WO2019187588A1 - Curable resin composition, dry film, cured object, and electronic component - Google Patents

Curable resin composition, dry film, cured object, and electronic component Download PDF

Info

Publication number
WO2019187588A1
WO2019187588A1 PCT/JP2019/002809 JP2019002809W WO2019187588A1 WO 2019187588 A1 WO2019187588 A1 WO 2019187588A1 JP 2019002809 W JP2019002809 W JP 2019002809W WO 2019187588 A1 WO2019187588 A1 WO 2019187588A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
resin
group
resin composition
silica particles
Prior art date
Application number
PCT/JP2019/002809
Other languages
French (fr)
Japanese (ja)
Inventor
千穂 植田
岡田 和也
沙和子 嶋田
知哉 工藤
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to CN201980023562.9A priority Critical patent/CN111936575B/en
Priority to KR1020207029607A priority patent/KR20200140289A/en
Publication of WO2019187588A1 publication Critical patent/WO2019187588A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a curable resin composition, a dry film, a cured product, and an electronic component.
  • the main component is a curable resin such as a carboxyl group-containing resin or an epoxy resin for an interlayer insulating material or a solder resist material.
  • resin compositions containing additive components such as fillers are widely used.
  • the surface of the resin insulation layer such as an interlayer insulation material is usually roughened by a conductor layer formation process (copper foil rough surface transfer or chemical treatment before copper plating), and is in close contact with the solder resist material. Improves sex.
  • the cured product made of the conventional resin composition used as such an interlayer insulating material there is a problem that delay and loss of electric signals are unavoidable when communicating in a high frequency region.
  • the surface of an interlayer insulating material tends to become a roughening-free or low-roughening surface (so-called low profile substrate), and the material includes a low-polarity insulating material containing an active ester, etc.
  • the low dielectric loss material has come to be used.
  • thermophysical properties for example, by highly filling the composition with an inorganic filler.
  • silica is particularly excellent in filling properties, has a low coefficient of thermal expansion (CTE), and can be easily introduced with a curable reactive group, and has been widely used to improve the properties of solder resists. (See Patent Document 1).
  • an interlayer insulating material used as a material for a low profile substrate that solves the problem of transmission loss is blended with components for reducing polarity such as active esters as described above in order to reduce the dielectric loss tangent.
  • components for reducing polarity such as active esters as described above in order to reduce the dielectric loss tangent.
  • the adhesion with the conductor layer or the solder resist decreases.
  • the solder resist material described above when silica is highly filled as an inorganic filler from the viewpoint of CTE mismatch or low dielectric loss tangent with a semiconductor chip, the ratio of the curable resin is reduced, so that the anchor effect of desmear is reduced.
  • the conductive layer is free of roughening in the interlayer insulating material containing silica and a component aiming at low polarity such as active ester, which is used to solve the problem of transmission loss. Even if it is a low roughened surface, it has excellent adhesion after the HAST treatment with the conductor layer, and even if the surface of the interlayer insulating material and the conductor layer is a roughening free surface or a low roughened surface, as described above. It is required to have excellent adhesion after HAST treatment with a solder resist containing a large amount of silica particles.
  • an object of the present invention is to have a curable resin composition that has excellent adhesion after HAST treatment with a conductor layer and a solder resist, and that can obtain a cured product having a low dielectric loss tangent, and a resin layer obtained from the composition.
  • a dry film, a cured product of the resin layer of the composition or the dry film, and an electronic component having the cured product are examples of a curable resin composition that has excellent adhesion after HAST treatment with a conductor layer and a solder resist, and that can obtain a cured product having a low dielectric loss tangent, and a resin layer obtained from the composition.
  • a dry film, a cured product of the resin layer of the composition or the dry film, and an electronic component having the cured product are examples of the resin layer of the composition.
  • the present inventors diligently studied focusing on the surface treatment of silica used as an inorganic filler in order to achieve the above object. As a result, the inventors used silica particles coated with any one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide, And it discovered that the said subject could be solved by using a specific compound as a hardening
  • the curable resin composition of the present invention is coated with at least one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide.
  • the coated silica particles preferably further have a curable reactive group on the surface.
  • the dry film of the present invention is characterized by having a resin layer obtained by applying the curable resin composition to the film and drying it.
  • the cured product of the present invention is obtained by curing the curable resin composition or the resin layer of the dry film.
  • the electronic component of the present invention is characterized by having the cured product.
  • the curable resin composition which can obtain the hardened
  • a cured product of the resin layer of the film, the composition or the dry film, and an electronic component having the cured product can be provided.
  • the curable resin composition of the present invention is a silica coated with at least one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide. At least one of particles (hereinafter also referred to as “the coated silica particles”), an epoxy compound, a compound having an active ester group, a compound having a cyanate ester group, and a compound having a maleimide group as a curing agent It is characterized by including these.
  • the coated silica particles by including at least one of a compound having an active ester group, a compound having a cyanate ester group, and a compound having a maleimide group as a curing agent, and the coated silica particles, although it is a low dielectric loss tangent, the hardened
  • the problem of adhesion after the HAST treatment is particularly noticeable when the amount of filler is large, but according to the present invention, when the amount of silica is large, for example, 30% by mass or more, the HAST of the cured product It is possible to obtain a curable resin composition in which the adhesiveness is not easily lowered after the treatment.
  • the coated silica particles preferably have a curable reactive group on the surface.
  • the filler has a curable reactive group on the surface, it is possible to strengthen the bond between the filler and the curable resin.
  • the resin has a large specific surface area while the filler particle has a large specific surface area. Since the content is reduced, it is easy to cause a part that is not sufficiently familiar with the curable resin.
  • HAST high temperature and high humidity
  • the surface of the silica particles has more hydroxyl groups based on the hydrated oxide, and can effectively impart a curable reactive group therein, so that the melt viscosity can be further reduced. It is preferable to have.
  • coated silica particles are coated with at least one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide, Coarse particles are unlikely to occur in the curable resin, and further, by imparting a curable reactive group effectively, the fluidity is improved and the processability such as flattening and thinning is excellent.
  • (meth) acrylate is a term which generically refers to acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.
  • the curable resin composition of the present invention is a silica coated with at least one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide. Contains particles.
  • the silica particles to be coated are not particularly limited, and known and commonly used silica particles that can be used as an inorganic filler may be used.
  • Examples of the silica particles to be coated include fused silica, spherical silica, amorphous silica, and crystalline silica, and spherical silica is preferable.
  • silica particles with a hydrated oxide of aluminum for example, by adding an aqueous solution of a water-soluble aluminum compound such as sodium aluminate to an aqueous slurry of silica particles, and then neutralizing with an alkali or acid, Aluminum hydrated oxide can be deposited on the surface of the silica particles.
  • the amount of silica particles in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate.
  • Sodium hydroxide, potassium hydroxide, ammonia are used as the alkali, and hydrochloric acid, nitric acid, etc. are used as the acid, and the amount added is such that the water-soluble aluminum compound can form a hydrated oxide of aluminum, preferably pH Is 7 ⁇ 0.5.
  • silica particles with a hydrated oxide of zirconium for example, by adding an aqueous solution of a water-soluble zirconium compound such as zirconium oxychloride to an aqueous slurry of silica particles, and then neutralizing with an alkali or acid, A zirconium hydrated oxide can be deposited on the surface of the silica particles.
  • the amount of silica particles in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate.
  • the amount to be added is an amount such that the water-soluble zirconium compound can form a hydrated oxide of zirconium, and preferably the pH is 7 ⁇ 0.5. is there.
  • silica particles with a hydrated oxide of zinc for example, an aqueous solution of a water-soluble zinc compound such as zinc sulfate is added to an aqueous slurry of silica particles, and then neutralized with an alkali or an acid. Zinc hydrated oxide can be deposited on the surface of the particles.
  • the amount of silica particles in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate.
  • the alkali, sodium hydroxide, potassium hydroxide, and ammonia are added in such an amount that the water-soluble zinc compound can form a hydrated oxide of zinc, and the pH is preferably 7 ⁇ 0.5.
  • silica particles As a method of coating silica particles with a hydrated oxide of titanium, for example, after adding an aqueous solution of water-soluble titanium such as titanyl sulfate to an aqueous slurry of silica particles, the silica particles are neutralized with an alkali or an acid. Titanium hydrated oxide can be deposited on the surface of the substrate.
  • the amount of silica particles in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate.
  • the acid hydrochloric acid, nitric acid or the like is used, and the amount added is an amount such that the water-soluble titanium compound can form a hydrated oxide of titanium, and the pH is preferably 7 ⁇ 0.5.
  • Coating with the metal hydrated oxide that is, coating with at least one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide and titanium hydrated oxide
  • the hydrated oxide of the metal is preferably coated with 1 to 40 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the silica particles. By covering with 1 part by mass or more, it is possible to obtain a cured product that is excellent in dispersibility of silica particles in the curable resin and whose adhesion is not easily lowered after the HAST treatment.
  • the adhesion after HAST treatment is excellent, and a strong bond with the curable resin can be obtained.
  • the physical properties of the cured product can be improved by the group, for example, the CTE can be lowered.
  • the curable reactive group is not particularly limited as long as it is a group that undergoes a curing reaction with a component (for example, a curable resin or an alkali-soluble resin) blended in the curable resin composition, and even a photocurable reactive group. It may be a thermosetting reactive group.
  • curable reactive groups examples include epoxy groups, amino groups, hydroxyl groups, carboxyl groups, isocyanate groups, imino groups, oxetanyl groups, mercapto groups, methoxymethyl groups, methoxyethyl groups, ethoxymethyl groups, ethoxyethyl groups, oxazoline groups, methacrylic groups.
  • the method for introducing the curable reactive group to the surface of the coated silica particles is not particularly limited, and may be introduced using a known and commonly used method, and a surface treatment agent having a curable reactive group, for example, a curable reaction.
  • the surface of the coated silica particles may be treated with a coupling agent having a group as an organic group.
  • a coupling agent having a group as an organic group.
  • a silane coupling agent a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, or the like can be used. Of these, a silane coupling agent is preferable.
  • the curable reactive group on the surface of the coated silica particle is preferably a thermosetting reactive group.
  • the curable resin composition of the present invention contains a photocurable resin, it may be a photocurable reactive group.
  • the average particle size of the coated silica particles is preferably 1 ⁇ m or less.
  • the silica particles are coated as described above, so that the dispersibility is excellent and the aggregation is difficult. Further, it is preferably smaller than the exposure wavelength, and more preferably 0.4 ⁇ m or less. Moreover, it is preferable that it is 0.25 micrometer or more from a viewpoint of suppressing halation.
  • the average particle diameter of the silica particles is an average particle diameter (D50) including not only the primary particle diameter but also the secondary particle (aggregate) particle diameter.
  • the maximum particle diameter of the coated silica particles is preferably 2 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • An example of a measuring apparatus using a laser diffraction method is Microtrac MT3300EXII manufactured by Nikkiso Co., Ltd. By being 2 ⁇ m or less, a uniform and fine roughened surface can be obtained.
  • the average particle diameter of the coated silica particles may be adjusted, for example, it is preferably predispersed with a bead mill or a jet mill. Further, the coated silica particles are preferably blended in a slurry state. By blending in the slurry state, high dispersion can be easily achieved, aggregation can be prevented, and handling can be facilitated.
  • the coated silica particles can be used singly or in combination of two or more.
  • the blended amount of the coated silica particles is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 45% by mass or more in the total solid content of the composition. .
  • the adhesion and dispersibility after HAST treatment are excellent, so that the physical properties of the cured product can be improved, for example, low CTE, warpage resistance, and heat resistance.
  • silica can be highly filled.
  • the curable resin composition of the present invention contains at least one of a compound having an active ester group, a compound having a cyanate ester group, and a compound having a maleimide group as a curing agent. By containing such a curing agent, a low dielectric cured product can be obtained. These curing agents can be used alone or in combination of two or more.
  • the compound having an active ester group is preferably a compound having two or more active ester groups in one molecule.
  • a compound having an active ester group can generally be obtained by a condensation reaction between a carboxylic acid compound and a hydroxy compound.
  • the compound which has an active ester group obtained using a phenol compound or a naphthol compound as a hydroxy compound is preferable.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolac and the like.
  • the compound having an active ester group may be naphthalenediol alkyl / benzoic acid type.
  • cyclopentadiene type diphenol compounds such as HPC8000-65T (manufactured by DIC), HPC8100-65T (manufactured by DIC), HPC8150-65T (manufactured by DIC), EXB-8500-65T (manufactured by DIC) may be mentioned.
  • the compound having a cyanate ester group is preferably a compound having two or more cyanate ester groups (—OCN) in one molecule.
  • any conventionally known compounds can be used.
  • the compound having a cyanate ester group include a phenol novolak type cyanate ester resin, an alkylphenol novolak type cyanate ester resin, a dicyclopentadiene type cyanate ester resin, a bisphenol A type cyanate ester resin, a bisphenol F type cyanate ester resin, and a bisphenol S type.
  • Examples include cyanate ester resins. Further, it may be a prepolymer partially triazine.
  • cyanate ester group Commercially available compounds having a cyanate ester group include a phenol novolak type polyfunctional cyanate ester resin (manufactured by Lonza Japan Co., Ltd., PT30S), and a prepolymer in which a part or all of bisphenol A dicyanate is triazine and becomes a trimer. (Lonza Japan, BA230S75), dicyclopentadiene structure-containing cyanate ester resin (Lonza Japan, DT-4000, DT-7000) and the like. Moreover, BA230 (made by Lonza Japan) is also mentioned.
  • the compound having a maleimide group is a compound having a maleimide skeleton, and any conventionally known compound can be used.
  • the compound having a maleimide group preferably has two or more maleimide skeletons.
  • BMI-1000 (4,4′-diphenylmethane bismaleimide, manufactured by Daiwa Kasei Kogyo Co., Ltd.)
  • BMI-2300 phenylmethane bismaleimide, manufactured by Daiwa Kasei Kogyo Co., Ltd.
  • BMI- 3000 m-phenylene bismaleimide, manufactured by Daiwa Kasei Kogyo Co., Ltd.
  • BMI-5100 (3,3′-dimethyl-5,5′-dimethyl-4,4′-diphenylmethane bismaleimide, manufactured by Daiwa Kasei Kogyo Co., Ltd.
  • BMI -7000 (4-methyl-1,3-phenylene bismaleimide, manufactured by Daiwa Kasei Kogyo Co., Ltd.
  • BMI-TMH ((1,6-bismaleimide-2,2,4-trimethyl) hexane, manufactured by Daiwa Kasei Ko
  • a compound having an active ester group is preferable because it is excellent in low dielectric loss.
  • Cyanate esters are also preferable because they are excellent in low dielectric loss.
  • a three-dimensional structure containing a triazine ring can be formed, so that water absorption characteristics are lowered and migration resistance is improved.
  • the blending amount of the curing agent is preferably 1 to 30% by mass when the solid content in the curable resin composition is 100% by mass.
  • the curable resin composition of the present invention contains an epoxy compound.
  • An epoxy compound can be used individually by 1 type or in combination of 2 or more types.
  • the epoxy compound is a compound having an epoxy group, and any conventionally known one can be used. Examples include polyfunctional epoxy compounds having a plurality of epoxy groups in the molecule. Note that a hydrogenated epoxy compound may be used.
  • Polyfunctional epoxy compounds include epoxidized vegetable oils; bisphenol A type epoxy resins; hydroquinone type epoxy resins; bisphenol type epoxy resins; thioether type epoxy resins; brominated epoxy resins; novolac type epoxy resins; biphenol novolac type epoxy resins; Type epoxy resin; hydrogenated bisphenol A type epoxy resin; glycidylamine type epoxy resin; hydantoin type epoxy resin; alicyclic epoxy resin; trihydroxyphenylmethane type epoxy resin; bixylenol type or biphenol type epoxy resin or a mixture thereof; Bisphenol S type epoxy resin; Bisphenol A novolak type epoxy resin; Tetraphenylol ethane type epoxy resin; Heterocyclic epoxy resin; Phthalate resin; Tetraglycidylxylenoylethane resin; Naphthalene group-containing epoxy resin; Epoxy resin having dicyclopentadiene skeleton; Glycidyl methacrylate copolymer epoxy resin; Copolymer epoxy resin of
  • epoxy resins can be used alone or in combination of two or more.
  • novolak type epoxy resins bisphenol type epoxy resins, bixylenol type epoxy resins, biphenol type epoxy resins, biphenol novolac type epoxy resins, naphthalene type epoxy resins or mixtures thereof are particularly preferable.
  • the compounding amount of the epoxy compound is preferably 5 to 60% by mass when the solid content in the curable resin composition is 100% by mass.
  • the curing accelerator of the present invention can contain a curing accelerator.
  • the curing accelerator include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- (2-Cyanoethyl) -2-ethyl-4-methylimidazole, imidazole derivatives such as imidazole and epoxy adducts; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy -N, N-dimethylbenzylamine, 4-methyl-N, N-dimethylbenzylamine, amine compounds such as 4-dimethylaminopyridine, hydrazine compounds such as adipic acid dihydrazide, sebacic acid
  • organometallic complex or organometallic salt of metals, such as cobalt, copper, zinc, iron, nickel, manganese, and tin
  • organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
  • cobalt (II) acetylacetonate cobalt (III) acetylacetonate, zinc (II) acetylacetonate, zinc naphthenate, iron (III) acetylacetonate are Cobalt (II) acetylacetonate and zinc naphthenate are more preferable.
  • the curing accelerator a compound that also functions as an adhesion promoter is preferably used in combination with the curing accelerator.
  • a hardening accelerator can be used individually by 1 type or in combination of 2 or more types.
  • the blending amount of the curing accelerator is, for example, 0.01 to 30% by mass in the total solid content of the composition.
  • the curable resin composition of the present invention can further contain a thermoplastic resin in order to improve the mechanical strength of the resulting cured film.
  • the thermoplastic resin is preferably soluble in a solvent. When it is soluble in a solvent, the flexibility is improved when it is made into a dry film, and the generation of cracks and powder falling can be suppressed.
  • the thermoplastic resin use is made of thermoplastic polyhydroxy polyether resin, phenoxy resin that is a condensate of epichlorohydrin and various bifunctional phenolic compounds, or hydroxyl group of hydroxy ether part present in the skeleton of various acid anhydrides and acid chlorides.
  • thermoplastic resin can be used individually by 1 type or in combination of 2 or more types.
  • the blending amount of the thermoplastic resin is, for example, 0.01 to 10% by mass in the total solid content of the composition.
  • the curable resin composition of the present invention may contain a colorant.
  • a known and commonly used flame retardant can be used.
  • Known and conventional flame retardants include phosphoric acid esters and condensed phosphoric acid esters, phosphorus element-containing (meth) acrylates, phosphorus-containing compounds having phenolic hydroxyl groups, cyclic phosphazene compounds, phosphazene oligomers, phosphorus-containing compounds such as phosphinic acid metal salts, Layered layers of antimony compounds such as antimony trioxide and antimony pentoxide, halides such as pentabromodiphenyl ether and octabromodiphenyl ether, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, hydrotalcite and hydrotalcite-like compounds A double hydroxide is mentioned.
  • a flame retardant can be used individually by 1 type or in combination of 2 or more types.
  • the blending amount of the flame retardant is, for example, 0.01 to 10% by mass in the total solid content of the composition.
  • the curable resin composition of the present invention may contain a colorant.
  • a colorant known colorants such as red, blue, green, yellow, black, and white can be used, and any of pigments, dyes, and pigments may be used. However, it is preferable not to contain a halogen from the viewpoint of reducing the environmental burden and affecting the human body.
  • a coloring agent can be used individually by 1 type or in combination of 2 or more types.
  • the blending amount of the colorant is, for example, 0.01 to 10% by mass in the total solid content of the composition.
  • the curable resin composition of the present invention can contain an organic solvent for the purpose of preparing the composition and adjusting the viscosity when applied to a substrate or a carrier film.
  • organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether , Glycol ethers such as dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol
  • additives include thermal polymerization inhibitors, UV absorbers, silane coupling agents, plasticizers, antistatic agents, anti-aging agents, antioxidants, antibacterial / antifungal agents, antifoaming agents, leveling agents, Sticky agent, adhesion promoter, thixotropic agent, photoinitiator, sensitizer, organic filler, elastomer, mold release agent, surface treatment agent, dispersant, dispersion aid, surface modifier, stabilizer, Examples thereof include phosphors.
  • the curable resin composition of the present invention may contain a known and usual inorganic filler other than the coated silica particles as long as the effects of the present invention are not impaired.
  • inorganic filler include silica other than the coated silica particles, Neuburg silica, aluminum hydroxide, glass powder, talc, clay, magnesium carbonate, calcium carbonate, natural mica, synthetic mica, and aluminum hydroxide.
  • Inorganic fillers such as barium sulfate, barium titanate, iron oxide, non-fibrous glass, hydrotalcite, mineral wool, aluminum silicate, calcium silicate and zinc white.
  • the curable resin composition of the present invention may contain a curing agent other than the above-mentioned curing agent as long as the effects of the present invention are not impaired.
  • a curing agent include compounds having a phenolic hydroxyl group, polycarboxylic acids and acid anhydrides thereof, and alicyclic olefin polymers.
  • the curable resin composition of the present invention may contain a thermosetting resin other than the epoxy compound as long as the effects of the present invention are not impaired.
  • thermosetting resins include isocyanate compounds, blocked isocyanate compounds, amino resins, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, polyfunctional oxetane compounds, episulfide resins, and the like.
  • polyfunctional oxetane compound examples include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3- Methyl-3-oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3- In addition to polyfunctional oxetanes such as oxetanyl) methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin , Poly (p-hydroxy
  • episulfide resin that is, a compound having a plurality of cyclic thioether groups in the molecule
  • examples of the episulfide resin include bisphenol A type episulfide resin.
  • episulfide resin etc. which replaced the oxygen atom of the epoxy group of the novolak-type epoxy resin with the sulfur atom using the same synthesis method can be used.
  • amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycoluril compounds, and methylol urea compounds.
  • polyisocyanate compound a polyisocyanate compound can be blended.
  • Polyisocyanate compounds include 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate, and Aromatic polyisocyanates such as 2,4-tolylene isocyanate dimer; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis (cyclohexyl isocyanate) and isophorone diisocyanate; Alicyclic polyisocyanates such as bicycloheptane triisocyanate; and the isocyanate compounds listed above Adducts,
  • an addition reaction product of an isocyanate compound and an isocyanate blocking agent can be used.
  • an isocyanate compound which can react with an isocyanate blocking agent the above-mentioned polyisocyanate compound etc. are mentioned, for example.
  • an isocyanate block agent for example, phenol block agent; lactam block agent; active methylene block agent; alcohol block agent; oxime block agent; mercaptan block agent; acid amide block agent; imide block agent; Examples include amine-based blocking agents; imidazole-based blocking agents; imine-based blocking agents.
  • the curable resin composition of the present invention may contain a photocurable resin.
  • a photocurable resin what is necessary is just a resin which is hardened
  • a photopolymerizable oligomer, a photopolymerizable vinyl monomer or the like, which is a known and commonly used photosensitive monomer can be used, and a radical polymerizable monomer or a cationic polymerizable monomer may be used.
  • the photocurable resin a polymer such as a carboxyl group-containing resin having an ethylenically unsaturated group as described later can be used.
  • a photocurable resin can be used individually by 1 type or in combination of 2 or more types.
  • a liquid (solid) or semi-solid photosensitive (meth) acrylate compound having at least one (meth) acryloyl group in the molecule at room temperature can be used as the photosensitive monomer.
  • the photosensitive (meth) acrylate compound that is liquid at room temperature is used for the purpose of increasing the photoreactivity of the composition, as well as adjusting the composition to a viscosity suitable for various coating methods and assisting in solubility in an aqueous alkali solution. Also fulfills.
  • Examples of the photopolymerizable oligomer include unsaturated polyester oligomers and (meth) acrylate oligomers.
  • Examples of (meth) acrylate oligomers include phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, epoxy (meth) acrylates such as bisphenol type epoxy (meth) acrylate, urethane (meth) acrylate, epoxy urethane (meta ) Acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polybutadiene-modified (meth) acrylate, and the like.
  • photopolymerizable vinyl monomer known and commonly used monomers, for example, styrene derivatives such as styrene, chlorostyrene and ⁇ -methylstyrene; vinyl esters such as vinyl acetate, vinyl butyrate or vinyl benzoate; vinyl isobutyl ether, vinyl- vinyl ethers such as n-butyl ether, vinyl-t-butyl ether, vinyl-n-amyl ether, vinyl isoamyl ether, vinyl-n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, triethylene glycol monomethyl vinyl ether; acrylamide, Methacrylamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-methoxymethylacrylamide, N-ethoxymethylacryl (Meth) acrylamides such as amide, N-butoxymethylacrylamide; allyl compounds such as triallyl isocyanurate,
  • the curable resin composition of the present invention may contain an alkali-soluble resin.
  • the alkali-soluble resin is more preferably a carboxyl group-containing resin.
  • the carboxyl group-containing resin may be a carboxyl group-containing photosensitive resin having an ethylenically unsaturated group or a carboxyl group-containing resin having no ethylenically unsaturated group.
  • Alkali-soluble resin can be used individually by 1 type or in combination of 2 or more types.
  • carboxyl group-containing resin examples include the compounds listed below (any of oligomers and polymers).
  • a carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate, and isobutylene.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates; carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers
  • carboxyl group-containing urethane resin by a polyaddition reaction of a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, polycarbonate polyols, polyether polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A systems
  • a terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with a terminal of a urethane resin by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Carboxyl group-containing urethane resin by polyaddition reaction of (meth) acrylate or its partial acid anhydride modified product, carboxyl group-containing dialcohol compound and diol compound.
  • one isocyanate group and one or more (meth) acryloyl groups are introduced into the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate.
  • the carboxyl group-containing urethane resin which added the compound which has and was terminally (meth) acrylated.
  • a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride or hexahydrophthalic anhydride
  • a carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
  • Reaction product obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide, with an unsaturated group-containing monocarboxylic acid.
  • a carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a product.
  • (11) Obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a reaction product obtained by reacting a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with an unsaturated group-containing monocarboxylic acid.
  • a carboxyl group-containing resin obtained by reacting a reaction product with a polybasic acid anhydride.
  • An epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and (meth) Reaction with an unsaturated group-containing monocarboxylic acid such as acrylic acid, and with respect to the alcoholic hydroxyl group of the resulting reaction product, maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, anhydrous A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as adipic acid.
  • the acid value of the alkali-soluble resin is suitably in the range of 40 to 200 mgKOH / g, more preferably in the range of 45 to 120 mgKOH / g.
  • the acid value of the alkali-soluble resin is 40 mgKOH / g or more, alkali development is facilitated, and on the other hand, it is preferable to draw a normal cured product pattern of 200 mgKOH / g or less.
  • the weight average molecular weight of the alkali-soluble resin varies depending on the resin skeleton, but is preferably in the range of 1,500 to 150,000, more preferably 1,500 to 100,000.
  • the weight average molecular weight is 1,500 or more, the tack-free performance is good, the moisture resistance of the coated film after exposure is good, the film loss during development can be suppressed, and the resolution can be suppressed from decreasing.
  • the weight average molecular weight is 150,000 or less, the developability is good and the storage stability is also excellent.
  • the blending amount of the alkali-soluble resin is, for example, 5 to 50% by mass in the total solid content of the composition.
  • the curable resin composition of the present invention can contain a photoinitiator.
  • the photoreaction initiator may be any one that can cure the composition by light irradiation, and is any one of a photopolymerization initiator that generates radicals by light irradiation and a photobase generator that generates bases by light irradiation. Is preferred.
  • the photoinitiator may of course be a compound that generates both radicals and bases upon light irradiation.
  • Light irradiation means irradiation with ultraviolet rays having a wavelength in the range of 350 to 450 nm.
  • photopolymerization initiator examples include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2, 6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- ( 2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6- Trimethylbenzoyl) -phenylphosphine oxide Bisacylphosphine oxides such as 2,6
  • Thioxanthones such as thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropylthioxanthone; anthraquinone, chloroanthraquinone 2
  • Anthraquinones such as methyl anthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone and 2-aminoanthraquinone; ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; ethyl-4 -Benzoic acid esters such as dimethylaminobenzoate, 2- (dimethyla
  • the photobase generator generates one or more basic substances that can function as a catalyst for a thermosetting reaction by changing the molecular structure upon irradiation with light such as ultraviolet rays or visible light, or by cleaving the molecules.
  • a compound examples include secondary amines and tertiary amines.
  • photobase generators examples include ⁇ -aminoacetophenone compounds, oxime ester compounds, acyloxyimino compounds, N-formylated aromatic amino compounds, N-acylated aromatic amino compounds, nitrobenzyl carbamate compounds, alkoxybenzyl carbamates. Compounds and the like. Of these, oxime ester compounds and ⁇ -aminoacetophenone compounds are preferred, oxime ester compounds are more preferred, and ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) is more preferred.
  • a photobase generator may be used individually by 1 type, and may be used in combination of 2 or more type.
  • examples of the photobase generator include quaternary ammonium salts.
  • WPBG-018 (trade name: 9-anthrylmethyl N, N'-diethylcarbamate), WPBG-027 (trade name: (E) -1- [3- (2-hydroxyphenyl) -2- propenoyl] piperidine), WPBG-082 (trade name: guanidinium2- (3-benzoylphenyl) propionate), WPBG-140 (trade name: 1- (anthraquinon-2-yl) ethylidazole, etc. can also be used.
  • photopolymerization initiators also function as photobase generators.
  • the photopolymerization initiator that also functions as a photobase generator is preferably an oxime ester photopolymerization initiator or an ⁇ -aminoacetophenone photopolymerization initiator.
  • the blending amount of the photoinitiator is, for example, 0.01 to 30% by mass in the total solid content of the composition.
  • the curable resin composition of the present invention is not particularly limited, and may be any of a thermosetting resin composition, a photocurable thermosetting resin composition, and a photosensitive thermosetting resin composition, for example. Moreover, an alkali development type may be sufficient and a negative type or a positive type may be sufficient. Specific examples include a thermosetting resin composition, a photocurable thermosetting resin composition, a photocurable thermosetting resin composition containing a photopolymerization initiator, and a photocurable heat containing a photobase generator.
  • Curable resin composition negative photocurable thermosetting resin composition and positive photosensitive thermosetting resin composition, alkali developing photocurable thermosetting resin composition, solvent developing photocurable thermosetting Examples include, but are not limited to, a curable resin composition, a swollen peelable thermosetting resin composition, and a melt peelable thermosetting resin composition.
  • a known and commonly used component may be selected according to curability and application.
  • the curable resin composition of the present invention when it is a thermosetting resin composition (not including a photopolymerization initiator), it contains a thermosetting resin. Moreover, it is preferable to contain a hardening accelerator. It is preferable to contain a curing agent.
  • the compounding amount of the thermosetting resin is preferably 1 to 50% by mass in the total solid content of the composition.
  • the blending amount of the curing accelerator is preferably 0.01 to 30% by mass in the total solid content of the composition.
  • the blending amount of the curing agent is preferably 0.01 to 30% by mass in the total solid content of the composition.
  • the curable resin composition of the present invention is a photocurable thermosetting resin composition
  • it contains a photocurable resin, a thermosetting resin, and a photoinitiator.
  • the photocurable resin may be an alkali-soluble resin, and may further contain an alkali-soluble resin.
  • the blending amount of the alkali-soluble resin is preferably 5 to 50% by mass in the total solid content of the composition.
  • the compounding amount of the thermosetting resin is preferably 1 to 50% by mass in the total solid content of the composition.
  • the blending amount of the photocurable resin (excluding the photocurable alkali-soluble resin) is preferably 1 to 50% by mass in the total solid content of the composition.
  • the blending amount of the photoinitiator is preferably 0.01 to 30% by mass in the total solid content of the composition.
  • the blending amount of the curing accelerator is preferably 0.01 to 30% by mass in the total solid content of the composition.
  • the curable resin composition of the present invention may be used as a dry film or as a liquid. When used as a liquid, it may be one-component or two-component or more.
  • the dry film of the present invention has a resin layer obtained by applying and drying the curable resin composition of the present invention on a carrier film.
  • the curable resin composition of the present invention is diluted with the above organic solvent to adjust to an appropriate viscosity, and then a comma coater, a blade coater, a lip coater, a rod coater, and a squeeze coater. Apply a uniform thickness on the carrier film using a reverse coater, transfer roll coater, gravure coater, spray coater or the like. Thereafter, the applied composition is usually dried at a temperature of 40 to 130 ° C. for 1 to 30 minutes to form a resin layer.
  • the coating film thickness is not particularly limited, but in general, the film thickness after drying is appropriately selected in the range of 3 to 150 ⁇ m, preferably 5 to 60 ⁇ m.
  • a plastic film is used as the carrier film.
  • a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used.
  • the thickness of the carrier film is not particularly limited, but is generally appropriately selected within the range of 10 to 150 ⁇ m. More preferably, it is in the range of 15 to 130 ⁇ m.
  • the surface of the resin layer is further protected to be peelable for the purpose of preventing dust from adhering to the surface of the resin layer. It is preferable to laminate a film (cover film).
  • a peelable protective film for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a surface-treated paper, or the like can be used.
  • a protective film what is necessary is just a thing smaller than the adhesive force of a resin layer and a carrier film, when peeling a protective film.
  • a resin layer may be formed by applying and drying the curable resin composition of the present invention on the protective film, and a carrier film may be laminated on the surface. That is, as a film to which the curable resin composition of the present invention is applied when producing a dry film in the present invention, either a carrier film or a protective film may be used.
  • the curable resin composition of the present invention is a thermosetting resin composition (not containing a photopolymerization initiator), and a three-layer dry film in which a resin layer is sandwiched between a carrier film and a protective film
  • a printed wiring board can be manufactured by the following method. Either the carrier film or the protective film is peeled off from the dry film, heat laminated to the circuit board on which the circuit pattern is formed, and then thermally cured. The heat curing may be performed in an oven or by a hot plate press.
  • the copper foil or the substrate on which the circuit is formed can be laminated simultaneously.
  • a substrate having an insulating layer can be manufactured by forming a pattern or a via hole by laser irradiation or drilling at a position corresponding to a predetermined position on the substrate on which the circuit pattern is formed, and exposing the circuit wiring.
  • desmear processing is performed.
  • the remaining carrier film or protective film may be peeled off after lamination, after heat curing, after laser processing, or after desmear treatment.
  • a conductor layer is formed on the insulating layer by dry plating or wet plating.
  • dry plating a known method such as vapor deposition, sputtering, or ion plating can be used.
  • wet plating first, the surface of the cured resin composition layer (insulating layer) is coated with permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / Treat with an oxidizing agent such as sulfuric acid or nitric acid.
  • permanganate potassium permanganate, sodium permanganate, etc.
  • dichromate ozone
  • hydrogen peroxide / Treat such as sulfuric acid or nitric acid.
  • an aqueous sodium hydroxide solution alkaline permanganate aqueous solution
  • potassium permanganate and sodium permanganate is particularly preferably used.
  • a conductor layer is formed by a method in which electroless plating and electrolytic plating are combined.
  • a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating.
  • a subsequent pattern formation method for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.
  • the connection method of the interlayer circuit may be a connection using a copper pillar.
  • the surface of the conductor layer and the insulating layer is roughened.
  • an aromatic compound having an amino group and an aromatic ring, a polybasic acid having two or more carboxy groups, and a halide ion can be used.
  • An example of the product name is 01CZ manufactured by MEC.
  • Insulating layers and conductor layers may be alternately formed as described above, and a solder resist may be formed on the outermost circuit.
  • a solder resist may be formed according to the method described in paragraphs 70 to 76 of Patent 5941180.
  • the curable resin composition of the present invention is preferably used for forming a cured film on an electronic component, particularly for forming a cured film on a printed wiring board, and more preferably for forming a permanent film. Used for. More preferably, since the curable resin composition of the present invention is excellent in adhesion after HAST treatment with a conductor layer and a solder resist, it is used for forming an interlayer insulating layer. Further, it is suitable for forming a printed wiring board that requires high reliability, for example, a package substrate, particularly a permanent film (particularly an interlayer insulating layer) for FC-BGA.
  • the curable resin composition of this invention can be used suitably also for a printed wiring board provided with the wiring pattern with small roughness of a circuit surface, for example, the printed wiring board for high frequencies.
  • the surface roughness Ra is 0.05 ⁇ m or less, particularly 0.03 ⁇ m or less, it can be suitably used.
  • it can use suitably also when forming a cured film on a low polarity base material, for example, the base material containing an active ester.
  • an inorganic filler such as silica or barium sulfate is, for example, 30% by mass or more, and further 40% by mass. % Or more can be suitably used for forming a cured film that is in close contact with the cured product.
  • the curable resin composition of this invention can be used as a thing for forming a soldering resist and a coverlay.
  • the electronic component may be an application other than the printed wiring board, for example, a passive component such as an inductor.
  • silica particles coated with zirconia hydrated oxide After heating 50 g of water slurry of spherical silica particles (SFP-20M, Denka Corp., average particle size: 0.4 ⁇ m) to 70 ° C., an aqueous solution of a water-soluble zirconium compound such as 100 g / l zirconium oxychloride is added to the silica particles. 2 to 3% in terms of zirconia (ZrO 2 ) was added. Thereafter, a 20% sodium hydroxide aqueous bath solution was added to adjust the pH to 7, followed by aging for 30 minutes. Thereafter, the slurry was washed with filtered water with a filter press and vacuum-dried to obtain a solid of silica particles coated with zirconia hydrated oxide.
  • SFP-20M spherical silica particles
  • ZrO 2 zirconia
  • silica particles coated with zinc hydrated oxide A water slurry of 50 g of spherical silica particles (SFP-20M, Denka Corp., average particle size: 0.4 ⁇ m) was heated to 70 ° C., and an aqueous solution of zinc sulfate was added in an amount of 2 to 3% in terms of ZnO with respect to the silica particles. . Thereafter, a 20% sodium hydroxide aqueous bath solution was added to adjust the pH to 7, followed by aging for 30 minutes. Thereafter, the slurry was washed with filtered water with a filter press and vacuum-dried to obtain a solid of silica particles coated with hydrated zinc oxide.
  • silica particles coated with hydrated aluminum oxide and surface-treated with methacrylic silane 50 g of silica particles coated with the hydrated oxide of aluminum obtained above, 48 g of PMA as a solvent, and 1 g of a silane coupling agent having a methacryl group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) were dispersed uniformly. Filtration, washing with water, and vacuum drying gave a solid product of silica particles surface-treated with methacrylic silane.
  • silica particles coated with hydrated aluminum oxide and surface-treated with epoxy silane 50 g of silica particles coated with the aluminum hydrated oxide obtained above, 48 g of PMA as a solvent, and 1 g of a silane coupling agent having an epoxy group (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) were dispersed uniformly. Filtration, washing with water, and vacuum drying gave a solid product of silica particles surface-treated with epoxysilane.
  • silica particles coated with hydrated aluminum oxide and surface-treated with phenylaminosilane 50 g of silica particles coated with the hydrated oxide of aluminum obtained above, 48 g of PMA as a solvent, and 1 g of a silane coupling agent having a phenylamino group (KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.) are uniformly dispersed. Then, a solid body of silica particles surface-treated with phenylaminosilane was obtained by filtration, washing with water, and vacuum drying.
  • silica particles surface-treated with phenylaminosilane 50 g of spherical silica particles (SFP-20M manufactured by Denka Co., Ltd., average particle size: 0.4 ⁇ m), 48 g of PMA as a solvent, and 1 g of a silane coupling agent having a phenylamino group (KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.) Dispersion was performed, and a solid of silica particles surface-treated with phenylaminosilane was obtained by filtration, washing with water, and vacuum drying.
  • silica particles surface-treated with methacrylic silane 50 g of spherical silica particles (SFP-20M manufactured by Denka Co., Ltd., average particle size: 0.4 ⁇ m), 48 g of PMA (propylene glycol monomethyl ether acetate) as a solvent, and a silane coupling agent having a methacryl group (KBM manufactured by Shin-Etsu Chemical Co., Ltd.) -503) 1 g was uniformly dispersed, and a solid of silica particles surface-treated with methacrylic silane was obtained by filtration, washing with water, and vacuum drying.
  • SFP-20M manufactured by Denka Co., Ltd., average particle size: 0.4 ⁇ m
  • PMA propylene glycol monomethyl ether acetate
  • silane coupling agent having a methacryl group KBM manufactured by Shin-Etsu Chemical Co., Ltd.
  • talc solid material coated with aluminum hydrated oxide 50 g of talc coated with the hydrated oxide of aluminum obtained above, 48 g of PMA as a solvent, and 1 g of a silane coupling agent having a phenylamino group (KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.) were dispersed uniformly. Filtration, washing with water, and vacuum drying gave a talc solid that was surface treated with phenylaminosilane.
  • reaction solution was cooled to room temperature, and 1.56 parts of 89% phosphoric acid was added to and mixed with the reaction solution to neutralize potassium hydroxide.
  • the nonvolatile content was 62.1%, and the hydroxyl value was 182.2 mgKOH / g (307. 9 g / eq.) Of a novolak-type cresol resin propylene oxide reaction solution. This was an average of 1.08 mol of propylene oxide added per equivalent of phenolic hydroxyl group.
  • reaction solution was cooled to room temperature, neutralized with 35.35 parts of a 15% aqueous sodium hydroxide solution, and then washed with water. Thereafter, toluene was distilled off while substituting 118.1 parts of diethylene glycol monoethyl ether acetate with an evaporator to obtain a novolak acrylate resin solution.
  • 332.5 parts of the obtained novolak acrylate resin solution and 1.22 parts of triphenylphosphine were introduced into a reactor equipped with a stirrer, a thermometer and an air blowing tube, and air was supplied at a rate of 10 ml / min.
  • Examples 1 to 13 Comparative Examples 1 to 5
  • Various components shown in Tables 1 to 3 below are blended in proportions (parts by mass) shown in Tables 1 to 3, and after adjusting the viscosity with an organic solvent, premixed with a stirrer, kneaded with a bead mill, and cured.
  • a resin composition was prepared.
  • solder resist composition A curable resin composition for forming a solder resist (hereinafter, also referred to as “solder resist composition”) used for evaluation of the adhesion with the solder resist (SR)> was prepared. These curable resin compositions were passed through a filtration filter having an opening of 15 ⁇ m, and after removing coarse particles, the following dry film was produced.
  • the curable resin composition obtained as described above was diluted by adding 300 g of methyl ethyl ketone, and stirred for 15 minutes with a stirrer to obtain a coating solution.
  • the coating solution was applied onto a 38 ⁇ m thick polyethylene terephthalate film (PET film, Emblet PTH-25 manufactured by Unitika Co., Ltd.) having an arithmetic surface roughness Ra of 150 nm.
  • PET film polyethylene terephthalate film, Emblet PTH-25 manufactured by Unitika Co., Ltd.
  • Examples 1 to 13 and Comparative Examples 1 to 5 were The solder resist composition was dried at 80 ° C. for 10 minutes at a temperature of 100 ° C. to form a resin layer having a thickness of 20 ⁇ m.
  • a 18 ⁇ m-thick polypropylene film (protective film, OPP-FOA manufactured by Futamura Co., Ltd.) was bonded onto the resin layer to produce a dry film having a resin layer thickness of 20 ⁇ m.
  • a dry film having a resin layer thickness of 30 ⁇ m was produced.
  • Examples 1 to 13 and Comparative Examples 1 to 5 using a vacuum laminator were vacuum resisted at 3 hPa, 100 ° C., solder resist in the first chamber.
  • the composition is laminated on the object to be attached at 90 ° C. under a vacuum time of 30 seconds, and pressed under conditions of a press pressure of 0.5 MPa, 80 ° C., and a press time of 30 seconds.
  • ⁇ Dielectric loss tangent> The dry film having a resin layer thickness of 30 ⁇ m produced in the examples and comparative examples is laminated on the glossy surface of electrolytic copper foil GTS-MP-18 ⁇ m (Furukawa Circuit Foil) under the above conditions, and then flattened on the resin. After peeling off the PET film, the resin layer was completely cured (190 ° C., 60 minutes). Thereafter, the cured film was peeled from the copper foil to obtain a cured film having a thickness of 30 ⁇ m. The cured film was cut into a length of 80 mm and a width of 2 mm, and a measurement temperature of 22 ° C.
  • the 18 ⁇ m copper support was peeled off, and the ultrathin copper foil was fully etched with an etching solution (Meck Bright QE-7300, manufactured by MEC) to obtain a substrate having a cured film.
  • a 20 ⁇ m dry film having a resin layer made of the solder resist composition prepared above was laminated on the cured film under the above conditions.
  • the entire surface of the dry film was exposed (exposure amount: 400 to 600 mJ / cm 2 ), and then the polyethylene terephthalate film was peeled from the dry film, and the resin layer was removed. Exposed. Thereafter, development was performed for 60 seconds under the conditions of 30 ° C. and a spray pressure of 2 kg / cm 2 using a 1 wt% Na 2 CO 3 aqueous solution. Subsequently, after the resin layer was irradiated with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, the resin layer was completely cured by heating at 160 ° C.
  • a high-pressure mercury lamp short arc lamp
  • Electrolytic copper foil GTS-MP-18 ⁇ m (Furukawa Circuit Foil Co., Ltd.) glossy surface is pre-processed by spraying MEC 01CZ to roughen the surface, and the surface roughness Ra is 0.04 ⁇ m.
  • a dry film having a resin layer thickness of 20 ⁇ m prepared in each Example and Comparative Example was laminated on this treated surface, and heat cured at 190 ° C. for 60 minutes to obtain a sample in which an insulating layer was formed.
  • the insulating layer of this sample and the FR-4 (glass epoxy) substrate were bonded with an adhesive (AR-S 30 manufactured by Nichiban).
  • This bonded body was treated for 100 hours in a high-temperature and high-humidity tank in an atmosphere of 130 ° C. and 85% humidity. Thereafter, the copper foil was peeled off using a tensile tester AG-X, and the strength at that time was evaluated. After the initial value of this sample and the HAST test at 130 ° C. and 85% RH for 100 hours, the peel strength of both samples was measured based on JIS C6481 by Autograph AG-X manufactured by Shimadzu Corporation. The higher the peel strength, the better the adhesion, and the lower the strength reduction rate before and after the HAST test, the better. (Before HAST-After HAST) / Before HAST x 100 (%) HAST 130 ° C. 85% 100 hrs A reduction rate of 40% or less is desirable.
  • the curable resin compositions of Examples 1 to 13 of the present invention have excellent adhesion after HAST treatment with the conductor layer and the solder resist, and a cured product having a low dielectric loss tangent is obtained.

Abstract

Provided are: a curable resin composition which is excellent in terms of conductor layer/solder resist adhesion after an HAST treatment and which can give cured objects having a low dielectric dissipation factor; a dry film including a resin layer obtained from the composition; a cured object obtained by curing a resin layer which is either the composition or the dry film; and an electronic component including the cured object. The curable resin composition is characterized by comprising: silica particles coated with at least any one of hydrated aluminum oxide, hydrated zirconium oxide, hydrated zinc oxide, and hydrated titanium oxide; an epoxy compound; and a hardener which is any one of active-ester-group-containing compounds, cyanate-ester-group-containing compounds, and maleimide-group-containing compounds.

Description

硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品Curable resin composition, dry film, cured product, and electronic component
 本発明は、硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品に関する。 The present invention relates to a curable resin composition, a dry film, a cured product, and an electronic component.
 一般に、プリント配線板などの電子部品においては、耐熱性や電気絶縁性の観点から、層間絶縁材料用やソルダーレジスト材料用として、カルボキシル基含有樹脂やエポキシ樹脂などの硬化性樹脂を主成分とし、さらにフィラーなどの添加成分を含有する樹脂組成物が広く用いられている。
 また、層間絶縁材料等の樹脂絶縁層の表面は、通常、導体層の形成工程(銅箔の粗面転写や銅めっき前の化学処理)によって粗面化されており、ソルダーレジスト材料との密着性を向上させている。
 このような層間絶縁材料として用いられる従来の樹脂組成物からなる硬化物では、高周波領域で通信する場合に、電気信号の遅延や損失が避けられないという問題があった。
 近年、このような伝送損失の問題から、層間絶縁材料表面は粗化フリーもしくは低粗化面となる傾向にあり(いわゆるロープロファイル基板)、材料としては、活性エステルを含む低極性の絶縁材料などの低誘電損失材が用いられるようになってきた。
In general, in electronic components such as printed wiring boards, from the viewpoint of heat resistance and electrical insulation, the main component is a curable resin such as a carboxyl group-containing resin or an epoxy resin for an interlayer insulating material or a solder resist material. Furthermore, resin compositions containing additive components such as fillers are widely used.
In addition, the surface of the resin insulation layer such as an interlayer insulation material is usually roughened by a conductor layer formation process (copper foil rough surface transfer or chemical treatment before copper plating), and is in close contact with the solder resist material. Improves sex.
In the cured product made of the conventional resin composition used as such an interlayer insulating material, there is a problem that delay and loss of electric signals are unavoidable when communicating in a high frequency region.
In recent years, due to such a transmission loss problem, the surface of an interlayer insulating material tends to become a roughening-free or low-roughening surface (so-called low profile substrate), and the material includes a low-polarity insulating material containing an active ester, etc. The low dielectric loss material has come to be used.
 一方で、半導体パッケージ基板に用いられるソルダーレジスト等の永久被膜には、より高い信頼性(HAST耐性、PCT耐性、耐熱性、強靭性、低反り性、熱寸法安定性等)が求められるようになってきた。
 このようなソルダーレジスト材料等に対し、高い信頼性を付与する方法として、例えば組成物中に無機フィラーを高充填することにより、熱物性を向上させることが一般的に行われている。この無機フィラーの中でも特にシリカは、充填性に優れ、熱膨張係数(CTE)が低いこと、また、容易に硬化性反応基を導入することが可能でありソルダーレジストの特性向上に広く用いられてきた(特許文献1参照)。しかしながら、このようなシリカを多量に含有するソルダーレジスト材料では、上述した伝送損失の問題を解決したロープロファイル基板の材料と同様に、低極性組成物となるため密着性が悪くなり、特にHAST処理後に密着性が低下しやすいという新たな問題が生じることが分かった。
On the other hand, higher reliability (HAST resistance, PCT resistance, heat resistance, toughness, low warpage, thermal dimensional stability, etc.) is required for permanent films such as solder resists used for semiconductor package substrates. It has become.
As a method for imparting high reliability to such a solder resist material or the like, it is generally performed to improve the thermophysical properties, for example, by highly filling the composition with an inorganic filler. Among these inorganic fillers, silica is particularly excellent in filling properties, has a low coefficient of thermal expansion (CTE), and can be easily introduced with a curable reactive group, and has been widely used to improve the properties of solder resists. (See Patent Document 1). However, in such a solder resist material containing a large amount of silica, as with the low-profile substrate material that solves the above-mentioned transmission loss problem, it becomes a low-polarity composition, resulting in poor adhesion, particularly HAST treatment. Later, it was found that a new problem arises that the adhesion tends to decrease.
特開2012-83467号公報(特許請求の範囲)JP 2012-83467 A (Claims)
 一方、伝送損失の問題を解決したロープロファイル基板の材料として用いられる層間絶縁材料には、低誘電正接化のために、上記のとおり、活性エステル等の低極性化のための成分が配合されるが、このような低極性化の成分を含む場合や導体層が粗化フリーもしくは低粗化面であると、導体層やソルダーレジストとの密着性が低下する問題があることが分かった。また、上記ソルダーレジスト材料と同様に、半導体チップとのCTEのミスマッチや低誘電正接化等の観点から無機フィラーとしてシリカを高充填すると、硬化性樹脂の割合が少なくなるため、デスミアによるアンカー効果の得られない場合にソルダーレジストや導体層との密着性がより低下する一因となることが分かった。従って、上記のような低極性材料やシリカの高充填材料を用いた場合には、導体層、および、ソルダーレジスト、特にはシリカを含むソルダーレジストと、HAST処理後も優れた密着性を保つことが困難であった。さらに、高強度物性を付与するソルダーレジストは、硬化性反応基を有するシリカを含むため、シリカの小径化と共に硬化収縮が大きくなりやすく、より密着性が低下するという問題もあった。 On the other hand, an interlayer insulating material used as a material for a low profile substrate that solves the problem of transmission loss is blended with components for reducing polarity such as active esters as described above in order to reduce the dielectric loss tangent. However, it has been found that when such a low-polarity component is included, or when the conductor layer is roughening-free or has a low-roughening surface, the adhesion with the conductor layer or the solder resist decreases. Similarly to the solder resist material described above, when silica is highly filled as an inorganic filler from the viewpoint of CTE mismatch or low dielectric loss tangent with a semiconductor chip, the ratio of the curable resin is reduced, so that the anchor effect of desmear is reduced. When it was not obtained, it turned out that it becomes a cause that adhesiveness with a soldering resist or a conductor layer falls more. Therefore, when using a low-polarity material or a high-filling material such as silica as described above, excellent adhesion is maintained even after the HAST treatment with the conductor layer and the solder resist, particularly the solder resist containing silica. It was difficult. Furthermore, since the solder resist imparting high-strength physical properties contains silica having a curable reactive group, there is a problem in that the shrinkage of curing tends to increase as the diameter of the silica decreases, and the adhesion is further lowered.
 上記のような技術的な背景から、伝送損失の問題を解決するために用いられる、活性エステル等の低極性化を狙う成分およびシリカを含有する層間絶縁材料には、導体層が粗化フリーもしくは低粗化面であっても、導体層とのHAST処理後の密着性に優れること、および、層間絶縁材料および導体層の表面が粗化フリーもしくは低粗化面であっても、上記のようなシリカ粒子を多量に配合したソルダーレジストとのHAST処理後の密着性に優れることが求められる。 From the technical background as described above, the conductive layer is free of roughening in the interlayer insulating material containing silica and a component aiming at low polarity such as active ester, which is used to solve the problem of transmission loss. Even if it is a low roughened surface, it has excellent adhesion after the HAST treatment with the conductor layer, and even if the surface of the interlayer insulating material and the conductor layer is a roughening free surface or a low roughened surface, as described above. It is required to have excellent adhesion after HAST treatment with a solder resist containing a large amount of silica particles.
 そこで本発明の目的は、導体層およびソルダーレジストとのHAST処理後の密着性に優れ、低誘電正接の硬化物を得ることができる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、および、該硬化物を有する電子部品を提供することにある。 Accordingly, an object of the present invention is to have a curable resin composition that has excellent adhesion after HAST treatment with a conductor layer and a solder resist, and that can obtain a cured product having a low dielectric loss tangent, and a resin layer obtained from the composition. A dry film, a cured product of the resin layer of the composition or the dry film, and an electronic component having the cured product.
 本発明者らは、上記目的の実現に向け、無機フィラーとして用いるシリカの表面処理に着目して鋭意検討を行なった。その結果、発明者らは、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちのいずれか1種で被覆したシリカ粒子を用い、かつ、エポキシ化合物の硬化剤として特定の化合物を用いることで、上記課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors diligently studied focusing on the surface treatment of silica used as an inorganic filler in order to achieve the above object. As a result, the inventors used silica particles coated with any one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide, And it discovered that the said subject could be solved by using a specific compound as a hardening | curing agent of an epoxy compound, and came to complete this invention.
 即ち、本発明の硬化性樹脂組成物は、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されたシリカ粒子と、エポキシ化合物と、硬化剤として、活性エステル基を有する化合物、シアネートエステル基を有する化合物、および、マレイミド基を有する化合物の少なくともいずれか1種と、を含むことを特徴とするものである。 That is, the curable resin composition of the present invention is coated with at least one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide. Silica particles, an epoxy compound, and at least any one of a compound having an active ester group, a compound having a cyanate ester group, and a compound having a maleimide group as a curing agent. It is.
 本発明の硬化性樹脂組成物は、前記被覆されたシリカ粒子が、さらに、表面に硬化性反応基を有することが好ましい。 In the curable resin composition of the present invention, the coated silica particles preferably further have a curable reactive group on the surface.
 本発明のドライフィルムは、前記硬化性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするものである。 The dry film of the present invention is characterized by having a resin layer obtained by applying the curable resin composition to the film and drying it.
 本発明の硬化物は、前記硬化性樹脂組成物、または、前記ドライフィルムの樹脂層を硬化して得られることを特徴とするものである。 The cured product of the present invention is obtained by curing the curable resin composition or the resin layer of the dry film.
 本発明の電子部品は、前記硬化物を有することを特徴とするものである。 The electronic component of the present invention is characterized by having the cured product.
 本発明によれば、導体層およびソルダーレジストとのHAST処理後の密着性に優れ、低誘電正接の硬化物を得ることができる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、および、該硬化物を有する電子部品を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is excellent in the adhesiveness after a HAST process with a conductor layer and a soldering resist, The curable resin composition which can obtain the hardened | cured material of a low dielectric loss tangent, Dry which has a resin layer obtained from this composition A cured product of the resin layer of the film, the composition or the dry film, and an electronic component having the cured product can be provided.
 本発明の硬化性樹脂組成物は、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されたシリカ粒子(以下、「前記被覆シリカ粒子」とも称する)と、エポキシ化合物と、硬化剤として、活性エステル基を有する化合物、シアネートエステル基を有する化合物、および、マレイミド基を有する化合物の少なくともいずれか1種と、を含むことを特徴とするものである。 The curable resin composition of the present invention is a silica coated with at least one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide. At least one of particles (hereinafter also referred to as “the coated silica particles”), an epoxy compound, a compound having an active ester group, a compound having a cyanate ester group, and a compound having a maleimide group as a curing agent It is characterized by including these.
 本発明においては、硬化剤として、活性エステル基を有する化合物、シアネートエステル基を有する化合物、および、マレイミド基を有する化合物の少なくともいずれか1種、および、前記被覆されたシリカ粒子を含むことによって、低誘電正接でありながらも、導体層およびソルダーレジストとのHAST処理後の密着性に優れた硬化物を得ることができる。前記被覆されたシリカは、更に表面に硬化性反応基を有すると、CTEの低減に効果があるため好ましい。 In the present invention, by including at least one of a compound having an active ester group, a compound having a cyanate ester group, and a compound having a maleimide group as a curing agent, and the coated silica particles, Although it is a low dielectric loss tangent, the hardened | cured material excellent in the adhesiveness after HAST processing with a conductor layer and a soldering resist can be obtained. It is preferable that the coated silica further has a curable reactive group on the surface because it is effective in reducing CTE.
 前記HAST処理後の密着性の課題は、フィラー量が多い場合に特に顕著であるが、本発明によれば、シリカ量が多い場合、例えば、30質量%以上であっても、硬化物のHAST処理後も密着性が低下しにくい硬化性樹脂組成物を得ることが可能である。 The problem of adhesion after the HAST treatment is particularly noticeable when the amount of filler is large, but according to the present invention, when the amount of silica is large, for example, 30% by mass or more, the HAST of the cured product It is possible to obtain a curable resin composition in which the adhesiveness is not easily lowered after the treatment.
 また、前記被覆されたシリカ粒子は、表面に硬化性反応基を有することが好ましい。一般にフィラーが表面に硬化性反応基を有する場合、フィラーと硬化性樹脂との結合を強固にすることが可能であるが、フィラーが高充填される場合、フィラー粒子の比表面積が多い一方で樹脂含有量が少なくなるため、硬化性樹脂との馴染みが十分でない部分を引き起こしやすく、特にHAST(高温高湿)環境下では吸湿要因となり硬化性反応基部分が加水分解となる可能性が高くなる。そのため、HAST後の密着性が劣り剥がれが発生しやすくなる。 The coated silica particles preferably have a curable reactive group on the surface. In general, when the filler has a curable reactive group on the surface, it is possible to strengthen the bond between the filler and the curable resin. However, when the filler is highly filled, the resin has a large specific surface area while the filler particle has a large specific surface area. Since the content is reduced, it is easy to cause a part that is not sufficiently familiar with the curable resin. In particular, in a HAST (high temperature and high humidity) environment, it becomes a moisture absorption factor, and the possibility that the curable reactive group part is hydrolyzed increases. Therefore, the adhesiveness after HAST is inferior and peeling easily occurs.
 このような塗れ性不良は、フィラーの粒径が小さい場合はフィラーの比表面積が大きく、覆う樹脂量が多く必要となるため特に顕著であった。また、フィラー表面に硬化性反応基を直接付与しても硬化性樹脂との濡れ性が不十分であることから、特にHAST等の厳しい環境下では加水分解等により導体層およびソルダーレジストとの密着性の低下となった。
 しかしながら、本発明においては、前記被覆されたシリカ粒子が表面に硬化性反応基を有していても、シリカ粒子と硬化性反応基との間に、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種が介在していているので、HAST環境下でも加水分解による密着性の低下がないことも確認されている。
 即ちHAST処理後においても硬化性樹脂との濡れ性が維持できているため、導体層およびソルダーレジストとの密着性が低下しにくいという優れた効果を得ることができる。さらに、硬化性反応基による硬化物の物性の改善、例えば低CTE化も可能である。
 また、本発明においては、シリカ粒子の表面に水和酸化物に基づく水酸基を多くし、そこに効果的に硬化性反応基を付与できることで溶融粘度をより低下できるため、表面に硬化性反応基を有することが好ましい。
Such poor paintability is particularly remarkable when the filler particle size is small because the filler has a large specific surface area and requires a large amount of resin to be covered. In addition, even if a curable reactive group is directly applied to the filler surface, the wettability with the curable resin is insufficient, so that adhesion with the conductor layer and the solder resist is caused by hydrolysis, etc., particularly in severe environments such as HAST. Sexual decline.
However, in the present invention, even if the coated silica particles have a curable reactive group on the surface, the hydrated oxide of aluminum and the hydrated zirconium are between the silica particles and the curable reactive group. Since at least one of oxides, hydrated oxides of zinc and hydrated oxides of titanium intervenes, it has been confirmed that there is no decrease in adhesion due to hydrolysis even in a HAST environment. Yes.
That is, since the wettability with the curable resin can be maintained even after the HAST treatment, it is possible to obtain an excellent effect that the adhesion between the conductor layer and the solder resist is not easily lowered. Furthermore, the physical properties of the cured product can be improved by the curable reactive group, for example, the CTE can be lowered.
Further, in the present invention, the surface of the silica particles has more hydroxyl groups based on the hydrated oxide, and can effectively impart a curable reactive group therein, so that the melt viscosity can be further reduced. It is preferable to have.
 さらに、前記被覆シリカ粒子は、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されているので、硬化性樹脂中において粗粒が発生しにくく、更に、効果的に硬化性反応基を付与することで流動性が向上し、平坦化、薄膜化等の加工性に優れる。 Furthermore, the coated silica particles are coated with at least one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide, Coarse particles are unlikely to occur in the curable resin, and further, by imparting a curable reactive group effectively, the fluidity is improved and the processability such as flattening and thinning is excellent.
 以下に、本発明の硬化性樹脂組成物の各成分について説明する。なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語であり、他の類似の表現についても同様である。 Hereinafter, each component of the curable resin composition of the present invention will be described. In addition, in this specification, (meth) acrylate is a term which generically refers to acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.
[シリカ粒子]
 本発明の硬化性樹脂組成物は、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されたシリカ粒子を含む。
[Silica particles]
The curable resin composition of the present invention is a silica coated with at least one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide. Contains particles.
 被覆されるシリカ粒子(即ち、被覆前のシリカ粒子)は特に限定されず、無機フィラーとして用いることができる公知慣用のシリカ粒子を用いればよい。被覆されるシリカ粒子としては、溶融シリカ、球状シリカ、無定形シリカ、結晶性シリカなどが挙げられるが、球状シリカであることが好ましい。 The silica particles to be coated (that is, the silica particles before coating) are not particularly limited, and known and commonly used silica particles that can be used as an inorganic filler may be used. Examples of the silica particles to be coated include fused silica, spherical silica, amorphous silica, and crystalline silica, and spherical silica is preferable.
 アルミニウムの水和酸化物によりシリカ粒子を被覆する方法としては、例えば、シリカ粒子の水スラリーにアルミン酸ナトリウム等の水溶性アルミニウム化合物の水溶液を加えた後、アルカリまたは酸で中和することにより、シリカ粒子の表面にアルミニウムの水和酸化物を沈着させることができる。水スラリー中のシリカ粒子の量は特に制限されるものではないが、通常、30~300g/lが適当である。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア、酸としては塩酸、硝酸等が用いられ、加える量は上記水溶性アルミニウム化合物が、アルミニウムの水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating silica particles with a hydrated oxide of aluminum, for example, by adding an aqueous solution of a water-soluble aluminum compound such as sodium aluminate to an aqueous slurry of silica particles, and then neutralizing with an alkali or acid, Aluminum hydrated oxide can be deposited on the surface of the silica particles. The amount of silica particles in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate. Sodium hydroxide, potassium hydroxide, ammonia are used as the alkali, and hydrochloric acid, nitric acid, etc. are used as the acid, and the amount added is such that the water-soluble aluminum compound can form a hydrated oxide of aluminum, preferably pH Is 7 ± 0.5.
 ジルコニウムの水和酸化物によりシリカ粒子を被覆する方法としては、例えば、シリカ粒子の水スラリーにオキシ塩化ジルコニウム等の水溶性ジルコニウム化合物の水溶液を加えた後、アルカリまたは酸で中和することにより、シリカ粒子の表面にジルコニウムの水和酸化物を沈着させることができる。水スラリー中のシリカ粒子の量は特に制限されるものではないが、通常、30~300g/lが適当である。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア等が用いられ、加える量は上記水溶性ジルコニウム化合物が、ジルコニウムの水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating silica particles with a hydrated oxide of zirconium, for example, by adding an aqueous solution of a water-soluble zirconium compound such as zirconium oxychloride to an aqueous slurry of silica particles, and then neutralizing with an alkali or acid, A zirconium hydrated oxide can be deposited on the surface of the silica particles. The amount of silica particles in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate. As the alkali, sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is an amount such that the water-soluble zirconium compound can form a hydrated oxide of zirconium, and preferably the pH is 7 ± 0.5. is there.
 亜鉛の水和酸化物によりシリカ粒子を被覆する方法としては、例えば、シリカ粒子の水スラリーに硫酸亜鉛等の水溶性亜鉛化合物の水溶液を加えた後、アルカリまたは酸で中和することにより、シリカ粒子の表面に亜鉛の水和酸化物を沈着させることができる。水スラリー中のシリカ粒子の量は特に制限されるものではないが、通常、30~300g/lが適当である。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア、加える量は上記水溶性亜鉛化合物が、亜鉛の水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating silica particles with a hydrated oxide of zinc, for example, an aqueous solution of a water-soluble zinc compound such as zinc sulfate is added to an aqueous slurry of silica particles, and then neutralized with an alkali or an acid. Zinc hydrated oxide can be deposited on the surface of the particles. The amount of silica particles in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate. As the alkali, sodium hydroxide, potassium hydroxide, and ammonia are added in such an amount that the water-soluble zinc compound can form a hydrated oxide of zinc, and the pH is preferably 7 ± 0.5.
 チタンの水和酸化物によりシリカ粒子を被覆する方法としては、例えば、シリカ粒子の水スラリーにチタニル硫酸等の水溶性チタンの水溶液を加えた後、アルカリまたは酸で中和することにより、シリカ粒子の表面にチタンの水和酸化物を沈着させることができる。水スラリー中のシリカ粒子の量は特に制限されるものではないが、通常、30~300g/lが適当である。酸としては塩酸、硝酸等が用いられ、加える量は上記水溶性チタン化合物が、チタンの水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating silica particles with a hydrated oxide of titanium, for example, after adding an aqueous solution of water-soluble titanium such as titanyl sulfate to an aqueous slurry of silica particles, the silica particles are neutralized with an alkali or an acid. Titanium hydrated oxide can be deposited on the surface of the substrate. The amount of silica particles in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate. As the acid, hydrochloric acid, nitric acid or the like is used, and the amount added is an amount such that the water-soluble titanium compound can form a hydrated oxide of titanium, and the pH is preferably 7 ± 0.5.
 前記金属の水和酸化物による被覆、即ち、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種による被覆は、シリカ粒子100質量部に対して、前記金属の水和酸化物を好ましくは1~40質量部、より好ましくは3~20質量部で被覆することが好ましい。1質量部以上で被覆することによって、硬化性樹脂中でのシリカ粒子の分散性に優れ、HAST処理後に密着性が低下しにくい硬化物を得ることができる。 Coating with the metal hydrated oxide, that is, coating with at least one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide and titanium hydrated oxide, The hydrated oxide of the metal is preferably coated with 1 to 40 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the silica particles. By covering with 1 part by mass or more, it is possible to obtain a cured product that is excellent in dispersibility of silica particles in the curable resin and whose adhesion is not easily lowered after the HAST treatment.
 上記のとおり、本発明においては、表面に硬化性反応基を有する場合であっても、HAST処理後の密着性に優れ、また、硬化性樹脂との強固な結合が得られるので、硬化性反応基による硬化物の物性の改善、例えば低CTE化も可能である。ここで、硬化性反応基とは、硬化性樹脂組成物に配合する成分(例えば、硬化性樹脂やアルカリ可溶性樹脂)と硬化反応する基であれば、特に限定されず、光硬化性反応基でも熱硬化性反応基でもよい。硬化性反応基としては、エポキシ基、アミノ基、水酸基、カルボキシル基、イソシアネート基、イミノ基、オキセタニル基、メルカプト基、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基、オキサゾリン基、メタクリル基、アクリル基、ビニル基、スチリル基等が挙げられる。前記被覆されたシリカ粒子の表面に硬化性反応基を導入する方法は特に限定されず、公知慣用の方法を用いて導入すればよく、硬化性反応基を有する表面処理剤、例えば、硬化性反応基を有機基として有するカップリング剤等で前記被覆されたシリカ粒子の表面を処理すればよい。カップリング剤としては、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤等を用いることができる。なかでも、シランカップリング剤が好ましい。 As described above, in the present invention, even when the surface has a curable reactive group, the adhesion after HAST treatment is excellent, and a strong bond with the curable resin can be obtained. The physical properties of the cured product can be improved by the group, for example, the CTE can be lowered. Here, the curable reactive group is not particularly limited as long as it is a group that undergoes a curing reaction with a component (for example, a curable resin or an alkali-soluble resin) blended in the curable resin composition, and even a photocurable reactive group. It may be a thermosetting reactive group. Examples of curable reactive groups include epoxy groups, amino groups, hydroxyl groups, carboxyl groups, isocyanate groups, imino groups, oxetanyl groups, mercapto groups, methoxymethyl groups, methoxyethyl groups, ethoxymethyl groups, ethoxyethyl groups, oxazoline groups, methacrylic groups. Group, acrylic group, vinyl group, styryl group and the like. The method for introducing the curable reactive group to the surface of the coated silica particles is not particularly limited, and may be introduced using a known and commonly used method, and a surface treatment agent having a curable reactive group, for example, a curable reaction. The surface of the coated silica particles may be treated with a coupling agent having a group as an organic group. As the coupling agent, a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, or the like can be used. Of these, a silane coupling agent is preferable.
 前記被覆されたシリカ粒子が表面に有する硬化性反応基は、熱硬化性反応基であることが好ましい。本発明の硬化性樹脂組成物が光硬化性樹脂を含有する場合は、光硬化性反応基であってもよい。 The curable reactive group on the surface of the coated silica particle is preferably a thermosetting reactive group. When the curable resin composition of the present invention contains a photocurable resin, it may be a photocurable reactive group.
 前記被覆されたシリカ粒子の平均粒子径は、好ましくは1μm以下であることが好ましい。無機フィラーの平均粒子径が小さい場合、凝集し易いが、本発明においては、上記のようにシリカ粒子を被覆することによって、分散性に優れ、凝集しにくい。また、露光波長より小さいことが好ましく、0.4μm以下であることがより好ましい。また、ハレーションを抑制する観点から0.25μm以上であることが好ましい。ここで、本明細書において、シリカ粒子の平均粒子径は、一次粒子の粒径だけでなく、二次粒子(凝集体)の粒径も含めた平均粒子径(D50)であり、レーザー回折法により測定されたD50の値である。また、前記被覆されたシリカ粒子の最大粒子径(レーザー回折法により測定されたD100)は、2μm以下であることが好ましく、1μm以下であることがより好ましい。レーザー回折法による測定装置としては、日機装社製のMicrotrac MT3300EXIIが挙げられる。2μm以下であることにより、均一で微細な粗化面を得られる。 The average particle size of the coated silica particles is preferably 1 μm or less. When the average particle size of the inorganic filler is small, the particles tend to aggregate. However, in the present invention, the silica particles are coated as described above, so that the dispersibility is excellent and the aggregation is difficult. Further, it is preferably smaller than the exposure wavelength, and more preferably 0.4 μm or less. Moreover, it is preferable that it is 0.25 micrometer or more from a viewpoint of suppressing halation. Here, in this specification, the average particle diameter of the silica particles is an average particle diameter (D50) including not only the primary particle diameter but also the secondary particle (aggregate) particle diameter. Is the value of D50 measured by The maximum particle diameter of the coated silica particles (D100 measured by a laser diffraction method) is preferably 2 μm or less, and more preferably 1 μm or less. An example of a measuring apparatus using a laser diffraction method is Microtrac MT3300EXII manufactured by Nikkiso Co., Ltd. By being 2 μm or less, a uniform and fine roughened surface can be obtained.
 前記被覆されたシリカ粒子は、平均粒子径を調整してもよく、例えば、ビーズミルやジェットミルで予備分散することが好ましい。また、前記被覆されたシリカ粒子は、スラリー状態で配合されることが好ましく、スラリー状態で配合することによって、高分散化が容易であり、凝集を防止し、取り扱いが容易になる。 The average particle diameter of the coated silica particles may be adjusted, for example, it is preferably predispersed with a bead mill or a jet mill. Further, the coated silica particles are preferably blended in a slurry state. By blending in the slurry state, high dispersion can be easily achieved, aggregation can be prevented, and handling can be facilitated.
 前記被覆されたシリカ粒子は、1種を単独または2種以上を組み合わせて用いることができる。前記被覆されたシリカ粒子の配合量は、組成物の固形分全量中、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、45質量%以上であることがさらに好ましい。上記のとおり、本発明においては、シリカ量が多くても、HAST処理後の密着性と分散性に優れることから、硬化物の物性の向上、例えば低CTE化、耐反り性、耐熱性を目的として、シリカを高充填することができる。 The coated silica particles can be used singly or in combination of two or more. The blended amount of the coated silica particles is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 45% by mass or more in the total solid content of the composition. . As described above, in the present invention, even if the amount of silica is large, the adhesion and dispersibility after HAST treatment are excellent, so that the physical properties of the cured product can be improved, for example, low CTE, warpage resistance, and heat resistance. As described above, silica can be highly filled.
[硬化剤]
 本発明の硬化性樹脂組成物は、硬化剤として、活性エステル基を有する化合物、シアネートエステル基を有する化合物、および、マレイミド基を有する化合物の少なくともいずれか1種を含有する。このような硬化剤を含有することによって、低誘電の硬化物を得ることができる。これらの硬化剤は1種を単独または2種以上を組み合わせて用いることができる。
[Curing agent]
The curable resin composition of the present invention contains at least one of a compound having an active ester group, a compound having a cyanate ester group, and a compound having a maleimide group as a curing agent. By containing such a curing agent, a low dielectric cured product can be obtained. These curing agents can be used alone or in combination of two or more.
(活性エステル基を有する化合物)
 前記活性エステル基を有する化合物は、一分子中に2個以上の活性エステル基を有する化合物であることが好ましい。活性エステル基を有する化合物は、一般に、カルボン酸化合物とヒドロキシ化合物との縮合反応によって得ることができる。中でも、ヒドロキシ化合物としてフェノール化合物またはナフトール化合物を用いて得られる活性エステル基を有する化合物が好ましい。フェノール化合物またはナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。また、活性エステル基を有する化合物としては、ナフタレンジオールアルキル/安息香酸型でもよい。
(Compound having an active ester group)
The compound having an active ester group is preferably a compound having two or more active ester groups in one molecule. A compound having an active ester group can generally be obtained by a condensation reaction between a carboxylic acid compound and a hydroxy compound. Especially, the compound which has an active ester group obtained using a phenol compound or a naphthol compound as a hydroxy compound is preferable. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolac and the like. Further, the compound having an active ester group may be naphthalenediol alkyl / benzoic acid type.
 市販されている活性エステル基を有する化合物としては、シクロペンタジエン型のジフェノール化合物、例えば、HPC8000-65T(DIC社製)、HPC8100-65T(DIC社製)、HPC8150-65T(DIC社製)、EXB-8500-65T(DIC社製)が挙げられる。 Commercially available compounds having an active ester group include cyclopentadiene type diphenol compounds such as HPC8000-65T (manufactured by DIC), HPC8100-65T (manufactured by DIC), HPC8150-65T (manufactured by DIC), EXB-8500-65T (manufactured by DIC) may be mentioned.
(シアネートエステル基を有する化合物)
 前記シアネートエステル基を有する化合物は、一分子中に2個以上のシアネートエステル基(-OCN)を有する化合物であることが好ましい。シアネートエステル基を有する化合物は、従来公知のものをいずれも使用することができる。シアネートエステル基を有する化合物としては、例えば、フェノールノボラック型シアネートエステル樹脂、アルキルフェノールノボラック型シアネートエステル樹脂、ジシクロペンタジエン型シアネートエステル樹脂、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂が挙げられる。また、一部がトリアジン化したプレポリマーであってもよい。
(Compound having a cyanate ester group)
The compound having a cyanate ester group is preferably a compound having two or more cyanate ester groups (—OCN) in one molecule. As the compound having a cyanate ester group, any conventionally known compounds can be used. Examples of the compound having a cyanate ester group include a phenol novolak type cyanate ester resin, an alkylphenol novolak type cyanate ester resin, a dicyclopentadiene type cyanate ester resin, a bisphenol A type cyanate ester resin, a bisphenol F type cyanate ester resin, and a bisphenol S type. Examples include cyanate ester resins. Further, it may be a prepolymer partially triazine.
 市販されているシアネートエステル基を有する化合物としては、フェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン社製、PT30S)、ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー(ロンザジャパン社製、BA230S75)、ジシクロペンタジエン構造含有シアネートエステル樹脂(ロンザジャパン社製、DT-4000、DT-7000)等が挙げられる。また、BA230(ロンザジャパン社製)も挙げられる。 Commercially available compounds having a cyanate ester group include a phenol novolak type polyfunctional cyanate ester resin (manufactured by Lonza Japan Co., Ltd., PT30S), and a prepolymer in which a part or all of bisphenol A dicyanate is triazine and becomes a trimer. (Lonza Japan, BA230S75), dicyclopentadiene structure-containing cyanate ester resin (Lonza Japan, DT-4000, DT-7000) and the like. Moreover, BA230 (made by Lonza Japan) is also mentioned.
(マレイミド基を有する化合物)
 前記マレイミド基を有する化合物は、マレイミド骨格を有する化合物であり、従来公知のものをいずれも使用できる。マレイミド基を有する化合物は、2以上のマレイミド骨格を有することが好ましく、N,N’-1,3-フェニレンジマレイミド、N,N’-1,4-フェニレンジマレイミド、N,N’-4,4-ジフェニルメタンビスマレイミド、1,2-ビス(マレイミド)エタン、1,6-ビスマレイミドヘキサン、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、2,2’-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビスフェノールAジフェニルエーテルビスマレイミド、ポリフェニルメタンマレイミド、およびこれらのオリゴマー、ならびにマレイミド骨格を有するジアミン縮合物のうちの少なくとも何れか1種であることがより好ましい。前記オリゴマーは、上述のマレイミド基を有する化合物のうちのモノマーであるマレイミド基を有する化合物を縮合させることにより得られたオリゴマーである。
(Compound having a maleimide group)
The compound having a maleimide group is a compound having a maleimide skeleton, and any conventionally known compound can be used. The compound having a maleimide group preferably has two or more maleimide skeletons. N, N′-1,3-phenylene dimaleimide, N, N′-1,4-phenylene dimaleimide, N, N′-4 , 4-diphenylmethane bismaleimide, 1,2-bis (maleimide) ethane, 1,6-bismaleimide hexane, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, 4-methyl-1,3-phenylenebismaleimide, bis ( 3-ethyl-5-methyl-4-maleimidophenyl) methane, bisphenol A diphenyl ether bismaleimide, polyphenylmethanemaleimide, Beauty and more preferably at least any one of diamines condensates with these oligomers and maleimide skeleton. The said oligomer is an oligomer obtained by condensing the compound which has a maleimide group which is a monomer among the compounds which have the above-mentioned maleimide group.
 市販されているマレイミド基を有する化合物としては、BMI-1000(4,4’-ジフェニルメタンビスマレイミド、大和化成工業社製)、BMI-2300(フェニルメタンビスマレイミド、大和化成工業社製)、BMI-3000(m-フェニレンビスマレイミド、大和化成工業社製)、BMI-5100(3,3’-ジメチル-5,5’-ジメチル-4,4’-ジフェニルメタンビスマレイミド、大和化成工業社製)、BMI-7000(4-メチル-1,3,-フェニレンビスマレイミド、大和化成工業社製)、BMI-TMH((1,6-ビスマレイミド-2,2,4-トリメチル)ヘキサン、大和化成工業社製)、MIR-3000(ビフェニルアラルキル型マレイミド、日本化薬社製)などが挙げられる。 Commercially available compounds having a maleimide group include BMI-1000 (4,4′-diphenylmethane bismaleimide, manufactured by Daiwa Kasei Kogyo Co., Ltd.), BMI-2300 (phenylmethane bismaleimide, manufactured by Daiwa Kasei Kogyo Co., Ltd.), BMI- 3000 (m-phenylene bismaleimide, manufactured by Daiwa Kasei Kogyo Co., Ltd.), BMI-5100 (3,3′-dimethyl-5,5′-dimethyl-4,4′-diphenylmethane bismaleimide, manufactured by Daiwa Kasei Kogyo Co., Ltd.), BMI -7000 (4-methyl-1,3-phenylene bismaleimide, manufactured by Daiwa Kasei Kogyo Co., Ltd.), BMI-TMH ((1,6-bismaleimide-2,2,4-trimethyl) hexane, manufactured by Daiwa Kasei Kogyo Co., Ltd. ), MIR-3000 (biphenylaralkyl type maleimide, manufactured by Nippon Kayaku Co., Ltd.) and the like.
 硬化剤としては、低誘電損失に優れることから、活性エステル基を有する化合物が好ましい。また、シアネートエステルも低誘電損失に優れるため好ましいが、マレイミドと併用することにより、トリアジン環を含む三次元構造ができるため吸水率特性がより低くしマイグレーション耐性の向上となり好ましい。 As the curing agent, a compound having an active ester group is preferable because it is excellent in low dielectric loss. Cyanate esters are also preferable because they are excellent in low dielectric loss. However, when used in combination with maleimide, a three-dimensional structure containing a triazine ring can be formed, so that water absorption characteristics are lowered and migration resistance is improved.
 硬化剤の配合量は、硬化性樹脂組成物中の固形分を100質量%とした場合、1~30質量%であることが好ましい。 The blending amount of the curing agent is preferably 1 to 30% by mass when the solid content in the curable resin composition is 100% by mass.
[エポキシ化合物]
 本発明の硬化性樹脂組成物は、エポキシ化合物を含む。エポキシ化合物は、1種を単独または2種以上を組み合わせて用いることができる。
[Epoxy compound]
The curable resin composition of the present invention contains an epoxy compound. An epoxy compound can be used individually by 1 type or in combination of 2 or more types.
 上記エポキシ化合物は、エポキシ基を有する化合物であり、従来公知のものをいずれも使用できる。分子中に複数のエポキシ基を有する多官能エポキシ化合物等が挙げられる。なお、水素添加されたエポキシ化合物であってもよい。 The epoxy compound is a compound having an epoxy group, and any conventionally known one can be used. Examples include polyfunctional epoxy compounds having a plurality of epoxy groups in the molecule. Note that a hydrogenated epoxy compound may be used.
 多官能エポキシ化合物としては、エポキシ化植物油;ビスフェノールA型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;ビスフェノール型エポキシ樹脂;チオエーテル型エポキシ樹脂;ブロム化エポキシ樹脂;ノボラック型エポキシ樹脂;ビフェノールノボラック型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;水添ビスフェノールA型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;ヒダントイン型エポキシ樹脂;脂環式エポキシ樹脂;トリヒドロキシフェニルメタン型エポキシ樹脂;ビキシレノール型もしくはビフェノール型エポキシ樹脂またはそれらの混合物;ビスフェノールS型エポキシ樹脂;ビスフェノールAノボラック型エポキシ樹脂;テトラフェニロールエタン型エポキシ樹脂;複素環式エポキシ樹脂;ジグリシジルフタレート樹脂;テトラグリシジルキシレノイルエタン樹脂;ナフタレン基含有エポキシ樹脂;ジシクロペンタジエン骨格を有するエポキシ樹脂;グリシジルメタアクリレート共重合系エポキシ樹脂;シクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂;エポキシ変性のポリブタジエンゴム誘導体;CTBN変性エポキシ樹脂等が挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種を単独または2種以上を組み合わせて用いることができる。これらの中でも特にノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビフェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂またはそれらの混合物が好ましい。 Polyfunctional epoxy compounds include epoxidized vegetable oils; bisphenol A type epoxy resins; hydroquinone type epoxy resins; bisphenol type epoxy resins; thioether type epoxy resins; brominated epoxy resins; novolac type epoxy resins; biphenol novolac type epoxy resins; Type epoxy resin; hydrogenated bisphenol A type epoxy resin; glycidylamine type epoxy resin; hydantoin type epoxy resin; alicyclic epoxy resin; trihydroxyphenylmethane type epoxy resin; bixylenol type or biphenol type epoxy resin or a mixture thereof; Bisphenol S type epoxy resin; Bisphenol A novolak type epoxy resin; Tetraphenylol ethane type epoxy resin; Heterocyclic epoxy resin; Phthalate resin; Tetraglycidylxylenoylethane resin; Naphthalene group-containing epoxy resin; Epoxy resin having dicyclopentadiene skeleton; Glycidyl methacrylate copolymer epoxy resin; Copolymer epoxy resin of cyclohexylmaleimide and glycidyl methacrylate; Polybutadiene rubber derivatives; CTBN-modified epoxy resins and the like can be mentioned, but are not limited thereto. These epoxy resins can be used alone or in combination of two or more. Among these, novolak type epoxy resins, bisphenol type epoxy resins, bixylenol type epoxy resins, biphenol type epoxy resins, biphenol novolac type epoxy resins, naphthalene type epoxy resins or mixtures thereof are particularly preferable.
 エポキシ化合物の配合量は、硬化性樹脂組成物中の固形分を100質量%とした場合、5~60質量%であることが好ましい。 The compounding amount of the epoxy compound is preferably 5 to 60% by mass when the solid content in the curable resin composition is 100% by mass.
(硬化促進剤)
 本発明の硬化促進剤は、硬化促進剤を含有することができる。硬化促進剤としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール、イミダゾールとエポキシのアダクト体等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン、4-ジメチルアミノピリジン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物等が挙げられる。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもできる。また、金属系硬化促進剤を用いてもよく、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体または有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体などが挙げられる。有機金属塩としては、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛などが挙げられる。これらの中でも、硬化性、溶剤溶解性の観点から、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート、亜鉛(II)アセチルアセトナート、ナフテン酸亜鉛、鉄(III)アセチルアセトナートが好ましく、コバルト(II)アセチルアセトナート、ナフテン酸亜鉛がより好ましい。硬化促進剤としては、好ましくは密着性付与剤としても機能する化合物を硬化促進剤と併用する。硬化促進剤は、1種を単独または2種以上を組み合わせて用いることができる。
(Curing accelerator)
The curing accelerator of the present invention can contain a curing accelerator. Examples of the curing accelerator include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- (2-Cyanoethyl) -2-ethyl-4-methylimidazole, imidazole derivatives such as imidazole and epoxy adducts; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy -N, N-dimethylbenzylamine, 4-methyl-N, N-dimethylbenzylamine, amine compounds such as 4-dimethylaminopyridine, hydrazine compounds such as adipic acid dihydrazide, sebacic acid dihydrazide; triphenylphosphine, etc. Phosphorus compounds, and the like. Guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6-diamino S-triazine derivatives such as -S-triazine / isocyanuric acid adduct and 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adduct can also be used. Moreover, you may use a metal type hardening accelerator and the organometallic complex or organometallic salt of metals, such as cobalt, copper, zinc, iron, nickel, manganese, and tin, is mentioned. Specific examples of the organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate. Examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate. Among these, from the viewpoint of curability and solvent solubility, cobalt (II) acetylacetonate, cobalt (III) acetylacetonate, zinc (II) acetylacetonate, zinc naphthenate, iron (III) acetylacetonate are Cobalt (II) acetylacetonate and zinc naphthenate are more preferable. As the curing accelerator, a compound that also functions as an adhesion promoter is preferably used in combination with the curing accelerator. A hardening accelerator can be used individually by 1 type or in combination of 2 or more types.
 硬化促進剤の配合量は、例えば、組成物の固形分全量中、0.01~30質量%である。 The blending amount of the curing accelerator is, for example, 0.01 to 30% by mass in the total solid content of the composition.
(熱可塑性樹脂)
 本発明の硬化性樹脂組成物は、得られる硬化膜の機械的強度を向上させるために、さらに熱可塑性樹脂を含有することができる。熱可塑性樹脂は、溶剤に可溶であることが好ましい。溶剤に可溶である場合、ドライフィルム化した場合に柔軟性が向上し、クラックの発生や粉落ちを抑制できる。熱可塑性樹脂としては、熱可塑性ポリヒドロキシポリエーテル樹脂や、エピクロルヒドリンと各種2官能フェノール化合物の縮合物であるフェノキシ樹脂或いはその骨格に存在するヒドロキシエーテル部の水酸基を各種酸無水物や酸クロリドを使用してエステル化したフェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ブロック共重合体、ゴム粒子等が挙げられる。熱可塑性樹脂は1種を単独または2種以上を組み合わせて用いることができる。
(Thermoplastic resin)
The curable resin composition of the present invention can further contain a thermoplastic resin in order to improve the mechanical strength of the resulting cured film. The thermoplastic resin is preferably soluble in a solvent. When it is soluble in a solvent, the flexibility is improved when it is made into a dry film, and the generation of cracks and powder falling can be suppressed. As the thermoplastic resin, use is made of thermoplastic polyhydroxy polyether resin, phenoxy resin that is a condensate of epichlorohydrin and various bifunctional phenolic compounds, or hydroxyl group of hydroxy ether part present in the skeleton of various acid anhydrides and acid chlorides. And esterified phenoxy resins, polyvinyl acetal resins, polyamide resins, polyamideimide resins, block copolymers, rubber particles, and the like. A thermoplastic resin can be used individually by 1 type or in combination of 2 or more types.
 熱可塑性樹脂の配合量は、例えば、組成物の固形分全量中、0.01~10質量%である。 The blending amount of the thermoplastic resin is, for example, 0.01 to 10% by mass in the total solid content of the composition.
(難燃剤)
 本発明の硬化性樹脂組成物には、着色剤が含まれていてもよい。難燃剤としては、公知慣用の難燃剤を用いることができる。公知慣用の難燃剤としてはリン酸エステル及び縮合リン酸エステル、リン元素含有(メタ)アクリレート、フェノール性水酸基を有するリン含有化合物、環状フォスファゼン化合物、ホスファゼンオリゴマー、ホスフィン酸金属塩等のリン含有化合物、三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、ペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル等のハロゲン化物、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物、ハイドロタルサイトおよびハイドロタルサイト様化合物などの層状複水酸化物が挙げられる。難燃剤は1種を単独または2種以上を組み合わせて用いることができる。
(Flame retardants)
The curable resin composition of the present invention may contain a colorant. As the flame retardant, a known and commonly used flame retardant can be used. Known and conventional flame retardants include phosphoric acid esters and condensed phosphoric acid esters, phosphorus element-containing (meth) acrylates, phosphorus-containing compounds having phenolic hydroxyl groups, cyclic phosphazene compounds, phosphazene oligomers, phosphorus-containing compounds such as phosphinic acid metal salts, Layered layers of antimony compounds such as antimony trioxide and antimony pentoxide, halides such as pentabromodiphenyl ether and octabromodiphenyl ether, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, hydrotalcite and hydrotalcite-like compounds A double hydroxide is mentioned. A flame retardant can be used individually by 1 type or in combination of 2 or more types.
 難燃剤の配合量は、例えば、組成物の固形分全量中、0.01~10質量%である。 The blending amount of the flame retardant is, for example, 0.01 to 10% by mass in the total solid content of the composition.
(着色剤)
 本発明の硬化性樹脂組成物には、着色剤が含まれていてもよい。着色剤としては、赤、青、緑、黄、黒、白等の公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよい。但し、環境負荷低減並びに人体への影響の観点からハロゲンを含有しないことが好ましい。着色剤は、1種を単独または2種以上を組み合わせて用いることができる。
(Coloring agent)
The curable resin composition of the present invention may contain a colorant. As the colorant, known colorants such as red, blue, green, yellow, black, and white can be used, and any of pigments, dyes, and pigments may be used. However, it is preferable not to contain a halogen from the viewpoint of reducing the environmental burden and affecting the human body. A coloring agent can be used individually by 1 type or in combination of 2 or more types.
 着色剤の配合量は、例えば、組成物の固形分全量中、0.01~10質量%である。 The blending amount of the colorant is, for example, 0.01 to 10% by mass in the total solid content of the composition.
(有機溶剤)
 本発明の硬化性樹脂組成物には、組成物の調製や、基板やキャリアフィルムに塗布する際の粘度調整等の目的で、有機溶剤を含有させることができる。有機溶剤としては、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤など、公知慣用の有機溶剤が使用できる。これらの有機溶剤は、単独で、または二種類以上組み合わせて用いることができる。
(Organic solvent)
The curable resin composition of the present invention can contain an organic solvent for the purpose of preparing the composition and adjusting the viscosity when applied to a substrate or a carrier film. Examples of organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether , Glycol ethers such as dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butylcarby Tall acetate, propylene glycol monomethyl ether acetate, dip Propylene glycol monomethyl ether acetate, esters such as propylene carbonate; octane, aliphatic hydrocarbons decane; petroleum ether, petroleum naphtha, and petroleum solvents such as solvent naphtha, organic solvents conventionally known can be used. These organic solvents can be used alone or in combination of two or more.
(その他の任意成分)
 さらに、本発明の硬化性樹脂組成物には、電子材料の分野において公知慣用の他の添加剤を配合してもよい。他の添加剤としては、熱重合禁止剤、紫外線吸収剤、シランカップリング剤、可塑剤、帯電防止剤、老化防止剤、酸化防止剤、抗菌・防黴剤、消泡剤、レベリング剤、増粘剤、密着性付与剤、チキソ性付与剤、光開始助剤、増感剤、有機フィラー、エラストマー、離型剤、表面処理剤、分散剤、分散助剤、表面改質剤、安定剤、蛍光体等が挙げられる。
(Other optional ingredients)
Furthermore, you may mix | blend the other well-known and usual additive in the field | area of an electronic material with the curable resin composition of this invention. Other additives include thermal polymerization inhibitors, UV absorbers, silane coupling agents, plasticizers, antistatic agents, anti-aging agents, antioxidants, antibacterial / antifungal agents, antifoaming agents, leveling agents, Sticky agent, adhesion promoter, thixotropic agent, photoinitiator, sensitizer, organic filler, elastomer, mold release agent, surface treatment agent, dispersant, dispersion aid, surface modifier, stabilizer, Examples thereof include phosphors.
 また、本発明の硬化性樹脂組成物は、本発明の効果を損なわない範囲で、前記被覆されたシリカ粒子以外の公知慣用の無機フィラーを含有してもよい。そのような無機フィラーとしては、例えば、前記被覆されたシリカ粒子以外のシリカ、ノイブルグ珪土、水酸化アルミニウム、ガラス粉末、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、天然マイカ、合成マイカ、水酸化アルミニウム、硫酸バリウム、チタン酸バリウム、酸化鉄、非繊維状ガラス、ハイドロタルサイト、ミネラルウール、アルミニウムシリケート、カルシウムシリケート、亜鉛華等の無機フィラーが挙げられる。 Further, the curable resin composition of the present invention may contain a known and usual inorganic filler other than the coated silica particles as long as the effects of the present invention are not impaired. Examples of such inorganic filler include silica other than the coated silica particles, Neuburg silica, aluminum hydroxide, glass powder, talc, clay, magnesium carbonate, calcium carbonate, natural mica, synthetic mica, and aluminum hydroxide. Inorganic fillers such as barium sulfate, barium titanate, iron oxide, non-fibrous glass, hydrotalcite, mineral wool, aluminum silicate, calcium silicate and zinc white.
 また、本発明の硬化性樹脂組成物は、本発明の効果を損なわない範囲で、上記硬化剤以外の硬化剤を含有してもよい。そのような硬化剤としては、例えば、フェノール性水酸基を有する化合物、ポリカルボン酸およびその酸無水物、脂環式オレフィン重合体等が挙げられる。 Moreover, the curable resin composition of the present invention may contain a curing agent other than the above-mentioned curing agent as long as the effects of the present invention are not impaired. Examples of such a curing agent include compounds having a phenolic hydroxyl group, polycarboxylic acids and acid anhydrides thereof, and alicyclic olefin polymers.
 また、本発明の硬化性樹脂組成物は、本発明の効果を損なわない範囲で、エポキシ化合物以外の熱硬化性樹脂を含有してもよい。そのような熱硬化性樹脂としては、イソシアネート化合物、ブロックイソシアネート化合物、アミノ樹脂、ベンゾオキサジン樹脂、カルボジイミド樹脂、シクロカーボネート化合物、多官能オキセタン化合物、エピスルフィド樹脂等が挙げられる。 Further, the curable resin composition of the present invention may contain a thermosetting resin other than the epoxy compound as long as the effects of the present invention are not impaired. Examples of such thermosetting resins include isocyanate compounds, blocked isocyanate compounds, amino resins, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, polyfunctional oxetane compounds, episulfide resins, and the like.
 多官能オキセタン化合物としては、例えば、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、またはシルセスキオキサン等の水酸基を有する樹脂とのエーテル化物等が挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等も挙げられる。 Examples of the polyfunctional oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3- Methyl-3-oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3- In addition to polyfunctional oxetanes such as oxetanyl) methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin , Poly (p-hydroxystyrene), cardo type bi Phenols, calixarenes, calix resorcin arenes or etherified products such as the resin having a hydroxyl group such as silsesquioxane and the like. In addition, a copolymer of an unsaturated monomer having an oxetane ring and an alkyl (meth) acrylate is also included.
 エピスルフィド樹脂、即ち分子中に複数の環状チオエーテル基を有する化合物としては、ビスフェノールA型エピスルフィド樹脂等が挙げられる。また、同様の合成方法を用いて、ノボラック型エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂なども用いることができる。 Examples of the episulfide resin, that is, a compound having a plurality of cyclic thioether groups in the molecule include bisphenol A type episulfide resin. Moreover, episulfide resin etc. which replaced the oxygen atom of the epoxy group of the novolak-type epoxy resin with the sulfur atom using the same synthesis method can be used.
 メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂としては、メチロールメラミン化合物、メチロールベンゾグアナミン化合物、メチロールグリコールウリル化合物およびメチロール尿素化合物等が挙げられる。 Examples of amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycoluril compounds, and methylol urea compounds.
 イソシアネート化合物として、ポリイソシアネート化合物を配合することができる。ポリイソシアネート化合物としては、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネートおよび2,4-トリレンイソシアネートダイマー等の芳香族ポリイソシアネート;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4-メチレンビス(シクロヘキシルイソシアネート)およびイソホロンジイソシアネート等の脂肪族ポリイソシアネート;ビシクロヘプタントリイソシアネート等の脂環式ポリイソシアネート;並びに先に挙げたイソシアネート化合物のアダクト体、ビューレット体およびイソシアヌレート体等が挙げられる。 As the isocyanate compound, a polyisocyanate compound can be blended. Polyisocyanate compounds include 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate, and Aromatic polyisocyanates such as 2,4-tolylene isocyanate dimer; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis (cyclohexyl isocyanate) and isophorone diisocyanate; Alicyclic polyisocyanates such as bicycloheptane triisocyanate; and the isocyanate compounds listed above Adducts, biuret body and isocyanurate products thereof.
 ブロックイソシアネート化合物としては、イソシアネート化合物とイソシアネートブロック剤との付加反応生成物が用いることができる。イソシアネートブロック剤と反応し得るイソシアネート化合物としては、例えば、上述のポリイソシアネート化合物等が挙げられる。イソシアネートブロック剤としては、例えば、フェノール系ブロック剤;ラクタム系ブロック剤;活性メチレン系ブロック剤;アルコール系ブロック剤;オキシム系ブロック剤;メルカプタン系ブロック剤;酸アミド系ブロック剤;イミド系ブロック剤;アミン系ブロック剤;イミダゾール系ブロック剤;イミン系ブロック剤等が挙げられる。 As the blocked isocyanate compound, an addition reaction product of an isocyanate compound and an isocyanate blocking agent can be used. As an isocyanate compound which can react with an isocyanate blocking agent, the above-mentioned polyisocyanate compound etc. are mentioned, for example. As an isocyanate block agent, for example, phenol block agent; lactam block agent; active methylene block agent; alcohol block agent; oxime block agent; mercaptan block agent; acid amide block agent; imide block agent; Examples include amine-based blocking agents; imidazole-based blocking agents; imine-based blocking agents.
(光硬化性樹脂)
 本発明の硬化性樹脂組成物は、光硬化性樹脂を含有してもよい。光硬化性樹脂としては、活性エネルギー線照射により硬化して電気絶縁性を示す樹脂であればよく、分子中に1個以上のエチレン性不飽和基を有する化合物が好ましく用いられる。エチレン性不飽和基を有する化合物としては、公知慣用の感光性モノマーである光重合性オリゴマー、光重合性ビニルモノマー等を用いることができ、ラジカル重合性のモノマーやカチオン重合性のモノマーでもよい。また、光硬化性樹脂として、後述するようなエチレン性不飽和基を有するカルボキシル基含有樹脂等のポリマーを用いることができる。光硬化性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。
(Photo-curing resin)
The curable resin composition of the present invention may contain a photocurable resin. As a photocurable resin, what is necessary is just a resin which is hardened | cured by active energy ray irradiation and shows electrical insulation, and the compound which has a 1 or more ethylenically unsaturated group in a molecule | numerator is used preferably. As the compound having an ethylenically unsaturated group, a photopolymerizable oligomer, a photopolymerizable vinyl monomer or the like, which is a known and commonly used photosensitive monomer, can be used, and a radical polymerizable monomer or a cationic polymerizable monomer may be used. As the photocurable resin, a polymer such as a carboxyl group-containing resin having an ethylenically unsaturated group as described later can be used. A photocurable resin can be used individually by 1 type or in combination of 2 or more types.
 前記感光性モノマーとして、分子中に1個以上の(メタ)アクリロイル基を有する室温で液体、固体又は半固形の感光性(メタ)アクリレート化合物が使用できる。室温で液状の感光性(メタ)アクリレート化合物は、組成物の光反応性を上げる目的の他、組成物を各種の塗布方法に適した粘度に調整したり、アルカリ水溶液への溶解性を助ける役割も果たす。 As the photosensitive monomer, a liquid (solid) or semi-solid photosensitive (meth) acrylate compound having at least one (meth) acryloyl group in the molecule at room temperature can be used. The photosensitive (meth) acrylate compound that is liquid at room temperature is used for the purpose of increasing the photoreactivity of the composition, as well as adjusting the composition to a viscosity suitable for various coating methods and assisting in solubility in an aqueous alkali solution. Also fulfills.
 光重合性オリゴマーとしては、不飽和ポリエステル系オリゴマー、(メタ)アクリレート系オリゴマー等が挙げられる。(メタ)アクリレート系オリゴマーとしては、フェノールノボラックエポキシ(メタ)アクリレート、クレゾールノボラックエポキシ(メタ)アクリレート、ビスフェノール型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン変性(メタ)アクリレート等が挙げられる。 Examples of the photopolymerizable oligomer include unsaturated polyester oligomers and (meth) acrylate oligomers. Examples of (meth) acrylate oligomers include phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, epoxy (meth) acrylates such as bisphenol type epoxy (meth) acrylate, urethane (meth) acrylate, epoxy urethane (meta ) Acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polybutadiene-modified (meth) acrylate, and the like.
 光重合性ビニルモノマーとしては、公知慣用のもの、例えば、スチレン、クロロスチレン、α-メチルスチレン等のスチレン誘導体;酢酸ビニル、酪酸ビニルまたは安息香酸ビニル等のビニルエステル類;ビニルイソブチルエーテル、ビニル-n-ブチルエーテル、ビニル-t-ブチルエーテル、ビニル-n-アミルエーテル、ビニルイソアミルエーテル、ビニル-n-オクタデシルエーテル、ビニルシクロヘキシルエーテル、エチレングリコールモノブチルビニルエーテル、トリエチレングリコールモノメチルビニルエーテル等のビニルエーテル類;アクリルアミド、メタクリルアミド、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-ブトキシメチルアクリルアミド等の(メタ)アクリルアミド類;トリアリルイソシアヌレート、フタル酸ジアリル、イソフタル酸ジアリル等のアリル化合物;2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラヒドロフルフリール(メタ)アクリレート、イソボロニル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の(メタ)アクリル酸のエステル類;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート等のアルコキシアルキレングリコールモノ(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート類、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のアルキレンポリオールポリ(メタ)アクリレート、;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート等のポリオキシアルキレングリコールポリ(メタ)アクリレート類;ヒドロキシビバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレート等のポリ(メタ)アクリレート類;トリス[(メタ)アクリロキシエチル]イソシアヌレート等のイソシアヌルレート型ポリ(メタ)アクリレート類等が挙げられる。 As the photopolymerizable vinyl monomer, known and commonly used monomers, for example, styrene derivatives such as styrene, chlorostyrene and α-methylstyrene; vinyl esters such as vinyl acetate, vinyl butyrate or vinyl benzoate; vinyl isobutyl ether, vinyl- vinyl ethers such as n-butyl ether, vinyl-t-butyl ether, vinyl-n-amyl ether, vinyl isoamyl ether, vinyl-n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, triethylene glycol monomethyl vinyl ether; acrylamide, Methacrylamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-methoxymethylacrylamide, N-ethoxymethylacryl (Meth) acrylamides such as amide, N-butoxymethylacrylamide; allyl compounds such as triallyl isocyanurate, diallyl phthalate, diallyl isophthalate; 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tetrahydrofurfuryl Esters of (meth) acrylic acid such as (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) acrylate; hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, pentaerythritol Hydroxyalkyl (meth) acrylates such as tri (meth) acrylate; alkoxyalkylene such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate Glycol mono (meth) acrylates; ethylene glycol di (meth) acrylate, butanediol di (meth) acrylates, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri Alkylene polyol poly (meth) acrylates such as (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, ethoxylation Polyoxyalkylene glycol poly (meth) acrylates such as trimethylolpropane triacrylate and propoxylated trimethylolpropane tri (meth) acrylate ; Poly (meth) acrylates such as hydroxyethyl Viva phosphoric acid neopentyl glycol ester di (meth) acrylate; tris [(meth) acryloxyethyl] isocyanurate rate poly (meth) acrylates such as isocyanurate.
(アルカリ可溶性樹脂)
 本発明の硬化性樹脂組成物は、アルカリ可溶性樹脂を含有してもよい。特に、現像性に優れるため、アルカリ可溶性樹脂はカルボキシル基含有樹脂であることがより好ましい。カルボキシル基含有樹脂は、エチレン性不飽和基を有するカルボキシル基含有感光性樹脂でも、エチレン性不飽和基を有さないカルボキシル基含有樹脂でもよい。アルカリ可溶性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。
(Alkali-soluble resin)
The curable resin composition of the present invention may contain an alkali-soluble resin. In particular, since the developability is excellent, the alkali-soluble resin is more preferably a carboxyl group-containing resin. The carboxyl group-containing resin may be a carboxyl group-containing photosensitive resin having an ethylenically unsaturated group or a carboxyl group-containing resin having no ethylenically unsaturated group. Alkali-soluble resin can be used individually by 1 type or in combination of 2 or more types.
 カルボキシル基含有樹脂の具体例としては、以下に列挙するような化合物(オリゴマーおよびポリマーのいずれでもよい)が挙げられる。 Specific examples of the carboxyl group-containing resin include the compounds listed below (any of oligomers and polymers).
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。 (1) A carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, α-methylstyrene, lower alkyl (meth) acrylate, and isobutylene.
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (2) Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates; carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers A carboxyl group-containing urethane resin by a polyaddition reaction of a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (3)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネート化合物と、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるウレタン樹脂の末端に酸無水物を反応させてなる末端カルボキシル基含有ウレタン樹脂。 (3) Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, polycarbonate polyols, polyether polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A systems A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with a terminal of a urethane resin by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (4)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (4) Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Carboxyl group-containing urethane resin by polyaddition reaction of (meth) acrylate or its partial acid anhydride modified product, carboxyl group-containing dialcohol compound and diol compound.
 (5)上記(2)または(4)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (5) During the synthesis of the resin of the above (2) or (4), a compound having one hydroxyl group and one or more (meth) acryloyl groups in a molecule such as hydroxyalkyl (meth) acrylate is added, and the terminal ( (Meth) acrylic carboxyl group-containing urethane resin.
 (6)上記(2)または(4)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物等、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (6) During the synthesis of the resin of the above (2) or (4), one isocyanate group and one or more (meth) acryloyl groups are introduced into the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate. The carboxyl group-containing urethane resin which added the compound which has and was terminally (meth) acrylated.
 (7)多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (7) A carboxyl group obtained by reacting (meth) acrylic acid with a polyfunctional epoxy resin and adding a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride or hexahydrophthalic anhydride to the hydroxyl group present in the side chain Containing resin.
 (8)2官能エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (8) A carboxyl group-containing resin in which (meth) acrylic acid is reacted with a polyfunctional epoxy resin obtained by epoxidizing the hydroxyl group of a bifunctional epoxy resin with epichlorohydrin, and a dibasic acid anhydride is added to the resulting hydroxyl group. .
 (9)多官能オキセタン樹脂にジカルボン酸を反応させ、生じた1級の水酸基に2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。 (9) A carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
 (10)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシド等のアルキレンオキシドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (10) Reaction product obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide, with an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a product.
 (11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (11) Obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a reaction product obtained by reacting a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing resin obtained by reacting a reaction product with a polybasic acid anhydride.
 (12)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (12) An epoxy compound having a plurality of epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and (meth) Reaction with an unsaturated group-containing monocarboxylic acid such as acrylic acid, and with respect to the alcoholic hydroxyl group of the resulting reaction product, maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, anhydrous A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as adipic acid.
 (13)上記(1)~(12)等に記載のカルボキシル基含有樹脂にさらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有樹脂。 (13) In addition to the carboxyl group-containing resins described in the above (1) to (12) and the like, in the molecule such as glycidyl (meth) acrylate and α-methylglycidyl (meth) acrylate, one epoxy group and one or more ( A carboxyl group-containing resin obtained by adding a compound having a (meth) acryloyl group.
 アルカリ可溶性樹脂の酸価は、40~200mgKOH/gの範囲が適当であり、より好ましくは45~120mgKOH/gの範囲である。アルカリ可溶性樹脂の酸価が40mgKOH/g以上であるとアルカリ現像が容易となり、一方、200mgKOH/g以下である正常な硬化物パターンの描画が容易となるので好ましい。 The acid value of the alkali-soluble resin is suitably in the range of 40 to 200 mgKOH / g, more preferably in the range of 45 to 120 mgKOH / g. When the acid value of the alkali-soluble resin is 40 mgKOH / g or more, alkali development is facilitated, and on the other hand, it is preferable to draw a normal cured product pattern of 200 mgKOH / g or less.
 アルカリ可溶性樹脂の重量平均分子量は、樹脂骨格により異なるが、1,500~150,000、さらには1,500~100,000の範囲が好ましい。重量平均分子量が1,500以上の場合、タックフリー性能が良好であり、露光後の塗膜の耐湿性が良好で、現像時の膜減りを抑制し、解像度の低下を抑制できる。一方、重量平均分子量が150,000以下の場合、現像性が良好で、貯蔵安定性にも優れる。 The weight average molecular weight of the alkali-soluble resin varies depending on the resin skeleton, but is preferably in the range of 1,500 to 150,000, more preferably 1,500 to 100,000. When the weight average molecular weight is 1,500 or more, the tack-free performance is good, the moisture resistance of the coated film after exposure is good, the film loss during development can be suppressed, and the resolution can be suppressed from decreasing. On the other hand, when the weight average molecular weight is 150,000 or less, the developability is good and the storage stability is also excellent.
 アルカリ可溶性樹脂の配合量は、例えば、組成物の固形分全量中、5~50質量%である。 The blending amount of the alkali-soluble resin is, for example, 5 to 50% by mass in the total solid content of the composition.
(光反応開始剤)
 本発明の硬化性樹脂組成物は、光反応開始剤を含有することができる。光反応開始剤は、光照射により組成物を硬化できるものであればよく、光照射によりラジカルを発生する光重合開始剤および光照射により塩基を発生する光塩基発生剤のうちのいずれか1種が好ましい。なお、光反応開始剤は、光照射によりラジカルと塩基の両方を発生する化合物でももちろんよい。光照射とは、波長350~450nmの範囲の紫外線を照射することをいう。
(Photoinitiator)
The curable resin composition of the present invention can contain a photoinitiator. The photoreaction initiator may be any one that can cure the composition by light irradiation, and is any one of a photopolymerization initiator that generates radicals by light irradiation and a photobase generator that generates bases by light irradiation. Is preferred. The photoinitiator may of course be a compound that generates both radicals and bases upon light irradiation. Light irradiation means irradiation with ultraviolet rays having a wavelength in the range of 350 to 450 nm.
 光重合開始剤としては、例えば、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド類;2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2-メチルベンゾイルジフェニルフォスフィンオキサイド、ピバロイルフェニルフォスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)等のモノアシルフォスフィンオキサイド類;1-ヒドロキシ-シクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のヒドロキシアセトフェノン類;ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類;ベンゾインアルキルエーテル類;ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル)-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、p-ジメチル安息香酸エチルエステル等の安息香酸エステル類;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム等のチタノセン類;フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。光重合開始剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the photopolymerization initiator include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2, 6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- ( 2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6- Trimethylbenzoyl) -phenylphosphine oxide Bisacylphosphine oxides such as 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylphosphinic acid methyl ester, 2-methylbenzoyl Monoacylphosphine oxides such as diphenylphosphine oxide, pivaloylphenylphosphinic acid isopropyl ester, 2,4,6-trimethylbenzoyldiphenylphosphine oxide); 1-hydroxy-cyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propio) ) -Benzyl] phenyl} -2-methyl-propan-1-one, hydroxyacetophenones such as 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzoin, benzyl, benzoin methyl ether, benzoin ethyl Benzoins such as ether, benzoin n-propyl ether, benzoin isopropyl ether, benzoin n-butyl ether; benzoin alkyl ethers; benzophenone, p-methylbenzophenone, Michler's ketone, methylbenzophenone, 4,4′-dichlorobenzophenone, 4,4 ′ Benzophenones such as bisdiethylaminobenzophenone; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-di Chloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl) -1- [4- (4-morpholinyl) phenyl] -1-butanone, N, N-dimethylaminoacetophenone, etc. Thioxanthones such as thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropylthioxanthone; anthraquinone, chloroanthraquinone 2 Anthraquinones such as methyl anthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone and 2-aminoanthraquinone; ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; ethyl-4 -Benzoic acid esters such as dimethylaminobenzoate, 2- (dimethylamino) ethylbenzoate, and p-dimethylbenzoic acid ethyl ester; 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O- Benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) and other oxime esters; bis (η5 -2,4-cyclopentadiene 1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl) titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (2- ( Examples include titanocenes such as 1-pyr-1-yl) ethyl) phenyl] titanium; phenyl disulfide 2-nitrofluorene, butyroin, anisoin ethyl ether, azobisisobutyronitrile, tetramethylthiuram disulfide, and the like. A photoinitiator may be used individually by 1 type and may be used in combination of 2 or more type.
 光塩基発生剤は、紫外線や可視光等の光照射により分子構造が変化するか、または、分子が開裂することにより、熱硬化反応の触媒として機能しうる1種以上の塩基性物質を生成する化合物である。塩基性物質として、例えば2級アミン、3級アミンが挙げられる。 The photobase generator generates one or more basic substances that can function as a catalyst for a thermosetting reaction by changing the molecular structure upon irradiation with light such as ultraviolet rays or visible light, or by cleaving the molecules. A compound. Examples of basic substances include secondary amines and tertiary amines.
 光塩基発生剤として、例えば、α-アミノアセトフェノン化合物、オキシムエステル化合物や、アシルオキシイミノ化合物,N-ホルミル化芳香族アミノ化合物、N-アシル化芳香族アミノ化合物、ニトロベンジルカーバメイト化合物、アルコオキシベンジルカーバメート化合物等が挙げられる。なかでも、オキシムエステル化合物、α-アミノアセトフェノン化合物が好ましく、オキシムエステル化合物がより好ましく、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)がより好ましい。α-アミノアセトフェノン化合物としては、特に、2つ以上の窒素原子を有するものが好ましい。光塩基発生剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。この他、光塩基発生剤としては、4級アンモニウム塩等が挙げられる。 Examples of photobase generators include α-aminoacetophenone compounds, oxime ester compounds, acyloxyimino compounds, N-formylated aromatic amino compounds, N-acylated aromatic amino compounds, nitrobenzyl carbamate compounds, alkoxybenzyl carbamates. Compounds and the like. Of these, oxime ester compounds and α-aminoacetophenone compounds are preferred, oxime ester compounds are more preferred, and ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) is more preferred. As the α-aminoacetophenone compound, those having two or more nitrogen atoms are particularly preferable. A photobase generator may be used individually by 1 type, and may be used in combination of 2 or more type. In addition, examples of the photobase generator include quaternary ammonium salts.
 その他の光塩基発生剤として、WPBG-018(商品名:9-anthrylmethyl N,N’-diethylcarbamate)、WPBG-027(商品名:(E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine)、WPBG-082(商品名:guanidinium2-(3-benzoylphenyl)propionate)、 WPBG-140(商品名:1-(anthraquinon-2-yl)ethyl imidazolecarboxylate)等を使用することもできる。 As other photobase generators, WPBG-018 (trade name: 9-anthrylmethyl N, N'-diethylcarbamate), WPBG-027 (trade name: (E) -1- [3- (2-hydroxyphenyl) -2- propenoyl] piperidine), WPBG-082 (trade name: guanidinium2- (3-benzoylphenyl) propionate), WPBG-140 (trade name: 1- (anthraquinon-2-yl) ethylidazole, etc. can also be used.
 さらに、前述した光重合開始剤の一部の物質が光塩基発生剤としても機能する。光塩基発生剤としても機能する光重合開始剤としては、オキシムエステル系光重合開始剤、α-アミノアセトフェノン系光重合開始剤が好ましい。 Furthermore, some of the aforementioned photopolymerization initiators also function as photobase generators. The photopolymerization initiator that also functions as a photobase generator is preferably an oxime ester photopolymerization initiator or an α-aminoacetophenone photopolymerization initiator.
 光反応開始剤の配合量は、例えば、組成物の固形分全量中、0.01~30質量%である。 The blending amount of the photoinitiator is, for example, 0.01 to 30% by mass in the total solid content of the composition.
 本発明の硬化性樹脂組成物は特に限定されず、例えば、熱硬化性樹脂組成物、光硬化性熱硬化性樹脂組成物、感光性熱硬化性樹脂組成物のいずれであってもよい。また、アルカリ現像型であってもよく、ネガ型でもポジ型でもよい。具体例としては、熱硬化性樹脂組成物、光硬化性熱硬化性樹脂組成物、光重合開始剤を含有する光硬化性熱硬化性樹脂組成物、光塩基発生剤を含有する光硬化性熱硬化性樹脂組成物、ネガ型光硬化性熱硬化性樹脂組成物およびポジ型感光性熱硬化性樹脂組成物、アルカリ現像型光硬化性熱硬化性樹脂組成物、溶剤現像型光硬化性熱硬化性樹脂組成物、膨潤剥離型熱硬化性樹脂組成物、溶解剥離型熱硬化性樹脂組成物などが挙げられるが、これらに限定されるものではない。 The curable resin composition of the present invention is not particularly limited, and may be any of a thermosetting resin composition, a photocurable thermosetting resin composition, and a photosensitive thermosetting resin composition, for example. Moreover, an alkali development type may be sufficient and a negative type or a positive type may be sufficient. Specific examples include a thermosetting resin composition, a photocurable thermosetting resin composition, a photocurable thermosetting resin composition containing a photopolymerization initiator, and a photocurable heat containing a photobase generator. Curable resin composition, negative photocurable thermosetting resin composition and positive photosensitive thermosetting resin composition, alkali developing photocurable thermosetting resin composition, solvent developing photocurable thermosetting Examples include, but are not limited to, a curable resin composition, a swollen peelable thermosetting resin composition, and a melt peelable thermosetting resin composition.
 本発明の硬化性樹脂組成物が含有する任意成分は、硬化性や用途に合わせて、公知慣用の成分を選択すればよい。 As the optional component contained in the curable resin composition of the present invention, a known and commonly used component may be selected according to curability and application.
 例えば、本発明の硬化性樹脂組成物が、(光重合開始剤を含まない)熱硬化性樹脂組成物の場合、熱硬化性樹脂を含有する。また、硬化促進剤を含有することが好ましい。硬化剤を含有することが好ましい。熱硬化性樹脂の配合量は、組成物の固形分全量中、1~50質量%であることが好ましい。硬化促進剤の配合量は、組成物の固形分全量中、0.01~30質量%であることが好ましい。硬化剤の配合量は、組成物の固形分全量中、0.01~30質量%であるであることが好ましい。 For example, when the curable resin composition of the present invention is a thermosetting resin composition (not including a photopolymerization initiator), it contains a thermosetting resin. Moreover, it is preferable to contain a hardening accelerator. It is preferable to contain a curing agent. The compounding amount of the thermosetting resin is preferably 1 to 50% by mass in the total solid content of the composition. The blending amount of the curing accelerator is preferably 0.01 to 30% by mass in the total solid content of the composition. The blending amount of the curing agent is preferably 0.01 to 30% by mass in the total solid content of the composition.
 また、本発明の硬化性樹脂組成物が、光硬化性熱硬化性樹脂組成物の場合、光硬化性樹脂と熱硬化性樹脂と光反応開始剤を含有する。アルカリ現像型にする場合は、光硬化性樹脂がアルカリ可溶性樹脂であってもよく、さらにアルカリ可溶性樹脂を含有してもよい。また、硬化促進剤を含有することが好ましい。アルカリ可溶性樹脂の配合量は、組成物の固形分全量中、5~50質量%であることが好ましい。熱硬化性樹脂の配合量は、組成物の固形分全量中、1~50質量%であることが好ましい。光硬化性樹脂(光硬化性であるアルカリ可溶性樹脂を除く)の配合量は、組成物の固形分全量中、1~50質量%であることが好ましい。光反応開始剤の配合量は、組成物の固形分全量中、0.01~30質量%であることが好ましい。硬化促進剤の配合量は、組成物の固形分全量中、0.01~30質量%であることが好ましい。 Further, when the curable resin composition of the present invention is a photocurable thermosetting resin composition, it contains a photocurable resin, a thermosetting resin, and a photoinitiator. When the alkali developing type is used, the photocurable resin may be an alkali-soluble resin, and may further contain an alkali-soluble resin. Moreover, it is preferable to contain a hardening accelerator. The blending amount of the alkali-soluble resin is preferably 5 to 50% by mass in the total solid content of the composition. The compounding amount of the thermosetting resin is preferably 1 to 50% by mass in the total solid content of the composition. The blending amount of the photocurable resin (excluding the photocurable alkali-soluble resin) is preferably 1 to 50% by mass in the total solid content of the composition. The blending amount of the photoinitiator is preferably 0.01 to 30% by mass in the total solid content of the composition. The blending amount of the curing accelerator is preferably 0.01 to 30% by mass in the total solid content of the composition.
 本発明の硬化性樹脂組成物は、ドライフィルム化して用いても液状として用いてもよい。液状として用いる場合は、1液性でも2液性以上でもよい。 The curable resin composition of the present invention may be used as a dry film or as a liquid. When used as a liquid, it may be one-component or two-component or more.
 本発明のドライフィルムは、キャリアフィルム上に、本発明の硬化性樹脂組成物を塗布、乾燥させることにより得られる樹脂層を有する。ドライフィルムを形成する際には、まず、本発明の硬化性樹脂組成物を上記有機溶剤で希釈して適切な粘度に調整した上で、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等により、キャリアフィルム上に均一な厚さに塗布する。その後、塗布された組成物を、通常、40~130℃の温度で1~30分間乾燥することで、樹脂層を形成することができる。塗布膜厚については特に制限はないが、一般に、乾燥後の膜厚で、3~150μm、好ましくは5~60μmの範囲で適宜選択される。 The dry film of the present invention has a resin layer obtained by applying and drying the curable resin composition of the present invention on a carrier film. When forming a dry film, first, the curable resin composition of the present invention is diluted with the above organic solvent to adjust to an appropriate viscosity, and then a comma coater, a blade coater, a lip coater, a rod coater, and a squeeze coater. Apply a uniform thickness on the carrier film using a reverse coater, transfer roll coater, gravure coater, spray coater or the like. Thereafter, the applied composition is usually dried at a temperature of 40 to 130 ° C. for 1 to 30 minutes to form a resin layer. The coating film thickness is not particularly limited, but in general, the film thickness after drying is appropriately selected in the range of 3 to 150 μm, preferably 5 to 60 μm.
 キャリアフィルムとしては、プラスチックフィルムが用いられ、例えば、ポリエチレンテレフタレート(PET)等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等を用いることができる。キャリアフィルムの厚さについては特に制限はないが、一般に、10~150μmの範囲で適宜選択される。より好ましくは15~130μmの範囲である。 As the carrier film, a plastic film is used. For example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used. The thickness of the carrier film is not particularly limited, but is generally appropriately selected within the range of 10 to 150 μm. More preferably, it is in the range of 15 to 130 μm.
 キャリアフィルム上に本発明の硬化性樹脂組成物からなる樹脂層を形成した後、樹脂層の表面に塵が付着することを防ぐ等の目的で、さらに、樹脂層の表面に、剥離可能な保護フィルム(カバーフィルム)を積層することが好ましい。剥離可能な保護フィルムとしては、例えば、ポリエチレンフィルムやポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができる。保護フィルムとしては、保護フィルムを剥離するときに、樹脂層とキャリアフィルムとの接着力よりも小さいものであればよい。 After the resin layer made of the curable resin composition of the present invention is formed on the carrier film, the surface of the resin layer is further protected to be peelable for the purpose of preventing dust from adhering to the surface of the resin layer. It is preferable to laminate a film (cover film). As a peelable protective film, for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a surface-treated paper, or the like can be used. As a protective film, what is necessary is just a thing smaller than the adhesive force of a resin layer and a carrier film, when peeling a protective film.
 なお、本発明においては、上記保護フィルム上に本発明の硬化性樹脂組成物を塗布、乾燥させることにより樹脂層を形成して、その表面にキャリアフィルムを積層するものであってもよい。すなわち、本発明においてドライフィルムを製造する際に本発明の硬化性樹脂組成物を塗布するフィルムとしては、キャリアフィルムおよび保護フィルムのいずれを用いてもよい。 In the present invention, a resin layer may be formed by applying and drying the curable resin composition of the present invention on the protective film, and a carrier film may be laminated on the surface. That is, as a film to which the curable resin composition of the present invention is applied when producing a dry film in the present invention, either a carrier film or a protective film may be used.
 本発明の硬化性樹脂組成物を用いた電子部品の製造方法としては、従来公知の方法を用いればよい。例えば、本発明の硬化性樹脂組成物が(光重合開始剤を含まない)熱硬化性樹脂組成物であり、キャリアフィルムと保護フィルムとの間に樹脂層が挟まれた三層構造のドライフィルムの場合、下記のような方法でプリント配線板を製造することができる。ドライフィルムからキャリアフィルムまたは保護フィルムのどちらかを剥離し、回路パターンが形成された回路基板に加熱ラミネートした後、熱硬化させる。熱硬化は、オーブン中で硬化、もしくは熱板プレスで硬化させてもよい。回路が形成された基板と本発明のドライフィルムをラミネートもしくは熱板プレスする際に、銅箔もしくは回路形成された基板を同時に積層することもできる。回路パターンが形成された基板上の所定の位置に対応する位置に、レーザー照射またはドリルでパターンやビアホールを形成し、回路配線を露出させることで、絶縁層を有する基板を製造することができる。この際、パターンやビアホール内の回路配線上に除去しきれないで残留した成分(スミア)が存在する場合にはデスミア処理を行う。キャリアフィルムまたは保護フィルムのうち残った方は、ラミネート後、熱硬化後、レーザー加工後またはデスミア処理後のいずれかに、剥離すればよい。 As a method for producing an electronic component using the curable resin composition of the present invention, a conventionally known method may be used. For example, the curable resin composition of the present invention is a thermosetting resin composition (not containing a photopolymerization initiator), and a three-layer dry film in which a resin layer is sandwiched between a carrier film and a protective film In this case, a printed wiring board can be manufactured by the following method. Either the carrier film or the protective film is peeled off from the dry film, heat laminated to the circuit board on which the circuit pattern is formed, and then thermally cured. The heat curing may be performed in an oven or by a hot plate press. When laminating or hot plate pressing the substrate on which the circuit is formed and the dry film of the present invention, the copper foil or the substrate on which the circuit is formed can be laminated simultaneously. A substrate having an insulating layer can be manufactured by forming a pattern or a via hole by laser irradiation or drilling at a position corresponding to a predetermined position on the substrate on which the circuit pattern is formed, and exposing the circuit wiring. At this time, if there is a component (smear) that cannot be completely removed on the circuit wiring in the pattern or via hole, desmear processing is performed. The remaining carrier film or protective film may be peeled off after lamination, after heat curing, after laser processing, or after desmear treatment.
 次いで、乾式めっき又は湿式めっきにより絶縁層上に導体層を形成する。乾式めっきとしては、蒸着、スパッタリング、イオンプレーティング等の公知の方法を使用することができる。湿式めっきの場合は、まず、硬化した樹脂組成物層(絶縁層)の表面を、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤で処理する。酸化剤としては、特に過マンガン酸カリウム、過マンガン酸ナトリウム等の水酸化ナトリウム水溶液(アルカリ性過マンガン酸水溶液)が好ましく用いられる。次いで、無電解めっきと電解めっきとを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解めっきのみで導体層を形成することもできる。その後のパターン形成の方法として、例えば、当業者に公知のサブトラクティブ法、セミアディティブ法などを用いることができる。なお、層間回路の接続方法は、カッパーピラーによる接続でもよい。
 次いで、導体層および絶縁層の表面を粗化処理する。粗化処理液としては、例えば、アミノ基および芳香環を有する芳香族化合物と、2以上のカルボキシ基を有する多塩基酸と、ハロゲン化物イオンを含む組成物を用いることができる。商品名としては、例えば、メック社製01CZなどが挙げられる。
 上記のようにして絶縁層と導体層を交互に形成し、最外層の回路上にソルダーレジストを形成すればよい。例えば、特許5941180の段落70~76に記載の方法に従ってソルダーレジストを形成すればよい。
Next, a conductor layer is formed on the insulating layer by dry plating or wet plating. As the dry plating, a known method such as vapor deposition, sputtering, or ion plating can be used. In the case of wet plating, first, the surface of the cured resin composition layer (insulating layer) is coated with permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / Treat with an oxidizing agent such as sulfuric acid or nitric acid. As the oxidizing agent, an aqueous sodium hydroxide solution (alkaline permanganate aqueous solution) such as potassium permanganate and sodium permanganate is particularly preferably used. Next, a conductor layer is formed by a method in which electroless plating and electrolytic plating are combined. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. As a subsequent pattern formation method, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used. Note that the connection method of the interlayer circuit may be a connection using a copper pillar.
Next, the surface of the conductor layer and the insulating layer is roughened. As the roughening treatment liquid, for example, an aromatic compound having an amino group and an aromatic ring, a polybasic acid having two or more carboxy groups, and a halide ion can be used. An example of the product name is 01CZ manufactured by MEC.
Insulating layers and conductor layers may be alternately formed as described above, and a solder resist may be formed on the outermost circuit. For example, a solder resist may be formed according to the method described in paragraphs 70 to 76 of Patent 5941180.
 本発明の硬化性樹脂組成物は、電子部品に硬化膜を形成するために、特にはプリント配線板上に硬化膜を形成するために好適に使用され、より好適には、永久被膜を形成するために使用される。さらに好適には、本発明の硬化性樹脂組成物は、導体層およびソルダーレジストとのHAST処理後の密着性に優れることから、層間絶縁層を形成するために使用される。また、高度な信頼性が求められるプリント配線板、例えばパッケージ基板、特にFC-BGA用の永久被膜(特に層間絶縁層)の形成に好適である。また、本発明の硬化性樹脂組成物は、回路表面の粗度が小さい配線パターンを備えるプリント配線板、例えば高周波用のプリント配線板にも好適に用いることができる。例えば、表面粗度Raが0.05μm以下、特に0.03μm以下であっても好適に用いることができる。また、低極性の基材、例えば、活性エステルを含む基材上に硬化膜を形成する場合にも好適に用いることができる。本発明の硬化性樹脂組成物は、シリカを多量に含有するソルダーレジストとのHAST処理後の密着性に優れることから、シリカや硫酸バリウム等の無機フィラーを例えば30質量%以上、さらには40質量%以上含有する硬化物と密着する硬化膜の形成に好適に用いることができる。なお、本発明の硬化性樹脂組成物は、ソルダーレジストやカバーレイを形成するためのものとして使用することができる。
 電子部品としては、プリント配線板以外の用途、例えば、インダクタなど受動部品でもよい。
The curable resin composition of the present invention is preferably used for forming a cured film on an electronic component, particularly for forming a cured film on a printed wiring board, and more preferably for forming a permanent film. Used for. More preferably, since the curable resin composition of the present invention is excellent in adhesion after HAST treatment with a conductor layer and a solder resist, it is used for forming an interlayer insulating layer. Further, it is suitable for forming a printed wiring board that requires high reliability, for example, a package substrate, particularly a permanent film (particularly an interlayer insulating layer) for FC-BGA. Moreover, the curable resin composition of this invention can be used suitably also for a printed wiring board provided with the wiring pattern with small roughness of a circuit surface, for example, the printed wiring board for high frequencies. For example, even if the surface roughness Ra is 0.05 μm or less, particularly 0.03 μm or less, it can be suitably used. Moreover, it can use suitably also when forming a cured film on a low polarity base material, for example, the base material containing an active ester. Since the curable resin composition of the present invention is excellent in adhesion after HAST treatment with a solder resist containing a large amount of silica, an inorganic filler such as silica or barium sulfate is, for example, 30% by mass or more, and further 40% by mass. % Or more can be suitably used for forming a cured film that is in close contact with the cured product. In addition, the curable resin composition of this invention can be used as a thing for forming a soldering resist and a coverlay.
The electronic component may be an application other than the printed wiring board, for example, a passive component such as an inductor.
 以下、本発明を、実施例を用いてより詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples. In the following description, “parts” and “%” are all based on mass unless otherwise specified.
[無機フィラーの被覆および表面処理]
(アルミニウムの水和酸化物で被覆されたシリカ粒子)
 球状シリカ粒子(デンカ社製SFP-20M、平均粒径:0.4μm)50gの水スラリーを70℃に昇温後、20%アルミン酸ナトリウム(NaAlO)水溶液をシリカ粒子に対してアルミナ(Al)換算で2~3%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、アルミニウムの水和酸化物で被覆されたシリカ粒子の固形物を得た。
[Coating and surface treatment of inorganic filler]
(Silica particles coated with hydrated aluminum oxide)
A water slurry of 50 g of spherical silica particles (SFP-20M manufactured by Denka Co., Ltd., average particle size: 0.4 μm) was heated to 70 ° C., and then a 20% sodium aluminate (NaAlO 2 ) aqueous solution was added to the silica particles with alumina (Al 2 to 3% in terms of 2 O 3 ) was added. Thereafter, a 20% sodium hydroxide aqueous bath solution was added to adjust the pH to 7, followed by aging for 30 minutes. Thereafter, the slurry was washed with filtered water with a filter press and vacuum-dried to obtain a solid of silica particles coated with aluminum hydrated oxide.
(ジルコニアの水和酸化物で被覆されたシリカ粒子)
 球状シリカ粒子(デンカ社製SFP-20M、平均粒径:0.4μm)50gの水スラリーを70℃に昇温後、100g/lオキシ塩化ジルコニウム等の水溶性ジルコニウム化合物の水溶液をシリカ粒子に対してジルコニア(ZrO)換算で2~3%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ジルコニアの水和酸化物で被覆されたシリカ粒子の固形物を得た。
(Silica particles coated with zirconia hydrated oxide)
After heating 50 g of water slurry of spherical silica particles (SFP-20M, Denka Corp., average particle size: 0.4 μm) to 70 ° C., an aqueous solution of a water-soluble zirconium compound such as 100 g / l zirconium oxychloride is added to the silica particles. 2 to 3% in terms of zirconia (ZrO 2 ) was added. Thereafter, a 20% sodium hydroxide aqueous bath solution was added to adjust the pH to 7, followed by aging for 30 minutes. Thereafter, the slurry was washed with filtered water with a filter press and vacuum-dried to obtain a solid of silica particles coated with zirconia hydrated oxide.
(亜鉛の水和酸化物で被覆されたシリカ粒子)
 球状シリカ粒子(デンカ社製SFP-20M、平均粒径:0.4μm)50gの水スラリーを70℃に昇温後、硫酸亜鉛の水溶液をシリカ粒子に対してZnO換算で2~3%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、亜鉛の水和酸化物で被覆されたシリカ粒子の固形物を得た。
(Silica particles coated with zinc hydrated oxide)
A water slurry of 50 g of spherical silica particles (SFP-20M, Denka Corp., average particle size: 0.4 μm) was heated to 70 ° C., and an aqueous solution of zinc sulfate was added in an amount of 2 to 3% in terms of ZnO with respect to the silica particles. . Thereafter, a 20% sodium hydroxide aqueous bath solution was added to adjust the pH to 7, followed by aging for 30 minutes. Thereafter, the slurry was washed with filtered water with a filter press and vacuum-dried to obtain a solid of silica particles coated with hydrated zinc oxide.
(チタンの水和酸化物で被覆されたシリカ粒子)
 球状シリカ粒子(デンカ社製SFP-20M、平均粒径:0.4μm)50gの水スラリーを70℃に昇温後、100g/lチタニル硫酸水溶液をシリカ粒子に対してTiO換算で2~3%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、チタンの水和酸化物で被覆されたシリカ粒子の固形物を得た。
(Silica particles coated with hydrated titanium oxide)
After heating 50 g of water slurry of spherical silica particles (SFP-20M manufactured by Denka Co., Ltd., average particle size: 0.4 μm) to 70 ° C., 100 g / l titanyl sulfuric acid aqueous solution is 2 to 3 in terms of TiO 2 with respect to the silica particles. % Was added. Thereafter, a 20% sodium hydroxide aqueous bath solution was added to adjust the pH to 7, followed by aging for 30 minutes. Thereafter, the slurry was washed with filtered water with a filter press and vacuum-dried to obtain a solid of silica particles coated with titanium hydrated oxide.
(アルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたシリカ粒子)
 上記で得られたアルミニウムの水和酸化物で被覆されたシリカ粒子50gと、溶剤としてPMA48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)1gとを均一分散させて、濾過、水洗、真空乾燥によりメタクリルシランで表面処理されたシリカ粒子の固形物を得た。
(Silica particles coated with hydrated aluminum oxide and surface-treated with methacrylic silane)
50 g of silica particles coated with the hydrated oxide of aluminum obtained above, 48 g of PMA as a solvent, and 1 g of a silane coupling agent having a methacryl group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) were dispersed uniformly. Filtration, washing with water, and vacuum drying gave a solid product of silica particles surface-treated with methacrylic silane.
(アルミニウムの水和酸化物で被覆され、かつ、エポキシシランで表面処理されたシリカ粒子)
 上記で得られたアルミニウムの水和酸化物で被覆されたシリカ粒子50gと、溶剤としてPMA48gと、エポキシ基を有するシランカップリング剤(信越化学工業社製KBM-403)1gとを均一分散させて、濾過、水洗、真空乾燥によりエポキシシランで表面処理されたシリカ粒子の固形物を得た。
(Silica particles coated with hydrated aluminum oxide and surface-treated with epoxy silane)
50 g of silica particles coated with the aluminum hydrated oxide obtained above, 48 g of PMA as a solvent, and 1 g of a silane coupling agent having an epoxy group (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) were dispersed uniformly. Filtration, washing with water, and vacuum drying gave a solid product of silica particles surface-treated with epoxysilane.
(アルミニウムの水和酸化物で被覆され、かつ、フェニルアミノシランで表面処理されたシリカ粒子)
 上記で得られたアルミニウムの水和酸化物で被覆されたシリカ粒子50gと、溶剤としてPMA48gと、フェニルアミノ基を有するシランカップリング剤(信越化学工業社製KBM-573)1gとを均一分散させて、濾過、水洗、真空乾燥によりフェニルアミノシランで表面処理されたシリカ粒子の固形物を得た。
(Silica particles coated with hydrated aluminum oxide and surface-treated with phenylaminosilane)
50 g of silica particles coated with the hydrated oxide of aluminum obtained above, 48 g of PMA as a solvent, and 1 g of a silane coupling agent having a phenylamino group (KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.) are uniformly dispersed. Then, a solid body of silica particles surface-treated with phenylaminosilane was obtained by filtration, washing with water, and vacuum drying.
(フェニルアミノシランで表面処理されたシリカ粒子)
 球状シリカ粒子(デンカ社製SFP-20M、平均粒径:0.4μm)50gと、溶剤としてPMA48gと、フェニルアミノ基を有するシランカップリング剤(信越化学工業社製KBM-573)1gとを均一分散させて、濾過、水洗、真空乾燥によりフェニルアミノシランで表面処理されたシリカ粒子の固形物を得た。
(Silica particles surface-treated with phenylaminosilane)
50 g of spherical silica particles (SFP-20M manufactured by Denka Co., Ltd., average particle size: 0.4 μm), 48 g of PMA as a solvent, and 1 g of a silane coupling agent having a phenylamino group (KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.) Dispersion was performed, and a solid of silica particles surface-treated with phenylaminosilane was obtained by filtration, washing with water, and vacuum drying.
(メタクリルシランで表面処理されたシリカ粒子)
 球状シリカ粒子(デンカ社製SFP-20M、平均粒径:0.4μm)50gと、溶剤としてPMA(プロピレングリコールモノメチルエーテルアセテート)48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)1gとを均一分散させて、濾過、水洗、真空乾燥により、メタクリルシランで表面処理されたシリカ粒子の固形物を得た。
(Silica particles surface-treated with methacrylic silane)
50 g of spherical silica particles (SFP-20M manufactured by Denka Co., Ltd., average particle size: 0.4 μm), 48 g of PMA (propylene glycol monomethyl ether acetate) as a solvent, and a silane coupling agent having a methacryl group (KBM manufactured by Shin-Etsu Chemical Co., Ltd.) -503) 1 g was uniformly dispersed, and a solid of silica particles surface-treated with methacrylic silane was obtained by filtration, washing with water, and vacuum drying.
(アルミニウムの水和酸化物で被覆され、かつ、フェニルアミノシランで表面処理されたタルク)
 タルク(日本タルク社製SG2000、平均粒径:1.0μm)50gの水スラリーを70℃に昇温後、塩酸によりpHを7±1に維持しながら、20%アルミン酸ナトリウム(NaAlO)水溶液をタルクに対してアルミナ(Al)換算で20%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、アルミニウムの水和酸化物で被覆されたタルクの固形物を得た。
 上記で得られたアルミニウムの水和酸化物で被覆されたタルク50gと、溶剤としてPMA48gと、フェニルアミノ基を有するシランカップリング剤(信越化学工業社製KBM-573)1gとを均一分散させて、濾過、水洗、真空乾燥によりフェニルアミノシランで表面処理されたタルクの固形物を得た。
(Talc coated with hydrated aluminum oxide and surface-treated with phenylaminosilane)
20% sodium aluminate (NaAlO 2 ) aqueous solution while maintaining the pH at 7 ± 1 with hydrochloric acid after raising the temperature of a slurry of 50 g of talc (Nippon Talc SG2000, average particle size: 1.0 μm) to 70 ° C. Was added to talc in an amount of 20% in terms of alumina (Al 2 O 3 ). Thereafter, a 20% sodium hydroxide aqueous bath solution was added to adjust the pH to 7, followed by aging for 30 minutes. Thereafter, the slurry was washed with filtered water with a filter press and vacuum-dried to obtain a talc solid material coated with aluminum hydrated oxide.
50 g of talc coated with the hydrated oxide of aluminum obtained above, 48 g of PMA as a solvent, and 1 g of a silane coupling agent having a phenylamino group (KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.) were dispersed uniformly. Filtration, washing with water, and vacuum drying gave a talc solid that was surface treated with phenylaminosilane.
(アルカリ可溶性樹脂A-1の合成)
 温度計、窒素導入装置兼アルキレンオキシド導入装置および撹拌装置を備えたオートクレーブに、ノボラック型クレゾール樹脂(商品名「ショーノールCRG951」、昭和高分子社製、OH当量:119.4)119.4部、水酸化カリウム1.19部およびトルエン119.4部を導入し、撹拌しつつ系内を窒素置換し、加熱昇温した。次に、プロピレンオキシド63.8部を徐々に滴下し、125~132℃、0~4.8kg/cmで16時間反応させた。その後、室温まで冷却し、この反応溶液に89%リン酸1.56部を添加混合して水酸化カリウムを中和し、不揮発分62.1%、水酸基価が182.2mgKOH/g(307.9g/eq.)であるノボラック型クレゾール樹脂のプロピレンオキシド反応溶液を得た。これは、フェノール性水酸基1当量当りプロピレンオキシドが平均1.08モル付加したものであった。
 得られたノボラック型クレゾール樹脂のプロピレンオキシド反応溶液293.0部、アクリル酸43.2部、メタンスルホン酸11.53部、メチルハイドロキノン0.18部およびトルエン252.9部を、撹拌機、温度計および空気吹き込み管を備えた反応器に導入し、空気を10ml/分の速度で吹き込み、撹拌しながら、110℃で12時間反応させた。反応により生成した水は、トルエンとの共沸混合物として、12.6部の水が留出した。その後、室温まで冷却し、得られた反応溶液を15%水酸化ナトリウム水溶液35.35部で中和し、次いで水洗した。その後、エバポレーターにてトルエンをジエチレングリコールモノエチルエーテルアセテート118.1部で置換しつつ留去し、ノボラック型アクリレート樹脂溶液を得た。次に、得られたノボラック型アクリレート樹脂溶液332.5部およびトリフェニルホスフィン1.22部を、撹拌器、温度計および空気吹き込み管を備えた反応器に導入し、空気を10ml/分の速度で吹き込み、撹拌しながら、テトラヒドロフタル酸無水物60.8部を徐々に加え、95~101℃で6時間反応させ、冷却後、取り出した。このようにして、不揮発分65%、固形物の酸価80mgKOH/gのカルボキシル基含有感光性樹脂A-1の溶液を得た。
(Synthesis of alkali-soluble resin A-1)
119.4 parts of a novolac-type cresol resin (trade name “Shonol CRG951”, manufactured by Showa Polymer Co., Ltd., OH equivalent: 119.4) in an autoclave equipped with a thermometer, a nitrogen introduction device / alkylene oxide introduction device, and a stirring device. Then, 1.19 parts of potassium hydroxide and 119.4 parts of toluene were introduced, the inside of the system was replaced with nitrogen while stirring, and the temperature was increased by heating. Next, 63.8 parts of propylene oxide was gradually added dropwise and reacted at 125 to 132 ° C. and 0 to 4.8 kg / cm 2 for 16 hours. Thereafter, the reaction solution was cooled to room temperature, and 1.56 parts of 89% phosphoric acid was added to and mixed with the reaction solution to neutralize potassium hydroxide. The nonvolatile content was 62.1%, and the hydroxyl value was 182.2 mgKOH / g (307. 9 g / eq.) Of a novolak-type cresol resin propylene oxide reaction solution. This was an average of 1.08 mol of propylene oxide added per equivalent of phenolic hydroxyl group.
293.0 parts of a propylene oxide reaction solution of the obtained novolac-type cresol resin, 43.2 parts of acrylic acid, 11.53 parts of methanesulfonic acid, 0.18 part of methylhydroquinone and 252.9 parts of toluene were mixed with a stirrer and a temperature. It was introduced into a reactor equipped with a meter and an air blowing tube, and air was blown at a rate of 10 ml / min and reacted at 110 ° C. for 12 hours while stirring. 12.6 parts of water was distilled from the water produced by the reaction as an azeotrope with toluene. Thereafter, the reaction solution was cooled to room temperature, neutralized with 35.35 parts of a 15% aqueous sodium hydroxide solution, and then washed with water. Thereafter, toluene was distilled off while substituting 118.1 parts of diethylene glycol monoethyl ether acetate with an evaporator to obtain a novolak acrylate resin solution. Next, 332.5 parts of the obtained novolak acrylate resin solution and 1.22 parts of triphenylphosphine were introduced into a reactor equipped with a stirrer, a thermometer and an air blowing tube, and air was supplied at a rate of 10 ml / min. With stirring, 60.8 parts of tetrahydrophthalic anhydride was gradually added, reacted at 95 to 101 ° C. for 6 hours, cooled and taken out. Thus, a solution of a carboxyl group-containing photosensitive resin A-1 having a non-volatile content of 65% and a solid acid value of 80 mgKOH / g was obtained.
[実施例1~13、比較例1~5]
 下記表1~3に示す種々の成分を表1~3に示す割合(質量部)にて配合し、有機溶剤にて粘度調整後、攪拌機にて予備混合した後、ビーズミルで混練し、硬化性樹脂組成物を調製した。同様に、下記表4に示す種々の成分を表4に示す割合(質量部)にて配合し、有機溶剤にて粘度調整後、攪拌機にて予備混合した後、ビーズミルで混練し、後述する<ソルダーレジスト(SR)との密着性>の評価に用いるソルダーレジスト形成用の硬化性樹脂組成物(以下、「ソルダーレジスト組成物」ともいう)を調製した。これら硬化性樹脂組成物は、目開き15μmの濾過フィルターに通し、粗粒を取り除いた後、下記ドライフィルムを作製した。
[Examples 1 to 13, Comparative Examples 1 to 5]
Various components shown in Tables 1 to 3 below are blended in proportions (parts by mass) shown in Tables 1 to 3, and after adjusting the viscosity with an organic solvent, premixed with a stirrer, kneaded with a bead mill, and cured. A resin composition was prepared. Similarly, various components shown in Table 4 below are blended in the proportions (parts by mass) shown in Table 4, after adjusting the viscosity with an organic solvent, premixed with a stirrer, kneaded with a bead mill, and described below < A curable resin composition for forming a solder resist (hereinafter, also referred to as “solder resist composition”) used for evaluation of the adhesion with the solder resist (SR)> was prepared. These curable resin compositions were passed through a filtration filter having an opening of 15 μm, and after removing coarse particles, the following dry film was produced.
<ドライフィルムの作製>
 上記のようにして得られた硬化性樹脂組成物にメチルエチルケトン300gを加えて希釈し、攪拌機で15分間撹拌して塗工液を得た。塗工液を、算術表面粗さRa150nmである厚さ38μmのポリエチレンテレフタレートフィルム(PETフィルム、ユニチカ社製エンブレットPTH-25)上に塗布し、実施例1~13、比較例1~5は、100℃の温度で、ソルダーレジスト組成物は、80℃で10分間乾燥し、厚み20μmの樹脂層を形成した。次いで、樹脂層上に、厚み18μmのポリプロピレンフィルム(保護フィルム、フタムラ社製OPP-FOA)を貼り合わせて、樹脂層の厚みが20μmのドライフィルムを作製した。
 また、上記と同様にして、樹脂層の厚みが30μmのドライフィルムを作製した。
<Production of dry film>
The curable resin composition obtained as described above was diluted by adding 300 g of methyl ethyl ketone, and stirred for 15 minutes with a stirrer to obtain a coating solution. The coating solution was applied onto a 38 μm thick polyethylene terephthalate film (PET film, Emblet PTH-25 manufactured by Unitika Co., Ltd.) having an arithmetic surface roughness Ra of 150 nm. Examples 1 to 13 and Comparative Examples 1 to 5 were The solder resist composition was dried at 80 ° C. for 10 minutes at a temperature of 100 ° C. to form a resin layer having a thickness of 20 μm. Next, a 18 μm-thick polypropylene film (protective film, OPP-FOA manufactured by Futamura Co., Ltd.) was bonded onto the resin layer to produce a dry film having a resin layer thickness of 20 μm.
In the same manner as described above, a dry film having a resin layer thickness of 30 μm was produced.
<ドライフィルムのラミネート条件>
 ドライフィルムの保護フィルムを剥離した後、真空ラミネーター(CVP-300:ニッコーマテリアル社製)を用いて実施例1~13、比較例1~5は第1チャンバーにて真空3hPa、100℃、ソルダーレジスト組成物は90℃にて、バキューム時間30秒の条件下で貼り付け対象物にラミネートし、プレス圧0.5MPa、80℃、プレス時間30秒の条件にてプレスを行なう。
<Dry film lamination conditions>
After peeling off the protective film of the dry film, Examples 1 to 13 and Comparative Examples 1 to 5 using a vacuum laminator (CVP-300: manufactured by Nikko Materials Co., Ltd.) were vacuum resisted at 3 hPa, 100 ° C., solder resist in the first chamber. The composition is laminated on the object to be attached at 90 ° C. under a vacuum time of 30 seconds, and pressed under conditions of a press pressure of 0.5 MPa, 80 ° C., and a press time of 30 seconds.
<分散性の評価>
 実施例および比較例の各組成物をJIS K5101およびJIS K5600に準拠して幅90mm、長さ240mm、最大深さ25μmのグラインドゲージを用いることにより分散度を確認した。
 分散度の見方としては、5粒以上確認された区間を確認した。
 ◎:粒が確認されない、または、5μm以下
 ○:5μm超12.5μm以下
 △:12.5μm超20μm以下
 ×:20μm超
<Evaluation of dispersibility>
The dispersity of each of the compositions of Examples and Comparative Examples was confirmed by using a grind gauge having a width of 90 mm, a length of 240 mm, and a maximum depth of 25 μm in accordance with JIS K5101 and JIS K5600.
As a view of the degree of dispersion, a section in which 5 or more grains were confirmed was confirmed.
: Grain is not confirmed or 5 μm or less ○: Over 5 μm and 12.5 μm or less Δ: Over 12.5 μm and 20 μm or less ×: Over 20 μm
<誘電正接>
 実施例および比較例で作製した樹脂層厚み30μmのドライフィルムを電解銅箔GTS-MP-18μm(古河サーキットフォイル社製)の光沢面上に、上記条件でラミネートを行い、次いで平坦化し樹脂上のPETフィルムを剥離後樹脂層を完全硬化(190℃、60分)させた。その後、銅箔から硬化膜を剥離し、厚み30μmの硬化膜を得た。
 その硬化膜を長さ80mm、幅2mmに切り出し、ネットワークアナライザー キーサイト社製 8510C、KEAD社製複素比誘電率計算ソフトCAMA-Sを用いた摂動法空洞共振器により、測定温度22℃、5GHzの誘電正接を測定した。
 ◎:誘電正接値 0.006未満
 〇:誘電正接値 0.006以上0.009未満
 △:誘電正接値 0.009以上0.012未満
 ×:誘電正接値 0.012以上
<Dielectric loss tangent>
The dry film having a resin layer thickness of 30 μm produced in the examples and comparative examples is laminated on the glossy surface of electrolytic copper foil GTS-MP-18 μm (Furukawa Circuit Foil) under the above conditions, and then flattened on the resin. After peeling off the PET film, the resin layer was completely cured (190 ° C., 60 minutes). Thereafter, the cured film was peeled from the copper foil to obtain a cured film having a thickness of 30 μm.
The cured film was cut into a length of 80 mm and a width of 2 mm, and a measurement temperature of 22 ° C. and 5 GHz was measured with a perturbation cavity resonator using a network analyzer, Keysight 8510C, and KEAD's complex dielectric constant calculation software CAMA-S. The dielectric loss tangent was measured.
A: Dielectric loss tangent value less than 0.006 O: Dielectric loss tangent value 0.006 or more and less than 0.009 Δ: Dielectric loss tangent value 0.009 or more and less than 0.012 ×: Dielectric loss tangent value 0.012 or more
<熱線膨張係数CTEの測定>
 誘電正接と同様の方法で得られた30μmの硬化膜を銅箔より剥離した後、測定サイズ(3mm×16mm)のサイズに切り出し、TMA-Q400(TA Instruments社製)を使用して引張荷重測定でCTEを測定した。試験荷重5g、サンプルを10℃/分の昇温速度で室温より昇温、連続して2回測定した。2回目におけるTg以下の領域での平均熱線膨張係数(α1)を算出した。
 ◎:30ppm以下
 〇:30ppm超40ppm以下
 △:40ppm超45ppm以下
 ×:45ppm超
<Measurement of thermal linear expansion coefficient CTE>
A 30 μm cured film obtained by the same method as the dielectric loss tangent was peeled off from the copper foil, cut into a measurement size (3 mm × 16 mm), and measured for tensile load using TMA-Q400 (TA Instruments). CTE was measured. The test load was 5 g, and the sample was heated from room temperature at a temperature rising rate of 10 ° C./min, and continuously measured twice. The average thermal linear expansion coefficient (α1) in the region of Tg or less in the second time was calculated.
◎: 30 ppm or less ○: More than 30 ppm to 40 ppm or less △: More than 40 ppm to 45 ppm or less ×: More than 45 ppm
<ソルダーレジスト(SR)との密着性>
 各実施例および比較例の組成物を、極薄銅箔(三井金属社製、MT18SD-EX、18μmの銅製支持体を有する)上に全面塗布し、100℃、10分で乾燥させて乾燥塗膜を有する積層体を得た。次いで支持体としてのFR-4(ガラスエポキシ)基板に本積層体の乾燥塗膜を貼り合せるように、0.5Mpa、120℃、1分、1Torrの条件にてラミネートした。その後、190℃で60分間加熱することにより未反応の熱硬化成分を完全に硬化させた。
 その後、18μmの銅製支持体を剥離し、エッチング液(メック社製、メックブライトQE-7300)にて極薄銅箔をフルエッチングし、硬化膜を有する基板を得た。
 その後、ソルダーレジスト層を形成するための前処理として、硬化膜を有する基板に、酸処理を行い、Rz=2μm以下のロープロファイルの硬化膜を得た。
 その硬化膜上に、上記条件にて、上記で調製したソルダーレジスト組成物からなる樹脂層を有する20μmのドライフィルムをラミネートした。
 その後、高圧水銀灯(ショートアークランプ)搭載の露光装置を用いて、ドライフィルム上から全面露光(露光量:400~600mJ/cm)した後、ドライフィルムからポリエチレンテレフタレートフィルムを剥離し、樹脂層を露出させた。その後、1重量%NaCO水溶液を用いて、30℃、スプレー圧2kg/cmの条件で60秒間現像を行った。続いて、高圧水銀灯を備えたUVコンベア炉にて1J/cmの露光量で樹脂層に照射した後、160℃で60分加熱して樹脂層を完全硬化させてソルダーレジスト硬化膜を有する評価基板を作製した。この硬化膜上からクロスセクションピーリング試験を行ない、実施例および比較例の組成物からなる硬化膜とソルダーレジスト硬化膜との密着性を確認した。具体的には、JIS K5400に基づき、クロスカッターにより切込みが実施例および比較例の硬化膜に達する1mm角の碁盤目100個(10×10)を作り、その上にセロハンテープを完全に密着させ、引き離し、100個中何個密着しているか確認した。
 同じく、HAST条件130℃85% 100時間後も密着性試験を実施した。
 ◎:96以上/100
 〇:61/100~95/100
 △:11/100~60/100
 ×:10/100以下
<Adhesion with solder resist (SR)>
The composition of each example and comparative example was applied onto the entire surface of an ultrathin copper foil (manufactured by Mitsui Kinzoku Co., Ltd., MT18SD-EX, having a 18 μm copper support), dried at 100 ° C. for 10 minutes and dried. A laminate having a film was obtained. Next, the laminate was laminated under the conditions of 0.5 Mpa, 120 ° C., 1 minute, 1 Torr so that the dried coating film of this laminate was bonded to an FR-4 (glass epoxy) substrate as a support. Thereafter, the unreacted thermosetting component was completely cured by heating at 190 ° C. for 60 minutes.
Thereafter, the 18 μm copper support was peeled off, and the ultrathin copper foil was fully etched with an etching solution (Meck Bright QE-7300, manufactured by MEC) to obtain a substrate having a cured film.
Thereafter, as a pretreatment for forming the solder resist layer, the substrate having the cured film was subjected to an acid treatment to obtain a low profile cured film with Rz = 2 μm or less.
A 20 μm dry film having a resin layer made of the solder resist composition prepared above was laminated on the cured film under the above conditions.
Then, using an exposure apparatus equipped with a high-pressure mercury lamp (short arc lamp), the entire surface of the dry film was exposed (exposure amount: 400 to 600 mJ / cm 2 ), and then the polyethylene terephthalate film was peeled from the dry film, and the resin layer was removed. Exposed. Thereafter, development was performed for 60 seconds under the conditions of 30 ° C. and a spray pressure of 2 kg / cm 2 using a 1 wt% Na 2 CO 3 aqueous solution. Subsequently, after the resin layer was irradiated with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, the resin layer was completely cured by heating at 160 ° C. for 60 minutes to have a cured solder resist film. A substrate was produced. A cross section peeling test was performed on the cured film, and the adhesion between the cured film made of the compositions of Examples and Comparative Examples and the cured solder resist film was confirmed. Specifically, based on JIS K5400, 100 crosses (10 × 10) of 1 mm square grids where the incision reaches the cured film of the example and the comparative example are made with a cross cutter, and the cellophane tape is completely adhered thereon. Then, it was pulled apart and it was confirmed how many out of 100 pieces were in close contact.
Similarly, the adhesion test was carried out after 100 hours at HAST conditions of 130 ° C. and 85%.
A: 96 or more / 100
○: 61/100 to 95/100
Δ: 11/100 to 60/100
X: 10/100 or less
<銅との密着性>
 電解銅箔GTS-MP-18μm(古河サーキットフォイル社製)の光沢面に前処理として、メック社製01CZをスプレーして粗化処理を行い表面粗度Raが0.04μmのロープロファイルの銅箔を得た。
 この処理面に各実施例および比較例で作製した樹脂層厚み20μmのドライフィルムをラミネートし、190℃で60分間加熱硬化して絶縁層を形成したサンプルを得た。
 このサンプルの絶縁層とFR-4(ガラスエポキシ)基板を接着剤(ニチバン社製AR-S 30)で接着した。この接着体を130℃、湿度85%の雰囲気下の高温高湿槽に100時間処理した。その後、引張試験機AG-Xを用いて銅箔を引きはがし、その際の強度を評価した。
 このサンプルの初期値および130℃85%RH 100時間のHAST試験後、両方のサンプルを、島津製作所製オートグラフAG-XによりJIS C6481に基づきピール強度を測定した。
 ピール強度が高いほど密着性が良く、HAST試験前後での密着強度低下率が低い方が優れている。
 (HAST前-HAST後)/HAST前 ×100 (%)
 HAST 130℃ 85% 100hrs 低下率40%以内が望ましい。
<Adhesion with copper>
Electrolytic copper foil GTS-MP-18μm (Furukawa Circuit Foil Co., Ltd.) glossy surface is pre-processed by spraying MEC 01CZ to roughen the surface, and the surface roughness Ra is 0.04 μm. Got.
A dry film having a resin layer thickness of 20 μm prepared in each Example and Comparative Example was laminated on this treated surface, and heat cured at 190 ° C. for 60 minutes to obtain a sample in which an insulating layer was formed.
The insulating layer of this sample and the FR-4 (glass epoxy) substrate were bonded with an adhesive (AR-S 30 manufactured by Nichiban). This bonded body was treated for 100 hours in a high-temperature and high-humidity tank in an atmosphere of 130 ° C. and 85% humidity. Thereafter, the copper foil was peeled off using a tensile tester AG-X, and the strength at that time was evaluated.
After the initial value of this sample and the HAST test at 130 ° C. and 85% RH for 100 hours, the peel strength of both samples was measured based on JIS C6481 by Autograph AG-X manufactured by Shimadzu Corporation.
The higher the peel strength, the better the adhesion, and the lower the strength reduction rate before and after the HAST test, the better.
(Before HAST-After HAST) / Before HAST x 100 (%)
HAST 130 ° C. 85% 100 hrs A reduction rate of 40% or less is desirable.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
*1:新日鉄住金化学社製ESN-475V、ナフトール型(エポキシ当量=340g/eq)
*2:日本化薬社製NC-3000L、ビフェニル型(エポキシ当量=272g/eq)
*3:昭和電工社製PETG(エポキシ当量=92g/eq)
*4:三菱ケミカル社製YX7200B35、エポキシ化合物
*5:DIC社製EXB-8500-65T、活性エステル基を有する化合物(活性エステル当量=223g/eq)
*6:DIC社製HPC-9500、フェノール性水酸基を有する化合物(水酸基当量=150g/eq)
*7:ロンザジャパン社製BA230、シアネートエステル基を有する化合物(シアネート当量=232g/eq)
*8:ロンザジャパン社製PT30、シアネートエステル基を有する化合物(シアネート当量=124g/eq)
*9:日本化薬社製MIR-3000、マレイミド基を有する化合物
*10:三菱ケミカル社製P200、イミダゾールとエポキシのアダクト体
*11:和光純薬工業社製ナフテン酸亜鉛(II)ミネラルスピリット
*12:ジメチルアミノピリジン
*13:クラリアントケミカルズ社製OP-935
*14:上記で調製した、アルミニウムの水和酸化物で被覆されたシリカ粒子
*15:上記で調製した、ジルコニウムの水和酸化物で被覆されたシリカ粒子
*16:上記で調製した、亜鉛の水和酸化物で被覆されたシリカ粒子
*17:上記で調整した、チタンの水和酸化物で被覆されたシリカ粒子
*18:上記で調製した、アルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたシリカ粒子
*19:上記で調製した、アルミニウムの水和酸化物で被覆され、かつ、エポキシシランで表面処理されたシリカ粒子
*20:上記で調製した、アルミニウムの水和酸化物で被覆され、かつ、フェニルアミノシランで表面処理されたシリカ粒子
*21:上記で調製した、フェニルアミノシランで表面処理されたシリカ粒子
*22:上記で調製した、メタクリルシランで表面処理されたシリカ粒子
*23:デンカ社製SFP-20M、平均粒径:0.4μm(シリカ)
*24:上記で調製した、アルミニウムの水和酸化物で被覆され、かつ、フェニルアミノシランで表面処理されたタルク
* 1: ESN-475V manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., naphthol type (epoxy equivalent = 340 g / eq)
* 2: Nippon Kayaku Co., Ltd. NC-3000L, biphenyl type (epoxy equivalent = 272 g / eq)
* 3: PETG manufactured by Showa Denko (Epoxy equivalent = 92 g / eq)
* 4: YX7200B35 manufactured by Mitsubishi Chemical Corporation, epoxy compound * 5: EXB-8500-65T manufactured by DIC Corporation, compound having an active ester group (active ester equivalent = 223 g / eq)
* 6: HPC-9500 manufactured by DIC, a compound having a phenolic hydroxyl group (hydroxyl equivalent = 150 g / eq)
* 7: BA230 manufactured by Lonza Japan, a compound having a cyanate ester group (cyanate equivalent = 232 g / eq)
* 8: PT30 manufactured by Lonza Japan, compound having a cyanate ester group (cyanate equivalent = 124 g / eq)
* 9: MIR-3000 manufactured by Nippon Kayaku Co., Ltd., compound having maleimide group * 10: P200 manufactured by Mitsubishi Chemical Co., Ltd. Adduct of imidazole and epoxy * 11: Zinc (II) naphthenate mineral spirit manufactured by Wako Pure Chemical Industries, Ltd. * 12: Dimethylaminopyridine * 13: OP-935 manufactured by Clariant Chemicals
* 14: Silica particles coated with hydrated oxide of aluminum prepared above * 15: Silica particles coated with hydrated oxide of zirconium prepared above * 16: Zinc particles prepared above Silica particles coated with hydrated oxide * 17: Silica particles coated with hydrated titanium oxide prepared as described above * 18: Coated with hydrated oxide of aluminum prepared above, and Silica particles surface-treated with methacrylsilane * 19: Silica particles coated with aluminum hydrated oxide prepared above and surface-treated with epoxysilane * 20: Hydration of aluminum prepared above Silica particles coated with oxide and surface-treated with phenylaminosilane * 21: Silica particles surface-treated with phenylaminosilane prepared above * 2 : Prepared above, silica particles * 23 has been surface treated with methacrylsilane: Denka Co. SFP-20M, average particle size: 0.4 .mu.m (silica)
* 24: Talc coated with aluminum hydrated oxide and surface-treated with phenylaminosilane prepared above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
*25:合成例1で合成したフェノール出発型の感光性カルボキシル基含有樹脂
*26:ジシアンジアミド
*27:メラミン
*28:BASFジャパン社製イルガキュアTPO(2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド)
*29:BASFジャパン社製イルガキュアOXE02(エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(o-アセチルオキシム)
*30:日本化薬社製DPHA(ジペンタエリスリトールヘキサアクリレート)
Figure JPOXMLDOC01-appb-T000004
* 25: Phenol-starting photosensitive carboxyl group-containing resin synthesized in Synthesis Example 1 * 26: Dicyandiamide * 27: Melamine * 28: Irgacure TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide) manufactured by BASF Japan )
* 29: Irgacure OXE02 manufactured by BASF Japan (Etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (o-acetyloxime)
* 30: Nippon Kayaku DPHA (dipentaerythritol hexaacrylate)
 上記表1~3に示す結果から、本発明の実施例1~13の硬化性樹脂組成物は、導体層およびソルダーレジストとのHAST処理後の密着性に優れ、低誘電正接の硬化物が得られることがわかる。 From the results shown in Tables 1 to 3, the curable resin compositions of Examples 1 to 13 of the present invention have excellent adhesion after HAST treatment with the conductor layer and the solder resist, and a cured product having a low dielectric loss tangent is obtained. I understand that

Claims (5)

  1.  アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されたシリカ粒子と、
     エポキシ化合物と、
     硬化剤として、活性エステル基を有する化合物、シアネートエステル基を有する化合物、および、マレイミド基を有する化合物の少なくともいずれか1種と、
    を含むことを特徴とする硬化性樹脂組成物。
    Silica particles coated with at least one of aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide;
    An epoxy compound,
    As a curing agent, at least any one of a compound having an active ester group, a compound having a cyanate ester group, and a compound having a maleimide group,
    A curable resin composition comprising:
  2.  前記被覆されたシリカ粒子が、さらに、表面に硬化性反応基を有することを特徴とする請求項1記載の硬化性樹脂組成物。 2. The curable resin composition according to claim 1, wherein the coated silica particles further have a curable reactive group on the surface.
  3.  請求項1記載の硬化性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするドライフィルム。 A dry film comprising a resin layer obtained by applying the curable resin composition according to claim 1 to a film and drying the film.
  4.  請求項1または2記載の硬化性樹脂組成物、または、請求項3記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。 A cured product obtained by curing the curable resin composition according to claim 1 or 2 or the resin layer of the dry film according to claim 3.
  5.  請求項4記載の硬化物を有することを特徴とする電子部品。 An electronic component comprising the cured product according to claim 4.
PCT/JP2019/002809 2018-03-30 2019-01-28 Curable resin composition, dry film, cured object, and electronic component WO2019187588A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980023562.9A CN111936575B (en) 2018-03-30 2019-01-28 Curable resin composition, dry film, cured product, and electronic component
KR1020207029607A KR20200140289A (en) 2018-03-30 2019-01-28 Curable resin composition, dry film, cured product, and electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-070152 2018-03-30
JP2018070152A JP7076263B2 (en) 2018-03-30 2018-03-30 Curable resin compositions, dry films, cured products, and electronic components

Publications (1)

Publication Number Publication Date
WO2019187588A1 true WO2019187588A1 (en) 2019-10-03

Family

ID=68061315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002809 WO2019187588A1 (en) 2018-03-30 2019-01-28 Curable resin composition, dry film, cured object, and electronic component

Country Status (5)

Country Link
JP (1) JP7076263B2 (en)
KR (1) KR20200140289A (en)
CN (1) CN111936575B (en)
TW (1) TW201941953A (en)
WO (1) WO2019187588A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281965A (en) * 2020-02-20 2021-08-20 东友精细化工有限公司 Curable resin composition, pattern, and image display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014545A (en) * 2019-07-12 2021-02-12 味の素株式会社 Resin composition
JP7402681B2 (en) * 2019-12-27 2023-12-21 太陽ホールディングス株式会社 Curable resin compositions, dry films, copper foils with resin, cured products, and electronic components
JP7474592B2 (en) * 2019-12-27 2024-04-25 太陽ホールディングス株式会社 Curable resin composition, dry film, resin-coated copper foil, cured product, and electronic component
JPWO2022190600A1 (en) * 2021-03-08 2022-09-15
CN113423183A (en) * 2021-07-01 2021-09-21 定颖电子(昆山)有限公司 Manufacturing process of 5G communication high-frequency signal plate

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310688A (en) * 1998-04-27 1999-11-09 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2002161151A (en) * 2000-11-27 2002-06-04 Matsushita Electric Works Ltd Prepreg and laminated board
WO2005108459A1 (en) * 2004-05-11 2005-11-17 Nitto Denko Corporation Liquid epoxy resin composition
JP2005336472A (en) * 2004-04-28 2005-12-08 Konoshima Chemical Co Ltd Magnesium hydroxide-based flame retardant and method for producing the same, and flame-retardant resin composition
WO2010035571A1 (en) * 2008-09-24 2010-04-01 コニカミノルタオプト株式会社 Composition for antireflective layer, antireflective film, polarizing plate and image display device
US20110082239A1 (en) * 2009-10-02 2011-04-07 Nan Ya Plastics Corporation Thermosetting epoxy composition with low expansibility
WO2011118584A1 (en) * 2010-03-26 2011-09-29 パナソニック電工株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
JP2012241179A (en) * 2011-05-24 2012-12-10 Panasonic Corp Epoxy resin composition for prepreg, the prepreg, and multilayer printed wiring board
JP2013095855A (en) * 2011-11-01 2013-05-20 Sumitomo Bakelite Co Ltd Prepreg, laminate and electronic component
WO2013111345A1 (en) * 2012-01-23 2013-08-01 味の素株式会社 Resin composition
WO2016010033A1 (en) * 2014-07-18 2016-01-21 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate and printed wiring board
WO2016047682A1 (en) * 2014-09-25 2016-03-31 積水化学工業株式会社 Resin film and laminated film
WO2016088358A1 (en) * 2014-12-02 2016-06-09 日本ゼオン株式会社 Curable resin composition, molded curable-resin object, cured object, layered product, composite, and multilayered printed wiring board
JP2017179014A (en) * 2016-03-28 2017-10-05 味の素株式会社 Resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323703B (en) * 2008-07-29 2011-01-19 武汉科技学院 Poly(amino bimaleimide) resin composition, preparation and use thereof in copper clad laminate
TWI488841B (en) * 2009-03-27 2015-06-21 Hitachi Chemical Co Ltd A thermosetting resin composition, and an insulating film, a laminate, and a printed wiring board
JP5565005B2 (en) * 2010-03-10 2014-08-06 いすゞ自動車株式会社 DPF failure detection method and DPF failure detection device
JP5582348B2 (en) 2010-10-08 2014-09-03 日立化成株式会社 Photosensitive resin composition and photosensitive film
CN102337068B (en) * 2011-06-29 2013-05-08 江苏大学 Preparation method of water-based polyurethane acrylate (WPUA) silicon dioxide photocureable coating
JP5770604B2 (en) * 2011-11-04 2015-08-26 旭化成イーマテリアルズ株式会社 Tetracarboxylic dianhydride
JP6492544B2 (en) * 2014-10-31 2019-04-03 日立化成株式会社 Resin composition for optical semiconductor encapsulation and optical semiconductor device
JP2016108499A (en) * 2014-12-09 2016-06-20 株式会社ダイセル Curable epoxy resin composition and cured product thereof, board for mounting optical semiconductor element and optical semiconductor device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310688A (en) * 1998-04-27 1999-11-09 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2002161151A (en) * 2000-11-27 2002-06-04 Matsushita Electric Works Ltd Prepreg and laminated board
JP2005336472A (en) * 2004-04-28 2005-12-08 Konoshima Chemical Co Ltd Magnesium hydroxide-based flame retardant and method for producing the same, and flame-retardant resin composition
WO2005108459A1 (en) * 2004-05-11 2005-11-17 Nitto Denko Corporation Liquid epoxy resin composition
JP2005350647A (en) * 2004-05-11 2005-12-22 Nitto Denko Corp Liquid epoxy resin composition
WO2010035571A1 (en) * 2008-09-24 2010-04-01 コニカミノルタオプト株式会社 Composition for antireflective layer, antireflective film, polarizing plate and image display device
US20110082239A1 (en) * 2009-10-02 2011-04-07 Nan Ya Plastics Corporation Thermosetting epoxy composition with low expansibility
WO2011118584A1 (en) * 2010-03-26 2011-09-29 パナソニック電工株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
JP2012241179A (en) * 2011-05-24 2012-12-10 Panasonic Corp Epoxy resin composition for prepreg, the prepreg, and multilayer printed wiring board
JP2013095855A (en) * 2011-11-01 2013-05-20 Sumitomo Bakelite Co Ltd Prepreg, laminate and electronic component
WO2013111345A1 (en) * 2012-01-23 2013-08-01 味の素株式会社 Resin composition
WO2016010033A1 (en) * 2014-07-18 2016-01-21 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate and printed wiring board
WO2016047682A1 (en) * 2014-09-25 2016-03-31 積水化学工業株式会社 Resin film and laminated film
WO2016088358A1 (en) * 2014-12-02 2016-06-09 日本ゼオン株式会社 Curable resin composition, molded curable-resin object, cured object, layered product, composite, and multilayered printed wiring board
JP2017179014A (en) * 2016-03-28 2017-10-05 味の素株式会社 Resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281965A (en) * 2020-02-20 2021-08-20 东友精细化工有限公司 Curable resin composition, pattern, and image display device

Also Published As

Publication number Publication date
CN111936575A (en) 2020-11-13
KR20200140289A (en) 2020-12-15
JP2019178308A (en) 2019-10-17
CN111936575B (en) 2023-08-01
TW201941953A (en) 2019-11-01
JP7076263B2 (en) 2022-05-27

Similar Documents

Publication Publication Date Title
CN111936575B (en) Curable resin composition, dry film, cured product, and electronic component
WO2019163292A1 (en) Resin composition for multilayer electronic components, dry film, cured product, multilayer electronic component, and printed wiring board
JP6702617B2 (en) Photocurable and thermosetting resin composition and dry film solder resist
CN108495878B (en) Resin composition, resin sheet with support, multilayer printed wiring board, and semiconductor device
JP6770131B2 (en) Curable composition, dry film, cured product and printed wiring board
JP2019178307A (en) Curable resin composition, dry film, cured product and electronic component
WO2020066049A1 (en) Curable resin composition, dry film, cured product, laminated structure, and electronic component
JP2020057667A (en) Curable resin composition, dry film, cured product, and electronic component
JP2018173609A (en) Curable resin composition, dry film, cured product, and printed wiring board
KR102571046B1 (en) Curable resin composition, dry film, cured product and printed wiring board
JP2020055927A (en) Curable resin composition, dry film, cured product, laminate structure and electronic component
JP2019178306A (en) Curable resin composition, dry film, cured product and electronic component
WO2019187587A1 (en) Curable resin composition, dry film, cured object, layered structure, and electronic component
TW202035595A (en) Curable resin composition, dry film, cured product, and electronic component
KR102543365B1 (en) Curable composition, dry film, cured product and printed wiring board
JP2019178303A (en) Curable resin composition, dry film, cured product and electronic component
JP2020084144A (en) Curable resin composition, dry film, cured product, and printed wiring board
JP2021044387A (en) Laminated cured product, curable resin composition, dry film, and manufacturing method of laminated cured product
JP2022159248A (en) Resin laminate, cured product and printed wiring board
JP2020057668A (en) Curable resin composition, dry film, cured product, and electronic component
JP2022122104A (en) Curable resin composition, dry film, cured product, and electronic component
CN113126436A (en) Laminated cured body, curable resin composition, dry film, and method for producing laminated cured body
JP2021144097A (en) Curable resin composition, dry film, cured product, and electronic component
JP2021044386A (en) Laminated cured product, curable resin composition, dry film, and manufacturing method of laminated cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777867

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19777867

Country of ref document: EP

Kind code of ref document: A1