WO2019189481A1 - Acoustic analysis system - Google Patents

Acoustic analysis system Download PDF

Info

Publication number
WO2019189481A1
WO2019189481A1 PCT/JP2019/013390 JP2019013390W WO2019189481A1 WO 2019189481 A1 WO2019189481 A1 WO 2019189481A1 JP 2019013390 W JP2019013390 W JP 2019013390W WO 2019189481 A1 WO2019189481 A1 WO 2019189481A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone array
signals
unit
analog signal
control unit
Prior art date
Application number
PCT/JP2019/013390
Other languages
French (fr)
Japanese (ja)
Inventor
恵 野崎
直穂子 豊嶋
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980022859.3A priority Critical patent/CN112005087A/en
Publication of WO2019189481A1 publication Critical patent/WO2019189481A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present invention relates to an acoustic analysis system.
  • Patent Document 1 discloses a sound pressure distribution analysis system using a microphone array in which a plurality of microphones are arranged in a lattice pattern and sounds are detected at a plurality of positions.
  • This sound pressure distribution analysis system includes an amplifier capable of amplifying a multi-channel signal, and the amplifier amplifies each sound signal of the microphone and outputs it to the analysis terminal.
  • the analysis terminal A / D converts the sound signal input from the amplifier and records it as a time waveform.
  • an object of the present invention is to provide an acoustic analysis system in which the number of microphones can be easily changed according to the size of an object to be measured.
  • an acoustic analysis system includes a plurality of microphone array modules and a control unit that controls the plurality of microphone array modules.
  • the plurality of microphone array modules have a plurality of MEMS microphones, respectively, and perform control related to recording of the plurality of MEMS microphones.
  • the microphone array module includes a reception unit that receives signals from the plurality of MEMS microphones, and a transmission unit that transmits signals from the plurality of MEMS microphones to the control unit.
  • the signals of the plurality of MEMS microphones are respectively received from the microphone array module and processed as signals used for acoustic analysis.
  • the number of microphones can be easily increased by adding a microphone array module having MEMS microphones each capable of incorporating an amplifier, an A / D converter, and the like. Therefore, the number of microphones can be easily changed according to the size of the object to be measured, and an appropriate sound field distribution according to the object to be measured can be measured.
  • FIG. 1 is a diagram illustrating an example of an acoustic analysis system.
  • FIG. 2 is a diagram illustrating a configuration example of a control system of the microphone array.
  • FIG. 3 is a diagram illustrating a configuration example of the microphone array module.
  • FIG. 4 is a diagram illustrating a configuration example of the control unit.
  • FIG. 5 is a diagram illustrating an example of an analog signal.
  • FIG. 6 is a diagram illustrating a method for calculating the delay time.
  • FIG. 7 is a diagram illustrating another example of the microphone array module.
  • FIG. 1 is a configuration example of an acoustic analysis system 1000 including a microphone array 1 according to this embodiment.
  • the acoustic analysis system 1000 is a system that analyzes a sound to be measured from the object to be measured (sound source) 2 using a near-field acoustic holography method.
  • a near-field acoustic holography method it is necessary to measure a sound pressure distribution on a measurement surface that is close to and parallel to the sound source surface 2a, and a microphone array 1 in which a plurality of microphones mc are arranged in a lattice shape is used.
  • the microphone array 1 in the present embodiment includes M ⁇ N microphones mc arranged in a lattice pattern.
  • the microphone mc may be a MEMS (Micro-Electrical-Mechanical Systems) microphone, for example.
  • the acoustic analysis system 1000 analyzes a signal input from each of the M ⁇ N microphones mc, and detects a physical quantity representing a sound characteristic.
  • the acoustic analysis system 1000 includes an acoustic analysis device 100 and a display device 200.
  • the acoustic analysis device 100 includes a signal processing unit 101, an analysis processing unit 102, and a storage unit 103.
  • the signal processing unit 101 performs predetermined signal processing on the signal from each microphone mc of the microphone array 1 to obtain a signal used for acoustic analysis.
  • the signal processing unit 101 performs processing for synchronizing the signals of M ⁇ N microphones mc included in the microphone array 1. A specific configuration of the signal processing unit 101 will be described later.
  • the analysis processing unit 102 analyzes the signal subjected to the signal processing by the signal processing unit 101 and detects a physical quantity representing the feature of the sound.
  • the analysis processing unit analyzes the signal processed by the control unit, and detects a physical quantity representing the feature of the sound.
  • the physical quantity representing the characteristics of the sound includes a sound pressure distribution, a particle velocity distribution, and the like.
  • the analysis processing unit 102 generates an image corresponding to the physical quantity representing the feature of the sound, and performs display control for displaying the image on the display device 200.
  • the storage unit 103 stores the analysis result by the analysis processing unit 102 and the like.
  • the display device 200 includes a monitor such as a liquid crystal display, and displays the image that is the analysis result of the acoustic analysis device 100.
  • FIG. 2 is a diagram illustrating a configuration example of a control system of the microphone array 1.
  • the control system of the microphone array 1 includes M microphone array modules C (1) to C (M) and a control unit B that controls these M microphone array modules C (1) to C (M). Prepare.
  • the microphone array modules C (1) to C (M) have the same configuration.
  • the microphone array module C (m) controls the N microphones mc (m, 1) to mc (m, N) and the recording of these N microphones mc (m, 1) to mc (m, N).
  • the N microphones mc (m, 1) to mc (m, N) are arranged in one horizontal row or one vertical row among the M ⁇ N microphones mc arranged in a lattice pattern included in the microphone array 1.
  • the microphone array module C (m) can be a smart speaker (AI speaker), for example.
  • M microphone array controllers A (1) to A (M) receive signals (microphone input signals) from N microphones, respectively. It is assumed that the N microphones controlled by one microphone array control unit A (m) are electrically synchronized.
  • the control unit B can be included in the signal processing unit 101 of FIG.
  • the control unit B transmits a recording command and an analog signal S (t) to the microphone array modules C (1) to C (M), respectively.
  • Each microphone array module C (m) receives a recording command transmitted from the control unit B, and in response to the recording command, microphone input signals of N microphones mc and an analog signal from the control unit B A function of simultaneously receiving S (t) in the same sampling period dt. Further, each microphone array module C (m) performs A / D conversion on the N microphone input signals and the analog signal S (t) acquired at this time, and N microphone input data which are signals for acoustic analysis.
  • D (m, 1, dt) to D (m, n, dt) and analog input data Ds (m, dt) are transmitted to the control unit B, respectively.
  • FIG. 3 is a diagram illustrating a configuration example of the microphone array module C (m).
  • the microphone array control unit A (m) includes an input / output control unit 111, N input signal reception units 112, and one analog signal reception unit 113.
  • the input / output control unit 111 controls input / output of data in the microphone array module C (m). Specifically, when the input / output control unit 111 receives the recording command transmitted from the control unit B, in response to the recording command, the N input signal receiving units 112 and the analog signal receiving unit 113 are the same. Control is performed so that signals are simultaneously received at the sampling period dt. That is, the receiving unit receives the signals of the plurality of MEMS microphones simultaneously with the analog signal in response to the recording command.
  • the N input signal receiving units 112 receive microphone input signals Mic (m, 1, t) to Mic (m) from the microphones mc (m, 1) to mc (m, N), respectively. , N, t).
  • the microphone mc incorporates an acoustic transducer (MEMS chip) using an MEMS technology and an amplifier, and is surface-mounted on a substrate.
  • the microphone mc converts sound (sound pressure) into an electrical signal using an acoustic transducer, amplifies the converted electrical signal using an amplifier, and outputs the amplified signal.
  • Each input signal receiving unit 112 performs A / D conversion on the received microphone input signals Mic (m, 1, t) to Mic (m, N, t), respectively, and microphone input data D (m, 1, dt). ) To D (m, N, dt) are output to the input / output control unit 111.
  • the analog signal receiving unit 113 receives the analog signal S (t) from the control unit B under the control of the input / output control unit 111.
  • the analog signal S (t) transmitted from the control unit B is directly input to the analog signal receiving unit 113 without using a delay circuit.
  • the analog signal receiving unit 113 A / D converts the received analog signal S (t) and outputs analog input data Ds (m, dt) to the input / output control unit 111.
  • the input / output control unit 111 includes N microphone input data D (m, 1, dt) to D (m, n, dt) output from the N input signal receiving units 112, and an analog signal receiving unit 113 outputs Analog input data Ds (m, dt) to be received.
  • the input / output control unit 111 transmits the received microphone input data D (m, 1, dt) to D (m, n, dt) to the control unit B together with the analog input data Ds (m, dt). That is, the transmission unit transmits the signals of the plurality of MEMS microphones received by the reception unit to the control unit together with the analog signals.
  • FIG. 4 is a diagram illustrating a configuration example of the control unit B.
  • the control unit B has a function of transmitting a recording command to the microphone array control units A (1) to A (M) of the microphone array modules C (1) to C (M), and the microphone array control unit A (1).
  • the control unit B has a function of receiving microphone input data D (m, n, dt) and analog input data Ds (m, dt) from the microphone array control units A (1) to A (M). .
  • control unit B has a function of aligning the phases of the microphone input data D (m, n) received from the microphone array control units A (1) to A (M). That is, the control unit performs a process of aligning the phases of the signals of the plurality of MEMS microphones received from the plurality of microphone array modules.
  • the control unit B includes a recording command unit 114, an analog signal transmission unit 115, a delay calculation unit 116, and a delay correction unit 117.
  • the recording command unit 114 generates a recording command and transmits the recording command to the M microphone array control units A (1) to A (M).
  • the analog signal transmission unit 115 includes a signal generation unit 115a and a D / A conversion unit 115b, generates an analog signal S (t), and M microphone array control units A (1) to A (M ).
  • FIG. 5 is a diagram illustrating an example of the analog signal S (t).
  • the analog signal S (t) is a signal that oscillates at a constant period and whose amplitude fluctuates.
  • the analog signal S (t) oscillates at a constant period T1 that is about 10 times the sampling period dt, and its amplitude A 0 is twice the period T1. It can be set as the signal which fluctuates with the above period T2.
  • the analog signal transmission unit transmits a signal that oscillates at a constant cycle and varies in amplitude as an analog signal. That is, the analog signal S (t) can be expressed by the following equation.
  • S (t) A 0 (t) ⁇ sin (2 ⁇ t / T1) (1)
  • the amplitude A 0 (t) can be expressed by the following equation.
  • a 0 (t) sin (2 ⁇ t / T2) (2)
  • the delay calculation unit 116 calculates the delay time td (m) of the microphone signal acquired from each microphone array module C (m). In the present embodiment, the delay calculation unit 116 calculates the delay time td (m) based on the analog input data Ds (m, dt) transmitted by each microphone array control unit A (m). That is, the delay calculation unit calculates the delay times of the signals of the plurality of MEMS microphones received from the plurality of microphone array modules based on the analog signal transmitted by the transmission unit. Specifically, the delay calculation unit 116 transmits the analog input data Ds (m0, dt) transmitted from the arbitrary microphone array control unit A (m0) as a reference and transmits from the other microphone array control unit A (m).
  • Pattern matching is performed on the analog input data Ds (m, dt). Then, based on the result of the pattern matching, the delay calculation unit 116 calculates the difference between the phase of the analog input data Ds (m0) and the phase of the analog input data Ds (m), and based on the difference, The delay time td (m) of data received from the microphone array module C (m) is calculated. That is, the delay calculation unit includes the phase of the analog signal transmitted from the transmission unit included in the first microphone array module, which is one of the plurality of microphone array modules, and the other one of the plurality of microphone array modules. The delay time is calculated based on the difference from the phase of the analog signal transmitted from the transmitter included in the second microphone array module.
  • FIG. 6 is a diagram illustrating a method for calculating the delay time td (m).
  • the triangle mark ( ⁇ ) is a plot of analog input data Ds (m0) as a reference
  • the cross mark ( ⁇ ) is a microphone array module C (target for calculating the delay time td (m). It is the figure which plotted the analog input data Ds (m) output from m).
  • the delay calculation unit 116 applies the data acquired from the microphone array module C (m0) based on the difference between the phase of the analog input data Ds (m0) and the phase of the analog input data Ds (m).
  • a delay time td (m) of data acquired from the microphone array module C (m) is calculated.
  • the delay calculation unit 116 calculates delay times td (1) to td (M) for the microphone array modules C (1) to C (M), respectively. Then, the delay calculation unit 116 outputs the calculated delay times td (1) to td (M) to the delay correction unit 117.
  • the delay correction unit 117 calculates the phase of the microphone input data D (m, n, dt) acquired from each microphone array module C (m) based on the delay time td (m) calculated by the delay calculation unit 116. Alignment processing is performed, and corrected microphone input correction data D ′ (m, n, dt) is calculated. That is, the delay correction unit performs processing for aligning the phases of the signals of the plurality of MEMS microphones received from the plurality of microphone array modules based on the delay time.
  • the delay correcting unit 117 rounds the delay time td (m) to an integral multiple k of the sampling period dt, and shifts the microphone input data D (m, n, dt) by the delay time (k points) in the time direction.
  • the delay time is corrected by the shift method. That is, the delay correction unit shifts the signals of the plurality of MEMS microphones received from the microphone array module by the delay time.
  • D ′ (m, n, dt) D (m, n, dt + k) (3)
  • k int (td (m) / dt) (4)
  • int () is a function that truncates the value in parentheses after the decimal point.
  • the delay correction unit 117 may use a method in which the microphone input data D (m, n, dt) is frequency-resolved and the phase is advanced for each frequency.
  • the transfer function H (k) exp ( ⁇ d ⁇ (k))
  • the calculation represented by the following equation is performed.
  • represents a convolution integral.
  • the delay correction unit 117 generates frequency domain data F (D (m, n, dt)) by performing Fourier transform on the microphone input data D (m, n, dt), and the frequency domain data is converted into the frequency domain data.
  • the transfer function H (k) corresponding to the integer k derived from the delay time td (m) is convolved and inverse Fourier transformed. In this way, the delay time may be corrected in the frequency space. That is, the delay correction unit generates frequency domain data by performing Fourier transform on the signals of the plurality of MEMS microphones received from the microphone array module, and convolves the transfer function corresponding to the delay time with the frequency domain data to perform inverse Fourier transform.
  • the method for correcting the delay time is not limited to the above, and any method can be applied.
  • the function of the control unit B described above may be realized by an arbitrary microphone array control unit A (m0). That is, one of the plurality of microphone array modules may include a control unit.
  • a microphone array for acoustic analysis generally requires microphones of 32ch or more, and it is necessary to accurately synchronize signals from each microphone. For this reason, it is common that one control unit performs control related to recording of all microphones constituting the microphone array.
  • one control unit performs control related to recording of all microphones constituting the microphone array.
  • a dedicated machine needs to be developed and the system becomes expensive.
  • an acoustic analysis system including an M ⁇ N microphone array is configured by combining a plurality (M) of microphone array modules C (m) that perform control related to recording of a plurality (N) of microphones.
  • the acoustic analysis system includes M microphone array modules C (m) that respectively control N microphones, and a control unit B that controls these M microphone array modules C (m).
  • the microphone array module C (m) includes a receiving unit that receives N microphone signals and a transmitting unit that transmits N microphone signals to the control unit B.
  • the control unit B includes M number of signals.
  • the microphone array module C (m) receives a microphone signal and processes it as a signal used for acoustic analysis.
  • a smart speaker can be used for acoustic analysis that requires more than 32 channels by using multiple microphone array modules C (m) of about 8 channels that are widely used for consumer use.
  • a large-scale acoustic analysis system can be realized at low cost.
  • the microphone mc included in the microphone array module C (m) is a MEMS microphone including an amplifier, and the microphone array module C (m) includes a microphone, an amplifier, an A / D converter, and the like.
  • the acoustic analysis system according to the present embodiment can be a system in which the number of microphones can be easily changed and an object to be measured of any size can be easily measured.
  • the microphone array module C (m) can be a smart speaker (AI speaker).
  • AI speaker a smart speaker
  • a plurality of AI speakers can be combined and used for acoustic analysis.
  • each AI speaker may be delayed due to a delay in communication processing. Module) measures the sound at each timing. That is, the microphone signal can be easily synchronized within the AI speaker, but the microphone signal cannot be synchronized between different AI speakers.
  • the control unit B inputs an analog signal S (t) as a synchronization signal to each microphone array module C (m).
  • each microphone array module C (m) the microphone input signals Mic (m, 1, t) to Mic (m, N, t) are received simultaneously with the analog signal S (t), and the microphone input data D (m , N, dt) is transmitted to the control unit B together with the analog input data Ds (m, dt).
  • the control unit B receives the analog input data Ds (m, dt) received together with the microphone input data D (m, n, dt). Can be used to align the phases of all microphone input data D (m, n).
  • the analog signal S (t) transmitted from the control unit B to each microphone array module C (m) is a signal that vibrates at a constant period. Thereby, the delay time of the signal of each microphone can be calculated and synchronization can be achieved relatively easily. Further, by varying the amplitude of the analog signal S (t), it is possible to appropriately synchronize even when the delay time is one period or more of the analog signal S (t).
  • the number of microphones can be easily changed according to the size of the object to be measured, and the sound that can be used to appropriately obtain synchronized sound data that can be used for acoustic analysis can be obtained.
  • An analysis system can be realized.
  • the microphone array control unit A (m) has a function of directly receiving the analog signal S (t) transmitted from the control unit B has been described.
  • the microphone array control unit A (m) may receive sound based on the analog signal S (t) instead of directly receiving the analog signal S (t).
  • a microphone mc (m, N + 1) as a substitute for analog input is provided in the microphone array module C (m).
  • a speaker SP (m) is provided at a certain close distance from the microphone mc (m, N + 1).
  • the speaker SP (m) is a sound output unit that outputs sound in the ultrasonic band based on the analog signal S (t) from the control unit B under the control of the input / output control unit 111.
  • the microphone mc (m, N + 1) picks up the sound output from the speaker SP (m) and outputs the microphone input signal Smic (m, t).
  • the analog signal receiving unit 113 receives the microphone input signal Smic (m, t) as an analog signal S (t). That is, the microphone array module further includes an audio output unit that outputs audio based on the analog signal transmitted by the analog signal transmission unit, and the reception unit receives the audio as an analog signal.
  • the microphone array module C (m) may receive the analog signal S (t) by audio input. Thereby, even if the microphone array module C (m) does not have an analog input terminal, the same effect as that of the above-described embodiment can be obtained.
  • SYMBOLS 1 Microphone array, 2 ... Measured object (sound source), 2a ... Sound source surface, 100 ... Sound analysis apparatus, 101 ... Signal processing part, 102 ... Analysis processing part, 103 ... Memory

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Physics & Mathematics (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

An acoustic analysis system 1000 is provided with a plurality of microphone array modules each of which has a plurality of MEMS microphones, and which perform control relating to recording by the plurality of MEMS microphones, and a control unit which controls the plurality of microphone array modules. Each microphone array module has a receiving unit for receiving signals from the plurality of MEMS microphones, and a transmitting unit for transmitting the signals of the plurality of MEMS microphones to the control unit. The control unit receives the plurality of MEMS microphone signals from each of the plurality of microphone array modules, and processes the same as signals used for acoustic analysis.

Description

音響解析システムAcoustic analysis system
 本発明は、音響解析システムに関する。 The present invention relates to an acoustic analysis system.
 近年、製品の低騒音化の要求の高まりから、音場の空間的分布を測定し解析することが要求されている。
 特許文献1には、複数のマイクロホンを格子状に配列し、複数の位置で音を検知するマイクロホンアレイを用いた音圧分布解析システムが開示されている。この音圧分布解析システムは、多チャンネル信号の増幅が可能なアンプを備え、当該アンプがマイクロホンのそれぞれの音信号を増幅し、解析端末に対して出力する。解析端末は、アンプから入力された音信号をA/D変換し、時間波形として記録する。
In recent years, due to the increasing demand for noise reduction of products, it is required to measure and analyze the spatial distribution of the sound field.
Patent Document 1 discloses a sound pressure distribution analysis system using a microphone array in which a plurality of microphones are arranged in a lattice pattern and sounds are detected at a plurality of positions. This sound pressure distribution analysis system includes an amplifier capable of amplifying a multi-channel signal, and the amplifier amplifies each sound signal of the microphone and outputs it to the analysis terminal. The analysis terminal A / D converts the sound signal input from the amplifier and records it as a time waveform.
日本国公開公報特開2005-91272号公報Japanese Laid-Open Patent Publication No. 2005-91272
 ところで、音響解析においては、あらゆる物を測定したいという要望から、被測定物のサイズに応じてマイクロホンの数を調整したいという要望がある。
 しかしながら、上記従来の音圧分布解析システムのように、コンデンサーマイク、あるいはダイナミックマイクを用いた場合、サイズの大きい被測定物に対応させてマイクロホンの数を増やした場合、マイクロホンの数を増やした分だけアンプやA/Dコンバータが別途必要となり、システム設計の複雑な変更が必要になる。
 そこで、本発明は、被測定物のサイズに応じてマイクロホンの数を可変しやすい音響解析システムを提供することを目的とする。
By the way, in acoustic analysis, there is a desire to adjust the number of microphones according to the size of the object to be measured, from the desire to measure all objects.
However, if a condenser microphone or dynamic microphone is used as in the conventional sound pressure distribution analysis system, the number of microphones is increased when the number of microphones is increased in response to a large object to be measured. Only an amplifier and an A / D converter are required separately, and complicated changes in system design are required.
Therefore, an object of the present invention is to provide an acoustic analysis system in which the number of microphones can be easily changed according to the size of an object to be measured.
 上記課題を解決するために、本発明の一つの態様の音響解析システムは、複数のマイクロホンアレイモジュールと、前記複数のマイクロホンアレイモジュールを制御する制御部と、を備える。複数のマイクロホンアレイモジュールは、複数のMEMSマイクロホンをそれぞれ有し、前記複数のMEMSマイクロホンの録音に関する制御を行う。前記マイクロホンアレイモジュールは、前記複数のMEMSマイクロホンの信号を受信する受信部と、前記複数のMEMSマイクロホンの信号を前記制御部に送信する送信部と、を有し、前記制御部は、前記複数のマイクロホンアレイモジュールからそれぞれ前記複数のMEMSマイクロホンの信号を受信し、音響解析に用いる信号として処理する。 In order to solve the above problem, an acoustic analysis system according to one aspect of the present invention includes a plurality of microphone array modules and a control unit that controls the plurality of microphone array modules. The plurality of microphone array modules have a plurality of MEMS microphones, respectively, and perform control related to recording of the plurality of MEMS microphones. The microphone array module includes a reception unit that receives signals from the plurality of MEMS microphones, and a transmission unit that transmits signals from the plurality of MEMS microphones to the control unit. The signals of the plurality of MEMS microphones are respectively received from the microphone array module and processed as signals used for acoustic analysis.
 本発明の一つの態様によれば、アンプやA/Dコンバータ等をそれぞれ内蔵可能なMEMSマイクロホンを有するマイクロホンアレイモジュールを追加することで、容易にマイクロホンの数を増やすことができる。したがって、被測定物のサイズに応じてマイクロホンの数を可変しやすく、被測定物に応じた適切な音場分布の測定が可能となる。 According to one aspect of the present invention, the number of microphones can be easily increased by adding a microphone array module having MEMS microphones each capable of incorporating an amplifier, an A / D converter, and the like. Therefore, the number of microphones can be easily changed according to the size of the object to be measured, and an appropriate sound field distribution according to the object to be measured can be measured.
図1は、音響解析システムの一例を示す図である。FIG. 1 is a diagram illustrating an example of an acoustic analysis system. 図2は、マイクロホンアレイの制御システムの構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a control system of the microphone array. 図3は、マイクロホンアレイモジュールの構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of the microphone array module. 図4は、制御部の構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of the control unit. 図5は、アナログ信号の一例を示す図である。FIG. 5 is a diagram illustrating an example of an analog signal. 図6は、遅延時間の算出方法を説明する図である。FIG. 6 is a diagram illustrating a method for calculating the delay time. 図7は、マイクロホンアレイモジュールの別の例を示す図である。FIG. 7 is a diagram illustrating another example of the microphone array module.
  以下、図面を用いて本発明の実施の形態について説明する。
 なお、本発明の範囲は、以下の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The scope of the present invention is not limited to the following embodiment, and can be arbitrarily changed within the scope of the technical idea of the present invention.
 図1は、本実施形態におけるマイクロホンアレイ1を備える音響解析システム1000の構成例である。
 本実施形態における音響解析システム1000は、近接場音響ホログラフィ法を使用して被測定物(音源)2からの被測定音を解析するシステムである。近接場音響ホログラフィ法では、音源面2aに近接し且つ平行な測定面の音圧分布を測定する必要があり、複数のマイクロホンmcを格子状に配置したマイクロホンアレイ1が用いられる。
 本実施形態におけるマイクロホンアレイ1は、格子状の配置されたM×N個のマイクロホンmcを備える。マイクロホンmcは、例えばMEMS(Micro-Electrical-Mechanical Systems)マイクロホンとすることができる。音響解析システム1000は、M×N個のマイクロホンmcの各々から入力された信号を解析し、音の特徴を表す物理量を検出する。
FIG. 1 is a configuration example of an acoustic analysis system 1000 including a microphone array 1 according to this embodiment.
The acoustic analysis system 1000 according to this embodiment is a system that analyzes a sound to be measured from the object to be measured (sound source) 2 using a near-field acoustic holography method. In the near-field acoustic holography method, it is necessary to measure a sound pressure distribution on a measurement surface that is close to and parallel to the sound source surface 2a, and a microphone array 1 in which a plurality of microphones mc are arranged in a lattice shape is used.
The microphone array 1 in the present embodiment includes M × N microphones mc arranged in a lattice pattern. The microphone mc may be a MEMS (Micro-Electrical-Mechanical Systems) microphone, for example. The acoustic analysis system 1000 analyzes a signal input from each of the M × N microphones mc, and detects a physical quantity representing a sound characteristic.
 また、音響解析システム1000は、音響解析装置100と、表示装置200と、を備える。
 音響解析装置100は、信号処理部101と、解析処理部102と、記憶部103と、を備える。信号処理部101は、マイクロホンアレイ1の各マイクロホンmcからの信号に対して所定の信号処理を行い、音響解析に用いる信号を得る。本実施形態では、信号処理部101は、マイクロホンアレイ1が備えるM×N個のマイクロホンmcの信号の同期をとる処理を行う。信号処理部101の具体的な構成については後述する。
The acoustic analysis system 1000 includes an acoustic analysis device 100 and a display device 200.
The acoustic analysis device 100 includes a signal processing unit 101, an analysis processing unit 102, and a storage unit 103. The signal processing unit 101 performs predetermined signal processing on the signal from each microphone mc of the microphone array 1 to obtain a signal used for acoustic analysis. In the present embodiment, the signal processing unit 101 performs processing for synchronizing the signals of M × N microphones mc included in the microphone array 1. A specific configuration of the signal processing unit 101 will be described later.
 解析処理部102は、信号処理部101により信号処理された信号を解析し、音の特徴を表す物理量を検出する。すなわち、解析処理部は、制御部により処理された信号を解析し、音の特徴を表す物理量を検出する。ここで、音の特徴を表す物理量は、音圧分布や粒子速度分布等を含む。そして、解析処理部102は、音の特徴を表す物理量に対応する画像を生成し、当該画像を表示装置200に表示させる表示制御を行う。
 記憶部103は、解析処理部102による解析結果等を記憶する。
 表示装置200は、液晶ディスプレイ等のモニタを備え、音響解析装置100の解析結果である上記画像を表示する。
The analysis processing unit 102 analyzes the signal subjected to the signal processing by the signal processing unit 101 and detects a physical quantity representing the feature of the sound. In other words, the analysis processing unit analyzes the signal processed by the control unit, and detects a physical quantity representing the feature of the sound. Here, the physical quantity representing the characteristics of the sound includes a sound pressure distribution, a particle velocity distribution, and the like. Then, the analysis processing unit 102 generates an image corresponding to the physical quantity representing the feature of the sound, and performs display control for displaying the image on the display device 200.
The storage unit 103 stores the analysis result by the analysis processing unit 102 and the like.
The display device 200 includes a monitor such as a liquid crystal display, and displays the image that is the analysis result of the acoustic analysis device 100.
 図2は、マイクロホンアレイ1の制御システムの構成例を示す図である。
 マイクロホンアレイ1の制御システムは、M個のマイクロホンアレイモジュールC(1)~C(M)と、これらM個のマイクロホンアレイモジュールC(1)~C(M)を制御する制御部Bと、を備える。マイクロホンアレイモジュールC(1)~C(M)は、それぞれ同一構成を有する。
 マイクロホンアレイモジュールC(m)は、N個のマイクロホンmc(m,1)~mc(m,N)と、これらN個のマイクロホンmc(m,1)~mc(m,N)の録音に関する制御を行うマイクロホンアレイ制御部A(m)と、を備える。N個のマイクロホンmc(m,1)~mc(m,N)は、マイクロホンアレイ1が備える格子状に配置されたM×N個のマイクロホンmcのうち、横1列もしくは縦1列に配列されたマイクロホンmcである。マイクロホンアレイモジュールC(m)は、例えばスマートスピーカー(AIスピーカー)とすることができる。
 M個のマイクロホンアレイ制御部A(1)~A(M)は、それぞれN個のマイクロホンから信号(マイク入力信号)を受信する。なお、1つのマイクロホンアレイ制御部A(m)が制御するN個のマイクロホンの同期は、電気的にとれているものとする。
FIG. 2 is a diagram illustrating a configuration example of a control system of the microphone array 1.
The control system of the microphone array 1 includes M microphone array modules C (1) to C (M) and a control unit B that controls these M microphone array modules C (1) to C (M). Prepare. The microphone array modules C (1) to C (M) have the same configuration.
The microphone array module C (m) controls the N microphones mc (m, 1) to mc (m, N) and the recording of these N microphones mc (m, 1) to mc (m, N). A microphone array control unit A (m). The N microphones mc (m, 1) to mc (m, N) are arranged in one horizontal row or one vertical row among the M × N microphones mc arranged in a lattice pattern included in the microphone array 1. Microphone mc. The microphone array module C (m) can be a smart speaker (AI speaker), for example.
M microphone array controllers A (1) to A (M) receive signals (microphone input signals) from N microphones, respectively. It is assumed that the N microphones controlled by one microphone array control unit A (m) are electrically synchronized.
 制御部Bは、図1の信号処理部101が備えることができる。制御部Bは、録音指令とアナログ信号S(t)とをマイクロホンアレイモジュールC(1)~C(M)にそれぞれ送信する。
 各マイクロホンアレイモジュールC(m)は、制御部Bから送信された録音指令を受信する機能と、録音指令に応答して、N個のマイクロホンmcのマイク入力信号と、制御部Bからのアナログ信号S(t)とを同一サンプリング周期dtで同時に受信する機能と、をそれぞれ有する。さらに、各マイクロホンアレイモジュールC(m)は、このとき取得したN個のマイク入力信号とアナログ信号S(t)とをA/D変換し、音響解析用の信号であるN個のマイクロホン入力データD(m,1,dt)~D(m,n,dt)と、アナログ入力データDs(m,dt)とを、制御部Bに送信する機能をそれぞれ有する。
The control unit B can be included in the signal processing unit 101 of FIG. The control unit B transmits a recording command and an analog signal S (t) to the microphone array modules C (1) to C (M), respectively.
Each microphone array module C (m) receives a recording command transmitted from the control unit B, and in response to the recording command, microphone input signals of N microphones mc and an analog signal from the control unit B A function of simultaneously receiving S (t) in the same sampling period dt. Further, each microphone array module C (m) performs A / D conversion on the N microphone input signals and the analog signal S (t) acquired at this time, and N microphone input data which are signals for acoustic analysis. D (m, 1, dt) to D (m, n, dt) and analog input data Ds (m, dt) are transmitted to the control unit B, respectively.
 図3は、マイクロホンアレイモジュールC(m)の構成例を示す図である。
 マイクロホンアレイ制御部A(m)は、入出力制御部111と、N個の入力信号受信部112と、1個のアナログ信号受信部113と、を備える。
 入出力制御部111は、マイクロホンアレイモジュールC(m)におけるデータの入出力を制御する。具体的には、入出力制御部111は、制御部Bから送信された録音指令を受信すると、当該録音指令に応答して、N個の入力信号受信部112とアナログ信号受信部113とが同一サンプリング周期dtで同時に信号を受信するよう制御する。すなわち、受信部は、録音指令に応答して、複数のMEMSマイクロホンの信号をアナログ信号と同時に受信する。
FIG. 3 is a diagram illustrating a configuration example of the microphone array module C (m).
The microphone array control unit A (m) includes an input / output control unit 111, N input signal reception units 112, and one analog signal reception unit 113.
The input / output control unit 111 controls input / output of data in the microphone array module C (m). Specifically, when the input / output control unit 111 receives the recording command transmitted from the control unit B, in response to the recording command, the N input signal receiving units 112 and the analog signal receiving unit 113 are the same. Control is performed so that signals are simultaneously received at the sampling period dt. That is, the receiving unit receives the signals of the plurality of MEMS microphones simultaneously with the analog signal in response to the recording command.
 N個の入力信号受信部112は、入出力制御部111の制御により、マイクロホンmc(m,1)~mc(m,N)からそれぞれマイク入力信号Mic(m,1,t)~Mic(m,N,t)を受信する。マイクロホンmcは、MEMS技術を用いた音響トランスデューサ(MEMSチップ)とアンプとを内蔵し、基板に表面実装されている。マイクロホンmcは、音響トランスデューサによって音(音圧)を電気信号に変換し、変換した電気信号をアンプによって増幅して出力する。
 そして、各入力信号受信部112は、受信したマイク入力信号Mic(m,1,t)~Mic(m,N,t)をそれぞれA/D変換し、マイクロホン入力データD(m,1,dt)~D(m,N,dt)を入出力制御部111に出力する。
Under the control of the input / output control unit 111, the N input signal receiving units 112 receive microphone input signals Mic (m, 1, t) to Mic (m) from the microphones mc (m, 1) to mc (m, N), respectively. , N, t). The microphone mc incorporates an acoustic transducer (MEMS chip) using an MEMS technology and an amplifier, and is surface-mounted on a substrate. The microphone mc converts sound (sound pressure) into an electrical signal using an acoustic transducer, amplifies the converted electrical signal using an amplifier, and outputs the amplified signal.
Each input signal receiving unit 112 performs A / D conversion on the received microphone input signals Mic (m, 1, t) to Mic (m, N, t), respectively, and microphone input data D (m, 1, dt). ) To D (m, N, dt) are output to the input / output control unit 111.
 また、アナログ信号受信部113は、入出力制御部111の制御により、制御部Bからアナログ信号S(t)を受信する。なお、制御部Bから送信されるアナログ信号S(t)は、アナログ信号受信部113に遅延回路を介することなく、直接入力される。アナログ信号受信部113は、受信したアナログ信号S(t)をA/D変換し、アナログ入力データDs(m,dt)を入出力制御部111に出力する。 Further, the analog signal receiving unit 113 receives the analog signal S (t) from the control unit B under the control of the input / output control unit 111. The analog signal S (t) transmitted from the control unit B is directly input to the analog signal receiving unit 113 without using a delay circuit. The analog signal receiving unit 113 A / D converts the received analog signal S (t) and outputs analog input data Ds (m, dt) to the input / output control unit 111.
 入出力制御部111は、N個の入力信号受信部112が出力するN個のマイクロホン入力データD(m,1,dt)~D(m,n,dt)と、アナログ信号受信部113が出力するアナログ入力データDs(m,dt)とを受信する。そして、入出力制御部111は、受信したマイクロホン入力データD(m,1,dt)~D(m,n,dt)をアナログ入力データDs(m,dt)とともに制御部Bに送信する。すなわち、送信部は、受信部により受信された複数のMEMSマイクロホンの信号をアナログ信号とともに制御部に送信する。 The input / output control unit 111 includes N microphone input data D (m, 1, dt) to D (m, n, dt) output from the N input signal receiving units 112, and an analog signal receiving unit 113 outputs Analog input data Ds (m, dt) to be received. The input / output control unit 111 transmits the received microphone input data D (m, 1, dt) to D (m, n, dt) to the control unit B together with the analog input data Ds (m, dt). That is, the transmission unit transmits the signals of the plurality of MEMS microphones received by the reception unit to the control unit together with the analog signals.
 図4は、制御部Bの構成例を示す図である。
 制御部Bは、マイクロホンアレイモジュールC(1)~C(M)のマイクロホンアレイ制御部A(1)~A(M)に対して録音指令を送信する機能と、マイクロホンアレイ制御部A(1)~A(M)に対してアナログ信号S(t)を送信する機能と、を有する。すなわち、制御部は、複数のマイクロホンアレイモジュールに対して、録音指令を送信する録音指令部と、複数のマイクロホンアレイモジュールに対して、アナログ信号を送信するアナログ信号送信部と、を有する。また、制御部Bは、マイクロホンアレイ制御部A(1)~A(M)から、マイクロホン入力データD(m,n,dt)とアナログ入力データDs(m,dt)とを受信する機能を有する。さらに、制御部Bは、マイクロホンアレイ制御部A(1)~A(M)から受信したマイクロホン入力データD(m,n)の位相を揃える機能を有する。すなわち、制御部は、複数のマイクロホンアレイモジュールから受信した複数のMEMSマイクロホンの信号の位相を揃える処理を行う。
FIG. 4 is a diagram illustrating a configuration example of the control unit B.
The control unit B has a function of transmitting a recording command to the microphone array control units A (1) to A (M) of the microphone array modules C (1) to C (M), and the microphone array control unit A (1). To transmit an analog signal S (t) to A (M). That is, the control unit includes a recording command unit that transmits a recording command to the plurality of microphone array modules, and an analog signal transmission unit that transmits an analog signal to the plurality of microphone array modules. The control unit B has a function of receiving microphone input data D (m, n, dt) and analog input data Ds (m, dt) from the microphone array control units A (1) to A (M). . Further, the control unit B has a function of aligning the phases of the microphone input data D (m, n) received from the microphone array control units A (1) to A (M). That is, the control unit performs a process of aligning the phases of the signals of the plurality of MEMS microphones received from the plurality of microphone array modules.
 制御部Bは、録音指令部114と、アナログ信号送信部115と、遅延算出部116と、遅延補正部117と、を備える。
 録音指令部114は、録音指令を生成し、当該録音指令をM個のマイクロホンアレイ制御部A(1)~A(M)にそれぞれ送信する。
 アナログ信号送信部115は、信号生成部115aと、D/A変換部115bと、を有し、アナログ信号S(t)を生成してM個のマイクロホンアレイ制御部A(1)~A(M)に送信する。
The control unit B includes a recording command unit 114, an analog signal transmission unit 115, a delay calculation unit 116, and a delay correction unit 117.
The recording command unit 114 generates a recording command and transmits the recording command to the M microphone array control units A (1) to A (M).
The analog signal transmission unit 115 includes a signal generation unit 115a and a D / A conversion unit 115b, generates an analog signal S (t), and M microphone array control units A (1) to A (M ).
 図5は、アナログ信号S(t)の一例を示す図である。
 アナログ信号S(t)は、一定周期で振動し、その振幅が変動する信号であり、例えば、サンプリング周期dtの10倍程度の一定周期T1で振動し、その振幅A0が周期T1の2倍以上の周期T2で変動する信号とすることができる。すなわち、アナログ信号送信部は、アナログ信号として、一定周期で振動し、振幅が変動する信号を送信する。
 すなわち、アナログ信号S(t)は、次式により表すことができる。
 S(t)=A0(t)・sin(2πt/T1) ………(1)
 ここで、振幅A0(t)は、次式により表すことができる。
 A0(t)=sin(2πt/T2) ………(2)
FIG. 5 is a diagram illustrating an example of the analog signal S (t).
The analog signal S (t) is a signal that oscillates at a constant period and whose amplitude fluctuates. For example, the analog signal S (t) oscillates at a constant period T1 that is about 10 times the sampling period dt, and its amplitude A 0 is twice the period T1. It can be set as the signal which fluctuates with the above period T2. In other words, the analog signal transmission unit transmits a signal that oscillates at a constant cycle and varies in amplitude as an analog signal.
That is, the analog signal S (t) can be expressed by the following equation.
S (t) = A 0 (t) · sin (2πt / T1) (1)
Here, the amplitude A 0 (t) can be expressed by the following equation.
A 0 (t) = sin (2πt / T2) (2)
 図4に戻って、遅延算出部116は、各マイクロホンアレイモジュールC(m)から取得したマイクロホンの信号の遅延時間td(m)を算出する。本実施形態では、遅延算出部116は、各マイクロホンアレイ制御部A(m)が送信するアナログ入力データDs(m,dt)に基づいて、遅延時間td(m)を算出する。すなわち、遅延算出部は、送信部により送信されたアナログ信号に基づいて、複数のマイクロホンアレイモジュールから受信した複数のMEMSマイクロホンの信号の遅延時間を算出する。
 具体的には、遅延算出部116は、任意のマイクロホンアレイ制御部A(m0)から送信されるアナログ入力データDs(m0,dt)をリファレンスとして、他のマイクロホンアレイ制御部A(m)から送信されるアナログ入力データDs(m,dt)をパターンマッチングする。そして、そのパターンマッチングの結果をもとに、遅延算出部116は、アナログ入力データDs(m0)の位相とアナログ入力データDs(m)の位相との相違を算出し、当該相違に基づいて、マイクロホンアレイモジュールC(m)から受信したデータの遅延時間td(m)を算出する。すなわち、遅延算出部は、複数のマイクロホンアレイモジュールのうちの1つである第一のマイクロホンアレイモジュールが有する送信部から送信されるアナログ信号の位相と、複数のマイクロホンアレイモジュールのうちの他の1つである第二のマイクロホンアレイモジュールが有する送信部から送信されるアナログ信号の位相と、の相違に基づいて、遅延時間を算出する。
Returning to FIG. 4, the delay calculation unit 116 calculates the delay time td (m) of the microphone signal acquired from each microphone array module C (m). In the present embodiment, the delay calculation unit 116 calculates the delay time td (m) based on the analog input data Ds (m, dt) transmitted by each microphone array control unit A (m). That is, the delay calculation unit calculates the delay times of the signals of the plurality of MEMS microphones received from the plurality of microphone array modules based on the analog signal transmitted by the transmission unit.
Specifically, the delay calculation unit 116 transmits the analog input data Ds (m0, dt) transmitted from the arbitrary microphone array control unit A (m0) as a reference and transmits from the other microphone array control unit A (m). Pattern matching is performed on the analog input data Ds (m, dt). Then, based on the result of the pattern matching, the delay calculation unit 116 calculates the difference between the phase of the analog input data Ds (m0) and the phase of the analog input data Ds (m), and based on the difference, The delay time td (m) of data received from the microphone array module C (m) is calculated. That is, the delay calculation unit includes the phase of the analog signal transmitted from the transmission unit included in the first microphone array module, which is one of the plurality of microphone array modules, and the other one of the plurality of microphone array modules. The delay time is calculated based on the difference from the phase of the analog signal transmitted from the transmitter included in the second microphone array module.
 図6は、遅延時間td(m)の算出方法を説明する図である。
 この図6において、三角印(▲)は、リファレンスとするアナログ入力データDs(m0)をプロットした図、バツ印(×)は、遅延時間td(m)の算出対象とするマイクロホンアレイモジュールC(m)から出力されたアナログ入力データDs(m)をプロットした図である。
FIG. 6 is a diagram illustrating a method for calculating the delay time td (m).
In FIG. 6, the triangle mark (▲) is a plot of analog input data Ds (m0) as a reference, and the cross mark (×) is a microphone array module C (target for calculating the delay time td (m). It is the figure which plotted the analog input data Ds (m) output from m).
 このように、遅延算出部116は、アナログ入力データDs(m0)の位相と、アナログ入力データDs(m)の位相との相違に基づいて、マイクロホンアレイモジュールC(m0)から取得されるデータに対するマイクロホンアレイモジュールC(m)から取得されるデータの遅延時間td(m)を算出する。
 遅延算出部116は、各マイクロホンアレイモジュールC(1)~C(M)について、それぞれ遅延時間td(1)~td(M)を算出する。そして、遅延算出部116は、算出した遅延時間td(1)~td(M)を遅延補正部117に出力する。
As described above, the delay calculation unit 116 applies the data acquired from the microphone array module C (m0) based on the difference between the phase of the analog input data Ds (m0) and the phase of the analog input data Ds (m). A delay time td (m) of data acquired from the microphone array module C (m) is calculated.
The delay calculation unit 116 calculates delay times td (1) to td (M) for the microphone array modules C (1) to C (M), respectively. Then, the delay calculation unit 116 outputs the calculated delay times td (1) to td (M) to the delay correction unit 117.
 遅延補正部117は、遅延算出部116により算出された遅延時間td(m)に基づいて、各マイクロホンアレイモジュールC(m)から取得されたマイクロホン入力データD(m,n,dt)の位相を揃える処理を行い、補正後のマイクロホン入力補正データD’(m,n,dt)を算出する。すなわち、遅延補正部は、遅延時間に基づいて、複数のマイクロホンアレイモジュールから受信した複数のMEMSマイクロホンの信号の位相を揃える処理を行う。
 例えば、遅延補正部117は、遅延時間td(m)をサンプリング周期dtの整数倍kに丸め、マイクロホン入力データD(m,n,dt)を時間方向に遅延時間分(k点)シフトするデータシフト方法により、遅延時間を補正する。すなわち、遅延補正部は、マイクロホンアレイモジュールから受信した複数のMEMSマイクロホンの信号を、遅延時間分シフトする。
 D’(m,n,dt)=D(m,n,dt+k) ………(3)
 k=int(td(m)/dt) ………(4)
 上記(4)式において、int( )は、括弧内の値の小数点以下を切り捨てる関数である。
The delay correction unit 117 calculates the phase of the microphone input data D (m, n, dt) acquired from each microphone array module C (m) based on the delay time td (m) calculated by the delay calculation unit 116. Alignment processing is performed, and corrected microphone input correction data D ′ (m, n, dt) is calculated. That is, the delay correction unit performs processing for aligning the phases of the signals of the plurality of MEMS microphones received from the plurality of microphone array modules based on the delay time.
For example, the delay correcting unit 117 rounds the delay time td (m) to an integral multiple k of the sampling period dt, and shifts the microphone input data D (m, n, dt) by the delay time (k points) in the time direction. The delay time is corrected by the shift method. That is, the delay correction unit shifts the signals of the plurality of MEMS microphones received from the microphone array module by the delay time.
D ′ (m, n, dt) = D (m, n, dt + k) (3)
k = int (td (m) / dt) (4)
In the above equation (4), int () is a function that truncates the value in parentheses after the decimal point.
 また、別の補正方法として、例えば、遅延補正部117は、マイクロホン入力データD(m,n,dt)を周波数分解し、周波数ごとに位相を進める方法を用いてもよい。この場合、伝達関数H(k)=exp(-dω(k))を用いて、次式に表される演算を行う。
 F-1(F(D(m,n,dt))◎H(k)) ………(5)
 上記(5)式において、◎は、畳み込み積分を表す。
As another correction method, for example, the delay correction unit 117 may use a method in which the microphone input data D (m, n, dt) is frequency-resolved and the phase is advanced for each frequency. In this case, using the transfer function H (k) = exp (−dω (k)), the calculation represented by the following equation is performed.
F −1 (F (D (m, n, dt))) H (k)) (5)
In the above equation (5), ◎ represents a convolution integral.
 このように、遅延補正部117は、マイクロホン入力データD(m,n,dt)をフーリエ変換することにより周波数領域データF(D(m,n,dt))を生成し、この周波数領域データに遅延時間td(m)から導出される整数kに対応する伝達関数H(k)を畳み込んで逆フーリエ変換する。このように、周波数空間で遅延時間を補正してもよい。すなわち、遅延補正部は、マイクロホンアレイモジュールから受信した複数のMEMSマイクロホンの信号をフーリエ変換することにより周波数領域データを生成し、周波数領域データに遅延時間に対応する伝達関数を畳み込んで逆フーリエ変換することにより、数のMEMSマイクロホンの信号を周波数空間で補正する。
 なお、遅延時間を補正する方法は、上記に限定されるものではなく、任意の方法を適用することができる。また、上述した制御部Bの機能は、任意のマイクロホンアレイ制御部A(m0)が実現してもよい。すなわち、複数のマイクロホンアレイモジュールのうちの1つが制御部を備えてもよい。
As described above, the delay correction unit 117 generates frequency domain data F (D (m, n, dt)) by performing Fourier transform on the microphone input data D (m, n, dt), and the frequency domain data is converted into the frequency domain data. The transfer function H (k) corresponding to the integer k derived from the delay time td (m) is convolved and inverse Fourier transformed. In this way, the delay time may be corrected in the frequency space. That is, the delay correction unit generates frequency domain data by performing Fourier transform on the signals of the plurality of MEMS microphones received from the microphone array module, and convolves the transfer function corresponding to the delay time with the frequency domain data to perform inverse Fourier transform. By doing so, the signals of several MEMS microphones are corrected in the frequency space.
The method for correcting the delay time is not limited to the above, and any method can be applied. Further, the function of the control unit B described above may be realized by an arbitrary microphone array control unit A (m0). That is, one of the plurality of microphone array modules may include a control unit.
 ところで、音響解析用のマイクロホンアレイとしては、一般に32ch以上のマイクロホンを必要とし、各マイクロホンからの信号の同期を正確にとる必要がある。そのため、1つの制御部が、マイクロホンアレイを構成するすべてのマイクロホンの録音に関する制御を実施することが一般的であった。
 しかしながら、例えば1000chを超える大規模なマイクロホンアレイを用いる場合、1つの制御部がすべてのマイクロホンを制御するためには、専用機の開発が必要となりシステムが高額になるという問題がある。
By the way, a microphone array for acoustic analysis generally requires microphones of 32ch or more, and it is necessary to accurately synchronize signals from each microphone. For this reason, it is common that one control unit performs control related to recording of all microphones constituting the microphone array.
However, for example, when a large-scale microphone array exceeding 1000 channels is used, in order for one control unit to control all the microphones, there is a problem that a dedicated machine needs to be developed and the system becomes expensive.
 そこで、本実施形態では、複数(N個)のマイクロホンの録音に関する制御を行うマイクロホンアレイモジュールC(m)を複数(M個)組み合わせ、M×Nマイクロホンアレイを備える音響解析システムを構成する。
 具体的には、音響解析システムは、N個のマイクロホンをそれぞれ制御するM個のマイクロホンアレイモジュールC(m)と、これらM個のマイクロホンアレイモジュールC(m)を制御する制御部Bと、を備える。マイクロホンアレイモジュールC(m)は、N個のマイクロホンの信号を受信する受信部と、N個のマイクロホンの信号を制御部Bに送信する送信部と、を有し、制御部Bは、M個のマイクロホンアレイモジュールC(m)からそれぞれマイクロホンの信号を受信し、音響解析に用いる信号として処理する。
Thus, in this embodiment, an acoustic analysis system including an M × N microphone array is configured by combining a plurality (M) of microphone array modules C (m) that perform control related to recording of a plurality (N) of microphones.
Specifically, the acoustic analysis system includes M microphone array modules C (m) that respectively control N microphones, and a control unit B that controls these M microphone array modules C (m). Prepare. The microphone array module C (m) includes a receiving unit that receives N microphone signals and a transmitting unit that transmits N microphone signals to the control unit B. The control unit B includes M number of signals. The microphone array module C (m) receives a microphone signal and processes it as a signal used for acoustic analysis.
 このような構成により、例えばスマートスピーカー(AIスピーカー)など、民生用に普及している8ch程度のマイクロホンアレイモジュールC(m)を複数利用して、32ch以上が必要となる音響解析用に利用可能な大規模な音響解析システムを安価に実現することができる。
 また、音響解析においては、あらゆる物を測定したいという要望から、被測定物のサイズに応じてマイクロホンアレイの大きさ(マイクロホンの数)を調整したいという要望がある。本実施形態では、マイクロホンアレイモジュールC(m)が備えるマイクロホンmcは、アンプが内蔵されたMEMSマイクロホンであり、マイクロホンアレイモジュールC(m)は、マイクロホン、アンプおよびA/Dコンバータ等を備える。したがって、制御部Bに接続するマイクロホンアレイモジュールC(m)の数を増減させることで、複雑なシステム設計の変更を必要とすることなく、容易にマイクロホンアレイを構成するマイクロホンの数を調整することができる。このように、本実施形態における音響解析システムは、マイクロホンの数を可変しやすく、あらゆるサイズの被測定物を測定しやすいシステムとすることができる。
With such a configuration, for example, a smart speaker (AI speaker) can be used for acoustic analysis that requires more than 32 channels by using multiple microphone array modules C (m) of about 8 channels that are widely used for consumer use. A large-scale acoustic analysis system can be realized at low cost.
Further, in acoustic analysis, there is a demand for adjusting the size of the microphone array (the number of microphones) according to the size of the object to be measured because of the desire to measure all objects. In the present embodiment, the microphone mc included in the microphone array module C (m) is a MEMS microphone including an amplifier, and the microphone array module C (m) includes a microphone, an amplifier, an A / D converter, and the like. Therefore, by adjusting the number of microphone array modules C (m) connected to the control unit B, the number of microphones constituting the microphone array can be easily adjusted without requiring complicated system design changes. Can do. As described above, the acoustic analysis system according to the present embodiment can be a system in which the number of microphones can be easily changed and an object to be measured of any size can be easily measured.
 ここで、上述したように、マイクロホンアレイモジュールC(m)は、スマートスピーカー(AIスピーカー)とすることができる。このように、複数のAIスピーカーを組み合わせて音響解析に使用することができる。
 ただし、複数のAIスピーカーを組み合わせたシステムの場合、制御部から複数のAIスピーカー(マイクロホンアレイモジュール)に対して同時に録音指令を送信したとしても、通信処理の遅延等により、各AIスピーカー(マイクロホンアレイモジュール)はそれぞれのタイミングで音を測定してしまう。つまり、AIスピーカー内においてはマイクロホンの信号の同期を容易にとることができるが、異なるAIスピーカー間ではマイクロホンの信号の同期がとれない。
Here, as described above, the microphone array module C (m) can be a smart speaker (AI speaker). Thus, a plurality of AI speakers can be combined and used for acoustic analysis.
However, in the case of a system in which a plurality of AI speakers are combined, even if recording commands are simultaneously transmitted from the control unit to the plurality of AI speakers (microphone array module), each AI speaker (microphone array) may be delayed due to a delay in communication processing. Module) measures the sound at each timing. That is, the microphone signal can be easily synchronized within the AI speaker, but the microphone signal cannot be synchronized between different AI speakers.
 上述したように、音響解析においては、各マイクロホンの信号の同期を正確にとる必要がある。そのため、マイクロホンアレイを構成するマイクロホンの数を増やすためにマイクロホンアレイモジュール(AIスピーカー)を増やした場合、マイクロホンアレイモジュール(AIスピーカー)間でマイクロホンの信号の同期を正確にとる必要がある。そこで、本実施形態では、制御部Bは、各マイクロホンアレイモジュールC(m)に対して、同期用の信号として、それぞれアナログ信号S(t)を入力する。そして、各マイクロホンアレイモジュールC(m)において、マイク入力信号Mic(m,1,t)~Mic(m,N,t)をアナログ信号S(t)と同時に受信し、マイクロホン入力データD(m,n,dt)をアナログ入力データDs(m,dt)とともに制御部Bに送信するようにする。 As described above, in the acoustic analysis, it is necessary to accurately synchronize the signals of the microphones. Therefore, when the number of microphone array modules (AI speakers) is increased in order to increase the number of microphones constituting the microphone array, it is necessary to accurately synchronize microphone signals between the microphone array modules (AI speakers). Therefore, in the present embodiment, the control unit B inputs an analog signal S (t) as a synchronization signal to each microphone array module C (m). In each microphone array module C (m), the microphone input signals Mic (m, 1, t) to Mic (m, N, t) are received simultaneously with the analog signal S (t), and the microphone input data D (m , N, dt) is transmitted to the control unit B together with the analog input data Ds (m, dt).
 これにより、各マイクロホンアレイモジュールにおいて、それぞれ録音を開始するタイミングが異なっていても、制御部Bは、マイクロホン入力データD(m,n,dt)とともに受信されるアナログ入力データDs(m,dt)を用いて、すべてのマイクロホン入力データD(m,n)の位相を揃えることが可能となる。つまり、異なるAIスピーカーを組み合わせたシステムにおいて、異なるAIスピーカー同士でデータの同期をとることが可能となる。
 ここで、制御部Bが各マイクロホンアレイモジュールC(m)に送信するアナログ信号S(t)は、一定周期で振動する信号とする。これにより、比較的容易に各マイクロホンの信号の遅延時間を算出し、同期をとることが可能となる。また、アナログ信号S(t)の振幅を変動させることで、遅延時間がアナログ信号S(t)の1周期以上となる場合であっても、適切に同期をとることが可能となる。
As a result, even when the recording start timing is different in each microphone array module, the control unit B receives the analog input data Ds (m, dt) received together with the microphone input data D (m, n, dt). Can be used to align the phases of all microphone input data D (m, n). In other words, in a system in which different AI speakers are combined, it is possible to synchronize data between different AI speakers.
Here, the analog signal S (t) transmitted from the control unit B to each microphone array module C (m) is a signal that vibrates at a constant period. Thereby, the delay time of the signal of each microphone can be calculated and synchronization can be achieved relatively easily. Further, by varying the amplitude of the analog signal S (t), it is possible to appropriately synchronize even when the delay time is one period or more of the analog signal S (t).
 以上説明したように、本実施形態では、被測定物のサイズに応じてマイクロホンの数を可変しやすく、また、音響解析用に利用可能な同期された音のデータを適切に得ることができる音響解析システムを実現することができる。 As described above, in the present embodiment, the number of microphones can be easily changed according to the size of the object to be measured, and the sound that can be used to appropriately obtain synchronized sound data that can be used for acoustic analysis can be obtained. An analysis system can be realized.
(変形例)
 上記実施形態においては、マイクロホンアレイ制御部A(m)は、制御部Bから送信されるアナログ信号S(t)を直接受信する機能を有する場合について説明した。しかしながら、マイクロホンアレイ制御部A(m)は、アナログ信号S(t)を直接受信する代わりに、アナログ信号S(t)に基づく音声を受信するようにしてもよい。
 この場合、例えば、図7に示すように、マイクロホンアレイモジュールC(m)に、アナログ入力の代用とするマイクロホンmc(m,N+1)を設ける。また、マイクロホンmc(m,N+1)から一定の近接距離には、スピーカーSP(m)を設ける。スピーカーSP(m)は、入出力制御部111の制御により、制御部Bからのアナログ信号S(t)に基づいて超音波帯域の音声を出力する音声出力部である。マイクロホンmc(m,N+1)は、スピーカーSP(m)から出力される音声を収音してマイク入力信号Smic(m,t)を出力する。アナログ信号受信部113は、このマイク入力信号Smic(m,t)をアナログ信号S(t)として受信する。すなわち、マイクロホンアレイモジュールは、アナログ信号送信部により送信されたアナログ信号に基づいて音声を出力する音声出力部をさらに有し、受信部は、アナログ信号として音声を受信する。
 このように、マイクロホンアレイモジュールC(m)は、オーディオ入力によりアナログ信号S(t)を受信してもよい。これにより、マイクロホンアレイモジュールC(m)にアナログ入力端子が無くても、上述した実施形態と同様の効果を得ることができる。
(Modification)
In the above embodiment, the case where the microphone array control unit A (m) has a function of directly receiving the analog signal S (t) transmitted from the control unit B has been described. However, the microphone array control unit A (m) may receive sound based on the analog signal S (t) instead of directly receiving the analog signal S (t).
In this case, for example, as shown in FIG. 7, a microphone mc (m, N + 1) as a substitute for analog input is provided in the microphone array module C (m). A speaker SP (m) is provided at a certain close distance from the microphone mc (m, N + 1). The speaker SP (m) is a sound output unit that outputs sound in the ultrasonic band based on the analog signal S (t) from the control unit B under the control of the input / output control unit 111. The microphone mc (m, N + 1) picks up the sound output from the speaker SP (m) and outputs the microphone input signal Smic (m, t). The analog signal receiving unit 113 receives the microphone input signal Smic (m, t) as an analog signal S (t). That is, the microphone array module further includes an audio output unit that outputs audio based on the analog signal transmitted by the analog signal transmission unit, and the reception unit receives the audio as an analog signal.
Thus, the microphone array module C (m) may receive the analog signal S (t) by audio input. Thereby, even if the microphone array module C (m) does not have an analog input terminal, the same effect as that of the above-described embodiment can be obtained.
 1…マイクロホンアレイ、2…被測定物(音源)、2a…音源面、100…音響解析装置、101…信号処理部、102…解析処理部、103…記憶部、200…表示装置、1000…音響解析システム、A(1)~A(M)…マイクロホンアレイモジュール、B…制御部、mc…マイクロホン DESCRIPTION OF SYMBOLS 1 ... Microphone array, 2 ... Measured object (sound source), 2a ... Sound source surface, 100 ... Sound analysis apparatus, 101 ... Signal processing part, 102 ... Analysis processing part, 103 ... Memory | storage part, 200 ... Display apparatus, 1000 ... Sound Analysis system, A (1) to A (M) ... microphone array module, B ... control unit, mc ... microphone

Claims (11)

  1.  複数のMEMSマイクロホンをそれぞれ有し、前記複数のMEMSマイクロホンの録音に関する制御を行う複数のマイクロホンアレイモジュールと、
     前記複数のマイクロホンアレイモジュールを制御する制御部と、を備え、
     前記マイクロホンアレイモジュールは、
      前記複数のMEMSマイクロホンの信号を受信する受信部と、
      前記複数のMEMSマイクロホンの信号を前記制御部に送信する送信部と、を有し、
     前記制御部は、前記複数のマイクロホンアレイモジュールからそれぞれ前記複数のMEMSマイクロホンの信号を受信し、音響解析に用いる信号として処理することを特徴とする音響解析システム。
    A plurality of microphone array modules each having a plurality of MEMS microphones and performing control related to recording of the plurality of MEMS microphones;
    A control unit for controlling the plurality of microphone array modules,
    The microphone array module is
    A receiver for receiving signals from the plurality of MEMS microphones;
    A transmission unit that transmits signals of the plurality of MEMS microphones to the control unit;
    The control unit receives signals of the plurality of MEMS microphones from the plurality of microphone array modules, respectively, and processes the signals as signals used for acoustic analysis.
  2.  前記制御部は、前記複数のマイクロホンアレイモジュールから受信した前記複数のMEMSマイクロホンの信号の位相を揃える処理を行うことを特徴とする請求項1に記載の音響解析システム。 The acoustic analysis system according to claim 1, wherein the control unit performs a process of aligning phases of signals of the plurality of MEMS microphones received from the plurality of microphone array modules.
  3.  前記制御部は、
      前記複数のマイクロホンアレイモジュールに対して、録音指令を送信する録音指令部と、
      前記複数のマイクロホンアレイモジュールに対して、アナログ信号を送信するアナログ信号送信部と、を有し、
     前記受信部は、前記録音指令に応答して、前記複数のMEMSマイクロホンの信号を前記アナログ信号と同時に受信し、
     前記送信部は、前記受信部により受信された前記複数のMEMSマイクロホンの信号を前記アナログ信号とともに前記制御部に送信することを特徴とする請求項2に記載の音響解析システム。
    The controller is
    A recording command unit that transmits a recording command to the plurality of microphone array modules;
    An analog signal transmitter that transmits an analog signal to the plurality of microphone array modules;
    In response to the recording command, the receiving unit receives the signals of the plurality of MEMS microphones simultaneously with the analog signal,
    The acoustic analysis system according to claim 2, wherein the transmission unit transmits the signals of the plurality of MEMS microphones received by the reception unit to the control unit together with the analog signal.
  4.  前記マイクロホンアレイモジュールは、
      前記アナログ信号送信部により送信された前記アナログ信号に基づいて音声を出力する音声出力部をさらに有し、
     前記受信部は、前記アナログ信号として前記音声を受信することを特徴とする請求項3に記載の音響解析システム。
    The microphone array module is
    An audio output unit that outputs audio based on the analog signal transmitted by the analog signal transmission unit;
    The acoustic analysis system according to claim 3, wherein the reception unit receives the voice as the analog signal.
  5.  前記アナログ信号送信部は、前記アナログ信号として、一定周期で振動し、振幅が変動する信号を送信することを特徴とする請求項3または4に記載の音響解析システム。 The acoustic analysis system according to claim 3 or 4, wherein the analog signal transmission unit transmits a signal that vibrates at a constant period and varies in amplitude as the analog signal.
  6.  前記制御部は、
      前記送信部により送信された前記アナログ信号に基づいて、前記複数のマイクロホンアレイモジュールから受信した前記複数のMEMSマイクロホンの信号の遅延時間を算出する遅延算出部と、
      前記遅延時間に基づいて、前記複数のマイクロホンアレイモジュールから受信した前記複数のMEMSマイクロホンの信号の位相を揃える処理を行う遅延補正部と、をさらに備えることを特徴とする請求項3から5のいずれか1項に記載の音響解析システム。
    The controller is
    A delay calculation unit that calculates delay times of signals of the plurality of MEMS microphones received from the plurality of microphone array modules based on the analog signals transmitted by the transmission unit;
    The delay correction part which performs the process which aligns the phase of the signal of these MEMS microphones received from the said several microphone array module based on the said delay time further, It has any one of Claim 3 to 5 characterized by the above-mentioned. The acoustic analysis system according to claim 1.
  7.  前記遅延算出部は、
     前記複数のマイクロホンアレイモジュールのうちの1つである第一のマイクロホンアレイモジュールが有する前記送信部から送信される前記アナログ信号の位相と、
     前記複数のマイクロホンアレイモジュールのうちの他の1つである第二のマイクロホンアレイモジュールが有する前記送信部から送信される前記アナログ信号の位相と、の相違に基づいて、前記遅延時間を算出することを特徴とする請求項6に記載の音響解析システム。
    The delay calculation unit
    A phase of the analog signal transmitted from the transmitter included in the first microphone array module which is one of the plurality of microphone array modules;
    Calculating the delay time based on a difference from the phase of the analog signal transmitted from the transmitter included in the second microphone array module which is another one of the plurality of microphone array modules. The acoustic analysis system according to claim 6.
  8.  前記遅延補正部は、前記マイクロホンアレイモジュールから受信した前記複数のMEMSマイクロホンの信号を、前記遅延時間分シフトすることを特徴とする請求項6または7に記載の音響解析システム。 The acoustic analysis system according to claim 6 or 7, wherein the delay correction unit shifts signals of the plurality of MEMS microphones received from the microphone array module by the delay time.
  9.  前記遅延補正部は、
     前記マイクロホンアレイモジュールから受信した前記複数のMEMSマイクロホンの信号をフーリエ変換することにより周波数領域データを生成し、
     前記周波数領域データに前記遅延時間に対応する伝達関数を畳み込んで逆フーリエ変換することにより、前記複数のMEMSマイクロホンの信号を周波数空間で補正することを特徴とする請求項6または7に記載の音響解析システム。
    The delay correction unit includes:
    Generate frequency domain data by Fourier transforming the signals of the plurality of MEMS microphones received from the microphone array module;
    8. The signals of the plurality of MEMS microphones are corrected in a frequency space by convolving a transfer function corresponding to the delay time into the frequency domain data and performing inverse Fourier transform. Acoustic analysis system.
  10.  前記複数のマイクロホンアレイモジュールのうちの1つが前記制御部を備えることを特徴とする請求項1から9のいずれか1項に記載の音響解析システム。 The acoustic analysis system according to any one of claims 1 to 9, wherein one of the plurality of microphone array modules includes the control unit.
  11.  前記制御部により処理された前記信号を解析し、音の特徴を表す物理量を検出する解析処理部をさらに備えることを特徴とする請求項1から10のいずれか1項に記載の音響解析システム。 The acoustic analysis system according to any one of claims 1 to 10, further comprising an analysis processing unit that analyzes the signal processed by the control unit and detects a physical quantity representing a characteristic of a sound.
PCT/JP2019/013390 2018-03-28 2019-03-27 Acoustic analysis system WO2019189481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980022859.3A CN112005087A (en) 2018-03-28 2019-03-27 Acoustic analysis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018062686 2018-03-28
JP2018-062686 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019189481A1 true WO2019189481A1 (en) 2019-10-03

Family

ID=68062085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013390 WO2019189481A1 (en) 2018-03-28 2019-03-27 Acoustic analysis system

Country Status (2)

Country Link
CN (1) CN112005087A (en)
WO (1) WO2019189481A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116952356A (en) * 2023-07-24 2023-10-27 中国人民解放军海军工程大学 Near-field radiation noise measurement method based on shallow sea environment underwater acoustic holographic technology

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144432A (en) * 2001-11-12 2003-05-20 Aloka Co Ltd Ultrasonograph
JP2007104556A (en) * 2005-10-07 2007-04-19 Matsushita Electric Ind Co Ltd Microphone device
JP2014191616A (en) * 2013-03-27 2014-10-06 National Institute Of Advanced Industrial & Technology Method and device for monitoring aged person living alone, and service provision system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092539B2 (en) * 2000-11-28 2006-08-15 University Of Florida Research Foundation, Inc. MEMS based acoustic array
JP2005091272A (en) * 2003-09-19 2005-04-07 Fuji Xerox Co Ltd Sound pressure distribution analysis system
CN101668243B (en) * 2008-09-01 2012-10-17 华为终端有限公司 Microphone array and method and module for calibrating same
JP5423370B2 (en) * 2009-12-10 2014-02-19 船井電機株式会社 Sound source exploration device
JP5655498B2 (en) * 2010-10-22 2015-01-21 ヤマハ株式会社 Sound field visualization system
KR101213540B1 (en) * 2011-08-18 2012-12-18 (주)에스엠인스트루먼트 Acoustic senseing device and acoustic camera using mems microphone array
CN203193889U (en) * 2013-03-25 2013-09-11 湖北工业大学 Sound pick-up device based on microphone array voice noise reduction technology
CN205249484U (en) * 2015-12-30 2016-05-18 临境声学科技江苏有限公司 Microphone linear array reinforcing directive property adapter
CN105702261B (en) * 2016-02-04 2019-08-27 厦门大学 Sound focusing microphone array long range sound pick up equipment with phase self-correcting function
CN107040856B (en) * 2016-02-04 2023-12-08 共达电声股份有限公司 Microphone array module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144432A (en) * 2001-11-12 2003-05-20 Aloka Co Ltd Ultrasonograph
JP2007104556A (en) * 2005-10-07 2007-04-19 Matsushita Electric Ind Co Ltd Microphone device
JP2014191616A (en) * 2013-03-27 2014-10-06 National Institute Of Advanced Industrial & Technology Method and device for monitoring aged person living alone, and service provision system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIETE JELMER ET AL.: "Sound Compass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization", SENSORS, vol. 14, no. 2, 2014, pages 1918 - 1949, XP055640336 *

Also Published As

Publication number Publication date
CN112005087A (en) 2020-11-27

Similar Documents

Publication Publication Date Title
EP3383064B1 (en) Echo cancellation method and system
US9756446B2 (en) Robust crosstalk cancellation using a speaker array
CN108886665B (en) Audio system equalization
JP5043701B2 (en) Audio playback device and control method thereof
US20160035337A1 (en) Enhancing audio using a mobile device
CN105190743A (en) Adjusting the beam pattern of a speaker array based on the location of one or more listeners
EP3369255B1 (en) Method and apparatus for recreating directional cues in beamformed audio
JP6508539B2 (en) Sound field collecting apparatus and method, sound field reproducing apparatus and method, and program
JP2007013707A (en) Wireless speaker system, audio signal transmitter, reproduced sound phase synchronizing device, reproduced sound phase synchronizing method and reproduced sound phase synchronization program
WO2017061023A1 (en) Audio signal processing method and device
JP2016015722A5 (en)
WO2019189481A1 (en) Acoustic analysis system
US9966058B2 (en) Area-sound reproduction system and area-sound reproduction method
WO2016192277A1 (en) Bone conduction sound transmission device and method
US10104471B2 (en) Tactile bass response
WO2018211988A1 (en) Sound output control device, sound output control method, and program
RU2716846C2 (en) Audio signal correction method
CN102196348B (en) Human body sound transmission apparatus
JP4892095B1 (en) Acoustic correction device and acoustic correction method
JP2007017415A (en) Method of measuring time difference of impulse response
US20160057545A1 (en) Piezoelectric speaker driving system and method thereof
KR101597918B1 (en) Beam forming and steering apparatus for parametric array using memory array bank
WO2023286413A1 (en) Area reproduction system and area reproduction method
JP5698164B2 (en) Sound field recording / reproducing apparatus, method, and program
US11895468B2 (en) System and method for synchronization of multi-channel wireless audio streams for delay and drift compensation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP