WO2019193834A1 - Semiconductor driving device and power conversion device - Google Patents

Semiconductor driving device and power conversion device Download PDF

Info

Publication number
WO2019193834A1
WO2019193834A1 PCT/JP2019/004232 JP2019004232W WO2019193834A1 WO 2019193834 A1 WO2019193834 A1 WO 2019193834A1 JP 2019004232 W JP2019004232 W JP 2019004232W WO 2019193834 A1 WO2019193834 A1 WO 2019193834A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
switching element
unit
abnormality detection
semiconductor switching
Prior art date
Application number
PCT/JP2019/004232
Other languages
French (fr)
Japanese (ja)
Inventor
航平 恩田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020511618A priority Critical patent/JP6849148B2/en
Publication of WO2019193834A1 publication Critical patent/WO2019193834A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a semiconductor drive device that drives a plurality of semiconductor switching elements connected in series, and a power conversion device using the same.
  • the power conversion device including the inverter device realizes the power conversion by the on / off operation of the semiconductor switching element.
  • semiconductor switching elements there are voltage-driven switching elements represented by MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) and IGBT (Insulated Gate Bipolar Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • an arm short circuit occurs when a plurality of switching elements connected in series are simultaneously turned on.
  • a period (dead time) in which a plurality of switching elements are simultaneously turned off is provided.
  • the dead time is set to a fixed time. For this reason, as the on / off switching frequency increases, the time ratio of the dead time in the carrier cycle becomes relatively large.
  • a MOSFET is used as the switching element, a conduction loss of the built-in diode occurs during the dead time.
  • the power conversion device is, for example, a boost converter
  • the effective on-duty is reduced by increasing the time ratio of dead time.
  • the boostable range is reduced.
  • SiC (Silicon Carbide) -MOSFET including a wide band gap semiconductor is used as a switching element and a built-in diode of the MOSFET is used, current deterioration due to SiC crystal defects occurs.
  • Patent Document 1 discloses a method for reducing dead time by utilizing a sense transistor. Specifically, when the synchronous rectification is started, the detection diode becomes lower than the reference voltage by energizing the parasitic diode of the sense transistor. In response to this, the main transistor is turned on. In this case, even if the command signal to the main transistor is at a low level, the main transistor is turned on, so that the dead time at the start of synchronous rectification is shortened.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a semiconductor drive device and a power conversion device capable of reducing dead time while suppressing increase in size and cost.
  • a semiconductor drive device includes a control unit that generates a plurality of on / off command signals for driving a plurality of semiconductor switching elements connected in series, and one semiconductor switching element among the plurality of semiconductor switching elements.
  • An on / off determination unit that detects an on / off state and outputs an on / off determination signal that indicates the detected on / off state, and detects whether there is an abnormality in one semiconductor switching element and outputs an abnormality detection signal that indicates the presence / absence of the detected abnormality
  • An abnormality detection unit that outputs a state signal based on the on / off determination signal output from the on / off determination unit and the abnormality detection signal output from the abnormality detection unit, and the control unit and the one switching element.
  • Embodiment 1 of the present invention It is a timing chart which shows an example of a change of a status signal, a clear signal, an abnormal signal, and an abnormal hold signal in Embodiment 1 of the present invention. It is a timing chart for demonstrating the change of the various signals when a switching element is hard-cut in Embodiment 1 of this invention. 5 is a timing chart for explaining changes in various signals when the ON determination time is set to be relatively long in Embodiment 1 of the present invention. It is a circuit diagram which shows the specific structural example of the state signal generation part of the semiconductor drive device concerning Embodiment 2 of this invention, a gate drive part, an on-off determination part, and an abnormality detection part.
  • FIG. 1 is a block diagram showing a basic configuration of a semiconductor drive device according to Embodiment 1 of the present invention.
  • the semiconductor drive device 1 according to the first embodiment includes a pair of semiconductor switching elements (hereinafter abbreviated as switching elements) M1 and M2 connected in series between a positive terminal TP and a negative terminal TN of a DC power supply. Each is driven by pulse width modulation.
  • the switching elements M1 and M2 are power MOSFETs.
  • a parasitic diode is provided in each of the switching elements M1 and M2.
  • the semiconductor drive device 1 has a function of detecting an arm short circuit based on a voltage between the drain terminal DrainH and the source terminal SourceH of the switching element M1 and a voltage between the drain terminal DrainL and the source terminal SourceL of the switching element M2.
  • the arm short circuit is a short circuit that occurs between the positive terminal TP and the negative terminal TN when the switching elements M1 and M2 are simultaneously turned on.
  • the semiconductor drive device 1 includes a control unit 10, gate drive units 22H and 22L, on / off determination units 23H and 23L, and abnormality detection units 24H and 24L.
  • the control unit 10 generates an on / off command signal SctlH for driving the switching element M1 and an on / off command signal SctlL for driving the switching element M2.
  • the on / off command signals SctlH and SctlL are at a high level when the switching elements M1 and M2 are to be turned on, and are at a low level when the switching elements M1 and M2 are to be turned off.
  • the on / off command signal SctlH is given to the gate drive unit 22H and the on / off determination unit 23H as an on / off command signal SgdH through an insulating communication unit 20H described later.
  • the on / off command signal SctlL is given to the gate drive unit 22L and the on / off determination unit 23L as the on / off command signal SgdL via the insulation communication unit 20L described later.
  • the on / off command signal SgdH transmitted by the insulated communication unit 20H is input to the gate drive unit 22H.
  • the gate drive unit 22H drives the switching element M1 based on the input on / off command signal SgdH.
  • An ON / OFF command signal SgdL transmitted by the insulated communication unit 20L is input to the gate drive unit 22L.
  • the gate drive unit 22L drives the switching element M2 based on the input on / off command signal SgdL.
  • the gate drive units 22H and 22L drive the switching elements M1 and M2 by applying a voltage to the gate terminals GateH and GateL of the switching elements M1 and M2.
  • the gate drive units 22H and 22L may drive the switching elements M1 and M2 by applying a current to the gate terminals GateH and GateL of the switching elements M1 and M2.
  • a current drive type semiconductor such as a bipolar transistor
  • the switching elements M1 and M2 are driven by the current.
  • the on / off determination unit 23H is supplied with the on / off command signal SgdH transmitted by the insulated communication unit 20H and the voltage of the gate terminal GateH of the switching element M1.
  • the on / off determination unit 23H determines the on / off state of the switching element M1 based on the voltage of the gate terminal GateH of the switching element M1, and outputs an on / off determination signal SonH indicating the determined on / off state.
  • the on / off determination unit 23L receives the on / off command signal SgdL transmitted by the insulating communication unit 20L and is given the voltage of the gate terminal GateL of the switching element M2.
  • the on / off determination unit 23L determines the on / off state of the switching element M2 based on the voltage of the gate terminal GateL of the switching element M2, and outputs an on / off determination signal SonL indicating the determined on / off state.
  • the on / off determination units 23H and 23L output high-level on / off determination signals SonH and SonL, and when the switching elements M1 and M2 are off, the on / off determination units 23H and 23L. Outputs low-level on / off determination signals SonH and SonL.
  • the on / off determination units 23H and 23L may determine the on / off states of the switching elements M1 and M2 based on the current applied to the gate terminals GateH and GateL of the switching elements M1 and M2.
  • the abnormality detection unit 24H receives the on / off determination signal SonH output from the on / off determination unit 23H and the voltage of the drain terminal DrainH of the switching element M1.
  • the abnormality detection unit 24H detects whether or not the switching element M1 is abnormal, and outputs an abnormality detection signal SfaH that indicates the presence or absence of the detected abnormality.
  • the abnormality detection unit 24L receives the on / off determination signal SonL output from the on / off determination unit 23L and is given the voltage of the drain terminal DrainL of the switching element M2.
  • the abnormality detection unit 24L detects whether or not the switching element M2 is abnormal and outputs an abnormality detection signal SfaL that indicates the presence or absence of the detected abnormality.
  • the high level abnormality detection signals SfaH and SfaL indicate that the switching elements M1 and M2 are abnormal, and the low level abnormality detection signals SfaH and SfaL indicate that the switching elements M1 and M2 are not abnormal.
  • the abnormality detection units 24H and 24L detect an arm short circuit as an abnormality of the switching elements M1 and M2, respectively.
  • the semiconductor drive device 1 further includes state signal generation units 21H and 21L and insulating communication units 20H and 20L.
  • the state signal generation unit 21H receives the on / off determination signal SonH output from the on / off determination unit 23H and the abnormality detection signal SfaH output from the abnormality detection unit 24H.
  • the state signal generation unit 21H generates a state signal SstH based on the on / off determination signal SonH and the abnormality detection signal SfaH, and outputs the generated state signal SstH.
  • the state signal generation unit 21H receives the on / off determination signal SonL output from the on / off determination unit 23L and the abnormality detection signal SfaL output from the abnormality detection unit 24L.
  • the state signal generation unit 21L generates a state signal SstL based on the on / off determination signal SonL and the abnormality detection signal SfaL, and outputs the generated state signal SstL.
  • the insulated communication unit 20H includes channels Ch1 and Ch2, and the insulated communication unit 20L includes channels Ch3 and Ch4.
  • an insulating element such as a photocoupler or a pulse transformer is used.
  • An optical fiber formed of an insulating material may be used for the channels Ch1 to Ch4.
  • the channels Ch1 to Ch4 may be insulated such as a pulse transformer formed in an integrated circuit (IC).
  • the insulation communication unit 20H transmits an on / off command signal from the control unit 10 to the gate drive unit 22H while ensuring insulation between the control unit 10 and the gate drive unit 22H, and the state signal generation unit 21H and the control unit 10
  • the state signal is transmitted from the state signal generation unit 21H to the control unit 10 while ensuring the insulation between them.
  • the on / off command signal SctlH output from the control unit 10 is input to the channel Ch1
  • the on / off command signal SgdH output from the channel Ch1 is supplied to the gate drive unit 22H.
  • the state signal SstH output from the state signal generation unit 21H is input to the channel Ch2, and the state signal SfbH output from the channel Ch2 is provided to the control unit 10.
  • the insulation communication unit 20L transmits an on / off command signal from the control unit 10 to the gate drive unit 22L while ensuring insulation between the control unit 10 and the gate drive unit 22L, and the state signal generation unit 21L and the control unit 10 A state signal is transmitted from the state signal generation unit 21L to the control unit 10 while ensuring insulation between the two.
  • the on / off command signal SctlL output from the control unit 10 is input to the channel Ch3, and the on / off command signal SgdL output from the channel Ch3 is supplied to the gate drive unit 22L.
  • the state signal SstL output from the state signal generation unit 21L is input to the channel Ch4, and the state signal SfbL output from the channel Ch4 is provided to the control unit 10.
  • the on / off command signal SgdH changes with a slight delay from the on / off command signal SctlH
  • the state signal SfbH changes with a slight delay from the state signal SstH
  • the on / off command signal SgdL changes with a slight delay from the on / off command signal SctlL
  • the state signal SfbL changes with a slight delay from the state signal SstL.
  • Signals input / output to / from each of the gate drive unit 22H, the on / off determination unit 23H, the abnormality detection unit 24H and the state signal generation unit 21H are based on the potential of the source terminal SourceH of the switching element M1.
  • signals input / output to / from each of the gate drive unit 22L, the on / off determination unit 23L, the abnormality detection unit 24L, and the state signal generation unit 21L are based on the potential of the source terminal SourceH of the switching element M2.
  • the potentials of the source terminals SourceH and SourceL vary depending on the switching operation of the switching elements M1 and M2.
  • signals input to and output from the control unit 10 are preferably based on a certain potential.
  • the control unit 10 includes an on command generation unit 11 and dead time generation units 12H and 12L.
  • the on-command generating unit 11 receives the status signal SfbH transmitted by the insulated communication unit 20H and the status signal SfbL transmitted by the insulated communication unit 20L.
  • the on command generation unit 11 generates on signals SinH and SinL based on the state signals SfbH and SfbL.
  • the dead time generating unit 12H receives the state signal SfbL transmitted from the insulating communication unit 20L and the on signal SinH output from the on command generating unit 11.
  • the dead time generation unit 12H generates the on / off command signal SctlH based on the state signal SfbL and the on signal SinH so that the dead time is suitably secured.
  • the dead time generating unit 12L receives the state signal SfbH transmitted from the insulated communication unit 20H and the on signal SinL output from the on command generating unit 11.
  • the dead time generation unit 12L generates an on / off command signal SctlL based on the state signal SfbL and the on signal SinL so that the dead time is suitably secured.
  • the on / off determination signal SonH is not transmitted via the dedicated channel of the isolated communication unit 20H, but the state signal SstH is generated from the on / off determination signal SonH and the abnormality detection signal SfaH, and the state signal SstH Is transmitted through one channel Ch2 of the insulated communication unit 20H.
  • the on / off determination signal SonL is not transmitted via the dedicated channel of the isolated communication unit 20L, but the state signal SstL is generated from the on / off determination signal SonL and the abnormality detection signal SfaL, and the state signal SstL is generated by the isolated communication unit. It is transmitted through one channel Ch4 of 20H.
  • the on / off states of the switching elements M1, M2 can be transmitted to the control unit 10 without providing a new channel in the insulated communication units 20H, 20L in order to transmit the on / off determination signals SonH, SonL.
  • FIG. 2 is a schematic circuit diagram showing a specific configuration example of the state signal generation unit 21H, the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H of FIG.
  • the state signal generation unit 21L, the gate drive unit 22L, the on / off determination unit 23L, and the abnormality detection unit 24L in FIG. 1 are the same as the state signal generation unit 21H, the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H.
  • the gate driver 22H includes a buffer circuit BF1, resistors R1 to R10, speed-up capacitors C1 and C2, and transistors Tr1 to Tr3.
  • the on / off command signal SgdH output from the insulated communication unit 20H is amplified by the buffer circuit BF1, and is turned on by the gate resistors R6 and R8 and the speed-up capacitor C2, or is turned off by the gate resistors R7 and R8 and the speed-up capacitor C1.
  • the voltage VccH is applied to the positive terminal of the buffer circuit BF1, and the voltage VeeH is applied to the negative terminal.
  • the voltages VccH and VeeH are set with reference to the potential FgH of the source terminal SourceH.
  • the voltage VeeH may be set to 0 so that the potential of the negative terminal of the buffer circuit BF1 becomes FgH. In order to prevent false firing, the voltage VeeH may be set to a negative voltage so that the potential of the negative terminal of the buffer circuit BF1 is lower than FgH.
  • the speed-up capacitors C1 and C2 are provided in order to shorten the dead time, but a configuration other than the speed-up capacitors C1 and C2 may be used.
  • the gate driving method is constant voltage driving, but the gate driving method may be constant current driving or active gate driving. Active gate driving is a driving method that dynamically changes the impedance of a gate driving circuit.
  • the switching element M1 When an arm short-circuit occurs, if the switching element M1 is cut off (so-called hard cut-off), an excessive surge voltage may be generated due to a large current cut-off. In this example, such an excessive surge voltage is prevented by the buffer circuit BF1 and the transistor Tr3. Specifically, when the abnormality detection signal SfaH output from the abnormality detection unit 24H by detecting an arm short circuit becomes a high level, the buffer circuit BF1 is held in a high impedance state, whereby the output of the buffer circuit BF1 is Stopped. When the transistor Tr3 is turned on in this state, the switching element M1 is cut off at low speed by the gate resistor R10 (so-called soft cutoff). The value of the gate resistor R10 is larger than the sum of the value of the gate resistor R7 and the value of the gate resistor R8, for example, about 10 times the sum of the value of the gate resistor R7 and the value of the gate resistor R8.
  • the on / off determination unit 23H includes a comparator CP1, resistors R11 to R15, a diode D1, and a capacitor C3.
  • the gate-source voltage of the switching element M1 (the voltage between the gate terminal GateH and the source terminal SourceH) is applied to the positive side input terminal of the comparator CP1 via the resistor R11.
  • the comparator CP1 compares the gate-source voltage of the switching element M1 with the comparison reference voltage.
  • the comparison reference voltage depends on the values of the resistors R13 to R15.
  • the on / off command signal SgdH is given to the negative input terminal of the comparator CP1 via the resistor R15.
  • the comparison reference voltage is changed between when the on / off command signal SgdH is at a high level and when the on / off command signal SgdH is at a low level.
  • the resistors R11 and R12 and the capacitor C3 constitute a low-pass filter.
  • the time from when the switching element M1 is turned on until the on / off determination signal SonH becomes high level (hereinafter referred to as the on determination time) is equal to the on / off determination signal SonH after the switching element M1 is turned off.
  • the low pass filter may be set so as to be longer than the time until the low level (hereinafter referred to as the off determination time).
  • the on determination time is an example of the second time
  • the off determination time is an example of the first time. Note that when there is no need to provide a difference between the on determination time and the off determination time, the resistor R12 and the diode D1 may not be provided.
  • the abnormality detection unit 24H includes a comparator CP2, resistors R16 to R20, diodes D2 and D3, a capacitor C4, a transistor Tr5, a constant current source Idc1, and a signal width expansion circuit MM1.
  • a comparator CP2 resistors R16 to R20, diodes D2 and D3, a capacitor C4, a transistor Tr5, a constant current source Idc1, and a signal width expansion circuit MM1.
  • the transistor Tr5 is a pnp type.
  • the on / off determination signal SonH is at a low level (when the switching element M1 is off)
  • the transistor Tr5 is kept on, so that the current from the constant current source Idc1 flows to the negative terminal via the transistor Tr5.
  • the switching element M1 is normally turned off
  • the voltage at the positive input terminal of the comparator CP2 does not increase even if the voltage at the drain terminal DrainH increases.
  • the output signal of the comparator CP2 is expanded in the time axis direction by the signal width expansion circuit MM1, and is output as the abnormality detection signal SfaH.
  • the state signal generation unit 21H includes a pulse signal generation source CLK1, an inverter circuit INV1, OR circuits B1 and B2, and an AND circuit A1.
  • the pulse signal generation source CLK1 generates an abnormal pulse signal Sfp consisting of continuous pulses, and supplies the abnormal pulse signal Sfp to one input terminal of the OR circuit B1.
  • the pulse period Tf (FIG. 5 described later) in the abnormal pulse signal SfP is shorter than the carrier period of pulse width modulation.
  • An abnormality detection signal SfaH from the abnormality detection unit 24H is applied to the other input terminal of the OR circuit B1 via the inverter circuit INV1.
  • the abnormality detection signal SfaH from the abnormality detection unit 24H is given to one input terminal of the OR circuit B2.
  • An ON / OFF determination signal SonH from the ON / OFF determination unit 23H is supplied to the other input terminal of the OR circuit B2.
  • the output signal of the OR circuit B1 is given to one input terminal of the AND circuit A1, and the output signal of the OR circuit B2 is given to the other input terminal of the AND circuit A1.
  • the AND circuit A1 outputs a state signal SstH.
  • the on / off determination signal SonH is output as the state signal SstH
  • the abnormal pulse signal Sfp generated by the pulse signal generation source CLK1 is the state signal.
  • the state signal SstH represents the on / off state of the switching element M1 by a signal level.
  • the state signal SstH indicates that the switching element M1 has an abnormality. Is represented by Thereby, it is possible to determine the on / off state of the switching element M1 and the presence / absence of an abnormality from the state signal SstH.
  • the gate drive unit 22H turns off the switching element M1.
  • an arm short circuit is eliminated.
  • the abnormality detection signal SfaH is held at the high level even after the arm short circuit is eliminated by the signal width expansion circuit MM1.
  • the switching element M1 is kept off for a predetermined time or more, and the repetition of the arm short circuit is prevented.
  • FIG. 3 is a schematic circuit diagram showing a specific configuration example of the control unit 10 of FIG.
  • the ON command generation unit 11 includes counter circuits CN1 and CN2, an OR circuit B3, a signal holding circuit FF1, a signal generation unit PG1, AND circuits A11 and A12, and inverter circuits INV2 and INV11.
  • the status signal SfbH is provided from the insulated communication unit 20L in FIG. 1 to the counter circuit CN1, and the status signal SfbH is provided from the insulated communication unit 20H in FIG. 1 to the counter circuit CN2.
  • the counter circuit CN1 counts the number of pulses of the status signal SfbL.
  • the counter circuit CN2 counts the number of pulses of the status signal SfbH.
  • Each of the counter circuits CN1 and CN2 is supplied with a clear signal CLR at a predetermined count reset period Tr (FIG. 5 described later).
  • the clear signal CLR is given, the counter circuits CN1 and CN2 reset the count value.
  • a predetermined number of pulses are counted within the count reset period Tr by at least one of the counter circuits CN1 and CN2, it is determined that an abnormality has occurred.
  • the count reset period Tr is set larger than the pulse period Tf of the abnormal pulse signal Sfp.
  • each of the counter circuits CN1 and CN2 counts at least one pulse of the abnormal pulse signal Sfp.
  • the pulse period Tf of the abnormal pulse signal Sfp is set to be smaller than the carrier period Tc of pulse width modulation (FIG. 5 described later). Accordingly, it is possible to accurately distinguish the pulses of the on / off determination signals SonH and SonL included in the normal state signals SfbH and SfbL from the pulses of the abnormal pulse signal Sfp included in the state signals SfbH and SfbL when the abnormality occurs. it can. Details of the status signals SfbH and SfbL will be described later.
  • the signal holding circuit FF1 generates the abnormality holding signal SfbFF by holding the abnormality signal ScnH or the abnormality signal ScnL.
  • the abnormality holding signal SfbFF output from the signal holding circuit FF1 is inverted by the inverter circuit INV11 and applied to one input terminal of the AND circuit A11 and one input terminal of the AND circuit A12.
  • the signal generation unit PG1 is supplied with a control signal Sdrv for realizing a switching operation by pulse width modulation from an arithmetic processing unit (not shown) (for example, a microcomputer).
  • the signal generator PG1 outputs a command signal Scom based on the control signal Sdrv.
  • the command signal Scom is at a high level during a period during which the switching element M1 is to be turned on, and is at a low level during a period during which the switching element M2 is to be turned on.
  • Command signal Scom is applied to the other input terminal of AND circuit A12, inverted by inverter circuit INV2, and applied to the other input terminal of AND circuit A11 as command signal Scom '.
  • the AND circuit A11 outputs an on signal SinH.
  • the AND circuit A12 outputs an on signal SinL.
  • the abnormality holding signal SfbFF output from the signal holding circuit FF1 is at a low level. Therefore, a high level signal inverted by the inverter circuit INV11 is given to the AND circuits A11 and A12.
  • the AND circuit A12 outputs the command signal Scom output from the signal generation unit PG1 as the on signal SinL
  • the AND circuit A11 outputs the command signal Scom ′ that is an inverted signal of the command signal Scom as the on signal SinH.
  • the abnormality holding signal SfbFF output from the signal holding circuit FF1 becomes high level. Therefore, the low level signal inverted by the inverter circuit INV2 is given to the AND circuits A11 and A12.
  • the AND circuits A11 and A12 output low level ON signals SinH and SinL, respectively.
  • the dead time generation unit 12H includes an inverter circuit INV3 and an AND circuit A2.
  • An ON signal SinH output from the AND circuit A11 of the ON command generation unit 11 is given to one input terminal of the AND circuit A2.
  • the state signal SfbL output from the insulating communication unit 20L in FIG. 1 is inverted by the inverter circuit INV3 and applied to the other input terminal of the AND circuit A2.
  • the AND circuit A2 outputs an on / off command signal SctlH.
  • the dead time generation unit 12L includes an inverter circuit INV4 and an AND circuit A3.
  • the ON signal SinL output from the AND circuit A12 of the ON command generation unit 11 is given to one input terminal of the AND circuit A3.
  • state signal SfbH output from the insulated communication unit 20H in FIG. 1 is inverted by the inverter circuit INV4 and applied to the other input terminal of the AND circuit A3.
  • the AND circuit A3 outputs an on / off command signal SctlL.
  • each on / off command signal is generated so that the other switching element is not turned on.
  • the state signal SfbL is at a high level. Therefore, a low level signal inverted by the inverter circuit INV3 is given to the AND circuit A2. Accordingly, regardless of whether the on signal SinH is at a high level or a low level, the AND circuit A2 outputs a low level on / off command signal SctlH.
  • the switching element M2 is turned off, the state signal SfbL output from the insulated communication unit 20L in FIG. 1 becomes low level.
  • a high level signal inverted by the inverter circuit INV3 is given to the AND circuit A2.
  • the AND circuit A2 outputs the ON / OFF command signal SctlH at the high level.
  • the switching element M2 when the switching element M2 is on, the high-level on / off command signal SctlL is not output from the AND circuit A2, and the high-level on / off command is provided on condition that the switching element M2 is off. Output of the signal SctlH is permitted. Accordingly, the switching element M1 can be quickly turned on after the switching element M2 is turned off while preventing the switching elements M1 and M2 from being turned on simultaneously.
  • the switching element M1 when the switching element M1 is on, the high-level on / off command signal SctlL is not output from the AND circuit A3, and the high-level on / off command signal is provided on condition that the switching element M1 is off. Output of SctlL is allowed. Accordingly, the switching element M2 can be quickly turned on after the switching element M1 is turned off while preventing the switching elements M1 and M2 from being turned on simultaneously. In this way, the dead time when the switching elements M1, M2 are turned off is shortened.
  • the gate drive unit 22H or 22L turns off the switching element M1 or M2 in response to the abnormality detection signal SfaH or SfaL becoming a high level.
  • a system for example, a power converter described later
  • the control unit 10 turns off all the switching elements.
  • a reset signal RST is supplied to the signal holding circuit FF1 as necessary. For example, when an abnormality is erroneously detected due to noise or the like, the signal holding circuit FF1 can be returned to a normal state by the reset signal RST.
  • FIG. 4 is a time chart showing an example of changes in various signals and changes in the gate-source voltages of the switching elements M1 and M2 in the first embodiment.
  • an example in which an arm short circuit occurs due to a failure of the switching element M2 will be described.
  • the ON signal SinH, the ON / OFF command signal SctlH, and the ON / OFF command signal SgdlH are each at a high level, and the ON signal SinL, the ON / OFF command signal SctlL, and the ON / OFF command signal SgdlL are each at a low level.
  • the gate-source voltage VgsH of the switching element M1 is VccH, and the gate-source voltage VgsL of the switching element M2 is VeeL.
  • the on / off determination signal SonH is at a high level, and the on / off determination signal SonL is at a low level.
  • the abnormality detection signals SfaH and SfaL are both at a low level.
  • the state signal SstH and the state signal SfbH are at the same high level as the on / off determination signal SonH, and the state signal SstL and the state signal SfbL are at the same low level as the on / off determination signal SonL.
  • the on signal SinH becomes low level and the on signal SinL becomes high level.
  • the on / off command signal SctlH becomes low level.
  • the on / off command signal SctlL is maintained at a low level.
  • the on / off command signal SgdH becomes a low level with a slight delay from the on / off command signal SctlH.
  • the gate-source voltage VgsH of the switching element M1 starts to drop.
  • the gate-source voltage VgsH becomes lower than a predetermined off threshold value Vthoff. Thereby, it is determined that the switching element M1 is turned off, the on / off determination signal SonH becomes low level, and the state signal SstH becomes low level.
  • the state signal SfbH becomes a low level with a slight delay from the state signal SstH.
  • the on / off command signal SctlL becomes the same high level as the on signal SinL in response thereto.
  • the on / off command signal SgdL becomes high level with a slight delay from the on / off command signal SctlL.
  • the gate-source voltage VgsL of the switching element M2 starts to rise.
  • the gate-source voltage VgsL becomes higher than a predetermined on-threshold value Vthon. Thereby, it is determined that the switching element M2 is turned on, the on / off determination signal SonL becomes high level, and the state signal SstL becomes high level.
  • the state signal SfbL becomes high level with a slight delay from the state signal SstL. Thereafter, the gate-source voltage VgsH is maintained at VeeH, and the gate-source voltage VgsL is maintained at VccL.
  • the ON signal SinH becomes high level and the ON signal SinL becomes low level.
  • the on / off command signal SctlL becomes low level.
  • the on / off command signal SctlH is maintained at a low level.
  • the on-off command signal SctlH is maintained at the low level even when the on-signal SinH is at the high level by the dead time generation unit 12H in FIG.
  • the on / off command signal SgdL becomes low level with a slight delay from the on / off command signal SctlL.
  • the gate-source voltage VgsL of the switching element M2 starts to drop.
  • the gate-source voltage VgsL becomes lower than the off threshold value Vthoff. Thereby, it is determined that the switching element M2 is turned off, the on / off determination signal SonL becomes low level, and the state signal SstL becomes low level.
  • the state signal SfbL becomes low level with a slight delay from the state signal SstL.
  • the on / off command signal SctlH becomes the same high level as the on signal SinH in response thereto.
  • the on / off command signal SgdH becomes high level with a slight delay from the on / off command signal SctlH.
  • the gate-source voltage VgsH of the switching element M1 starts to rise.
  • the gate-source voltage VgsH becomes higher than the ON threshold value Vthon. Thereby, it is determined that the switching element M1 is turned on, the on / off determination signal SonH becomes high level, and the state signal SstH becomes high level. At time t14, the state signal SfbH becomes high level with a slight delay from the state signal SstH.
  • the abnormality detection unit 24H in FIG. 2 detects the arm short circuit, so that the abnormality detection signal SfaH becomes high level. Thereby, the abnormal pulse signal Sfp is inserted into the state signal SstH, and the abnormal pulse signal Sfp is inserted into the state signal SfbH with a slight delay. Further, when the abnormality detection signal SfaH becomes a high level, the gate drive unit 22H in FIG. 2 starts soft shutoff of the switching element M1. As a result, the gate-source voltage VgsH of the switching element M1 gradually decreases.
  • the on / off command signal SgdH becomes a low level with a slight delay from the on / off command signal SctlH.
  • the gate drive unit 22H starts the soft shutoff of the switching element M1 in response to the abnormality detection signal SfaH, the soft shutoff of the switching element M1 is continued even when the on / off command signal SgdH becomes low level.
  • FIG. 5 is a time chart showing an example of changes in the status signals SfbH and SfbL, the clear signal CLR, the abnormal signals ScnH and ScnL, and the abnormal holding signal SfbFF.
  • the relationship among the status signal SfbH, the counter circuit CN2, the abnormality signal ScnH, and the abnormality holding signal SfbFF will be mainly described.
  • the relationship among the status signal SfbL, the counter circuit CN1, the abnormality signal ScnL, and the abnormality holding signal SfbFF is the same as that in the example of FIG.
  • the count value of the number of pulses by the counter circuit CN2 of FIG. 3 is shown.
  • the counter circuit CN2 increments the count value when the state signal SfbH changes from the low level to the high level, and resets the count value when the pulse rises to the clear signal CLR in a certain count reset cycle Tr.
  • the state signal SfbH becomes high level.
  • the abnormal pulse signal Sfp is inserted into the state signal SfbH, so that a plurality of pulses rise continuously in the state signal SfbH.
  • the count reset period Tr is set larger than the pulse period Tf of the abnormal pulse signal Sfp.
  • the counter circuit CN2 counts at least one pulse of the abnormal pulse signal Sfp.
  • the pulse period Tf is set smaller than the carrier period Tc of pulse width modulation.
  • the presence / absence of an abnormality is determined using the difference between the count value at the normal time and the count value at the time of occurrence of the abnormality.
  • the count reset cycle Tr is set so that the number of times the pulse rises in the state signal SfbH within the count reset cycle Tr at normal time is at most one. Therefore, the upper limit of the count value at normal time is 1.
  • the counter circuit CN2 raises the pulse PA to the abnormal signal ScnH when the count value reaches a predetermined value of 2 or more.
  • the counter circuit CN2 is a 3-bit counter, and when the count value reaches 3, the pulse PA is raised to the abnormal signal ScnH.
  • the abnormality holding signal SfbFF becomes high level. Thereafter, the abnormality holding signal SfbFF is maintained at a high level.
  • the state signals SfbH and SfbL at the normal time can be accurately distinguished from the state signals SfbH and SfbL at the time of occurrence of the abnormality. Therefore, the dead time can be appropriately shortened based on the normal state signals SfbH and SfbL (on / off determination signals SonH and SonL), and the abnormal state signal SfbH and SfbL (abnormal pulse signal Sfp) can be obtained. Based on this, secondary protection of the entire system can be appropriately performed.
  • the gate-source voltage VgsL is inverted due to a failure of the gate of the switching element M2 as an arm short circuit as in the example of FIG.
  • the failed switching element M2 cannot be turned off.
  • the abnormality is detected by the abnormality detecting unit on the side of the switching element whose gate is turned on first, that is, the abnormality detecting unit 24H on the side of the switching element M1 in which no failure has occurred. Therefore, in response to the abnormality detection signal SfaH from the abnormality detection unit 24H, the switching element M1 in which no failure has occurred is turned off. Thereby, the switching element M1 can be safely soft-blocked in response to detection of a short circuit.
  • the gate drive unit 22H turns off the switching element M1 when an arm short-circuit occurs
  • a case where the gate drive unit 22H turns off the switching element M1 in response to the abnormality detection signal SfaH and a response to the on / off command signal SgdH a case where the gate drive unit 22H turns off the switching element M1 in response to the abnormality detection signal SfaH and a response to the on / off command signal SgdH.
  • the gate driver 22H turns off the switching element M1.
  • the abnormality detection unit 24H detects an abnormality
  • the abnormality detection signal SfaH from the abnormality detection unit 24H becomes a high level.
  • the gate driver 22H turns off the switching element M1.
  • turning off the switching element in response to the abnormality detection signal is referred to as a detection off operation.
  • the on / off command signal SctlH output from the dead time generation unit 12H becomes a low level.
  • the on / off command signal SgdH given from the insulating communication unit 20H to the gate drive unit 22H becomes low level, and in response thereto, the gate drive unit 22H turns off the switching element M1.
  • a command-off operation turning off the switching element in response to the on / off command signal is referred to as a command-off operation.
  • FIG. 6 is a time chart for explaining changes in various signals when the switching element M1 is hard cut off.
  • the example of FIG. 6 differs from the example of FIG. 4 in the following points.
  • the on / off determination signal SonL becomes high level at time t15
  • the on / off command signal SctlH becomes low level at time t21.
  • the switching element M1 is turned off by the command-off operation of the gate drive unit 22H before the arm short circuit is detected by the abnormality detection unit 24H. Therefore, the switching element M1 is hard cut off.
  • the gate-source voltage VgsH becomes smaller than the off threshold value Vthoff.
  • the short circuit is eliminated before the arm short circuit is detected by the abnormality detection unit 24H. Therefore, abnormality detection signal SfaH is maintained at a low level, and abnormal pulse signal Sfp is not inserted into state signal SstH.
  • Type II short circuit when the MOS channel is conductive
  • Type III short circuit when the diode is conductive
  • the ON determination time of the switching elements M1 and M2 (the time from when the switching elements M1 and M2 are turned ON until the ON / OFF determination signals SonH and SonL become high level) is the OFF determination time (switching) It may be set longer than the time from when the elements M1 and M2 are turned off until the on / off determination signals SonH and SonL become low level.
  • the value of the resistor R11 shown in FIG. 2 is set to be sufficiently larger than the parallel value of the resistor R11 and the resistor R12. The speed at which the voltage at the positive input terminal of the comparator CP1 rises depends on the value of the resistor R11.
  • the speed at which the voltage at the positive input terminal of the comparator CP1 drops depends on the parallel value of the resistor R11 and the resistor R12. Accordingly, the larger the value of the resistor R11, the longer the ON determination time, and the smaller the value of the resistor R12, the shorter the OFF determination time.
  • FIG. 7 is a time chart for explaining changes in various signals when the ON determination time is set to be relatively long.
  • the example of FIG. 7 differs from the example of FIG. 4 in the following points.
  • the ON determination time is set to be relatively long, after a certain time has elapsed since the gate-source voltage VgsL of the switching element M2 becomes larger than the ON threshold value Vthon at time t15.
  • the on / off determination signal SonL becomes high level.
  • the time from time t15 to time t15a corresponds to the on determination time.
  • the abnormality detection unit 24H detects an arm short circuit, and the abnormality detection signal SfaH becomes high level. In response to this, the soft shut-off of the switching element M1 by the gate driver 22H is started. Thereby, since the switching element M1 is turned off not by hard interruption but by soft interruption, further improvement in reliability is realized.
  • the ON determination time is set longer than the time required for the abnormality detection units 24H and 24L to detect an arm short circuit, for example.
  • a signal delay occurs in the insulating communication units 20H and 20L. Therefore, it is only necessary that the sum of the ON determination time and the delay time generated in the insulated communication units 20H and 20L is larger than the time required to detect the arm short circuit.
  • the off determination time is preferably set sufficiently shorter than the on determination time.
  • a temperature abnormality, an overvoltage abnormality, an overcurrent, a failure, a characteristic deterioration, or the like may be detected instead of the arm short circuit.
  • the temperature abnormality, overvoltage abnormality, overcurrent, failure, and characteristic deterioration of the switching elements M1 and M2 can be detected by a known detection method.
  • the time constant at which the temperature rise or characteristic deterioration proceeds is, for example, several ms or more, and the time constant of the dead time is, for example, several hundred ns to several ⁇ s. Large enough compared to the time constant. Therefore, the time constant for detecting the temperature abnormality or characteristic deterioration required for the control unit 10 is sufficiently larger than the time constant of the dead time. Therefore, the control unit 10 can protect the system from a temperature rise or characteristic deterioration with a time margin while appropriately securing a dead time. On the other hand, with respect to abnormalities such as short circuit, overvoltage, overcurrent, or failure, as described above, by performing primary protection by the gate drive units 22H and 22L, the control unit 10 can ensure time while appropriately securing the dead time. Secondary protection of the entire system can be performed with sufficient margin.
  • the on / off determination signals SonH and SonL are not transmitted via the dedicated channels of the insulated communication units 20H and 20L, respectively, but are turned on / off determination signals.
  • State signals SstH and SstL are generated based on the SonH and SonL and the abnormality detection signals SfaH and SfaL, and the state signals SstH and SstL are transmitted through one channel of the insulated communication units 20H and 20L, respectively.
  • the ON / OFF state of the switching elements M1 and M2 can be transmitted to the control unit 10 without providing a new channel in the insulated communication units 20H and 20L. Therefore, the dead time can be appropriately shortened while suppressing an increase in size and cost of the semiconductor drive device 1.
  • FIG. 8 is a schematic circuit diagram illustrating a specific configuration example of the state signal generation unit 21H, the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H of the semiconductor drive device 1 according to the second embodiment.
  • the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H in FIG. 8 have the same configuration as the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H in FIG.
  • the abnormality detection signal SfaH from the abnormality detection unit 24H is supplied to one input terminal of the AND circuit A4 and is also supplied to one input terminal of the AND circuit A5 via the inverter circuit INV6.
  • An ON / OFF command signal SgdH is applied to the other input terminal of the AND circuit A4 via the inverter circuit INV6.
  • the output signal of AND circuit A4 and the output signal of AND circuit A5 are applied to one and the other input terminals of OR circuit B4.
  • the state signal generation unit 21H when the abnormality detection signal SfaH is at the low level, the on / off determination signal SonH is output as the state signal SstH, and when the abnormality detection signal SfaH is at the high level, the inverted signal of the on / off command signal SgdH Is output as the status signal SstH.
  • the state signal generation unit 21L has the same configuration and function as the state signal generation unit 21H of FIG.
  • FIG. 9 is a schematic circuit diagram illustrating a specific configuration example of the control unit 10 of the semiconductor drive device 1 according to the second embodiment.
  • the dead time generation units 12H and 12L in FIG. 9 have the same configuration as the dead time generation units 12H and 12L in FIG. 9 includes EXOR circuits Bx1 and Bx2, low-pass filters LPF1 and LPF2, and an OR circuit B5 instead of the counter circuits CN1 and CN2 and the OR circuit B3.
  • the state signal SfbL is supplied to one input terminal of the EXOR circuit Bx1.
  • a command signal Scom is given to the other input terminal of the EXOR circuit Bx1.
  • the state signal SfbH is given to one input terminal of the EXOR circuit Bx2.
  • the command signal Scom ' is input to the other input terminal of the EXOR circuit Bx2.
  • the EXOR circuit Bx1 outputs a difference determination signal SxoL. If the logic (signal level) is different between the state signal SfbL and the command signal Scom, the difference determination signal SxoL becomes high level.
  • the EXOR circuit Bx2 outputs a difference determination signal SxoH. If the logic (signal level) differs between the state signal SfbH and the command signal Scom ', the difference determination signal SxoH becomes high level.
  • the logic is the same between the state signal SfbL and the command signal Scom and the logic is the same between the state signal SfbH and the command signal Scom 'for most of the period.
  • the logic is temporarily different between the state signal SfbL and the command signal Scom or between the state signal SfbH and the command signal Scom ′ due to the delay due to the signal transmission and the on / off operation of the switching elements M1 and M2.
  • the difference determination signals SxoL and SxoH temporarily become high level.
  • delay times due to signal transmission and on / off operations of the switching elements M1 and M2 are collectively referred to as operation delay times.
  • the difference determination signal SxoL or the difference determination signal SxoH is temporarily at a high level. become.
  • the difference determination signal SxoL output from the EXOR circuit Bx1 is applied to the low-pass filter LPF1, and the difference determination signal SxoH output from the EXOR circuit Bx2 is applied to the low-pass filter LPF2.
  • the low-pass filter LPF1 generates an abnormal signal ScnL by removing high frequency components from the difference determination signal SxoL.
  • the low-pass filter LPF2 generates an abnormal signal ScnH by removing high frequency components from the difference determination signal SxoH. In this case, when the difference determination signal SxoL is held at a high level for a time longer than the time constant of the low-pass filter LPF1, the abnormal signal ScnL becomes a high level.
  • the abnormal signal ScnH becomes the high level.
  • the time constants of the low-pass filters LPF1 and LPF2 are set longer than, for example, a total time of an operation delay time required for one on operation or one off operation and one dead time. Further, the time constants of the low-pass filters LPF1 and LPF2 may be set longer than the carrier cycle Tc.
  • the abnormal signal ScnL is supplied to one input terminal of the OR circuit B5, and the abnormal signal ScnH is supplied to the other input terminal of the OR circuit B5.
  • the output signal of the OR circuit B5 is given to the signal holding circuit FF1.
  • the abnormal holding signal SfbFF output from the signal holding circuit FF1 becomes high level.
  • FIG. 10 is a time chart showing an example of changes in various signals and changes in the gate-source voltages of the switching elements M1 and M2 in the second embodiment. The difference between the example of FIG. 10 and the example of FIG. 4 will be described.
  • an abnormality occurs at time t31, and the abnormality detection signal SfaH becomes high level.
  • the state signal SstH becomes an inverted signal of the on / off command signal SgdH.
  • the state signal SstH is at a low level.
  • the state signal SfbH becomes a low level with a slight delay from the state signal SstH.
  • FIG. 11 is a time chart showing an example of changes in the command signals Scom 'and Scom, the on / off command signals SctlH and SctlL, the status signals SfbH and SfbL, the difference determination signals SxoH and SxoL, and the abnormal signals ScnH and ScnL.
  • the command signal Scom ' is at the low level, while the state signal SfbH is at the high level. Therefore, the difference determination signal SxoH becomes a high level.
  • the command signal Scom is at a high level, whereas the state signal SfbL is at a low level.
  • the difference determination signal SxoL becomes high level.
  • the command signal Scom is at a low level, while the state signal SfbL is at a high level. Therefore, the difference determination signal SxoL becomes high level.
  • the command signal Scom ' is at the high level, while the state signal SfbH is at the low level. Therefore, the difference determination signal SxoH becomes a high level.
  • the state signal SfbH becomes low level at time t32 due to the occurrence of an abnormality.
  • the logic does not match between the command signal Scom 'and the state signal SfbH, and the difference determination signal SxoH becomes high level.
  • the abnormal signal ScnH becomes high level.
  • the abnormality holding signal SfbFF output from the signal holding circuit FF1 of FIG. 9 becomes high level, and the on signals SinH and SinL become low level.
  • the state signals SfbH and SfbL at the normal time can be accurately distinguished from the state signals SfbH and SfbL at the time of occurrence of the abnormality. Therefore, the dead time can be appropriately shortened based on the normal state signals SfbH and SfbL (on / off determination signals SonH and SonL), and the entire system based on the abnormal state signal SfbH and SfbL. Secondary protection can be performed appropriately.
  • FIG. 12 is a block diagram showing a basic configuration of the semiconductor drive device 1 according to the third embodiment.
  • switching elements M1s and M2s are provided in addition to the switching elements M1 and M2.
  • the switching elements M1s and M2s are MOSFETs.
  • the switching element M1s shares the drain terminal and the gate terminal with the switching element M1, and the switching element M2s supplies the switching element M2, the drain terminal, and the gate terminal.
  • overcurrent is detected as an abnormality of the switching elements M1 and M2 by the switching elements M1s and M2s.
  • FIG. 13 is a schematic circuit diagram illustrating a specific configuration example of the state signal generation unit 21H, the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H in the third embodiment.
  • the state signal generation unit 21H, the gate drive unit 22H, and the on / off determination unit 23H in FIG. 13 have the same configuration as the state signal generation unit 21H, the gate drive unit 22H, and the on / off determination unit 23H in FIG.
  • the abnormality detection unit 24L has the same configuration as the abnormality detection unit 24H of FIG.
  • the 13 includes resistors R21 and R22 instead of the resistors R16 to R18, the diodes D2 and D3, the transistor Tr5, and the constant current source Idc1 in FIG.
  • the positive side input terminal of the comparator CP2 is connected to the source terminal SourceHs of the switching element M2s via the resistor R22.
  • the current of the switching element M1s is converted into a voltage by the resistor R21, and the output signal of the comparator CP2 becomes high level, whereby an overcurrent is detected.
  • the switching elements M1 and M2 are turned on and off in the control unit 10 without providing new channels in the insulated communication units 20H and 20L. Can communicate. Therefore, the dead time can be appropriately shortened while suppressing an increase in size and cost of the semiconductor drive device 1.
  • FIG. 14 is a block diagram showing a basic configuration of the semiconductor drive device 1 according to the fourth embodiment.
  • an overcurrent is detected as an abnormality of the switching elements M1 and M2 based on the parasitic inductances of the switching elements M1 and M2.
  • an inductor L1 having a parasitic inductance of the switching element M1 and an inductor L2 having a parasitic inductance of the switching element M2 are schematically shown.
  • FIG. 15 is a schematic circuit diagram illustrating a specific configuration example of the state signal generation unit 21H, the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H in the fourth embodiment.
  • the state signal generation unit 21H, the gate drive unit 22H, and the on / off determination unit 23H in FIG. 15 have the same configuration as the state signal generation unit 21H, the gate drive unit 22H, and the on / off determination unit 23H in FIG.
  • the abnormality detection unit 24L has the same configuration as the abnormality detection unit 24H in FIG.
  • the 15 includes an operational amplifier OP1, a capacitor C6, and resistors R25, R26, and R27 instead of the resistors R16 to R18, the diodes D2 and D3, the transistor Tr5, and the constant current source Idc1 in FIG.
  • the negative input terminal of the operational amplifier OP1 is connected to the source terminal SourceHt via the resistor R25.
  • the output terminal of the operational amplifier OP1 is connected to the positive side input terminal of the comparator CP2. In this case, the voltage generated in the inductor L1 in FIG. 14 is integrated by the operational amplifier OP1, and the overcurrent is detected by the output signal of the comparator CP2 becoming high level.
  • the switching elements M1 and M2 are turned on and off in the control unit 10 without providing new channels in the insulated communication units 20H and 20L. Can communicate. Therefore, the dead time can be appropriately shortened while suppressing an increase in size and cost of the semiconductor drive device 1.
  • FIG. 16 is a circuit diagram showing a configuration of a power conversion device according to the fifth embodiment.
  • 16 includes inverter device 73 and semiconductor drive device 1 according to any of the first to fourth embodiments.
  • the inverter device 73 is an example of a power conversion unit, and includes switching elements M3 to M8 and an output capacitor 82.
  • the inverter device 73 is a so-called three-phase inverter.
  • the inverter device 73 is an example of a power conversion unit, converts the DC power of the DC power supply 70 into three-phase AC power, and supplies the converted AC power to the motor 74 that is an AC load.
  • the switching elements M3 to M8 are power MOSFETs.
  • the semiconductor drive device 1 drives the switching elements M3 to M8.
  • the dead time can be appropriately shortened while suppressing an increase in size and cost of the semiconductor drive device 1. Further, the power conversion efficiency of the inverter device 73 can be improved by reducing the dead time. Further, when a SiC-MOSFET using a wide band gap semiconductor is applied as the switching elements M3 to M8, it is possible to suppress the deterioration of energization of the parasitic diode due to the SiC crystal defect, and the reliability of the inverter device 73 can be suppressed. Improvement in product performance and increase in product life can be realized.
  • a three-phase inverter is used as the power conversion unit.
  • the present invention is not limited to this, and an inverter having an arbitrary number of phases may be used. Further, even if the semiconductor drive device 1 according to any one of the first to fourth embodiments is applied to a power conversion device including an AC-DC converter that converts AC power into DC power instead of the inverter device 73 as a power conversion unit. Good.
  • FIG. 17 is a circuit diagram showing a configuration of a power conversion device according to the sixth embodiment. 17 includes boost converter 71 and semiconductor drive device 1 according to any one of the first to fourth embodiments.
  • Boost converter 71 is an example of a voltage converter, and includes switching elements M11 and M12, an input capacitor 80, an output capacitor 82, and a boost reactor 81.
  • the switching elements M11 and M12 are power MOSFETs.
  • Boost converter 71 boosts the voltage of DC power supply 70 and supplies power to DC load 72.
  • the semiconductor drive device 1 drives the switching elements M11 and M12.
  • the switching elements M11 and M12 are driven so that the carrier cycle Tc is 10 ⁇ s and the on-duty is 50%.
  • the ideal pulse width of the on / off command signal for driving the switching elements M11 and M12 is 5 ⁇ s.
  • the effective pulse width of the on / off command signal is 4 ⁇ s. Decrease.
  • the boost converter 71 since the semiconductor drive device 1 can reduce the dead time as described above, the power conversion efficiency is prevented from being lowered and the boostable range is increased. spread.
  • state signal generation units 21H and 21L (FIG. 2) according to the first embodiment, when an abnormality occurs, abnormal pulse signal Sfp having a pulse period shorter than carrier period Tc is inserted into the state signal.
  • the pulse period of the abnormal pulse signal Sfp output from the pulse signal generation source CLK1 is set to be larger than the carrier period Tc.
  • FIG. 18 is a schematic circuit diagram illustrating a specific configuration example of the control unit 10 included in the semiconductor drive device 1 of FIG.
  • the dead time generation units 12H and 12L in FIG. 18 have the same configuration as the dead time generation units 12H and 12L in FIG. 18 includes low pass filters LPF3 and LPF4 and an OR circuit B6 instead of the counter circuits CN1 and CN2 and the OR circuit B3.
  • a state signal SfbL is given to the low-pass filter LPF3
  • a state signal SfbH is given to the low-pass filter LPF4.
  • the low-pass filter LPF3 generates an abnormal signal SlpL by removing high frequency components from the state signal SfbL.
  • the low-pass filter LPF4 generates the abnormal signal SlpH by removing high frequency components from the state signal SfbH.
  • the time constants of the low-pass filters LPF3 and LPF4 are set larger than the carrier period Tc of the boost converter 71 and smaller than the pulse width of the abnormal pulse signal Sfp output from the pulse signal generation source CLK1.
  • FIG. 19 is a time chart for explaining the relationship between the abnormal signals SlpH and SlpL and other various signals.
  • the abnormality of the switching element M11 is detected at time t41.
  • the state signals SfbH and SfbL represent the on / off states of the switching elements M1 and M2, and the pulse period of the state signals SfbH and SfbL is smaller than the carrier period Tc. Therefore, the abnormal signals SlpH and SlpL output from the low-pass filters LPF3 and LPF4 are maintained at a low level.
  • an abnormal pulse signal Sfp having a pulse period Tf larger than the carrier period Tc is inserted into the state signal SfbH.
  • the pulse width of the state signal SfbH exceeds the time constant of the low-pass filter LPF4.
  • the abnormal signal SlpH output from the low-pass filter LPF4 becomes high level.
  • the abnormality holding signal SfbFF output from the signal holding circuit FF1 becomes high level, and the on signals SinH and SinL become low level.
  • the state signals SfbH and SfbL at the normal time can be accurately distinguished from the state signals SfbH and SfbL at the time of occurrence of the abnormality. Therefore, the dead time can be appropriately shortened based on the normal state signals SfbH and SfbL (on / off determination signals SonH and SonL), and the abnormal state signal SfbH and SfbL (abnormal pulse signal Sfp) can be obtained. Based on this, secondary protection of the entire power conversion device 150 can be appropriately performed. Furthermore, the restriction on the signal bandwidth required for the insulated communication units 20H and 20L and the restriction on the calculation speed of the control unit 10 are alleviated.
  • FIG. 17 is an example in which the semiconductor drive device 1 is applied to a power converter 150 including a boost converter 71 as a voltage converter, but a step-down converter or a buck-boost converter is used instead of the boost converter 71 as a voltage converter.
  • the semiconductor drive device 1 according to any of Embodiments 1 to 4 may be applied to the power conversion device that includes the power conversion device.
  • FIG. 20 is a circuit diagram showing a configuration of the power conversion device according to the seventh embodiment.
  • 20 is a step-up inverter system, and includes an inverter device 73 in FIG. 16 and a step-up converter 71 in FIG.
  • the DC voltage of the DC power source 70 is boosted by the boost converter 71, the boosted DC voltage is converted into AC by the inverter device 73, and the converted AC power is supplied to the motor 74 to drive the motor 74.
  • the power conversion device 200 according to the present embodiment is applied to, for example, an electric automobile.
  • power conversion device 200 since semiconductor drive device 1 according to any of the first to fourth embodiments is used, dead time is prevented while increasing the size and cost of semiconductor drive device 1. Can be shortened appropriately. Further, as in the sixth embodiment, the dead time can be reduced and the protection function in the event of an abnormality can be achieved without depending on the transmission performance of the insulated communication unit and the computing performance of the microcomputer. Furthermore, as in the fifth embodiment, the power conversion efficiency of the inverter device 73 can be improved by shortening the dead time.
  • SiC-MOSFETs are applied as the switching elements M3 to M8, it is possible to suppress deterioration of energization of the parasitic diode due to SiC crystal defects, improving the reliability of the inverter device 73 and improving the product life. An increase can be realized.
  • FIG. 20 is an example in which the semiconductor drive device 1 of any one of the first to fourth embodiments is applied to a power conversion device 200 that includes a boost converter 71 as a voltage conversion unit and includes an inverter device 73 as a power conversion unit.
  • the semiconductor drive device 1 according to any one of the first to fourth embodiments may be applied to a power conversion device including a step-down converter or a step-up / down converter instead of the step-up converter 71 as a voltage conversion unit, or power conversion
  • the semiconductor drive device 1 according to any one of the first to fourth embodiments may be applied to a power conversion device including an AC-DC converter that converts AC power into DC power instead of the inverter device 73 as a unit.
  • a MOSFET is used as the semiconductor switching element, but the semiconductor switching element is not limited to this.
  • an IGB thyristor or a GTO (Gate Turn-off thyristor) may be used as the semiconductor switching element instead of the MOSFET.
  • the drive timing of the other switching element is controlled based on the on / off state of one of the pair of switching elements connected in series, but the present invention is not limited to this. Three or more switching elements may be connected in series, and drive timings of other switching elements may be controlled based on an on / off state of one of the switching elements.
  • FIG. 21 is a diagram illustrating an example in which each function of the control unit 10 is realized by software.
  • the control unit 10 includes a processing device (processor) 51 and a storage device (memory) 52.
  • the processing device 51 is, for example, a CPU (Central Processing Unit), and can read out and execute a program stored in the storage device 52 to realize each function of the control unit 10 in the above embodiment.
  • CPU Central Processing Unit
  • the gate drive unit drives the switching elements M1 and M2 based on the on / off command signals SgdH and SgdL transmitted by the insulated communication units 20H and 20L, but the present invention is not limited to this.
  • the on / off command signals SgdH and SgdL transmitted by the insulating communication units 20H and 20L may directly drive the switching elements M1 and M2.

Abstract

According to the present invention, on/off determination units 23H, 23L output on/off determination signals SonH, SonL which indicate on/off states of switching elements M1, M2. Abnormality detection units 24H, 24L output abnormality detection signals SfaH, SfaL which indicate the presence or absence of abnormality of the switching elements M1, M2. State signal generation units 21H, 21L output state signals SstH, SstL on the basis of the on/off determination signals SonH, SonL and the abnormality detection signals SfaH, SfaL. Insulating communication units 20H, 20L transmit state signals output from the state signal generation units 21H, 21L while securing insulation between the state signal generation units 21H, 21L and a control unit 10. The control unit 10 generates on/off command signals SctlH, SctlL for driving the switching elements M1, M2, respectively.

Description

半導体駆動装置および電力変換装置Semiconductor drive device and power conversion device
 本発明は、直列に接続された複数の半導体スイッチング素子を駆動する半導体駆動装置およびそれを用いた電力変換装置に関する。 The present invention relates to a semiconductor drive device that drives a plurality of semiconductor switching elements connected in series, and a power conversion device using the same.
 インバータ装置をはじめとする電力変換装置は、半導体スイッチング素子のオンオフ動作によって電力変換を実現している。半導体スイッチング素子としては、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)およびIGBT(Insulated Gate Bipolar Transistor)に代表される電圧駆動型のスイッチング素子がある。以下、半導体スイッチング素子を単にスイッチング素子と呼ぶ。 The power conversion device including the inverter device realizes the power conversion by the on / off operation of the semiconductor switching element. As semiconductor switching elements, there are voltage-driven switching elements represented by MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) and IGBT (Insulated Gate Bipolar Transistor). Hereinafter, the semiconductor switching element is simply referred to as a switching element.
 近年、電力変換装置の高パワー密度化を目的として、コンデンサおよびインダクタ等が小型化されるとともにスイッチング素子のオンオフのスイッチングが高周波化される傾向がある。電力変換装置では、直列に接続された複数のスイッチング素子が同時にオンすることによってアーム短絡が生じる。このようなアーム短絡の発生を防止するため、複数のスイッチング素子が同時にオフされる期間(デッドタイム)が設けられる。通常、デッドタイムは一定の時間に設定される。そのため、オンオフのスイッチングの高周波化に伴い、キャリア周期におけるデッドタイムの時間的割合が相対的に大きくなる。スイッチング素子としてMOSFETが用いられる場合には、デッドタイム中に内蔵ダイオードの導通損失が発生する。デッドタイムの時間的割合が増加すると、このような導通損失が発生しやすくなる。その結果、電力変換効率が低下する。また、電力変換装置が例えば昇圧コンバータである場合、デッドタイムの時間的割合が増加することによって実効的なオンデューティが低下する。そのため、昇圧可能な範囲が縮小する。さらには、ワイドバンドギャップ半導体を含むSiC(Silicon Carbide)-MOSFETがスイッチング素子として用いられ、かつMOSFETの内蔵ダイオードが利用される場合には、SiCの結晶欠陥に起因する通電劣化が生じる。 Recently, for the purpose of increasing the power density of power converters, capacitors and inductors and the like tend to be miniaturized and on / off switching of switching elements tends to be performed at higher frequencies. In a power converter, an arm short circuit occurs when a plurality of switching elements connected in series are simultaneously turned on. In order to prevent the occurrence of such an arm short circuit, a period (dead time) in which a plurality of switching elements are simultaneously turned off is provided. Usually, the dead time is set to a fixed time. For this reason, as the on / off switching frequency increases, the time ratio of the dead time in the carrier cycle becomes relatively large. When a MOSFET is used as the switching element, a conduction loss of the built-in diode occurs during the dead time. When the time ratio of dead time increases, such conduction loss is likely to occur. As a result, power conversion efficiency is reduced. Further, when the power conversion device is, for example, a boost converter, the effective on-duty is reduced by increasing the time ratio of dead time. As a result, the boostable range is reduced. Furthermore, when a SiC (Silicon Carbide) -MOSFET including a wide band gap semiconductor is used as a switching element and a built-in diode of the MOSFET is used, current deterioration due to SiC crystal defects occurs.
特開2015-154524号公報JP2015-154524A 特開2007-185024号公報JP 2007-185024 A
 上記の問題に対して、例えば特許文献1には、センストランジスタを活用してデッドタイムを短縮する方式が示されている。具体的には、同期整流が開始されると、センストランジスタの寄生ダイオードが通電することによって、検出電圧が基準電圧を下回る。これに応答して、メイントランジスタがオンされる。この場合、メイントランジスタへの指令信号がローレベルであっても、メイントランジスタがオンされるので、同期整流開始時のデッドタイムが短縮される。しかしながら、この方式では、同期整流開始時におけるデッドタイムを短縮することが可能であっても、同期整流終了時におけるデッドタイムを短縮することはできない。そのため、仮に同期整流開始時のデッドタイムが90%削減されたとしても、全体としての削減率は50%×90%=45%であり、十分な削減効果が得られない。 In response to the above problem, for example, Patent Document 1 discloses a method for reducing dead time by utilizing a sense transistor. Specifically, when the synchronous rectification is started, the detection diode becomes lower than the reference voltage by energizing the parasitic diode of the sense transistor. In response to this, the main transistor is turned on. In this case, even if the command signal to the main transistor is at a low level, the main transistor is turned on, so that the dead time at the start of synchronous rectification is shortened. However, with this method, even if the dead time at the start of synchronous rectification can be shortened, the dead time at the end of synchronous rectification cannot be shortened. Therefore, even if the dead time at the start of synchronous rectification is reduced by 90%, the overall reduction rate is 50% × 90% = 45%, and a sufficient reduction effect cannot be obtained.
 同期整流終了時のデッドタイムを短縮するためには、一対のスイッチング素子のうち一方のスイッチング素子がオフしたタイミングに合わせて他方のスイッチング素子をオンする必要がある。例えば、特許文献2では、一対のスイッチング素子をそれぞれ駆動する一対の駆動装置の間でオンオフ情報が伝送され、そのオンオフ信号に基づいて一対のスイッチング素子の同時オンが防止される。しかしながら、この方式では、オンオフ情報を伝送するための絶縁回路が新たに必要になる。そのため、駆動装置が大型化し、かつコストが増大する。 In order to shorten the dead time at the end of synchronous rectification, it is necessary to turn on the other switching element in accordance with the timing when one of the pair of switching elements is turned off. For example, in Patent Document 2, on / off information is transmitted between a pair of drive devices that respectively drive a pair of switching elements, and the pair of switching elements are prevented from being simultaneously turned on based on the on / off signal. However, this system requires a new insulating circuit for transmitting on / off information. This increases the size of the drive device and increases the cost.
 この発明は、上述のような課題を解決するためになされたもので、大型化および高コスト化を抑制しつつデッドタイムを短縮することが可能な半導体駆動装置および電力変換装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a semiconductor drive device and a power conversion device capable of reducing dead time while suppressing increase in size and cost. And
 本発明に係る半導体駆動装置は、直列に接続された複数の半導体スイッチング素子をそれぞれ駆動するための複数のオンオフ指令信号を生成する制御部と、複数の半導体スイッチング素子のうち一の半導体スイッチング素子のオンオフ状態を検出するとともに検出されたオンオフ状態を表すオンオフ判定信号を出力するオンオフ判定部と、一の半導体スイッチング素子の異常の有無を検出するとともに検出された異常の有無を表す異常検出信号を出力する異常検出部と、オンオフ判定部から出力されたオンオフ判定信号および異常検出部から出力された異常検出信号に基づいて状態信号を出力する状態信号生成部と、制御部と一のスイッチング素子との間の絶縁を確保しつつ制御部により生成された一の半導体スイッチング素子を駆動するための一のオンオフ指令信号を伝送するとともに状態信号生成部と制御部との間の絶縁を確保しつつ状態信号生成部から出力される状態信号を伝送する絶縁通信部と、を備え、制御部は、絶縁通信部により伝送される状態信号に基づいて、複数の半導体スイッチング素子のうち他の半導体スイッチング素子を駆動するための他のオンオフ指令信号を生成する。 A semiconductor drive device according to the present invention includes a control unit that generates a plurality of on / off command signals for driving a plurality of semiconductor switching elements connected in series, and one semiconductor switching element among the plurality of semiconductor switching elements. An on / off determination unit that detects an on / off state and outputs an on / off determination signal that indicates the detected on / off state, and detects whether there is an abnormality in one semiconductor switching element and outputs an abnormality detection signal that indicates the presence / absence of the detected abnormality An abnormality detection unit that outputs a state signal based on the on / off determination signal output from the on / off determination unit and the abnormality detection signal output from the abnormality detection unit, and the control unit and the one switching element. Drive one semiconductor switching element generated by the controller while ensuring insulation between the two An insulation communication unit that transmits a first on / off command signal and transmits a state signal output from the state signal generation unit while ensuring insulation between the state signal generation unit and the control unit, and a control unit Generates another on / off command signal for driving another semiconductor switching element among the plurality of semiconductor switching elements based on the state signal transmitted by the insulating communication unit.
 本発明によれば、大型化および高コスト化を抑制しつつデッドタイムを短縮することが可能である。 According to the present invention, it is possible to reduce dead time while suppressing increase in size and cost.
本発明の実施の形態1および実施の形態2に係る半導体駆動装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the semiconductor drive device which concerns on Embodiment 1 and Embodiment 2 of this invention. 本発明の実施の形態1に係る半導体駆動装置の状態信号生成部、ゲート駆動部、オンオフ判定部および異常検出部の具体的な構成例を示す回路図である。It is a circuit diagram which shows the specific structural example of the state signal generation part of the semiconductor drive device concerning Embodiment 1 of this invention, a gate drive part, an on-off determination part, and an abnormality detection part. 本発明の実施の形態1に係る半導体駆動装置の制御部の具体的な構成例を示す回路図である。It is a circuit diagram which shows the specific structural example of the control part of the semiconductor drive device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1における各種信号の変化およびスイッチング素子のゲート・ソース間電圧の変化の一例を示すタイミングチャートである。It is a timing chart which shows an example of the change of the various signals in Embodiment 1 of this invention, and the change of the gate-source voltage of a switching element. 本発明の実施の形態1における状態信号、クリア信号、異常信号および異常保持信号の変化の一例を示すタイミングチャートである。It is a timing chart which shows an example of a change of a status signal, a clear signal, an abnormal signal, and an abnormal hold signal in Embodiment 1 of the present invention. 本発明の実施の形態1においてスイッチング素子がハード遮断される場合の各種信号の変化について説明するためのタイミングチャートである。It is a timing chart for demonstrating the change of the various signals when a switching element is hard-cut in Embodiment 1 of this invention. 本発明の実施の形態1においてオン判定時間が比較的長く設定された場合の種々の信号の変化について説明するためのタイミングチャートである。5 is a timing chart for explaining changes in various signals when the ON determination time is set to be relatively long in Embodiment 1 of the present invention. 本発明の実施の形態2に係る半導体駆動装置の状態信号生成部、ゲート駆動部、オンオフ判定部および異常検出部の具体的な構成例を示す回路図である。It is a circuit diagram which shows the specific structural example of the state signal generation part of the semiconductor drive device concerning Embodiment 2 of this invention, a gate drive part, an on-off determination part, and an abnormality detection part. 本発明の実施の形態2における半導体駆動装置の制御部の具体的な構成例を示す回路図である。It is a circuit diagram which shows the specific structural example of the control part of the semiconductor drive device in Embodiment 2 of this invention. 本発明の実施の形態2における各種信号の変化およびスイッチング素子のゲート・ソース間電圧の変化の一例を示すタイムチャートである。It is a time chart which shows an example of the change of the various signals in Embodiment 2 of this invention, and the change of the gate-source voltage of a switching element. 本発明の実施の形態2における指令信号、オンオフ指令信号、状態信号、差異判定信号および異常信号の変化の一例を示すタイミングチャートである。It is a timing chart which shows an example of the change of the command signal in Embodiment 2 of this invention, an on-off command signal, a status signal, a difference determination signal, and an abnormal signal. 本発明の実施の形態3に係る半導体駆動装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the semiconductor drive device which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る半導体駆動装置の状態信号生成部、ゲート駆動部、オンオフ判定部および異常検出部の具体的な構成例を示す回路図である。It is a circuit diagram which shows the specific structural example of the state signal generation part of the semiconductor drive device concerning Embodiment 3 of this invention, a gate drive part, an on-off determination part, and an abnormality detection part. 本発明の実施の形態4に係る半導体駆動装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the semiconductor drive device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る半導体駆動装置の状態信号生成部、ゲート駆動部、オンオフ判定部および異常検出部の具体的な構成例を示す回路図である。It is a circuit diagram which shows the specific structural example of the state signal generation part of the semiconductor drive device concerning Embodiment 4 of this invention, a gate drive part, an on-off determination part, and an abnormality detection part. 本発明の実施の形態5に係る電力変換装置の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of the power converter device which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る電力変換装置の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of the power converter device which concerns on Embodiment 6 of this invention. 本発明の実施の形態6に係る電力変換装置に用いる半導体駆動装置の制御部の具体的な構成例を示す回路図である。It is a circuit diagram which shows the specific structural example of the control part of the semiconductor drive device used for the power converter device which concerns on Embodiment 6 of this invention. 本発明の実施の形態6における異常信号と他の種々の信号との関係について説明するためのタイムチャートである。It is a time chart for demonstrating the relationship between the abnormal signal and other various signals in Embodiment 6 of this invention. 本発明の実施の形態7に係る電力変換装置の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of the power converter device which concerns on Embodiment 7 of this invention. 制御部の各機能がソフトウェアで実現される例を示す図である。It is a figure which shows the example by which each function of a control part is implement | achieved by software.
[実施の形態1]
 図1は、本発明の実施の形態1に係る半導体駆動装置の基本構成を示すブロック図である。実施の形態1に係る半導体駆動装置1は、直流電源の正極端子TPと負極端子TNとの間に直列に接続された一対の半導体スイッチング素子(以下、スイッチング素子と略記する。)M1,M2をパルス幅変調によりそれぞれ駆動する。本例において、スイッチング素子M1,M2はそれぞれパワーMOSFETである。スイッチング素子M1,M2の各々には寄生ダイオードが設けられる。半導体駆動装置1は、スイッチング素子M1のドレイン端子DrainHとソース端子SourceHとの間の電圧およびスイッチング素子M2のドレイン端子DrainLとソース端子SourceLとの間の電圧に基づいて、アーム短絡を検出する機能を備える。アーム短絡は、スイッチング素子M1およびM2が同時にオンすることによって正極端子TPと負極端子TNとの間で生じる短絡である。
[Embodiment 1]
FIG. 1 is a block diagram showing a basic configuration of a semiconductor drive device according to Embodiment 1 of the present invention. The semiconductor drive device 1 according to the first embodiment includes a pair of semiconductor switching elements (hereinafter abbreviated as switching elements) M1 and M2 connected in series between a positive terminal TP and a negative terminal TN of a DC power supply. Each is driven by pulse width modulation. In this example, the switching elements M1 and M2 are power MOSFETs. A parasitic diode is provided in each of the switching elements M1 and M2. The semiconductor drive device 1 has a function of detecting an arm short circuit based on a voltage between the drain terminal DrainH and the source terminal SourceH of the switching element M1 and a voltage between the drain terminal DrainL and the source terminal SourceL of the switching element M2. Prepare. The arm short circuit is a short circuit that occurs between the positive terminal TP and the negative terminal TN when the switching elements M1 and M2 are simultaneously turned on.
 半導体駆動装置1は、制御部10、ゲート駆動部22Hおよび22L、オンオフ判定部23Hおよび23L、ならびに異常検出部24Hおよび24Lを備える。制御部10は、スイッチング素子M1を駆動するためのオンオフ指令信号SctlHおよびスイッチング素子M2を駆動するためのオンオフ指令信号SctlLを生成する。オンオフ指令信号SctlH,SctlLは、スイッチング素子M1,M2をオンすべき場合にハイレベルとなり、スイッチング素子M1,M2をオフすべき場合にローレベルとなる。オンオフ指令信号SctlHは、後述の絶縁通信部20Hを介してオンオフ指令信号SgdHとしてゲート駆動部22Hおよびオンオフ判定部23Hに与えられる。オンオフ指令信号SctlLは、後述の絶縁通信部20Lを介してオンオフ指令信号SgdLとしてゲート駆動部22Lおよびオンオフ判定部23Lに与えられる。 The semiconductor drive device 1 includes a control unit 10, gate drive units 22H and 22L, on / off determination units 23H and 23L, and abnormality detection units 24H and 24L. The control unit 10 generates an on / off command signal SctlH for driving the switching element M1 and an on / off command signal SctlL for driving the switching element M2. The on / off command signals SctlH and SctlL are at a high level when the switching elements M1 and M2 are to be turned on, and are at a low level when the switching elements M1 and M2 are to be turned off. The on / off command signal SctlH is given to the gate drive unit 22H and the on / off determination unit 23H as an on / off command signal SgdH through an insulating communication unit 20H described later. The on / off command signal SctlL is given to the gate drive unit 22L and the on / off determination unit 23L as the on / off command signal SgdL via the insulation communication unit 20L described later.
 ゲート駆動部22Hには、絶縁通信部20Hによって伝送されるオンオフ指令信号SgdHが入力される。ゲート駆動部22Hは、入力されたオンオフ指令信号SgdHに基づいて、スイッチング素子M1を駆動する。ゲート駆動部22Lには、絶縁通信部20Lによって伝送されるオンオフ指令信号SgdLが入力される。ゲート駆動部22Lは、入力されたオンオフ指令信号SgdLに基づいて、スイッチング素子M2を駆動する。本例において、ゲート駆動部22H,22Lは、スイッチング素子M1,M2のゲート端子GateH,GateLに電圧を付与することにより、スイッチング素子M1,M2を駆動する。ゲート駆動部22H,22Lは、スイッチング素子M1,M2のゲート端子GateH,GateLに電流を付与することによってスイッチング素子M1,M2を駆動してもよい。例えば、スイッチング素子M1,M2としてバイポーラトランジスタ等の電流駆動型の半導体が用いられる場合、電流によってスイッチング素子M1,M2が駆動される。 The on / off command signal SgdH transmitted by the insulated communication unit 20H is input to the gate drive unit 22H. The gate drive unit 22H drives the switching element M1 based on the input on / off command signal SgdH. An ON / OFF command signal SgdL transmitted by the insulated communication unit 20L is input to the gate drive unit 22L. The gate drive unit 22L drives the switching element M2 based on the input on / off command signal SgdL. In this example, the gate drive units 22H and 22L drive the switching elements M1 and M2 by applying a voltage to the gate terminals GateH and GateL of the switching elements M1 and M2. The gate drive units 22H and 22L may drive the switching elements M1 and M2 by applying a current to the gate terminals GateH and GateL of the switching elements M1 and M2. For example, when a current drive type semiconductor such as a bipolar transistor is used as the switching elements M1 and M2, the switching elements M1 and M2 are driven by the current.
 オンオフ判定部23Hには、絶縁通信部20Hにより伝送されるオンオフ指令信号SgdHが入力されるとともに、スイッチング素子M1のゲート端子GateHの電圧が与えられる。オンオフ判定部23Hは、スイッチング素子M1のゲート端子GateHの電圧に基づいてスイッチング素子M1のオンオフ状態を判定し、判定されたオンオフ状態を表すオンオフ判定信号SonHを出力する。オンオフ判定部23Lには、絶縁通信部20Lにより伝送されるオンオフ指令信号SgdLが入力されるとともに、スイッチング素子M2のゲート端子GateLの電圧が与えられる。オンオフ判定部23Lは、スイッチング素子M2のゲート端子GateLの電圧に基づいてスイッチング素子M2のオンオフ状態を判定し、判定されたオンオフ状態を表すオンオフ判定信号SonLを出力する。スイッチング素子M1,M2がオンしている場合、オンオフ判定部23H,23Lはハイレベルのオンオフ判定信号SonH,SonLを出力し、スイッチング素子M1,M2がオフしている場合、オンオフ判定部23H,23Lはローレベルのオンオフ判定信号SonH,SonLを出力する。なお、オンオフ判定部23H,23Lは、スイッチング素子M1,M2のゲート端子GateH,GateLに与えられる電流に基づいて、スイッチング素子M1,M2のオンオフ状態を判定してもよい。 The on / off determination unit 23H is supplied with the on / off command signal SgdH transmitted by the insulated communication unit 20H and the voltage of the gate terminal GateH of the switching element M1. The on / off determination unit 23H determines the on / off state of the switching element M1 based on the voltage of the gate terminal GateH of the switching element M1, and outputs an on / off determination signal SonH indicating the determined on / off state. The on / off determination unit 23L receives the on / off command signal SgdL transmitted by the insulating communication unit 20L and is given the voltage of the gate terminal GateL of the switching element M2. The on / off determination unit 23L determines the on / off state of the switching element M2 based on the voltage of the gate terminal GateL of the switching element M2, and outputs an on / off determination signal SonL indicating the determined on / off state. When the switching elements M1 and M2 are on, the on / off determination units 23H and 23L output high-level on / off determination signals SonH and SonL, and when the switching elements M1 and M2 are off, the on / off determination units 23H and 23L. Outputs low-level on / off determination signals SonH and SonL. Note that the on / off determination units 23H and 23L may determine the on / off states of the switching elements M1 and M2 based on the current applied to the gate terminals GateH and GateL of the switching elements M1 and M2.
 異常検出部24Hには、オンオフ判定部23Hから出力されるオンオフ判定信号SonHが入力されるとともに、スイッチング素子M1のドレイン端子DrainHの電圧が与えられる。異常検出部24Hは、スイッチング素子M1の異常の有無を検出し、検出された異常の有無を表す異常検出信号SfaHを出力する。異常検出部24Lには、オンオフ判定部23Lから出力されるオンオフ判定信号SonLが入力されるとともに、スイッチング素子M2のドレイン端子DrainLの電圧が与えられる。異常検出部24Lは、スイッチング素子M2の異常の有無を検出し、検出された異常の有無を表す異常検出信号SfaLを出力する。ハイレベルの異常検出信号SfaH,SfaLは、スイッチング素子M1,M2に異常があることを表し、ローレベルの異常検出信号SfaH,SfaLは、スイッチング素子M1,M2に異常がないことを表す。本例において、異常検出部24H,24Lは、スイッチング素子M1,M2の異常としてアーム短絡をそれぞれ検出する。 The abnormality detection unit 24H receives the on / off determination signal SonH output from the on / off determination unit 23H and the voltage of the drain terminal DrainH of the switching element M1. The abnormality detection unit 24H detects whether or not the switching element M1 is abnormal, and outputs an abnormality detection signal SfaH that indicates the presence or absence of the detected abnormality. The abnormality detection unit 24L receives the on / off determination signal SonL output from the on / off determination unit 23L and is given the voltage of the drain terminal DrainL of the switching element M2. The abnormality detection unit 24L detects whether or not the switching element M2 is abnormal and outputs an abnormality detection signal SfaL that indicates the presence or absence of the detected abnormality. The high level abnormality detection signals SfaH and SfaL indicate that the switching elements M1 and M2 are abnormal, and the low level abnormality detection signals SfaH and SfaL indicate that the switching elements M1 and M2 are not abnormal. In this example, the abnormality detection units 24H and 24L detect an arm short circuit as an abnormality of the switching elements M1 and M2, respectively.
 半導体駆動装置1は、状態信号生成部21Hおよび21Lならびに絶縁通信部20Hおよび20Lをさらに備える。状態信号生成部21Hには、オンオフ判定部23Hから出力されるオンオフ判定信号SonHが入力されるとともに、異常検出部24Hから出力される異常検出信号SfaHが入力される。状態信号生成部21Hは、オンオフ判定信号SonHおよび異常検出信号SfaHに基づいて状態信号SstHを生成し、生成された状態信号SstHを出力する。状態信号生成部21Hには、オンオフ判定部23Lから出力されるオンオフ判定信号SonLが入力されるとともに、異常検出部24Lから出力される異常検出信号SfaLが入力される。状態信号生成部21Lは、オンオフ判定信号SonLおよび異常検出信号SfaLに基づいて状態信号SstLを生成し、生成された状態信号SstLを出力する。 The semiconductor drive device 1 further includes state signal generation units 21H and 21L and insulating communication units 20H and 20L. The state signal generation unit 21H receives the on / off determination signal SonH output from the on / off determination unit 23H and the abnormality detection signal SfaH output from the abnormality detection unit 24H. The state signal generation unit 21H generates a state signal SstH based on the on / off determination signal SonH and the abnormality detection signal SfaH, and outputs the generated state signal SstH. The state signal generation unit 21H receives the on / off determination signal SonL output from the on / off determination unit 23L and the abnormality detection signal SfaL output from the abnormality detection unit 24L. The state signal generation unit 21L generates a state signal SstL based on the on / off determination signal SonL and the abnormality detection signal SfaL, and outputs the generated state signal SstL.
 絶縁通信部20Hは、チャンネルCh1およびCh2を含み、絶縁通信部20Lは、チャンネルCh3およびCh4を含む。チャンネルCh1~Ch4には、例えばフォトカプラまたはパルストランス等の絶縁素子が用いられる。絶縁性材料(例えば樹脂)によって形成された光ファイバがチャンネルCh1~Ch4に用いられてもよい。また、チャンネルCh1~Ch4は、集積回路(IC)内に形成されたパルストランス等の絶縁であってもよい。 The insulated communication unit 20H includes channels Ch1 and Ch2, and the insulated communication unit 20L includes channels Ch3 and Ch4. For the channels Ch1 to Ch4, for example, an insulating element such as a photocoupler or a pulse transformer is used. An optical fiber formed of an insulating material (for example, resin) may be used for the channels Ch1 to Ch4. Further, the channels Ch1 to Ch4 may be insulated such as a pulse transformer formed in an integrated circuit (IC).
 絶縁通信部20Hは、制御部10とゲート駆動部22Hとの間の絶縁を確保しつつ制御部10からゲート駆動部22Hにオンオフ指令信号を伝送し、状態信号生成部21Hと制御部10との間の絶縁を確保しつつ状態信号生成部21Hから制御部10に状態信号を伝送する。具体的には、制御部10から出力されたオンオフ指令信号SctlHがチャンネルCh1に入力され、チャンネルCh1から出力されたオンオフ指令信号SgdHがゲート駆動部22Hに与えられる。また、状態信号生成部21Hから出力された状態信号SstHがチャンネルCh2に入力され、チャンネルCh2から出力された状態信号SfbHが制御部10に与えられる。 The insulation communication unit 20H transmits an on / off command signal from the control unit 10 to the gate drive unit 22H while ensuring insulation between the control unit 10 and the gate drive unit 22H, and the state signal generation unit 21H and the control unit 10 The state signal is transmitted from the state signal generation unit 21H to the control unit 10 while ensuring the insulation between them. Specifically, the on / off command signal SctlH output from the control unit 10 is input to the channel Ch1, and the on / off command signal SgdH output from the channel Ch1 is supplied to the gate drive unit 22H. The state signal SstH output from the state signal generation unit 21H is input to the channel Ch2, and the state signal SfbH output from the channel Ch2 is provided to the control unit 10.
 絶縁通信部20Lは、制御部10とゲート駆動部22Lとの間の絶縁を確保しつつ制御部10からゲート駆動部22Lにオンオフ指令信号を伝送し、状態信号生成部21Lと制御部10との間の絶縁を確保しつつ状態信号生成部21Lから制御部10に状態信号を伝送する。具体的には、制御部10から出力されたオンオフ指令信号SctlLがチャンネルCh3に入力され、チャンネルCh3から出力されたオンオフ指令信号SgdLがゲート駆動部22Lに与えられる。また、状態信号生成部21Lから出力された状態信号SstLがチャンネルCh4に入力され、チャンネルCh4から出力された状態信号SfbLが制御部10に与えられる。 The insulation communication unit 20L transmits an on / off command signal from the control unit 10 to the gate drive unit 22L while ensuring insulation between the control unit 10 and the gate drive unit 22L, and the state signal generation unit 21L and the control unit 10 A state signal is transmitted from the state signal generation unit 21L to the control unit 10 while ensuring insulation between the two. Specifically, the on / off command signal SctlL output from the control unit 10 is input to the channel Ch3, and the on / off command signal SgdL output from the channel Ch3 is supplied to the gate drive unit 22L. The state signal SstL output from the state signal generation unit 21L is input to the channel Ch4, and the state signal SfbL output from the channel Ch4 is provided to the control unit 10.
 絶縁通信部20H,20Lへの信号の入力時点と絶縁通信部20H,20Lからの信号の出力時点との間に僅かな遅延が生じる。そのため、オンオフ指令信号SgdHは、オンオフ指令信号SctlHより僅かに遅延して変化し、状態信号SfbHは、状態信号SstHより僅かに遅延して変化する。同様に、オンオフ指令信号SgdLは、オンオフ指令信号SctlLより僅かに遅延して変化し、状態信号SfbLは、状態信号SstLより僅かに遅延して変化する。 There is a slight delay between the time when signals are input to the insulated communication units 20H and 20L and the time when signals are output from the insulated communication units 20H and 20L. Therefore, the on / off command signal SgdH changes with a slight delay from the on / off command signal SctlH, and the state signal SfbH changes with a slight delay from the state signal SstH. Similarly, the on / off command signal SgdL changes with a slight delay from the on / off command signal SctlL, and the state signal SfbL changes with a slight delay from the state signal SstL.
 ゲート駆動部22H、オンオフ判定部23H、異常検出部24Hおよび状態信号生成部21Hの各々に対して入出力される信号は、スイッチング素子M1のソース端子SourceHの電位を基準とする。また、ゲート駆動部22L、オンオフ判定部23L、異常検出部24Lおよび状態信号生成部21Lの各々に対して入出力される信号は、スイッチング素子M2のソース端子SourceHの電位を基準とする。ソース端子SourceH,SourceLの電位は、スイッチング素子M1,M2のスイッチング動作によってそれぞれ変動する。一方、制御部10に対して入出力される信号は、一定の電位を基準とすることが好ましい。そのため、制御部10とゲート駆動部22H,22Hとの間および制御部10と状態信号生成部21H,21Lとの間では、絶縁を介した信号の伝送が必要となる。本実施の形態では、絶縁通信部20H,20Lが設けられることにより、制御部10とゲート駆動部22H,22Hとの間および制御部10と状態信号生成部21H,21Lとの間で絶縁を介した信号の伝送が可能となる。 Signals input / output to / from each of the gate drive unit 22H, the on / off determination unit 23H, the abnormality detection unit 24H and the state signal generation unit 21H are based on the potential of the source terminal SourceH of the switching element M1. In addition, signals input / output to / from each of the gate drive unit 22L, the on / off determination unit 23L, the abnormality detection unit 24L, and the state signal generation unit 21L are based on the potential of the source terminal SourceH of the switching element M2. The potentials of the source terminals SourceH and SourceL vary depending on the switching operation of the switching elements M1 and M2. On the other hand, signals input to and output from the control unit 10 are preferably based on a certain potential. Therefore, it is necessary to transmit a signal via insulation between the control unit 10 and the gate driving units 22H and 22H and between the control unit 10 and the state signal generation units 21H and 21L. In the present embodiment, by providing insulation communication units 20H and 20L, insulation is provided between control unit 10 and gate drive units 22H and 22H and between control unit 10 and state signal generation units 21H and 21L. The transmitted signal can be transmitted.
 制御部10は、オン指令生成部11ならびにデッドタイム生成部12Hおよび12Lを有する。オン指令生成部11には、絶縁通信部20Hにより伝送される状態信号SfbHおよび絶縁通信部20Lにより伝送される状態信号SfbLが入力される。オン指令生成部11は、状態信号SfbH,SfbLに基づいて、オン信号SinHおよびSinLを生成する。デッドタイム生成部12Hには、絶縁通信部20Lにより伝送される状態信号SfbLおよびオン指令生成部11から出力されるオン信号SinHが入力される。デッドタイム生成部12Hは、状態信号SfbLおよびオン信号SinHに基づいて、デッドタイムが好適に確保されるようにオンオフ指令信号SctlHを生成する。デッドタイム生成部12Lには、絶縁通信部20Hにより伝送される状態信号SfbHおよびオン指令生成部11から出力されるオン信号SinLが入力される。デッドタイム生成部12Lは、状態信号SfbLおよびオン信号SinLに基づいて、デッドタイムが好適に確保されるようにオンオフ指令信号SctlLを生成する。 The control unit 10 includes an on command generation unit 11 and dead time generation units 12H and 12L. The on-command generating unit 11 receives the status signal SfbH transmitted by the insulated communication unit 20H and the status signal SfbL transmitted by the insulated communication unit 20L. The on command generation unit 11 generates on signals SinH and SinL based on the state signals SfbH and SfbL. The dead time generating unit 12H receives the state signal SfbL transmitted from the insulating communication unit 20L and the on signal SinH output from the on command generating unit 11. The dead time generation unit 12H generates the on / off command signal SctlH based on the state signal SfbL and the on signal SinH so that the dead time is suitably secured. The dead time generating unit 12L receives the state signal SfbH transmitted from the insulated communication unit 20H and the on signal SinL output from the on command generating unit 11. The dead time generation unit 12L generates an on / off command signal SctlL based on the state signal SfbL and the on signal SinL so that the dead time is suitably secured.
 本実施の形態では、オンオフ判定信号SonHが絶縁通信部20Hの専用のチャンネルを介して伝送されるのではなく、オンオフ判定信号SonHおよび異常検出信号SfaHから状態信号SstHが生成され、その状態信号SstHが絶縁通信部20Hの1つのチャンネルCh2を介して伝送される。また、オンオフ判定信号SonLが絶縁通信部20Lの専用のチャンネルを介して伝送されるのではなく、オンオフ判定信号SonLおよび異常検出信号SfaLから状態信号SstLが生成され、その状態信号SstLが絶縁通信部20Hの1つのチャンネルCh4を介して伝送される。これにより、オンオフ判定信号SonH,SonLを伝送するために絶縁通信部20H,20Lに新たなチャンネルを設けることなく、スイッチング素子M1,M2のオンオフ状態を制御部10に伝達することができる。 In the present embodiment, the on / off determination signal SonH is not transmitted via the dedicated channel of the isolated communication unit 20H, but the state signal SstH is generated from the on / off determination signal SonH and the abnormality detection signal SfaH, and the state signal SstH Is transmitted through one channel Ch2 of the insulated communication unit 20H. In addition, the on / off determination signal SonL is not transmitted via the dedicated channel of the isolated communication unit 20L, but the state signal SstL is generated from the on / off determination signal SonL and the abnormality detection signal SfaL, and the state signal SstL is generated by the isolated communication unit. It is transmitted through one channel Ch4 of 20H. Thus, the on / off states of the switching elements M1, M2 can be transmitted to the control unit 10 without providing a new channel in the insulated communication units 20H, 20L in order to transmit the on / off determination signals SonH, SonL.
 図2は、図1の状態信号生成部21H、ゲート駆動部22H、オンオフ判定部23Hおよび異常検出部24Hの具体的な構成例を示す概略的な回路図である。なお、図1の状態信号生成部21L、ゲート駆動部22L、オンオフ判定部23Lおよび異常検出部24Lは、状態信号生成部21H、ゲート駆動部22H、オンオフ判定部23Hおよび異常検出部24Hと同様の構成および機能を有する。 FIG. 2 is a schematic circuit diagram showing a specific configuration example of the state signal generation unit 21H, the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H of FIG. The state signal generation unit 21L, the gate drive unit 22L, the on / off determination unit 23L, and the abnormality detection unit 24L in FIG. 1 are the same as the state signal generation unit 21H, the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H. Has configuration and function.
 ゲート駆動部22Hは、バッファ回路BF1、抵抗R1~R10、スピードアップコンデンサC1,C2、およびトランジスタTr1~Tr3を備える。絶縁通信部20Hから出力されるオンオフ指令信号SgdHはバッファ回路BF1で増幅され、オン制御用のゲート抵抗R6、R8およびスピードアップコンデンサC2、またはオフ制御用のゲート抵抗R7、R8およびスピードアップコンデンサC1を介してスイッチング素子M1のゲート端子GateHに与えられる。バッファ回路BF1の正の端子には電圧VccHが与えられ、負の端子には電圧VeeHが与えられる。電圧VccH,VeeHは、ソース端子SourceHの電位FgHを基準に設定される。バッファ回路BF1の負の端子の電位がFgHとなるように、電圧VeeHが0に設定されてもよい。また、誤点弧を防止するため、バッファ回路BF1の負の端子の電位がFgHよりも低くなるように、電圧VeeHが負電圧に設定されてもよい。また、図2の例では、デッドタイムの短縮を行うためにスピードアップコンデンサC1,C2が設けられるが、スピードアップコンデンサC1,C2以外の構成が用いられてもよい。さらには、図2の例では、ゲート駆動方式が定電圧駆動であるが、ゲート駆動方式は、定電流駆動、あるいはアクティブゲート駆動であってもよい。アクティブゲート駆動は、ゲート駆動回路のインピーダンスを動的に変化させる駆動方式である。 The gate driver 22H includes a buffer circuit BF1, resistors R1 to R10, speed-up capacitors C1 and C2, and transistors Tr1 to Tr3. The on / off command signal SgdH output from the insulated communication unit 20H is amplified by the buffer circuit BF1, and is turned on by the gate resistors R6 and R8 and the speed-up capacitor C2, or is turned off by the gate resistors R7 and R8 and the speed-up capacitor C1. To the gate terminal GateH of the switching element M1. The voltage VccH is applied to the positive terminal of the buffer circuit BF1, and the voltage VeeH is applied to the negative terminal. The voltages VccH and VeeH are set with reference to the potential FgH of the source terminal SourceH. The voltage VeeH may be set to 0 so that the potential of the negative terminal of the buffer circuit BF1 becomes FgH. In order to prevent false firing, the voltage VeeH may be set to a negative voltage so that the potential of the negative terminal of the buffer circuit BF1 is lower than FgH. In the example of FIG. 2, the speed-up capacitors C1 and C2 are provided in order to shorten the dead time, but a configuration other than the speed-up capacitors C1 and C2 may be used. Furthermore, in the example of FIG. 2, the gate driving method is constant voltage driving, but the gate driving method may be constant current driving or active gate driving. Active gate driving is a driving method that dynamically changes the impedance of a gate driving circuit.
 アーム短絡が発生した場合に、スイッチング素子M1が遮断(いわゆるハード遮断)されると、大電流の遮断によって過大なサージ電圧が発生することがある。本例では、バッファ回路BF1およびトランジスタTr3により、そのような過大なサージ電圧の発生が防止される。具体的には、アーム短絡が検出されることによって異常検出部24Hから出力される異常検出信号SfaHがハイレベルになると、バッファ回路BF1がハイインピーダンス状態に保持されることによってバッファ回路BF1の出力が停止される。その状態でトランジスタTr3がオンされると、ゲート抵抗R10によってスイッチング素子M1が低速で遮断される(いわゆるソフト遮断)。ゲート抵抗R10の値は、ゲート抵抗R7の値とゲート抵抗R8の値との和よりも大きく、例えば、ゲート抵抗R7の値とゲート抵抗R8の値との和の10倍程度である。 When an arm short-circuit occurs, if the switching element M1 is cut off (so-called hard cut-off), an excessive surge voltage may be generated due to a large current cut-off. In this example, such an excessive surge voltage is prevented by the buffer circuit BF1 and the transistor Tr3. Specifically, when the abnormality detection signal SfaH output from the abnormality detection unit 24H by detecting an arm short circuit becomes a high level, the buffer circuit BF1 is held in a high impedance state, whereby the output of the buffer circuit BF1 is Stopped. When the transistor Tr3 is turned on in this state, the switching element M1 is cut off at low speed by the gate resistor R10 (so-called soft cutoff). The value of the gate resistor R10 is larger than the sum of the value of the gate resistor R7 and the value of the gate resistor R8, for example, about 10 times the sum of the value of the gate resistor R7 and the value of the gate resistor R8.
 オンオフ判定部23Hは、コンパレータCP1、抵抗R11~R15、ダイオードD1およびコンデンサC3を備える。スイッチング素子M1のゲート・ソース間電圧(ゲート端子GateHとソース端子SourceHとの間の電圧)が抵抗R11を介してコンパレータCP1のプラス側入力端子に与えられる。コンパレータCP1によってスイッチング素子M1のゲート・ソース間電圧が比較基準電圧と比較される。比較基準電圧は抵抗R13~R15の値に依存する。本例では、オンオフ指令信号SgdHが抵抗R15を介してコンパレータCP1のマイナス側入力端子に与えられる。そのため、オンオフ指令信号SgdHがハイレベルである場合とオンオフ指令信号SgdHがローレベルである場合との間で比較基準電圧が変更される。また、抵抗R11,R12およびコンデンサC3によりローパスフィルタが構成される。後述のように、スイッチング素子M1がオンしてからオンオフ判定信号SonHがハイレベルになるまでの時間(以下、オン判定時間と呼ぶ。)が、スイッチング素子M1がオフしてからオンオフ判定信号SonHがローレベルになるまでの時間(以下、オフ判定時間と呼ぶ。)よりも長くなるように、ローパスフィルタが設定されてもよい。オン判定時間は、第2の時間の例であり、オフ判定時間は第1の時間の例である。なお、オン判定時間とオフ判定時間との間に差異を設ける必要がない場合には、抵抗R12およびダイオードD1は設けられなくてもよい。 The on / off determination unit 23H includes a comparator CP1, resistors R11 to R15, a diode D1, and a capacitor C3. The gate-source voltage of the switching element M1 (the voltage between the gate terminal GateH and the source terminal SourceH) is applied to the positive side input terminal of the comparator CP1 via the resistor R11. The comparator CP1 compares the gate-source voltage of the switching element M1 with the comparison reference voltage. The comparison reference voltage depends on the values of the resistors R13 to R15. In this example, the on / off command signal SgdH is given to the negative input terminal of the comparator CP1 via the resistor R15. Therefore, the comparison reference voltage is changed between when the on / off command signal SgdH is at a high level and when the on / off command signal SgdH is at a low level. Further, the resistors R11 and R12 and the capacitor C3 constitute a low-pass filter. As will be described later, the time from when the switching element M1 is turned on until the on / off determination signal SonH becomes high level (hereinafter referred to as the on determination time) is equal to the on / off determination signal SonH after the switching element M1 is turned off. The low pass filter may be set so as to be longer than the time until the low level (hereinafter referred to as the off determination time). The on determination time is an example of the second time, and the off determination time is an example of the first time. Note that when there is no need to provide a difference between the on determination time and the off determination time, the resistor R12 and the diode D1 may not be provided.
 異常検出部24Hは、コンパレータCP2、抵抗R16~R20、ダイオードD2,D3、コンデンサC4、トランジスタTr5、定電流源Idc1および信号幅伸長回路MM1を備える。アーム短絡によってドレイン端子DrainHの電圧が上昇すると、定電流源Idc1からの電流がドレイン端子DrainHに流れない。それにより、コンパレータCP2のプラス側入力端子の電圧が上昇し、コンパレータCP2の出力信号がハイレベルになる。これにより、アーム短絡の発生が検出される。また、オンオフ判定部23Hから出力されるオンオフ判定信号SonHが、トランジスタTr5のベースに与えられる。トランジスタTr5はpnp型である。オンオフ判定信号SonHがローレベルである場合(スイッチング素子M1がオフしている場合)、トランジスタTr5がオンに維持されるため、定電流源Idc1からの電流がトランジスタTr5を介して負極端子に流れる。これにより、スイッチング素子M1が正常にオフしている場合、ドレイン端子DrainHの電圧が上昇してもコンパレータCP2のプラス側入力端子の電圧が上昇しない。その結果、アーム短絡の誤検出が防止される。コンパレータCP2の出力信号は信号幅伸長回路MM1により時間軸方向に伸長され、異常検出信号SfaHとして出力される。 The abnormality detection unit 24H includes a comparator CP2, resistors R16 to R20, diodes D2 and D3, a capacitor C4, a transistor Tr5, a constant current source Idc1, and a signal width expansion circuit MM1. When the voltage of the drain terminal DrainH rises due to the arm short circuit, the current from the constant current source Idc1 does not flow to the drain terminal DrainH. As a result, the voltage at the positive input terminal of the comparator CP2 rises, and the output signal of the comparator CP2 becomes high level. Thereby, the occurrence of an arm short circuit is detected. The on / off determination signal SonH output from the on / off determination unit 23H is applied to the base of the transistor Tr5. The transistor Tr5 is a pnp type. When the on / off determination signal SonH is at a low level (when the switching element M1 is off), the transistor Tr5 is kept on, so that the current from the constant current source Idc1 flows to the negative terminal via the transistor Tr5. As a result, when the switching element M1 is normally turned off, the voltage at the positive input terminal of the comparator CP2 does not increase even if the voltage at the drain terminal DrainH increases. As a result, erroneous detection of an arm short circuit is prevented. The output signal of the comparator CP2 is expanded in the time axis direction by the signal width expansion circuit MM1, and is output as the abnormality detection signal SfaH.
 状態信号生成部21Hは、パルス信号発生源CLK1、インバータ回路INV1、OR回路B1,B2およびAND回路A1を備える。パルス信号発生源CLK1は、連続パルスからなる異常パルス信号Sfpを生成し、その異常パルス信号SfpをOR回路B1の一方の入力端子に与える。本例において、異常パルス信号SfPにおけるパルス周期Tf(後述の図5)は、パルス幅変調のキャリア周期よりも短い。OR回路B1の他方の入力端子には、異常検出部24Hからの異常検出信号SfaHがインバータ回路INV1を介して与えられる。OR回路B2の一方の入力端子には、異常検出部24Hからの異常検出信号SfaHが与えられる。OR回路B2の他方の入力端子には、オンオフ判定部23Hからのオンオフ判定信号SonHが与えられる。AND回路A1の一方の入力端子には、OR回路B1の出力信号が与えられ、AND回路A1の他方の入力端子には、OR回路B2の出力信号が与えられる。AND回路A1は、状態信号SstHを出力する。 The state signal generation unit 21H includes a pulse signal generation source CLK1, an inverter circuit INV1, OR circuits B1 and B2, and an AND circuit A1. The pulse signal generation source CLK1 generates an abnormal pulse signal Sfp consisting of continuous pulses, and supplies the abnormal pulse signal Sfp to one input terminal of the OR circuit B1. In this example, the pulse period Tf (FIG. 5 described later) in the abnormal pulse signal SfP is shorter than the carrier period of pulse width modulation. An abnormality detection signal SfaH from the abnormality detection unit 24H is applied to the other input terminal of the OR circuit B1 via the inverter circuit INV1. The abnormality detection signal SfaH from the abnormality detection unit 24H is given to one input terminal of the OR circuit B2. An ON / OFF determination signal SonH from the ON / OFF determination unit 23H is supplied to the other input terminal of the OR circuit B2. The output signal of the OR circuit B1 is given to one input terminal of the AND circuit A1, and the output signal of the OR circuit B2 is given to the other input terminal of the AND circuit A1. The AND circuit A1 outputs a state signal SstH.
 異常検出信号SfaHがローレベルである場合、オンオフ判定信号SonHが状態信号SstHとして出力され、異常検出信号SfaHがハイレベルである場合、パルス信号発生源CLK1により生成された異常パルス信号Sfpが状態信号SstHとして出力される。すなわち、異常が検出されていない場合には、状態信号SstHがスイッチング素子M1のオンオフ状態を信号レベルによって表し、異常が検出されると、状態信号SstHがスイッチング素子M1に異常があることを連続パルスによって表す。これにより、状態信号SstHからスイッチング素子M1のオンオフ状態および異常の有無を判定することが可能となる。 When the abnormality detection signal SfaH is at the low level, the on / off determination signal SonH is output as the state signal SstH, and when the abnormality detection signal SfaH is at the high level, the abnormal pulse signal Sfp generated by the pulse signal generation source CLK1 is the state signal. Output as SstH. That is, when an abnormality is not detected, the state signal SstH represents the on / off state of the switching element M1 by a signal level. When an abnormality is detected, the state signal SstH indicates that the switching element M1 has an abnormality. Is represented by Thereby, it is possible to determine the on / off state of the switching element M1 and the presence / absence of an abnormality from the state signal SstH.
 上記のように、異常検出信号SfaHがハイレベルになると、ゲート駆動部22Hがスイッチング素子M1をオフする。これにより、アーム短絡が解消される。ただし、スイッチング素子M2の故障によってアーム短絡が生じた場合には、スイッチング素子M1のオフによって一時的にアーム短絡が解消されても、その後にスイッチング素子M1がオンされると、アーム短絡が繰り返される。そこで、信号幅伸長回路MM1によってアーム短絡が解消された後にも異常検出信号SfaHがハイレベルに保持される。これにより、一定時間以上スイッチング素子M1がオフに維持され、アーム短絡の繰り返しが防止される。 As described above, when the abnormality detection signal SfaH becomes a high level, the gate drive unit 22H turns off the switching element M1. Thereby, an arm short circuit is eliminated. However, when an arm short circuit occurs due to a failure of the switching element M2, even if the arm short circuit is temporarily eliminated by turning off the switching element M1, the arm short circuit is repeated when the switching element M1 is subsequently turned on. . Therefore, the abnormality detection signal SfaH is held at the high level even after the arm short circuit is eliminated by the signal width expansion circuit MM1. As a result, the switching element M1 is kept off for a predetermined time or more, and the repetition of the arm short circuit is prevented.
 図3は、図1の制御部10の具体的な構成例を示す概略的な回路図である。図3に示すように、オン指令生成部11は、カウンタ回路CN1およびCN2、OR回路B3、信号保持回路FF1、信号生成部PG1、AND回路A11およびA12ならびにインバータ回路INV2およびINV11を備える。図1の絶縁通信部20Lからカウンタ回路CN1に状態信号SfbHが与えられ、図1の絶縁通信部20Hからカウンタ回路CN2に状態信号SfbHが与えられる。カウンタ回路CN1は、状態信号SfbLのパルス数をカウントする。カウンタ回路CN2は、状態信号SfbHのパルス数をカウントする。カウンタ回路CN1,CN2の各々には、予め定められたカウントリセット周期Tr(後述の図5)でクリア信号CLRが与えられる。クリア信号CLRが与えられると、カウンタ回路CN1,CN2はカウント値をリセットする。カウンタ回路CN1,CN2の少なくとも一方によりカウントリセット周期Tr内で所定のパルス数がカウントされると、異常が発生したと判定される。 FIG. 3 is a schematic circuit diagram showing a specific configuration example of the control unit 10 of FIG. As shown in FIG. 3, the ON command generation unit 11 includes counter circuits CN1 and CN2, an OR circuit B3, a signal holding circuit FF1, a signal generation unit PG1, AND circuits A11 and A12, and inverter circuits INV2 and INV11. The status signal SfbH is provided from the insulated communication unit 20L in FIG. 1 to the counter circuit CN1, and the status signal SfbH is provided from the insulated communication unit 20H in FIG. 1 to the counter circuit CN2. The counter circuit CN1 counts the number of pulses of the status signal SfbL. The counter circuit CN2 counts the number of pulses of the status signal SfbH. Each of the counter circuits CN1 and CN2 is supplied with a clear signal CLR at a predetermined count reset period Tr (FIG. 5 described later). When the clear signal CLR is given, the counter circuits CN1 and CN2 reset the count value. When a predetermined number of pulses are counted within the count reset period Tr by at least one of the counter circuits CN1 and CN2, it is determined that an abnormality has occurred.
 カウントリセット周期Trは上記の異常パルス信号Sfpのパルス周期Tfよりも大きく設定される。これにより、異常発生時にはカウンタ回路CN1,CN2の各々が異常パルス信号Sfpの少なくとも1つのパルスをカウントする。また、異常パルス信号Sfpのパルス周期Tfはパルス幅変調のキャリア周期Tc(後述の図5)よりも小さく設定される。これにより、正常時の状態信号SfbH,SfbLに含まれるオンオフ判定信号SonH,SonLのパルスと、異常発生時の状態信号SfbH,SfbLに含まれる異常パルス信号Sfpのパルスとを正確に区別することができる。状態信号SfbH,SfbLの詳細については後述する。信号保持回路FF1は、異常信号ScnHまたは異常信号ScnLを保持することにより異常保持信号SfbFFを生成する。信号保持回路FF1から出力される異常保持信号SfbFFは、インバータ回路INV11によって反転されてAND回路A11の一方の入力端子およびAND回路A12の一方の入力端子に与えられる。 The count reset period Tr is set larger than the pulse period Tf of the abnormal pulse signal Sfp. Thereby, when an abnormality occurs, each of the counter circuits CN1 and CN2 counts at least one pulse of the abnormal pulse signal Sfp. The pulse period Tf of the abnormal pulse signal Sfp is set to be smaller than the carrier period Tc of pulse width modulation (FIG. 5 described later). Accordingly, it is possible to accurately distinguish the pulses of the on / off determination signals SonH and SonL included in the normal state signals SfbH and SfbL from the pulses of the abnormal pulse signal Sfp included in the state signals SfbH and SfbL when the abnormality occurs. it can. Details of the status signals SfbH and SfbL will be described later. The signal holding circuit FF1 generates the abnormality holding signal SfbFF by holding the abnormality signal ScnH or the abnormality signal ScnL. The abnormality holding signal SfbFF output from the signal holding circuit FF1 is inverted by the inverter circuit INV11 and applied to one input terminal of the AND circuit A11 and one input terminal of the AND circuit A12.
 信号生成部PG1には、図示しない演算処理装置(例えば、マイクロコンピュータ)からパルス幅変調によるスイッチング動作を実現するための制御信号Sdrvが与えられる。信号生成部PG1は、制御信号Sdrvに基づいて指令信号Scomを出力する。指令信号Scomは、スイッチング素子M1がオンされるべき期間にハイレベルとなり、スイッチング素子M2がオンされるべき期間にローレベルとなる。指令信号Scomは、AND回路A12の他方の入力端子に与えられるとともに、インバータ回路INV2によって反転されて指令信号Scom’としてAND回路A11の他方の入力端子に与えられる。AND回路A11はオン信号SinHを出力する。AND回路A12はオン信号SinLを出力する。 The signal generation unit PG1 is supplied with a control signal Sdrv for realizing a switching operation by pulse width modulation from an arithmetic processing unit (not shown) (for example, a microcomputer). The signal generator PG1 outputs a command signal Scom based on the control signal Sdrv. The command signal Scom is at a high level during a period during which the switching element M1 is to be turned on, and is at a low level during a period during which the switching element M2 is to be turned on. Command signal Scom is applied to the other input terminal of AND circuit A12, inverted by inverter circuit INV2, and applied to the other input terminal of AND circuit A11 as command signal Scom '. The AND circuit A11 outputs an on signal SinH. The AND circuit A12 outputs an on signal SinL.
 正常時には、信号保持回路FF1から出力される異常保持信号SfbFFがローレベルである。そのため、インバータ回路INV11によって反転されたハイレベルの信号がAND回路A11,A12に与えられる。この場合、AND回路A12は、信号生成部PG1から出力される指令信号Scomをオン信号SinLとして出力し、AND回路A11は、指令信号Scomの反転信号である指令信号Scom’をオン信号SinHとして出力する。異常が発生した場合には、信号保持回路FF1から出力される異常保持信号SfbFFがハイレベルになる。そのため、インバータ回路INV2によって反転されたローレベルの信号がAND回路A11,A12に与えられる。それにより、AND回路A11,A12は、ローレベルのオン信号SinH,SinLをそれぞれ出力する。 When normal, the abnormality holding signal SfbFF output from the signal holding circuit FF1 is at a low level. Therefore, a high level signal inverted by the inverter circuit INV11 is given to the AND circuits A11 and A12. In this case, the AND circuit A12 outputs the command signal Scom output from the signal generation unit PG1 as the on signal SinL, and the AND circuit A11 outputs the command signal Scom ′ that is an inverted signal of the command signal Scom as the on signal SinH. To do. When an abnormality occurs, the abnormality holding signal SfbFF output from the signal holding circuit FF1 becomes high level. Therefore, the low level signal inverted by the inverter circuit INV2 is given to the AND circuits A11 and A12. As a result, the AND circuits A11 and A12 output low level ON signals SinH and SinL, respectively.
 デッドタイム生成部12Hは、インバータ回路INV3およびAND回路A2を備える。オン指令生成部11のAND回路A11から出力されるオン信号SinHが、AND回路A2の一方の入力端子に与えられる。また、図1の絶縁通信部20Lから出力される状態信号SfbLが、インバータ回路INV3によって反転されてAND回路A2の他方の入力端子に与えられる。AND回路A2は、オンオフ指令信号SctlHを出力する。デッドタイム生成部12Lは、インバータ回路INV4およびAND回路A3を備える。オン指令生成部11のAND回路A12から出力されるオン信号SinLが、AND回路A3の一方の入力端子に与えられる。また、図1の絶縁通信部20Hから出力される状態信号SfbHが、インバータ回路INV4によって反転されてAND回路A3の他方の入力端子に与えられる。AND回路A3は、オンオフ指令信号SctlLを出力する。 The dead time generation unit 12H includes an inverter circuit INV3 and an AND circuit A2. An ON signal SinH output from the AND circuit A11 of the ON command generation unit 11 is given to one input terminal of the AND circuit A2. Further, the state signal SfbL output from the insulating communication unit 20L in FIG. 1 is inverted by the inverter circuit INV3 and applied to the other input terminal of the AND circuit A2. The AND circuit A2 outputs an on / off command signal SctlH. The dead time generation unit 12L includes an inverter circuit INV4 and an AND circuit A3. The ON signal SinL output from the AND circuit A12 of the ON command generation unit 11 is given to one input terminal of the AND circuit A3. Further, the state signal SfbH output from the insulated communication unit 20H in FIG. 1 is inverted by the inverter circuit INV4 and applied to the other input terminal of the AND circuit A3. The AND circuit A3 outputs an on / off command signal SctlL.
 正常時には、一方のスイッチング素子がオンしている場合に他方のスイッチング素子がオンされないように各オンオフ指令信号が生成される。具体的には、スイッチング素子M2がオンしていると、状態信号SfbLはハイレベルである。そのため、AND回路A2には、インバータ回路INV3によって反転されたローレベルの信号が与えられる。それにより、オン信号SinHがハイレベルおよびローレベルのいずれであっても、AND回路A2は、ローレベルのオンオフ指令信号SctlHを出力する。一方、スイッチング素子M2がオフされると、図1の絶縁通信部20Lから出力される状態信号SfbLがローレベルになる。そのため、AND回路A2には、インバータ回路INV3によって反転されたハイレベルの信号が与えられる。これにより、オン信号SinHがハイレベルであるときには、AND回路A2はハイレベルのオンオフ指令信号SctlHを出力する。このように、スイッチング素子M2がオンしているときには、AND回路A2からハイレベルのオンオフ指令信号SctlLが出力されることはなく、スイッチング素子M2がオフしていることを条件としてハイレベルのオンオフ指令信号SctlHの出力が許可される。これにより、スイッチング素子M1,M2が同時にオンすることを防止しつつスイッチング素子M2がオフした後に迅速にスイッチング素子M1をオンすることができる。同様に、スイッチング素子M1がオンしているときには、AND回路A3からハイレベルのオンオフ指令信号SctlLが出力されることはなく、スイッチング素子M1がオフしていることを条件としてハイレベルのオンオフ指令信号SctlLの出力が許可される。これにより、スイッチング素子M1,M2が同時にオンすることを防止しつつスイッチング素子M1がオフした後に迅速にスイッチング素子M2をオンすることができる。このようにして、スイッチング素子M1,M2のオフ動作時のデッドタイムが短縮される。 During normal operation, when one switching element is turned on, each on / off command signal is generated so that the other switching element is not turned on. Specifically, when the switching element M2 is turned on, the state signal SfbL is at a high level. Therefore, a low level signal inverted by the inverter circuit INV3 is given to the AND circuit A2. Accordingly, regardless of whether the on signal SinH is at a high level or a low level, the AND circuit A2 outputs a low level on / off command signal SctlH. On the other hand, when the switching element M2 is turned off, the state signal SfbL output from the insulated communication unit 20L in FIG. 1 becomes low level. Therefore, a high level signal inverted by the inverter circuit INV3 is given to the AND circuit A2. Thereby, when the ON signal SinH is at the high level, the AND circuit A2 outputs the ON / OFF command signal SctlH at the high level. Thus, when the switching element M2 is on, the high-level on / off command signal SctlL is not output from the AND circuit A2, and the high-level on / off command is provided on condition that the switching element M2 is off. Output of the signal SctlH is permitted. Accordingly, the switching element M1 can be quickly turned on after the switching element M2 is turned off while preventing the switching elements M1 and M2 from being turned on simultaneously. Similarly, when the switching element M1 is on, the high-level on / off command signal SctlL is not output from the AND circuit A3, and the high-level on / off command signal is provided on condition that the switching element M1 is off. Output of SctlL is allowed. Accordingly, the switching element M2 can be quickly turned on after the switching element M1 is turned off while preventing the switching elements M1 and M2 from being turned on simultaneously. In this way, the dead time when the switching elements M1, M2 are turned off is shortened.
 信号保持回路FF1から出力される異常保持信号SfbFFがハイレベルになると、オン信号SinH,SinLがともにローレベルに維持される。これにより、故障によってスイッチング素子M1,M2の駆動が不可能である場合を除いて、スイッチング素子M1,M2がともにオフされる。 When the abnormality holding signal SfbFF output from the signal holding circuit FF1 becomes high level, both the on signals SinH and SinL are maintained at low level. Thereby, the switching elements M1 and M2 are both turned off except when the switching elements M1 and M2 cannot be driven due to a failure.
 上記のように、異常の発生時には、異常検出信号SfaHまたはSfaLがハイレベルになることに応答してゲート駆動部22Hまたは22Lがスイッチング素子M1またはM2をオフする。これにより、スイッチング素子M1,M2を含むシステム(例えば後述の電力変換装置)が一次的に保護される。それに加えて、異常保持信号SfbFFがハイレベルになると、制御部10が全てのスイッチング素子をオフする。これにより、システムが二次的に保護され、異常による誤動作等が防止される。信号保持回路FF1には、必要に応じてリセット信号RSTが与えられる。例えばノイズ等によって異常が誤検出された場合には、リセット信号RSTによって信号保持回路FF1を正常状態に復帰させることができる。 As described above, when an abnormality occurs, the gate drive unit 22H or 22L turns off the switching element M1 or M2 in response to the abnormality detection signal SfaH or SfaL becoming a high level. Thereby, a system (for example, a power converter described later) including the switching elements M1 and M2 is primarily protected. In addition, when the abnormality holding signal SfbFF becomes high level, the control unit 10 turns off all the switching elements. As a result, the system is secondarily protected, and malfunctions due to abnormalities are prevented. A reset signal RST is supplied to the signal holding circuit FF1 as necessary. For example, when an abnormality is erroneously detected due to noise or the like, the signal holding circuit FF1 can be returned to a normal state by the reset signal RST.
 図4は、実施の形態1における各種信号の変化およびスイッチング素子M1,M2のゲート・ソース間電圧の変化の一例を示すタイムチャートである。ここでは、スイッチング素子M2の故障によってアーム短絡が生じる場合の例を説明する。 FIG. 4 is a time chart showing an example of changes in various signals and changes in the gate-source voltages of the switching elements M1 and M2 in the first embodiment. Here, an example in which an arm short circuit occurs due to a failure of the switching element M2 will be described.
 時点t0においては、オン信号SinH、オンオフ指令信号SctlHおよびオンオフ指令信号SgdlHがそれぞれハイレベルであり、オン信号SinL、オンオフ指令信号SctlLおよびオンオフ指令信号SgdlLがそれぞれローレベルである。スイッチング素子M1のゲート・ソース間電圧VgsHはVccHであり、スイッチング素子M2のゲート・ソース間電圧VgsLはVeeLである。オンオフ判定信号SonHはハイレベルであり、オンオフ判定信号SonLはローレベルである。異常検出信号SfaH,SfaLはともにローレベルである。すなわち、時点t0で異常は生じていない。そのため、状態信号SstHおよび状態信号SfbHは、オンオフ判定信号SonHと同じくハイレベルであり、状態信号SstLおよび状態信号SfbLは、オンオフ判定信号SonLと同じくローレベルである。 At time t0, the ON signal SinH, the ON / OFF command signal SctlH, and the ON / OFF command signal SgdlH are each at a high level, and the ON signal SinL, the ON / OFF command signal SctlL, and the ON / OFF command signal SgdlL are each at a low level. The gate-source voltage VgsH of the switching element M1 is VccH, and the gate-source voltage VgsL of the switching element M2 is VeeL. The on / off determination signal SonH is at a high level, and the on / off determination signal SonL is at a low level. The abnormality detection signals SfaH and SfaL are both at a low level. That is, no abnormality has occurred at time t0. Therefore, the state signal SstH and the state signal SfbH are at the same high level as the on / off determination signal SonH, and the state signal SstL and the state signal SfbL are at the same low level as the on / off determination signal SonL.
 時点t1において、オン信号SinHがローレベルになるとともにオン信号SinLがハイレベルになる。オン信号SinHの変化に応答して、オンオフ指令信号SctlHがローレベルになる。一方、オンオフ指令信号SctlLはローレベルに維持される。上記のように、図3のデッドタイム生成部12Lにより、状態信号SfbHがハイレベルである場合には、オン信号SinLがハイレベルであってもオンオフ指令信号SctlLはローレベルに維持される。時点t2において、オンオフ指令信号SctlHより僅かに遅延してオンオフ指令信号SgdHがローレベルになる。これにより、スイッチング素子M1のゲート・ソース間電圧VgsHが下降し始める。 At time t1, the on signal SinH becomes low level and the on signal SinL becomes high level. In response to the change of the on signal SinH, the on / off command signal SctlH becomes low level. On the other hand, the on / off command signal SctlL is maintained at a low level. As described above, when the state signal SfbH is at the high level, the on / off command signal SctlL is maintained at the low level even when the on signal SinL is at the high level. At time t2, the on / off command signal SgdH becomes a low level with a slight delay from the on / off command signal SctlH. As a result, the gate-source voltage VgsH of the switching element M1 starts to drop.
 時点t3において、ゲート・ソース間電圧VgsHが予め定められたオフしきい値Vthoffより低くなる。これにより、スイッチング素子M1がオフしたと判定され、オンオフ判定信号SonHがローレベルになるとともに状態信号SstHがローレベルになる。時点t4において、状態信号SstHより僅かに遅延して状態信号SfbHがローレベルになる。状態信号SfbHがローレベルになると、それに応答してオンオフ指令信号SctlLがオン信号SinLと同じハイレベルになる。時点t5において、オンオフ指令信号SctlLより僅かに遅延してオンオフ指令信号SgdLがハイレベルになる。これにより、スイッチング素子M2のゲート・ソース間電圧VgsLが上昇し始める。 At time t3, the gate-source voltage VgsH becomes lower than a predetermined off threshold value Vthoff. Thereby, it is determined that the switching element M1 is turned off, the on / off determination signal SonH becomes low level, and the state signal SstH becomes low level. At time t4, the state signal SfbH becomes a low level with a slight delay from the state signal SstH. When the state signal SfbH becomes a low level, the on / off command signal SctlL becomes the same high level as the on signal SinL in response thereto. At time t5, the on / off command signal SgdL becomes high level with a slight delay from the on / off command signal SctlL. As a result, the gate-source voltage VgsL of the switching element M2 starts to rise.
 時点t6において、ゲート・ソース間電圧VgsLが予め定められたオンしきい値Vthonより高くなる。これにより、スイッチング素子M2がオンしたと判定され、オンオフ判定信号SonLがハイレベルになるとともに状態信号SstLがハイレベルになる。時点t7において、状態信号SstLより僅かに遅延して状態信号SfbLがハイレベルになる。その後、ゲート・ソース間電圧VgsHがVeeHに維持され、ゲート・ソース間電圧VgsLがVccLに維持される。 At time t6, the gate-source voltage VgsL becomes higher than a predetermined on-threshold value Vthon. Thereby, it is determined that the switching element M2 is turned on, the on / off determination signal SonL becomes high level, and the state signal SstL becomes high level. At time t7, the state signal SfbL becomes high level with a slight delay from the state signal SstL. Thereafter, the gate-source voltage VgsH is maintained at VeeH, and the gate-source voltage VgsL is maintained at VccL.
 時点t8において、オン信号SinHがハイレベルになるとともにオン信号SinLがローレベルになる。オン信号SinLの変化に応答して、オンオフ指令信号SctlLがローレベルになる。一方、オンオフ指令信号SctlHはローレベルに維持される。上記のように、図3のデッドタイム生成部12Hにより、状態信号SfbLがハイレベルである場合には、オン信号SinHがハイレベルであってもオンオフ指令信号SctlHはローレベルに維持される。時点t9において、オンオフ指令信号SctlLより僅かに遅延してオンオフ指令信号SgdLがローレベルになる。これにより、スイッチング素子M2のゲート・ソース間電圧VgsLが下降し始める。 At time t8, the ON signal SinH becomes high level and the ON signal SinL becomes low level. In response to the change of the on signal SinL, the on / off command signal SctlL becomes low level. On the other hand, the on / off command signal SctlH is maintained at a low level. As described above, when the state signal SfbL is at the high level, the on-off command signal SctlH is maintained at the low level even when the on-signal SinH is at the high level by the dead time generation unit 12H in FIG. At time t9, the on / off command signal SgdL becomes low level with a slight delay from the on / off command signal SctlL. As a result, the gate-source voltage VgsL of the switching element M2 starts to drop.
 時点t10において、ゲート・ソース間電圧VgsLがオフしきい値Vthoffより低くなる。これにより、スイッチング素子M2がオフしたと判定され、オンオフ判定信号SonLがローレベルになるとともに状態信号SstLがローレベルになる。時点t11において、状態信号SstLより僅かに遅延して状態信号SfbLがローレベルになる。状態信号SfbLがローレベルになると、それに応答してオンオフ指令信号SctlHがオン信号SinHと同じハイレベルになる。時点t12において、オンオフ指令信号SctlHより僅かに遅延してオンオフ指令信号SgdHがハイレベルになる。これにより、スイッチング素子M1のゲート・ソース間電圧VgsHが上昇し始める。 At time t10, the gate-source voltage VgsL becomes lower than the off threshold value Vthoff. Thereby, it is determined that the switching element M2 is turned off, the on / off determination signal SonL becomes low level, and the state signal SstL becomes low level. At time t11, the state signal SfbL becomes low level with a slight delay from the state signal SstL. When the state signal SfbL becomes a low level, the on / off command signal SctlH becomes the same high level as the on signal SinH in response thereto. At time t12, the on / off command signal SgdH becomes high level with a slight delay from the on / off command signal SctlH. As a result, the gate-source voltage VgsH of the switching element M1 starts to rise.
 時点t13において、ゲート・ソース間電圧VgsHがオンしきい値Vthonより高くなる。これにより、スイッチング素子M1がオンしたと判定され、オンオフ判定信号SonHがハイレベルになるとともに状態信号SstHがハイレベルになる。時点t14において、状態信号SstHより僅かに遅延して状態信号SfbHがハイレベルになる。 At time t13, the gate-source voltage VgsH becomes higher than the ON threshold value Vthon. Thereby, it is determined that the switching element M1 is turned on, the on / off determination signal SonH becomes high level, and the state signal SstH becomes high level. At time t14, the state signal SfbH becomes high level with a slight delay from the state signal SstH.
 その状態で、スイッチング素子M2に故障が生じる。それにより、オンオフ指令信号SgdLがローレベルであるにも関わらずスイッチング素子M2がオンし、時点t15において、スイッチング素子M2のゲート・ソース間電圧VgsLがオンしきい値Vthonより高くなる。これにより、オンオフ判定信号SonLがハイレベルになるとともに状態信号SstLがハイレベルになる。時点t17において、状態信号SstLより僅かに遅延して状態信号SfbLがハイレベルになる。状態信号SfbLがハイレベルになると、図3のデッドタイム生成部12Hにより、オン信号SinHがハイレベルであってもオンオフ指令信号SctlHがローレベルになる。 In that state, a failure occurs in the switching element M2. As a result, the switching element M2 is turned on despite the ON / OFF command signal SgdL being at the low level, and the gate-source voltage VgsL of the switching element M2 becomes higher than the ON threshold value Vthon at time t15. As a result, the on / off determination signal SonL becomes high level and the state signal SstL becomes high level. At time t17, the state signal SfbL becomes high level with a slight delay from the state signal SstL. When the state signal SfbL becomes high level, the on-off command signal SctlH becomes low level by the dead time generator 12H of FIG. 3 even if the on signal SinH is high level.
 一方、時点t16において、図2の異常検出部24Hがアーム短絡を検出することにより、異常検出信号SfaHがハイレベルになる。それにより、状態信号SstHに異常パルス信号Sfpが挿入され、僅かに遅延して状態信号SfbHに異常パルス信号Sfpが挿入される。また、異常検出信号SfaHがハイレベルになると、図2のゲート駆動部22Hがスイッチング素子M1のソフト遮断を開始する。これにより、スイッチング素子M1のゲート・ソース間電圧VgsHが緩やかに下降する。 On the other hand, at time t16, the abnormality detection unit 24H in FIG. 2 detects the arm short circuit, so that the abnormality detection signal SfaH becomes high level. Thereby, the abnormal pulse signal Sfp is inserted into the state signal SstH, and the abnormal pulse signal Sfp is inserted into the state signal SfbH with a slight delay. Further, when the abnormality detection signal SfaH becomes a high level, the gate drive unit 22H in FIG. 2 starts soft shutoff of the switching element M1. As a result, the gate-source voltage VgsH of the switching element M1 gradually decreases.
 時点t18において、オンオフ指令信号SctlHより僅かに遅延してオンオフ指令信号SgdHがローレベルになる。この場合、異常検出信号SfaHに応答してゲート駆動部22Hがスイッチング素子M1のソフト遮断を開始しているので、オンオフ指令信号SgdHがローレベルになっても、スイッチング素子M1のソフト遮断が継続される。 At time t18, the on / off command signal SgdH becomes a low level with a slight delay from the on / off command signal SctlH. In this case, since the gate drive unit 22H starts the soft shutoff of the switching element M1 in response to the abnormality detection signal SfaH, the soft shutoff of the switching element M1 is continued even when the on / off command signal SgdH becomes low level. The
 図5は、状態信号SfbH,SfbL、クリア信号CLR、異常信号ScnH,ScnLおよび異常保持信号SfbFFの変化の一例を示すタイムチャートである。ここでは、状態信号SfbH、カウンタ回路CN2、異常信号ScnHおよび異常保持信号SfbFFの関係を主に説明する。状態信号SfbL、カウンタ回路CN1、異常信号ScnLおよび異常保持信号SfbFFの関係も図5の例と同様である。図5の上部には、図3のカウンタ回路CN2によるパルス数のカウント値が示される。カウンタ回路CN2は、状態信号SfbHがローレベルからハイレベルになると、カウント値をインクリメントし、一定のカウントリセット周期Trでクリア信号CLRにパルスが立ち上がるとカウント値をリセットする。 FIG. 5 is a time chart showing an example of changes in the status signals SfbH and SfbL, the clear signal CLR, the abnormal signals ScnH and ScnL, and the abnormal holding signal SfbFF. Here, the relationship among the status signal SfbH, the counter circuit CN2, the abnormality signal ScnH, and the abnormality holding signal SfbFF will be mainly described. The relationship among the status signal SfbL, the counter circuit CN1, the abnormality signal ScnL, and the abnormality holding signal SfbFF is the same as that in the example of FIG. In the upper part of FIG. 5, the count value of the number of pulses by the counter circuit CN2 of FIG. 3 is shown. The counter circuit CN2 increments the count value when the state signal SfbH changes from the low level to the high level, and resets the count value when the pulse rises to the clear signal CLR in a certain count reset cycle Tr.
 正常時には、オンオフ判定信号SonHがハイレベルになると、状態信号SfbHがハイレベルになる。一方、異常発生時には、状態信号SfbHに異常パルス信号Sfpが挿入されるので、状態信号SfbHに複数のパルスが連続的に立ち上がる。上記のように、カウントリセット周期Trは異常パルス信号Sfpのパルス周期Tfよりも大きく設定される。これにより、異常の発生時に、カウンタ回路CN2が異常パルス信号Sfpの少なくとも1つのパルスをカウントする。また、パルス周期Tfはパルス幅変調のキャリア周期Tcよりも小さく設定される。この場合、時間の経過に伴って異常の発生時にカウントされる異常パルス信号Sfpのパルス数が、正常時にカウントされるオンオフ判定信号SonHのパルス数よりも大きくなる。本実施の形態では、正常時におけるカウント値と異常発生時におけるカウント値との差異を利用して、異常の有無が判定される。 In the normal state, when the on / off determination signal SonH becomes high level, the state signal SfbH becomes high level. On the other hand, when an abnormality occurs, the abnormal pulse signal Sfp is inserted into the state signal SfbH, so that a plurality of pulses rise continuously in the state signal SfbH. As described above, the count reset period Tr is set larger than the pulse period Tf of the abnormal pulse signal Sfp. Thus, when an abnormality occurs, the counter circuit CN2 counts at least one pulse of the abnormal pulse signal Sfp. The pulse period Tf is set smaller than the carrier period Tc of pulse width modulation. In this case, with the passage of time, the number of pulses of the abnormal pulse signal Sfp counted when an abnormality occurs becomes larger than the number of pulses of the on / off determination signal SonH counted when normal. In the present embodiment, the presence / absence of an abnormality is determined using the difference between the count value at the normal time and the count value at the time of occurrence of the abnormality.
 図5の例では、正常時にカウントリセット周期Tr内で状態信号SfbHにパルスが立ち上がる回数が多くとも1回となるように、カウントリセット周期Trが設定される。したがって、正常時におけるカウント値の上限は1である。一方、異常発生時には、異常パルス信号Sfpの挿入によって状態信号SfbLに複数のパルスが連続的に立ち上がるため、カウント値は時間の経過に伴って2以上となる。すなわち、カウント値が2以上となった場合には、異常が発生したことを識別できる。そこで、カウンタ回路CN2は、カウント値が2以上の所定値に達すると、異常信号ScnHにパルスPAを立ち上げる。図5の例では、カウンタ回路CN2は3ビットカウンタであり、カウント値が3に達すると、異常信号ScnHにパルスPAを立ち上げる。パルスPAが立ち上がると、異常保持信号SfbFFがハイレベルになる。その後、異常保持信号SfbFFはハイレベルに維持される。このようにして、正常時の状態信号SfbH,SfbLと、異常発生時の状態信号SfbH,SfbLとを正確に区別することができる。したがって、正常時の状態信号SfbH,SfbL(オンオフ判定信号SonH,SonL)に基づいて、デッドタイムを適切に短縮することができ、かつ異常発生時の状態信号SfbH,SfbL(異常パルス信号Sfp)に基づいて、システム全体の二次保護を適切に行うことができる。 In the example of FIG. 5, the count reset cycle Tr is set so that the number of times the pulse rises in the state signal SfbH within the count reset cycle Tr at normal time is at most one. Therefore, the upper limit of the count value at normal time is 1. On the other hand, when an abnormality occurs, a plurality of pulses continuously rise in the state signal SfbL by inserting the abnormal pulse signal Sfp, so that the count value becomes 2 or more as time passes. That is, when the count value is 2 or more, it can be identified that an abnormality has occurred. Therefore, the counter circuit CN2 raises the pulse PA to the abnormal signal ScnH when the count value reaches a predetermined value of 2 or more. In the example of FIG. 5, the counter circuit CN2 is a 3-bit counter, and when the count value reaches 3, the pulse PA is raised to the abnormal signal ScnH. When the pulse PA rises, the abnormality holding signal SfbFF becomes high level. Thereafter, the abnormality holding signal SfbFF is maintained at a high level. In this way, the state signals SfbH and SfbL at the normal time can be accurately distinguished from the state signals SfbH and SfbL at the time of occurrence of the abnormality. Therefore, the dead time can be appropriately shortened based on the normal state signals SfbH and SfbL (on / off determination signals SonH and SonL), and the abnormal state signal SfbH and SfbL (abnormal pulse signal Sfp) can be obtained. Based on this, secondary protection of the entire system can be appropriately performed.
 図4の例のように、アーム短絡として、スイッチング素子M2のゲートの故障によってゲート・ソース間電圧VgsLが反転した場合を考える。この場合、故障したスイッチング素子M2をオフすることはできない。本例では、先にゲートがオンしているスイッチング素子側の異常検出部、すなわち故障が生じていないスイッチング素子M1側の異常検出部24Hによって異常が検出される。そのため、異常検出部24Hからの異常検出信号SfaHに応答して、故障が生じていないスイッチング素子M1がオフされる。これにより、短絡の検出に応答してスイッチング素子M1を安全にソフト遮断することができる。 Suppose that the gate-source voltage VgsL is inverted due to a failure of the gate of the switching element M2 as an arm short circuit as in the example of FIG. In this case, the failed switching element M2 cannot be turned off. In this example, the abnormality is detected by the abnormality detecting unit on the side of the switching element whose gate is turned on first, that is, the abnormality detecting unit 24H on the side of the switching element M1 in which no failure has occurred. Therefore, in response to the abnormality detection signal SfaH from the abnormality detection unit 24H, the switching element M1 in which no failure has occurred is turned off. Thereby, the switching element M1 can be safely soft-blocked in response to detection of a short circuit.
 ただし、アーム短絡の発生時にゲート駆動部22Hがスイッチング素子M1をオフする場合として、異常検出信号SfaHに応答してゲート駆動部22Hがスイッチング素子M1をオフする場合と、オンオフ指令信号SgdHに応答してゲート駆動部22Hがスイッチング素子M1をオフする場合とがある。具体的には、異常検出部24Hが異常を検出すると、異常検出部24Hからの異常検出信号SfaHがハイレベルになる。それに応答して、ゲート駆動部22Hがスイッチング素子M1をオフする。以下、異常検出信号に応答してスイッチング素子をオフすることを検出オフ動作と呼ぶ。一方、スイッチング素子M1がオンしているときにスイッチング素子M2がオンした場合、デッドタイム生成部12Hから出力されるオンオフ指令信号SctlHがローレベルになる。それにより、絶縁通信部20Hからゲート駆動部22Hに与えられるオンオフ指令信号SgdHがローレベルになり、それに応答してゲート駆動部22Hがスイッチング素子M1をオフする。以下、オンオフ指令信号に応答してスイッチング素子をオフすることを指令オフ動作と呼ぶ。 However, as a case where the gate drive unit 22H turns off the switching element M1 when an arm short-circuit occurs, a case where the gate drive unit 22H turns off the switching element M1 in response to the abnormality detection signal SfaH and a response to the on / off command signal SgdH. In some cases, the gate driver 22H turns off the switching element M1. Specifically, when the abnormality detection unit 24H detects an abnormality, the abnormality detection signal SfaH from the abnormality detection unit 24H becomes a high level. In response to this, the gate driver 22H turns off the switching element M1. Hereinafter, turning off the switching element in response to the abnormality detection signal is referred to as a detection off operation. On the other hand, when the switching element M2 is turned on while the switching element M1 is turned on, the on / off command signal SctlH output from the dead time generation unit 12H becomes a low level. As a result, the on / off command signal SgdH given from the insulating communication unit 20H to the gate drive unit 22H becomes low level, and in response thereto, the gate drive unit 22H turns off the switching element M1. Hereinafter, turning off the switching element in response to the on / off command signal is referred to as a command-off operation.
 ローレベルのオンオフ指令信号SgdHがゲート駆動部22Hのバッファ回路BF1(図2)に到達するよりも前に、ハイレベルの異常検出信号SfaHがゲート駆動部22Hのバッファ回路BF1に到達すると、ゲート駆動部22Hによる検出オフ動作が行われる。逆に、ハイレベルの異常検出信号SfaHがゲート駆動部22Hのバッファ回路BF1に到達するよりも前に、ローレベルのオンオフ指令信号SgdHがゲート駆動部22Hのバッファ回路BF1に到達すると、ゲート駆動部22Hによる指令オフ動作が行われる。ゲート駆動部22Hが検出オフ動作を行うと、スイッチング素子M1がソフト遮断される。一方、ゲート駆動部22Hが指令オフ動作を行うと、スイッチング素子M1がハード遮断される可能性がある。 When the high-level abnormality detection signal SfaH reaches the buffer circuit BF1 of the gate drive unit 22H before the low-level on / off command signal SgdH reaches the buffer circuit BF1 (FIG. 2) of the gate drive unit 22H, gate drive is performed. Detection off operation by the part 22H is performed. Conversely, when the low-level on / off command signal SgdH reaches the buffer circuit BF1 of the gate driver 22H before the high-level abnormality detection signal SfaH reaches the buffer circuit BF1 of the gate driver 22H, the gate driver The command off operation by 22H is performed. When the gate driver 22H performs the detection off operation, the switching element M1 is softly shut off. On the other hand, when the gate drive unit 22H performs the command off operation, the switching element M1 may be hard-blocked.
 図6は、スイッチング素子M1がハード遮断される場合の各種信号の変化について説明するためのタイムチャートである。図6の例は、以下の点で図4の例と異なる。図6の例では、時点t15でオンオフ判定信号SonLがハイレベルになった後、時点t21でオンオフ指令信号SctlHがローレベルになる。そのため、異常検出部24Hによってアーム短絡が検出される前に、ゲート駆動部22Hの指令オフ動作によってスイッチング素子M1がオフされる。したがって、スイッチング素子M1は、ハード遮断される。また、時点t23でゲート・ソース間電圧VgsHがオフしきい値Vthoffよりも小さくなる。それにより、異常検出部24Hによってアーム短絡が検出される前に短絡が解消される。したがって、異常検出信号SfaHはローレベルに維持され、状態信号SstHに異常パルス信号Sfpは挿入されない。 FIG. 6 is a time chart for explaining changes in various signals when the switching element M1 is hard cut off. The example of FIG. 6 differs from the example of FIG. 4 in the following points. In the example of FIG. 6, after the on / off determination signal SonL becomes high level at time t15, the on / off command signal SctlH becomes low level at time t21. For this reason, the switching element M1 is turned off by the command-off operation of the gate drive unit 22H before the arm short circuit is detected by the abnormality detection unit 24H. Therefore, the switching element M1 is hard cut off. At time t23, the gate-source voltage VgsH becomes smaller than the off threshold value Vthoff. Thereby, the short circuit is eliminated before the arm short circuit is detected by the abnormality detection unit 24H. Therefore, abnormality detection signal SfaH is maintained at a low level, and abnormal pulse signal Sfp is not inserted into state signal SstH.
 図4および図6の例のような短絡は、TypeII短絡(MOSのチャネルが導通している場合)またはTypeIII短絡(ダイオードが導通している場合)と呼ばれる。これらの短絡は大電流が発生し得るので、一般的には短絡が検出されてから対象のスイッチング素子がソフト遮断されるまでの時間が十分短く設定される(例えば、特開2015-139271号公報参照)。 4 and 6 is called a Type II short circuit (when the MOS channel is conductive) or a Type III short circuit (when the diode is conductive). Since these short circuits can generate a large current, in general, the time from when the short circuit is detected until the target switching element is softly cut off is set to be sufficiently short (for example, Japanese Patent Application Laid-Open No. 2015-139271). reference).
 しかしながら、図6の例のように、検出オフ動作の前に指令オフ動作が行われ、スイッチング素子M1がハード遮断される場合がある。スイッチング素子M1がハード遮断される場合であっても、アーム短絡が発生してからハード遮断が行われるまでの時間が短いと、スイッチング素子M1に流れる電流は抑制される。そのため、スイッチング素子M1が破壊される可能性は低い。しかしながら、より信頼性を高めるためには、ハード遮断でなくソフト遮断が行われることが好ましい。 However, as in the example of FIG. 6, there is a case where the command off operation is performed before the detection off operation, and the switching element M1 is hard cut off. Even when the switching element M1 is hard interrupted, the current flowing through the switching element M1 is suppressed if the time from when the arm short circuit occurs until the hard disconnection is short is short. Therefore, the possibility that the switching element M1 is destroyed is low. However, in order to further improve the reliability, it is preferable that the soft shut-off is performed instead of the hard shut-off.
 このような課題は、デッドタイムを短縮するために一方のスイッチング素子のオンオフ状態に基づいて他方のスイッチング素子を駆動する場合に発生する新たな課題である。このような課題について、公知文献には全く記載されていない。 Such a problem is a new problem that occurs when the other switching element is driven based on the on / off state of one switching element in order to shorten the dead time. Such a problem is not described at all in the known literature.
 このような課題を解決するため、スイッチング素子M1,M2のオン判定時間(スイッチング素子M1,M2がオンしてからオンオフ判定信号SonH,SonLがハイレベルになるまでの時間)がオフ判定時間(スイッチング素子M1,M2がオフしてからオンオフ判定信号SonH,SonLがローレベルになるまでの時間)よりも長く設定されてもよい。具体的には、オンオフ判定部23H,23Lの各々において、図2に示される抵抗R11の値が抵抗R11と抵抗R12の並列値より十分に大きくなるように設定される。コンパレータCP1のプラス側入力端子の電圧が上昇する速度は、抵抗R11の値に依存する。一方、コンパレータCP1のプラス側入力端子の電圧が下降する速度は、抵抗R11と抵抗R12の並列値に依存する。従って、抵抗R11の値が大きいほど、オン判定時間が長くなり、抵抗R12の値が小さいほど、オフ判定時間が短くなる。 In order to solve such a problem, the ON determination time of the switching elements M1 and M2 (the time from when the switching elements M1 and M2 are turned ON until the ON / OFF determination signals SonH and SonL become high level) is the OFF determination time (switching) It may be set longer than the time from when the elements M1 and M2 are turned off until the on / off determination signals SonH and SonL become low level. Specifically, in each of the on / off determination units 23H and 23L, the value of the resistor R11 shown in FIG. 2 is set to be sufficiently larger than the parallel value of the resistor R11 and the resistor R12. The speed at which the voltage at the positive input terminal of the comparator CP1 rises depends on the value of the resistor R11. On the other hand, the speed at which the voltage at the positive input terminal of the comparator CP1 drops depends on the parallel value of the resistor R11 and the resistor R12. Accordingly, the larger the value of the resistor R11, the longer the ON determination time, and the smaller the value of the resistor R12, the shorter the OFF determination time.
 図7は、オン判定時間が比較的長く設定された場合の種々の信号の変化について説明するためのタイムチャートである。図7の例は、以下の点で図4の例と異なる。図7の例では、オン判定時間が比較的長く設定されているので、時点t15でスイッチング素子M2のゲート・ソース間電圧VgsLがオンしきい値Vthonより大きくなってから一定時間が経過した後の時点t15aで、オンオフ判定信号SonLがハイレベルになる。時点t15から時点t15aまでの時間がオン判定時間に相当する。この場合、指令オフ動作が行われるよりも前の時点t16で、異常検出部24Hがアーム短絡を検出し、異常検出信号SfaHがハイレベルになる。それに応答して、ゲート駆動部22Hによるスイッチング素子M1のソフト遮断が開始される。これにより、スイッチング素子M1がハード遮断でなくソフト遮断によりオフされるので、さらなる信頼性の向上が実現される。 FIG. 7 is a time chart for explaining changes in various signals when the ON determination time is set to be relatively long. The example of FIG. 7 differs from the example of FIG. 4 in the following points. In the example of FIG. 7, since the ON determination time is set to be relatively long, after a certain time has elapsed since the gate-source voltage VgsL of the switching element M2 becomes larger than the ON threshold value Vthon at time t15. At time t15a, the on / off determination signal SonL becomes high level. The time from time t15 to time t15a corresponds to the on determination time. In this case, at time t16 before the command-off operation is performed, the abnormality detection unit 24H detects an arm short circuit, and the abnormality detection signal SfaH becomes high level. In response to this, the soft shut-off of the switching element M1 by the gate driver 22H is started. Thereby, since the switching element M1 is turned off not by hard interruption but by soft interruption, further improvement in reliability is realized.
 オン判定時間は、例えば、異常検出部24H,24Lがアーム短絡の検出に要する時間よりも長く設定される。ただし、オンオフ判定信号SonH,SonLが出力されてからオンオフ指令信号SgdH,SgdLによってスイッチング素子M1,M2がオフされるまでの間には、絶縁通信部20H,20L等で信号の遅延が生じる。そのため、オン判定時間と、絶縁通信部20H、20L等で発生する遅延時間との総和が、アーム短絡の検出に要する時間よりも大きければよい。一方、デッドタイムの短縮のため、オフ判定時間は、オン判定時間に比べて十分に短く設定されることが好ましい。 The ON determination time is set longer than the time required for the abnormality detection units 24H and 24L to detect an arm short circuit, for example. However, between the time when the on / off determination signals SonH and SonL are output and before the switching elements M1 and M2 are turned off by the on / off command signals SgdH and SgdL, a signal delay occurs in the insulating communication units 20H and 20L. Therefore, it is only necessary that the sum of the ON determination time and the delay time generated in the insulated communication units 20H and 20L is larger than the time required to detect the arm short circuit. On the other hand, in order to shorten the dead time, the off determination time is preferably set sufficiently shorter than the on determination time.
 スイッチング素子M1,M2の異常として、アーム短絡に代えて、温度異常、過電圧異常、過電流、故障または特性劣化等が検出されてもよい。スイッチング素子M1,M2の温度異常、過電圧異常、過電流、故障および特性劣化は、公知の検出方法によって検出することができる。 As an abnormality of the switching elements M1 and M2, a temperature abnormality, an overvoltage abnormality, an overcurrent, a failure, a characteristic deterioration, or the like may be detected instead of the arm short circuit. The temperature abnormality, overvoltage abnormality, overcurrent, failure, and characteristic deterioration of the switching elements M1 and M2 can be detected by a known detection method.
 温度上昇または特性劣化が進行する時定数は例えば数ms以上であり、デッドタイムの時定数は例えば数百ns~数μsであるので、温度上昇または特性劣化が進行する時定数は、デッドタイムの時定数に比べて十分に大きい。そのため、制御部10に要求される温度異常または特性劣化の検出のための時定数は、デッドタイムの時定数よりも十分に大きい。したがって、制御部10は、デッドタイムを適切に確保しつつ時間的余裕をもって温度上昇または特性劣化からシステムを保護することができる。一方、短絡、過電圧、過電流または故障といった異常に対しては、上記のように、ゲート駆動部22H,22Lによって一次保護を行うことにより、制御部10は、デッドタイムを適切に確保しつつ時間的余裕をもってシステム全体の二次保護を行うことができる。 The time constant at which the temperature rise or characteristic deterioration proceeds is, for example, several ms or more, and the time constant of the dead time is, for example, several hundred ns to several μs. Large enough compared to the time constant. Therefore, the time constant for detecting the temperature abnormality or characteristic deterioration required for the control unit 10 is sufficiently larger than the time constant of the dead time. Therefore, the control unit 10 can protect the system from a temperature rise or characteristic deterioration with a time margin while appropriately securing a dead time. On the other hand, with respect to abnormalities such as short circuit, overvoltage, overcurrent, or failure, as described above, by performing primary protection by the gate drive units 22H and 22L, the control unit 10 can ensure time while appropriately securing the dead time. Secondary protection of the entire system can be performed with sufficient margin.
 以上説明したように、実施の形態1に係る半導体駆動装置1においては、オンオフ判定信号SonH,SonLがそれぞれ絶縁通信部20H,20Lの専用のチャンネルを介して伝送されるのではなく、オンオフ判定信号SonH,SonLおよび異常検出信号SfaH,SfaLに基づいて状態信号SstH,SstLが生成され、その状態信号SstH,SstLがそれぞれ絶縁通信部20H,20Lの1つのチャンネルを介して伝送される。これにより、絶縁通信部20H,20Lに新たなチャンネルを設けることなく、制御部10にスイッチング素子M1,M2のオンオフ状態を伝達することができる。したがって、半導体駆動装置1の大型化および高コスト化を抑制しつつデッドタイムを適切に短縮することができる。 As described above, in the semiconductor drive device 1 according to the first embodiment, the on / off determination signals SonH and SonL are not transmitted via the dedicated channels of the insulated communication units 20H and 20L, respectively, but are turned on / off determination signals. State signals SstH and SstL are generated based on the SonH and SonL and the abnormality detection signals SfaH and SfaL, and the state signals SstH and SstL are transmitted through one channel of the insulated communication units 20H and 20L, respectively. Thereby, the ON / OFF state of the switching elements M1 and M2 can be transmitted to the control unit 10 without providing a new channel in the insulated communication units 20H and 20L. Therefore, the dead time can be appropriately shortened while suppressing an increase in size and cost of the semiconductor drive device 1.
[実施の形態2]
 本発明の実施の形態2について、実施の形態1と異なる点を説明する。図8は、実施の形態2に係る半導体駆動装置1の状態信号生成部21H、ゲート駆動部22H、オンオフ判定部23Hおよび異常検出部24Hの具体的な構成例を示す概略的な回路図である。図8のゲート駆動部22H、オンオフ判定部23Hおよび異常検出部24Hは、図2のゲート駆動部22H、オンオフ判定部23H、および異常検出部24Hと同じ構成を有する。
[Embodiment 2]
The second embodiment of the present invention will be described while referring to differences from the first embodiment. FIG. 8 is a schematic circuit diagram illustrating a specific configuration example of the state signal generation unit 21H, the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H of the semiconductor drive device 1 according to the second embodiment. . The gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H in FIG. 8 have the same configuration as the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H in FIG.
 図8の状態信号生成部21Hは、AND回路A4,A5、インバータ回路INV5,INV6およびOR回路B4を備える。異常検出部24Hからの異常検出信号SfaHが、AND回路A4の一方の入力端子に与えられるとともに、インバータ回路INV6を介してAND回路A5の一方の入力端子に与えられる。AND回路A4の他方の入力端子には、オンオフ指令信号SgdHがインバータ回路INV6を介して与えられる。AND回路A4の出力信号およびAND回路A5の出力信号が、OR回路B4の一方および他方の入力端子に与えられる。この状態信号生成部21Hにおいては、異常検出信号SfaHがローレベルである場合、オンオフ判定信号SonHが状態信号SstHとして出力され、異常検出信号SfaHがハイレベルである場合、オンオフ指令信号SgdHの反転信号が状態信号SstHとして出力される。なお、状態信号生成部21Lは、図8の状態信号生成部21Hと同様の構成および機能を有する。 8 includes AND circuits A4 and A5, inverter circuits INV5 and INV6, and an OR circuit B4. The abnormality detection signal SfaH from the abnormality detection unit 24H is supplied to one input terminal of the AND circuit A4 and is also supplied to one input terminal of the AND circuit A5 via the inverter circuit INV6. An ON / OFF command signal SgdH is applied to the other input terminal of the AND circuit A4 via the inverter circuit INV6. The output signal of AND circuit A4 and the output signal of AND circuit A5 are applied to one and the other input terminals of OR circuit B4. In the state signal generation unit 21H, when the abnormality detection signal SfaH is at the low level, the on / off determination signal SonH is output as the state signal SstH, and when the abnormality detection signal SfaH is at the high level, the inverted signal of the on / off command signal SgdH Is output as the status signal SstH. The state signal generation unit 21L has the same configuration and function as the state signal generation unit 21H of FIG.
 実施の形態2に係る半導体駆動装置1の制御部10は、絶縁通信部20H,20Lによって伝送される状態信号SfbH,SfbLと指令信号Scom,Scom’との差異に基づいて、異常の有無を判定する。図9は、実施の形態2に係る半導体駆動装置1の制御部10の具体的な構成例を示す概略的な回路図である。図9のデッドタイム生成部12H,12Lは、図3のデッドタイム生成部12H,12Lと同じ構成を有する。図9のオン指令生成部11は、カウンタ回路CN1,CN2およびOR回路B3の代わりに、EXOR回路Bx1,Bx2、ローパスフィルタLPF1,LPF2およびOR回路B5を備える。EXOR回路Bx1の一方の入力端子には、状態信号SfbLが与えられる。EXOR回路Bx1の他方の入力端子には、指令信号Scomが与えられる。EXOR回路Bx2の一方の入力端子には、状態信号SfbHが与えられる。EXOR回路Bx2の他方の入力端子には、指令信号Scom’が入力される。 The control unit 10 of the semiconductor drive device 1 according to the second embodiment determines whether there is an abnormality based on the difference between the state signals SfbH, SfbL and the command signals Scom, Scom ′ transmitted by the insulated communication units 20H, 20L. To do. FIG. 9 is a schematic circuit diagram illustrating a specific configuration example of the control unit 10 of the semiconductor drive device 1 according to the second embodiment. The dead time generation units 12H and 12L in FIG. 9 have the same configuration as the dead time generation units 12H and 12L in FIG. 9 includes EXOR circuits Bx1 and Bx2, low-pass filters LPF1 and LPF2, and an OR circuit B5 instead of the counter circuits CN1 and CN2 and the OR circuit B3. The state signal SfbL is supplied to one input terminal of the EXOR circuit Bx1. A command signal Scom is given to the other input terminal of the EXOR circuit Bx1. The state signal SfbH is given to one input terminal of the EXOR circuit Bx2. The command signal Scom 'is input to the other input terminal of the EXOR circuit Bx2.
 EXOR回路Bx1は、差異判定信号SxoLを出力する。状態信号SfbLと指令信号Scomとの間で論理(信号レベル)が異なると、差異判定信号SxoLがハイレベルとなる。EXOR回路Bx2は、差異判定信号SxoHを出力する。状態信号SfbHと指令信号Scom’との間で論理(信号レベル)が異なると、差異判定信号SxoHがハイレベルとなる。信号保持回路FF1から出力される異常保持信号SfbFFがローレベルである場合、指令信号Scomはオン信号SinLと等しく、指令信号Scom’はオン信号SinHと等しい。異常が発生していない場合、大部分の期間において、状態信号SfbLと指令信号Scomとの間の間で論理は等しく、状態信号SfbHと指令信号Scom’との間で論理は等しい。ただし、信号の伝送およびスイッチング素子M1,M2のオンオフ動作による遅延に起因して、状態信号SfbLと指令信号Scomとの間あるいは状態信号SfbHと指令信号Scom’との間で一時的に論理が異なることがある。その場合、差異判定信号SxoL,SxoHが一時的にハイレベルになる。以下、信号の伝送およびスイッチング素子M1,M2のオンオフ動作による遅延時間を総称して動作遅延時間と呼ぶ。また、デッドタイムにおいては、状態信号SfbLと指令信号Scomとの間あるいは状態信号SfbHと指令信号Scom’との間で論理が異なるため、差異判定信号SxoLまたは差異判定信号SxoHが一時的にハイレベルになる。 The EXOR circuit Bx1 outputs a difference determination signal SxoL. If the logic (signal level) is different between the state signal SfbL and the command signal Scom, the difference determination signal SxoL becomes high level. The EXOR circuit Bx2 outputs a difference determination signal SxoH. If the logic (signal level) differs between the state signal SfbH and the command signal Scom ', the difference determination signal SxoH becomes high level. When the abnormality holding signal SfbFF output from the signal holding circuit FF1 is at a low level, the command signal Scom is equal to the on signal SinL, and the command signal Scom 'is equal to the on signal SinH. If no abnormality has occurred, the logic is the same between the state signal SfbL and the command signal Scom and the logic is the same between the state signal SfbH and the command signal Scom 'for most of the period. However, the logic is temporarily different between the state signal SfbL and the command signal Scom or between the state signal SfbH and the command signal Scom ′ due to the delay due to the signal transmission and the on / off operation of the switching elements M1 and M2. Sometimes. In that case, the difference determination signals SxoL and SxoH temporarily become high level. Hereinafter, delay times due to signal transmission and on / off operations of the switching elements M1 and M2 are collectively referred to as operation delay times. Further, in the dead time, since the logic is different between the state signal SfbL and the command signal Scom or between the state signal SfbH and the command signal Scom ′, the difference determination signal SxoL or the difference determination signal SxoH is temporarily at a high level. become.
 EXOR回路Bx1から出力される差異判定信号SxoLは、ローパスフィルタLPF1に与えられ、EXOR回路Bx2から出力される差異判定信号SxoHは、ローパスフィルタLPF2に与えられる。ローパスフィルタLPF1は、差異判定信号SxoLから高周波数成分を除去することにより異常信号ScnLを生成する。ローパスフィルタLPF2は、差異判定信号SxoHから高周波数成分を除去することにより異常信号ScnHを生成する。この場合、差異判定信号SxoLがローパスフィルタLPF1の時定数よりも長くハイレベルに保持された場合に、異常信号ScnLがハイレベルになる。また、差異判定信号SxoHがローパスフィルタLPF2の時定数よりも長くハイレベルに保持された場合に、異常信号ScnHがハイレベルになる。ローパスフィルタLPF1,LPF2の時定数は、例えば、一回のオン動作または一回のオフ動作に必要な動作遅延時間と一回のデッドタイムとの合計時間より長く設定される。また、ローパスフィルタLPF1,LPF2の時定数が、キャリア周期Tcよりも長く設定されてもよい。 The difference determination signal SxoL output from the EXOR circuit Bx1 is applied to the low-pass filter LPF1, and the difference determination signal SxoH output from the EXOR circuit Bx2 is applied to the low-pass filter LPF2. The low-pass filter LPF1 generates an abnormal signal ScnL by removing high frequency components from the difference determination signal SxoL. The low-pass filter LPF2 generates an abnormal signal ScnH by removing high frequency components from the difference determination signal SxoH. In this case, when the difference determination signal SxoL is held at a high level for a time longer than the time constant of the low-pass filter LPF1, the abnormal signal ScnL becomes a high level. Further, when the difference determination signal SxoH is held at the high level for a time longer than the time constant of the low-pass filter LPF2, the abnormal signal ScnH becomes the high level. The time constants of the low-pass filters LPF1 and LPF2 are set longer than, for example, a total time of an operation delay time required for one on operation or one off operation and one dead time. Further, the time constants of the low-pass filters LPF1 and LPF2 may be set longer than the carrier cycle Tc.
 異常信号ScnLは、OR回路B5の一方の入力端子に与えられ、異常信号ScnHは、OR回路B5の他方の入力端子に与えられる。OR回路B5の出力信号は信号保持回路FF1に与えられる。異常信号ScnH,ScnLのいずれか一方がハイレベルになると、信号保持回路FF1から出力される異常保持信号SfbFFがハイレベルになる。 The abnormal signal ScnL is supplied to one input terminal of the OR circuit B5, and the abnormal signal ScnH is supplied to the other input terminal of the OR circuit B5. The output signal of the OR circuit B5 is given to the signal holding circuit FF1. When one of the abnormal signals ScnH and ScnL becomes high level, the abnormal holding signal SfbFF output from the signal holding circuit FF1 becomes high level.
 図10は、実施の形態2における各種信号の変化およびスイッチング素子M1,M2のゲート・ソース間電圧の変化の一例を示すタイムチャートである。図10の例について、図4の例と異なる点を説明する。図10の例では、時点t31で異常が発生し、異常検出信号SfaHがハイレベルになる。これにより、状態信号SstHがオンオフ指令信号SgdHの反転信号となる。このとき、オンオフ指令信号SgdHはハイレベルであるので、状態信号SstHはローレベルになる。時点t32において、状態信号SstHより僅かに遅延して状態信号SfbHがローレベルになる。 FIG. 10 is a time chart showing an example of changes in various signals and changes in the gate-source voltages of the switching elements M1 and M2 in the second embodiment. The difference between the example of FIG. 10 and the example of FIG. 4 will be described. In the example of FIG. 10, an abnormality occurs at time t31, and the abnormality detection signal SfaH becomes high level. As a result, the state signal SstH becomes an inverted signal of the on / off command signal SgdH. At this time, since the on / off command signal SgdH is at a high level, the state signal SstH is at a low level. At time t32, the state signal SfbH becomes a low level with a slight delay from the state signal SstH.
 図11は、指令信号Scom’,Scom、オンオフ指令信号SctlH,SctlL、状態信号SfbH,SfbL、差異判定信号SxoH,SxoLおよび異常信号ScnH,ScnLの変化の一例を示すタイムチャートである。時点t1から時点t4までの期間には、指令信号Scom’がローレベルであるのに対し、状態信号SfbHがハイレベルである。そのため、差異判定信号SxoHがハイレベルになる。また、時点t1から時点t7までの期間には、指令信号Scomがハイレベルであるのに対し、状態信号SfbLがローレベルである。そのため、差異判定信号SxoLがハイレベルになる。同様に、時点t8から時点t11までの期間には、指令信号Scomがローレベルであるのに対し、状態信号SfbLがハイレベルである。そのため、差異判定信号SxoLがハイレベルになる。また、時点t8から時点t13まで期間には、指令信号Scom’がハイレベルであるのに対し、状態信号SfbHがローレベルである。そのため、差異判定信号SxoHがハイレベルになる。 FIG. 11 is a time chart showing an example of changes in the command signals Scom 'and Scom, the on / off command signals SctlH and SctlL, the status signals SfbH and SfbL, the difference determination signals SxoH and SxoL, and the abnormal signals ScnH and ScnL. In the period from the time point t1 to the time point t4, the command signal Scom 'is at the low level, while the state signal SfbH is at the high level. Therefore, the difference determination signal SxoH becomes a high level. Further, in the period from the time point t1 to the time point t7, the command signal Scom is at a high level, whereas the state signal SfbL is at a low level. Therefore, the difference determination signal SxoL becomes high level. Similarly, during a period from time t8 to time t11, the command signal Scom is at a low level, while the state signal SfbL is at a high level. Therefore, the difference determination signal SxoL becomes high level. Further, during the period from time t8 to time t13, the command signal Scom 'is at the high level, while the state signal SfbH is at the low level. Therefore, the difference determination signal SxoH becomes a high level.
 上記のように、異常の発生によって時点t32で状態信号SfbHがローレベルになる。これにより、指令信号Scom’と状態信号SfbHとの間で論理が不一致となり、差異判定信号SxoHがハイレベルになる。時点t32からローパスフィルタLPF1の時定数Tlpが経過した時点t33において、異常信号ScnHがハイレベルになる。これにより、図9の信号保持回路FF1から出力される異常保持信号SfbFFがハイレベルになり、オン信号SinH,SinLがローレベルになる。このようにして、正常時の状態信号SfbH,SfbLと異常発生時の状態信号SfbH,SfbLとを正確に区別することができる。したがって、正常時の状態信号SfbH,SfbL(オンオフ判定信号SonH,SonL)に基づいて、デッドタイムを適切に短縮することができ、かつ異常発生時の状態信号SfbH,SfbLに基づいて、システム全体の二次保護を適切に行うことができる。 As described above, the state signal SfbH becomes low level at time t32 due to the occurrence of an abnormality. As a result, the logic does not match between the command signal Scom 'and the state signal SfbH, and the difference determination signal SxoH becomes high level. At time t33 when the time constant Tlp of the low-pass filter LPF1 has elapsed from time t32, the abnormal signal ScnH becomes high level. As a result, the abnormality holding signal SfbFF output from the signal holding circuit FF1 of FIG. 9 becomes high level, and the on signals SinH and SinL become low level. In this way, the state signals SfbH and SfbL at the normal time can be accurately distinguished from the state signals SfbH and SfbL at the time of occurrence of the abnormality. Therefore, the dead time can be appropriately shortened based on the normal state signals SfbH and SfbL (on / off determination signals SonH and SonL), and the entire system based on the abnormal state signal SfbH and SfbL. Secondary protection can be performed appropriately.
[実施の形態3]
 本発明の実施の形態3について、実施の形態1と異なる点を説明する。図12は、実施の形態3に係る半導体駆動装置1の基本構成を示すブロック図である。図12の例では、スイッチング素子M1,M2に加えて、スイッチング素子M1s,M2sが設けられる。本例において、スイッチング素子M1s,M2sは、それぞれMOSFETである。スイッチング素子M1sは、スイッチング素子M1とドレイン端子およびゲート端子を共有し、スイッチング素子M2sは、スイッチング素子M2とドレイン端子およびゲート端子を供給する。本例では、スイッチング素子M1s,M2sによってスイッチング素子M1、M2の異常として過電流が検出される。
[Embodiment 3]
The third embodiment of the present invention will be described while referring to differences from the first embodiment. FIG. 12 is a block diagram showing a basic configuration of the semiconductor drive device 1 according to the third embodiment. In the example of FIG. 12, switching elements M1s and M2s are provided in addition to the switching elements M1 and M2. In this example, the switching elements M1s and M2s are MOSFETs. The switching element M1s shares the drain terminal and the gate terminal with the switching element M1, and the switching element M2s supplies the switching element M2, the drain terminal, and the gate terminal. In this example, overcurrent is detected as an abnormality of the switching elements M1 and M2 by the switching elements M1s and M2s.
 図13は、実施の形態3における状態信号生成部21H、ゲート駆動部22H、オンオフ判定部23H、および異常検出部24Hの具体的な構成例を示す概略的な回路図である。図13の状態信号生成部21H、ゲート駆動部22Hおよびオンオフ判定部23Hは、図2の状態信号生成部21H、ゲート駆動部22Hおよびオンオフ判定部23Hと同じ構成を有する。異常検出部24Lは、図13の異常検出部24Hと同じ構成を有する。図13の異常検出部24Hは、図2の抵抗R16~R18、ダイオードD2,D3、トランジスタTr5および定電流源Idc1の代わりに、抵抗R21,R22を備える。コンパレータCP2のプラス側入力端子は、抵抗R22を介してスイッチング素子M2sのソース端子SoureHsに接続される。この異常検出部24Hにおいては、スイッチング素子M1sの電流が抵抗R21により電圧に変換され、コンパレータCP2の出力信号がハイレベルになることにより、過電流が検出される。 FIG. 13 is a schematic circuit diagram illustrating a specific configuration example of the state signal generation unit 21H, the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H in the third embodiment. The state signal generation unit 21H, the gate drive unit 22H, and the on / off determination unit 23H in FIG. 13 have the same configuration as the state signal generation unit 21H, the gate drive unit 22H, and the on / off determination unit 23H in FIG. The abnormality detection unit 24L has the same configuration as the abnormality detection unit 24H of FIG. The abnormality detection unit 24H in FIG. 13 includes resistors R21 and R22 instead of the resistors R16 to R18, the diodes D2 and D3, the transistor Tr5, and the constant current source Idc1 in FIG. The positive side input terminal of the comparator CP2 is connected to the source terminal SourceHs of the switching element M2s via the resistor R22. In the abnormality detection unit 24H, the current of the switching element M1s is converted into a voltage by the resistor R21, and the output signal of the comparator CP2 becomes high level, whereby an overcurrent is detected.
 実施の形態3に係る半導体駆動装置1においても、上記実施の形態1と同様に、絶縁通信部20H,20Lに新たなチャンネルを設けることなく、制御部10にスイッチング素子M1,M2のオンオフ状態を伝達することができる。したがって、半導体駆動装置1の大型化および高コスト化を抑制しつつデッドタイムを適切に短縮することができる。 Also in the semiconductor drive device 1 according to the third embodiment, similarly to the first embodiment, the switching elements M1 and M2 are turned on and off in the control unit 10 without providing new channels in the insulated communication units 20H and 20L. Can communicate. Therefore, the dead time can be appropriately shortened while suppressing an increase in size and cost of the semiconductor drive device 1.
[実施の形態4]
 本発明の実施の形態4について、実施の形態1と異なる点を説明する。図14は、実施の形態4に係る半導体駆動装置1の基本構成を示すブロック図である。図14の例では、スイッチング素子M1、M2の寄生インダクタンスに基づいてスイッチング素子M1,M2の異常として過電流が検出される。図14においては、スイッチング素子M1の寄生インダクタンスを有するインダクタL1およびスイッチング素子M2の寄生インダクタンスを有するインダクタL2が模式的に示される。
[Embodiment 4]
The difference between the fourth embodiment of the present invention and the first embodiment will be described. FIG. 14 is a block diagram showing a basic configuration of the semiconductor drive device 1 according to the fourth embodiment. In the example of FIG. 14, an overcurrent is detected as an abnormality of the switching elements M1 and M2 based on the parasitic inductances of the switching elements M1 and M2. In FIG. 14, an inductor L1 having a parasitic inductance of the switching element M1 and an inductor L2 having a parasitic inductance of the switching element M2 are schematically shown.
 図15は、実施の形態4における状態信号生成部21H、ゲート駆動部22H、オンオフ判定部23H、および異常検出部24Hの具体的な構成例を示す概略的な回路図である。図15の状態信号生成部21H、ゲート駆動部22Hおよびオンオフ判定部23Hは、図2の状態信号生成部21H、ゲート駆動部22Hおよびオンオフ判定部23Hと同じ構成を有する。異常検出部24Lは、図15の異常検出部24Hと同じ構成を有する。 FIG. 15 is a schematic circuit diagram illustrating a specific configuration example of the state signal generation unit 21H, the gate drive unit 22H, the on / off determination unit 23H, and the abnormality detection unit 24H in the fourth embodiment. The state signal generation unit 21H, the gate drive unit 22H, and the on / off determination unit 23H in FIG. 15 have the same configuration as the state signal generation unit 21H, the gate drive unit 22H, and the on / off determination unit 23H in FIG. The abnormality detection unit 24L has the same configuration as the abnormality detection unit 24H in FIG.
 図15の異常検出部24Hは、図2の抵抗R16~R18、ダイオードD2,D3、トランジスタTr5および定電流源Idc1の代わりに、オペアンプOP1、コンデンサC6および抵抗R25,R26,R27を備える。オペアンプOP1のマイナス側入力端子は、抵抗R25を介してソース端子SourceHtに接続される。オペアンプOP1の出力端子は、コンパレータCP2のプラス側入力端子に接続される。この場合、図14のインダクタL1に発生する電圧がオペアンプOP1で積分され、コンパレータCP2の出力信号がハイレベルになることによって過電流が検出される。 15 includes an operational amplifier OP1, a capacitor C6, and resistors R25, R26, and R27 instead of the resistors R16 to R18, the diodes D2 and D3, the transistor Tr5, and the constant current source Idc1 in FIG. The negative input terminal of the operational amplifier OP1 is connected to the source terminal SourceHt via the resistor R25. The output terminal of the operational amplifier OP1 is connected to the positive side input terminal of the comparator CP2. In this case, the voltage generated in the inductor L1 in FIG. 14 is integrated by the operational amplifier OP1, and the overcurrent is detected by the output signal of the comparator CP2 becoming high level.
 実施の形態4に係る半導体駆動装置1においても、上記実施の形態1と同様に、絶縁通信部20H,20Lに新たなチャンネルを設けることなく、制御部10にスイッチング素子M1,M2のオンオフ状態を伝達することができる。したがって、半導体駆動装置1の大型化および高コスト化を抑制しつつデッドタイムを適切に短縮することができる。 Also in the semiconductor drive device 1 according to the fourth embodiment, similarly to the first embodiment, the switching elements M1 and M2 are turned on and off in the control unit 10 without providing new channels in the insulated communication units 20H and 20L. Can communicate. Therefore, the dead time can be appropriately shortened while suppressing an increase in size and cost of the semiconductor drive device 1.
[実施の形態5]
 本発明の実施の形態5に係る電力変換装置について説明する。図16は、実施の形態5に係る電力変換装置の構成を示す回路図である。図16の電力変換装置100は、インバータ装置73および上記実施の形態1~4のいずれかに係る半導体駆動装置1を備える。インバータ装置73は、電力変換部の例であり、スイッチング素子M3~M8および出力コンデンサ82を有する。インバータ装置73は、いわゆる3相インバータである。インバータ装置73は、電力変換部の例であり、直流電源70の直流電力を3相交流電力に変換し、変換された交流電力を交流負荷であるモータ74に供給する。本例において、スイッチング素子M3~M8は、パワーMOSFET である。半導体駆動装置1は、スイッチング素子M3~M8を駆動する。
[Embodiment 5]
A power conversion apparatus according to Embodiment 5 of the present invention will be described. FIG. 16 is a circuit diagram showing a configuration of a power conversion device according to the fifth embodiment. 16 includes inverter device 73 and semiconductor drive device 1 according to any of the first to fourth embodiments. The inverter device 73 is an example of a power conversion unit, and includes switching elements M3 to M8 and an output capacitor 82. The inverter device 73 is a so-called three-phase inverter. The inverter device 73 is an example of a power conversion unit, converts the DC power of the DC power supply 70 into three-phase AC power, and supplies the converted AC power to the motor 74 that is an AC load. In this example, the switching elements M3 to M8 are power MOSFETs. The semiconductor drive device 1 drives the switching elements M3 to M8.
 この場合、実施の形態1~4のいずれかに係る半導体駆動装置1が用いられるので、半導体駆動装置1の大型化および高コスト化を抑制しつつデッドタイムを適切に短縮することができる。また、デッドタイムの短縮によってインバータ装置73の電力変換効率を向上することができる。さらに、スイッチング素子M3~M8としてワイドバンドギャップ半導体を用いたSiC-MOSFETが適用される場合には、SiCの結晶欠陥に起因する寄生ダイオードの通電劣化を抑制することができ、インバータ装置73の信頼性の向上および製品寿命の増加を実現することができる。 In this case, since the semiconductor drive device 1 according to any of the first to fourth embodiments is used, the dead time can be appropriately shortened while suppressing an increase in size and cost of the semiconductor drive device 1. Further, the power conversion efficiency of the inverter device 73 can be improved by reducing the dead time. Further, when a SiC-MOSFET using a wide band gap semiconductor is applied as the switching elements M3 to M8, it is possible to suppress the deterioration of energization of the parasitic diode due to the SiC crystal defect, and the reliability of the inverter device 73 can be suppressed. Improvement in product performance and increase in product life can be realized.
 なお、本実施の形態では、電力変換部として3相インバータが用いられるが、本発明はこれに限られるものではなく、任意の相数のインバータが用いられてもよい。また、電力変換部としてインバータ装置73の代わりに交流電力を直流電力に変換するAC-DCコンバータを含む電力変換装置に実施の形態1~4のいずれかに係る半導体駆動装置1が適用されてもよい。 In this embodiment, a three-phase inverter is used as the power conversion unit. However, the present invention is not limited to this, and an inverter having an arbitrary number of phases may be used. Further, even if the semiconductor drive device 1 according to any one of the first to fourth embodiments is applied to a power conversion device including an AC-DC converter that converts AC power into DC power instead of the inverter device 73 as a power conversion unit. Good.
[実施の形態6]
 本発明の実施の形態6に係る電力変換装置について説明する。図17は、実施の形態6に係る電力変換装置の構成を示す回路図である。図17の電力変換装置150は、昇圧コンバータ71および上記実施の形態1~4のいずれかに係る半導体駆動装置1を備える。昇圧コンバータ71は、電圧変換部の例であり、スイッチング素子M11,M12、入力コンデンサ80、出力コンデンサ82および昇圧リアクトル81を備える。本例において、スイッチング素子M11,M12は、パワーMOSFET である。
[Embodiment 6]
A power conversion apparatus according to Embodiment 6 of the present invention will be described. FIG. 17 is a circuit diagram showing a configuration of a power conversion device according to the sixth embodiment. 17 includes boost converter 71 and semiconductor drive device 1 according to any one of the first to fourth embodiments. Boost converter 71 is an example of a voltage converter, and includes switching elements M11 and M12, an input capacitor 80, an output capacitor 82, and a boost reactor 81. In this example, the switching elements M11 and M12 are power MOSFETs.
 昇圧コンバータ71は、直流電源70の電圧を昇圧して直流負荷72に電力を供給する。半導体駆動装置1は、スイッチング素子M11,M12を駆動する。 Boost converter 71 boosts the voltage of DC power supply 70 and supplies power to DC load 72. The semiconductor drive device 1 drives the switching elements M11 and M12.
 本実施の形態では、昇圧リアクトル81を小型化するために、スイッチング素子M11,M12としてワイドバンドギャップ半導体を用いた高速スイッチング素子が適用される。これにより、キャリア周期の短縮が可能となる。例えば、キャリア周期Tcが10μsとなり、オンデューティが50%となるようにスイッチング素子M11,M12が駆動される。その場合、スイッチング素子M11,M12を駆動するためのオンオフ指令信号の理想的なパルス幅は5μsとなる。しかしながら、実際にはデッドタイムを設ける必要があるので、例えば、スイッチング素子M11,M12のターンオン時およびターンオフ時のデッドタイムが0.5μsである場合、オンオフ指令信号の実効的なパルス幅は4μsに減少する。この場合、導通特性が悪い寄生ダイオードに電流が流れる時間の割合が多くなり、電力変換効率が低下する。さらに、デッドタイムの追加によって実効的な最大オンデューティが減少するため、昇圧可能な範囲が縮小する。 In the present embodiment, in order to reduce the size of the step-up reactor 81, high-speed switching elements using wide band gap semiconductors are applied as the switching elements M11 and M12. As a result, the carrier cycle can be shortened. For example, the switching elements M11 and M12 are driven so that the carrier cycle Tc is 10 μs and the on-duty is 50%. In that case, the ideal pulse width of the on / off command signal for driving the switching elements M11 and M12 is 5 μs. However, since it is actually necessary to provide a dead time, for example, when the dead times when the switching elements M11 and M12 are turned on and off are 0.5 μs, the effective pulse width of the on / off command signal is 4 μs. Decrease. In this case, the proportion of the time during which current flows through the parasitic diode with poor conduction characteristics increases, and the power conversion efficiency decreases. Furthermore, since the effective maximum on-duty is reduced by adding the dead time, the range in which the voltage can be boosted is reduced.
 これに対し、本実施形態に係る昇圧コンバータ71では、半導体駆動装置1が上記のようにしてデッドタイムを短縮することが可能であるため、電力変換効率の低下が防止され、昇圧可能な範囲が広がる。 On the other hand, in the boost converter 71 according to the present embodiment, since the semiconductor drive device 1 can reduce the dead time as described above, the power conversion efficiency is prevented from being lowered and the boostable range is increased. spread.
 本実施の形態のようにキャリア周期が短縮化された場合に適した状態信号の生成方法について説明する。実施の形態1の状態信号生成部21H,21L(図2)においては、異常発生時に、キャリア周期Tcよりも短いパルス周期を有する異常パルス信号Sfpが状態信号に挿入される。その場合、絶縁通信部20H,20Lに要求される信号帯域に制約が生じたり、あるいは制御部10に設けられるマイクロコンピュータ等の演算速度に制約が生じたりする。そこで、本実施の形態では、例えば、パルス信号発生源CLK1により出力される異常パルス信号Sfpのパルス周期がキャリア周期Tcよりも大きく設定される。 A state signal generation method suitable when the carrier period is shortened as in this embodiment will be described. In state signal generation units 21H and 21L (FIG. 2) according to the first embodiment, when an abnormality occurs, abnormal pulse signal Sfp having a pulse period shorter than carrier period Tc is inserted into the state signal. In that case, there are restrictions on the signal bands required for the insulated communication units 20H and 20L, or there are restrictions on the calculation speed of a microcomputer or the like provided in the control unit 10. Therefore, in the present embodiment, for example, the pulse period of the abnormal pulse signal Sfp output from the pulse signal generation source CLK1 is set to be larger than the carrier period Tc.
 図18は、図17の半導体駆動装置1が備える制御部10の具体的な構成例を示す概略的な回路図である。図18のデッドタイム生成部12H,12Lは、図3のデッドタイム生成部12H,12Lと同じ構成を有する。図18のオン指令生成部11は、カウンタ回路CN1,CN2およびOR回路B3のかわりに、ローパスフィルタLPF3,LPF4およびOR回路B6を備える。ローパスフィルタLPF3には、状態信号SfbLが与えられ、ローパスフィルタLPF4には、状態信号SfbHが与えられる。ローパスフィルタLPF3は、状態信号SfbLから高周波数成分を除去することによって異常信号SlpLを生成する。ローパスフィルタLPF4は、状態信号SfbHから高周波数成分を除去することによって異常信号SlpHを生成する。ローパスフィルタLPF3,LPF4の各々の時定数は、昇圧コンバータ71のキャリア周期Tcよりも大きくかつパルス信号発生源CLK1により出力される異常パルス信号Sfpのパルス幅よりも小さく設定される。 FIG. 18 is a schematic circuit diagram illustrating a specific configuration example of the control unit 10 included in the semiconductor drive device 1 of FIG. The dead time generation units 12H and 12L in FIG. 18 have the same configuration as the dead time generation units 12H and 12L in FIG. 18 includes low pass filters LPF3 and LPF4 and an OR circuit B6 instead of the counter circuits CN1 and CN2 and the OR circuit B3. A state signal SfbL is given to the low-pass filter LPF3, and a state signal SfbH is given to the low-pass filter LPF4. The low-pass filter LPF3 generates an abnormal signal SlpL by removing high frequency components from the state signal SfbL. The low-pass filter LPF4 generates the abnormal signal SlpH by removing high frequency components from the state signal SfbH. The time constants of the low-pass filters LPF3 and LPF4 are set larger than the carrier period Tc of the boost converter 71 and smaller than the pulse width of the abnormal pulse signal Sfp output from the pulse signal generation source CLK1.
 図19は、異常信号SlpH,SlpLと他の種々の信号との関係について説明するためのタイムチャートである。図19の例では、時点t41でスイッチング素子M11の異常が検出される。時点t41より前の期間には、状態信号SfbH,SfbLがスイッチング素子M1,M2のオンオフ状態を表しており、状態信号SfbH,SfbLのパルス周期がキャリア周期Tcより小さい。そのため、ローパスフィルタLPF3,LPF4から出力される異常信号SlpH、SlpLは、ローレベルに維持される。一方、時点t41で異常が検出されると、キャリア周期Tcよりも大きいパルス周期Tfを有する異常パルス信号Sfpが状態信号SfbHに挿入される。時点t42で状態信号SfbHのパルス幅がローパスフィルタLPF4の時定数を超える。これにより、ローパスフィルタLPF4から出力される異常信号SlpHがハイレベルになる。その結果、信号保持回路FF1から出力される異常保持信号SfbFFがハイレベルになり、オン信号SinH,SinLがローレベルになる。このようにして、正常時の状態信号SfbH,SfbLと異常発生時の状態信号SfbH,SfbLとを正確に区別することができる。したがって、正常時の状態信号SfbH,SfbL(オンオフ判定信号SonH,SonL)に基づいて、デッドタイムを適切に短縮することができ、かつ異常発生時の状態信号SfbH,SfbL(異常パルス信号Sfp)に基づいて、電力変換装置150全体の二次保護を適切に行うことができる。さらに、絶縁通信部20H,20Lに要求される信号帯域の制約ならびに制御部10の演算速度の制約が緩和される。 FIG. 19 is a time chart for explaining the relationship between the abnormal signals SlpH and SlpL and other various signals. In the example of FIG. 19, the abnormality of the switching element M11 is detected at time t41. In a period before time t41, the state signals SfbH and SfbL represent the on / off states of the switching elements M1 and M2, and the pulse period of the state signals SfbH and SfbL is smaller than the carrier period Tc. Therefore, the abnormal signals SlpH and SlpL output from the low-pass filters LPF3 and LPF4 are maintained at a low level. On the other hand, when an abnormality is detected at time t41, an abnormal pulse signal Sfp having a pulse period Tf larger than the carrier period Tc is inserted into the state signal SfbH. At time t42, the pulse width of the state signal SfbH exceeds the time constant of the low-pass filter LPF4. As a result, the abnormal signal SlpH output from the low-pass filter LPF4 becomes high level. As a result, the abnormality holding signal SfbFF output from the signal holding circuit FF1 becomes high level, and the on signals SinH and SinL become low level. In this way, the state signals SfbH and SfbL at the normal time can be accurately distinguished from the state signals SfbH and SfbL at the time of occurrence of the abnormality. Therefore, the dead time can be appropriately shortened based on the normal state signals SfbH and SfbL (on / off determination signals SonH and SonL), and the abnormal state signal SfbH and SfbL (abnormal pulse signal Sfp) can be obtained. Based on this, secondary protection of the entire power conversion device 150 can be appropriately performed. Furthermore, the restriction on the signal bandwidth required for the insulated communication units 20H and 20L and the restriction on the calculation speed of the control unit 10 are alleviated.
 実施の形態6に係る電力変換装置150においては、実施の形態1~4のいずれかに係る半導体駆動装置1が用いられるので、半導体駆動装置1の大型化および高コスト化を抑制しつつデッドタイムを適切に短縮することができる。また、絶縁通信部の伝送性能やマイクロコンピュータの演算性能に依存することなく、デッドタイムの短縮と異常発生時の保護機能との両立が実現される。 In power conversion device 150 according to the sixth embodiment, since semiconductor drive device 1 according to any of first to fourth embodiments is used, dead time can be reduced while suppressing an increase in size and cost of semiconductor drive device 1. Can be shortened appropriately. In addition, it is possible to achieve both a reduction in dead time and a protection function in the event of an abnormality without depending on the transmission performance of the insulated communication unit and the calculation performance of the microcomputer.
 図17の例は、電圧変換部として昇圧コンバータ71を含む電力変換装置150に半導体駆動装置1が適用された例であるが、電圧変換部として昇圧コンバータ71の代わりに降圧コンバータまたは昇降圧コンバータを含む電力変換装置に実施の形態1~4のいずれかに係る半導体駆動装置1が適用されてもよい。 The example of FIG. 17 is an example in which the semiconductor drive device 1 is applied to a power converter 150 including a boost converter 71 as a voltage converter, but a step-down converter or a buck-boost converter is used instead of the boost converter 71 as a voltage converter. The semiconductor drive device 1 according to any of Embodiments 1 to 4 may be applied to the power conversion device that includes the power conversion device.
[実施の形態7]
 本発明の実施の形態7に係る電力変換装置について説明する。図20は、実施の形態7に係る電力変換装置の構成を示す回路図である。図20の電力変換装置200は、昇圧型インバータシステムであり、図16のインバータ装置73および図17の昇圧コンバータ71を備える。直流電源70の直流電圧が昇圧コンバータ71により昇圧され、昇圧された直流電圧がインバータ装置73により交流に変換され、変換された交流電力がモータ74に供給されることによってモータ74が駆動される。本実施の形態に係る電力変換装置200は、例えば電動自動車に適用される。
[Embodiment 7]
A power conversion apparatus according to Embodiment 7 of the present invention will be described. FIG. 20 is a circuit diagram showing a configuration of the power conversion device according to the seventh embodiment. 20 is a step-up inverter system, and includes an inverter device 73 in FIG. 16 and a step-up converter 71 in FIG. The DC voltage of the DC power source 70 is boosted by the boost converter 71, the boosted DC voltage is converted into AC by the inverter device 73, and the converted AC power is supplied to the motor 74 to drive the motor 74. The power conversion device 200 according to the present embodiment is applied to, for example, an electric automobile.
 実施の形態7に係る電力変換装置200においては、実施の形態1~4のいずれかに係る半導体駆動装置1が用いられるので、半導体駆動装置1の大型化および高コスト化を抑制しつつデッドタイムを適切に短縮することができる。また、実施の形態6と同様に、絶縁通信部の伝送性能やマイクロコンピュータの演算性能に依存することなく、デッドタイムの短縮と異常発生時の保護機能との両立が実現される。さらに、実施の形態5と同様に、デッドタイムの短縮によってインバータ装置73の電力変換効率を向上することができる。また、スイッチング素子M3~M8としてSiC-MOSFETが適用される場合には、SiCの結晶欠陥に起因する寄生ダイオードの通電劣化を抑制することができ、インバータ装置73の信頼性の向上および製品寿命の増加を実現することができる。 In power conversion device 200 according to the seventh embodiment, since semiconductor drive device 1 according to any of the first to fourth embodiments is used, dead time is prevented while increasing the size and cost of semiconductor drive device 1. Can be shortened appropriately. Further, as in the sixth embodiment, the dead time can be reduced and the protection function in the event of an abnormality can be achieved without depending on the transmission performance of the insulated communication unit and the computing performance of the microcomputer. Furthermore, as in the fifth embodiment, the power conversion efficiency of the inverter device 73 can be improved by shortening the dead time. Further, when SiC-MOSFETs are applied as the switching elements M3 to M8, it is possible to suppress deterioration of energization of the parasitic diode due to SiC crystal defects, improving the reliability of the inverter device 73 and improving the product life. An increase can be realized.
 図20の例は、電圧変換部として昇圧コンバータ71を含みかつ電力変換部としてインバータ装置73を含む電力変換装置200に実施の形態1~4のいずれかの半導体駆動装置1が適用された例であるが、電圧変換部として昇圧コンバータ71の代わりに降圧コンバータまたは昇降圧コンバータを含む電力変換装置に実施の形態1~4のいずれかに係る半導体駆動装置1が適用されてもよく、あるいは電力変換部としてインバータ装置73の代わりに交流電力を直流電力に変換するAC-DCコンバータを含む電力変換装置に実施の形態1~4のいずれかに係る半導体駆動装置1が適用されてもよい。 The example of FIG. 20 is an example in which the semiconductor drive device 1 of any one of the first to fourth embodiments is applied to a power conversion device 200 that includes a boost converter 71 as a voltage conversion unit and includes an inverter device 73 as a power conversion unit. However, the semiconductor drive device 1 according to any one of the first to fourth embodiments may be applied to a power conversion device including a step-down converter or a step-up / down converter instead of the step-up converter 71 as a voltage conversion unit, or power conversion The semiconductor drive device 1 according to any one of the first to fourth embodiments may be applied to a power conversion device including an AC-DC converter that converts AC power into DC power instead of the inverter device 73 as a unit.
[他の実施の形態]
 上記実施の形態では、半導体スイッチング素子としてMOSFETが用いられるが、半導体スイッチング素子はこれに限定されない。例えば、MOSFETに代えて、IGBサイリスタまたはGTO(Gate Turn-off thyristor)が半導体スイッチング素子として用いられてもよい。
[Other embodiments]
In the above embodiment, a MOSFET is used as the semiconductor switching element, but the semiconductor switching element is not limited to this. For example, an IGB thyristor or a GTO (Gate Turn-off thyristor) may be used as the semiconductor switching element instead of the MOSFET.
 上記実施の形態では、直列に接続された一対のスイッチング素子のうち一方のスイッチング素子のオンオフ状態に基づいて他方のスイッチング素子の駆動タイミングが制御されるが、本発明はこれに限らない。3つ以上の複数のスイッチング素子が直列に接続され、その複数のスイッチング素子のうち一のスイッチング素子のオンオフ状態に基づいて他のスイッチング素子の駆動タイミングが制御されてもよい。 In the above embodiment, the drive timing of the other switching element is controlled based on the on / off state of one of the pair of switching elements connected in series, but the present invention is not limited to this. Three or more switching elements may be connected in series, and drive timings of other switching elements may be controlled based on an on / off state of one of the switching elements.
 上記実施の形態では、制御部10のオン指令生成部11およびデッドタイム生成部12H,12Lがハードウェアで実現されるが、制御部10の各機能がソフトウェアで実現されてもよい。図21は、制御部10の各機能がソフトウェアで実現される例を示す図である。図21の例では、制御部10が、処理装置(プロセッサ)51および記憶装置(メモリ)52を備える。処理装置51は、例えばCPU(中央演算処理装置)であり、記憶装置52に記憶されたプログラムを読み出して実行することにより、上記実施の形態における制御部10の各機能を実現することができる。 In the above embodiment, the ON command generation unit 11 and the dead time generation units 12H and 12L of the control unit 10 are realized by hardware, but each function of the control unit 10 may be realized by software. FIG. 21 is a diagram illustrating an example in which each function of the control unit 10 is realized by software. In the example of FIG. 21, the control unit 10 includes a processing device (processor) 51 and a storage device (memory) 52. The processing device 51 is, for example, a CPU (Central Processing Unit), and can read out and execute a program stored in the storage device 52 to realize each function of the control unit 10 in the above embodiment.
 上記実施の形態では、絶縁通信部20H,20Lにより伝送されたオンオフ指令信号SgdH,SgdLに基づいてゲート駆動部がスイッチング素子M1,M2を駆動するが、本発明はこれに限らない。絶縁通信部20H,20Lにより伝送されたオンオフ指令信号SgdH,SgdLがスイッチング素子M1,M2を直接的に駆動してもよい。 In the above embodiment, the gate drive unit drives the switching elements M1 and M2 based on the on / off command signals SgdH and SgdL transmitted by the insulated communication units 20H and 20L, but the present invention is not limited to this. The on / off command signals SgdH and SgdL transmitted by the insulating communication units 20H and 20L may directly drive the switching elements M1 and M2.
1       半導体駆動装置
10      制御部
11      オン指令生成部
12H、12L デッドタイム生成部
20H、20L 絶縁通信部
21H、21L 状態信号生成部
22H、22L ゲート駆動部
23H、23L オンオフ判定部
24H、24L 異常検出部
M1~M8   スイッチング素子
CLK1    パルス信号発生源
MM1 信号幅伸長回路
FF1     信号保持回路
LP1~LP4 ローパスフィルタ
CN1,CN2 カウンタ回路
DESCRIPTION OF SYMBOLS 1 Semiconductor drive device 10 Control part 11 ON command generation part 12H, 12L Dead time generation part 20H, 20L Insulation communication part 21H, 21L State signal generation part 22H, 22L Gate drive part 23H, 23L On-off determination part 24H, 24L Abnormality detection part M1 to M8 Switching element CLK1 Pulse signal generation source MM1 Signal width expansion circuit FF1 Signal holding circuit LP1 to LP4 Low-pass filter CN1, CN2 Counter circuit

Claims (16)

  1.  直列に接続された複数の半導体スイッチング素子をそれぞれ駆動するための複数のオンオフ指令信号を生成する制御部と、
     前記複数の半導体スイッチング素子のうち一の半導体スイッチング素子のオンオフ状態を検出するとともに検出されたオンオフ状態を表すオンオフ判定信号を出力するオンオフ判定部と、
     前記一の半導体スイッチング素子の異常の有無を検出するとともに検出された異常の有無を表す異常検出信号を出力する異常検出部と、
     前記オンオフ判定部から出力された前記オンオフ判定信号および前記異常検出部から出力された前記異常検出信号に基づいて状態信号を出力する状態信号生成部と、
     前記制御部と前記一のスイッチング素子との間の絶縁を確保しつつ前記制御部により生成された前記一の半導体スイッチング素子を駆動するための一のオンオフ指令信号を伝送するとともに前記状態信号生成部と前記制御部との間の絶縁を確保しつつ前記状態信号生成部から出力される状態信号を伝送する絶縁通信部と、を備え、
     前記制御部は、前記絶縁通信部により伝送される状態信号に基づいて、前記複数の半導体スイッチング素子のうち他の半導体スイッチング素子を駆動するための他のオンオフ指令信号を生成する、半導体駆動装置。
    A controller that generates a plurality of on / off command signals for driving a plurality of semiconductor switching elements connected in series;
    An on / off determination section for detecting an on / off state of one of the plurality of semiconductor switching elements and outputting an on / off determination signal representing the detected on / off state; and
    An abnormality detection unit that detects the presence or absence of an abnormality in the one semiconductor switching element and outputs an abnormality detection signal that indicates the presence or absence of the detected abnormality;
    A state signal generation unit that outputs a state signal based on the on / off determination signal output from the on / off determination unit and the abnormality detection signal output from the abnormality detection unit;
    Transmitting one on / off command signal for driving the one semiconductor switching element generated by the control unit while ensuring insulation between the control unit and the one switching element, and the state signal generating unit An insulation communication unit that transmits a state signal output from the state signal generation unit while ensuring insulation between the control unit and the control unit,
    The said control part is a semiconductor drive device which produces | generates the other on-off command signal for driving another semiconductor switching element among these semiconductor switching elements based on the state signal transmitted by the said insulation communication part.
  2.  前記制御部は、前記状態信号に基づいて、前記一の半導体スイッチング素子がオンしている場合に前記他の半導体スイッチング素子がオンしないように前記他のオンオフ指令信号を生成する、請求項1に記載の半導体駆動装置。 The control unit generates the other on / off command signal based on the state signal so that the other semiconductor switching element is not turned on when the one semiconductor switching element is turned on. The semiconductor drive device described.
  3.  前記異常検出部から前記一の半導体スイッチング素子に異常がないことを表す異常検出信号が出力されている期間には、前記状態信号は、前記一の半導体スイッチング素子のオンオフ状態を表し、前記異常検出部から前記一の半導体スイッチング素子に異常があることを表す異常検出信号が出力されている期間には、前記状態信号は、前記一の半導体スイッチング素子に異常があることを表す、請求項1または2に記載の半導体駆動装置。 During a period in which an abnormality detection signal indicating that there is no abnormality in the one semiconductor switching element is output from the abnormality detection unit, the state signal represents an on / off state of the one semiconductor switching element, and the abnormality detection The state signal represents that there is an abnormality in the one semiconductor switching element during a period in which an abnormality detection signal indicating that the one semiconductor switching element is abnormal is output from the unit. 2. The semiconductor drive device according to 2.
  4.  前記状態信号は、前記一の半導体スイッチング素子のオンオフを信号レベルで表し、前記一の半導体スイッチング素子に異常があることを連続パルスで表す、請求項3に記載の半導体駆動装置。 4. The semiconductor drive device according to claim 3, wherein the status signal indicates on / off of the one semiconductor switching element by a signal level and indicates that there is an abnormality in the one semiconductor switching element by a continuous pulse.
  5. 前記制御部は、パルス幅変調によって前記複数のオンオフ指令信号を生成し、
    前記状態信号の前記連続パルスの周期は、前記パルス幅変調のキャリア周期よりも短い、請求項4に記載の半導体駆動装置。
    The control unit generates the plurality of on / off command signals by pulse width modulation,
    The semiconductor drive device according to claim 4, wherein a period of the continuous pulse of the state signal is shorter than a carrier period of the pulse width modulation.
  6.  前記制御部は、予め定められた周期毎に前記状態信号のパルス数をカウントし、カウントされたパルス数がしきい値に達した場合、前記複数の半導体スイッチング素子がオフされるように前記複数のオンオフ指令信号を生成する、請求項4または5に記載の半導体駆動装置。 The control unit counts the number of pulses of the state signal every predetermined period, and the plurality of semiconductor switching elements are turned off when the counted number of pulses reaches a threshold value. The semiconductor drive device according to claim 4, wherein the on / off command signal is generated.
  7.  前記異常検出部は、前記一の半導体スイッチング素子の異常が検出された場合、異常を表す異常検出信号を時間軸方向に伸長して出力する、請求項1~6のいずれか1項に記載の半導体駆動装置。 The abnormality detection unit according to any one of claims 1 to 6, wherein when an abnormality of the one semiconductor switching element is detected, the abnormality detection unit extends and outputs an abnormality detection signal indicating the abnormality in a time axis direction. Semiconductor drive device.
  8.  前記オンオフ判定部は、複数のオンオフ判定部のうちの一のオンオフ判定部であり、
     前記異常検出部は、複数の異常検出部のうちの一の異常検出部であり、
     前記状態信号生成部は、複数の状態信号生成部のうちの一の状態信号生成部であり、
     前記絶縁通信部は、複数の絶縁通信部のうちの一の絶縁通信部であり、
     前記複数のオンオフ判定部のうちの他のオンオフ判定部は、前記他の半導体スイッチング素子のオンオフ状態を検出するとともに検出されたオンオフ状態を表すオンオフ判定信号を出力し、
     前記複数の異常検出部のうちの他の異常検出部は、前記他の半導体スイッチング素子の異常の有無を検出するとともに検出された異常の有無を表す異常検出信号を出力し、
     前記複数の状態信号生成部のうちの他の状態信号生成部は、前記他のオンオフ判定部から出力された前記オンオフ判定信号および前記他の異常検出部から出力された前記異常検出信号に基づいて状態信号を出力し、
     前記複数の絶縁通信部のうちの他の絶縁通信部は、前記制御部および前記他のスイッチング素子の間の絶縁を確保しつつ前記制御部により生成された前記他のオンオフ指令信号を伝送するとともに前記他の状態信号生成部および前記制御部の間の絶縁を確保しつつ前記他の状態信号生成部から出力される状態信号を伝送し、
     前記制御部は、前記他の絶縁通信部により伝送される状態信号に基づいて、前記一のオンオフ指令信号を生成する、請求項1~7のいずれか1項に記載の半導体駆動装置。
    The on / off determination unit is an on / off determination unit of one of a plurality of on / off determination units,
    The abnormality detection unit is one abnormality detection unit among a plurality of abnormality detection units,
    The state signal generation unit is one state signal generation unit among a plurality of state signal generation units,
    The insulated communication unit is an insulated communication unit of one of a plurality of insulated communication units,
    The other on / off determination unit of the plurality of on / off determination units detects an on / off state of the other semiconductor switching element and outputs an on / off determination signal indicating the detected on / off state,
    The other abnormality detection unit among the plurality of abnormality detection units detects the presence or absence of abnormality of the other semiconductor switching element and outputs an abnormality detection signal indicating the presence or absence of the detected abnormality.
    The other state signal generation unit among the plurality of state signal generation units is based on the on / off determination signal output from the other on / off determination unit and the abnormality detection signal output from the other abnormality detection unit. Output a status signal,
    The other insulated communication unit among the plurality of insulated communication units transmits the other on / off command signal generated by the control unit while ensuring insulation between the control unit and the other switching element. Transmitting the state signal output from the other state signal generation unit while ensuring insulation between the other state signal generation unit and the control unit,
    The semiconductor drive device according to any one of claims 1 to 7, wherein the control unit generates the one on / off command signal based on a state signal transmitted by the other insulated communication unit.
  9.  前記制御部により生成された前記他のオンオフ指令信号および前記他の異常検出部から出力された前記異常検出信号に基づいて前記他の半導体スイッチング素子を駆動する駆動部をさらに備え、
     前記制御部は、前記一および他の状態信号生成部から出力される状態信号に基づいて、前記他の半導体スイッチング素子がオンしている状態で前記一の半導体スイッチング素子がオンした場合に前記他の半導体スイッチング素子をオフさせるための前記他のオンオフ指令信号を生成し、
    前記駆動部は、前記他の異常検出部から前記他の半導体スイッチング素子に異常があることを表す異常検出信号が出力された場合に、前記他の半導体スイッチング素子を第1の速度でオフさせ、前記他の半導体スイッチング素子をオフさせるための前記他のオンオフ指令信号に基づいて、前記第1の速度よりも高い第2の速度で前記他の半導体スイッチング素子をオフさせ、
    前記他のオンオフ判定部は、前記他の半導体スイッチング素子がオフされてから第1の時間が経過した後に前記他の半導体スイッチング素子がオフされたことを表すオンオフ判定信号を出力し、前記他の半導体スイッチング素子がオンされてから前記第1の時間よりも長い第2の時間が経過した後に前記他の半導体スイッチング素子がオンされたことを表すオンオフ判定信号を出力する、請求項8に記載の半導体駆動装置。
    A drive unit that drives the other semiconductor switching element based on the other on / off command signal generated by the control unit and the abnormality detection signal output from the other abnormality detection unit;
    When the one semiconductor switching element is turned on while the other semiconductor switching element is on the basis of the state signal output from the one and other state signal generating parts, the control unit Generating the other on / off command signal for turning off the semiconductor switching element of
    The drive unit turns off the other semiconductor switching element at a first speed when an abnormality detection signal indicating that there is an abnormality in the other semiconductor switching element is output from the other abnormality detection unit, Based on the other on / off command signal for turning off the other semiconductor switching element, the other semiconductor switching element is turned off at a second speed higher than the first speed,
    The other on / off determination unit outputs an on / off determination signal indicating that the other semiconductor switching element is turned off after a first time has elapsed since the other semiconductor switching element is turned off. The on / off determination signal indicating that the other semiconductor switching element is turned on is output after a second time longer than the first time has elapsed since the semiconductor switching element was turned on. Semiconductor drive device.
  10. 前記制御部は、パルス幅変調に基づいて前記オンオフ指令信号を生成し、
    前記状態信号の前記連続パルスに含まれる各パルスの時間幅は、前記パルス幅変調のキャリア周期よりも長い、請求項4に記載の半導体駆動装置。
    The control unit generates the on / off command signal based on pulse width modulation,
    The semiconductor drive device according to claim 4, wherein a time width of each pulse included in the continuous pulse of the state signal is longer than a carrier period of the pulse width modulation.
  11.  前記制御部は、前記キャリア周期よりも長い時定数を有するローパスフィルタを通過した前記状態信号に基づいて前記異常の有無を判定する、請求項10に記載の半導体駆動装置。 11. The semiconductor drive device according to claim 10, wherein the control unit determines the presence / absence of the abnormality based on the state signal that has passed through a low-pass filter having a time constant longer than the carrier cycle.
  12.  前記状態信号生成部は、前記異常検出部から前記一の半導体スイッチング素子に異常がないことを表す異常検出信号が出力されている期間には、前記オンオフ判定信号を前記状態信号として出力し、前記異常検出部から前記一の半導体スイッチング素子に異常があることを表す異常検出信号が出力されている期間には、前記絶縁通信部により伝送された前記一のオンオフ指令信号の反転信号を前記状態信号として出力する、請求項1または2に記載の半導体駆動装置。 The state signal generation unit outputs the on / off determination signal as the state signal during a period in which an abnormality detection signal indicating that there is no abnormality in the one semiconductor switching element is output from the abnormality detection unit, During a period in which an abnormality detection signal indicating that there is an abnormality in the one semiconductor switching element is output from the abnormality detection unit, an inverted signal of the one on / off command signal transmitted by the insulation communication unit is used as the state signal. The semiconductor drive device according to claim 1, which outputs as
  13.  前記制御部は、指令信号に基づいて前記複数のオンオフ指令信号を生成し、
     前記制御部は、前記状態信号および前記指令信号の差異に基づいて、前記異常の有無を判定する、請求項12に記載の半導体駆動装置。
    The control unit generates the plurality of on / off command signals based on the command signal,
    The semiconductor drive device according to claim 12, wherein the control unit determines the presence or absence of the abnormality based on a difference between the state signal and the command signal.
  14.  複数の半導体スイッチング素子を含み、直流と交流との間で電力変換を行う電力変換部と、
     前記複数の半導体スイッチング素子を駆動する請求項1~13のいずれか1項に記載の半導体駆動装置とを備える、電力変換装置。
    A power conversion unit including a plurality of semiconductor switching elements and performing power conversion between direct current and alternating current;
    A power conversion device comprising: the semiconductor drive device according to any one of claims 1 to 13, which drives the plurality of semiconductor switching elements.
  15.  複数の半導体スイッチング素子を含み、直流電圧の昇圧および降圧の少なくとも一方を行う電圧変換部と、
     前記複数の半導体スイッチング素子を駆動する請求項1~13のいずれか1項に記載の半導体駆動装置とを備える、電力変換装置。
    A voltage converter including a plurality of semiconductor switching elements and performing at least one of step-up and step-down of a DC voltage;
    A power conversion device comprising: the semiconductor drive device according to any one of claims 1 to 13, which drives the plurality of semiconductor switching elements.
  16.  複数の第1の半導体スイッチング素子を有し、直流電圧の昇圧および降圧の少なくとも一方を行う電圧変換部と、
     複数の第2の半導体スイッチング素子を有し、前記電圧変換部により出力される電力を交流電力に変換する電力変換部と、
     前記複数の第1および第2の半導体スイッチング素子を駆動する請求項1~13のいずれか1項に記載の半導体駆動装置とを備える、電力変換装置。
    A voltage converter having a plurality of first semiconductor switching elements and performing at least one of step-up and step-down of a DC voltage;
    A power conversion unit that has a plurality of second semiconductor switching elements and converts the power output by the voltage conversion unit into AC power;
    A power conversion device comprising: the semiconductor drive device according to any one of claims 1 to 13, which drives the plurality of first and second semiconductor switching elements.
PCT/JP2019/004232 2018-04-04 2019-02-06 Semiconductor driving device and power conversion device WO2019193834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020511618A JP6849148B2 (en) 2018-04-04 2019-02-06 Semiconductor drive and power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018072490 2018-04-04
JP2018-072490 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019193834A1 true WO2019193834A1 (en) 2019-10-10

Family

ID=68100409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004232 WO2019193834A1 (en) 2018-04-04 2019-02-06 Semiconductor driving device and power conversion device

Country Status (2)

Country Link
JP (1) JP6849148B2 (en)
WO (1) WO2019193834A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021176253A (en) * 2020-05-01 2021-11-04 株式会社デンソー Gate drive device and composite gate drive device
JP2021182784A (en) * 2020-05-18 2021-11-25 三菱電機株式会社 Power conversion device
WO2022176268A1 (en) * 2021-02-22 2022-08-25 パナソニックIpマネジメント株式会社 Gate drive circuit, gate drive device, high-frequency power supply device and system
JP7351425B1 (en) 2022-06-21 2023-09-27 株式会社明電舎 Gate drive circuit, power converter, and gate drive circuit control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171159A (en) * 1986-12-29 1988-07-14 Fuji Electric Co Ltd Control monitor of power converter
JP2012095409A (en) * 2010-10-26 2012-05-17 Toyota Motor Corp Inverter driver
JP2016119732A (en) * 2014-12-18 2016-06-30 株式会社東芝 Power conversion device and vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171159A (en) * 1986-12-29 1988-07-14 Fuji Electric Co Ltd Control monitor of power converter
JP2012095409A (en) * 2010-10-26 2012-05-17 Toyota Motor Corp Inverter driver
JP2016119732A (en) * 2014-12-18 2016-06-30 株式会社東芝 Power conversion device and vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021176253A (en) * 2020-05-01 2021-11-04 株式会社デンソー Gate drive device and composite gate drive device
JP7327269B2 (en) 2020-05-01 2023-08-16 株式会社デンソー Gate drives and compound gate drives
JP2021182784A (en) * 2020-05-18 2021-11-25 三菱電機株式会社 Power conversion device
WO2022176268A1 (en) * 2021-02-22 2022-08-25 パナソニックIpマネジメント株式会社 Gate drive circuit, gate drive device, high-frequency power supply device and system
JP7351425B1 (en) 2022-06-21 2023-09-27 株式会社明電舎 Gate drive circuit, power converter, and gate drive circuit control method
WO2023248913A1 (en) * 2022-06-21 2023-12-28 株式会社明電舎 Gate driving circuit, power conversion device, and gate driving circuit control method

Also Published As

Publication number Publication date
JP6849148B2 (en) 2021-03-24
JPWO2019193834A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2019193834A1 (en) Semiconductor driving device and power conversion device
TWI748662B (en) Gate driver integrated circuit
JP6197685B2 (en) Gate drive circuit
JP5761215B2 (en) Gate drive circuit
US8841870B2 (en) Driver for switching element and control system for rotary machine using the same
US9130463B2 (en) Drive circuit for switching element
US8981689B2 (en) Driver for switching element and control system for rotary machine using the same
WO2018158807A1 (en) Semiconductor device and power conversion system
WO2014097485A1 (en) Drive protection circuit, semiconductor module, and automobile
US9331188B2 (en) Short-circuit protection circuits, system, and method
US20130175959A1 (en) Driver for switching element and control system for rotary machine using the same
US20150124502A1 (en) Driving apparatus for driving switching elements of power conversion circuit
CN111490665A (en) Driver for switching insulated gate bipolar transistor with first and second pull-down signals
JP2009296732A (en) Power conversion apparatus equipped with gate drive for semiconductor switching element
JP2016116151A (en) Semiconductor device and current limiting method
CN113056864B (en) power conversion device
US11063423B2 (en) Driving circuit for power transistor
JP5282492B2 (en) Switching element drive circuit
US7049862B2 (en) Semiconductor device
US9490794B1 (en) Dynamic shutdown protection circuit
WO2021131217A1 (en) Gate drive circuit
JP2018182927A (en) Semiconductor device and manufacturing method of the same
JP6758486B2 (en) Semiconductor element drive and power converter
JP6033737B2 (en) Inverter control device
JP2007104739A (en) Drive circuit of power semiconductor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19782321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511618

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19782321

Country of ref document: EP

Kind code of ref document: A1