WO2019188304A1 - Detection device - Google Patents

Detection device Download PDF

Info

Publication number
WO2019188304A1
WO2019188304A1 PCT/JP2019/010348 JP2019010348W WO2019188304A1 WO 2019188304 A1 WO2019188304 A1 WO 2019188304A1 JP 2019010348 W JP2019010348 W JP 2019010348W WO 2019188304 A1 WO2019188304 A1 WO 2019188304A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
excitation light
light
fluorescence
axis
Prior art date
Application number
PCT/JP2019/010348
Other languages
French (fr)
Japanese (ja)
Inventor
智和 酒井
陽平 松葉
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2020509875A priority Critical patent/JP6992164B2/en
Publication of WO2019188304A1 publication Critical patent/WO2019188304A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a detection apparatus for detecting a substance contained in a gas sample.
  • a detection device that detects a specific substance contained in a gas sample by detecting a decrease in coenzyme accompanying an enzyme reaction is known.
  • the detection of a substrate contained in a gas sample can be performed by using a decrease in NADH which is a coenzyme with the reaction of a ketone such as acetone or a substrate such as nonenal.
  • a biosensor system to be performed is disclosed in Patent Document 1. Specifically, the biosensor system of Patent Document 1 detects a decrease in coenzyme by using fluorescence when the specific enzyme is irradiated with specific excitation light.
  • the amount of fluorescence emitted by the coenzyme affects the detection accuracy. Therefore, in order to increase the amount of detectable fluorescence, it is conceivable to efficiently irradiate the coenzyme with excitation light emitted from the light source and efficiently guide only the fluorescence emitted by the coenzyme to the detection unit. For this reason, in the biosensor system of Patent Document 1, an optical fiber probe is arranged in the vicinity of an enzyme in which the concentration of the coenzyme changes due to the substrate, through which the coenzyme is irradiated with excitation light, and the coenzyme The fluorescence emitted from is detected.
  • NA numerical aperture
  • the detection device when the detection device is mounted on a moving body such as an automobile, the mounting space is limited. For this reason, the detection device is required to be reduced in size by reducing the number of parts.
  • the present invention has been made in view of the above points, and is a detection device capable of improving the detection accuracy of a specific substance by improving the utilization efficiency of excitation light and fluorescence and reducing the size of the device. Is one of the issues.
  • the detection device is a solution that holds a solution containing a coenzyme that emits fluorescence by being excited by excitation light before or after a catalytic reaction with the gas sample, through which a gas sample flows.
  • a light guide member that forms a light guide path along the one axis, and a detection unit that detects the fluorescence that has passed through the light guide path.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a detection device according to Example 1.
  • FIG. It is an expanded sectional view of the reaction part of FIG.
  • FIG. 6 is an explanatory diagram illustrating an optical path of excitation light of the detection apparatus according to the first embodiment.
  • FIG. 3 is an explanatory diagram for explaining an optical path of fluorescence of the detection apparatus according to the first embodiment.
  • 6 is a cross-sectional view illustrating a configuration of a detection device according to Example 2.
  • FIG. FIG. 6 is an explanatory diagram illustrating an optical path of excitation light of a detection device according to Example 2.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a detection device according to a modification example of Example 2.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a detection device according to Embodiment 3.
  • FIG. FIG. 6 is a cross-sectional view illustrating a configuration of a detection device according to Example 4.
  • FIG. 10 is an explanatory diagram illustrating an optical path of excitation light of a detection device according to Example 4.
  • FIG. 10 is an explanatory diagram for explaining an optical path of fluorescence of a detection apparatus according to Example 4.
  • 10 is a cross-sectional view illustrating a configuration of a detection device according to Embodiment 5.
  • FIG. FIG. 10 is a cross-sectional view illustrating a configuration of a detection device according to Example 6.
  • FIG. 1 shows a cross section along one axis AX of a biosensor 10 as a detection apparatus according to an embodiment of the present invention.
  • a biosensor 10 as a detection device is a device that detects fluorescence emitted by a coenzyme that binds to an apoenzyme and detects a substrate that is a detection target.
  • the coenzyme used for detection of the substrate of the biosensor 10 is excited by excitation light in one state before and after the reaction of the substrate and emits fluorescence. Therefore, the biosensor 10 detects the substrate by utilizing the change in the amount of fluorescence emitted by the coenzyme due to the reaction of the substrate.
  • NADH reduced nicotinamide adenine dinucleotide
  • S-ADH catalyzes the reaction in which the substrate acetone is reduced to 2-propanol.
  • NADH which is a coenzyme is oxidized to NAD + (oxidized nicotinamide adenine dinucleotide) by an enzymatic reaction.
  • NADH emits fluorescence upon receiving excitation light of a predetermined wavelength, but does not emit fluorescence even when NAD + receives excitation light of the same wavelength. Therefore, the fluorescence intensity detected before and after this reaction varies.
  • the biosensor 10 of the present invention is a device that measures the concentration of a substrate by measuring the amount of fluorescence emitted from the NADH.
  • a light source LT is a light emitting device that emits excitation light.
  • the light source LT is, for example, an ultraviolet light emitting diode that emits ultraviolet light having a peak wavelength of 340 nm as excitation light.
  • the light emitting device is not limited to the ultraviolet light emitting diode, and for example, an ultraviolet laser diode, a mercury lamp, or the like can be used.
  • an excitation light optical system 20 that is an optical system for the excitation light emitted from the light source LT is provided.
  • the excitation light optical system 20 condenses the excitation light toward one axis AX.
  • One axis AX is the same axis as the optical axis of the excitation light in this embodiment.
  • the excitation light optical system 20 includes a collimator lens 21 that converts the excitation light into parallel light, and a ball lens 22 that is a condenser lens that condenses the excitation light that has been converted into parallel light by the collimator lens 21 onto one axis AX. including.
  • the excitation light optical system 20 is configured to have at least a numerical aperture higher than that of the optical fiber.
  • the focal length of the ball lens 22 is short among the condenser lenses, the configuration of the biosensor 10 can be further reduced. Further, the ball lens 22 has a large numerical aperture (NA) among the condensing lenses, and can take in more excitation light.
  • NA numerical aperture
  • an excitation light bandpass filter EF that transmits the wavelength of the excitation light.
  • the band transmitted by the excitation light bandpass filter EF is a band including the wavelength of excitation light excited by the coenzyme.
  • NADH is used as a coenzyme. NADH absorbs ultraviolet rays of 340 nm and emits fluorescence. Accordingly, the range of wavelengths transmitted by the excitation light bandpass filter EF is 330 to 350 nm.
  • a flow cell 30 is provided on one on-axis AX.
  • the flow cell 30 functions as a reaction unit in which the enzyme reaction shown in Chemical Formula 1 is performed.
  • the flow cell 30 includes a gas channel 31 through which a gas sample containing a substrate flows, a solution channel 32 as a solution holding unit that holds a solution containing a coenzyme, and an enzyme holding film 33 that holds an enzyme.
  • the solution flow path 32 may have a structure such as a tube through which a solution containing a coenzyme flows, or may have a structure such as a sealed container that does not flow a solution. Good.
  • the substrate contains either a ketone group or an aldehyde group.
  • a coenzyme that emits fluorescence when excited by excitation light in one state before and after the reaction of the substrate is used. Examples of such coenzymes include NADH and NADPH (reduced nicotinamide adenine dinucleotide phosphate).
  • NADH and NADPH reduced nicotinamide adenine dinucleotide phosphate
  • NADH or NADPH is used as a coenzyme, for example, alanine dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, isocitrate dehydrogenase, uridine-5′-diphospho-glucose dehydrogenase, galactose dehydrase
  • alanine dehydrogenase for example, alanine dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, isocitrate dehydrogenase, uridine-5′-diphospho-glucose dehydrogenase, galactose dehydrase
  • Elementary enzyme formate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, glycerol dehydrogenase, glycerol-3-phosphate dehydrogenase, glucose dehydrogenase, glucose-6-
  • the light guide member 40 is provided in contact with the flow cell 30 on one axis AX.
  • the light guide member 40 is formed in a cylindrical shape in the present embodiment.
  • the light guide member 40 may have a shape other than a cylindrical shape, and may be, for example, a cylindrical shape having a non-planar end surface, a polygonal column shape, or a truncated cone shape.
  • the light guide member 40 is made of the same material such as glass having a uniform refractive index. Note that the light guide member 40 is not limited to the same material such as glass having a uniform refractive index, and may be configured of, for example, two materials of a core and a clad having different refractive indexes. Further, the light guide member 40 may be made of a material that has little absorption with respect to the fluorescence wavelength to be measured, for example, an absorption coefficient of 0.1 or less.
  • the light guide member 40 has a light guide path 41 formed along one axis AX.
  • a fluorescence optical system 50 that is an optical system for fluorescence emitted from the light guide member 40 is provided.
  • the fluorescence optical system 50 condenses the fluorescence emitted from the light guide member 40 toward one axis AX.
  • the fluorescent optical system 50 includes a collimating lens 51 that converts the fluorescent light into parallel light, and a condensing lens 52 that condenses the fluorescent light converted into parallel light by the collimating lens 51 on one axis AX.
  • a fluorescent bandpass filter FF that transmits a band including the wavelength of fluorescence.
  • the wavelength of fluorescence emitted by excitation of NADH as a coenzyme is 450 to 510 nm, more specifically, around 491 nm. Therefore, in this embodiment, the wavelength range transmitted by the fluorescent bandpass filter FF is 440 to 510 nm.
  • a detection unit 60 that detects fluorescence that has passed through the fluorescence optical system 50 is provided.
  • the detection unit 60 includes a photomultiplier tube, a photodiode detector, and a spectrophotometer including these, and detects the concentration of the substrate in the gas sample based on the detected fluorescence light quantity or spectral characteristics.
  • Case C is formed in a cylindrical shape covering the periphery of the light source LT, the excitation light optical system, the flow cell 30, the light guide member 40, the fluorescence optical system, and the detection unit 60. That is, the case C accommodates each of the light source LT, the excitation light optical system 20, the flow cell 30, the light guide member 40, the fluorescence optical system 50, and the detection unit 60 therein. Accordingly, the case C is configured so that outside light does not enter the case C.
  • the case C has two through holes HA provided through the case C in a direction perpendicular to the one axis AX.
  • the gas flow path 31 can be mounted on one axis AX. That is, the two through holes HA function as a first mounting portion that can mount the gas flow path 31 on one axis AX.
  • the case C is formed with two through holes HB provided through the case C in a direction perpendicular to the one axis AX.
  • the solution flow path 32 having a tube structure By inserting the solution flow path 32 having a tube structure into the two through holes HB, the solution flow path 32 can be mounted on one axis AX. That is, the two through holes HB function as a second mounting portion that can mount the solution flow path 32 on one axis AX.
  • the case C is formed with a protruding portion P formed so as to protrude so that inner walls facing each other approach each other in a direction perpendicular to the one axis AX.
  • the protrusion P is formed along the circumferential direction of the inner wall of the case C. Further, the protruding portion P is formed between the through hole HA and the through hole HB on one axis AX.
  • the enzyme holding film 33 is mounted on one axis AX by fitting the enzyme holding film 33 into the protruding portion P. In other words, the protruding portion P functions as a third mounting portion that can mount the enzyme holding film 33 on one axis AX.
  • the gas flow path 31, the liquid flow path 32, and the enzyme holding film 33 can be detached from the case C, respectively.
  • at least one of the gas channel 31, the liquid channel 32, and the enzyme holding film 33 may be detachable, and the rest may be fixed to the case C.
  • the through-hole HB does not need to be provided.
  • the groove G may be formed along the circumferential direction of the inner wall of the case C.
  • FIG. 2 shows an enlarged cross section of the flow cell 30 along one axis AX.
  • a gas flow path 31 that has a window W that transmits excitation light and through which a gas sample containing a substrate flows.
  • a through hole H ⁇ b> 1 that penetrates the gas flow path 31 and the outside is provided on the detection section 60 side of the gas flow path 31.
  • a solution channel 32 through which a solution containing a coenzyme flows is provided on the detection unit 60 side of the flow cell 30.
  • the solution flow path 32 includes an upstream connection portion provided on the upstream side in the solution flow direction, a downstream connection portion provided on the downstream side in the solution flow direction, an upstream connection portion, and a downstream connection. And a curved portion that is curved toward the light source LT side.
  • a through hole H2 that penetrates the solution channel 32 and the outside is provided.
  • the solution flowing through the solution flow path 32 contains a coenzyme and a buffer solution having a pH value considering the optimum pH value of the enzyme or coenzyme as components.
  • the enzyme holding film 33 for holding the enzyme is provided in contact with both the gas channel 31 and the solution channel 32 so as to block the through hole H1 of the gas channel 31 and the through hole H2 of the solution channel 32. ing. That is, the enzyme holding film 33 is a diaphragm that allows the held enzyme to contact the solution in the solution channel 32 and the gas sample in the gas channel 31 and separates the solution channel 32 and the gas channel 31. .
  • the enzyme holding film 33 is obtained by immobilizing an enzyme on a carrier that is a film material.
  • the carrier for the enzyme holding film 33 include polytetrafluoroethylene, polydimethylsiloxane, polypropylene, polyethylene, polymethyl methacrylate, polystyrene, polyvinylidene fluoride, nitrocellulose, and cellulose.
  • the flow cell 30 is formed to be recessed along one axis AX so as to go from the detection unit 60 side to the light source LT side, and has a through hole H3 penetrating the solution flow path 32 and the outside.
  • the through hole H ⁇ b> 3 includes a small diameter portion having a size equivalent to the outer diameter of the light guide member 40, and a large diameter portion formed by expanding from the small diameter portion toward the fluorescence optical system 50.
  • the light guide member 40 is held by the flow cell 30 by fitting the light guide member 40 to the small diameter portion.
  • the flow cell 30 functions as a holding member that holds the light guide member 40.
  • the flow cell 30 has a space SP between a side surface SS of the light guide member 40 extending along one axis AX and a wall portion of the enlarged diameter portion of the through hole H3.
  • the numerical aperture (NA) is given by the following equation.
  • NA numerical aperture
  • the light guide path 41 of the light guide member 40 may be formed so as to reduce the amount of excitation light guided. Specifically, the incident angle with respect to the light guide member 40 of at least a part of the excitation light that has passed through the solution flow path 32 of the flow cell 30 is greater than the maximum light reception angle that can be totally reflected by the inner surface of the light guide path 41 of the light guide member 40. It is better to make it larger.
  • FIG. 3 shows an aspect of the excitation light emitted from the light source LT.
  • the alternate long and short dash line arrow indicates the excitation light LT1.
  • the excitation light LT1 emitted from the light source LT is converted into parallel light by the collimator lens 21.
  • the excitation light LT1 that has been converted into parallel light by the collimator lens 21 is subjected to removal of light having a wavelength other than a predetermined band in the excitation light bandpass filter EF.
  • the excitation light LT1 that has passed through the excitation light bandpass filter EF is collected by the ball lens 22 toward the solution flow path 32 of the flow cell 30.
  • the ball lens 22 has a short focal length even among the biconvex lenses. Therefore, by using the ball lens 22 in the excitation light optical system 20, it is possible to increase the amount of excitation light LT1 incident at an incident angle larger than the maximum light receiving angle of the light guide path 41.
  • the ball lens 22 has a low aberration but has a short focal length, which is advantageous for downsizing the biosensor 10. For this reason, by increasing the diameter of the light guide member 40, defocus due to the deterioration of the aberration of the ball lens 22 is allowed. That is, the diameter of the light guide member 40 is ideally the minimum diameter that allows the size of the light source LT and lens aberration.
  • the excitation light LT1 is an annular light and the diameter of the annular light incident on the ball lens 22 is increased, the aberration of the ball lens 22 can be reduced and the focal length can be further shortened. For this reason, it becomes easy to increase the amount of the excitation light LT1 incident beyond the maximum light receiving angle of the light guide path 41.
  • the excitation light optical system 20 including the ball lens 22 is configured with a numerical aperture larger than the numerical aperture of the light guide member 40. For this reason, the excitation light LT1 incident on the light guide path 41 at an acute angle with respect to the one axis AX increases. That is, the amount of excitation light LT1 incident on the light guide 41 at an incident angle larger than the maximum light receiving angle of the light guide 41 is increased. As a result, the amount of the excitation light LT1 that is transmitted outside without being guided through the light guide member 40 increases.
  • the excitation light LT1 exhibits an annular distribution even when the optical system is not configured with an optical system larger than the numerical aperture of the light guide member 40, as described below, Collimation of the excitation light LT1 (light guide to the detection unit 60) can be suppressed by the arrangement of the subsequent collimating lens.
  • the excitation light LT1 that has passed through the flow cell 30 enters the light guide member 40 at various incident angles.
  • the excitation light LT1 that is incident at an incident angle that is less than the maximum light reception angle that can be totally reflected by the inner surface of the light guide 41 has a certain distribution due to the influence of the light source LT and the excitation light optical system 20.
  • the distribution of the excitation light LT1 is also maintained in the light guide path 41.
  • the density of the excitation light LT1 is generated in the light guide path 41.
  • the collimating lens 51 is arranged so that the lightest light of the excitation light LT1 is collimated by the collimating lens 51. That is, the collimating lens 51 is arranged so that the excitation light LT1 is defocused at the focal position of the collimating lens 51 in the light guide path 41. By arranging the collimating lens 51 in this way, a lot of excitation light L1 can be diffused without being collimated by the collimating lens 51.
  • the excitation light LT1 converted into parallel light by the collimating lens 51 is reflected by the fluorescent bandpass filter FF.
  • FIG. 4 shows a mode of fluorescence emitted from the flow cell 30.
  • the alternate long and short dash line indicates the fluorescence LT2.
  • the coenzyme receives the excitation light LT1, it emits fluorescence LT2.
  • the fluorescence LT2 passes through the solution in the solution flow path 32 and enters the light guide path 41 of the light guide member 40.
  • the fluorescent light LT 2 guided through the light guide path 41 is emitted from the emission end of the light guide member 40 toward the collimator lens 51.
  • Fluorescence LT2 collimated by the collimating lens 51 removes light having a wavelength other than a predetermined band by the fluorescence bandpass filter FF.
  • the fluorescence LT2 that has passed through the fluorescence bandpass filter FF is condensed toward the detection unit 60 by the condenser lens.
  • the excitation light LT1 emitted from the light source LT is irradiated to the flow cell 30 without passing through the optical fiber used in the conventional detection device.
  • the biosensor 10 has high utilization efficiency of the excitation light LT1, and can increase the detection accuracy of the specific substance by increasing the amount of fluorescence emitted from the coenzyme. Further, since the biosensor 10 does not have an optical fiber, the number of parts can be reduced, and the apparatus can be downsized.
  • the biosensor 10 also has a light guide member 40 provided in contact with the flow cell 30. Thereby, a part of the excitation light LT1 that has entered the light guide 41 beyond the maximum light receiving angle of the light guide 41 passes through the light guide 41 without being guided. Therefore, the amount of excitation light LT1 detected by the detection unit 60 can be reduced, and detection accuracy can be improved.
  • the biosensor 10 according to Example 2 will be described.
  • the biosensor 10 according to the second embodiment is different from the biosensor 10 according to the first embodiment in that the biosensor 10 includes a light shielding member for shaping the radiation distribution of the excitation light LT1 emitted from the light source LT into an annular shape.
  • the biosensor 10 includes a light shielding member for shaping the radiation distribution of the excitation light LT1 emitted from the light source LT into an annular shape.
  • symbol to the same location and it is the same also about subsequent Examples.
  • FIG. 5 shows a cross section along one axis AX of the biosensor 10 according to the second embodiment.
  • the excitation light optical system 20 includes a light shielding member 70 that is arranged on one axis AX and that can shield the excitation light LT1.
  • the light shielding member 70 is formed in a disk shape, for example.
  • the size of the light shielding member 70 may be formed larger than the diameter of the light guide path 41 of the light guide member 40.
  • FIG. 6 shows an aspect of the excitation light LT1 emitted from the light source LT in the biosensor 10 of the second embodiment.
  • the one-dot chain line arrow indicates the excitation light LT1.
  • a lot of excitation light LT1 is incident on the light guide path 41 at an angle larger than the total reflection angle. Thereby, most of the excitation light LT1 passes through the light guide member 40 without being guided through the light guide path 41.
  • the excitation light LT1 that has not been absorbed by the coenzyme (NADH) in the solution flow path 32 enters the light guide member 40.
  • a part of the excitation light LT1 is incident at a wide angle with respect to the axis AX, that is, at an incident angle larger than the maximum light receiving angle that can be totally reflected by the inner surface of the light guide path 41 of the light guide member 40.
  • the excitation light LT1 incident at an incident angle larger than the maximum light receiving angle is transmitted through the light guide 41 from the side surface SS to the outside of the light guide member 40.
  • the excitation light LT1 that travels straight on one axis AX can be blocked. Further, the incident angle of the excitation light LT1 incident on the light guide member 40 can be increased, and a large amount of the excitation light LT1 can be prevented from being guided in the light guide path 41. As a result, the amount of excitation light LT1 detected by the detection unit 60 can be reduced, and the detection accuracy can be improved.
  • the excitation light optical system 20 includes the light shielding member 70 as in the present embodiment, the amount of excitation light LT1 that guides the light guide path 41 can be reduced. Therefore, the biosensor 10 may be configured without providing the fluorescence optical system 50.
  • FIG. 7 shows a configuration of a modification of the biosensor 10 according to the present embodiment.
  • the biosensor 10 does not have the fluorescence optical system 50 and the fluorescence filter FF.
  • the biosensor 10 it is possible to reduce the size of the biosensor 10.
  • the biosensor 10 according to Example 3 will be described.
  • the biosensor 10 according to the third embodiment is different from the biosensor 10 according to the first and second embodiments in that the shape of the flow cell 30 is different.
  • FIG. 8 shows an enlarged cross section of the flow cell 30 along one axis AX of the biosensor 10 according to the third embodiment.
  • the light guide member 40 is formed such that a portion 34 in contact with the solution flow path 32 of the flow cell 30 is narrowed toward the fluorescence optical system 50. That is, the portion 34 of the light guide member 40 that contacts the solution flow path 32 of the flow cell 30 is inclined so as to have an angle with respect to one axis AX. Therefore, the excitation light LT1 applied to the portion 34 of the light guide member 40 that contacts the solution flow path 32 of the flow cell 30 is reflected toward the solution flow path 32 of the flow cell 30.
  • a part of the excitation light LT1 incident on the light guide member 40 can be reflected toward the solution flow path 32 of the flow cell 30, so that the fluorescence The light emission efficiency of LT2 can be improved.
  • a portion 34 that contacts the solution flow path 32 of the flow cell 30 may be provided with a reflection member that reflects the excitation light LT1. Further, in order to diffusely reflect the excitation light LT1, the portion of the flow cell 30 that contacts the solution flow path 32 may have an uneven surface.
  • the biosensor 10 according to Example 4 will be described.
  • the biosensor 10 according to the fourth embodiment is different from the biosensor 10 according to the first embodiment in that it does not include the excitation light optical system 20.
  • FIG. 9 shows a cross section along one axis AX of the biosensor 10 according to the fourth embodiment.
  • a long pass filter LF for cutting a band including the wavelength of the excitation light LT1 is provided between the collimating lens 51 and the fluorescent band pass filter FF.
  • FIG. 10 shows an aspect of the excitation light LT1 emitted from the light source LT of the biosensor 10 according to the fourth embodiment.
  • the alternate long and short dash line arrow indicates the excitation light LT1.
  • the excitation light LT ⁇ b> 1 emitted from the light source LT passes through the flow cell 30 and is incident on the light guide member 40.
  • the excitation light LT1 exceeding the maximum light receiving angle of the light guide 41 passes through the light guide 41 without being guided.
  • the excitation light LT1 guided through the light guide path 41 is collimated by the collimating lens 51 and attenuated by the long pass filter LF.
  • FIG. 11 shows an aspect of the fluorescence LT2 emitted from the flow cell 30 of the biosensor 10 according to the fourth embodiment.
  • the alternate long and short dash line arrow indicates the fluorescence LT2.
  • the fluorescence LT2 emitted in the solution flow path 32 of the flow cell 30 is guided in the light guide path 41 of the light guide member 40.
  • the fluorescence LT2 emitted from the light guide member 40 is collimated by the collimating lens 51, and passes through the long pass filter LF and the fluorescence band pass filter FF.
  • the fluorescence LT2 that has passed through the fluorescence bandpass filter FF is condensed toward the detection unit 60 through the condenser lens 52.
  • the excitation light optical system 20 since the excitation light optical system 20 is not provided, it is possible to directly irradiate the solution flow path 32 with high intensity excitation light. . For this reason, the light emission amount of the fluorescence LT2 can be increased, and the size of the device can be reduced by reducing the number of parts of the device.
  • a biosensor 10 according to Example 5 will be described.
  • the biosensor 10 according to the fifth embodiment is different from the biosensor 10 according to the first to fourth embodiments in that the shape of the gas flow path 31 of the flow cell 30 is different.
  • FIG. 12 shows a cross section along one axis AX of the biosensor 10 according to the fifth embodiment.
  • the excitation light optical system 20 has a collimating lens 21, but does not have a ball lens 22.
  • the gas flow path 31 of the flow cell 30 has a lens portion 31 a formed so as to have a curved surface that is convex toward the enzyme holding film 33 around the one axis AX.
  • the lens unit 31 a condenses the excitation light LT ⁇ b> 1 converted into parallel light by the collimating lens 21 toward the enzyme holding film 33. Therefore, according to the biosensor 10 according to the present embodiment, the ball lens 22 of the excitation light optical system 20 is not necessary. As a result, the number of parts of the apparatus is reduced, and the apparatus can be miniaturized.
  • a biosensor 10 according to Example 6 will be described.
  • the biosensor 10 according to the sixth embodiment is different from the biosensor 10 according to the first to fifth embodiments in that the arrangement positions of the light source LT and the detection unit 60 are different.
  • the light source LT, the excitation light optical system 20, the flow cell 30, the light guide member 40, the fluorescence optical system 50, and the detection unit 60 are arranged on one axis AX, but the light source LT In addition, at least one of the detection units 60 may not be arranged on one axis AX.
  • FIG. 13 shows a cross section along one axis AX of the biosensor 10 according to the sixth embodiment.
  • the light source LT and the detection unit 60 are respectively disposed on an axis AX2 and an axis AX3 that are orthogonal to one axis AX.
  • the mirror MR1 and the mirror MR2 are disposed at a position where the axis AX2 and the axis AX3 intersect with one axis AX. That is, the excitation light LT1 emitted from the light source LT is reflected by the mirror MR1 so as to reach the excitation light optical system 20.
  • the fluorescence LT2 that has passed through the fluorescence optical system 50 is reflected by the mirror MR2 so as to reach the detection unit 60.
  • the excitation light optical system 20 and the fluorescence optical system 50 are arranged on one axis AX that is the same axis as the optical axis of the excitation light LT1.
  • the excitation light optical system 20 and the fluorescence optical system 50 do not have to be arranged on one axis AX that is the same as the optical axis of the excitation light LT1, and the excitation light
  • the optical axis of LT1 and the optical axis of fluorescence LT2 may deviate from the axis AX as long as the fluorescence LT2 can reach the detection unit 60.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Provided is a detection device that can improve the detection accuracy of a specific substance through improvement of use efficiency of excitation light and fluorescent light and that can achieve device miniaturization. This detection device has: a reaction part that is disposed on one axis and that includes a solution flow path through which a solution containing a coenzyme excited by excitation light to emit fluorescent light flows, a gas flow path through which a gas sample flows, and an oxygen holding film that holds oxygen for catalyzing reaction of the gas sample together with the coenzyme; a waveguide member that is provided in contact with the reaction part on the axis and that forms a waveguide along the axis; and a detection part that is disposed on the axis and that detects the fluorescent light that has passed through the waveguide.

Description

検出装置Detection device
 本発明は、気体試料中に含まれる物質を検出する検出装置に関する。 The present invention relates to a detection apparatus for detecting a substance contained in a gas sample.
 酵素反応に伴う補酵素の減少を検出することにより、気体試料中に含まれる特定の物質を検出する検出装置が知られている。 A detection device that detects a specific substance contained in a gas sample by detecting a decrease in coenzyme accompanying an enzyme reaction is known.
 このような検出装置としては、例えば、アセトンなどのケトン類、又はノネナールなどの基質の反応に伴って補酵素であるNADHが減少することを利用して、気体試料中に含まれる基質の検出を行うバイオセンサシステムが特許文献1に開示されている。具体的には、特許文献1のバイオセンサシステムは、補酵素に特定の励起光を照射すると蛍光を発することを利用して補酵素の減少を検出している。 As such a detection device, for example, the detection of a substrate contained in a gas sample can be performed by using a decrease in NADH which is a coenzyme with the reaction of a ketone such as acetone or a substrate such as nonenal. A biosensor system to be performed is disclosed in Patent Document 1. Specifically, the biosensor system of Patent Document 1 detects a decrease in coenzyme by using fluorescence when the specific enzyme is irradiated with specific excitation light.
特開2016-220573号公報JP 2016-220573 A
 ここで、補酵素が発する蛍光の発光量は、検出精度に影響を与える。したがって、検出可能な蛍光の光量を高めるために、光源から出射される励起光を効率よく補酵素に照射すると共に、補酵素が発する蛍光のみを効率よく検出部へ導光することが考えられる。このため、特許文献1のバイオセンサシステムでは、基質に起因して補酵素の濃度が変化する酵素近傍へ光ファイバプローブを配置し、これを介して補酵素への励起光の照射、及び補酵素が発する蛍光の検出を行っている。 Here, the amount of fluorescence emitted by the coenzyme affects the detection accuracy. Therefore, in order to increase the amount of detectable fluorescence, it is conceivable to efficiently irradiate the coenzyme with excitation light emitted from the light source and efficiently guide only the fluorescence emitted by the coenzyme to the detection unit. For this reason, in the biosensor system of Patent Document 1, an optical fiber probe is arranged in the vicinity of an enzyme in which the concentration of the coenzyme changes due to the substrate, through which the coenzyme is irradiated with excitation light, and the coenzyme The fluorescence emitted from is detected.
 しかしながら、光ファイバの開口数(NA:Numerical Aperture)は小さいため、装置の構成に必要な光源、及び適当な開口数を持つレンズと組み合わせると励起光の利用効率が著しく低下し、また蛍光の検出効率も同様に低水準になることが課題の1つとして挙げられる。 However, the numerical aperture (NA) of the optical fiber is small, so when combined with a light source necessary for the construction of the device and a lens having an appropriate numerical aperture, the utilization efficiency of the excitation light is remarkably reduced, and fluorescence is detected. One of the issues is that efficiency is similarly low.
 また、自動車のような移動体に検出装置を搭載する場合には、搭載スペースが限られている。このため、検出装置は、部品点数を少なくして小型化を図ることが求められている。 Also, when the detection device is mounted on a moving body such as an automobile, the mounting space is limited. For this reason, the detection device is required to be reduced in size by reducing the number of parts.
 本発明は上記した点に鑑みてなされたものであり、励起光及び蛍光の利用効率が向上することによる特定物質の検出精度の向上を図ると共に、装置の小型化を図ることが可能な検出装置を提供することを課題の1つとする。 The present invention has been made in view of the above points, and is a detection device capable of improving the detection accuracy of a specific substance by improving the utilization efficiency of excitation light and fluorescence and reducing the size of the device. Is one of the issues.
 本願請求項1に記載の検出装置は、気体試料が流れる気体流路、前記気体試料との触媒反応の前または後に励起光によって励起されることで蛍光を発する補酵素を含む溶液を保持する溶液保持部、及び前記触媒反応の触媒となる酵素が保持されている酵素保持膜を含み、かつ一の軸上に配されている反応部と、前記一の軸上に前記反応部と接して設けられ、かつ前記一の軸に沿った導光路を形成する導光部材と、前記導光路を通過した前記蛍光を検出する検出部と、を有していることを特徴とする。 The detection device according to claim 1 of the present invention is a solution that holds a solution containing a coenzyme that emits fluorescence by being excited by excitation light before or after a catalytic reaction with the gas sample, through which a gas sample flows. A holding part, and a reaction part including an enzyme holding film holding an enzyme serving as a catalyst for the catalytic reaction and arranged on one axis, and provided on the one axis in contact with the reaction part And a light guide member that forms a light guide path along the one axis, and a detection unit that detects the fluorescence that has passed through the light guide path.
実施例1に係る検出装置の構成を示す断面図である。1 is a cross-sectional view illustrating a configuration of a detection device according to Example 1. FIG. 図1の反応部の拡大断面図である。It is an expanded sectional view of the reaction part of FIG. 実施例1に係る検出装置の励起光の光路を説明する説明図である。FIG. 6 is an explanatory diagram illustrating an optical path of excitation light of the detection apparatus according to the first embodiment. 実施例1に係る検出装置の蛍光の光路を説明する説明図である。FIG. 3 is an explanatory diagram for explaining an optical path of fluorescence of the detection apparatus according to the first embodiment. 実施例2に係る検出装置の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a detection device according to Example 2. FIG. 実施例2に係る検出装置の励起光の光路を説明する説明図である。FIG. 6 is an explanatory diagram illustrating an optical path of excitation light of a detection device according to Example 2. 実施例2の変形例に係る検出装置の構成を示す断面図である。FIG. 10 is a cross-sectional view illustrating a configuration of a detection device according to a modification example of Example 2. 実施例3に係る検出装置の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a detection device according to Embodiment 3. FIG. 実施例4に係る検出装置の構成を示す断面図である。FIG. 6 is a cross-sectional view illustrating a configuration of a detection device according to Example 4. 実施例4に係る検出装置の励起光の光路を説明する説明図である。FIG. 10 is an explanatory diagram illustrating an optical path of excitation light of a detection device according to Example 4. 実施例4に係る検出装置の蛍光の光路を説明する説明図である。FIG. 10 is an explanatory diagram for explaining an optical path of fluorescence of a detection apparatus according to Example 4. 実施例5に係る検出装置の構成を示す断面図である。10 is a cross-sectional view illustrating a configuration of a detection device according to Embodiment 5. FIG. 実施例6に係る検出装置の構成を示す断面図である。FIG. 10 is a cross-sectional view illustrating a configuration of a detection device according to Example 6.
 図1は、本発明の実施例である検出装置としてのバイオセンサ10の一の軸AXに沿った断面を示している。 FIG. 1 shows a cross section along one axis AX of a biosensor 10 as a detection apparatus according to an embodiment of the present invention.
 図1において、検出装置としてのバイオセンサ10は、アポ酵素と結合する補酵素が発する蛍光を検出して、検出対象である基質を検出する装置である。 In FIG. 1, a biosensor 10 as a detection device is a device that detects fluorescence emitted by a coenzyme that binds to an apoenzyme and detects a substrate that is a detection target.
 具体的には、バイオセンサ10の基質の検出に用いる補酵素は、基質の反応前後の一方の状態において励起光により励起されて蛍光を発する。したがって、バイオセンサ10は、基質の反応によって補酵素が発する蛍光の光量が変化することを利用して、基質を検出する。 Specifically, the coenzyme used for detection of the substrate of the biosensor 10 is excited by excitation light in one state before and after the reaction of the substrate and emits fluorescence. Therefore, the biosensor 10 detects the substrate by utilizing the change in the amount of fluorescence emitted by the coenzyme due to the reaction of the substrate.
 例えば、化1に示すように、補酵素としてNADH(還元型ニコチンアミドアデニンジヌクレオチド)を用いた場合、酵素であるS-ADHは、基質であるアセトンが2-プロパノールに還元される反応を触媒する。この際、補酵素であるNADHは、酵素反応によりNAD+(酸化型ニコチンアミドアデニンジヌクレオチド)に酸化される。 For example, as shown in Chemical Formula 1, when NADH (reduced nicotinamide adenine dinucleotide) is used as a coenzyme, the enzyme S-ADH catalyzes the reaction in which the substrate acetone is reduced to 2-propanol. To do. At this time, NADH which is a coenzyme is oxidized to NAD + (oxidized nicotinamide adenine dinucleotide) by an enzymatic reaction.
 ここでNADHは、所定の波長の励起光を受けて蛍光を発するが、同じ波長の励起光をNAD+が受けても蛍光を発しない。したがって、この反応の前後において検出される蛍光強度は変動する。 Here, NADH emits fluorescence upon receiving excitation light of a predetermined wavelength, but does not emit fluorescence even when NAD + receives excitation light of the same wavelength. Therefore, the fluorescence intensity detected before and after this reaction varies.
 本発明のバイオセンサ10は、このNADHが発する蛍光の光量を測定することにより基質の濃度を測定する装置である。 The biosensor 10 of the present invention is a device that measures the concentration of a substrate by measuring the amount of fluorescence emitted from the NADH.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 図1において、光源LTは、励起光を出射する発光装置である。光源LTは、例えば、励起光としてピーク波長が340nmである紫外光を出射する紫外光発光ダイオードである。発光装置は、紫外光発光ダイオードに限られず、例えば、紫外レーザーダイオード、水銀ランプ等を用いることができる。 In FIG. 1, a light source LT is a light emitting device that emits excitation light. The light source LT is, for example, an ultraviolet light emitting diode that emits ultraviolet light having a peak wavelength of 340 nm as excitation light. The light emitting device is not limited to the ultraviolet light emitting diode, and for example, an ultraviolet laser diode, a mercury lamp, or the like can be used.
 一の軸AX上において、光源LTから出射された励起光に対する光学系である励起光光学系20が設けられている。励起光光学系20は、励起光を一の軸AX上に向けて集光する。一の軸AXは、本実施例においては励起光の光軸と同一の軸である。 On one axis AX, an excitation light optical system 20 that is an optical system for the excitation light emitted from the light source LT is provided. The excitation light optical system 20 condenses the excitation light toward one axis AX. One axis AX is the same axis as the optical axis of the excitation light in this embodiment.
 励起光光学系20は、励起光を平行光にするコリメートレンズ21と、コリメートレンズ21によって平行光にされた励起光を一の軸AX上に向けて集光する集光レンズであるボールレンズ22を含む。尚、励起光光学系20は、少なくとも、光ファイバの開口数よりも高い開口数を有して構成されている。 The excitation light optical system 20 includes a collimator lens 21 that converts the excitation light into parallel light, and a ball lens 22 that is a condenser lens that condenses the excitation light that has been converted into parallel light by the collimator lens 21 onto one axis AX. including. The excitation light optical system 20 is configured to have at least a numerical aperture higher than that of the optical fiber.
 尚、ボールレンズ22は、集光レンズの中でも焦点距離が短いため、バイオセンサ10の構成をより小型にすることができる。またボールレンズ22は集光レンズの中でも開口数(NA)が大きく、より多くの励起光を取り込むことが可能である。 In addition, since the focal length of the ball lens 22 is short among the condenser lenses, the configuration of the biosensor 10 can be further reduced. Further, the ball lens 22 has a large numerical aperture (NA) among the condensing lenses, and can take in more excitation light.
 ボールレンズ22とコリメートレンズ21の間には、励起光の波長を透過する励起光バンドパスフィルタEFが設けられている。励起光バンドパスフィルタEFが透過させる帯域は、補酵素が励起する励起光の波長を含む帯域である。本実施例では、補酵素にNADHを用いている。NADHは340nmの紫外線を吸収して蛍光を発する。したがって、励起光バンドパスフィルタEFの透過させる波長の範囲は、330~350nmとしている。 Between the ball lens 22 and the collimating lens 21, an excitation light bandpass filter EF that transmits the wavelength of the excitation light is provided. The band transmitted by the excitation light bandpass filter EF is a band including the wavelength of excitation light excited by the coenzyme. In this example, NADH is used as a coenzyme. NADH absorbs ultraviolet rays of 340 nm and emits fluorescence. Accordingly, the range of wavelengths transmitted by the excitation light bandpass filter EF is 330 to 350 nm.
 一の軸上AXにおいて、フローセル30が設けられている。フローセル30は、化1に示した酵素反応が行われる反応部として機能する。フローセル30は、基質を含む気体試料が流れる気体流路31と、補酵素を含む溶液を保持する溶液保持部としての溶液流路32と、酵素を保持する酵素保持膜33と、を有する。ここで、溶液流路32は、補酵素を含む溶液を流す、例えば、管のような構造となっていてもよいし、溶液を流さない、例えば、密閉容器のような構造になっていてもよい。 A flow cell 30 is provided on one on-axis AX. The flow cell 30 functions as a reaction unit in which the enzyme reaction shown in Chemical Formula 1 is performed. The flow cell 30 includes a gas channel 31 through which a gas sample containing a substrate flows, a solution channel 32 as a solution holding unit that holds a solution containing a coenzyme, and an enzyme holding film 33 that holds an enzyme. Here, the solution flow path 32 may have a structure such as a tube through which a solution containing a coenzyme flows, or may have a structure such as a sealed container that does not flow a solution. Good.
 基質は、ケトン基、アルデヒド基のいずれかを含んでいる。補酵素は、基質の反応前後の一方の状態において励起光により励起されて蛍光を発するものが用いられる。このような補酵素の一例としては、NADH、NADPH(還元型ニコチンアミドアデニンジヌクレオチドリン酸)等が挙げられる。尚、補酵素は、基質の反応前後の2つの状態の間で可逆的に化学構造が変化する。 The substrate contains either a ketone group or an aldehyde group. A coenzyme that emits fluorescence when excited by excitation light in one state before and after the reaction of the substrate is used. Examples of such coenzymes include NADH and NADPH (reduced nicotinamide adenine dinucleotide phosphate). The coenzyme reversibly changes its chemical structure between two states before and after the reaction of the substrate.
 酵素は、補酵素としてNADH又はNADPHを用いる場合、例えば、アラニン脱水素酵素、アルコール脱水素酵素、アルデヒド脱水素酵素、イソクエン酸脱水素酵素、ウリジン-5’-ジホスフォ-グルコース脱水素酵素、ガラクトース脱水素酵素、ギ酸脱水素酵素、グリセルアルデヒド-3-リン酸脱水素酵素、グリセロール脱水素酵素、グリセロール-3-リン酸脱水素酵素、グルコース脱水素酵素、グルコース-6-リン酸脱水素酵素、グルタミン酸脱水素酵素、コレステロール脱水素酵素、サルコシン脱水素酵素、ソルビトール脱水素酵素、炭酸脱水素酵素、乳酸脱水素酵素、3-ヒドロキシ酪酸脱水素酵素、ピルビン酸脱水素酵素、フルクトース脱水素酵素、6-ホスフォグルコン酸脱水素酵素、ホルムアルデヒド脱水素酵素、マンニトール脱水素酵素、リンゴ酸脱水素酵素、ロイシン脱水素酵素等を挙げることができ、特に、NADH又はNADPHを電子供与体として用いてケトン(アセトン、2-ブタノン、2-ペンタノンなど)またはアルデヒド(ノネナール、エチルビニルケトンなど)を還元する酵素、より具体的には、二級アルコール脱水素酵素(S-ADH)(二級アルコール脱水素酵素(secondary alcohol dehydrogenase) EC:1.1.1.x)、エノン還元酵素(ER1)(エノン還元酵素(enone reductase type 1, ER1))等が利用できる。 When NADH or NADPH is used as a coenzyme, for example, alanine dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, isocitrate dehydrogenase, uridine-5′-diphospho-glucose dehydrogenase, galactose dehydrase Elementary enzyme, formate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, glycerol dehydrogenase, glycerol-3-phosphate dehydrogenase, glucose dehydrogenase, glucose-6-phosphate dehydrogenase, Glutamate dehydrogenase, cholesterol dehydrogenase, sarcosine dehydrogenase, sorbitol dehydrogenase, carbonic acid dehydrogenase, lactate dehydrogenase, 3-hydroxybutyrate dehydrogenase, pyruvate dehydrogenase, fructose dehydrogenase, 6 -Phosphogluconate dehydrogenase, formaldehyde dehydrogenase Examples thereof include mannitol dehydrogenase, malate dehydrogenase, leucine dehydrogenase and the like, and in particular, NADH or NADPH is used as an electron donor, and ketone (acetone, 2-butanone, 2-pentanone, etc.) or aldehyde ( Nonalal, ethyl vinyl ketone, etc., more specifically, secondary alcohol dehydrogenase (S-ADH) (secondary alcohol dehydrogenase (EC: 1.1.1.x)), Enone reductase (ER1) (enone reductase type 1, ER1) and the like can be used.
 一の軸AX上において、導光部材40がフローセル30と接して設けられている。導光部材40は、本実施例においては円柱状に形成されている。導光部材40は、円柱状以外の形状でもよく、例えば、非平面の端面を持つ円柱状、多角柱状、円錐台状の形状であってもよい。 The light guide member 40 is provided in contact with the flow cell 30 on one axis AX. The light guide member 40 is formed in a cylindrical shape in the present embodiment. The light guide member 40 may have a shape other than a cylindrical shape, and may be, for example, a cylindrical shape having a non-planar end surface, a polygonal column shape, or a truncated cone shape.
 導光部材40は、屈折率が均一なガラス等の同一素材で構成されている。尚、導光部材40は、屈折率が均一なガラス等の同一素材に限られず、例えば、互いに屈折率が異なるコア及びクラッドの2つの素材で構成されるようにしてもよい。また、導光部材40は、測定する蛍光波長に対して吸収が少ない、例えば、吸収係数が0.1以下の素材で構成されていてもよい。導光部材40は、一の軸AXに沿って形成されている導光路41を有する。 The light guide member 40 is made of the same material such as glass having a uniform refractive index. Note that the light guide member 40 is not limited to the same material such as glass having a uniform refractive index, and may be configured of, for example, two materials of a core and a clad having different refractive indexes. Further, the light guide member 40 may be made of a material that has little absorption with respect to the fluorescence wavelength to be measured, for example, an absorption coefficient of 0.1 or less. The light guide member 40 has a light guide path 41 formed along one axis AX.
 一の軸上AX上において、導光部材40から出射された蛍光に対する光学系である蛍光光学系50が設けられている。蛍光光学系50は、導光部材40から出射された蛍光を一の軸AX上に向けて集光する。 On one axial axis AX, a fluorescence optical system 50 that is an optical system for fluorescence emitted from the light guide member 40 is provided. The fluorescence optical system 50 condenses the fluorescence emitted from the light guide member 40 toward one axis AX.
 蛍光光学系50は、蛍光を平行光にするコリメートレンズ51と、コリメートレンズ51によって平行光にされた蛍光を一の軸AX上に集光する集光レンズ52を含む。 The fluorescent optical system 50 includes a collimating lens 51 that converts the fluorescent light into parallel light, and a condensing lens 52 that condenses the fluorescent light converted into parallel light by the collimating lens 51 on one axis AX.
 集光レンズ52とコリメートレンズ51の間には、蛍光の波長を含む帯域を透過する蛍光バンドパスフィルタFFが設けられている。補酵素であるNADHが励起することにより発する蛍光の波長は、450~510nm、より具体的には491nm付近である。従って、本実施例においては、蛍光バンドパスフィルタFFが透過させる波長の範囲は、440~510nmとしている。 Between the condenser lens 52 and the collimating lens 51, there is provided a fluorescent bandpass filter FF that transmits a band including the wavelength of fluorescence. The wavelength of fluorescence emitted by excitation of NADH as a coenzyme is 450 to 510 nm, more specifically, around 491 nm. Therefore, in this embodiment, the wavelength range transmitted by the fluorescent bandpass filter FF is 440 to 510 nm.
 一の軸AX上において、蛍光光学系50を通過した蛍光を検出する検出部60が設けられている。検出部60は、光電子増倍管、フォトダイオード検出器、及びこれらを含む分光光度計を含み、検出した蛍光の光量、若しくは分光特性に基づいて気体試料中における基質の濃度を検出する。 On one axis AX, a detection unit 60 that detects fluorescence that has passed through the fluorescence optical system 50 is provided. The detection unit 60 includes a photomultiplier tube, a photodiode detector, and a spectrophotometer including these, and detects the concentration of the substrate in the gas sample based on the detected fluorescence light quantity or spectral characteristics.
 ケースCは、光源LT、励起光光学系、フローセル30、導光部材40、蛍光光学系、検出部60の各々の周囲を覆う筒状に形成されている。すなわち、ケースCは、光源LT、励起光光学系20、フローセル30、導光部材40、蛍光光学系50、検出部60の各々を内部に収容する。したがって、ケースCは、ケースCの内部に外光が入らないように構成されている。 Case C is formed in a cylindrical shape covering the periphery of the light source LT, the excitation light optical system, the flow cell 30, the light guide member 40, the fluorescence optical system, and the detection unit 60. That is, the case C accommodates each of the light source LT, the excitation light optical system 20, the flow cell 30, the light guide member 40, the fluorescence optical system 50, and the detection unit 60 therein. Accordingly, the case C is configured so that outside light does not enter the case C.
 ケースCには、一の軸AXに垂直な方向にケースCを貫通して設けられた2つの貫通穴HAが形成されている。この2つの貫通穴HAに気体流路31を挿通することで、気体流路31を一の軸AX上に取付けることができる。すなわち、2つの貫通穴HAは、気体流路31を一の軸AX上に取付可能な第1取付部として機能する。 The case C has two through holes HA provided through the case C in a direction perpendicular to the one axis AX. By inserting the gas flow path 31 into the two through holes HA, the gas flow path 31 can be mounted on one axis AX. That is, the two through holes HA function as a first mounting portion that can mount the gas flow path 31 on one axis AX.
 ケースCには、一の軸AXに垂直な方向にケースCを貫通して設けられた2つの貫通穴HBが形成されている。この2つの貫通穴HBに管構造を有する溶液流路32を挿通することで、溶液流路32を一の軸AX上に取付けることができる。すなわち、2つの貫通穴HBは、溶液流路32を一の軸AX上に取付可能な第2取付部として機能する。 The case C is formed with two through holes HB provided through the case C in a direction perpendicular to the one axis AX. By inserting the solution flow path 32 having a tube structure into the two through holes HB, the solution flow path 32 can be mounted on one axis AX. That is, the two through holes HB function as a second mounting portion that can mount the solution flow path 32 on one axis AX.
 ケースCには、一の軸AXに垂直な方向において互いに対向する内壁が近づくように突出して形成された突出部Pが形成されている。突出部Pは、ケースCの内壁の周方向に沿って形成されている。また突出部Pは、一の軸AX上において、貫通穴HAと貫通穴HBとの間に形成されている。突出部Pに酵素保持膜33を嵌め込むことによって、酵素保持膜33が一の軸AX上に取付けられている。すなわち、この突出部Pは、酵素保持膜33を一の軸AX上に取付可能である第3取付部として機能する。 The case C is formed with a protruding portion P formed so as to protrude so that inner walls facing each other approach each other in a direction perpendicular to the one axis AX. The protrusion P is formed along the circumferential direction of the inner wall of the case C. Further, the protruding portion P is formed between the through hole HA and the through hole HB on one axis AX. The enzyme holding film 33 is mounted on one axis AX by fitting the enzyme holding film 33 into the protruding portion P. In other words, the protruding portion P functions as a third mounting portion that can mount the enzyme holding film 33 on one axis AX.
 このように、気体流路31、液体流路32及び酵素保持膜33は、それぞれケースCに脱着可能となっている。尚、気体流路31、液体流路32及び酵素保持膜33のうち少なくとも1つが着脱可能となっており、残りがケースCに固定されていてもよい。 Thus, the gas flow path 31, the liquid flow path 32, and the enzyme holding film 33 can be detached from the case C, respectively. Note that at least one of the gas channel 31, the liquid channel 32, and the enzyme holding film 33 may be detachable, and the rest may be fixed to the case C.
 尚、溶液流路32が密閉容器のような構造である場合、貫通穴HBを設けなくてもよい。この場合、ケースCの内壁から外側に窪んで形成されている溝Gを設けるとよい。また、溝Gは、ケースCの内壁の周方向に沿って形成するとよい。密閉容器状の溶液流路32を溝Gに嵌め込むことによって、溶液流路32を一の軸AX上に取付けることができる。この場合、溝Gは、溶液流路32を一の軸AX上に取付可能である第2取付部として機能する。 In addition, when the solution flow path 32 is a structure like an airtight container, the through-hole HB does not need to be provided. In this case, it is preferable to provide a groove G that is recessed outward from the inner wall of the case C. Further, the groove G may be formed along the circumferential direction of the inner wall of the case C. By fitting the closed container-like solution flow path 32 in the groove G, the solution flow path 32 can be mounted on one axis AX. In this case, the groove G functions as a second attachment portion that can attach the solution flow path 32 on one axis AX.
 図2は、一の軸AXに沿ったフローセル30の拡大断面を示している。図2に示すように、フローセル30の光源LT側には、励起光を透過させる窓Wを有し、基質を含む気体試料が流れる気体流路31が設けられている。気体流路31の検出部60側には、気体流路31と外部とを貫通する貫通穴H1が設けられている。 FIG. 2 shows an enlarged cross section of the flow cell 30 along one axis AX. As shown in FIG. 2, on the light source LT side of the flow cell 30, there is provided a gas flow path 31 that has a window W that transmits excitation light and through which a gas sample containing a substrate flows. A through hole H <b> 1 that penetrates the gas flow path 31 and the outside is provided on the detection section 60 side of the gas flow path 31.
 フローセル30の検出部60側には、補酵素を含む溶液が流れる溶液流路32が設けられている。溶液流路32は、溶液の流れ方向の上流側に設けられている上流側接続部と、溶液の流れ方向の下流側に設けられている下流側接続部と、上流側接続部及び下流側接続部から光源LT側に向かって湾曲して形成されている湾曲部と、を有する。溶液流路32の湾曲部の気体流路31側には、溶液流路32と外部とを貫通する貫通穴H2が設けられている。 A solution channel 32 through which a solution containing a coenzyme flows is provided on the detection unit 60 side of the flow cell 30. The solution flow path 32 includes an upstream connection portion provided on the upstream side in the solution flow direction, a downstream connection portion provided on the downstream side in the solution flow direction, an upstream connection portion, and a downstream connection. And a curved portion that is curved toward the light source LT side. On the gas channel 31 side of the curved portion of the solution channel 32, a through hole H2 that penetrates the solution channel 32 and the outside is provided.
 溶液流路32を流れる溶液は、補酵素と、酵素や補酵素の至適pH値を考慮したpH値を有する緩衝液と、を成分として含んでいる。 The solution flowing through the solution flow path 32 contains a coenzyme and a buffer solution having a pH value considering the optimum pH value of the enzyme or coenzyme as components.
 酵素を保持する酵素保持膜33は、気体流路31の貫通穴H1と溶液流路32の貫通穴H2とを塞ぐように、気体流路31と溶液流路32との両方に接して設けられている。すなわち、酵素保持膜33は、保持されている酵素が溶液流路32の溶液及び気体流路31の気体試料に接触可能であり、かつ溶液流路32と気体流路31とを隔てる隔膜である。 The enzyme holding film 33 for holding the enzyme is provided in contact with both the gas channel 31 and the solution channel 32 so as to block the through hole H1 of the gas channel 31 and the through hole H2 of the solution channel 32. ing. That is, the enzyme holding film 33 is a diaphragm that allows the held enzyme to contact the solution in the solution channel 32 and the gas sample in the gas channel 31 and separates the solution channel 32 and the gas channel 31. .
 酵素保持膜33は、膜材料である担体上に酵素が固定化されたものである。酵素保持膜33の担体としては、例えば、ポリテトラフルオロエチレン、ポリジメチルシロキサン、ポリプロピレン、ポリエチレン、ポリメチルメタクリレート、ポリスチレン、ポリフッ化ビニリデン、ニトロセルロース、セルロース等が挙げられる。 The enzyme holding film 33 is obtained by immobilizing an enzyme on a carrier that is a film material. Examples of the carrier for the enzyme holding film 33 include polytetrafluoroethylene, polydimethylsiloxane, polypropylene, polyethylene, polymethyl methacrylate, polystyrene, polyvinylidene fluoride, nitrocellulose, and cellulose.
 フローセル30は、検出部60側から光源LT側に向かうように一の軸AXに沿って窪んで形成され、かつ溶液流路32と外部とを貫通する貫通穴H3を有する。貫通穴H3は、導光部材40の外径と同等の大きさを有する小径部と、小径部から蛍光光学系50に向かって拡径して形成された拡径部と、を有する。 The flow cell 30 is formed to be recessed along one axis AX so as to go from the detection unit 60 side to the light source LT side, and has a through hole H3 penetrating the solution flow path 32 and the outside. The through hole H <b> 3 includes a small diameter portion having a size equivalent to the outer diameter of the light guide member 40, and a large diameter portion formed by expanding from the small diameter portion toward the fluorescence optical system 50.
 したがって、導光部材40を小径部に嵌め合わせることにより、導光部材40は、フローセル30によって保持される。言い換えればフローセル30は、導光部材40を保持する保持部材として機能する。 Therefore, the light guide member 40 is held by the flow cell 30 by fitting the light guide member 40 to the small diameter portion. In other words, the flow cell 30 functions as a holding member that holds the light guide member 40.
 フローセル30は、一の軸AXに沿って延在する導光部材40の側面SSと貫通孔H3の拡径部の壁部との間に空間SPを有している。導光部材40の屈折率をn1、空間SPの屈折率をn2とすると、開口数(NA)は以下の式で与えられる。 The flow cell 30 has a space SP between a side surface SS of the light guide member 40 extending along one axis AX and a wall portion of the enlarged diameter portion of the through hole H3. When the refractive index of the light guide member 40 is n 1 and the refractive index of the space SP is n 2 , the numerical aperture (NA) is given by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002



 ここで、導光部材40の屈折率n1が固定された条件下で開口数(NA)を最大とするためには、n2を1、すなわち空間SPを空気とする必要がある。よって、導光部材40は、その側面SSの周囲を空気層とすることで開口数(NA)が最大となる。 Here, in order to maximize the numerical aperture (NA) under the condition that the refractive index n 1 of the light guide member 40 is fixed, n 2 needs to be 1, that is, the space SP needs to be air. Therefore, the numerical aperture (NA) of the light guide member 40 is maximized by forming an air layer around the side surface SS.
 ここで、導光部材40の導光路41は、励起光が導光される量を少なくするように形成するとよい。具体的には、フローセル30の溶液流路32を通過した励起光の少なくとも一部の導光部材40に対する入射角は、導光部材40の導光路41の内面で全反射可能な最大受光角よりも大きくなるようにするとよい。 Here, the light guide path 41 of the light guide member 40 may be formed so as to reduce the amount of excitation light guided. Specifically, the incident angle with respect to the light guide member 40 of at least a part of the excitation light that has passed through the solution flow path 32 of the flow cell 30 is greater than the maximum light reception angle that can be totally reflected by the inner surface of the light guide path 41 of the light guide member 40. It is better to make it larger.
 図3は、光源LTから出射された励起光の態様を示している。図3において、一点鎖線矢印は、励起光LT1を示す。光源LTから照射された励起光LT1は、コリメートレンズ21で平行光にされる。 FIG. 3 shows an aspect of the excitation light emitted from the light source LT. In FIG. 3, the alternate long and short dash line arrow indicates the excitation light LT1. The excitation light LT1 emitted from the light source LT is converted into parallel light by the collimator lens 21.
 コリメートレンズ21で平行光にされた励起光LT1は、励起光バンドパスフィルタEFにおいて、所定の帯域以外の波長を有する光が除去される。励起光バンドパスフィルタEFを通過した励起光LT1は、ボールレンズ22によってフローセル30の溶液流路32に向けて集光される。 The excitation light LT1 that has been converted into parallel light by the collimator lens 21 is subjected to removal of light having a wavelength other than a predetermined band in the excitation light bandpass filter EF. The excitation light LT1 that has passed through the excitation light bandpass filter EF is collected by the ball lens 22 toward the solution flow path 32 of the flow cell 30.
 尚、ボールレンズ22は焦点距離が両凸レンズの中でも短い。したがって、ボールレンズ22を励起光光学系20に用いることで、導光路41の最大受光角よりも大きい入射角で入射する励起光LT1の量を増加させることができる。ここで、ボールレンズ22は収差が悪いが焦点距離が短く、バイオセンサ10の小型化には有利である。このため、導光部材40の径を大きくすることによって、ボールレンズ22の収差の悪化によるデフォーカスが許容される。つまり、導光部材40の径は、光源LTのサイズやレンズ収差を許容可能な最小径が理想となる。更に、励起光LT1を円環光とし、ボールレンズ22に入射される円環光の径を大きくすると、ボールレンズ22の収差を小さく、且つ焦点距離を更に短くすることができる。このため、導光路41の最大受光角を超えて入射される励起光LT1の量を増加させることが容易になる。 The ball lens 22 has a short focal length even among the biconvex lenses. Therefore, by using the ball lens 22 in the excitation light optical system 20, it is possible to increase the amount of excitation light LT1 incident at an incident angle larger than the maximum light receiving angle of the light guide path 41. Here, the ball lens 22 has a low aberration but has a short focal length, which is advantageous for downsizing the biosensor 10. For this reason, by increasing the diameter of the light guide member 40, defocus due to the deterioration of the aberration of the ball lens 22 is allowed. That is, the diameter of the light guide member 40 is ideally the minimum diameter that allows the size of the light source LT and lens aberration. Further, when the excitation light LT1 is an annular light and the diameter of the annular light incident on the ball lens 22 is increased, the aberration of the ball lens 22 can be reduced and the focal length can be further shortened. For this reason, it becomes easy to increase the amount of the excitation light LT1 incident beyond the maximum light receiving angle of the light guide path 41.
 また、ボールレンズ22を含む励起光光学系20は、導光部材40の開口数よりも大きい開口数で構成されている。このため、一の軸AXに対して鋭角に導光路41に入射する励起光LT1が増加する。すなわち、導光路41の最大受光角よりも大きい入射角度で導光路41に入射する励起光LT1の量が増加する。この結果、導光部材40を導光せずに外部に透過する励起光LT1の量が多くなる。 Further, the excitation light optical system 20 including the ball lens 22 is configured with a numerical aperture larger than the numerical aperture of the light guide member 40. For this reason, the excitation light LT1 incident on the light guide path 41 at an acute angle with respect to the one axis AX increases. That is, the amount of excitation light LT1 incident on the light guide 41 at an incident angle larger than the maximum light receiving angle of the light guide 41 is increased. As a result, the amount of the excitation light LT1 that is transmitted outside without being guided through the light guide member 40 increases.
 また、上記の様に導光部材40の開口数よりも大きい光学系で構成されていない場合に於いても、励起光LT1が円環状の分布を示していれば、以後の記述にある通り、後段のコリメートレンズの配置により励起光LT1のコリメート(検出部60への導光)を抑制することができる。 Further, as described above, as long as the excitation light LT1 exhibits an annular distribution even when the optical system is not configured with an optical system larger than the numerical aperture of the light guide member 40, as described below, Collimation of the excitation light LT1 (light guide to the detection unit 60) can be suppressed by the arrangement of the subsequent collimating lens.
 ここで、フローセル30を通過した励起光LT1は、多様な入射角度で導光部材40に入射する。その際に、導光路41の内面で全反射可能な最大受光角以下の入射角で入射した励起光LT1は、光源LT及び励起光光学系20の影響を受けて一定の分布をもっている。この励起光LT1の分布は、導光路41内でも維持され、結果として導光路41内で励起光LT1の濃淡が生じる。 Here, the excitation light LT1 that has passed through the flow cell 30 enters the light guide member 40 at various incident angles. At that time, the excitation light LT1 that is incident at an incident angle that is less than the maximum light reception angle that can be totally reflected by the inner surface of the light guide 41 has a certain distribution due to the influence of the light source LT and the excitation light optical system 20. The distribution of the excitation light LT1 is also maintained in the light guide path 41. As a result, the density of the excitation light LT1 is generated in the light guide path 41.
 励起光LT1の最も淡い光がコリメートレンズ51においてコリメートされるように、コリメートレンズ51が配置されている。すなわち、導光路41内のコリメートレンズ51の焦点位置において、励起光LT1がデフォーカスされる様にコリメートレンズ51が配置されている。このようにコリメートレンズ51を配置することで、多くの励起光L1はコリメートレンズ51でコリメートされずに拡散させることができる。 The collimating lens 51 is arranged so that the lightest light of the excitation light LT1 is collimated by the collimating lens 51. That is, the collimating lens 51 is arranged so that the excitation light LT1 is defocused at the focal position of the collimating lens 51 in the light guide path 41. By arranging the collimating lens 51 in this way, a lot of excitation light L1 can be diffused without being collimated by the collimating lens 51.
 コリメートレンズ51で平行光にされた励起光LT1は、蛍光バンドパスフィルタFFにおいて反射する。 The excitation light LT1 converted into parallel light by the collimating lens 51 is reflected by the fluorescent bandpass filter FF.
 図4は、フローセル30から出射された蛍光の態様を示している。図4において、一点鎖線矢印は、蛍光LT2を示す。補酵素は励起光LT1を受光すると、蛍光LT2を発する。蛍光LT2は、溶液流路32の溶液中を透過して導光部材40の導光路41に入射する。導光路41を導光した蛍光LT2は、導光部材40の出射端からコリメートレンズ51に向けて出射される。 FIG. 4 shows a mode of fluorescence emitted from the flow cell 30. In FIG. 4, the alternate long and short dash line indicates the fluorescence LT2. When the coenzyme receives the excitation light LT1, it emits fluorescence LT2. The fluorescence LT2 passes through the solution in the solution flow path 32 and enters the light guide path 41 of the light guide member 40. The fluorescent light LT 2 guided through the light guide path 41 is emitted from the emission end of the light guide member 40 toward the collimator lens 51.
 コリメートレンズ51によってコリメートされた蛍光LT2は、蛍光バンドパスフィルタFFによって所定の帯域以外の波長を有する光が除去される。蛍光バンドパスフィルタFFを通過した蛍光LT2は、集光レンズにて検出部60に向けて集光される。 Fluorescence LT2 collimated by the collimating lens 51 removes light having a wavelength other than a predetermined band by the fluorescence bandpass filter FF. The fluorescence LT2 that has passed through the fluorescence bandpass filter FF is condensed toward the detection unit 60 by the condenser lens.
 以上のように、本発明の検出装置であるバイオセンサ10によれば、光源LTから出射された励起光LT1は、従来の検出装置に用いられていた光ファイバを介さずにフローセル30に照射される。従って、励起光光学系20を光ファイバの開口数に応じて構成する必要がなくなるため、光ファイバが有する開口数よりも高い開口数で励起光光学系20を構成することが可能となる。 As described above, according to the biosensor 10 which is the detection device of the present invention, the excitation light LT1 emitted from the light source LT is irradiated to the flow cell 30 without passing through the optical fiber used in the conventional detection device. The Accordingly, it is not necessary to configure the excitation light optical system 20 according to the numerical aperture of the optical fiber, and thus the excitation light optical system 20 can be configured with a numerical aperture higher than the numerical aperture of the optical fiber.
 この結果、バイオセンサ10は、高い励起光LT1の利用効率を有し、補酵素から発せられる蛍光の光量が増加することにより特定物質の検出精度を高めることが可能となる。また、バイオセンサ10は、光ファイバを有しないことにより、部品点数の削減を図ることができ、装置の小型化を図ることが可能となる。 As a result, the biosensor 10 has high utilization efficiency of the excitation light LT1, and can increase the detection accuracy of the specific substance by increasing the amount of fluorescence emitted from the coenzyme. Further, since the biosensor 10 does not have an optical fiber, the number of parts can be reduced, and the apparatus can be downsized.
 また、バイオセンサ10は、フローセル30に接して設けられている導光部材40を有する。これによって、導光路41の最大受光角度を超えて導光路41に入射した励起光LT1の一部は、導光路41を導光せずに透過する。したがって、検出部60において検出される励起光LT1の量を減らすことが可能となり、検出精度の向上を図ることが可能となる。 The biosensor 10 also has a light guide member 40 provided in contact with the flow cell 30. Thereby, a part of the excitation light LT1 that has entered the light guide 41 beyond the maximum light receiving angle of the light guide 41 passes through the light guide 41 without being guided. Therefore, the amount of excitation light LT1 detected by the detection unit 60 can be reduced, and detection accuracy can be improved.
 実施例2に係るバイオセンサ10について説明する。実施例2に係るバイオセンサ10は、実施例1のバイオセンサ10とは光源LTから出射された励起光LT1の放射分布を円環状に成型するための遮光部材を備える点で異なる。尚、実施例1と同一の構成については同一箇所に同一符号を付すことによって説明を省略し、以後の実施例についても同様とする。 The biosensor 10 according to Example 2 will be described. The biosensor 10 according to the second embodiment is different from the biosensor 10 according to the first embodiment in that the biosensor 10 includes a light shielding member for shaping the radiation distribution of the excitation light LT1 emitted from the light source LT into an annular shape. In addition, about the structure same as Example 1, description is abbreviate | omitted by attaching | subjecting the same code | symbol to the same location, and it is the same also about subsequent Examples.
 図5は、実施例2に係るバイオセンサ10の一の軸AXに沿った断面を示している。図5に示すように、励起光光学系20は、一の軸AX上に配され、かつ励起光LT1を遮光可能な遮光部材70を含んでいる。 FIG. 5 shows a cross section along one axis AX of the biosensor 10 according to the second embodiment. As shown in FIG. 5, the excitation light optical system 20 includes a light shielding member 70 that is arranged on one axis AX and that can shield the excitation light LT1.
 遮光部材70は、例えば、円板状に形成されている。遮光部材70の大きさは、導光部材40の導光路41の径よりも大きく形成されているとよい。このように形成された遮光部材70を一の軸AX上に配置することで、一の軸AX上を直進する励起光LT1を遮断することができる。 The light shielding member 70 is formed in a disk shape, for example. The size of the light shielding member 70 may be formed larger than the diameter of the light guide path 41 of the light guide member 40. By disposing the light shielding member 70 formed in this way on one axis AX, it is possible to block the excitation light LT1 that travels straight on the one axis AX.
 図6は、実施例2のバイオセンサ10において光源LTから出射された励起光LT1の態様を示している。図6において、一点鎖線矢印は、励起光LT1を示す。図6に示すように、多くの励起光LT1は、導光路41において全反射角よりも大きい角度をもって入射される。これにより、励起光LT1の多くは導光路41を導光せずに導光部材40を透過する。 FIG. 6 shows an aspect of the excitation light LT1 emitted from the light source LT in the biosensor 10 of the second embodiment. In FIG. 6, the one-dot chain line arrow indicates the excitation light LT1. As shown in FIG. 6, a lot of excitation light LT1 is incident on the light guide path 41 at an angle larger than the total reflection angle. Thereby, most of the excitation light LT1 passes through the light guide member 40 without being guided through the light guide path 41.
 具体的には、溶液流路32の補酵素(NADH)によって吸収されなかった励起光LT1は、導光部材40へ入射する。励起光LT1の一部は、軸AXに対して広角に、すなわち、導光部材40の導光路41の内面で全反射可能な最大受光角よりも大きい入射角で入射する。最大受光角よりも大きい入射角で入射した励起光LT1は、導光路41を導光せずに側面SSから導光部材40の外部に透過する。 Specifically, the excitation light LT1 that has not been absorbed by the coenzyme (NADH) in the solution flow path 32 enters the light guide member 40. A part of the excitation light LT1 is incident at a wide angle with respect to the axis AX, that is, at an incident angle larger than the maximum light receiving angle that can be totally reflected by the inner surface of the light guide path 41 of the light guide member 40. The excitation light LT1 incident at an incident angle larger than the maximum light receiving angle is transmitted through the light guide 41 from the side surface SS to the outside of the light guide member 40.
 以上のように、本実施例に係るバイオセンサ10によれば、一の軸AX上を直進する励起光LT1を遮断することができる。また、導光部材40に入射される励起光LT1の入射角度を大きくすることができ、多くの励起光LT1を導光路41において導光させないようにすることができる。この結果、検出部60で検出される励起光LT1の量を減らすことができ、検出精度の向上を図ることが可能となる。
[変形例]
 本実施例のように、励起光光学系20が遮光部材70を含む場合には、導光路41を導光する励起光LT1の量を減らすことができる。したがって、蛍光光学系50を設けずにバイオセンサ10を構成してもよい。
As described above, according to the biosensor 10 according to the present embodiment, the excitation light LT1 that travels straight on one axis AX can be blocked. Further, the incident angle of the excitation light LT1 incident on the light guide member 40 can be increased, and a large amount of the excitation light LT1 can be prevented from being guided in the light guide path 41. As a result, the amount of excitation light LT1 detected by the detection unit 60 can be reduced, and the detection accuracy can be improved.
[Modification]
When the excitation light optical system 20 includes the light shielding member 70 as in the present embodiment, the amount of excitation light LT1 that guides the light guide path 41 can be reduced. Therefore, the biosensor 10 may be configured without providing the fluorescence optical system 50.
 図7は、本実施例に係るバイオセンサ10の変形例の構成を示している。図7に示すように、バイオセンサ10は、蛍光光学系50及び蛍光フィルタFFを有していない。このように、バイオセンサ10を構成することで、バイオセンサ10の小型化を図ることが可能となる。 FIG. 7 shows a configuration of a modification of the biosensor 10 according to the present embodiment. As shown in FIG. 7, the biosensor 10 does not have the fluorescence optical system 50 and the fluorescence filter FF. Thus, by configuring the biosensor 10, it is possible to reduce the size of the biosensor 10.
 実施例3に係るバイオセンサ10について説明する。実施例3に係るバイオセンサ10は、フローセル30の形状が異なる点で実施例1及び2のバイオセンサ10とは異なる。 The biosensor 10 according to Example 3 will be described. The biosensor 10 according to the third embodiment is different from the biosensor 10 according to the first and second embodiments in that the shape of the flow cell 30 is different.
 図8は、実施例3に係るバイオセンサ10の一の軸AXに沿ったフローセル30の拡大断面を示している。図8に示すように、導光部材40は、フローセル30の溶液流路32と接する部位34が蛍光光学系50に向かって窄まるように形成されている。すなわち、導光部材40のフローセル30の溶液流路32と接する部位34は、一の軸AXに対して角度を持つように傾斜している。したがって、導光部材40のフローセル30の溶液流路32と接する部位34に照射された励起光LT1は、フローセル30の溶液流路32に向かって反射する。 FIG. 8 shows an enlarged cross section of the flow cell 30 along one axis AX of the biosensor 10 according to the third embodiment. As shown in FIG. 8, the light guide member 40 is formed such that a portion 34 in contact with the solution flow path 32 of the flow cell 30 is narrowed toward the fluorescence optical system 50. That is, the portion 34 of the light guide member 40 that contacts the solution flow path 32 of the flow cell 30 is inclined so as to have an angle with respect to one axis AX. Therefore, the excitation light LT1 applied to the portion 34 of the light guide member 40 that contacts the solution flow path 32 of the flow cell 30 is reflected toward the solution flow path 32 of the flow cell 30.
 以上のように、本実施例に係るバイオセンサ10によれば、導光部材40に入射された励起光LT1の一部をフローセル30の溶液流路32に向けて反射させることができるため、蛍光LT2の発光効率を向上させることが可能となる。 As described above, according to the biosensor 10 according to the present embodiment, a part of the excitation light LT1 incident on the light guide member 40 can be reflected toward the solution flow path 32 of the flow cell 30, so that the fluorescence The light emission efficiency of LT2 can be improved.
 尚、積極的に励起光LT1を溶液流路32に向けて反射させるために、フローセル30の溶液流路32と接する部位34は、励起光LT1を反射する反射部材を設置してもよい。また、励起光LT1を乱反射させるために、フローセル30の溶液流路32と接する部位は、凹凸面を有するようにしてもよい。 In order to positively reflect the excitation light LT1 toward the solution flow path 32, a portion 34 that contacts the solution flow path 32 of the flow cell 30 may be provided with a reflection member that reflects the excitation light LT1. Further, in order to diffusely reflect the excitation light LT1, the portion of the flow cell 30 that contacts the solution flow path 32 may have an uneven surface.
 実施例4に係るバイオセンサ10について説明する。実施例4にかかるバイオセンサ10は、励起光光学系20を有しない点で実施例1のバイオセンサ10とは異なる。 The biosensor 10 according to Example 4 will be described. The biosensor 10 according to the fourth embodiment is different from the biosensor 10 according to the first embodiment in that it does not include the excitation light optical system 20.
 図9は、実施例4に係るバイオセンサ10の一の軸AXに沿った断面を示している。 FIG. 9 shows a cross section along one axis AX of the biosensor 10 according to the fourth embodiment.
 図9に示すように、一の軸AX上において、コリメートレンズ51と蛍光バンドパスフィルタFFとの間には、励起光LT1の波長を含む帯域をカットするロングパスフィルタLFが設けられている。 As shown in FIG. 9, on one axis AX, a long pass filter LF for cutting a band including the wavelength of the excitation light LT1 is provided between the collimating lens 51 and the fluorescent band pass filter FF.
 図10は、実施例4に係るバイオセンサ10の光源LTから出射された励起光LT1の態様を示している。図10において、一点鎖線矢印は、励起光LT1を示す。図10に示すように、光源LTから出射された励起光LT1は、フローセル30を通過し、導光部材40に入射される。 FIG. 10 shows an aspect of the excitation light LT1 emitted from the light source LT of the biosensor 10 according to the fourth embodiment. In FIG. 10, the alternate long and short dash line arrow indicates the excitation light LT1. As shown in FIG. 10, the excitation light LT <b> 1 emitted from the light source LT passes through the flow cell 30 and is incident on the light guide member 40.
 ここで、導光路41の最大受光角を超える励起光LT1は、導光路41を導光せずに透過する。導光路41を導光した励起光LT1は、コリメートレンズ51においてコリメートされ、ロングパスフィルタLFにおいて減衰される。 Here, the excitation light LT1 exceeding the maximum light receiving angle of the light guide 41 passes through the light guide 41 without being guided. The excitation light LT1 guided through the light guide path 41 is collimated by the collimating lens 51 and attenuated by the long pass filter LF.
 図11は、実施例4に係るバイオセンサ10のフローセル30から出射された蛍光LT2の態様を示している。図11において、一点鎖線矢印は、蛍光LT2を示す。 FIG. 11 shows an aspect of the fluorescence LT2 emitted from the flow cell 30 of the biosensor 10 according to the fourth embodiment. In FIG. 11, the alternate long and short dash line arrow indicates the fluorescence LT2.
 フローセル30の溶液流路32において発せられた蛍光LT2は、導光部材40の導光路41において導光される。導光部材40から出射された蛍光LT2は、コリメートレンズ51によってコリメートされ、ロングパスフィルタLFと蛍光バンドパスフィルタFFを通過する。蛍光バンドパスフィルタFFを通過した蛍光LT2は、集光レンズ52を通って検出部60に向けて集光される。 The fluorescence LT2 emitted in the solution flow path 32 of the flow cell 30 is guided in the light guide path 41 of the light guide member 40. The fluorescence LT2 emitted from the light guide member 40 is collimated by the collimating lens 51, and passes through the long pass filter LF and the fluorescence band pass filter FF. The fluorescence LT2 that has passed through the fluorescence bandpass filter FF is condensed toward the detection unit 60 through the condenser lens 52.
 以上のように、本実施例に係るバイオセンサ10によれば、励起光光学系20を有していないため、強度の高い励起光を直接的に溶液流路32に照射することが可能となる。このため、蛍光LT2の発光量を高めることができると共に、装置の部品点数が少なくなることによる装置の小型化を図ることが可能となる。 As described above, according to the biosensor 10 according to the present embodiment, since the excitation light optical system 20 is not provided, it is possible to directly irradiate the solution flow path 32 with high intensity excitation light. . For this reason, the light emission amount of the fluorescence LT2 can be increased, and the size of the device can be reduced by reducing the number of parts of the device.
 実施例5に係るバイオセンサ10について説明する。実施例5に係るバイオセンサ10は、フローセル30の気体流路31の形状が異なる点で実施例1乃至4のバイオセンサ10とは異なる。 A biosensor 10 according to Example 5 will be described. The biosensor 10 according to the fifth embodiment is different from the biosensor 10 according to the first to fourth embodiments in that the shape of the gas flow path 31 of the flow cell 30 is different.
 図12は、実施例5に係るバイオセンサ10の一の軸AXに沿った断面を示している。図12において、励起光光学系20は、コリメートレンズ21を有しているが、ボールレンズ22を有していない。 FIG. 12 shows a cross section along one axis AX of the biosensor 10 according to the fifth embodiment. In FIG. 12, the excitation light optical system 20 has a collimating lens 21, but does not have a ball lens 22.
 フローセル30の気体流路31は、一の軸AXを中心として、酵素保持膜33に向かって凸となる曲面を有するように形成されたレンズ部31aを有している。 The gas flow path 31 of the flow cell 30 has a lens portion 31 a formed so as to have a curved surface that is convex toward the enzyme holding film 33 around the one axis AX.
 レンズ部31aは、コリメートレンズ21によって平行光にされた励起光LT1を酵素保持膜33に向けて集光する。従って、本実施例に係るバイオセンサ10によれば、励起光光学系20のボールレンズ22が不要となる。これにより、装置の部品点数が少なくなり、装置の小型化を図ることが可能となる。 The lens unit 31 a condenses the excitation light LT <b> 1 converted into parallel light by the collimating lens 21 toward the enzyme holding film 33. Therefore, according to the biosensor 10 according to the present embodiment, the ball lens 22 of the excitation light optical system 20 is not necessary. As a result, the number of parts of the apparatus is reduced, and the apparatus can be miniaturized.
 実施例6に係るバイオセンサ10について説明する。実施例6に係るバイオセンサ10は、光源LTと検出部60の配置位置が異なる点で実施例1乃至5のバイオセンサ10とは異なる。 A biosensor 10 according to Example 6 will be described. The biosensor 10 according to the sixth embodiment is different from the biosensor 10 according to the first to fifth embodiments in that the arrangement positions of the light source LT and the detection unit 60 are different.
 すなわち、実施例1乃至4においては、光源LT、励起光光学系20、フローセル30、導光部材40、蛍光光学系50及び検出部60が一の軸AX上に配置されているが、光源LT及び検出部60のうち少なくとも一方は一の軸AX上に配置されていなくてもよい。 That is, in Examples 1 to 4, the light source LT, the excitation light optical system 20, the flow cell 30, the light guide member 40, the fluorescence optical system 50, and the detection unit 60 are arranged on one axis AX, but the light source LT In addition, at least one of the detection units 60 may not be arranged on one axis AX.
 図13は、実施例6に係るバイオセンサ10の一の軸AXに沿った断面を示している。図13に示すように、光源LTと検出部60は一の軸AXと直行する軸AX2及び軸AX3上に夫々配置される。また、軸AX2及び軸AX3が一の軸AXと交わる位置において、ミラーMR1及びミラーMR2が配置されている。すなわち、光源LTから出射された励起光LT1は励起光光学系20に到達するようにミラーMR1によって反射される。また、蛍光光学系50を通過した蛍光LT2は検出部60に到達するようにミラーMR2によって反射される。 FIG. 13 shows a cross section along one axis AX of the biosensor 10 according to the sixth embodiment. As illustrated in FIG. 13, the light source LT and the detection unit 60 are respectively disposed on an axis AX2 and an axis AX3 that are orthogonal to one axis AX. Further, the mirror MR1 and the mirror MR2 are disposed at a position where the axis AX2 and the axis AX3 intersect with one axis AX. That is, the excitation light LT1 emitted from the light source LT is reflected by the mirror MR1 so as to reach the excitation light optical system 20. The fluorescence LT2 that has passed through the fluorescence optical system 50 is reflected by the mirror MR2 so as to reach the detection unit 60.
 実施例1乃至5においては、励起光光学系20及び蛍光光学系50が励起光LT1の光軸と同一の軸である一の軸AXに配置されている。しかし、本実施例において説明したように、励起光LT1の光軸と同一の軸である一の軸AX上に励起光光学系20及び蛍光光学系50が配置されていなくてもよく、励起光LT1の光軸と蛍光LT2の光軸は、検出部60に蛍光LT2が到達可能な範囲で、軸AXとずれていてもよい。 In Examples 1 to 5, the excitation light optical system 20 and the fluorescence optical system 50 are arranged on one axis AX that is the same axis as the optical axis of the excitation light LT1. However, as described in the present embodiment, the excitation light optical system 20 and the fluorescence optical system 50 do not have to be arranged on one axis AX that is the same as the optical axis of the excitation light LT1, and the excitation light The optical axis of LT1 and the optical axis of fluorescence LT2 may deviate from the axis AX as long as the fluorescence LT2 can reach the detection unit 60.
 上述した実施例における機器、装置の構成等は、例示に過ぎず、用途等に応じて、適宜選択または変更することができる。 The configurations of the devices and apparatuses in the above-described embodiments are merely examples, and can be appropriately selected or changed according to the application.
10 バイオセンサ
20 励起光光学系
30 フローセル
31 気体流路
32 溶液流路
33 酵素保持膜
40 導光部材
41 導光路
50 蛍光光学系
60 検出部
70 遮光部材
AX 一の軸
DESCRIPTION OF SYMBOLS 10 Biosensor 20 Excitation light optical system 30 Flow cell 31 Gas flow path 32 Solution flow path 33 Enzyme holding film 40 Light guide member 41 Light guide path 50 Fluorescence optical system 60 Detection part 70 Light shielding member AX One axis

Claims (14)

  1.  気体試料が流れる気体流路、前記気体試料との触媒反応の前または後に励起光によって励起されることで蛍光を発する補酵素を含む溶液を保持する溶液保持部、及び前記触媒反応の触媒となる酵素が保持されている酵素保持膜を含み、かつ一の軸上に配されている反応部と、
     前記一の軸上に前記反応部と接して設けられ、かつ前記一の軸に沿った導光路を形成する導光部材と、
     前記導光路を通過した前記蛍光を検出する検出部と、を有していることを特徴とする検出装置。
    A gas flow path through which a gas sample flows, a solution holding unit that holds a solution containing a coenzyme that emits fluorescence when excited by excitation light before or after a catalytic reaction with the gas sample, and a catalyst for the catalytic reaction A reaction part including an enzyme-holding membrane on which an enzyme is held and arranged on one axis;
    A light guide member provided on the one axis in contact with the reaction portion and forming a light guide along the one axis;
    And a detection unit that detects the fluorescence that has passed through the light guide path.
  2.  前記導光路を通過した前記蛍光を平行光にする第1のコリメートレンズを含み、かつ前記蛍光を集光する蛍光光学系を有することを特徴とする請求項1に記載の検出装置。 The detection apparatus according to claim 1, further comprising a fluorescence optical system that includes a first collimating lens that converts the fluorescence that has passed through the light guide path into parallel light, and that collects the fluorescence.
  3.  前記蛍光光学系は、前記第1のコリメートレンズを通過した前記蛍光を集光する集光レンズを有することを特徴とする請求項2に記載の検出装置。 The detection apparatus according to claim 2, wherein the fluorescence optical system includes a condensing lens that condenses the fluorescence that has passed through the first collimating lens.
  4.  前記蛍光光学系は、前記導光路を通過した前記励起光がデフォーカスされるように構成されていることを特徴とする請求項2又は3に記載の検出装置。 The detection apparatus according to claim 2 or 3, wherein the fluorescence optical system is configured such that the excitation light that has passed through the light guide path is defocused.
  5.  前記反応部から見て前記蛍光光学系の反対側に設けられ、前記励起光を前記反応部に集光する励起光光学系を有することを特徴とする請求項2乃至4のいずれかに記載の検出装置。 5. The excitation light optical system according to claim 2, further comprising an excitation light optical system that is provided on the opposite side of the fluorescence optical system when viewed from the reaction part and collects the excitation light on the reaction part. Detection device.
  6.  前記励起光光学系は、前記一の軸上に配され前記励起光を平行にする第2のコリメートレンズと、前記第2のコリメートレンズによって平行にされた前記励起光を前記反応部に集光する集光レンズと、によって構成されていることを特徴とする請求項5に記載の検出装置。 The excitation light optical system is arranged on the one axis to collimate the excitation light, and the excitation light collimated by the second collimator lens is condensed on the reaction unit. The detection apparatus according to claim 5, further comprising a condensing lens.
  7.  前記励起光光学系の開口数は、前記導光部材の開口数よりも大きいことを特徴とする請求項5又は6に記載の検出装置。 The detection device according to claim 5 or 6, wherein the numerical aperture of the excitation light optical system is larger than the numerical aperture of the light guide member.
  8.  前記反応部を通過した前記励起光の少なくとも一部の前記導光部材に対する入射角が前記導光部材の前記導光路の内面で全反射可能な最大受光角よりも大きくなるように構成されていることを特徴とする請求項1乃至7のいずれかに記載の検出装置。 An incident angle of at least a part of the excitation light that has passed through the reaction portion with respect to the light guide member is configured to be larger than a maximum light reception angle that can be totally reflected by the inner surface of the light guide path of the light guide member. The detection apparatus according to claim 1, wherein
  9.  前記導光部材の前記一の軸と沿った方向に延在する側面に沿って、空間を有していることを特徴とする請求項1乃至8のいずれかに記載の検出装置。 The detection device according to any one of claims 1 to 8, further comprising a space along a side surface extending in a direction along the one axis of the light guide member.
  10.  前記導光部材の周囲を覆うように前記導光部材を保持する保持部材を有し、
     前記保持部材と前記導光部材の前記側面の間に空間を有していることを特徴とする請求項9に記載の検出装置。
    A holding member for holding the light guide member so as to cover the periphery of the light guide member;
    The detection device according to claim 9, wherein a space is provided between the holding member and the side surface of the light guide member.
  11.  前記励起光光学系は、前記一の軸上に配され、前記励起光を遮光可能な遮光部材を含むことを特徴とする請求項5乃至10のいずれかに記載の検出装置。 The detection apparatus according to claim 5, wherein the excitation light optical system includes a light shielding member that is disposed on the one axis and is capable of shielding the excitation light.
  12.  前記導光部材は、前記反応部と接する部位が蛍光光学系に向かって窄まるように形成されていることを特徴とする請求項2乃至11のいずれかに記載の検出装置。 The detection device according to any one of claims 2 to 11, wherein the light guide member is formed such that a portion in contact with the reaction portion is narrowed toward a fluorescence optical system.
  13.  前記導光部材と前記検出部との間に前記蛍光の波長を含む帯域を透過する光学フィルタが設けられていることを特徴とする請求項1乃至12のいずれかに記載の検出装置。 13. The detection apparatus according to claim 1, wherein an optical filter that transmits a band including the fluorescence wavelength is provided between the light guide member and the detection unit.
  14.  前記気体流路、前記溶液保持部及び前記酵素保持膜のうち少なくとも一つは前記検出装置に着脱可能であることを特徴とする請求項1乃至13のいずれかに記載の検出装置。 14. The detection device according to claim 1, wherein at least one of the gas flow channel, the solution holding unit, and the enzyme holding film is detachable from the detection device.
PCT/JP2019/010348 2018-03-29 2019-03-13 Detection device WO2019188304A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509875A JP6992164B2 (en) 2018-03-29 2019-03-13 Detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018064398 2018-03-29
JP2018-064398 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019188304A1 true WO2019188304A1 (en) 2019-10-03

Family

ID=68061702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010348 WO2019188304A1 (en) 2018-03-29 2019-03-13 Detection device

Country Status (2)

Country Link
JP (1) JP6992164B2 (en)
WO (1) WO2019188304A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307769A (en) * 2019-12-11 2020-06-19 长江大学 Enzyme reaction detection device based on indicator type fluorescent dye
WO2022266098A1 (en) * 2021-06-14 2022-12-22 Si-Ware Systems Optical fluid analyzer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123095A1 (en) * 2004-07-26 2008-05-29 Danmarks Tekniske Universitet On-Chip Spectroscopy
JP2013033008A (en) * 2011-08-03 2013-02-14 Sony Corp Optical analysis apparatus and optical analysis method
WO2013031896A1 (en) * 2011-09-01 2013-03-07 三菱重工業株式会社 Fluid composition analysis mechanism, heat generation amount measurement device and power plant, and liquid composition analysis method
JP2016509206A (en) * 2012-12-21 2016-03-24 マイクロニクス, インコーポレイテッド Portable fluorescence detection system and microassay cartridge
JP2016220573A (en) * 2015-05-28 2016-12-28 国立大学法人 東京医科歯科大学 Biosensor system using UV-LED light source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123095A1 (en) * 2004-07-26 2008-05-29 Danmarks Tekniske Universitet On-Chip Spectroscopy
JP2013033008A (en) * 2011-08-03 2013-02-14 Sony Corp Optical analysis apparatus and optical analysis method
WO2013031896A1 (en) * 2011-09-01 2013-03-07 三菱重工業株式会社 Fluid composition analysis mechanism, heat generation amount measurement device and power plant, and liquid composition analysis method
JP2016509206A (en) * 2012-12-21 2016-03-24 マイクロニクス, インコーポレイテッド Portable fluorescence detection system and microassay cartridge
JP2016220573A (en) * 2015-05-28 2016-12-28 国立大学法人 東京医科歯科大学 Biosensor system using UV-LED light source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307769A (en) * 2019-12-11 2020-06-19 长江大学 Enzyme reaction detection device based on indicator type fluorescent dye
WO2022266098A1 (en) * 2021-06-14 2022-12-22 Si-Ware Systems Optical fluid analyzer

Also Published As

Publication number Publication date
JP6992164B2 (en) 2022-01-13
JPWO2019188304A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US6710870B1 (en) Method and device for measuring luminescence
US7801394B2 (en) Sensitive emission light gathering and detection system
WO2019188304A1 (en) Detection device
US5221958A (en) Reflection fluorometer
US7405824B2 (en) Optical coupling system of light measuring device and sample
JP2010243270A (en) Composite type multi-path cell and gas measuring instrument
JP2009156659A (en) Measuring apparatus and method
JP7042047B2 (en) Detection device
JP2021153451A (en) Detector
EP2565629B1 (en) Automatic analyzer
JP7128007B2 (en) Gas component detection flow cell and detector
JP2020171239A (en) Flow cell for detecting gas component and gas component detector
JP2021193967A (en) Replacement component
US7012692B2 (en) Photothermal conversion spectroscopic analysis method, and photothermal conversion spectroscopic analysis apparatus for carrying out the method
US20070190642A1 (en) Concentrators for Luminescent Emission
JP2020171240A (en) Flow cell for detecting gas component and gas component detector
JP2003344323A (en) Photothermal conversion spectroscopic analysis method and photothermal conversion spectroscopic analyzer implementing the method
JP2003149154A (en) Fluorescence spectrophotometer
WO2022168374A1 (en) Emission optical system, emission device, and optical measurement device
US20080019658A1 (en) Sensitive emission light gathering and flow through detection system
CN218445140U (en) Atomic fluorescence photometer
US9429519B2 (en) Fluorescent light detection device
JP2022017606A (en) Concentration sensor
JP2006242623A (en) Flow cytometer and fluorescence collecting method
JP2010243311A (en) Spectrometer using laser light source, and cuvette

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509875

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19778124

Country of ref document: EP

Kind code of ref document: A1