+c 32 )];
  • W is the observed weight matrix introducing the error correction component
  • W [(c 11 X+c 12 ), (c 21 Y+c 22 ), (c 31 Z+c 32 )]
  • X, Y, and Z represent the front principal point parameter variables of the tangent conditional equation in the beam tangent co-ball intersection calculation
  • c 11 , c 12 , c 31 , c 22 , c 31 , and c 32 represent the correction coefficient
  • X 2 is a rotation center coordinate and a structural parameter increment vector
  • L 2 is a tangent-linear spherical conditional equation linear transformation vector
  • the operation flow of performing the second ball rendezvous and performing the iterative operation is:
  • R i R i-1 +dR i ;
  • the corrected correction values dX O , dY O , dZ O of the spherical center coordinates and the correction number d(d z0 ) and dR of the calculated structural parameters are compared with the specified tolerances, and the accuracy is completed, the iteration ends, and the spherical center coordinates are output.
  • the affine space coordinate system construction module 5 is specifically configured to:
  • the rotation matrix is:
  • the embodiment provides a visual parameter measurement system structure parameter calibration and an affine coordinate system construction device.
  • a visual measurement system structural parameter calibration and affine are performed according to an embodiment of the present invention.
  • a structural block diagram of a coordinate system construction apparatus includes: at least one processor 501, and at least one memory 502 communicatively coupled to the processor 501.
  • the memory 502 stores a computer program executable on the processor 501.
  • the processor 501 executes the computer program, the visual measurement system structure parameter calibration and the affine coordinate system construction method as described above are implemented.
  • the visual measurement system structural parameter calibration and affine coordinate system construction device includes at least one processor 501 and one memory 502, and a communication connection is formed between the processor 501 and the memory 502, and mutual information can be performed. And the transmission of the instruction, such as the processor 501 reading the visual measurement system structure parameter calibration and the program instruction of the affine coordinate system construction method from the memory 502, and the like.
  • the processor 501 calls the program instructions in the memory 502 to perform the methods provided by the foregoing method embodiments, for example, including: corresponding to each of the images respectively.
  • the intersection point coordinates and the world coordinates of the front principal point are iteratively calculated by the beam adjustment co-ball intersection to obtain the structural parameters of the target vision measurement system and the pan-tilt rotation center world coordinates; and, for each piece And performing image beam rear collinear intersection based on an arbitrary image point on the image and a front principal point corresponding to the arbitrary image point, and acquiring the intersection point by an iterative operation of the beam adjustment based on the observed value matrix correction Coordinates, etc.
  • a non-transitory computer readable storage medium storing computer instructions that cause the computer to perform a visual measurement system as described above Structural parameter calibration and affine coordinate system construction methods.
  • the logic instructions in the above memory 502 can be implemented in the form of a software functional unit and sold or used as a stand-alone product, and can be stored in a computer readable storage medium. Alternatively, all or part of the steps of implementing the foregoing method embodiments may be performed by hardware related to the program instructions.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes the foregoing method embodiments.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the embodiments can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware.
  • the above technical solution may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a computer readable storage medium such as a USB flash drive or a mobile hard disk. , ROM, RAM, diskette or optical disk, etc., comprising instructions for causing a computer device (such as a personal computer, server, or network device, etc.) to perform the various method embodiments or portions of the method embodiments described above. Methods.
  • the embodiment of the invention provides a visual measurement system structural parameter calibration and affine coordinate system construction device and a non-transitory computer readable storage medium, and obtains a plurality of intersection point coordinates and corresponding fronts according to the beam adjustment collinear intersection
  • the beam adjustment tangential and the second ball intersection are performed according to the coordinates of the intersection point and the world coordinates of the front principal point
  • the structural parameters of the visual measurement system and the coordinates of the rotation center of the gimbal are solved, and based on this
  • the construction of the affine coordinate system of the visual measurement system can effectively improve the parameter calibration accuracy of the motion structure of the target vision measurement system, thereby more accurately representing the affine relationship of the target vision measurement system and improving the visual measurement accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

一种视觉测量系统结构参数标定和仿射坐标系构建方法与系统,方法包括:S1,对同一像片用前方点和相应像点进行光束平差获得后方交会点坐标;S2,获取交会点所对应主点的前方投影点世界坐标;S3,利用多张不同标注图像重复步骤S1和S2,获得多组交会点坐标与前方投影点世界坐标对;S4,利用交会点坐标和前方投影点世界坐标对进行切线共球二次交会平差,获得视觉测量系统结构参数和云台旋转中心坐标;S5,建立仿射空间坐标系统。通过采用共球面二次交会迭代的标定方法,能够精确地标定视觉测量系统(即云镜摄系统,同手眼系统)结构参数,建立精确的仿射坐标体系,实现基于视觉测量系统自身结构参数的无标精确测量。

Description

视觉测量系统结构参数标定和仿射坐标系构建方法与系统
交叉引用
本申请引用于2018年04月27日提交的专利名称为“视觉测量系统结构参数标定和仿射坐标系构建方法与系统”的第2018103944499号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及数字摄影测量技术领域,更具体地,涉及一种视觉测量系统结构参数标定和仿射坐标系构建方法与系统。
背景技术
现代系统集成技术和农业信息获取技术在精细农业领域的迅猛发展,使农业及其他社会行业能够对相关的表型测量、操作机械量检测、几何量检测和结构测试等提出更高的要求,如高通量、无标、无接触、廉价、高精度和网络化等。
因视觉测量系统在一定程度上能够满足上述要求,目前数字摄影测量结合数字图像解析方法已经在三维测量中被广泛应用。其中,二轴转台-镜头-摄像机一体化系统(以下简称云镜摄系统或类手眼系统)是一种非量测设备构建的视觉测量系统,在工业、建筑和生物医学上等已得到广泛的应用。其作为农业和其他行业作业中现场环境的摄影测量仪器,可以方便廉价地获取视场范围内物体的数字图像,并能够进行解析和无标三维测量运算。
视觉测量系统解析和无标三维测量运算的关键在于云镜摄的仿射坐标体系的建立,而与摄像机和镜头一体化的云台旋转中心坐标和一体化结构参数的求取是精确建立云镜摄的仿射坐标体系的基础。目前二自由度手眼系统的标定,由于参数求取过程中采用的共线交会平差方法,仅能得到焦点的世界坐标,不足以据此进一步精确解算手眼系统的结构参数。且常利用运动结构矢量直接求取,但不能控制标定精度,导致手眼坐标系统的仿射关系不能被精确标定,影响视觉测量精度。因此,一般运用控制点、 结构光和激光辅助提高精度。但是,控制点、结构光和激光辅助法修正不理想会导致手眼坐标系统的仿射关系不能被精确标定,影响视觉测量精度。
发明内容
为了克服上述问题或者至少部分地解决上述问题,本发明提供一种视觉测量系统结构参数标定和仿射坐标系构建方法与系统,用以有效提高对目标视觉测量系统运动结构的参数标定精度,从而更精确的表示目标视觉测量系统的仿射关系,提高视觉测量精度,从而实现基于视觉测量系统自身结构参数的无标精确测量。
一方面,本发明提供一种视觉测量系统结构参数标定和仿射坐标系构建方法,包括:S1,通过光束平差后方共线交会,获取交会点坐标;S2,获取所述交会点坐标所对应主点的前方投影点世界坐标;S3,利用多张不同标注图像,循环执行步骤S1和S2,获取多组交会点坐标与前方投影点世界坐标对;S4,基于多组所述交会点坐标与前方投影点世界坐标对,进行光束平差切线共球二次交会,并通过迭代计算,获取所述视觉测量系统的云台旋转中心坐标和结构参数;S5,基于所述云台旋转中心坐标和所述结构参数,建立以云台旋转中心为基础的仿射空间坐标系。
一方面,本发明提供一种视觉测量系统结构参数标定和仿射坐标系构建系统,包括:第一次交会运算模块,用于通过光束平差后方共线交会,获取交会点坐标;前方投影点世界坐标计算模块,用于获取所述交会点坐标所对应主点的前方投影点世界坐标;多组点对获取模块,用于控制所述第一次交会运算模块和所述前方投影点世界坐标计算模块,根据多张不同标注图像,获取多组交会点坐标与前方投影点世界坐标对;第二次交会运算模块,用于基于多组所述交会点坐标与前方投影点世界坐标对,进行光束平差切线共球二次交会,并通过迭代计算,获取所述视觉测量系统的云台旋转中心坐标和结构参数;仿射空间坐标系构建模块,用于基于所述云台旋转中心坐标和所述结构参数,建立以云台旋转中心为基础的仿射空间坐标系。
本发明提供的一种视觉测量系统结构参数标定和仿射坐标系构建方法与系统,在根据光束平差共线交会获取多个交会点坐标及对应前方主点 世界坐标的基础上,根据交会点坐标和前方主点世界坐标进行光束平差切线共球二次交会,解算视觉测量系统的结构参数和云台旋转中心坐标,并在此基础上进行视觉测量系统仿射坐标系的构建,能够有效提高对目标视觉测量系统运动结构的参数标定精度,从而更精确的表示目标视觉测量系统的仿射关系,提高视觉测量精度。
附图说明
图1为本发明实施例一种视觉测量系统结构参数标定和仿射坐标系构建方法的流程图;
图2为根据本发明实施例一种视觉测量系统结构参数标定和仿射坐标系构建方法中二自由度手眼运动结构参数标定和仿射坐标系统剖面图;
图3为根据本发明实施例一种视觉测量系统结构参数标定和仿射坐标系构建方法中二自由度手眼运动结构参数标定和仿射坐标系统三维示意图;
图4为本发明实施例一种视觉测量系统结构参数标定和仿射坐标系构建系统的结构示意图;
图5为本发明实施例一种视觉测量系统结构参数标定和仿射坐标系构建装置的结构框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
作为本发明实施例的一个方面,本实施例提供一种视觉测量系统结构参数标定和仿射坐标系构建方法,参考图1,为本发明实施例一种视觉测量系统结构参数标定和仿射坐标系构建方法的流程图,包括:
S1,通过光束平差后方共线交会,获取交会点坐标。
可以理解为,本步骤通过光束后方共线交会,列写后方共线条件方程,并利用平差算法计算每张图像分别对应的交会点坐标,即第一次交会焦点 坐标。
其中,针对每张标定图像,基于标定图像上的多个像点以及对应像点所对应的前方主点,进行光束后方共线交会,并通过基于观测值权阵矫正的光束平差迭代运算,获取交会点坐标,即第一次交会焦点坐标。其中的前方主点为前方控制标定点。
即,对于每一张标注图像,选取其中的多个像点以及这些像点分别对应的前方主点进行光束平差后方共线交会计算,获取该图像所对应的后方交会点的交会点坐标。也即,对于同一帧图像,利用前方主点、相应像点与后方交会点的共线关系,列写共线方程,进行光束后方共线交会计算。然后利用观测值权阵对光束平差计算过程进行矫正,通过光束平差迭代运算,获取满足设定标准的迭代结果作为最终的后方交会点坐标。
S2,获取所述交会点坐标所对应主点的前方投影点世界坐标。
可以理解为,本步骤根据前方主点的光学特性,基于上述步骤根据特定标定图像获取的交会点坐标,以及同时得到的主光轴,求取所得交会点沿主光轴所对应的前方主点的标板投影世界坐标。
S3,利用多张不同标注图像,循环执行步骤S1和S2,获取多组交会点坐标与前方投影点世界坐标对。
可以理解为,在对目标视觉测量系统进行参数标定时,仅对一张标定图像进行前方主点的观测会引入较大的误差甚至错误,因此需要利用目标视觉测量系统对多张标定图像中的多个对应点分别进行观测,进而通过光束平差计算得到较准确的标定图像后方交会点坐标,以及该交会点坐标所对应前方主点的世界坐标。
即,需要多组点对进行迭代交会,才能获取较为精确的球心坐标和结构参数,并需要对多张不同方位的标定图像进行前方主点的观测。
对于目标视觉测量系统所观测的多张标定图像,分别依次通过光束平差后方共线交会获取交会点坐标,并利用主点光学特性解算交会点坐标所对应前方主点的世界坐标。
其中可选的,所述S3的步骤进一步包括:遍历所有所述标注图像,重复执行步骤S1和S2,获取交会点坐标F(X f,Y f,Z f)点集,以及相应的矫正系统误差后的前方投影点世界坐标A(X,Y,Z)点集。
可以理解为,根据前方主点的光学特性,分别计算所拍摄的各方位的标定图像的第一次交会点坐标所对应的前方主点的世界坐标,并对其进行系统误差矫正。
其中,遍历多张图像中的每一张图像,对于遍历的每一张图像,首先通过光束后方共线交会,列写后方共线条件方程,并利用平差算法计算每张图像分别对应的交会点坐标。然后根据前方主点的光学特性,求取所得交会点坐标所对应的前方主点的世界坐标。
S4,基于多组所述交会点坐标与前方投影点世界坐标对,进行光束平差切线共球二次交会,并通过迭代计算,获取所述视觉测量系统的云台旋转中心坐标和结构参数。
可以理解为,在根据上述步骤的光束平差共线后方交会,获取多帧标定图像分别对应的后方交会点坐标及其对应的前方主点世界坐标之后,利用该多帧图像分别对应的后方交会点坐标及其对应的前方主点世界坐标进行光束平差共球二次交会。
具体以交会点坐标F与前方主点的世界坐标A构成直线,与旋转向量P的向量球相切,切点为P。根据多张标定图像,建立多条切线,列写切线共球条件方程,进行光束平差切线共球交会,获取目标视觉测量系统的结构参数和云台旋转中心世界坐标。
即,基于各标定图像分别对应的交会点坐标和前方主点的世界坐标,通过光束平差共球交会迭代运算,获取目标视觉测量系统的结构参数和云台旋转中心世界坐标。
S5,基于所述云台旋转中心坐标和所述结构参数,建立以云台旋转中心为基础的仿射空间坐标系。
可以理解为,在根据上述步骤完成目标视觉测量系统的结构参数和云台旋转中心的标定后,根据标定的结构参数和云台旋转中心构建目标视觉测量系统不同视角下的仿射坐标系。例如以标定的云台旋转中心为坐标原点,通过连续转动旋转云台,使其依次到达各所需视角,并依次在各视角下根据目标视觉测量系统的结构参数进行仿射坐标系构建。
本发明实施例提供的一种视觉测量系统结构参数标定和仿射坐标系构建方法,在根据光束平差共线交会获取多个交会点坐标及对应前方主点 世界坐标的基础上,根据交会点坐标和前方主点世界坐标进行光束平差切线共球二次交会,解算视觉测量系统的结构参数和云台旋转中心坐标,并在此基础上进行视觉测量系统仿射坐标系的构建,能够有效提高对目标视觉测量系统运动结构的参数标定精度,从而更精确的表示目标视觉测量系统的仿射关系,提高视觉测量精度,可以实现基于视觉测量系统自身结构参数的无标精确测量。
其中,在一个实施例中,所述S1的步骤进一步包括:对标定板和标定图像两个平面上的一组对应投影点建立共线条件方程,进行光束平差计算,获取一个所述交会点坐标F(X f,Y f,Z f):
法方程为:
Figure PCTCN2018095337-appb-000001
则法方程的解为:
Figure PCTCN2018095337-appb-000002
式中,W为用以引入矫正系统误差的观测值权阵;
W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)];
通过迭代运算,获取系统误差矫正后的所述交会点坐标F(X f,Y f,Z f)。
其中,根据实际标定实验设备条件,估算光束后方共线交会的前方点坐标初始值(X f 0,Y f 0,Z f 0);
利用所述观测值权阵对平差运算的法方程矫正如下:
Figure PCTCN2018095337-appb-000003
式中,A 1为第一观测矩阵,W为引入误差矫正分量的观测值权阵,W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)],其中X、Y、Z表示光束后方共线交会计算中共线条件方程的像方参数变量,c 11、c 12、c 31、c 22、c 31、c 32表示矫正系数,X 1为外方位元素增量向量,L 1为误差方程常数项的线性化变换向量;
求解经所述观测值权阵矫正的法方程,获取外方位元素增量向量如下:
Figure PCTCN2018095337-appb-000004
以所述外方位元素增量向量中的三个角元素作为交会点坐标增量,并基于所述交会点坐标初始值(X f 0,Y f 0,Z f 0)和所述交会点坐标增量,进行 坐标迭代运算,获取所述交会点坐标F(X f,Y f,Z f)。
可以理解为,本实施例针对每一张图像,对标定板和标定图像两个平面上的一组对应投影点建立共线条件方程,并进行光束平差计算,获取一个对应的交会点坐标(X f,Y f,Z f)。
具体在进行共线交会之前,根据实际标定实验设备条件,估算光束后方共线交会的交会点坐标初始值(X f 0,Y f 0,Z f 0),并在根据现有光束后方共线交会运算列写共线条件方程之后,进行光束平差计算,光束平差的误差方程为:
V 1=A 1X 1-L 1
式中,V 1=[v 1x,v 1y] T,L 1=[l 1x,l 1y] T
Figure PCTCN2018095337-appb-000005
Figure PCTCN2018095337-appb-000006
其中,
Figure PCTCN2018095337-appb-000007
Figure PCTCN2018095337-appb-000008
Figure PCTCN2018095337-appb-000009
Figure PCTCN2018095337-appb-000010
同时,确定上述光束平差的法方程为:
Figure PCTCN2018095337-appb-000011
式中,A 1为第一观测矩阵,W为引入误差矫正分量的观测值权阵,W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)],其中X、Y、Z表示光束后方共线交会计算中共线条件方程的参数变量,c 11、c 12、c 31、c 22、c 31、c 32表示矫正系数,X 1为外方位元素增量向量,L 1为共线条件方程线性化变换向量。
则,求解上述法方程的解,即获得外方位元素增量向量为:
Figure PCTCN2018095337-appb-000012
其中,外方位元素增量向量X 1中的三个角元素分量对应交会点坐标的三个坐标分量增量。
应当理解的是,对于每一张图像,均能根据上述处理步骤获取一组对应的交会点坐标增量数据。在根据以上处理步骤确定光束后方共线交会的交会点坐标初始值(X f 0,Y f 0,Z f 0),以及各个图像分别对应的交会点坐标增量数据(dX f,dY f,dZ f)之后,根据给定的迭代公式进行迭代运算,得到系统误差矫正后的交会点坐标(X f,Y f,Z f)。
其中,根据上述实施例,所述S2的步骤进一步包括:基于所述交会点坐标,以矫正光学畸变的所述观测值权阵W对主点的标定图像坐标进行矫正,并利用主点的光学特性,由矫正后主点的标定图像坐标,解算主点在标定板上的世界坐标,获取所述前方投影点世界坐标。
可以理解为,在理想状态下,认为采像瞬间图像中的主点与其沿着主光轴在前方的投影点,以及第一次的交会点是三点共线的,每个前方投影主点与图像中主点点一一对应。因此,在已知图像中对应主点的像空间坐标后,可以根据其主光轴的光学特性近似求取主点前方标定板投影点的世界坐标。
考虑到对图像中像点坐标的观测误差,在求取前方主点的世界坐标之前,利用上述实施例的观测值权阵,在求取前方主点世界坐标的过程中进行矫正,获取矫正后的前方主点的世界坐标。应当理解的是,其中的观测值权阵用于矫正光学畸变。
即,对计算中涉及的任意像点的图像坐标,利用观测值权阵矫正初始像坐标,然后计算获取前方主点的世界坐标;其中,观测值权阵用于矫正光学畸变。
其中,在一个实施例中,所述S4的步骤进一步包括:
以一次交会获取的所述交会点坐标F(X f,Y f,Z f)点集和所述前方投影点世界坐标A(X,Y,Z)点集中的每对对应点作为一组对应投影点,分别两两与空间点集P中相应的一个点对应,建立切线共球条件方程;F(X f,Y f,Z f)和P均各自为共球点集,直线AFP为P球的切线,切点为P;以A、F和P进行共球二次交汇,并通过迭代运算,获取旋转中心交会点世界坐标O(X O,Y O,Z O),同时解算结构参数d z0和R;
F(X f,Y f,Z f)中各F i的对应矢量
Figure PCTCN2018095337-appb-000013
由矢量
Figure PCTCN2018095337-appb-000014
旋转获得,
Figure PCTCN2018095337-appb-000015
Figure PCTCN2018095337-appb-000016
的旋转矩阵为
Figure PCTCN2018095337-appb-000017
A、F和P三点切线方程为:
Figure PCTCN2018095337-appb-000018
解得:
Figure PCTCN2018095337-appb-000019
Figure PCTCN2018095337-appb-000020
式中,X f、Y f、Z f为光束平差后方共线交会的交会点坐标分量,(X O,Y O,Z O)为光束平差共球交会的交会点坐标,即云台旋转中心世界坐标,d z0和R为目标视觉测量系统的结构参数;
误差方程为:
V 2=A 2X 2-L 2
其中:
V 2=[v x,v y] T
v x=a 11dX O+a 12dY O+a 13dZ O+a 14d(d z0)+a 15dR-l x
v y=a 21dX O+a 22dY O+a 23dZ O+a 24d(d z0)+a 25dR-l y
L 2=[l x,l y] T
Figure PCTCN2018095337-appb-000021
Figure PCTCN2018095337-appb-000022
Figure PCTCN2018095337-appb-000023
X 2=[dX O dY O dZ O d(d z0)dR] T
法方程为:
Figure PCTCN2018095337-appb-000024
则法方程的解为:
Figure PCTCN2018095337-appb-000025
式中,A 2为第二观测矩阵,W为引入误差矫正分量的观测值权阵,W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)],其中X、Y、Z表示光束切线共球交会计算中切线条件方程的前方主点参数变量,c 11、c 12、c 31、c 22、c 31、c 32表示矫正系数,X 2为旋转中心坐标与结构参数增量向量,L 2为切线共球条件方程线性化变换向量;
W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)];
Figure PCTCN2018095337-appb-000026
中的各项分别为:
Figure PCTCN2018095337-appb-000027
Figure PCTCN2018095337-appb-000028
Figure PCTCN2018095337-appb-000029
Figure PCTCN2018095337-appb-000030
Figure PCTCN2018095337-appb-000031
Figure PCTCN2018095337-appb-000032
Figure PCTCN2018095337-appb-000033
Figure PCTCN2018095337-appb-000034
Figure PCTCN2018095337-appb-000035
Figure PCTCN2018095337-appb-000036
通过迭代运算,获取系统误差矫正后的所述旋转中心交会点世界坐标O(X O,Y O,Z O),以及所述结构参数d z0和R;
其中,进行共球二次交会并进行迭代运算的运算流程为:
建立二维标板世界坐标系,从像平面上获取主点的像坐标,将像点坐标用W阵作系统误差校正;
利用主点的像坐标,计算主点在标定板上投影点的世界坐标;
初始值X O 0、Y O 0、Z O 0、d z0 0和R 0根据实际标定实验的设备条件粗略估算给出;
三个角元素的值用第一次共线交会获得的外方位元素代入;
逐点计算F(X f,Y f,Z f)点集中各点的近似值;
逐点求得球心坐标的改正数dX O、dY O、dZ O和结构参数的改正数d(d z0)和dR;
用前次迭代的近似值加改正数计算本次迭代值:
Figure PCTCN2018095337-appb-000037
R i=R i-1+dR i
将求得的球心坐标的改正数dX O、dY O、dZ O和计算结构参数的改正数d(d z0)和dR与规定的限差比较,达到精度则迭代结束,输出球心坐标O(X O,Y O,Z O),以及结构参数d z0和R。
可以理解为,基于各标定图像分别对应的交会点坐标F和前方主点的世界坐标A,以及空间点P,分别建立切线共球条件方程;
以云台旋转中心O为坐标原点,根据交会点坐标F与矢量
Figure PCTCN2018095337-appb-000038
的旋转矢量
Figure PCTCN2018095337-appb-000039
的对应关系,求解切线共球条件方程,获取交会点关于目标视觉测量系统的结构参数和云台旋转中心世界坐标的坐标解;
列写误差方程,并利用观测值权阵对切线共球交会平差运算的法方程矫正如下:
Figure PCTCN2018095337-appb-000040
式中,A 2为第二观测矩阵,W为引入误差矫正分量的观测值权阵,W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)],其中X、Y、Z表示光束切线共球交会计算中切线条件方程的像方参数变量,c 11、c 12、c 31、c 22、c 31、c 32表示矫正系数,X 2为旋转中心坐标与结构参数增量向量,L 2为切线共球条件方程线性化变换向量;
求解经观测值权阵矫正的法方程,获取旋转中心坐标与结构参数增量向量如下:
Figure PCTCN2018095337-appb-000041
基于交会点关于目标视觉测量系统的结构参数和云台旋转中心世界坐标的坐标解、误差方程和旋转中心坐标与结构参数增量向量,进行迭代运算,获取目标视觉测量系统的结构参数和云台旋转中心世界坐标。
其中,参考图2,为根据本发明实施例一种视觉测量系统结构参数标定和仿射坐标系构建方法中二自由度手眼运动结构参数标定和仿射坐标系统剖面图,对于光束平差后方共线交会获取的交会点点集F(X f,Y f,Z f)和前方主点点集A(X,Y,Z)是一组对应投影点,其分别两两与空间点P(X p,Y p,Z p)对应。由于F(X f,Y f,Z f)和P(X p,Y p,Z p)均各自为共球点集,直线AFP为P球的切线,切点为P(X p,Y p,Z p)。因此以A、F和P进行光束平差共球交会,建立A、F和P三点的如上切线共球条件方程。
参考图3,为根据本发明实施例一种视觉测量系统结构参数标定和仿射坐标系构建方法中二自由度手眼运动结构参数标定和仿射坐标系统三维示意图,以云台旋转中心O为仿射坐标系的坐标原点,考虑到F(X f,Y f,Z f)中各F i分量的对应矢量
Figure PCTCN2018095337-appb-000042
是由矢量
Figure PCTCN2018095337-appb-000043
旋转获得。
于是,按如上求解过程求解上述切线共球条件方程,可得交会点,即目标视觉测量系统的结构参数和云台旋转中心世界坐标的坐标解。
在已知以上运算关系的基础上,通过逐步迭代求取系统误差矫正后的旋转中心交会点世界坐标O(X O,Y O,Z O),同时解算出结构参数d z0和R。
其中,根据所述目标视觉测量系统的结构参数的估计值和云台旋转中心世界坐标的估计坐标解,估算所述目标视觉测量系统的初始结构参数d z0 0和R 0,以及初始云台旋转中心世界坐标O 0(X O 0,Y O 0,Z O 0);
根据所述误差方程和所述旋转中心坐标与结构参数增量向量,逐点获取旋转中心坐标增量
Figure PCTCN2018095337-appb-000044
Figure PCTCN2018095337-appb-000045
以及结构参数增量
Figure PCTCN2018095337-appb-000046
和dR i
基于所述初始结构参数d z0 0和R 0,所述初始云台旋转中心世界坐标(X O 0,Y O 0,Z O 0)、所述旋转中心坐标增量
Figure PCTCN2018095337-appb-000047
Figure PCTCN2018095337-appb-000048
以及所述结构参数增量
Figure PCTCN2018095337-appb-000049
和dR i,利用前次迭代的近似值叠加当前旋转中心坐标增量和结构参数增量,进行迭代运算,直至所述旋转中心坐标增量和所述结构参数增量达到设定精度:;
Figure PCTCN2018095337-appb-000050
Figure PCTCN2018095337-appb-000051
Figure PCTCN2018095337-appb-000052
Figure PCTCN2018095337-appb-000053
R i=R i-1+dR i
式中,U i表示当前迭代云台旋转中心世界坐标或结构参数,U i-1表示前次迭代云台旋转中心世界坐标或结构参数的近似值,dU i表示当前旋转中心坐标增量或结构参数增量,U取为X O、Y O、Z O、d z0或R。
可以理解为,具体在进行切线共球面交会迭代标定时,按照下述运算流程进行:
在进行切线共球交会运算之前,需要建立二维标板世界坐标系。从像平面上获取像主点的前方投影世界坐标时,在计算该投影世界坐标前,将计算所涉及像点坐标用观测值权阵W作系统误差校正,计算前方主点在标定板上投影点的世界坐标。
代入初始值X O 0、Y O 0、Z O 0、d z0 0和R 0,通过依次将根据上述实施例获取的各第一次交会点坐标和像主点前方投影点代入切线共球交会方程,标的坐标解,并结合列写的误差方程求取所述目标视觉测量系统的结构参数和云台旋转中心世界坐标。三个角元素的值用第一次平差后方共线交会 获得的外方位元素代入。
其中,根据上述实施例逐点计算各不同图像所对应的交会点坐标F(X f,Y f,Z f)的近似值,各不同交会点坐标组成交会点集合。
根据所述误差方程和所述旋转中心坐标与结构参数增量向量,逐点获取旋转中心坐标增量
Figure PCTCN2018095337-appb-000054
Figure PCTCN2018095337-appb-000055
以及结构参数增量
Figure PCTCN2018095337-appb-000056
和dR i
以目标视觉测量系统的初始结构参数d z0 0和R 0,以及初始云台旋转中心世界坐标O 0(X O 0,Y O 0,Z O 0)为基础,依次叠加根据各交会点坐标求取的旋转中心坐标增量
Figure PCTCN2018095337-appb-000057
Figure PCTCN2018095337-appb-000058
以及结构参数增量
Figure PCTCN2018095337-appb-000059
和dR i,具体得到如上迭代公式。
最后,将求得的旋转中心坐标增量
Figure PCTCN2018095337-appb-000060
Figure PCTCN2018095337-appb-000061
以及结构参数增量
Figure PCTCN2018095337-appb-000062
和dR i与规定的限差比较,判断迭代是否达到设定精度,并在达到设定精度时结束迭代运算,输出旋转中心坐标O(X O,Y O,Z O)和结构参数d z0和R。
其中,在另一个实施例中,所述S5的步骤进一步包括:根据给定定焦f i以及所述结构参数d z0和R,确定初始焦点F 0;以所述云台旋转中心坐标所对应的点为坐标原点,逐次旋转云台,依次获取各对应视角的焦点F i,并建立各对应视角的仿射坐标系。
可以理解为,在上述实施例的基础上,对于某给定定焦f i,根据通过步骤S1至S4标定出的结构参数d z0 i和旋转结构参数R,确定第一视角的初始点F 0坐标(焦点),即初始焦点F 0(X f0,Y f0,Z f0)。建立第一视角下的仿射坐标系。
然后,以云台(或手眼系统)的旋转中心O为坐标原点,将云台进行旋转,其中旋转矩阵为:
Figure PCTCN2018095337-appb-000063
云台被旋转到第二视角,第一视角下的初始焦点F 0(X f0,Y f0,Z f0)对应的第二视角下的焦点F 1的坐标为:
Figure PCTCN2018095337-appb-000064
建立第二视角下的仿射坐标系。
之后仍以云台(或手眼系统)的旋转中心O为坐标原点,继续逐次旋转云台,到达各所需视角,并依次求取各对应视角的焦点F i,建立各不同视角下的仿射坐标系,实现多视角无标前方交会视觉测量。
即,以云台或手眼系统的旋转中心O为坐标原点,以设定定焦f i以及结构参数d z0 i和旋转结构参数R作为初始点F 0焦点坐标,将云台旋转,旋转矩阵如上所示。
从而获取F i点的坐标如上所示。
然后仍以旋转中心O为原点,继续旋转,随云台的旋转,依次建立不同视角的仿射坐标系统,实现多视角无标前方交会视觉测量。
为了进一步说明本发明的技术方案,本实施例提供如下优化技术方案处理流程,但不对本发明所要求保护的范围进行限定。
步骤1,选取多张标注图像中的一张图像,对于该图像利用前方点和相应像点坐标进行光束平差后方共线交会,获得交汇点坐标;
步骤2,对于获取的交会点坐标,计算与其相应的前方主点的前方投影点世界坐标;
步骤3,遍历多张标注图像中的其余各帧图像,循环执行步骤1和步骤2,获取各图像分别对应的交会点坐标与像主点的前方投影点世界坐标对;
步骤4,利用获得的多组交会点坐标与主点的前方世界坐标对,进行切线共球二次交会,通过迭代计算获取目标视觉测量系统的云台旋转中心坐标和结构参数;
步骤5,利用目标视觉测量系统的结构参数以及云台旋转中心点,建立以云台旋转中心为基础的仿射空间坐标系统。
作为本发明实施例的另一个方面,本实施例提供一种视觉测量系统结构参数标定和仿射坐标系构建系统,参考图4,为本发明实施例一种视觉测量系统结构参数标定和仿射坐标系构建系统的结构示意图,包括:第一次交会运算模块1、前方投影点世界坐标计算模块2、多组点对获取模块3、第二次交会运算模块4和仿射空间坐标系构建模块5。其中,
第一次交会运算模块1用于通过光束平差后方共线交会,获取交会点 坐标;前方投影点世界坐标计算模块2用于获取所述交会点坐标所对应主点的前方投影点世界坐标;多组点对获取模块3用于控制所述第一次交会运算模块和所述前方投影点世界坐标计算模块,根据多张不同标注图像,获取多组交会点坐标与前方投影点世界坐标对;第二次交会运算模块4用于基于多组所述交会点坐标与前方投影点世界坐标对,进行光束平差切线共球二次交会,并通过迭代计算,获取所述视觉测量系统的云台旋转中心坐标和结构参数;仿射空间坐标系构建模块5用于基于所述云台旋转中心坐标和所述结构参数,建立以云台旋转中心为基础的仿射空间坐标系。
可以理解为,为了解决传统参数标定方法的精确率低的问题,本实施例在标定系统中至少分别设置第一次交会运算模块1、前方投影点世界坐标计算模块2、多组点对获取模块3、第二次交会运算模块4和仿射空间坐标系构建模块5。各功能模块间进行通信连接,可相互进行数据传输。应当理解的是,可以通过硬件处理器(hardware processor)来实现系统中的相关功能模块。
其中,第一次交会运算模块1通过光束后方共线交会,列写后方共线条件方程,并利用平差算法计算每张图像分别对应的交会点坐标。即,针对每张图像,基于图像上的任意像点以及任意像点对应的前方点,进行光束后方共线交会,并通过基于观测值权阵矫正的光束平差迭代运算,获取交会点坐标。
前方投影点世界坐标计算模块2则根据像方主点的光学特性,像主点坐标沿着主光轴在前方的投影,求取所对应的前方投影主点的世界坐标。
在上述功能模块1和2处理的基础上,具体考虑到在对目标视觉测量系统进行参数标定时,仅对几张图像进行前方投影主点的观测会引入较大的误差甚至错误,因此多组点对获取模块3需要利用目标视觉测量系统对多张图像中的多个对对应点分别进行观测,并通过光束平差共线后方交会计算得到较准确的焦点坐标。
即,利用多组点对获取模块3,遍历多张图像中的每一张图像,对于遍历的每一张图像,多组点对获取模块3首先通过光束后方共线交会,列写共线条件方程,并利用平差算法分别计算每张图像中对应的后方交会点坐标。然后,多组点对获取模块3根据前方主点的光学特性,求取交会点 坐标和像主点所在的主光轴上对应的前方投影主点的世界坐标。其中的主点光学特性与上述方法类实施例中相同,可参照上述方法类实施例,此处不再赘述。
在利用多组点对获取模块3进行光束平差后方共线交会,获取多帧图像分别对应的后方交会点坐标及其对应的前方主点世界坐标之后,第二次交会运算模块4利用该多帧图像分别对应的后方交会点坐标及其对应的前方主点世界坐标进行光束共球二次交会。
具体根据各图像分别对应的交会点坐标与前方主点的世界坐标对,以及空间点P,第二次交会运算模块4分别进行光束共球交会,列写切线共球条件方程。然后第二次交会运算模块4根据多个交会点坐标与前方主点的世界坐标对进行平差迭代计算,获取目标视觉测量系统的结构参数和云台旋转中心世界坐标。
在利用第二次交会运算模块4完成目标视觉测量系统的结构参数和云台旋转中心的标定后,仿射空间坐标系构建模块5根据标定的结构参数和云台旋转中心构建目标视觉测量系统不同视角下的仿射坐标系。例如以标定的云台旋转中心为坐标原点,通过连续旋转旋转云台,使其依次到达各所需视角,并依次在各视角下根据目标视觉测量系统的结构参数进行仿射坐标系构建。
本发明实施例提供的一种视觉测量系统结构参数标定和仿射坐标系构建系统,通过设置相关的功能模块,在根据光束平差共线交会获取多个交会点坐标及对应前方主点世界坐标的基础上,基于交会点坐标和前方主点世界坐标进行光束平差切线共球二次交会,解算视觉测量系统的结构参数和云台旋转中心坐标,并据此进行视觉测量系统仿射坐标系的构建,能够有效提高对目标视觉测量系统运动结构的参数标定精度,从而更精确的表示目标视觉测量系统的仿射关系,提高视觉测量精度,实现基于视觉测量系统自身结构参数的无标精确测量。
其中可选的,第一次交会运算模块1具体用于:对标定板和标定图像两个平面上的一组对应投影点建立共线条件方程,进行光束平差计算,获取一个所述交会点坐标F(X f,Y f,Z f):
法方程为:
Figure PCTCN2018095337-appb-000065
则法方程的解为:
Figure PCTCN2018095337-appb-000066
式中,W为用以引入矫正系统误差的观测值权阵;
W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)];
通过迭代运算,获取系统误差矫正后的所述交会点坐标F(X f,Y f,Z f);
前方投影点世界坐标计算模块2具体用于:利用主点的光学特性,基于所述交会点坐标,以矫正光学畸变的所述观测值权阵W对主点的标定图像坐标进行矫正,并由矫正后主点的标定图像坐标,解算主点在标定板上的世界坐标,获取所述前方投影点世界坐标。
其中,在一个实施例中,第二次交会运算模块4具体用于:
以一次交会获取的所述交会点坐标F(X f,Y f,Z f)点集和所述前方投影点世界坐标A(X,Y,Z)点集中的每对对应点作为一组对应投影点,分别两两与空间点集P中相应的一个点对应,建立切线共球条件方程;F(X f,Y f,Z f)和P均各自为共球点集,直线AFP为P球的切线,切点为P;以A、F和P进行共球二次交汇,并通过迭代运算,获取旋转中心交会点世界坐标O(X O,Y O,Z O),同时解算结构参数d z0和R;
F(X f,Y f,Z f)中各F i的对应矢量
Figure PCTCN2018095337-appb-000067
由矢量
Figure PCTCN2018095337-appb-000068
旋转获得,
Figure PCTCN2018095337-appb-000069
Figure PCTCN2018095337-appb-000070
的旋转矩阵为
Figure PCTCN2018095337-appb-000071
A、F和P三点切线方程为:
Figure PCTCN2018095337-appb-000072
解得:
Figure PCTCN2018095337-appb-000073
Figure PCTCN2018095337-appb-000074
式中,X f、Y f、Z f为光束平差后方共线交会的交会点坐标分量,(X O,Y O,Z O)为光束平差共球交会的交会点坐标,即云台旋转中心世界坐标,d z0和R为目标视觉测量系统的结构参数;
误差方程为:
V 2=A 2X 2-L 2
其中:
V 2=[v x,v y] T
v x=a 11dX O+a 12dY O+a 13dZ O+a 14d(d z0)+a 15dR-l x
v y=a 21dX O+a 22dY O+a 23dZ O+a 24d(d z0)+a 25dR-l y
L 2=[l x,l y] T
Figure PCTCN2018095337-appb-000075
Figure PCTCN2018095337-appb-000076
Figure PCTCN2018095337-appb-000077
X 2=[dX O dY O dZ O d(d z0)dR] T
法方程为:
Figure PCTCN2018095337-appb-000078
则法方程的解为:
Figure PCTCN2018095337-appb-000079
式中,W为用以引入矫正系统误差的观测值权阵;
W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)];
式中,A 2为第二观测矩阵,W为引入误差矫正分量的观测值权阵,W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)],其中X、Y、Z表示光束切线共球交会计算中切线条件方程的前方主点参数变量,c 11、c 12、c 31、c 22、c 31、c 32表示矫正系数,X 2为旋转中心坐标与结构参数增量向量,L 2为切线共球条件方程线性化变换向量;
Figure PCTCN2018095337-appb-000080
中的各项分别为:
Figure PCTCN2018095337-appb-000081
Figure PCTCN2018095337-appb-000082
Figure PCTCN2018095337-appb-000083
Figure PCTCN2018095337-appb-000084
Figure PCTCN2018095337-appb-000085
Figure PCTCN2018095337-appb-000086
Figure PCTCN2018095337-appb-000087
Figure PCTCN2018095337-appb-000088
Figure PCTCN2018095337-appb-000089
Figure PCTCN2018095337-appb-000090
通过迭代运算,获取系统误差矫正后的所述旋转中心交会点世界坐标O(X O,Y O,Z O),以及所述结构参数d z0和R;
其中,进行共球二次交会并进行迭代运算的运算流程为:
建立二维标板世界坐标系,从像平面上获取主点的像坐标,将像点坐标用W阵作系统误差校正;
利用主点的像坐标,计算主点在标定板上投影点的世界坐标;
初始值X O 0、Y O 0、Z O 0、d z0 0和R 0根据实际标定实验的设备条件粗略估算给出;
三个角元素的值用第一次共线交会获得的外方位元素代入;
逐点计算F(X f,Y f,Z f)点集中各点的近似值;
逐点求得球心坐标的改正数dX O、dY O、dZ O和结构参数的改正数d(d z0)和dR;
用前次迭代的近似值加改正数计算本次迭代值:
Figure PCTCN2018095337-appb-000091
R i=R i-1+dR i
将求得的球心坐标的改正数dX O、dY O、dZ O和计算结构参数的改正数d(d z0)和dR与规定的限差比较,达到精度则迭代结束,输出球心坐标O(X O,Y O,Z O),以及结构参数d z0和R。
其中,在另一个实施例中,仿射空间坐标系构建模块5具体用于:
以云台或手眼系统的旋转中心O为坐标原点,以设定定焦f i以及结构参数d z0 i和旋转结构参数R作为初始点F 0焦点坐标,将云台旋转,旋转矩阵为:
Figure PCTCN2018095337-appb-000092
获取F 1点的坐标为:
Figure PCTCN2018095337-appb-000093
仍以旋转中心O为原点,继续旋转,随云台的旋转,依次建立不同视角的仿射坐标系统,实现多视角无标前方交会视觉测量。
应当理解的是,本发明各视觉测量系统结构参数标定和仿射坐标系构建系统的实施例中,各功能模块的具体处理过程与上述方法类实施例对应,可参考上述方法类实施例,此处不再赘述。
作为本发明实施例的又一个方面,本实施例提供一种视觉测量系统结构参数标定和仿射坐标系构建装置,参考图5,为本发明实施例一种视觉测量系统结构参数标定和仿射坐标系构建装置的结构框图,包括:至少一个处理器501,以及至少一个与处理器501通信连接的存储器502。其中,存储器502中存储有可在处理器501上运行的计算机程序,处理器501执行所述计算机程序时实现如上所述的视觉测量系统结构参数标定和仿射坐标系构建方法。
可以理解为,所述的视觉测量系统结构参数标定和仿射坐标系构建装置中至少包含一个处理器501和一个存储器502,且处理器501和存储器502之间形成通信连接,可以进行相互间信息和指令的传输,如处理器501从存储器502中读取视觉测量系统结构参数标定和仿射坐标系构建方法的程序指令等。
视觉测量系统结构参数标定和仿射坐标系构建装置运行时,处理器501调用存储器502中的程序指令,以执行上述各方法实施例所提供的方法,例如包括:基于各所述图像分别对应的所述交会点坐标和所述前方主点的世界坐标,通过光束平差共球交会迭代运算,获取所述目标视觉测量系统的结构参数和云台旋转中心世界坐标;以及,针对每张所述图像,基于所述图像上的任意像点以及所述任意像点对应的前方主点,进行光束后方共线交会,并通过基于观测值权阵矫正的光束平差迭代运算,获取所述交会点坐标等。
本发明另一个实施例中,提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行如上所述的视觉测量系统结构参数标定和仿射坐标系构建方法。
可以理解为,上述存储器502中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。或者,实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所描述的视觉测量系统结构参数标定和仿射坐标系构建装置的实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,既可以位于一个地方,或者也可以分布到不同网络单元上。可以根据实际需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上实施方式的描述,本领域的技术人员可以清楚地了解,各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令,用以使得一台计算机设备(如个人计算机,服务器,或者网络设备等)执行上述各方法实施例或者方法实施例的某些部分所述的方法。
本发明实施例提供的一种视觉测量系统结构参数标定和仿射坐标系构建装置和一种非暂态计算机可读存储介质,在根据光束平差共线交会获取多个交会点坐标及对应前方主点世界坐标的基础上,根据交会点坐标和前方主点世界坐标进行光束平差切线共球二次交会,解算视觉测量系统的结构参数和云台旋转中心坐标,并在此基础上进行视觉测量系统仿射坐标系的构建,能够有效提高对目标视觉测量系统运动结构的参数标定精度,从而更精确的表示目标视觉测量系统的仿射关系,提高视觉测量精度。
另外,本领域内的技术人员应当理解的是,在本发明的申请文件中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本发明的说明书中,说明了大量具体细节。然而应当理解的是,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。类似地,应当理解,为了精简本发明公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。
然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种视觉测量系统结构参数标定和仿射坐标系构建方法,其特征在于,包括:
    S1,通过光束平差后方共线交会,获取交会点坐标;
    S2,获取所述交会点坐标所对应主点的前方投影点世界坐标;
    S3,利用多张不同标注图像,循环执行步骤S1和S2,获取多组交会点坐标与前方投影点世界坐标对;
    S4,基于多组所述交会点坐标与前方投影点世界坐标对,进行光束平差切线共球二次交会,并通过迭代计算,获取所述视觉测量系统的云台旋转中心坐标和结构参数;
    S5,基于所述云台旋转中心坐标和所述结构参数,建立以云台旋转中心为基础的仿射空间坐标系。
  2. 根据权利要求1所述的方法,其特征在于,所述S1的步骤进一步包括:
    对标定板和标定图像两个平面上的一组对应投影点建立共线条件方程,进行光束平差计算,获取一个所述交会点坐标F(X f,Y f,Z f):
    法方程为:
    Figure PCTCN2018095337-appb-100001
    则法方程的解为:
    Figure PCTCN2018095337-appb-100002
    式中,W为用以引入矫正系统误差的观测值权阵;
    W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)];
    通过迭代运算,获取系统误差矫正后的所述交会点坐标F(X f,Y f,Z f)。
  3. 根据权利要求2所述的方法,其特征在于,所述S2的步骤进一步包括:
    基于所述交会点坐标,利用矫正光学畸变的所述观测值权阵W,对主点的标定图像坐标进行矫正,并利用主点的光学特性,由矫正后的主点的标定图像坐标,解算主点在标定板上的世界坐标,获取所述前方投影点世界坐标。
  4. 根据权利要求2或3所述的方法,其特征在于,所述S3的步骤进 一步包括:
    遍历所有所述标注图像,重复执行步骤S1和S2,获取交会点坐标F(X f,Y f,Z f)点集,以及相应的矫正系统误差后的前方投影点世界坐标A(X,Y,Z)点集。
  5. 根据权利要求4所述的方法,其特征在于,所述S4的步骤进一步包括:
    以一次交会获取的所述交会点坐标F(X f,Y f,Z f)点集和所述前方投影点世界坐标A(X,Y,Z)点集中的每对对应点作为一组对应投影点,分别两两与空间点集P中相应的一个点对应,建立切线共球条件方程;F(X f,Y f,Z f)和P均各自为共球点集,直线AFP为P球的切线,切点为P;以A、F和P进行共球二次交汇,并通过迭代运算,获取旋转中心交会点世界坐标O(X O,Y O,Z O),同时解算结构参数d z0和R;
    F(X f,Y f,Z f)中各F i的对应矢量
    Figure PCTCN2018095337-appb-100003
    由矢量
    Figure PCTCN2018095337-appb-100004
    旋转获得,
    Figure PCTCN2018095337-appb-100005
    Figure PCTCN2018095337-appb-100006
    的旋转矩阵为
    Figure PCTCN2018095337-appb-100007
    A、F和P三点切线方程为:
    Figure PCTCN2018095337-appb-100008
    解得:
    Figure PCTCN2018095337-appb-100009
    Figure PCTCN2018095337-appb-100010
    式中,X f、Y f、Z f为光束平差后方共线交会的交会点坐标分量,(X O,Y O,Z O)为光束平差共球交会的交会点坐标,即云台旋转中心世界坐标,d z0和R为目标视觉测量系统的结构参数;
    误差方程为:
    V 2=A 2X 2-L 2
    其中:
    V 2=[v x,v y] T
    v x=a 11dX O+a 12dY O+a 13dZ O+a 14d(d z0)+a 15dR-l x
    v y=a 21dX O+a 22dY O+a 23dZ O+a 24d(d z0)+a 25dR-l y
    L 2=[l x,l y] T
    Figure PCTCN2018095337-appb-100011
    Figure PCTCN2018095337-appb-100012
    Figure PCTCN2018095337-appb-100013
    X 2=[dX O dY O dZ O d(d z0)dR] T
    法方程为:
    Figure PCTCN2018095337-appb-100014
    则法方程的解为:
    Figure PCTCN2018095337-appb-100015
    式中,W为用以引入矫正系统误差的观测值权阵;
    W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)];
    式中,A 2为第二观测矩阵,W为引入误差矫正分量的观测值权阵,W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)],其中X、Y、Z表示光束切线共球交会计算中切线条件方程的前方主点参数变量,c 11、c 12、c 31、c 22、c 31、c 32表示矫正系数,X 2为旋转中心坐标与结构参数增量向量,L 2为切线共球条件方程线性化变换向量;
    Figure PCTCN2018095337-appb-100016
    中的各项分别为:
    Figure PCTCN2018095337-appb-100017
    Figure PCTCN2018095337-appb-100018
    Figure PCTCN2018095337-appb-100019
    Figure PCTCN2018095337-appb-100020
    Figure PCTCN2018095337-appb-100021
    Figure PCTCN2018095337-appb-100022
    Figure PCTCN2018095337-appb-100023
    Figure PCTCN2018095337-appb-100024
    Figure PCTCN2018095337-appb-100025
    Figure PCTCN2018095337-appb-100026
    通过迭代运算,获取系统误差矫正后的所述旋转中心交会点世界坐标O(X O,Y O,Z O),以及所述结构参数d z0和R;
    其中,进行共球二次交会并进行迭代运算的运算流程为:
    建立二维标板世界坐标系,从像平面上获取主点的像坐标,将像点坐 标用W阵作系统误差校正;
    利用主点的像坐标,计算主点在标定板上投影点的世界坐标;
    初始值X O 0、Y O 0、Z O 0、d z0 0和R 0根据实际标定实验的设备条件粗略估算给出;
    三个角元素的值用第一次共线交会获得的外方位元素代入;
    逐点计算F(X f,Y f,Z f)点集中各点的近似值;
    逐点求得球心坐标的改正数dX O、dY O、dZ O和结构参数的改正数d(d z0)和dR;
    用前次迭代的近似值加改正数计算本次迭代值:
    Figure PCTCN2018095337-appb-100027
    R i=R i-1+dR i
    将求得的球心坐标的改正数dX O、dY O、dZ O和计算结构参数的改正数d(d z0)和dR与规定的限差比较,达到精度则迭代结束,输出球心坐标O(X O,Y O,Z O),以及结构参数d z0和R。
  6. 根据权利要求5所述的方法,其特征在于,所述S5的步骤进一步包括:
    以云台或手眼系统的旋转中心O为坐标原点,以设定定焦f i以及结构参数d z0 i和旋转结构参数R作为初始点F 0焦点坐标,将云台旋转,旋转矩阵为:
    Figure PCTCN2018095337-appb-100028
    获取F 1点的坐标为:
    Figure PCTCN2018095337-appb-100029
    仍以旋转中心O为原点,继续旋转,随云台的旋转,依次建立不同视角的仿射坐标系统,实现多视角无标前方交会视觉测量。
  7. 一种视觉测量系统结构参数标定和仿射坐标系构建系统,其特征在于,包括:
    第一次交会运算模块,用于通过光束平差后方共线交会,获取交会点 坐标;
    前方投影点世界坐标计算模块,用于获取所述交会点坐标所对应主点的前方投影点世界坐标;
    多组点对获取模块,用于控制所述第一次交会运算模块和所述前方投影点世界坐标计算模块,根据多张不同标注图像,获取多组交会点坐标与前方投影点世界坐标对;
    第二次交会运算模块,用于基于多组所述交会点坐标与前方投影点世界坐标对,进行光束平差切线共球二次交会,并通过迭代计算,获取所述视觉测量系统的云台旋转中心坐标和结构参数;
    仿射空间坐标系构建模块,用于基于所述云台旋转中心坐标和所述结构参数,建立以云台旋转中心为基础的仿射空间坐标系。
  8. 根据权利要求7所述的系统,其特征在于,所述第一次交会运算模块具体用于:
    对标定板和标定图像两个平面上的一组对应投影点建立共线条件方程,进行光束平差计算,获取一个所述交会点坐标F(X f,Y f,Z f):
    法方程为:
    Figure PCTCN2018095337-appb-100030
    则法方程的解为:
    Figure PCTCN2018095337-appb-100031
    式中,W为用以引入矫正系统误差的观测值权阵;
    W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)];
    通过迭代运算,获取系统误差矫正后的所述交会点坐标F(X f,Y f,Z f);
    所述前方投影点世界坐标计算模块具体用于:
    基于所述交会点坐标,以矫正光学畸变的所述观测值权阵W对主点的标定图像坐标进行矫正,并利用主点的光学特性,由矫正后主点的标定图像坐标,解算主点在标定板上的世界坐标,获取所述前方投影点世界坐标。
  9. 根据权利要求7所述的系统,其特征在于,所述第二次交会运算模块具体用于:
    以一次交会获取的所述交会点坐标F(X f,Y f,Z f)点集和所述前方投影点 世界坐标A(X,Y,Z)点集中的每对对应点作为一组对应投影点,分别两两与空间点集P中相应的一个点对应,建立切线共球条件方程;F(X f,Y f,Z f)和P均各自为共球点集,直线AFP为P球的切线,切点为P;以A、F和P进行共球二次交汇,并通过迭代运算,获取旋转中心交会点世界坐标O(X O,Y O,Z O),同时解算结构参数d z0和R;
    F(X f,Y f,Z f)中各F i的对应矢量
    Figure PCTCN2018095337-appb-100032
    由矢量
    Figure PCTCN2018095337-appb-100033
    旋转获得,
    Figure PCTCN2018095337-appb-100034
    Figure PCTCN2018095337-appb-100035
    的旋转矩阵为
    Figure PCTCN2018095337-appb-100036
    A、F和P三点切线方程为:
    Figure PCTCN2018095337-appb-100037
    解得:
    Figure PCTCN2018095337-appb-100038
    Figure PCTCN2018095337-appb-100039
    式中,X f、Y f、Z f为光束平差后方共线交会的交会点坐标分量,(X O,Y O,Z O)为光束平差共球交会的交会点坐标,即云台旋转中心世界坐标,d z0和R为目标视觉测量系统的结构参数;
    误差方程为:
    V 2=A 2X 2-L 2
    其中:
    V 2=[v x,v y] T
    v x=a 11dX O+a 12dY O+a 13dZ O+a 14d(d z0)+a 15dR-l x
    v y=a 21dX O+a 22dY O+a 23dZ O+a 24d(d z0)+a 25dR-l y
    L 2=[l x,l y] T
    Figure PCTCN2018095337-appb-100040
    Figure PCTCN2018095337-appb-100041
    Figure PCTCN2018095337-appb-100042
    X 2=[dX O dY O dZ O d(d z0)dR] T
    法方程为:
    Figure PCTCN2018095337-appb-100043
    则法方程的解为:
    Figure PCTCN2018095337-appb-100044
    式中,W为用以引入矫正系统误差的观测值权阵;
    W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)];
    式中,A 2为第二观测矩阵,W为引入误差矫正分量的观测值权阵,W=[(c 11X+c 12),(c 21Y+c 22),(c 31Z+c 32)],其中X、Y、Z表示光束切线共球交会计算中切线条件方程的前方主点参数变量,c 11、c 12、c 31、c 22、c 31、c 32表示矫正系数,X 2为旋转中心坐标与结构参数增量向量,L 2为切线共球条件方程线性化变换向量;
    Figure PCTCN2018095337-appb-100045
    中的各项分别为:
    Figure PCTCN2018095337-appb-100046
    Figure PCTCN2018095337-appb-100047
    Figure PCTCN2018095337-appb-100048
    Figure PCTCN2018095337-appb-100049
    Figure PCTCN2018095337-appb-100050
    Figure PCTCN2018095337-appb-100051
    Figure PCTCN2018095337-appb-100052
    Figure PCTCN2018095337-appb-100053
    Figure PCTCN2018095337-appb-100054
    Figure PCTCN2018095337-appb-100055
    通过迭代运算,获取系统误差矫正后的所述旋转中心交会点世界坐标O(X O,Y O,Z O),以及所述结构参数d z0和R;
    其中,进行共球二次交会并进行迭代运算的运算流程为:
    建立二维标板世界坐标系,从像平面上获取主点的像坐标,将像点坐标用W阵作系统误差校正;
    利用主点的像坐标,计算主点在标定板上投影点的世界坐标;
    初始值X O 0、Y O 0、Z O 0、d z0 0和R 0根据实际标定实验的设备条件粗略估算给出;
    三个角元素的值用第一次共线交会获得的外方位元素代入;
    逐点计算F(X f,Y f,Z f)点集中各点的近似值;
    逐点求得球心坐标的改正数dX O、dY O、dZ O和结构参数的改正数 d(d z0)和dR;
    用前次迭代的近似值加改正数计算本次迭代值:
    Figure PCTCN2018095337-appb-100056
    R i=R i-1+dR i
    将求得的球心坐标的改正数dX O、dY O、dZ O和计算结构参数的改正数d(d z0)和dR与规定的限差比较,达到精度则迭代结束,输出球心坐标O(X O,Y O,Z O),以及结构参数d z0和R。
  10. 根据权利要求7所述的系统,其特征在于,所述仿射空间坐标系构建模块具体用于:
    以云台或手眼系统的旋转中心O为坐标原点,以设定定焦f i以及结构参数d z0 i和旋转结构参数R作为初始点F 0焦点坐标,将云台旋转,旋转矩阵为:
    Figure PCTCN2018095337-appb-100057
    获取F 1点的坐标为:
    Figure PCTCN2018095337-appb-100058
    仍以旋转中心O为原点,继续旋转,随云台的旋转,依次建立不同视角的仿射坐标系统,实现多视角无标前方交会视觉测量。
PCT/CN2018/095337 2018-04-27 2018-07-12 视觉测量系统结构参数标定和仿射坐标系构建方法与系统 WO2019205299A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/969,340 US20210041236A1 (en) 2018-04-27 2018-07-12 Method and system for calibration of structural parameters and construction of affine coordinate system of vision measurement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810394449.9A CN108489395B (zh) 2018-04-27 2018-04-27 视觉测量系统结构参数标定和仿射坐标系构建方法与系统
CN201810394449.9 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019205299A1 true WO2019205299A1 (zh) 2019-10-31

Family

ID=63313219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095337 WO2019205299A1 (zh) 2018-04-27 2018-07-12 视觉测量系统结构参数标定和仿射坐标系构建方法与系统

Country Status (3)

Country Link
US (1) US20210041236A1 (zh)
CN (1) CN108489395B (zh)
WO (1) WO2019205299A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110956667A (zh) * 2019-11-28 2020-04-03 李安澜 基于近似平面靶的摄像机自标定方法及系统
CN111612852A (zh) * 2020-05-20 2020-09-01 北京百度网讯科技有限公司 用于验证相机参数的方法和装置
CN111915685A (zh) * 2020-08-17 2020-11-10 沈阳飞机工业(集团)有限公司 一种变焦摄像机标定方法
CN112215905A (zh) * 2020-10-22 2021-01-12 北京易达恩能科技有限公司 移动式红外测温系统的自动标定方法
CN112611325A (zh) * 2020-12-07 2021-04-06 东莞市兆丰精密仪器有限公司 一种激光中心的标定方法及其与影像中心同步的标定方法
CN112729245A (zh) * 2020-11-30 2021-04-30 成都飞机工业(集团)有限责任公司 一种自动瞄准投点器及投点方法
CN113030855A (zh) * 2021-03-23 2021-06-25 深圳市迈诺电子有限公司 基于天线阵列的二维平面定位方法
CN113744343A (zh) * 2021-08-09 2021-12-03 佛山智能装备技术研究院 基于结构光传感器的手眼标定方法、系统及存储介质
CN113761709A (zh) * 2021-07-23 2021-12-07 散裂中子源科学中心 一种附有高程约束的三维平差方法及装置
CN115388769A (zh) * 2022-08-17 2022-11-25 成都飞机工业(集团)有限责任公司 一种工装状态实时监测方法、装置、设备及介质
CN115661349A (zh) * 2022-10-26 2023-01-31 中国农业大学 基于样本图像的三维重建方法、系统、设备、介质及产品
CN116204756A (zh) * 2023-04-28 2023-06-02 武汉大学 一种多分析中心精密站坐标产品综合方法及系统
CN116433756A (zh) * 2023-06-15 2023-07-14 浪潮智慧科技有限公司 一种单目相机的地表物体空间分析方法、设备及介质
CN116843859A (zh) * 2023-06-25 2023-10-03 成都飞机工业(集团)有限责任公司 一种面向视觉测量系统的不确定度计算方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2025452B1 (en) * 2020-04-29 2021-11-09 Navinfo Europe B V System and method for 3D positioning a landmark in images from the real world
CN112050751B (zh) * 2020-07-17 2022-07-22 深圳大学 一种投影仪标定方法、智能终端及存储介质
CN112880592B (zh) * 2021-01-20 2022-03-04 湘潭大学 一种基于芯轴的数控转台顶尖的倾斜标定方法
CN113343163B (zh) * 2021-04-19 2023-03-21 华南农业大学 一种大规模边角网平差及精度评定方法、系统及存储介质
CN113405532B (zh) * 2021-05-31 2022-05-06 中国农业大学 基于视觉系统结构参数的前方交会测量方法及系统
CN113405568B (zh) * 2021-06-03 2022-10-28 中国农业大学 视觉测量系统结构参数测量的方法、系统及电子设备
CN113473834B (zh) * 2021-06-23 2022-04-15 珠海格力电器股份有限公司 异型元件的插装方法、装置、系统、电子设备和存储介质
CN113496528B (zh) * 2021-09-07 2021-12-14 湖南众天云科技有限公司 固定交通路侧场景下视觉检测目标位置标定方法及装置
CN114322940B (zh) * 2021-12-02 2024-04-09 中国人民解放军96796部队 一种空地一体多目交会测量空爆位置中心的方法及系统
CN114608540B (zh) * 2022-03-17 2023-06-16 中国科学院紫金山天文台 一种数字摄影测量系统的测量网型确定方法
CN114516051B (zh) * 2022-03-18 2023-05-30 中国农业大学 三个及以上自由度机器人视觉测量的前方交会方法及系统
CN114463422B (zh) * 2022-04-14 2022-08-16 北京深度奇点科技有限公司 一种用于影像测量校正的方法和系统
CN114877870B (zh) * 2022-05-18 2023-07-14 大连理工大学 基于虚拟基准尺的大尺寸摄影测量精度提升方法
CN115507769B (zh) * 2022-05-24 2023-09-22 北京工业大学 融合视觉和光学原理的齿轮快速测量方法
CN114972536B (zh) * 2022-05-26 2023-05-09 中国人民解放军战略支援部队信息工程大学 一种航空面阵摆扫式相机定位和标定方法
CN114812446B (zh) * 2022-05-31 2023-03-21 南京航空航天大学 一种基于摄影测量技术的飞机水平测量工装标定方法
CN116451474B (zh) * 2023-04-19 2023-12-29 沈阳航空航天大学 一种螺纹牙斜面数学表达式的建立方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101727670A (zh) * 2009-11-10 2010-06-09 西安交通大学 一种可变幅面多相机系统柔性标定方法及装置
CN102654391A (zh) * 2012-01-17 2012-09-05 深圳大学 基于光束平差原理的条纹投影三维测量系统及其标定方法
CN102889882A (zh) * 2012-09-03 2013-01-23 北京信息科技大学 一种基于光束平差的三维重建方法
CN105241377A (zh) * 2015-09-16 2016-01-13 中国农业大学 基于云镜摄系统参数和视频帧的植物三维测量方法和系统
US20170085860A1 (en) * 2015-09-22 2017-03-23 Purdue Research Foundation Calibration arrangement for structured light system using a tele-centric lens
CN107230233A (zh) * 2017-05-04 2017-10-03 深圳大学 基于光束平差的远心镜头三维成像系统的标定方法及装置
CN107543495A (zh) * 2017-02-17 2018-01-05 北京卫星环境工程研究所 航天器设备自动准直测量系统、准直方法与测量方法
CN107680139A (zh) * 2017-10-17 2018-02-09 中国人民解放军国防科技大学 一种远心双目立体视觉测量系统的通用性标定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4825394A (en) * 1985-05-07 1989-04-25 General Dynamics Corporation Vision metrology system
US6044132A (en) * 1997-12-31 2000-03-28 Siemens Corporate Research, Inc. Apparatus for providing markers on an image, for use in conjunction with C-arm calibration apparatus
US20060017720A1 (en) * 2004-07-15 2006-01-26 Li You F System and method for 3D measurement and surface reconstruction
EP2742484B1 (en) * 2011-07-25 2016-08-31 Universidade de Coimbra Method and apparatus for automatic camera calibration using one or more images of a checkerboard pattern
WO2016076400A1 (ja) * 2014-11-13 2016-05-19 オリンパス株式会社 較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101727670A (zh) * 2009-11-10 2010-06-09 西安交通大学 一种可变幅面多相机系统柔性标定方法及装置
CN102654391A (zh) * 2012-01-17 2012-09-05 深圳大学 基于光束平差原理的条纹投影三维测量系统及其标定方法
CN102889882A (zh) * 2012-09-03 2013-01-23 北京信息科技大学 一种基于光束平差的三维重建方法
CN105241377A (zh) * 2015-09-16 2016-01-13 中国农业大学 基于云镜摄系统参数和视频帧的植物三维测量方法和系统
US20170085860A1 (en) * 2015-09-22 2017-03-23 Purdue Research Foundation Calibration arrangement for structured light system using a tele-centric lens
CN107543495A (zh) * 2017-02-17 2018-01-05 北京卫星环境工程研究所 航天器设备自动准直测量系统、准直方法与测量方法
CN107230233A (zh) * 2017-05-04 2017-10-03 深圳大学 基于光束平差的远心镜头三维成像系统的标定方法及装置
CN107680139A (zh) * 2017-10-17 2018-02-09 中国人民解放军国防科技大学 一种远心双目立体视觉测量系统的通用性标定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABED, MALTI: "Hand - eye calibration with epipolar constraints: Application to endoscopy", ROBOTICS AND AUTONOMOUS SYSTEMS, vol. 61, no. 2, 19 November 2012 (2012-11-19), pages 161 - 169, XP055648346, DOI: 10.1016/j.robot.2012.09.029 *
YANG, HUACHAO ET AL.: "Unit quaternion based description of Collinearity Equations", JOURNAL OF IMAGE AND GRAPHICS, vol. 17, no. 3, 31 March 2012 (2012-03-31), pages 301 - 308, XP055648343 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110956667B (zh) * 2019-11-28 2023-02-17 李安澜 基于近似平面靶的摄像机自标定方法及系统
CN110956667A (zh) * 2019-11-28 2020-04-03 李安澜 基于近似平面靶的摄像机自标定方法及系统
CN111612852A (zh) * 2020-05-20 2020-09-01 北京百度网讯科技有限公司 用于验证相机参数的方法和装置
CN111612852B (zh) * 2020-05-20 2023-06-09 阿波罗智联(北京)科技有限公司 用于验证相机参数的方法和装置
CN111915685A (zh) * 2020-08-17 2020-11-10 沈阳飞机工业(集团)有限公司 一种变焦摄像机标定方法
CN111915685B (zh) * 2020-08-17 2023-10-31 沈阳飞机工业(集团)有限公司 一种变焦摄像机标定方法
CN112215905A (zh) * 2020-10-22 2021-01-12 北京易达恩能科技有限公司 移动式红外测温系统的自动标定方法
CN112729245A (zh) * 2020-11-30 2021-04-30 成都飞机工业(集团)有限责任公司 一种自动瞄准投点器及投点方法
CN112729245B (zh) * 2020-11-30 2022-08-12 成都飞机工业(集团)有限责任公司 一种自动瞄准投点器及投点方法
CN112611325A (zh) * 2020-12-07 2021-04-06 东莞市兆丰精密仪器有限公司 一种激光中心的标定方法及其与影像中心同步的标定方法
CN113030855A (zh) * 2021-03-23 2021-06-25 深圳市迈诺电子有限公司 基于天线阵列的二维平面定位方法
CN113030855B (zh) * 2021-03-23 2023-09-29 深圳市迈诺电子有限公司 基于天线阵列的二维平面定位方法
CN113761709A (zh) * 2021-07-23 2021-12-07 散裂中子源科学中心 一种附有高程约束的三维平差方法及装置
CN113761709B (zh) * 2021-07-23 2023-12-01 散裂中子源科学中心 一种附有高程约束的三维平差方法及装置
CN113744343B (zh) * 2021-08-09 2023-12-05 佛山智能装备技术研究院 基于结构光传感器的手眼标定方法、系统及存储介质
CN113744343A (zh) * 2021-08-09 2021-12-03 佛山智能装备技术研究院 基于结构光传感器的手眼标定方法、系统及存储介质
CN115388769A (zh) * 2022-08-17 2022-11-25 成都飞机工业(集团)有限责任公司 一种工装状态实时监测方法、装置、设备及介质
CN115661349B (zh) * 2022-10-26 2023-10-27 中国农业大学 基于样本图像的三维重建方法、系统、设备、介质及产品
CN115661349A (zh) * 2022-10-26 2023-01-31 中国农业大学 基于样本图像的三维重建方法、系统、设备、介质及产品
CN116204756B (zh) * 2023-04-28 2023-07-07 武汉大学 一种多分析中心精密站坐标产品综合方法及系统
CN116204756A (zh) * 2023-04-28 2023-06-02 武汉大学 一种多分析中心精密站坐标产品综合方法及系统
CN116433756B (zh) * 2023-06-15 2023-08-18 浪潮智慧科技有限公司 一种单目相机的地表物体空间分析方法、设备及介质
CN116433756A (zh) * 2023-06-15 2023-07-14 浪潮智慧科技有限公司 一种单目相机的地表物体空间分析方法、设备及介质
CN116843859A (zh) * 2023-06-25 2023-10-03 成都飞机工业(集团)有限责任公司 一种面向视觉测量系统的不确定度计算方法

Also Published As

Publication number Publication date
CN108489395A (zh) 2018-09-04
US20210041236A1 (en) 2021-02-11
CN108489395B (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2019205299A1 (zh) 视觉测量系统结构参数标定和仿射坐标系构建方法与系统
CN110296691B (zh) 融合imu标定的双目立体视觉测量方法与系统
CN109767476B (zh) 一种自动对焦双目摄像头标定及深度计算方法
CN110345921B (zh) 立体视场视觉测量及垂轴像差和轴向像差校正方法及系统
CN111801198B (zh) 一种手眼标定方法、系统及计算机存储介质
CN111515944B (zh) 非固定路径机器人自动标定方法
JP2012088114A (ja) 光学情報処理装置、光学情報処理方法、光学情報処理システム、光学情報処理プログラム
WO2018201677A1 (zh) 基于光束平差的远心镜头三维成像系统的标定方法及装置
CN108198219B (zh) 用于摄影测量的相机标定参数的误差补偿方法
US9990739B1 (en) Method and device for fisheye camera automatic calibration
CN111735487B (zh) 传感器、传感器标定方法与设备、存储介质
CN111915685B (zh) 一种变焦摄像机标定方法
CN113920206A (zh) 透视移轴相机的标定方法
CN113744340A (zh) 用轴向视点偏移的非中心相机模型校准相机并计算点投影
CN110827360B (zh) 一种光度立体式测量系统及其标定光源方向的方法
Luhmann 3D imaging: how to achieve highest accuracy
JP5487946B2 (ja) カメラ画像の補正方法およびカメラ装置および座標変換パラメータ決定装置
CN111754584A (zh) 一种远距离大视场相机参数标定系统和方法
JP2018044942A (ja) カメラパラメータ算出装置、カメラパラメータ算出方法、プログラム、及び記録媒体
Wang et al. Calibration Research on Fish-eye lens
CN113405532B (zh) 基于视觉系统结构参数的前方交会测量方法及系统
JP4236202B2 (ja) モデリング装置およびカメラパラメータの計算方法
CN113362399B (zh) 一种偏折测量系统中对焦镜和屏幕位姿的标定方法
CN113034615B (zh) 一种用于多源数据融合的设备标定方法及相关装置
CN112729109B (zh) 一种点云数据的校正方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916562

Country of ref document: EP

Kind code of ref document: A1