WO2019176503A1 - In-vehicle communication device, in-vehicle communication system, communication program, and communication method - Google Patents

In-vehicle communication device, in-vehicle communication system, communication program, and communication method Download PDF

Info

Publication number
WO2019176503A1
WO2019176503A1 PCT/JP2019/006772 JP2019006772W WO2019176503A1 WO 2019176503 A1 WO2019176503 A1 WO 2019176503A1 JP 2019006772 W JP2019006772 W JP 2019006772W WO 2019176503 A1 WO2019176503 A1 WO 2019176503A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
transmission
response signal
communication device
request signal
Prior art date
Application number
PCT/JP2019/006772
Other languages
French (fr)
Japanese (ja)
Inventor
誠 佐分利
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2019176503A1 publication Critical patent/WO2019176503A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/20Devices for measuring or signalling tyre temperature only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L17/00Devices or apparatus for measuring tyre pressure or the pressure in other inflated bodies

Definitions

  • the present invention relates to an in-vehicle communication device, an in-vehicle communication system, a communication program, and a communication method in which a communication device provided in a vehicle body and a plurality of communication devices provided in each wheel of the vehicle perform wireless communication.
  • TPMS Tire Pressure Monitoring System
  • TPMS Tire Pressure Monitoring System
  • the monitoring unit provided on the vehicle body transmits a request signal using radio waves in the LF (Low Frequency) band
  • the sensor unit provided on the wheel detects the tire pressure in response to receiving the request signal.
  • a response signal including the detection result is transmitted using radio waves in an RF (Radio Frequency) band or an UHF (Ultra High Frequency) band.
  • the monitoring unit receives a response signal from each sensor unit and monitors the air pressure of each tire of the vehicle.
  • Patent Document 1 a transmission coil antenna is provided in the vicinity of each tire, and a request signal is transmitted from the transmission coil antenna only to the corresponding sensor unit using a magnetic field as a medium, so that each sensor unit is mounted.
  • a tire pressure monitoring system that can determine the position of a tire on which each sensor unit is mounted even if the ID code of each sensor unit is not registered in association with the tire position.
  • the monitoring unit In the tire pressure monitoring system, for example, if the vehicle is configured to include four tires, the monitoring unit needs to transmit a request signal and receive a response signal with the four sensor units. The monitoring unit cannot communicate with the four sensor units simultaneously, but communicates with the four sensor units in order. For this reason, it takes a long time for the monitoring unit to finish communication with the four sensor units. The longer the communication time is, for example, in the case of a configuration in which communication is performed when the engine of the vehicle is started, the driver may start running the vehicle before the communication ends, and there is a possibility that a warning regarding tire air pressure will not be in time.
  • the present invention has been made in view of such circumstances, and an object thereof is communication between a communication device provided on a vehicle body and a plurality of communication devices provided on a plurality of wheels.
  • An object is to provide an in-vehicle communication device, an in-vehicle communication system, a communication program, and a communication method that can be expected to reduce the time required.
  • the in-vehicle communication device includes a plurality of transmission antennas that are spaced apart from a vehicle and a plurality of transmission antennas that are provided on a plurality of wheels of the vehicle using reception antennas that are provided on the vehicle.
  • a generation unit that generates a request signal by modulating transmission data including identification information determined for each of the transmission antennas, and the generation unit
  • the request signal transmitting unit that transmits the request signal for each of the transmitting antennas generated from the transmitting antenna simultaneously, and the wheel side communication device that has received the request signal transmitted by the request signal transmitting unit is the request signal.
  • a response signal to be transmitted using the reception antenna and a demodulator that demodulates the response signal received by the response signal receiver.
  • a determination unit that determines on which of the plurality of wheels the wheel side communication device that is the transmission source of the response signal is mounted based on identification information included in the reception data demodulated by the demodulation unit.
  • the in-vehicle communication system is provided with a plurality of wheel side communication devices respectively provided on a plurality of wheels of a vehicle, a plurality of transmission antennas arranged separately from the vehicle, and the vehicle.
  • a vehicle body side communication device that performs wireless communication with the plurality of wheel side communication devices using a reception antenna, and the vehicle body side communication device includes identification information defined for each of the transmission antennas.
  • a generation unit that generates a request signal by modulating transmission data, and a request signal transmission unit that simultaneously transmits the request signal for each of the transmission antennas generated by the generation unit from each transmission antenna
  • the wheel-side communication device includes a request signal receiving unit that receives the request signal that is simultaneously transmitted and superimposed from the plurality of transmitting antennas, and identification information included in the request signal received by the request signal receiving unit.
  • a response signal transmission unit that transmits a response signal including the identification information acquired by the identification information acquisition unit
  • the vehicle body side communication device further includes the wheel side communication device.
  • a response signal receiving unit that receives the transmitted response signal using the receiving antenna, a demodulating unit that demodulates the response signal received by the response signal receiving unit, and an identification included in the reception data demodulated by the demodulating unit And a determination unit that determines which of the plurality of wheels is equipped with the wheel-side communication device that is the transmission source of the response signal based on the information.
  • the communication program includes a plurality of transmission antennas arranged separately from the vehicle, and a plurality of reception antennas provided on the vehicle, and a plurality of transmission antennas provided respectively on the plurality of wheels of the vehicle.
  • a request signal is generated by modulating transmission data including identification information defined for each of the transmission antennas to the in-vehicle communication device that performs wireless communication with the wheel side communication device, and the generated transmission antennas
  • the request signal is transmitted simultaneously from each transmitting antenna, and the response signal transmitted by the wheel side communication device including the identification information included in the request signal is received using the receiving antenna.
  • Receiving, demodulating the received response signal, and based on the identification information included in the demodulated reception data the wheel side communication device of the response signal is sent to any of the plurality of wheels. To execute a process of determining whether it is loading.
  • a plurality of wheel side communication devices respectively provided on a plurality of wheels of a vehicle and a vehicle body side communication device mounted on a vehicle body of the vehicle are arranged separately from the vehicle body.
  • the vehicle body side communication device includes transmission data including identification information defined for each of the transmission antennas.
  • the vehicle body side communication device transmits the generated request signal for each transmission antenna simultaneously from each transmission antenna, and the wheel side communication device transmits the plurality of transmission signals.
  • the request signal transmitted and superimposed simultaneously from the trust antenna is received, the wheel side communication device acquires the identification information included in the received request signal, and the wheel side communication device acquires A response signal including other information is transmitted, the vehicle body side communication device receives the response signal transmitted by the wheel side communication device using the reception antenna, and the vehicle body side communication device receives the response signal. And determining which of the plurality of wheels the wheel-side communication device that is the transmission source of the response signal is mounted on the basis of the identification information included in the demodulated reception data.
  • the present application can be realized not only as an in-vehicle communication device including such a characteristic processing unit, but also as a communication method using such characteristic processing as a step, or causing a computer to execute such a step.
  • it can be realized as a semiconductor integrated circuit that realizes part or all of the in-vehicle communication device, or can be realized as another device or system including the in-vehicle communication device.
  • the in-vehicle communication device is provided on each of a plurality of wheels of the vehicle by using a plurality of transmission antennas arranged separately from the vehicle and a reception antenna provided on the vehicle.
  • a generation unit that generates a request signal by modulating transmission data including identification information determined for each of the transmission antennas;
  • a request signal transmitting unit that transmits the request signal for each of the transmitting antennas generated by the generating unit simultaneously from each transmitting antenna; and the wheel side communication device that has received the request signal transmitted by the request signal transmitting unit.
  • a response signal receiving unit that receives a response signal including identification information included in the request signal using the receiving antenna, and a response signal received by the response signal receiving unit is demodulated. And a determination unit that determines on which of the plurality of wheels the wheel side communication device that is the transmission source of the response signal is based on identification information included in the reception data demodulated by the demodulation unit With.
  • an in-vehicle communication device is provided on the vehicle body of the vehicle, and a wheel side communication device is provided on each of the plurality of wheels of the vehicle.
  • a plurality of transmitting antennas are spaced apart from each other on the vehicle body, and the in-vehicle communication device transmits radio signals to the plurality of wheel side communication devices using the transmitting antenna.
  • the vehicle body is provided with a reception antenna common to the plurality of wheel side communication devices, and the in-vehicle communication device receives a radio signal from the wheel side communication device using the reception antenna. Different identification information is assigned to each of the plurality of transmitting antennas.
  • the in-vehicle communication device generates transmission data including identification information for each transmission antenna, and simultaneously transmits request signals obtained by modulating the transmission data from a plurality of transmission antennas.
  • request signals including different identification information from a plurality of transmitting antennas
  • the plurality of request signals are superimposed and received by the wheel side communication device.
  • the waveform when the superimposed request signal is received by each wheel-side communication device changes according to the distance and position of the wheel-side communication device with respect to a plurality of transmission antennas.
  • the wheel side communication device receives the superimposed request signal, acquires identification information included in the received request signal, and transmits a response signal including the acquired identification information to the in-vehicle communication device.
  • the in-vehicle communication device receives the response signal from the wheel side communication device and acquires the identification information included in the received response signal.
  • the identification information included in the response signal received by the in-vehicle communication device is obtained by superimposing a plurality of different identification information. Therefore, the in-vehicle communication device can determine which of the plurality of wheels the wheel-side communication device that is the transmission source of the response signal is mounted on the basis of the identification information included in the response signal. .
  • the in-vehicle communication device can simultaneously transmit request signals to the plurality of wheel side communication devices as compared with a configuration in which wireless communication is sequentially performed with the plurality of wheel side communication devices, for example. The time required for wireless communication with the side communication device can be shortened.
  • the generation unit modulates the transmission data by an ASK (Amplitude Shift Keying) modulation method.
  • ASK Amplitude Shift Keying
  • the in-vehicle communication device modulates transmission data including identification information by an ASK (Amplitude Shift Keying) modulation method.
  • the ASK modulation method is a method of modulating each bit included in digital data to an amplitude corresponding to a value of 0/1, and the amplitude changes when a plurality of signals having different values are superimposed.
  • the identification information acquired from this request signal depends on the presence / absence of superimposition and the number of superimposed signals. For this reason, it becomes possible to judge the position of each wheel side communication apparatus based on the identification information contained in the request signal received by each wheel side communication apparatus.
  • the vehicle is provided with the wheels respectively on the right front, right rear, left front, and left rear of the vehicle body, and the plurality of transmission antennas are provided on the right side of the vehicle body. And a left transmission antenna provided near the left side of the vehicle body and a rear transmission antenna provided near the rear side of the vehicle body.
  • the vehicle is provided with wheels at four locations on the right front, right rear, left front and left rear of the vehicle body.
  • the vehicle body is provided with a right transmitting antenna provided close to the right side, a left transmitting antenna provided close to the left side, and a rear transmitting antenna provided close to the rear side.
  • the radio signal from the right transmission antenna is received by the wheel side communication device provided on the right wheel
  • the radio signal from the left transmission antenna is received by the wheel side communication device provided on the left wheel.
  • the wheel-side communication device that is received and provided on the rear wheel can be expected to receive a radio signal from the rear transmission antenna. Thereby, it can be expected that each wheel side communication device receives radio signals from one or two transmitting antennas.
  • the transmission range of the response signal transmitted from the right transmission antenna includes the right front and right rear wheels, and does not include the left front and left rear wheels, and is transmitted from the left transmission antenna.
  • the response signal transmission range includes the left front and left rear wheels, and does not include the right front and right rear wheels, and the response signal transmission range transmitted from the rear transmission antenna.
  • the right rear and left rear wheels are included, and the right front and left front wheels are not included.
  • the transmission range of the request signal transmitted from the right transmitting antenna includes the right front and right rear wheels and does not include the left front and left rear wheels.
  • the transmission range of the request signal transmitted from the left transmitting antenna includes the left front and left rear wheels and does not include the right front and right rear wheels.
  • the transmission range of the request signal transmitted from the rear transmission antenna includes right rear and left rear wheels, and does not include right front and left front wheels.
  • the wheel side communication device provided on the right rear wheel receives a signal in which the request signal from the right transmission antenna and the request signal from the rear transmission antenna are superimposed.
  • the wheel side communication device provided on the left rear wheel receives a signal in which a request signal from the left transmission antenna and a request signal from the rear transmission antenna are superimposed. Therefore, the request signals received by the four wheel side communication devices can be made different from each other.
  • the transmitting antenna is an antenna shared with a system that performs wireless communication with a portable communication device to control the door lock of the vehicle.
  • antennas shared with the vehicle door lock control system are used as the right transmitting antenna, left transmitting antenna, and rear transmitting antenna.
  • the door lock control system is a system that performs wireless communication with a portable communication device possessed by a user, and locks / unlocks the door of the vehicle according to the communication result. Since the antennas used in the door lock control system are often provided on the right side, left side, and rear side of the vehicle, the number of antennas mounted on the vehicle can be reduced by sharing these antennas.
  • An in-vehicle communication system includes a plurality of wheel-side communication devices respectively provided on a plurality of wheels of a vehicle, a plurality of transmission antennas arranged separately from the vehicle, and the vehicle A vehicle body side communication device that performs wireless communication with the plurality of wheel side communication devices using a receiving antenna provided, wherein the vehicle body side communication device is identified for each transmission antenna A generation unit that generates a request signal by modulating transmission data including information, and a request signal transmission unit that simultaneously transmits the request signal for each transmission antenna generated by the generation unit from each transmission antenna.
  • the wheel-side communication device includes a request signal receiving unit that receives the request signal that is simultaneously transmitted and superimposed from the plurality of transmitting antennas, and an information included in the request signal received by the request signal receiving unit.
  • An identification information acquisition unit that acquires information; and a response signal transmission unit that transmits a response signal including the identification information acquired by the identification information acquisition unit.
  • the vehicle body side communication device further includes the wheel side communication device. Included in the received data demodulated by the demodulator, the demodulator for demodulating the response signal received by the response signal receiver, and the response signal received by the demodulator And a determination unit that determines which of the plurality of wheels is equipped with the wheel-side communication device that is the transmission source of the response signal based on the identification information.
  • the time required for wireless communication between the vehicle body side communication device and the plurality of wheel side communication devices can be shortened.
  • the reception timing of the request signal by the plurality of wheel side communication devices is different timing.
  • the plurality of wheel side communication devices provided on the wheels of the vehicle receive request signals from the vehicle body side communication devices at different timings.
  • the transmission timing of the response signal of each wheel side communication device according to the reception of the request signal can be set to a different timing, and the transmission of the response signal by the plurality of wheel side communication devices is performed in an overlapping manner. Can be avoided.
  • the response signal transmission unit of the wheel side communication device transmits the response signal a plurality of times with a random time interval.
  • the wheel side communication device transmits a response signal multiple times at random intervals. Thereby, for example, even when transmission of response signals by a plurality of wheel side communication devices overlaps, transmission of subsequent response signals is performed at different timings, so that the vehicle body side communication device is transmitted from the plurality of wheel side communication devices. This increases the possibility of receiving the response signal.
  • the response signal transmission unit of the wheel side communication device transmits a response signal including second identification information attached to the wheel side communication device, and the determination unit of the vehicle body side communication device receives the response The determination is preferably performed based on the identification information and the second identification information included in the response signal received by the signal reception unit.
  • the response information includes the identification information included in the request signal received by the wheel side communication device and the second identification information attached to itself.
  • the vehicle body side communication device determines the wheel side communication device that is the transmission source of the response signal based on the identification information and the second identification information included in the response signal from the wheel side communication device.
  • the vehicle body side communication device stores, for example, the correspondence between the identification information and the second identification information and the position of each transmitting antenna, and based on the identification information included in the received response signal, It can be determined which wheel of the vehicle the communication device is provided on.
  • a communication program is provided on each of a plurality of wheels of the vehicle using a plurality of transmission antennas arranged separately from the vehicle and a reception antenna provided on the vehicle.
  • a request signal is generated by modulating transmission data including identification information determined for each transmission antenna in an in-vehicle communication device that performs wireless communication with a plurality of wheel-side communication devices.
  • a request signal for each trusted antenna is simultaneously transmitted from each transmitting antenna, and the response signal transmitted by the wheel side communication device that has received the request signal including the identification information included in the request signal is transmitted to the receiving antenna. Is used to demodulate the received response signal, and based on the identification information included in the demodulated received data, the wheel side communication device of the response signal To execute a process of determining whether it is mounted in Les.
  • the time required for wireless communication between the vehicle body side communication device and the plurality of wheel side communication devices can be shortened.
  • a plurality of wheel side communication devices respectively provided on a plurality of wheels of a vehicle and a vehicle body side communication device mounted on the vehicle body of the vehicle are separated from the vehicle body.
  • the vehicle body side communication device uses identification information determined for each transmission antenna.
  • the transmission signal is modulated to generate a request signal, and the vehicle body side communication device transmits the generated request signal for each of the transmission antennas simultaneously from each of the transmission antennas.
  • the request signals transmitted and superimposed simultaneously from a plurality of transmitting antennas are received, the wheel side communication device acquires identification information included in the received request signals, and the wheel side communication device receives The vehicle body side communication device receives the response signal transmitted by the wheel side communication device using the reception antenna, and the vehicle body side communication device receives the response received.
  • the signal is demodulated, and based on the identification information included in the demodulated reception data, it is determined on which of the plurality of wheels the wheel side communication device that is the transmission source of the response signal is mounted.
  • the time required for wireless communication between the vehicle body side communication device and the plurality of wheel side communication devices can be shortened.
  • FIG. 1 is a schematic diagram showing a configuration of an in-vehicle communication system according to the present embodiment.
  • the in-vehicle communication system 100 according to the present embodiment is also a tire air pressure monitoring system that detects the tire air pressure and notifies the driver of information such as the presence or absence of abnormality for the four wheels 3 provided in the vehicle 1.
  • the in-vehicle communication system 100 according to the present embodiment includes a monitoring device 10 provided at an appropriate position of the vehicle body of the vehicle 1, four sensor devices 30 provided in portions such as tires or wheels of each wheel 3, and the vehicle 1.
  • a notification device 8 provided near the driver's seat is provided.
  • the vehicle 1 is provided with wheels 3 on the right front, right rear, left front and left rear, and a sensor device 30 is provided on each wheel 3.
  • Each sensor device 30 detects the air pressure of the tire of the wheel 3 provided with the device itself.
  • the in-vehicle communication system 100 acquires information related to the tire air pressure of each wheel 3 by the monitoring device 10 performing wireless communication with each sensor device 30, and the notification device 8 based on the acquired information. The tire pressure is notified using.
  • the vehicle 1 is equipped with three transmission antennas 51 to 53 for the monitoring device 10 to transmit LF band radio signals to the four sensor devices 30.
  • the first transmission antenna 51 is provided on the right side surface portion of the vehicle 1
  • the second transmission antenna 52 is provided on the left side surface portion of the vehicle 1
  • the third transmission antenna 53 is provided on the rear portion of the vehicle 1.
  • the first transmission antenna 51 and the second transmission antenna 52 are provided at a substantially central position between the front wheel 3 and the rear wheel 3 in the front-rear direction of the vehicle 1.
  • the third transmission antenna 53 is provided at a substantially central position between the right wheel 3 and the rear wheel 3 in the left-right direction of the vehicle 1. Note that the mounting positions of the three transmission antennas 51 to 53 shown in FIG. 1 are merely examples, and the present invention is not limited to this.
  • a range 51a in which the sensor device 30 can receive a request signal transmitted from the first transmission antenna 51 is illustrated as a two-dot chain line region in FIG.
  • the request signal from the first transmitting antenna 51 is received by the two sensor devices 30 provided on the right front side wheel and the right rear side wheel 3 of the vehicle 1, and the other sensor devices 30 do not receive this request signal.
  • the range 51a is set as appropriate.
  • a range 52a in which the sensor device 30 can receive a request signal transmitted from the second transmitting antenna 52 is illustrated as a two-dot chain line region in FIG.
  • the request signal from the second transmission antenna 52 is received by the two sensor devices 30 provided on the left front wheel 3 and the left rear wheel 3 of the vehicle 1, and the other sensor devices 30 do not receive this request signal.
  • a range 53a in which the sensor device 30 can receive a request signal transmitted from the third transmitting antenna 53 is illustrated as a two-dot chain line region in FIG.
  • the request signal from the third transmitting antenna 53 is received by the two sensor devices 30 provided on the right rear and left rear wheels 3 of the vehicle 1 so that the other sensor devices 30 do not receive the request signal.
  • the range 53a is appropriately set.
  • the sensor device 30 provided on the right front wheel 3 of the vehicle 1 receives the request signal transmitted from the first transmission antenna 51.
  • the sensor device 30 provided on the right rear wheel 3 of the vehicle 1 receives the request signals transmitted from the first transmission antenna 51 and the third transmission antenna 53.
  • the sensor device 30 provided on the left front wheel 3 of the vehicle 1 receives the request signal transmitted from the second transmission antenna 52.
  • the sensor device 30 provided on the left rear wheel 3 of the vehicle 1 receives the request signals transmitted from the second transmission antenna 52 and the third transmission antenna 53.
  • the monitoring device 10 transmits request signals for requesting the transmission of response signals to the sensor devices 30 from the three transmission antennas 51 to 53 as radio signals in the LF band.
  • the monitoring device 10 can request transmission of a tire air pressure detection result of each wheel 3 and / or identification information attached to each sensor device 30 by transmitting a request signal.
  • the sensor device 30 that has received the request signal from the monitoring device 10 transmits a response signal including at least identification information (hereinafter referred to as sensor ID) of the device itself to the monitoring device 10 as a UHF band radio signal.
  • the response signal transmitted by the sensor device 30 may include information on the detection result of the tire air pressure of the wheel 3.
  • the monitoring device 10 receives the UHF band response signal transmitted by the sensor device 30 at the receiving antenna 6.
  • the monitoring device 10 employs an ASK (Amplitude Shift Keying) modulation method (amplitude shift modulation method) for transmitting a request signal to the sensor device 30.
  • FIG. 2 is a schematic diagram illustrating an example of the ASK modulation method.
  • the ASK modulation method is one of methods for converting digital data represented by binary values “0” and “1” into a signal for wireless transmission using a carrier wave such as a sine wave.
  • the ASK modulation method is a method of performing modulation by changing the amplitude corresponding to the bit string of transmission data while maintaining the frequency and phase of the carrier wave.
  • the ECU 3 controls a switch or the like according to the value of transmission data, and turns on / off a carrier wave to output a simple ASK modulation method (a modulated wave is obtained).
  • This method can also be called an on-off modulation method) and modulates transmission data.
  • the request signal transmitted from the transmission antennas 51 to 53 by the monitoring apparatus 10 includes common data common to all the transmission antennas 51 to 53 and individual data different for each of the transmission antennas 51 to 53.
  • FIG. 3 is a schematic diagram illustrating an example of a data configuration of the request signal.
  • the request signal transmitted from the monitoring device 10 to the sensor device 30 includes, for example, a header, common data, individual data, and a footer.
  • the header and footer include, for example, data defined by a communication protocol between the monitoring device 10 and the sensor device 30.
  • the common data can include, for example, identification information of the vehicle 1 or a command to the sensor device 30.
  • the individual data included in the request signal is 2-bit data in the present embodiment, and stores 2-bit antenna IDs individually assigned to the transmission antennas 51 to 53.
  • individual antenna IDs are assigned to the three transmission antennas 51 to 53 provided in the vehicle 1 in advance.
  • Is assigned are only examples, and are not limited to these. Any values may be used as long as the following processing can be realized.
  • the monitoring apparatus 10 modulates transmission data having the same common data, header, and footer and different individual data by the ASK modulation method, and uses a radio signal obtained by the modulation as a request signal, Transmission is simultaneously performed from the transmission antennas 51 to 53 corresponding to the individual data included in this signal.
  • Request signals transmitted simultaneously from the plurality of transmission antennas 51 to 53 are superimposed at the locations where the transmission ranges 51a to 53a overlap. Since the header, common data, and footer included in the plurality of request signals are the same, the signal waveform does not change even when the plurality of request signals are superimposed (the amplitude may be amplified). However, since the individual data included in each request signal has a different value for each of the transmission antennas 51 to 53 as described above, when a plurality of request signals are superimposed, the signal waveform changes.
  • FIG. 4 is a schematic diagram for explaining the superimposition of response signals corresponding to individual data.
  • 4 shows the waveform of the carrier wave. Below the waveform of the carrier wave in FIG. 4, individual data included in the transmission data transmitted from the left transmission antenna 51 and its modulated wave, and individual data included in the transmission data transmitted from the rear transmission antenna 53. And its modulated wave. 4 shows the superimposed wave when the modulated wave transmitted from the transmission antenna 52 and the modulated wave transmitted from the transmission antenna 53 are superimposed.
  • the modulated wave modulated by the ASK modulation method has a waveform in which a carrier wave is output corresponding to “1” included in the individual data. For this reason, when two modulated waves corresponding to two individual data having different values are superimposed, a superimposed wave having a waveform corresponding to the logical sum data of the individual data is obtained. In the case of the illustrated example, when two modulated waves corresponding to the individual data “01” and the individual data “00” are superimposed, the superimposed wave has a signal waveform with the individual data “11”.
  • the individual data included in the received request signal is “00”.
  • the request signal is received only from the left transmission antenna 52 that transmits the request signal of the individual data “01”, the individual data included in the received request signal is “01”.
  • the request signal is received only from the rear transmission antenna 53 that transmits the request signal of the individual data “10”, the individual data included in the received request signal is “10”.
  • the individual data included in the received request signal is the logical sum “10” of “00” and “10”.
  • the individual data included in the received request signal is a logical sum “11” of “01” and “10”.
  • the individual data included in the request signal received by the sensor device 30 provided on the right front wheel 3 of the vehicle 1 is “00”.
  • the individual data included in the request signal received by the sensor device 30 provided on the right rear wheel 3 of the vehicle 1 is “10”.
  • the individual data included in the request signal received by the sensor device 30 provided on the left front wheel 3 of the vehicle 1 is “01”.
  • the individual data included in the request signal received by the sensor device 30 provided on the left rear wheel 3 of the vehicle 1 is “11”.
  • Each sensor device 30 that has received the request signal from the monitoring device 10 acquires individual data included in the received request signal.
  • the sensor device 30 generates a response signal including individual data acquired from the request signal, a tire air pressure detection result, its own sensor ID, and the like, and transmits the response signal to the monitoring device 10.
  • the monitoring device 10 that has received the response signal from the sensor device 30 determines which wheel 3 is provided with the sensor device 30 that is the transmission source of this response signal, based on the individual data included in the response signal. Can do.
  • the monitoring device 10 includes a receiving antenna 6 for receiving a response signal in the UHF band transmitted from the sensor device 30.
  • the reception antenna 6 may be built in the monitoring device 10 or may be provided separately from the monitoring device 10 and connected to the monitoring device 10 via a signal line.
  • the monitoring device 10 receives response signals from the four sensor devices 30 with the common receiving antenna 6.
  • the monitoring device 10 can determine from which sensor device 30 this response signal is transmitted based on the individual data and sensor ID included in the received response signal.
  • the monitoring device 10 acquires tire pressure information from the received response signal, and notifies the driver of the tire pressure using the notification device 8.
  • the notification device 8 can be, for example, a display device provided near the driver's seat of the vehicle 1.
  • the monitoring device 10 may display the tire air pressure detection result on the notification device 8 in real time. Further, for example, the monitoring device 10 may determine whether there is an abnormality in the tire air pressure, and may display a warning message or the like on the notification device 8 when determining that there is an abnormality.
  • the notification device 8 may have a configuration other than the display device, for example, may have a configuration for notifying the tire air pressure by sound output, or may be, for example, a lamp that is turned on in response to an abnormality in the tire air pressure.
  • the sensor device 30 not only receives the request signal from the monitoring device 10, but also periodically detects the tire pressure, for example, and periodically transmits a signal including information on the detected tire pressure to the monitoring device 10. Good.
  • the signal transmitted by the sensor device 30 includes information related to the tire pressure and its own sensor ID, and does not include individual data.
  • the monitoring device 10 that has received the periodic signal from the sensor device 30 at the receiving antenna 6, from which sensor device 30 the signal is transmitted based on the sensor ID included in the received signal. Determine.
  • the process in which the monitoring device 10 transmits the request signal and receives the response signal from the sensor device 30 is performed, for example, when the ignition switch of the vehicle 1 is switched from the off state to the on state or at a specific timing such as when the engine is started. Done. This process is performed for the purpose of confirming the correspondence between the transmission antennas 51 to 53 and the sensor device 30 and acquiring the tire air pressure of the wheel 3 of the vehicle 1. Thereafter, unless there are special circumstances, the monitoring device 10 receives the signal periodically transmitted by the sensor device 30 without transmitting the request signal, and the monitoring device 10 receives the signal that is transmitted periodically. Will report.
  • the transmission of the request signal by the monitoring device 10 can be performed, for example, at the timing when the vehicle 1 shifts from the stopped state to the traveling state, or when it is determined that the tire air pressure is abnormal.
  • the monitoring device 10 transmits a request signal at a timing when it is preferable to confirm the position of the sensor device 30.
  • FIG. 5 is a block diagram showing a configuration of the monitoring apparatus 10 according to the present embodiment.
  • the monitoring apparatus 10 includes a processing unit (processor) 11, a storage unit (storage) 12, a wired communication unit (transceiver) 13, a wireless transmission unit (transceiver) 14, a wireless reception unit (transceiver) 15, and the like. It is prepared for.
  • the processing unit 11 is configured by using an arithmetic processing device such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit), for example, and executes various programs by executing a program 12a stored in the storage unit 12. Processing and control processing can be performed.
  • a CPU Central Processing Unit
  • MPU Micro-Processing Unit
  • the processing unit 11 reads and executes the program 12a stored in the storage unit 12, thereby transmitting and receiving wireless signals to and from the sensor devices 30 provided on the wheels 3 of the vehicle 1, A process of notifying the driver of the tire pressure based on a radio signal received from the sensor device 30 and a process of determining the mounting position of each sensor device 30 are performed.
  • the storage unit 12 is configured using a non-volatile memory element such as a flash memory or an EEPROM (Electrically-Erasable-Programmable-Read-Only-Memory).
  • the storage unit 12 stores various programs executed by the processing unit 11 and various data necessary for the processing of the processing unit 11.
  • the storage unit 12 stores a program 12a executed by the processing unit 11 and sensor position information 12b as data necessary for the execution of the program 12a.
  • the program 12a may be written in the storage unit 12 at the manufacturing stage of the monitoring device 10, for example, or the monitoring device 10 may acquire, for example, what is distributed by a remote server device, for example, What is recorded on the recording medium 99 such as a memory card or an optical disk may be read out by the monitoring device 10 and stored in the storage unit 12. For example, what is recorded on the recording medium 99 is read out by the writing device and monitored. You may write in ten memory
  • the program 12a may be provided in a mode of distribution via a network, or may be provided in a mode recorded on the recording medium 99.
  • the sensor position information 12b stored in the storage unit 12 is information indicating which wheel 3 of the vehicle 1 the four sensor devices 30 mounted on the vehicle 1 are mounted on.
  • FIG. 6 is a schematic diagram illustrating an example of the sensor position information 12b.
  • the sensor position information 12b stores the mounting position of the sensor device 30, the individual data corresponding to the mounting position, and the sensor ID assigned to the sensor device 30 in association with each other.
  • the mounting positions of the sensor device 30 are four types of right front, right rear, left front, and left rear
  • the individual data are four types of “00”, “01”, “10”, and “11”, and the sensor ID Are S1 to S4.
  • the individual data is individual data included in a response signal transmitted by the sensor device 30 mounted on the corresponding wheel 3.
  • the sensor ID may change due to the exchange of the wheels 3 or the like.
  • the initial value of each information stored in the sensor position information 12b is written into the storage unit 12 in the manufacturing process of the vehicle 1, for example.
  • the monitoring device 10 may determine the position of the sensor device 30 and set the sensor ID of the sensor position information 12b.
  • the wired communication unit 13 transmits and receives messages to and from various in-vehicle devices mounted on the vehicle 1 via an in-vehicle network provided in the vehicle 1.
  • the wired communication unit 13 transmits and receives messages according to a communication protocol such as CAN (Controller Area Network) or Ethernet (registered trademark).
  • the wired communication unit 13 can transmit a message by outputting the digital data given as a transmission message from the processing unit 11 as an electrical signal to a communication line constituting the in-vehicle network.
  • the wired communication unit 13 samples and acquires the potential of the communication line constituting the in-vehicle network, and provides the digital data obtained as a result of the sampling to the processing unit 11 as a received message.
  • the wired communication unit 13 can be configured by using an IC (Integrated Circuit) that performs communication according to a communication protocol such as CAN or Ethernet.
  • the radio transmission unit 14 transmits an SK band radio signal having a frequency of 30 kHz to 300 kHz by outputting to the transmission antennas 51 to 53 an electric signal obtained by ASK modulation of transmission data provided from the processing unit 11.
  • the wireless transmission unit 14 transmits request signals simultaneously from the three transmission antennas 51 to 53 to the four sensor devices 30 provided on the wheel 3.
  • the request signals transmitted simultaneously at this time are obtained by performing ASK modulation on transmission data that is different in individual data and common to other data.
  • the assignment of the individual data for each of the transmission antennas 51 to 53 may be performed by the processing unit 11 or the wireless transmission unit 14.
  • the processing unit 11 gives three pieces of transmission data that differ only in individual data to the wireless transmission unit 14, and the wireless transmission unit 14 modulates the given three pieces of transmission data and transmits them from the corresponding transmission antennas 51 to 53, respectively. You may transmit simultaneously. Further, for example, the processing unit 11 gives transmission data not including individual data to the radio transmission unit 14, and the radio transmission unit 14 adds different individual data to the given transmission data and then modulates the corresponding transmission antennas. You may transmit simultaneously from 51-53.
  • the reception antenna 6 is connected to the wireless reception unit 15.
  • the radio receiving unit 15 receives a UHF band radio signal having a frequency of 300 MHz to 3 GHz transmitted by the sensor device 30 at the receiving antenna 6 and supplies the received data obtained by demodulating the received signal to the processing unit 11. .
  • the UHF band radio signal transmitted from the sensor device 30 to the monitoring device 10 does not need to be modulated by a modulation scheme other than the ASK modulation scheme, and any modulation scheme may be employed.
  • the processing unit 11 reads and executes the program 12a stored in the storage unit 12, whereby the request signal transmission unit 21, the response signal reception unit 22, and the sensor position determination unit 23. And the like are realized as software functional blocks in the processing unit 11.
  • the request signal transmitter 21 controls the operation of the wireless transmitter 14 to request the four sensor devices 30 mounted on the wheels 3 of the vehicle 1 to transmit the tire pressure detection results. Process to send.
  • the request signal transmission unit 21 generates, for example, transmission data including a command for requesting a tire air pressure detection result and supplies the transmission data to the wireless transmission unit 14, thereby request signals having different individual data from the three transmission antennas 51 to 53. Transmission can be performed by the wireless transmission unit 14.
  • the response signal receiving unit 22 acquires received data corresponding to the response signal received by the wireless receiving unit 15 and performs processing for extracting and acquiring various types of information included in the acquired received data.
  • the information included in the received data is, for example, information related to the tire air pressure detection result, individual data, and sensor ID.
  • the response signal receiving unit 22 performs a process of determining whether or not the tire air pressure of each wheel 3 is within the normal range based on the acquired information. If the response signal receiving unit 22 is not within the normal range, the operation using the notification device 8 is performed. Can be notified to the person. For the normal range of the tire pressure, a threshold for determining this is stored in the storage unit 12 in advance.
  • the response signal receiving unit 22 gives the individual data and sensor ID acquired from the received data to the sensor position determining unit 23.
  • the sensor position determination unit 23 determines which wheel 3 is provided with the sensor device 30 that has transmitted this response signal. Or the process which determines the mounting position is performed. For example, when the individual code included in the response signal is “00” and the sensor ID is S1, the sensor position determination unit 23 transmits the response signal based on the sensor position information 12b illustrated in FIG. It can be determined that the original is the sensor device 30 mounted on the right front wheel 3 of the vehicle 1.
  • the sensor position determination unit 23 refers to the sensor position information 12b stored in the storage unit 12, and the combination of the individual data and the sensor ID included in the received response signal is any of the combinations stored in the sensor position information 12b. It is determined whether or not they match.
  • the sensor position determination unit 23 determines that the wheel 3 is not exchanged and the position of the sensor device 30 is the position stored in the sensor position information 12b. On the other hand, if the two combinations do not match, the sensor position determination unit 23 determines that the wheel 3 has been replaced, and stores the newly acquired combination of individual data and sensor ID in the sensor position information 12b. Thus, the sensor position information 12b is updated.
  • the monitoring apparatus 10 may transmit the request signal again before updating the sensor position information 12b, and update the sensor position information 12b after confirming that the combination of the individual data and the sensor ID does not match a plurality of times. .
  • the sensor device 30 even when the sensor device 30 does not receive the request signal from the monitoring device 10, the sensor device 30 periodically transmits the tire air pressure detection result to the monitoring device 10.
  • the signal periodically transmitted by the sensor device 30 includes information related to the tire air pressure detection result and the sensor ID, and does not include individual data.
  • the processing unit 11 of the monitoring device 10 that has received the periodic signal from the sensor device 30 acquires the sensor ID from the reception data obtained by demodulating the received signal, and provides the sensor ID to the sensor position determination unit 23.
  • the sensor position determination unit 23 refers to the sensor position information 12b of the storage unit 12 based on the given sensor ID, and which position of the vehicle 1 the received signal is from the sensor device 30 mounted on. Determine. In this case, the sensor position determination unit 23 may determine the position on the assumption that the wheel 3 of the vehicle 1 has not been replaced.
  • FIG. 7 is a block diagram showing a configuration of the sensor device 30 according to the present embodiment.
  • the sensor device 30 includes a control unit (processor) 31, a storage unit (storage) 32, an air pressure detection unit 33, a wireless reception unit (transceiver) 34, a wireless transmission unit (transceiver) 35, and the like.
  • the control unit 31 is configured using, for example, a CPU or a microcomputer (microcomputer), and controls the operation of each unit of the sensor device 30.
  • the sensor device 30 includes a battery, and each part of the sensor device 30 operates by electric power supplied from the battery.
  • the storage unit 32 is configured using a non-volatile memory element such as a mask ROM (Read Only Memory) or an EEPROM.
  • the storage unit 32 stores a sensor ID 32 a assigned to the sensor device 30.
  • the sensor ID of each sensor device 30 is set so as not to overlap at least for the four sensor devices 30 mounted on the vehicle 1.
  • the sensor ID 32a of the storage unit 32 may be stored, for example, in the manufacturing process of the sensor device 30, may be stored in the manufacturing process of the vehicle 1, or may be stored in a place other than these.
  • the air pressure detecting unit 33 detects the air pressure of the tire by detecting, for example, a change amount corresponding to the air pressure of a diaphragm provided in the tire with a sensor.
  • the air pressure detection unit 33 outputs an electrical signal corresponding to the tire air pressure.
  • the control unit 31 can sample and acquire the electrical signal output from the air pressure detection unit 33, and can use the acquired value as information related to the tire pressure detection result.
  • the radio reception unit 34 is connected to a reception antenna 34a.
  • the radio reception unit 34 receives the LF band radio signal transmitted from the monitoring device 10 by the reception antenna 34 a, and gives the reception data obtained by demodulating the received signal to the control unit 31.
  • the wireless transmission unit 35 is connected to a transmission antenna 35a.
  • the wireless transmission unit 35 transmits a UHF band wireless signal by outputting, to the transmission antenna 35a, an electric signal obtained by modulating transmission data provided from the control unit 31.
  • control unit 31 of the sensor device 30 is provided with functional blocks such as a request signal receiving unit 41, an identification information acquiring unit 42, a response signal transmitting unit 43, and the like.
  • the request signal receiving unit 41 confirms whether or not a request signal is received from the monitoring device 10 by operating the wireless receiving unit 34 at a predetermined cycle.
  • the request signal reception unit 41 acquires the received data related to the request signal transmitted by the monitoring device 10 by acquiring data provided from the wireless reception unit 34.
  • four sensor devices 30 are mounted on the vehicle 1, the timing for confirming whether or not the request signal is received from the monitoring device 10 is asynchronous in the four sensor devices 30, and the period for confirming whether or not the signal is received. Are the same.
  • the identification information acquisition unit 42 extracts and acquires individual data included in the reception data acquired by the request signal reception unit 41.
  • the response signal transmission unit 43 acquires the tire air pressure detection result by the air pressure detection unit 33 when the request signal reception unit 41 acquires the reception data related to the request signal from the monitoring device 10.
  • the response signal transmission unit 43 generates transmission data including the acquired tire pressure detection result, the individual data acquired by the identification information acquisition unit 42, and the sensor ID 32 a stored in the storage unit 32.
  • the response signal transmission unit 43 sends the generated transmission data to the wireless transmission unit 35, thereby transmitting this transmission data to the monitoring device 10 as a response signal.
  • the sensor device 30 transmits a response signal three times in response to receiving a request signal once.
  • the transmission interval of the three response signals is a random time, which is realized by using the random number generation function and the timer function of the control unit 31.
  • the response signal transmission unit 43 transmits a first response signal, waits for a random time, transmits a second response signal, waits for a random time, and transmits a third response signal.
  • the contents of the three response signals are the same.
  • the two random waiting times are different.
  • the response signal transmission unit 43 determines the standby time by the random number generation function every time the standby is required, and counts the determined standby time by the timer function.
  • the sensor device 30 even when the sensor device 30 does not receive the request signal from the monitoring device 10, the sensor device 30 periodically transmits the tire air pressure detection result to the monitoring device 10.
  • the control unit 31 of the sensor device 30 acquires the tire air pressure detection result by the air pressure detection unit 33 at a predetermined cycle.
  • the control unit 31 generates transmission data including the acquired tire pressure detection result and the sensor ID 32a stored in the storage unit 32 and supplies the transmission data to the wireless transmission unit 35, whereby the periodic tire pressure for the monitoring device 10 is obtained. Notification of.
  • FIG. 8 is a schematic diagram for explaining times related to transmission of request signals from the monitoring device 10 to the four sensor devices 30.
  • FIG. 8 is a timing chart showing how the request signal and the response signal are transmitted and received.
  • the transmission timing of the request signal from the transmission antennas 51 to 53 is shown on the upper side, and the request by the four sensor devices 30 is shown on the lower side.
  • the signal reception timing is shown.
  • the monitoring device 10 transmits a request signal to the sensor device 30.
  • the monitoring device 10 transmits request signals to the four sensor devices 30 simultaneously by transmitting request signals from the three transmission antennas 51 to 53 simultaneously.
  • the monitoring apparatus 10 performs simultaneous transmission of request signals from the three transmission antennas 51 to 53 over a predetermined time T1. At this time, the monitoring apparatus 10 repeats a request signal including a command for requesting transmission of information related to tire pressure and individual data corresponding to the antenna ID of the transmission antenna 5 used for transmission during a predetermined time T1. To send.
  • the predetermined time T1 is set to several hundred milliseconds to several seconds.
  • the request signal transmitted simultaneously from the three transmission antennas 51 to 53 by the monitoring device 10 is received by the sensor device 30 of each wheel 3.
  • Each sensor device 30 repeatedly receives the request signal from the monitoring device 10 by the wireless reception unit 34 at a predetermined cycle T2. That is, each sensor device 30 confirms the presence or absence of a request signal from the monitoring device 10 at a frequency of once every time the predetermined period T2 elapses.
  • the predetermined period T2 of the reception timing by the sensor device 30 is set to substantially the same time as the predetermined time T1 when the monitoring device 10 transmits the request signal. That is, T2 ⁇ T1. Furthermore, it is preferable that the predetermined period T2 is not more than the predetermined time T1. That is, it is preferable that T2 ⁇ T1.
  • the reception timings of the request signals by the four sensor devices 30 are not synchronized and are performed at each timing. However, this is such that the reception timings of the four sensor devices 30 do not need to be intentionally synchronized, and the reception timings of the four sensor devices 30 do not need to be intentionally different.
  • the period T2 at which each sensor device 30 receives the request signal is several hundred milliseconds to several seconds, and the time required for one reception is about several milliseconds, so the reception timing of the four sensor devices 30 is intentionally set. Unless synchronized, it is expected that the reception timings of the four sensor devices 30 will naturally shift. Even if the reception timings of the plurality of sensor devices 30 coincide, there is no problem in receiving the request signal by each sensor device 30.
  • FIG. 9 is a schematic diagram for explaining a time related to transmission of a response signal from the sensor device 30 to the monitoring device 10.
  • FIG. 9 shows a timing chart in which the horizontal axis represents time t.
  • the upper side shows the transmission timing of the request signal by the monitoring device 10
  • the central portion shows the reception timing of the request signal by the sensor device 30, and the lower side.
  • the transmission timing of the response signal by the sensor device 30 is shown in FIG.
  • each sensor device 30 transmits a response signal three times at random intervals.
  • the predetermined time T3 for the sensor device 30 to transmit one response signal is a time sufficiently shorter than the predetermined time T1 for the monitoring device 10 to transmit the request signal. That is, T3 ⁇ T1.
  • the predetermined time T3 for transmitting the response signal is set to, for example, several milliseconds to several tens of milliseconds.
  • the time from the start of transmission of the first response signal to the completion of transmission of the third response signal is preferably shorter than the predetermined time T1. In this way, even if there is an overlap in the transmission of any one response signal by the sensor device 30 transmitting the response signal three times at random intervals, another two responses Signal transmission can be expected to be performed without duplication.
  • FIG. 10 and FIG. 11 are flowcharts showing a procedure of communication processing performed by the monitoring apparatus 10 according to the present embodiment.
  • the processing unit 11 of the monitoring device 10 according to the present embodiment determines whether or not the ignition switch of the vehicle 1 has been switched from the off state to the on state (step S11). When the ignition switch is not switched from the off state to the on state (S11: NO), the processing unit 11 waits until the ignition switch is switched from the off state to the on state. When the ignition switch is switched from the off state to the on state (S11: YES), the request signal transmission unit 21 of the processing unit 11 includes individual data for each of the transmission antennas 51 to 53 from the three transmission antennas 51 to 53. The request signal is transmitted over a predetermined time T1 (step S12).
  • the response signal receiving unit 22 of the processing unit 11 determines whether or not the response signal from any of the sensor devices 30 is received by the wireless receiving unit 15 (step S13). When the response signal is not received (S13: NO), the response signal receiving unit 22 waits until the response signal is received. When the response signal is received (S13: YES), the response signal receiving unit 22 temporarily stores the received response signal in a memory such as a buffer (step S14). The response signal receiving unit 22 determines whether or not reception of response signals from all of the four sensor devices 30 has been completed (step S15). If reception of all response signals has not been completed (S15: NO), the response signal receiving unit 22 returns the process to step S13.
  • the sensor position determination unit 23 of the processing unit 11 acquires a combination of individual data and sensor ID included in the response signal accumulated in a memory such as a buffer (Ste S16). Next, the sensor position determination unit 23 refers to the sensor position information 12b stored in the storage unit 12 (step S17). The sensor position determination unit 23 determines whether or not the combination of the individual data and sensor ID acquired from the response signal matches the combination of the individual data and sensor ID stored in the sensor position information 12b (step S18). . If the two combinations match (S18: YES), the sensor position determination unit 23 proceeds to step S22.
  • the sensor position determination unit 23 performs reconfirmation processing (step S19).
  • the reconfirmation process is a process of performing again from transmission of a request signal to each sensor device 30 to reception of a response signal, and again acquiring a combination of individual data and sensor ID included in the response signal.
  • the sensor position determination unit 23 determines whether or not the combination of the individual data and sensor ID acquired in the reconfirmation process matches the combination of the individual data and sensor ID stored in the sensor position information 12b of the storage unit 12. Determination is made (step S20). If the two combinations match (S20: YES), the sensor position determination unit 23 proceeds to step S22.
  • the sensor position determination unit 23 updates the sensor position information 12b by storing the combination of the individual data and the sensor ID newly acquired from the response signal in the sensor position information 12b. (Step S21), the process proceeds to Step S22.
  • the processing unit 11 acquires the tire air pressure detection result included in the response signal stored in a memory such as a buffer for the four wheels 3 of the vehicle 1 (step S22).
  • the processing unit 11 determines whether or not there is an abnormality in the tire air pressure by comparing the acquired tire air pressure detection result with a threshold value stored in advance (step S23).
  • the sensor position determination unit 23 of the processing unit 11 acquires the individual code and sensor ID included in the response signal together with the tire pressure detection result determined to be abnormal.
  • the position of the wheel 3 having an abnormality is determined by referring to the sensor position information 12b stored in the storage unit 12 (step S24).
  • the processing unit 11 transmits a command for notification to the notification device 8 through the wired communication unit 13, thereby indicating the position of the wheel 3 and notifying the driver that there is an abnormality in the tire pressure (step S25). The process is terminated. When there is no abnormality in the tire pressure (S23: NO), the processing unit 11 ends the process without performing notification.
  • FIG. 12 is a flowchart showing a communication process performed by the sensor device 30 according to the present embodiment.
  • the control unit 31 of the sensor device 30 according to the present embodiment measures the predetermined period T2 by the timer function, and determines whether or not the timing for confirming whether or not a radio signal is received has been reached (step S31).
  • the control unit 31 stands by until the predetermined period T2 has elapsed and the reception timing is reached.
  • the request signal receiving unit 41 of the control unit 31 performs a radio signal reception process in the radio receiving unit 34 (step S32).
  • the request signal receiver 41 determines whether or not the wireless receiver 34 has received a request signal from the monitoring device 10 (step S33).
  • the request signal receiving unit 41 returns the process to step S31.
  • the identification information acquisition unit 42 of the control unit 31 acquires the individual data included in the received request signal (step S34).
  • the response signal transmission unit 43 of the control unit 31 acquires a tire air pressure detection result by the air pressure detection unit 33 (step S35).
  • the response signal transmission part 43 acquires sensor ID32a memorize
  • the response signal transmission unit 43 transmits a response signal including the tire air pressure detection result acquired in step S35, the individual code acquired in step S34, and the sensor ID acquired in step S36 to the wireless transmission unit 35.
  • the response signal transmission unit 43 determines a standby time according to the random number generated by the random number generation function, and waits for a random time by counting the determined standby time by the timer function. (Step S38). After waiting for the random time, the response signal transmission unit 43 transmits the response signal having the same content in the wireless transmission unit 35 (step S39). After completing the transmission of the response signal, the response signal transmission unit 43 waits for the determined random time again (step S40). After waiting for the random time, the response signal transmission unit 43 transmits the response signal having the same content in the wireless transmission unit 35 (step S41), and ends the response signal transmission process.
  • FIG. 13 is a flowchart illustrating a procedure of a cycle notification signal transmission process performed by the sensor device 30 according to the present embodiment.
  • the sensor device 30 according to the present embodiment performs a process of transmitting a cycle notification signal for notifying a tire air pressure detection result to the monitoring device 10 at a predetermined cycle.
  • the control unit 31 of the sensor device 30 determines whether or not the predetermined period has passed and the timing for transmitting the tire air pressure detection result has been reached (step S51). If it is determined that the transmission timing has not been reached (S51: NO), the control unit 31 waits until the transmission timing is reached.
  • the control unit 31 acquires the detection result of the tire air pressure by the air pressure detection unit 33 (step S52). Moreover, the control part 31 acquires sensor ID32a memorize
  • FIG. 14 is a flowchart showing a procedure of a period notification signal reception process performed by the monitoring apparatus 10 according to the present embodiment.
  • the processing unit 11 of the monitoring apparatus 10 according to the present embodiment determines whether the wireless reception unit 15 has received a period notification signal from any of the sensor devices 30 (step S61). When the period notification signal has not been received (S61: NO), the processing unit 11 stands by until the period notification signal is received.
  • the processing unit 11 acquires the sensor ID included in the received periodic notification signal (step S62).
  • the processing unit 11 refers to the sensor position information 12b stored in the storage unit 12 (step S63).
  • the processing unit 11 acquires the position stored in the sensor position information 12b in association with the sensor ID acquired in step S62, so that the wheel on which the sensor device 30 that is the transmission source of the received periodic notification signal is mounted. 3 is determined (step S64).
  • the processing unit 11 acquires a tire air pressure detection result included in the received cycle notification signal (step S65).
  • the processing unit 11 determines whether or not there is an abnormality in the tire pressure by comparing the acquired tire pressure detection result with a threshold value stored in advance (step S66).
  • the processing unit 11 indicates the position of the wheel 3 by transmitting a command for notification to the notification device 8 through the wired communication unit 13, and the tire pressure is abnormal.
  • the driver is notified of this (step S67), and the process is terminated.
  • the processing unit 11 ends the process without performing notification.
  • the monitoring device 10 is provided on the vehicle body of the vehicle 1, and the sensor device 30 is provided on each of the four wheels 3 of the vehicle 1.
  • Three transmission antennas 51 to 53 are spaced apart from each other on the vehicle body, and the monitoring device 10 transmits radio signals to the four sensor devices 30 using the transmission antennas 51 to 53.
  • the vehicle body is provided with a common receiving antenna 6 for the four sensor devices 30, and the monitoring device 10 receives a radio signal from the sensor device 30 using the receiving antenna 6.
  • the monitoring apparatus 10 generates transmission data including individual data for each of the transmission antennas 51 to 53, and simultaneously transmits request signals obtained by modulating the transmission data from the three transmission antennas 51 to 53.
  • request signals including different individual data from the three transmission antennas 51 to 53
  • the three request signals are appropriately superimposed and received by the sensor device 30.
  • the waveform when the superimposed request signal is received by each sensor device 30 changes according to the distance and position of the sensor device 30 with respect to the three transmission antennas 51 to 53.
  • the sensor device 30 receives the superimposed request signal, acquires individual data included in the received request signal, and transmits a response signal including the acquired individual data to the monitoring device 10.
  • the monitoring device 10 receives the response signal from the sensor device 30 and acquires individual data included in the received response signal.
  • the individual data included in the response signal received by the monitoring device 10 is obtained by superimposing one or a plurality of individual data. Therefore, the monitoring device 10 can determine which of the four wheels 3 the sensor device 30 that is the transmission source of the response signal is mounted on the basis of the individual data included in the response signal. .
  • the monitoring device 10 can transmit request signals to the four sensor devices 30 at the same time, for example, compared with a configuration in which wireless communication is sequentially performed with the four sensor devices 30, for example.
  • the time required for wireless communication can be reduced.
  • the monitoring device 10 modulates transmission data including individual data by the ASK modulation method to generate a request signal.
  • the ASK modulation method is a method of modulating each bit included in digital data to an amplitude corresponding to a value of 0/1, and the amplitude changes when a plurality of signals having different values are superimposed.
  • the amplitude of the request signal received by each sensor device 30 is determined with an appropriate threshold, the individual data acquired from the request signal changes depending on the presence / absence of superimposition, the number of superimposed signals, and the like. Therefore, the position of each sensor device 30 can be determined based on the individual data included in the request signal received by each sensor device 30.
  • the vehicle 1 is provided with wheels 3 at four locations on the right front, right rear, left front and left rear of the vehicle body.
  • the vehicle body of the vehicle 1 includes a transmission antenna 51 provided close to the right side, a transmission antenna 52 provided close to the left side, and a transmission antenna 53 provided close to the rear side.
  • the sensor device 30 provided on the right wheel 3 receives a radio signal from the right transmission antenna 51
  • the sensor device 30 provided on the left wheel 3 receives the radio signal from the left transmission antenna 52.
  • a signal is received, and it can be expected that the sensor device 30 provided on the rear wheel 3 receives a radio signal from the rear transmission antenna 53. Thereby, it can be expected that each sensor device 30 receives radio signals from one or two transmission antennas 51 to 53.
  • the transmission range 51a of the request signal transmitted from the right transmission antenna 51 includes the right front and right rear wheels 3 and does not include the left front and left rear wheels 3.
  • the transmission range 52a of the request signal transmitted from the left transmission antenna 52 includes the left front and left rear wheels 3 and does not include the right front and right rear wheels 3.
  • the transmission range 53a of the request signal transmitted from the rear transmission antenna 53 includes the right rear and left rear wheels 3, and does not include the right front and left front wheels 3. Accordingly, the sensor device 30 provided on the right front wheel 3 receives the request signal from the right transmitting antenna 51.
  • the sensor device 30 provided on the left front wheel 3 receives a request signal from the left transmission antenna 52.
  • the sensor device 30 provided on the right rear wheel 3 receives a signal in which a request signal from the right transmission antenna 51 and a request signal from the rear transmission antenna 53 are superimposed.
  • the sensor device 30 provided on the left rear wheel receives a signal in which a request signal from the left transmission antenna 52 and a request signal from the rear transmission antenna 53 are superimposed. Therefore, the request signals received by the four sensor devices 30 can be different from each other.
  • the four sensor devices 30 provided on the wheels 3 of the vehicle 1 receive request signals from the monitoring device 10 at different timings. Thereby, the transmission timing of the response signal of each sensor device 30 according to reception of the request signal can be set to a different timing, and the transmission of the response signal by the four sensor devices 30 can be avoided.
  • the sensor device 30 transmits a response signal three times at random intervals. Thereby, for example, even when transmission of response signals by a plurality of sensor devices 30 overlaps, it is expected that the subsequent transmission of response signals is performed at different timings. The possibility of receiving a response signal from is increased.
  • the sensor ID attached to the sensor device 30 is transmitted together with the individual data included in the request signal received by the sensor device 30.
  • the monitoring device 10 determines the sensor device 30 that is the transmission source of the response signal based on the individual code and the sensor ID included in the response signal from the sensor device 30. Based on the individual code and sensor ID included in the received response signal, for example, the monitoring device 10 stores the correspondence between the individual code and sensor ID and the mounting position of each sensor ID as the sensor position information 12b. It can be determined on which wheel 3 of the vehicle 1 the sensor device 30 of the transmission source is provided.
  • a radio signal in the LF band is transmitted from the monitoring device 10 to the sensor device 30 and a radio signal in the UHF band or the RF band is transmitted from the sensor device 30 to the monitoring device 10.
  • the frequency band for wireless communication may be set as appropriate.
  • the monitoring apparatus 10 is configured to perform modulation using the ASK modulation method, the present invention is not limited thereto, and may be configured to perform modulation using a modulation method other than the ASK modulation method. Further, any modulation method may be adopted for transmission of a radio signal from the sensor device 30 to the monitoring device 10.
  • the vehicle 1 having four wheels 3 has been described as an example. However, the present technology may be applied to a vehicle 1 having three or less or five or more wheels 3.
  • the three transmission antennas 51 to 53 provided in the in-vehicle communication system 100 according to the present embodiment are not only used for processing as the tire pressure monitoring system as described above, but also, for example, wirelessly with a portable key possessed by the user. It is used for a door lock control system that controls locking / unlocking of the door of the vehicle 1 according to communication.
  • FIG. 15 is a schematic diagram for explaining sharing of transmission antennas 51 to 53 according to the present embodiment.
  • the vehicle 1 includes a door lock control system 101 that controls locking / unlocking of the door of the vehicle 1 together with the above-described in-vehicle communication system 100.
  • the door lock control system 101 includes a lock control device 90 and a lock mechanism 91.
  • the lock control device 90 performs wireless communication with the portable key 92 possessed by the user using the three transmission antennas 51 to 53 and one reception antenna 6.
  • the lock control device 90 outputs a command for locking / unlocking the door to the lock mechanism 91 when wireless communication is established with the regular portable key 92.
  • the lock mechanism 91 locks / unlocks the door by operating an actuator or the like provided on each door of the vehicle 1 in accordance with a command given from the lock control device 90.
  • the in-vehicle communication system 100 and the door lock control system 101 share the three transmission antennas 51 to 53, the number of antennas mounted on the vehicle 1 can be reduced.
  • antennas for transmitting radio signals in the LF band used for door lock control systems are often provided on the right side, left side, and rear side of a vehicle, so that the above-described in-vehicle communication system 100 transmits a request signal. Sharing with the other transmission antennas 51 to 53 is preferable.
  • the in-vehicle communication system 100 and the door lock control system 101 share the transmission antennas 51 to 53, the transmission antennas 51 to 53 cannot be used simultaneously in both systems. It is necessary to switch the system using ⁇ 53.
  • the door lock control system 101 uses the transmission antennas 51 to 53, and when the ignition switch is on, the in-vehicle communication system 100 uses the transmission antennas 51 to 53. It can be configured. However, the switching condition is not limited to the state of the ignition switch, and may be various other conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

The present invention provides an in-vehicle communication device, an in-vehicle communication system, a communication program, and a communication method that can be expected to reduce the time required for communication between a communication device provided in a vehicle body and a plurality of communication devices provided in a plurality of wheels. An in-vehicle communication device according to the present embodiment: generates a request signal by modulating transmission data including identification information defined for respective transmission antennas; simultaneously transmits, from each transmission antenna, the request signal generated for each transmission antenna; receives, by using a reception antenna, a response signal transmitted by a wheel-side communication device that received the transmitted request signal, the response signal including the identification information included in the request signal; and on the basis of the identification information included in reception data obtained by demodulating the received response signal, determines which of a plurality of wheels is provided with the wheel-side communication device that transmitted the response signal.

Description

車載通信装置、車載通信システム、通信プログラム及び通信方法In-vehicle communication device, in-vehicle communication system, communication program, and communication method
 本発明は、車両の車体に設けられた通信装置と、車両の各車輪に設けられた複数の通信装置とが無線通信を行う車載通信装置、車載通信システム、通信プログラム及び通信方法に関する。 The present invention relates to an in-vehicle communication device, an in-vehicle communication system, a communication program, and a communication method in which a communication device provided in a vehicle body and a plurality of communication devices provided in each wheel of the vehicle perform wireless communication.
 車両に設けられたタイヤの空気圧を検出し、検出した空気圧に異常があった場合、使用者に警告等を発するタイヤ空気圧監視システム(TPMS : Tire Pressure Monitoring System)がある。タイヤ空気圧監視システムでは、車体に設けられた監視ユニットがLF(Low Frequency)帯の電波を用いて要求信号を送信し、車輪に設けられたセンサユニットが要求信号の受信に応じてタイヤの空気圧の検知結果を含む応答信号をRF(Radio Frequency)帯又はUHF(Ultra High Frequency)帯の電波を用いて送信する。監視ユニットは、各センサユニットからの応答信号を受信して、車両の各タイヤの空気圧を監視する。 There is a tire pressure monitoring system (TPMS: Tire Pressure Monitoring System) that detects the air pressure of the tires installed in the vehicle and issues a warning to the user if the detected air pressure is abnormal. In the tire pressure monitoring system, the monitoring unit provided on the vehicle body transmits a request signal using radio waves in the LF (Low Frequency) band, and the sensor unit provided on the wheel detects the tire pressure in response to receiving the request signal. A response signal including the detection result is transmitted using radio waves in an RF (Radio Frequency) band or an UHF (Ultra High Frequency) band. The monitoring unit receives a response signal from each sensor unit and monitors the air pressure of each tire of the vehicle.
 特許文献1においては、各タイヤの近傍に送信用コイルアンテナを設けて、磁界を媒体として送信用コイルアンテナから対応するセンサユニットのみへ要求信号を送信する構成とすることにより、各センサユニットが装着されたタイヤ位置と関連付けて各センサユニットのIDコードが登録されていなくても、各センサユニットが装着されたタイヤ位置を判別することができるタイヤ空気圧監視システムが提案されている。 In Patent Document 1, a transmission coil antenna is provided in the vicinity of each tire, and a request signal is transmitted from the transmission coil antenna only to the corresponding sensor unit using a magnetic field as a medium, so that each sensor unit is mounted. There has been proposed a tire pressure monitoring system that can determine the position of a tire on which each sensor unit is mounted even if the ID code of each sensor unit is not registered in association with the tire position.
特開2004-161245号公報JP 2004-161245 A
 タイヤ空気圧監視システムでは、例えば車両が4つのタイヤを備える構成であれば、監視ユニットが4つのセンサユニットとの間で要求信号の送信及び応答信号の受信を行う必要がある。監視ユニットは、4つのセンサユニットとの通信を同時的に行うことはできず、4つのセンサユニットと順番に通信を行う。このため、監視ユニットが4つのセンサユニットとの通信を終えるまでに長い時間を要する。この通信時間が長いほど、例えば車両のエンジン始動時に通信を行う構成の場合、通信を終える前に運転手が車両の走行を開始してしまい、タイヤの空気圧に関する警告が間に合わない可能性がある。 In the tire pressure monitoring system, for example, if the vehicle is configured to include four tires, the monitoring unit needs to transmit a request signal and receive a response signal with the four sensor units. The monitoring unit cannot communicate with the four sensor units simultaneously, but communicates with the four sensor units in order. For this reason, it takes a long time for the monitoring unit to finish communication with the four sensor units. The longer the communication time is, for example, in the case of a configuration in which communication is performed when the engine of the vehicle is started, the driver may start running the vehicle before the communication ends, and there is a possibility that a warning regarding tire air pressure will not be in time.
 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、車体に設けられた通信装置と、複数の車輪に設けられた複数の通信装置との間の通信に要する時間を低減することが期待できる車載通信装置、車載通信システム、通信プログラム及び通信方法を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is communication between a communication device provided on a vehicle body and a plurality of communication devices provided on a plurality of wheels. An object is to provide an in-vehicle communication device, an in-vehicle communication system, a communication program, and a communication method that can be expected to reduce the time required.
 本態様に係る車載通信装置は、車両に離隔して配置された複数の送信用アンテナ、及び、前記車両に設けられた受信用アンテナを用いて、前記車両の複数の車輪にそれぞれ設けられた複数の車輪側通信装置との間で無線通信を行う車載通信装置において、前記送信用アンテナ毎に定められた識別情報を含む送信データを変調することで要求信号を生成する生成部と、前記生成部が生成した前記送信用アンテナ毎の要求信号を、各送信用アンテナから同時に送信する要求信号送信部と、前記要求信号送信部が送信した前記要求信号を受信した前記車輪側通信装置が前記要求信号に含まれる識別情報を含めて送信する応答信号を、前記受信用アンテナを用いて受信する応答信号受信部と、前記応答信号受信部が受信した応答信号を復調する復調部と、前記復調部が復調した受信データに含まれる識別情報に基づいて、前記応答信号の送信元の前記車輪側通信装置が前記複数の車輪のいずれに搭載されているかを判定する判定部とを備える。 The in-vehicle communication device according to the present aspect includes a plurality of transmission antennas that are spaced apart from a vehicle and a plurality of transmission antennas that are provided on a plurality of wheels of the vehicle using reception antennas that are provided on the vehicle. In the in-vehicle communication device that performs wireless communication with the wheel side communication device, a generation unit that generates a request signal by modulating transmission data including identification information determined for each of the transmission antennas, and the generation unit The request signal transmitting unit that transmits the request signal for each of the transmitting antennas generated from the transmitting antenna simultaneously, and the wheel side communication device that has received the request signal transmitted by the request signal transmitting unit is the request signal. A response signal to be transmitted using the reception antenna, and a demodulator that demodulates the response signal received by the response signal receiver. And a determination unit that determines on which of the plurality of wheels the wheel side communication device that is the transmission source of the response signal is mounted based on identification information included in the reception data demodulated by the demodulation unit. Prepare.
 本態様に係る車載通信システムは、車両の複数の車輪にそれぞれ設けられた複数の車輪側通信装置と、前記車両に離隔して配置された複数の送信用アンテナ、及び、前記車両に設けられた受信用アンテナを用いて、前記複数の車輪側通信装置との間で無線通信を行う車体側通信装置とを備え、前記車体側通信装置は、前記送信用アンテナ毎に定められた識別情報を含む送信データを変調することで要求信号を生成する生成部と、前記生成部が生成した前記送信用アンテナ毎の要求信号を、各送信用アンテナから同時に送信する要求信号送信部とを有し、前記車輪側通信装置は、前記複数の送信用アンテナから同時に送信されて重畳された前記要求信号を受信する要求信号受信部と、前記要求信号受信部が受信した要求信号に含まれる識別情報を取得する識別情報取得部と、前記識別情報取得部が取得した識別情報を含む応答信号を送信する応答信号送信部とを有し、前記車体側通信装置は、更に、前記車輪側通信装置が送信した応答信号を、前記受信用アンテナを用いて受信する応答信号受信部と、前記応答信号受信部が受信した応答信号を復調する復調部と、前記復調部が復調した受信データに含まれる識別情報に基づいて、前記応答信号の送信元の前記車輪側通信装置が前記複数の車輪のいずれに搭載されているかを判定する判定部とを有する。 The in-vehicle communication system according to the present aspect is provided with a plurality of wheel side communication devices respectively provided on a plurality of wheels of a vehicle, a plurality of transmission antennas arranged separately from the vehicle, and the vehicle. A vehicle body side communication device that performs wireless communication with the plurality of wheel side communication devices using a reception antenna, and the vehicle body side communication device includes identification information defined for each of the transmission antennas. A generation unit that generates a request signal by modulating transmission data, and a request signal transmission unit that simultaneously transmits the request signal for each of the transmission antennas generated by the generation unit from each transmission antenna, The wheel-side communication device includes a request signal receiving unit that receives the request signal that is simultaneously transmitted and superimposed from the plurality of transmitting antennas, and identification information included in the request signal received by the request signal receiving unit. And a response signal transmission unit that transmits a response signal including the identification information acquired by the identification information acquisition unit, the vehicle body side communication device further includes the wheel side communication device. A response signal receiving unit that receives the transmitted response signal using the receiving antenna, a demodulating unit that demodulates the response signal received by the response signal receiving unit, and an identification included in the reception data demodulated by the demodulating unit And a determination unit that determines which of the plurality of wheels is equipped with the wheel-side communication device that is the transmission source of the response signal based on the information.
 本態様に係る通信プログラムは、車両に離隔して配置された複数の送信用アンテナ、及び、前記車両に設けられた受信用アンテナを用いて、前記車両の複数の車輪にそれぞれ設けられた複数の車輪側通信装置との間で無線通信を行う車載通信装置に、前記送信用アンテナ毎に定められた識別情報を含む送信データを変調することで要求信号を生成し、生成した前記送信用アンテナ毎の要求信号を、各送信用アンテナから同時に送信し、前記要求信号を受信した前記車輪側通信装置が前記要求信号に含まれる識別情報を含めて送信する応答信号を、前記受信用アンテナを用いて受信し、受信した応答信号を復調し、復調した受信データに含まれる識別情報に基づいて、前記応答信号の送信元の前記車輪側通信装置が前記複数の車輪のいずれに搭載されているかを判定する処理を実行させる。 The communication program according to this aspect includes a plurality of transmission antennas arranged separately from the vehicle, and a plurality of reception antennas provided on the vehicle, and a plurality of transmission antennas provided respectively on the plurality of wheels of the vehicle. A request signal is generated by modulating transmission data including identification information defined for each of the transmission antennas to the in-vehicle communication device that performs wireless communication with the wheel side communication device, and the generated transmission antennas The request signal is transmitted simultaneously from each transmitting antenna, and the response signal transmitted by the wheel side communication device including the identification information included in the request signal is received using the receiving antenna. Receiving, demodulating the received response signal, and based on the identification information included in the demodulated reception data, the wheel side communication device of the response signal is sent to any of the plurality of wheels. To execute a process of determining whether it is loading.
 本態様に係る通信方法は、車両の複数の車輪にそれぞれ設けられた複数の車輪側通信装置と、前記車両の車体に搭載された車体側通信装置とが、前記車体に離隔して配置された複数の送信用アンテナ、及び、前記車両に設けられた受信用アンテナを用いて無線通信を行う通信方法において、前記車体側通信装置が、前記送信用アンテナ毎に定められた識別情報を含む送信データを変調することで要求信号を生成し、前記車体側通信装置が、生成した前記送信用アンテナ毎の要求信号を、各送信用アンテナから同時に送信し、前記車輪側通信装置が、前記複数の送信用アンテナから同時に送信されて重畳された前記要求信号を受信し、前記車輪側通信装置が、受信した要求信号に含まれる識別情報を取得し、前記車輪側通信装置が、取得した識別情報を含む応答信号を送信し、前記車体側通信装置が、前記車輪側通信装置が送信した応答信号を、前記受信用アンテナを用いて受信し、前記車体側通信装置が、受信した応答信号を復調し、復調した受信データに含まれる識別情報に基づいて、前記応答信号の送信元の前記車輪側通信装置が前記複数の車輪のいずれに搭載されているかを判定する。 In the communication method according to this aspect, a plurality of wheel side communication devices respectively provided on a plurality of wheels of a vehicle and a vehicle body side communication device mounted on a vehicle body of the vehicle are arranged separately from the vehicle body. In a communication method for performing wireless communication using a plurality of transmission antennas and a reception antenna provided in the vehicle, the vehicle body side communication device includes transmission data including identification information defined for each of the transmission antennas. The vehicle body side communication device transmits the generated request signal for each transmission antenna simultaneously from each transmission antenna, and the wheel side communication device transmits the plurality of transmission signals. The request signal transmitted and superimposed simultaneously from the trust antenna is received, the wheel side communication device acquires the identification information included in the received request signal, and the wheel side communication device acquires A response signal including other information is transmitted, the vehicle body side communication device receives the response signal transmitted by the wheel side communication device using the reception antenna, and the vehicle body side communication device receives the response signal. And determining which of the plurality of wheels the wheel-side communication device that is the transmission source of the response signal is mounted on the basis of the identification information included in the demodulated reception data.
 なお、本願は、このような特徴的な処理部を備える車載通信装置として実現することができるだけでなく、かかる特徴的な処理をステップとする通信方法として実現したり、かかるステップをコンピュータに実行させるための通信プログラムとして実現したりすることができる。また、車載通信装置の一部又は全部を実現する半導体集積回路として実現したり、車載通信装置を含むその他の装置又はシステムとして実現したりすることができる。 The present application can be realized not only as an in-vehicle communication device including such a characteristic processing unit, but also as a communication method using such characteristic processing as a step, or causing a computer to execute such a step. Can be realized as a communication program. Further, it can be realized as a semiconductor integrated circuit that realizes part or all of the in-vehicle communication device, or can be realized as another device or system including the in-vehicle communication device.
 上記によれば、車体に設けられた通信装置と、複数の車輪に設けられた複数の通信装置との間の通信に要する時間を低減することが期待できる。 According to the above, it can be expected that the time required for communication between the communication device provided on the vehicle body and the plurality of communication devices provided on the plurality of wheels is reduced.
本実施の形態に係る車載通信システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the vehicle-mounted communication system which concerns on this Embodiment. ASK変調方式の一例を示す模式図である。It is a schematic diagram which shows an example of an ASK modulation system. 要求信号のデータ構成の一例を示す模式図である。It is a schematic diagram which shows an example of the data structure of a request signal. 個別データに相当する応答信号の重畳を説明するための模式図である。It is a schematic diagram for demonstrating the superimposition of the response signal corresponded to individual data. 本実施の形態に係る監視装置の構成を示すブロック図である。It is a block diagram which shows the structure of the monitoring apparatus which concerns on this Embodiment. センサ位置情報の一例を示す模式図である。It is a schematic diagram which shows an example of sensor position information. 本実施の形態に係るセンサ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the sensor apparatus which concerns on this Embodiment. 監視装置から4つのセンサ装置への要求信号の送信に係る時間を説明するための模式図である。It is a schematic diagram for demonstrating the time concerning transmission of the request signal from a monitoring apparatus to four sensor apparatuses. センサ装置から監視装置への応答信号の送信に係る時間を説明するための模式図である。It is a schematic diagram for demonstrating the time concerning transmission of the response signal from a sensor apparatus to the monitoring apparatus. 本実施の形態に係る監視装置が行う通信処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the communication process which the monitoring apparatus which concerns on this Embodiment performs. 本実施の形態に係る監視装置が行う通信処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the communication process which the monitoring apparatus which concerns on this Embodiment performs. 本実施の形態に係るセンサ装置が行う通信処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the communication process which the sensor apparatus which concerns on this Embodiment performs. 本実施の形態に係るセンサ装置が行う周期通知信号の送信処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the transmission process of the period notification signal which the sensor apparatus which concerns on this Embodiment performs. 本実施の形態に係る監視装置が行う周期通知信号の受信処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the reception process of the period notification signal which the monitoring apparatus which concerns on this Embodiment performs. 本実施の形態に係る送信アンテナの共有を説明するための模式図である。It is a schematic diagram for demonstrating sharing of the transmission antenna which concerns on this Embodiment.
[本発明の実施の形態の説明]
 最初に本発明の実施態様を列記して説明する。また、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described. Moreover, you may combine arbitrarily at least one part of embodiment described below.
(1)本態様に係る車載通信装置は、車両に離隔して配置された複数の送信用アンテナ、及び、前記車両に設けられた受信用アンテナを用いて、前記車両の複数の車輪にそれぞれ設けられた複数の車輪側通信装置との間で無線通信を行う車載通信装置において、前記送信用アンテナ毎に定められた識別情報を含む送信データを変調することで要求信号を生成する生成部と、前記生成部が生成した前記送信用アンテナ毎の要求信号を、各送信用アンテナから同時に送信する要求信号送信部と、前記要求信号送信部が送信した前記要求信号を受信した前記車輪側通信装置が前記要求信号に含まれる識別情報を含めて送信する応答信号を、前記受信用アンテナを用いて受信する応答信号受信部と、前記応答信号受信部が受信した応答信号を復調する復調部と、前記復調部が復調した受信データに含まれる識別情報に基づいて、前記応答信号の送信元の前記車輪側通信装置が前記複数の車輪のいずれに搭載されているかを判定する判定部とを備える。 (1) The in-vehicle communication device according to this aspect is provided on each of a plurality of wheels of the vehicle by using a plurality of transmission antennas arranged separately from the vehicle and a reception antenna provided on the vehicle. In the in-vehicle communication device that performs wireless communication with the plurality of wheel-side communication devices, a generation unit that generates a request signal by modulating transmission data including identification information determined for each of the transmission antennas; A request signal transmitting unit that transmits the request signal for each of the transmitting antennas generated by the generating unit simultaneously from each transmitting antenna; and the wheel side communication device that has received the request signal transmitted by the request signal transmitting unit. A response signal receiving unit that receives a response signal including identification information included in the request signal using the receiving antenna, and a response signal received by the response signal receiving unit is demodulated. And a determination unit that determines on which of the plurality of wheels the wheel side communication device that is the transmission source of the response signal is based on identification information included in the reception data demodulated by the demodulation unit With.
 本態様にあっては、車両の車体には車載通信装置が設けられ、車両の複数の車輪にはそれぞれ車輪側通信装置が設けられる。車体には複数の送信用アンテナが離隔して配置され、車載通信装置は送信用アンテナを用いて複数の車輪側通信装置へ無線信号を送信する。また車体には複数の車輪側通信装置に対して共通の受信用アンテナが設けられ、車載通信装置は受信用アンテナを用いて車輪側通信装置からの無線信号を受信する。
 複数の送信用アンテナにはそれぞれ異なる識別情報が割り当てられる。車載通信装置は、識別情報を含む送信データを送信用アンテナ毎に生成し、この送信データを変調した要求信号を複数の送信用アンテナから同時に送信する。異なる識別情報を含む要求信号を複数の送信用アンテナから同時に送信することによって、複数の要求信号は重畳されて車輪側通信装置にて受信される。重畳された要求信号が各車輪側通信装置にて受信される際の波形は、複数の送信用アンテナに対する車輪側通信装置の距離及び位置等に応じて変化する。車輪側通信装置は、重畳された要求信号を受信し、受信した要求信号に含まれる識別情報を取得し、取得した識別情報を含む応答信号を車載通信装置へ送信する。
 車載通信装置は、車輪側通信装置からの応答信号を受信し、受信した応答信号に含まれる識別情報を取得する。車載通信装置が受信する応答信号に含まれる識別情報は、異なる複数の識別情報が重畳されたものとなる。このため車載通信装置は、応答信号に含まれる識別情報に基づいて、この応答信号の送信元の車輪側通信装置が複数の車輪のいずれに搭載されているものであるかを判定することができる。
 これにより車載通信装置は、例えば複数の車輪側通信装置と順番に無線通信を行う構成と比較して、複数の車輪側通信装置への要求信号の送信を同時に行うことができるため、複数の車輪側通信装置との無線通信に要する時間を短縮することができる。
In this aspect, an in-vehicle communication device is provided on the vehicle body of the vehicle, and a wheel side communication device is provided on each of the plurality of wheels of the vehicle. A plurality of transmitting antennas are spaced apart from each other on the vehicle body, and the in-vehicle communication device transmits radio signals to the plurality of wheel side communication devices using the transmitting antenna. The vehicle body is provided with a reception antenna common to the plurality of wheel side communication devices, and the in-vehicle communication device receives a radio signal from the wheel side communication device using the reception antenna.
Different identification information is assigned to each of the plurality of transmitting antennas. The in-vehicle communication device generates transmission data including identification information for each transmission antenna, and simultaneously transmits request signals obtained by modulating the transmission data from a plurality of transmission antennas. By simultaneously transmitting request signals including different identification information from a plurality of transmitting antennas, the plurality of request signals are superimposed and received by the wheel side communication device. The waveform when the superimposed request signal is received by each wheel-side communication device changes according to the distance and position of the wheel-side communication device with respect to a plurality of transmission antennas. The wheel side communication device receives the superimposed request signal, acquires identification information included in the received request signal, and transmits a response signal including the acquired identification information to the in-vehicle communication device.
The in-vehicle communication device receives the response signal from the wheel side communication device and acquires the identification information included in the received response signal. The identification information included in the response signal received by the in-vehicle communication device is obtained by superimposing a plurality of different identification information. Therefore, the in-vehicle communication device can determine which of the plurality of wheels the wheel-side communication device that is the transmission source of the response signal is mounted on the basis of the identification information included in the response signal. .
As a result, the in-vehicle communication device can simultaneously transmit request signals to the plurality of wheel side communication devices as compared with a configuration in which wireless communication is sequentially performed with the plurality of wheel side communication devices, for example. The time required for wireless communication with the side communication device can be shortened.
(2)前記生成部は、前記送信データをASK(Amplitude Shift Keying)変調方式で変調することが好ましい。 (2) It is preferable that the generation unit modulates the transmission data by an ASK (Amplitude Shift Keying) modulation method.
 本態様にあっては、車載通信装置は識別情報を含む送信データをASK(Amplitude Shift Keying)変調方式で変調する。ASK変調方式は、デジタルデータに含まれる各ビットを、0/1の値に応じた振幅に変調する方式であり、値が異なる複数の信号が重畳された場合には振幅が変化する。各車輪側通信装置にて受信される要求信号の振幅を適宜の閾値で判定した場合、この要求信号から取得される識別情報は重畳の有無及び重畳された信号の数等に依存する。このため各車輪側通信装置にて受信された要求信号に含まれる識別情報に基づいて、各車輪側通信装置の位置を判断することが可能となる。 In this aspect, the in-vehicle communication device modulates transmission data including identification information by an ASK (Amplitude Shift Keying) modulation method. The ASK modulation method is a method of modulating each bit included in digital data to an amplitude corresponding to a value of 0/1, and the amplitude changes when a plurality of signals having different values are superimposed. When the amplitude of the request signal received by each wheel side communication device is determined with an appropriate threshold, the identification information acquired from this request signal depends on the presence / absence of superimposition and the number of superimposed signals. For this reason, it becomes possible to judge the position of each wheel side communication apparatus based on the identification information contained in the request signal received by each wheel side communication apparatus.
(3)前記車両には車体の右前、右後、左前及び左後にそれぞれ前記車輪が設けられており、前記複数の送信用アンテナには、前記車体の右側に寄せて設けられた右側送信用アンテナと、前記車体の左側に寄せて設けられた左側送信用アンテナと、前記車体の後側に寄せて設けられた後側送信用アンテナとを含むことが好ましい。 (3) The vehicle is provided with the wheels respectively on the right front, right rear, left front, and left rear of the vehicle body, and the plurality of transmission antennas are provided on the right side of the vehicle body. And a left transmission antenna provided near the left side of the vehicle body and a rear transmission antenna provided near the rear side of the vehicle body.
 本態様にあっては、車両には車体の右前、右後、左前及び左後の4ヶ所に車輪が設けられる。車両の車体には、右側に寄せて設けた右側送信用アンテナ、左側に寄せて設けた左側送信用アンテナ、及び、後側に寄せて設けた後側送信用アンテナが備えられる。これにより、右側の車輪に設けられた車輪側通信装置には右側用送信アンテナからの無線信号が受信され、左側の車輪に設けられた車輪側通信装置には左側送信用アンテナからの無線信号が受信され、後側の車輪に設けられた車輪側通信装置には後側送信用アンテナからの無線信号が受信されることが期待できる。これにより、各車輪側通信装置が1つ又は2つの送信用アンテナからの無線信号を受信することが期待できる。 In this aspect, the vehicle is provided with wheels at four locations on the right front, right rear, left front and left rear of the vehicle body. The vehicle body is provided with a right transmitting antenna provided close to the right side, a left transmitting antenna provided close to the left side, and a rear transmitting antenna provided close to the rear side. Thus, the radio signal from the right transmission antenna is received by the wheel side communication device provided on the right wheel, and the radio signal from the left transmission antenna is received by the wheel side communication device provided on the left wheel. The wheel-side communication device that is received and provided on the rear wheel can be expected to receive a radio signal from the rear transmission antenna. Thereby, it can be expected that each wheel side communication device receives radio signals from one or two transmitting antennas.
(4)前記右側送信用アンテナから送信される前記応答信号の送信範囲に、右前及び右後の前記車輪を含み、且つ、左前及び左後の前記車輪を含まず、前記左側送信用アンテナから送信される前記応答信号の送信範囲に、左前及び左後の前記車輪を含み、且つ、右前及び右後の前記車輪を含まず、前記後側送信用アンテナから送信される前記応答信号の送信範囲に、右後及び左後の前記車輪を含み、且つ、右前及び左前の前記車輪を含まないことが好ましい。 (4) The transmission range of the response signal transmitted from the right transmission antenna includes the right front and right rear wheels, and does not include the left front and left rear wheels, and is transmitted from the left transmission antenna. The response signal transmission range includes the left front and left rear wheels, and does not include the right front and right rear wheels, and the response signal transmission range transmitted from the rear transmission antenna. Preferably, the right rear and left rear wheels are included, and the right front and left front wheels are not included.
 本態様にあっては、右側送信用アンテナから送信される要求信号の送信範囲に、右前及び右後の車輪を含み、且つ、左前及び左後の車輪を含まない。また左側送信用アンテナから送信される要求信号の送信範囲に、左前及び左後の車輪を含み、且つ、右前及び右後の車輪を含まない。また後側送信用アンテナから送信される要求信号の送信範囲に、右後及び左後の車輪を含み、且つ、右前及び左前の車輪を含まない。これにより、右前の車輪に設けられた車輪側通信装置は、右側送信用アンテナからの要求信号を受信する。左前の車輪に設けられた車輪側通信装置は、左側送信用アンテナからの要求信号を受信する。右後の車輪に設けられた車輪側通信装置は、右側送信用アンテナからの要求信号と後側送信用アンテナからの要求信号とが重畳された信号を受信する。左後の車輪に設けられた車輪側通信装置は、左側送信用アンテナからの要求信号と後側送信用アンテナからの要求信号とが重畳された信号を受信する。よって、4つの車輪側通信装置が受信する要求信号をそれぞれ異なるものとすることができる。 In this aspect, the transmission range of the request signal transmitted from the right transmitting antenna includes the right front and right rear wheels and does not include the left front and left rear wheels. The transmission range of the request signal transmitted from the left transmitting antenna includes the left front and left rear wheels and does not include the right front and right rear wheels. The transmission range of the request signal transmitted from the rear transmission antenna includes right rear and left rear wheels, and does not include right front and left front wheels. Thereby, the wheel side communication apparatus provided in the right front wheel receives the request signal from the right transmitting antenna. The wheel side communication device provided on the left front wheel receives a request signal from the left transmitting antenna. The wheel side communication device provided on the right rear wheel receives a signal in which the request signal from the right transmission antenna and the request signal from the rear transmission antenna are superimposed. The wheel side communication device provided on the left rear wheel receives a signal in which a request signal from the left transmission antenna and a request signal from the rear transmission antenna are superimposed. Therefore, the request signals received by the four wheel side communication devices can be made different from each other.
(5)前記送信用アンテナは、可搬型通信器との間で無線通信を行って前記車両のドアロックを制御するシステムと共用のアンテナであることが好ましい。 (5) It is preferable that the transmitting antenna is an antenna shared with a system that performs wireless communication with a portable communication device to control the door lock of the vehicle.
 本態様にあっては、右側送信用アンテナ、左側送信用アンテナ及び後側送信用アンテナとして、車両のドアロック制御システムと共用のアンテナが用いられる。ドアロック制御システムは、ユーザが所持する可搬型通信器との無線通信を行い、通信結果に応じて車両のドアのロック/アンロックを行うシステムである。ドアロック制御システムに用いられるアンテナは、車両の右側、左側及び後側に設けられる場合が多いため、これを共用することによって車両に搭載されるアンテナの数を低減することができる。 In this aspect, antennas shared with the vehicle door lock control system are used as the right transmitting antenna, left transmitting antenna, and rear transmitting antenna. The door lock control system is a system that performs wireless communication with a portable communication device possessed by a user, and locks / unlocks the door of the vehicle according to the communication result. Since the antennas used in the door lock control system are often provided on the right side, left side, and rear side of the vehicle, the number of antennas mounted on the vehicle can be reduced by sharing these antennas.
(6)本態様に係る車載通信システムは、車両の複数の車輪にそれぞれ設けられた複数の車輪側通信装置と、前記車両に離隔して配置された複数の送信用アンテナ、及び、前記車両に設けられた受信用アンテナを用いて、前記複数の車輪側通信装置との間で無線通信を行う車体側通信装置とを備え、前記車体側通信装置は、前記送信用アンテナ毎に定められた識別情報を含む送信データを変調することで要求信号を生成する生成部と、前記生成部が生成した前記送信用アンテナ毎の要求信号を、各送信用アンテナから同時に送信する要求信号送信部とを有し、前記車輪側通信装置は、前記複数の送信用アンテナから同時に送信されて重畳された前記要求信号を受信する要求信号受信部と、前記要求信号受信部が受信した要求信号に含まれる識別情報を取得する識別情報取得部と、前記識別情報取得部が取得した識別情報を含む応答信号を送信する応答信号送信部とを有し、前記車体側通信装置は、更に、前記車輪側通信装置が送信した応答信号を、前記受信用アンテナを用いて受信する応答信号受信部と、前記応答信号受信部が受信した応答信号を復調する復調部と、前記復調部が復調した受信データに含まれる識別情報に基づいて、前記応答信号の送信元の前記車輪側通信装置が前記複数の車輪のいずれに搭載されているかを判定する判定部とを有する。 (6) An in-vehicle communication system according to this aspect includes a plurality of wheel-side communication devices respectively provided on a plurality of wheels of a vehicle, a plurality of transmission antennas arranged separately from the vehicle, and the vehicle A vehicle body side communication device that performs wireless communication with the plurality of wheel side communication devices using a receiving antenna provided, wherein the vehicle body side communication device is identified for each transmission antenna A generation unit that generates a request signal by modulating transmission data including information, and a request signal transmission unit that simultaneously transmits the request signal for each transmission antenna generated by the generation unit from each transmission antenna. The wheel-side communication device includes a request signal receiving unit that receives the request signal that is simultaneously transmitted and superimposed from the plurality of transmitting antennas, and an information included in the request signal received by the request signal receiving unit. An identification information acquisition unit that acquires information; and a response signal transmission unit that transmits a response signal including the identification information acquired by the identification information acquisition unit. The vehicle body side communication device further includes the wheel side communication device. Included in the received data demodulated by the demodulator, the demodulator for demodulating the response signal received by the response signal receiver, and the response signal received by the demodulator And a determination unit that determines which of the plurality of wheels is equipped with the wheel-side communication device that is the transmission source of the response signal based on the identification information.
 本態様にあっては、態様(1)と同様に、車体側通信装置と複数の車輪側通信装置との無線通信に要する時間を短縮することができる。 In this aspect, similarly to aspect (1), the time required for wireless communication between the vehicle body side communication device and the plurality of wheel side communication devices can be shortened.
(7)前記複数の車輪側通信装置による前記要求信号の受信タイミングは、それぞれ異なるタイミングであることが好ましい。 (7) It is preferable that the reception timing of the request signal by the plurality of wheel side communication devices is different timing.
 本態様にあっては、車両の車輪に設けられる複数の車輪側通信装置は、それぞれ異なるタイミングで車体側通信装置からの要求信号を受信する。これにより、要求信号の受信に応じた各車輪側通信装置の応答信号の送信のタイミングを異なるタイミングとすることができ、複数の車輪側通信装置による応答信号の送信が重複して行われることを回避できる。 In this aspect, the plurality of wheel side communication devices provided on the wheels of the vehicle receive request signals from the vehicle body side communication devices at different timings. Thereby, the transmission timing of the response signal of each wheel side communication device according to the reception of the request signal can be set to a different timing, and the transmission of the response signal by the plurality of wheel side communication devices is performed in an overlapping manner. Can be avoided.
(8)前記車輪側通信装置の前記応答信号送信部は、前記応答信号をランダムな時間を隔てて複数回送信することが好ましい。 (8) It is preferable that the response signal transmission unit of the wheel side communication device transmits the response signal a plurality of times with a random time interval.
 本態様にあっては、車輪側通信装置が応答信号をランダムな時間を隔てて複数回送信する。これにより、例えば複数の車輪側通信装置による応答信号の送信が重複した場合であっても、その後の応答信号の送信は異なるタイミングで行われるため、車体側通信装置が複数の車輪側通信装置からの応答信号を受信できる可能性が高まる。 In this aspect, the wheel side communication device transmits a response signal multiple times at random intervals. Thereby, for example, even when transmission of response signals by a plurality of wheel side communication devices overlaps, transmission of subsequent response signals is performed at different timings, so that the vehicle body side communication device is transmitted from the plurality of wheel side communication devices. This increases the possibility of receiving the response signal.
(9)前記車輪側通信装置の前記応答信号送信部は、前記車輪側通信装置に付された第2識別情報を含む応答信号を送信し、前記車体側通信装置の前記判定部は、前記応答信号受信部が受信した応答信号に含まれる識別情報及び第2識別情報に基づいて判定を行うことが好ましい。 (9) The response signal transmission unit of the wheel side communication device transmits a response signal including second identification information attached to the wheel side communication device, and the determination unit of the vehicle body side communication device receives the response The determination is preferably performed based on the identification information and the second identification information included in the response signal received by the signal reception unit.
 本態様にあっては、車輪側通信装置が受信した要求信号に含まれる識別情報と共に、自身に付された第2識別情報を応答信号に含めて送信する。車体側通信装置は、車輪側通信装置からの応答信号に含まれる識別情報及び第2識別情報に基づいて、応答信号の送信元の車輪側通信装置を判定する。車体側通信装置は、例えば識別情報及び第2識別情報と各送信用アンテナの位置との対応を記憶しておくことにより、受信した応答信号に含まれる識別情報に基づいて、送信元の車輪側通信装置が車両のいずれの車輪に設けられたものであるかを判定することができる。 In this aspect, the response information includes the identification information included in the request signal received by the wheel side communication device and the second identification information attached to itself. The vehicle body side communication device determines the wheel side communication device that is the transmission source of the response signal based on the identification information and the second identification information included in the response signal from the wheel side communication device. The vehicle body side communication device stores, for example, the correspondence between the identification information and the second identification information and the position of each transmitting antenna, and based on the identification information included in the received response signal, It can be determined which wheel of the vehicle the communication device is provided on.
(10)本態様に係る通信プログラムは、車両に離隔して配置された複数の送信用アンテナ、及び、前記車両に設けられた受信用アンテナを用いて、前記車両の複数の車輪にそれぞれ設けられた複数の車輪側通信装置との間で無線通信を行う車載通信装置に、前記送信用アンテナ毎に定められた識別情報を含む送信データを変調することで要求信号を生成し、生成した前記送信用アンテナ毎の要求信号を、各送信用アンテナから同時に送信し、前記要求信号を受信した前記車輪側通信装置が前記要求信号に含まれる識別情報を含めて送信する応答信号を、前記受信用アンテナを用いて受信し、受信した応答信号を復調し、復調した受信データに含まれる識別情報に基づいて、前記応答信号の送信元の前記車輪側通信装置が前記複数の車輪のいずれに搭載されているかを判定する処理を実行させる。 (10) A communication program according to this aspect is provided on each of a plurality of wheels of the vehicle using a plurality of transmission antennas arranged separately from the vehicle and a reception antenna provided on the vehicle. A request signal is generated by modulating transmission data including identification information determined for each transmission antenna in an in-vehicle communication device that performs wireless communication with a plurality of wheel-side communication devices. A request signal for each trusted antenna is simultaneously transmitted from each transmitting antenna, and the response signal transmitted by the wheel side communication device that has received the request signal including the identification information included in the request signal is transmitted to the receiving antenna. Is used to demodulate the received response signal, and based on the identification information included in the demodulated received data, the wheel side communication device of the response signal To execute a process of determining whether it is mounted in Les.
 本態様にあっては、態様(1)と同様に、車体側通信装置と複数の車輪側通信装置との無線通信に要する時間を短縮することができる。 In this aspect, similarly to aspect (1), the time required for wireless communication between the vehicle body side communication device and the plurality of wheel side communication devices can be shortened.
(11)本態様に係る通信方法は、車両の複数の車輪にそれぞれ設けられた複数の車輪側通信装置と、前記車両の車体に搭載された車体側通信装置とが、前記車体に離隔して配置された複数の送信用アンテナ、及び、前記車両に設けられた受信用アンテナを用いて無線通信を行う通信方法において、前記車体側通信装置が、前記送信用アンテナ毎に定められた識別情報を含む送信データを変調することで要求信号を生成し、前記車体側通信装置が、生成した前記送信用アンテナ毎の要求信号を、各送信用アンテナから同時に送信し、前記車輪側通信装置が、前記複数の送信用アンテナから同時に送信されて重畳された前記要求信号を受信し、前記車輪側通信装置が、受信した要求信号に含まれる識別情報を取得し、前記車輪側通信装置が、取得した識別情報を含む応答信号を送信し、前記車体側通信装置が、前記車輪側通信装置が送信した応答信号を、前記受信用アンテナを用いて受信し、前記車体側通信装置が、受信した応答信号を復調し、復調した受信データに含まれる識別情報に基づいて、前記応答信号の送信元の前記車輪側通信装置が前記複数の車輪のいずれに搭載されているかを判定する。 (11) In the communication method according to this aspect, a plurality of wheel side communication devices respectively provided on a plurality of wheels of a vehicle and a vehicle body side communication device mounted on the vehicle body of the vehicle are separated from the vehicle body. In a communication method for performing wireless communication using a plurality of transmission antennas arranged and a reception antenna provided in the vehicle, the vehicle body side communication device uses identification information determined for each transmission antenna. The transmission signal is modulated to generate a request signal, and the vehicle body side communication device transmits the generated request signal for each of the transmission antennas simultaneously from each of the transmission antennas. The request signals transmitted and superimposed simultaneously from a plurality of transmitting antennas are received, the wheel side communication device acquires identification information included in the received request signals, and the wheel side communication device receives The vehicle body side communication device receives the response signal transmitted by the wheel side communication device using the reception antenna, and the vehicle body side communication device receives the response received. The signal is demodulated, and based on the identification information included in the demodulated reception data, it is determined on which of the plurality of wheels the wheel side communication device that is the transmission source of the response signal is mounted.
 本態様にあっては、態様(1)と同様に、車体側通信装置と複数の車輪側通信装置との無線通信に要する時間を短縮することができる。 In this aspect, similarly to aspect (1), the time required for wireless communication between the vehicle body side communication device and the plurality of wheel side communication devices can be shortened.
[本発明の実施形態の詳細]
 本発明の実施形態に係る車載通信システムの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
A specific example of the in-vehicle communication system according to the embodiment of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.
 <システム概要>
 図1は、本実施の形態に係る車載通信システムの構成を示す模式図である。本実施の形態に係る車載通信システム100は、車両1が備える4つの車輪3について、タイヤの空気圧を検知して異常の有無などの情報を運転者へ報知するタイヤ空気圧監視システムでもある。本実施の形態に係る車載通信システム100は、車両1の車体の適所に設けられた監視装置10と、各車輪3のタイヤ又はホイール等の部分に設けられた4つのセンサ装置30と、車両1の例えば運転席近傍に設けられた報知装置8とを備えて構成されている。本実施の形態に係る車両1は右前、右後、左前及び左後に車輪3が設けられ、各車輪3にセンサ装置30が設けられている。各センサ装置30は、自装置が設けられた車輪3のタイヤの空気圧を検出する。本実施の形態に係る車載通信システム100は、監視装置10が各センサ装置30と無線通信を行うことにより、各車輪3のタイヤ空気圧に係る情報を取得し、取得した情報に基づいて報知装置8を用いたタイヤ空気圧の報知を行う。
<System overview>
FIG. 1 is a schematic diagram showing a configuration of an in-vehicle communication system according to the present embodiment. The in-vehicle communication system 100 according to the present embodiment is also a tire air pressure monitoring system that detects the tire air pressure and notifies the driver of information such as the presence or absence of abnormality for the four wheels 3 provided in the vehicle 1. The in-vehicle communication system 100 according to the present embodiment includes a monitoring device 10 provided at an appropriate position of the vehicle body of the vehicle 1, four sensor devices 30 provided in portions such as tires or wheels of each wheel 3, and the vehicle 1. For example, a notification device 8 provided near the driver's seat is provided. The vehicle 1 according to the present embodiment is provided with wheels 3 on the right front, right rear, left front and left rear, and a sensor device 30 is provided on each wheel 3. Each sensor device 30 detects the air pressure of the tire of the wheel 3 provided with the device itself. The in-vehicle communication system 100 according to the present embodiment acquires information related to the tire air pressure of each wheel 3 by the monitoring device 10 performing wireless communication with each sensor device 30, and the notification device 8 based on the acquired information. The tire pressure is notified using.
 車両1には、監視装置10が4つのセンサ装置30に対してLF帯の無線信号を送信するための3つの送信アンテナ51~53が搭載されている。例えば、第1の送信アンテナ51は車両1の右側面部に設けられ、第2の送信アンテナ52は、車両1の左側面部に設けられ、第3の送信アンテナ53は車両1の後部に設けられている。また第1の送信アンテナ51及び第2の送信アンテナ52は、車両1の前後方向に関して、前側の車輪3及び後側の車輪3の間の略中央位置に設けられる。第3の送信アンテナ53は、車両1の左右方向に関して、右側の車輪3及び後側の車輪3の間の略中央位置に設けられる。なお、図1に示す3つの送信アンテナ51~53の搭載位置は一例であって、これに限るものではない。 The vehicle 1 is equipped with three transmission antennas 51 to 53 for the monitoring device 10 to transmit LF band radio signals to the four sensor devices 30. For example, the first transmission antenna 51 is provided on the right side surface portion of the vehicle 1, the second transmission antenna 52 is provided on the left side surface portion of the vehicle 1, and the third transmission antenna 53 is provided on the rear portion of the vehicle 1. Yes. Further, the first transmission antenna 51 and the second transmission antenna 52 are provided at a substantially central position between the front wheel 3 and the rear wheel 3 in the front-rear direction of the vehicle 1. The third transmission antenna 53 is provided at a substantially central position between the right wheel 3 and the rear wheel 3 in the left-right direction of the vehicle 1. Note that the mounting positions of the three transmission antennas 51 to 53 shown in FIG. 1 are merely examples, and the present invention is not limited to this.
 第1の送信アンテナ51から送信された要求信号をセンサ装置30が受信することができる範囲51aを図1に二点鎖線の領域として図示してある。第1の送信アンテナ51からの要求信号は、車両1の右前側及び右後側の車輪3に設けられた2つのセンサ装置30にて受信され、他のセンサ装置30がこの要求信号を受信しないよう範囲51aが適宜に設定されている。同様に、第2の送信アンテナ52から送信された要求信号をセンサ装置30が受信することができる範囲52aを図1に二点鎖線の領域として図示してある。第2の送信アンテナ52からの要求信号は、車両1の左前及び左後の車輪3に設けられた2つのセンサ装置30にて受信され、他のセンサ装置30がこの要求信号を受信しないよう範囲52aが適宜に設定されている。同様に、第3の送信アンテナ53から送信された要求信号をセンサ装置30が受信することができる範囲53aを図1に二点鎖線の領域として図示してある。第3の送信アンテナ53からの要求信号は、車両1の右後及び左後の車輪3に設けられた2つのセンサ装置30にて受信され、他のセンサ装置30がこの要求信号を受信しないよう範囲53aが適宜に設定されている。 A range 51a in which the sensor device 30 can receive a request signal transmitted from the first transmission antenna 51 is illustrated as a two-dot chain line region in FIG. The request signal from the first transmitting antenna 51 is received by the two sensor devices 30 provided on the right front side wheel and the right rear side wheel 3 of the vehicle 1, and the other sensor devices 30 do not receive this request signal. The range 51a is set as appropriate. Similarly, a range 52a in which the sensor device 30 can receive a request signal transmitted from the second transmitting antenna 52 is illustrated as a two-dot chain line region in FIG. The request signal from the second transmission antenna 52 is received by the two sensor devices 30 provided on the left front wheel 3 and the left rear wheel 3 of the vehicle 1, and the other sensor devices 30 do not receive this request signal. 52a is appropriately set. Similarly, a range 53a in which the sensor device 30 can receive a request signal transmitted from the third transmitting antenna 53 is illustrated as a two-dot chain line region in FIG. The request signal from the third transmitting antenna 53 is received by the two sensor devices 30 provided on the right rear and left rear wheels 3 of the vehicle 1 so that the other sensor devices 30 do not receive the request signal. The range 53a is appropriately set.
 換言すれば、車両1の右前の車輪3に設けられたセンサ装置30は、第1の送信アンテナ51から送信された要求信号を受信する。車両1の右後の車輪3に設けられたセンサ装置30は、第1の送信アンテナ51及び第3の送信アンテナ53から送信された要求信号を受信する。車両1の左前の車輪3に設けられたセンサ装置30は、第2の送信アンテナ52から送信された要求信号を受信する。車両1の左後の車輪3に設けられたセンサ装置30は、第2の送信アンテナ52及び第3の送信アンテナ53から送信された要求信号を受信する。 In other words, the sensor device 30 provided on the right front wheel 3 of the vehicle 1 receives the request signal transmitted from the first transmission antenna 51. The sensor device 30 provided on the right rear wheel 3 of the vehicle 1 receives the request signals transmitted from the first transmission antenna 51 and the third transmission antenna 53. The sensor device 30 provided on the left front wheel 3 of the vehicle 1 receives the request signal transmitted from the second transmission antenna 52. The sensor device 30 provided on the left rear wheel 3 of the vehicle 1 receives the request signals transmitted from the second transmission antenna 52 and the third transmission antenna 53.
 監視装置10は、各センサ装置30に対して応答信号の送信を要求する要求信号を、3つの送信アンテナ51~53からLF帯の無線信号として送信する。例えば監視装置10は要求信号を送信することによって、各車輪3のタイヤ空気圧の検知結果及び/又は各センサ装置30に付された識別情報等の送信を要求することができる。監視装置10からの要求信号を受信したセンサ装置30は、少なくとも自装置の識別情報(以下、センサIDという)を含む応答信号をUHF帯の無線信号として監視装置10へ送信する。センサ装置30が送信する応答信号には、車輪3のタイヤ空気圧の検知結果の情報を含み得る。監視装置10は、センサ装置30が送信したUHF帯の応答信号を、受信アンテナ6にて受信する。 The monitoring device 10 transmits request signals for requesting the transmission of response signals to the sensor devices 30 from the three transmission antennas 51 to 53 as radio signals in the LF band. For example, the monitoring device 10 can request transmission of a tire air pressure detection result of each wheel 3 and / or identification information attached to each sensor device 30 by transmitting a request signal. The sensor device 30 that has received the request signal from the monitoring device 10 transmits a response signal including at least identification information (hereinafter referred to as sensor ID) of the device itself to the monitoring device 10 as a UHF band radio signal. The response signal transmitted by the sensor device 30 may include information on the detection result of the tire air pressure of the wheel 3. The monitoring device 10 receives the UHF band response signal transmitted by the sensor device 30 at the receiving antenna 6.
 本実施の形態に係る監視装置10は、センサ装置30への要求信号の送信に、ASK(Amplitude Shift Keying)変調方式(振幅偏移変調方式)を採用している。図2は、ASK変調方式の一例を示す模式図である。ASK変調方式は、「0」及び「1」の2値で表されるデジタルデータを、正弦波などの搬送波を用いて無線送信のための信号に変換する方式の1つである。ASK変調方式は、搬送波の周波数及び位相を保持したまま、送信データのビット列に対応して振幅を変化させることで変調を行う方式である。ASK変調方式は、例えば送信データの「0」に対して搬送波の振幅を小さくし、送信データの「1」に対して搬送波の振幅を大きくする。本実施の形態に係るECU3は、図2に示すように、送信データの値に応じてスイッチなどを制御し、搬送波をオン/オフして出力することで変調波を得る単純なASK変調方式(この方式はオンオフ変調方式とも呼ばれ得る)にて送信データの変調を行う。 The monitoring device 10 according to the present embodiment employs an ASK (Amplitude Shift Keying) modulation method (amplitude shift modulation method) for transmitting a request signal to the sensor device 30. FIG. 2 is a schematic diagram illustrating an example of the ASK modulation method. The ASK modulation method is one of methods for converting digital data represented by binary values “0” and “1” into a signal for wireless transmission using a carrier wave such as a sine wave. The ASK modulation method is a method of performing modulation by changing the amplitude corresponding to the bit string of transmission data while maintaining the frequency and phase of the carrier wave. In the ASK modulation method, for example, the amplitude of a carrier wave is reduced with respect to “0” of transmission data, and the amplitude of the carrier wave is increased with respect to “1” of transmission data. As shown in FIG. 2, the ECU 3 according to the present embodiment controls a switch or the like according to the value of transmission data, and turns on / off a carrier wave to output a simple ASK modulation method (a modulated wave is obtained). This method can also be called an on-off modulation method) and modulates transmission data.
 また本実施の形態において監視装置10が各送信アンテナ51~53から送信する要求信号には、全ての送信アンテナ51~53に共通の共通データと、送信アンテナ51~53毎に異なる個別データとが含まれている。図3は、要求信号のデータ構成の一例を示す模式図である。監視装置10がセンサ装置30へ送信する要求信号には、例えばヘッダ、共通データ、個別データ及びフッタが含まれている。ヘッダ及びフッタは、例えば監視装置10及びセンサ装置30の間の通信プロトコルにて定められたデータが含まれる。共通データは、例えば車両1の識別情報又はセンサ装置30に対する命令等が含まれ得る。 Further, in the present embodiment, the request signal transmitted from the transmission antennas 51 to 53 by the monitoring apparatus 10 includes common data common to all the transmission antennas 51 to 53 and individual data different for each of the transmission antennas 51 to 53. include. FIG. 3 is a schematic diagram illustrating an example of a data configuration of the request signal. The request signal transmitted from the monitoring device 10 to the sensor device 30 includes, for example, a header, common data, individual data, and a footer. The header and footer include, for example, data defined by a communication protocol between the monitoring device 10 and the sensor device 30. The common data can include, for example, identification information of the vehicle 1 or a command to the sensor device 30.
 要求信号に含まれる個別データは、本実施の形態において2ビットのデータであり、送信アンテナ51~53に対して個別に割り当てられた2ビットのアンテナIDが格納される。本実施の形態においては、車両1に設けられた3つの送信アンテナ51~53に対して予め個別のアンテナIDが割り当てられている。本実施の形態において、右側の送信アンテナ51にはID=「00」が割り当てられ、左側の送信アンテナ52にはID=「01」が割り当てられ、後側の送信アンテナ53にはID=「10」が割り当てられているものとする。ただしこれらのIDの具体的な値は一例であって、これに限るものではなく、以下の処理を実現し得る値であれば、どのような値であってもよい。 The individual data included in the request signal is 2-bit data in the present embodiment, and stores 2-bit antenna IDs individually assigned to the transmission antennas 51 to 53. In the present embodiment, individual antenna IDs are assigned to the three transmission antennas 51 to 53 provided in the vehicle 1 in advance. In this embodiment, ID = “00” is assigned to the right transmission antenna 51, ID = “01” is assigned to the left transmission antenna 52, and ID = “10” is assigned to the rear transmission antenna 53. "Is assigned. However, the specific values of these IDs are only examples, and are not limited to these. Any values may be used as long as the following processing can be realized.
 本実施の形態に係る監視装置10は、共通データ、ヘッダ及びフッタが同じであり且つ個別データが異なる送信データをそれぞれASK変調方式にて変調し、変調により得られた無線信号を要求信号とし、この信号に含まれる個別データに対応する送信アンテナ51~53から同時に送信する。複数の送信アンテナ51~53から同時に送信された要求信号は、その送信範囲51a~53aが重複している箇所において重畳される。複数の要求信号に含まれるヘッダ、共通データ及びフッタは同じであるため、複数の要求信号が重畳されても信号波形に変化は生じない(振幅が増幅される可能性はある)。しかし、上述のように各要求信号に含まれる個別データは送信アンテナ51~53毎に異なる値であるため、複数の要求信号が重畳された場合には、その信号波形に変化が生じる。 The monitoring apparatus 10 according to the present embodiment modulates transmission data having the same common data, header, and footer and different individual data by the ASK modulation method, and uses a radio signal obtained by the modulation as a request signal, Transmission is simultaneously performed from the transmission antennas 51 to 53 corresponding to the individual data included in this signal. Request signals transmitted simultaneously from the plurality of transmission antennas 51 to 53 are superimposed at the locations where the transmission ranges 51a to 53a overlap. Since the header, common data, and footer included in the plurality of request signals are the same, the signal waveform does not change even when the plurality of request signals are superimposed (the amplitude may be amplified). However, since the individual data included in each request signal has a different value for each of the transmission antennas 51 to 53 as described above, when a plurality of request signals are superimposed, the signal waveform changes.
 図4は、個別データに相当する応答信号の重畳を説明するための模式図である。図4の最上段には、搬送波の波形を示している。図4の搬送波の波形の下には、左側の送信アンテナ51から送信される送信データに含まれる個別データ及びその変調波と、後側の送信アンテナ53から送信される送信データに含まれる個別データ及びその変調波とを示している。図4の最下段には、送信アンテナ52から送信された変調波と、送信アンテナ53から送信された変調波とが重畳された場合の重畳波を示している。 FIG. 4 is a schematic diagram for explaining the superimposition of response signals corresponding to individual data. 4 shows the waveform of the carrier wave. Below the waveform of the carrier wave in FIG. 4, individual data included in the transmission data transmitted from the left transmission antenna 51 and its modulated wave, and individual data included in the transmission data transmitted from the rear transmission antenna 53. And its modulated wave. 4 shows the superimposed wave when the modulated wave transmitted from the transmission antenna 52 and the modulated wave transmitted from the transmission antenna 53 are superimposed.
 ASK変調方式にて変調された変調波は、個別データに含まれる「1」に対応して搬送波が出力された波形となる。このため、値が異なる2つの個別データに対応する2つの変調波が重畳された場合、個別データの論理和データに相当する波形の重畳波が得られる。図示の例の場合、個別データ「01」及び個別データ「00」に対応する2つの変調波が重畳された場合、重畳波は個別データが「11」の信号波形となる。 The modulated wave modulated by the ASK modulation method has a waveform in which a carrier wave is output corresponding to “1” included in the individual data. For this reason, when two modulated waves corresponding to two individual data having different values are superimposed, a superimposed wave having a waveform corresponding to the logical sum data of the individual data is obtained. In the case of the illustrated example, when two modulated waves corresponding to the individual data “01” and the individual data “00” are superimposed, the superimposed wave has a signal waveform with the individual data “11”.
 個別データ「00」の要求信号を送信する右側の送信アンテナ51からのみ要求信号を受信する場合、受信した要求信号に含まれる個別データは「00」である。個別データ「01」の要求信号を送信する左側の送信アンテナ52からのみ要求信号を受信する場合、受信した要求信号に含まれる個別データは「01」である。個別データ「10」の要求信号を送信する後側の送信アンテナ53からのみ要求信号を受信する場合、受信した要求信号に含まれる個別データは「10」である。 When the request signal is received only from the right transmitting antenna 51 that transmits the request signal of the individual data “00”, the individual data included in the received request signal is “00”. When the request signal is received only from the left transmission antenna 52 that transmits the request signal of the individual data “01”, the individual data included in the received request signal is “01”. When the request signal is received only from the rear transmission antenna 53 that transmits the request signal of the individual data “10”, the individual data included in the received request signal is “10”.
 これに対して、右側の送信アンテナ51の送信範囲51a及び後側の送信アンテナ53の送信範囲53bの重複範囲においては、送信アンテナ51からの要求信号と送信アンテナ53からの要求信号との重畳信号が受信されるため、受信した要求信号に含まれる個別データは「00」及び「10」の論理和「10」となる。また左側の送信アンテナ52の送信範囲52a及び後側の送信アンテナ53の送信範囲53bの重複範囲においては、送信アンテナ52からの要求信号と送信アンテナ53からの要求信号との重畳信号が受信されるため、受信した要求信号に含まれる個別データは「01」及び「10」の論理和「11」となる。 On the other hand, in the overlapping range of the transmission range 51 a of the right transmission antenna 51 and the transmission range 53 b of the rear transmission antenna 53, a superimposed signal of the request signal from the transmission antenna 51 and the request signal from the transmission antenna 53. Is received, the individual data included in the received request signal is the logical sum “10” of “00” and “10”. Also, in the overlapping range of the transmission range 52a of the left transmission antenna 52 and the transmission range 53b of the rear transmission antenna 53, a superimposed signal of the request signal from the transmission antenna 52 and the request signal from the transmission antenna 53 is received. Therefore, the individual data included in the received request signal is a logical sum “11” of “01” and “10”.
 その結果、図1に示す例において、車両1の右前の車輪3に設けられたセンサ装置30が受信する要求信号に含まれる個別データは「00」である。車両1の右後の車輪3に設けられたセンサ装置30が受信する要求信号に含まれる個別データは「10」である。車両1の左前の車輪3に設けられたセンサ装置30が受信する要求信号に含まれる個別データは「01」である。車両1の左後の車輪3に設けられたセンサ装置30が受信する要求信号に含まれる個別データは「11」である。 As a result, in the example shown in FIG. 1, the individual data included in the request signal received by the sensor device 30 provided on the right front wheel 3 of the vehicle 1 is “00”. The individual data included in the request signal received by the sensor device 30 provided on the right rear wheel 3 of the vehicle 1 is “10”. The individual data included in the request signal received by the sensor device 30 provided on the left front wheel 3 of the vehicle 1 is “01”. The individual data included in the request signal received by the sensor device 30 provided on the left rear wheel 3 of the vehicle 1 is “11”.
 監視装置10からの要求信号を受信した各センサ装置30は、受信した要求信号に含まれる個別データを取得する。センサ装置30は、要求信号から取得した個別データと、タイヤ空気圧の検知結果及び自身のセンサID等とを含む応答信号を生成して監視装置10へ送信する。センサ装置30からの応答信号を受信した監視装置10は、応答信号に含まれる個別データに基づいて、この応答信号の送信元のセンサ装置30がいずれの車輪3に設けられているかを判定することができる。 Each sensor device 30 that has received the request signal from the monitoring device 10 acquires individual data included in the received request signal. The sensor device 30 generates a response signal including individual data acquired from the request signal, a tire air pressure detection result, its own sensor ID, and the like, and transmits the response signal to the monitoring device 10. The monitoring device 10 that has received the response signal from the sensor device 30 determines which wheel 3 is provided with the sensor device 30 that is the transmission source of this response signal, based on the individual data included in the response signal. Can do.
 監視装置10は、センサ装置30から送信されるUHF帯の応答信号を受信するための受信アンテナ6を備えている。受信アンテナ6は、監視装置10に内蔵されていてもよく、監視装置10とは別体で設けられて信号線を介して監視装置10に接続されてもよい。監視装置10は、4つのセンサ装置30からの応答信号を共通の受信アンテナ6で受信する。監視装置10は、受信した応答信号に含まれる個別データ及びセンサIDに基づいて、この応答信号がいずれのセンサ装置30から送信されたものであるかを判定することができる。監視装置10は、受信した応答信号からタイヤ空気圧に関する情報を取得し、報知装置8を用いた運転者に対するタイヤ空気圧の報知を行う。 The monitoring device 10 includes a receiving antenna 6 for receiving a response signal in the UHF band transmitted from the sensor device 30. The reception antenna 6 may be built in the monitoring device 10 or may be provided separately from the monitoring device 10 and connected to the monitoring device 10 via a signal line. The monitoring device 10 receives response signals from the four sensor devices 30 with the common receiving antenna 6. The monitoring device 10 can determine from which sensor device 30 this response signal is transmitted based on the individual data and sensor ID included in the received response signal. The monitoring device 10 acquires tire pressure information from the received response signal, and notifies the driver of the tire pressure using the notification device 8.
 報知装置8は、例えば車両1の運転席近傍に設けられたディスプレイ装置とすることができる。例えば監視装置10は、報知装置8にタイヤ空気圧の検知結果をリアルタイムに表示してもよい。また例えば監視装置10は、タイヤ空気圧の異常の有無を判定し、異常があると判定した場合に報知装置8に警告メッセージなどを表示してもよい。報知装置8は、ディスプレイ装置以外の構成であってもよく、例えば音声出力によりタイヤ空気圧を報知する構成であってよく、また例えばタイヤ空気圧の異常に対して点灯するランプなどであってもよい。 The notification device 8 can be, for example, a display device provided near the driver's seat of the vehicle 1. For example, the monitoring device 10 may display the tire air pressure detection result on the notification device 8 in real time. Further, for example, the monitoring device 10 may determine whether there is an abnormality in the tire air pressure, and may display a warning message or the like on the notification device 8 when determining that there is an abnormality. The notification device 8 may have a configuration other than the display device, for example, may have a configuration for notifying the tire air pressure by sound output, or may be, for example, a lamp that is turned on in response to an abnormality in the tire air pressure.
 センサ装置30は、監視装置10からの要求信号を受信した場合のみではなく、例えば周期的にタイヤ空気圧を検知し、検知したタイヤ空気圧に関する情報を含む信号を周期的に監視装置10へ送信してよい。この場合にセンサ装置30が送信する信号には、タイヤ空気圧に関する情報と、自身のセンサIDとが含まれ、個別データは含まれない。センサ装置30からの周期的な信号を受信アンテナ6にて受信した監視装置10は、受信した信号に含まれるセンサIDに基づいて、この信号がいずれのセンサ装置30から送信されたものであるかを判定する。 The sensor device 30 not only receives the request signal from the monitoring device 10, but also periodically detects the tire pressure, for example, and periodically transmits a signal including information on the detected tire pressure to the monitoring device 10. Good. In this case, the signal transmitted by the sensor device 30 includes information related to the tire pressure and its own sensor ID, and does not include individual data. The monitoring device 10 that has received the periodic signal from the sensor device 30 at the receiving antenna 6, from which sensor device 30 the signal is transmitted based on the sensor ID included in the received signal. Determine.
 監視装置10が要求信号を送信してセンサ装置30からの応答信号を受信する処理は、例えば車両1のイグニッションスイッチがオフ状態からオン状態へ切り替えられた場合又はエンジン始動時等の特定のタイミングで行われる。この処理は、送信アンテナ51~53とセンサ装置30との対応関係を監視装置10が確認すること、及び、車両1の車輪3のタイヤ空気圧を取得する事の2つを目的として行われる。これ以後は、特段の事情がない限り、監視装置10が要求信号を送信することなく、センサ装置30が周期的に送信する信号を監視装置10が受信し、受信した信号に基づいて監視装置10が報知を行う。監視装置10による要求信号の送信は、その他に例えば車両1が停車状態から走行状態へ移行したタイミング、又は、タイヤ空気圧に異常があると判定されたタイミング等に行われ得る。監視装置10は、センサ装置30の位置を確認することが好ましいタイミングで要求信号の送信を行う。 The process in which the monitoring device 10 transmits the request signal and receives the response signal from the sensor device 30 is performed, for example, when the ignition switch of the vehicle 1 is switched from the off state to the on state or at a specific timing such as when the engine is started. Done. This process is performed for the purpose of confirming the correspondence between the transmission antennas 51 to 53 and the sensor device 30 and acquiring the tire air pressure of the wheel 3 of the vehicle 1. Thereafter, unless there are special circumstances, the monitoring device 10 receives the signal periodically transmitted by the sensor device 30 without transmitting the request signal, and the monitoring device 10 receives the signal that is transmitted periodically. Will report. The transmission of the request signal by the monitoring device 10 can be performed, for example, at the timing when the vehicle 1 shifts from the stopped state to the traveling state, or when it is determined that the tire air pressure is abnormal. The monitoring device 10 transmits a request signal at a timing when it is preferable to confirm the position of the sensor device 30.
<装置構成>
 図5は、本実施の形態に係る監視装置10の構成を示すブロック図である。本実施の形態に係る監視装置10は、処理部(プロセッサ)11、記憶部(ストレージ)12、有線通信部(トランシーバ)13、無線送信部(トランシーバ)14及び無線受信部(トランシーバ)15等を備えて構成されている。処理部11は、例えばCPU(Central Processing Unit)又はMPU(Micro-Processing Unit)等の演算処理装置を用いて構成されており、記憶部12に記憶されたプログラム12aを実行することによって種々の演算処理及び制御処理等を行うことができる。本実施の形態において処理部11は、記憶部12に記憶されたプログラム12aを読み出して実行することにより、車両1の車輪3に設けられたセンサ装置30との間で無線信号を送受信する処理、センサ装置30から受信した無線信号に基づいてタイヤ空気圧を運転者に通知する処理、及び、各センサ装置30の搭載位置を判定する処理等を行う。
<Device configuration>
FIG. 5 is a block diagram showing a configuration of the monitoring apparatus 10 according to the present embodiment. The monitoring apparatus 10 according to the present embodiment includes a processing unit (processor) 11, a storage unit (storage) 12, a wired communication unit (transceiver) 13, a wireless transmission unit (transceiver) 14, a wireless reception unit (transceiver) 15, and the like. It is prepared for. The processing unit 11 is configured by using an arithmetic processing device such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit), for example, and executes various programs by executing a program 12a stored in the storage unit 12. Processing and control processing can be performed. In the present embodiment, the processing unit 11 reads and executes the program 12a stored in the storage unit 12, thereby transmitting and receiving wireless signals to and from the sensor devices 30 provided on the wheels 3 of the vehicle 1, A process of notifying the driver of the tire pressure based on a radio signal received from the sensor device 30 and a process of determining the mounting position of each sensor device 30 are performed.
 記憶部12は、例えばフラッシュメモリ又はEEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性のメモリ素子を用いて構成されている。記憶部12は、処理部11が実行する各種のプログラム、及び、処理部11の処理に必要な各種のデータを記憶する。本実施の形態において記憶部12は、処理部11が実行するプログラム12aと、このプログラム12aの実行に必要なデータとしてセンサ位置情報12bとを記憶している。なおプログラム12aは、例えば監視装置10の製造段階において記憶部12に書き込まれてもよく、また例えば遠隔のサーバ装置などが配信するものを監視装置10が通信にて取得してもよく、また例えばメモリカード又は光ディスク等の記録媒体99に記録されたものを監視装置10が読み出して記憶部12に記憶してもよく、また例えば記録媒体99に記録されたものを書込装置が読み出して監視装置10の記憶部12に書き込んでもよい。プログラム12aは、ネットワークを介した配信の態様で提供されてもよく、記録媒体99に記録された態様で提供されてもよい。 The storage unit 12 is configured using a non-volatile memory element such as a flash memory or an EEPROM (Electrically-Erasable-Programmable-Read-Only-Memory). The storage unit 12 stores various programs executed by the processing unit 11 and various data necessary for the processing of the processing unit 11. In the present embodiment, the storage unit 12 stores a program 12a executed by the processing unit 11 and sensor position information 12b as data necessary for the execution of the program 12a. Note that the program 12a may be written in the storage unit 12 at the manufacturing stage of the monitoring device 10, for example, or the monitoring device 10 may acquire, for example, what is distributed by a remote server device, for example, What is recorded on the recording medium 99 such as a memory card or an optical disk may be read out by the monitoring device 10 and stored in the storage unit 12. For example, what is recorded on the recording medium 99 is read out by the writing device and monitored. You may write in ten memory | storage parts 12. The program 12a may be provided in a mode of distribution via a network, or may be provided in a mode recorded on the recording medium 99.
 記憶部12に記憶されるセンサ位置情報12bは、車両1に搭載される4つのセンサ装置30が、車両1のいずれの車輪3に搭載されているかを示す情報である。図6は、センサ位置情報12bの一例を示す模式図である。本実施の形態においてセンサ位置情報12bには、センサ装置30の搭載位置と、この搭載位置に対応する個別データと、センサ装置30に対して付されたセンサIDとが対応付けて記憶されている。本例では、センサ装置30の搭載位置を右前、右後、左前及び左後の4種類とし、個別データを「00」、「01」、「10」及び「11」の4種類とし、センサIDをS1~S4としている。個別データは、対応する車輪3に搭載されたセンサ装置30が送信する応答信号に含まれる個別データである。搭載位置及び個別データの対応関係は変化することはないが、センサIDは車輪3の交換などによって変化する可能性がある。センサ位置情報12bに記憶される各情報の初期値は、例えば車両1の製造工程において記憶部12に書き込まれる。ただしセンサ位置情報12bのセンサIDについては、監視装置10がセンサ装置30の位置を判定して設定してもよい。 The sensor position information 12b stored in the storage unit 12 is information indicating which wheel 3 of the vehicle 1 the four sensor devices 30 mounted on the vehicle 1 are mounted on. FIG. 6 is a schematic diagram illustrating an example of the sensor position information 12b. In the present embodiment, the sensor position information 12b stores the mounting position of the sensor device 30, the individual data corresponding to the mounting position, and the sensor ID assigned to the sensor device 30 in association with each other. . In this example, the mounting positions of the sensor device 30 are four types of right front, right rear, left front, and left rear, the individual data are four types of “00”, “01”, “10”, and “11”, and the sensor ID Are S1 to S4. The individual data is individual data included in a response signal transmitted by the sensor device 30 mounted on the corresponding wheel 3. Although the correspondence between the mounting position and the individual data does not change, the sensor ID may change due to the exchange of the wheels 3 or the like. The initial value of each information stored in the sensor position information 12b is written into the storage unit 12 in the manufacturing process of the vehicle 1, for example. However, the monitoring device 10 may determine the position of the sensor device 30 and set the sensor ID of the sensor position information 12b.
 有線通信部13は、車両1内に設けられた車内ネットワークを介して、車両1に搭載された各種の車載機器との間でメッセージの送受信を行う。なお図示の例では車内ネットワークに報知装置8のみが接続されているが、これ以外の種々の車載機器が車内ネットワークには接続され得る。有線通信部13は、例えばCAN(Controller Area Network)又はイーサネット(登録商標)等の通信プロトコルに従ってメッセージの送受信を行う。有線通信部13は、処理部11から送信メッセージとして与えられたデジタルデータを電気信号として車内ネットワークを構成する通信線へ出力することによりメッセージを送信することができる。また有線通信部13は、車内ネットワークを構成する通信線の電位をサンプリングして取得し、サンプリングの結果として得られたデジタルデータを受信メッセージとして処理部11へ与える。有線通信部13は、CAN又はイーサネット等の通信プロトコルに従って通信を行うIC(Integrated Circuit)を用いて構成され得る。 The wired communication unit 13 transmits and receives messages to and from various in-vehicle devices mounted on the vehicle 1 via an in-vehicle network provided in the vehicle 1. In the illustrated example, only the notification device 8 is connected to the in-vehicle network, but various other in-vehicle devices can be connected to the in-vehicle network. The wired communication unit 13 transmits and receives messages according to a communication protocol such as CAN (Controller Area Network) or Ethernet (registered trademark). The wired communication unit 13 can transmit a message by outputting the digital data given as a transmission message from the processing unit 11 as an electrical signal to a communication line constituting the in-vehicle network. The wired communication unit 13 samples and acquires the potential of the communication line constituting the in-vehicle network, and provides the digital data obtained as a result of the sampling to the processing unit 11 as a received message. The wired communication unit 13 can be configured by using an IC (Integrated Circuit) that performs communication according to a communication protocol such as CAN or Ethernet.
 無線送信部14は、3つの送信アンテナ51~53が個別の信号線を介して接続されている。無線送信部14は、処理部11から与えられた送信用のデータをASK変調した電気信号を送信アンテナ51~53へ出力することによって、周波数が30kHz~300kHzのLF帯の無線信号を送信する。本実施の形態において無線送信部14は、車輪3に設けられた4つのセンサ装置30に対して、3つの送信アンテナ51~53から同時に要求信号を送信する。このとき同時的に送信される要求信号は、個別データが異なり、その他のデータが共通の送信用データがASK変調されたものである。送信アンテナ51~53毎の個別データの付与は、処理部11が行ってもよく、無線送信部14が行ってもよい。例えば、処理部11は個別データのみが異なる3つの送信用データを無線送信部14へ与え、無線送信部14は与えられた3つの送信用データを変調してそれぞれ対応する送信アンテナ51~53から同時に送信してもよい。また例えば処理部11は、個別データを含まない送信用データを無線送信部14へ与え、無線送信部14は与えられた送信用データに異なる個別データを付した後に変調してそれぞれ対応する送信アンテナ51~53から同時に送信してもよい。 In the wireless transmission unit 14, three transmission antennas 51 to 53 are connected via individual signal lines. The radio transmission unit 14 transmits an SK band radio signal having a frequency of 30 kHz to 300 kHz by outputting to the transmission antennas 51 to 53 an electric signal obtained by ASK modulation of transmission data provided from the processing unit 11. In the present embodiment, the wireless transmission unit 14 transmits request signals simultaneously from the three transmission antennas 51 to 53 to the four sensor devices 30 provided on the wheel 3. The request signals transmitted simultaneously at this time are obtained by performing ASK modulation on transmission data that is different in individual data and common to other data. The assignment of the individual data for each of the transmission antennas 51 to 53 may be performed by the processing unit 11 or the wireless transmission unit 14. For example, the processing unit 11 gives three pieces of transmission data that differ only in individual data to the wireless transmission unit 14, and the wireless transmission unit 14 modulates the given three pieces of transmission data and transmits them from the corresponding transmission antennas 51 to 53, respectively. You may transmit simultaneously. Further, for example, the processing unit 11 gives transmission data not including individual data to the radio transmission unit 14, and the radio transmission unit 14 adds different individual data to the given transmission data and then modulates the corresponding transmission antennas. You may transmit simultaneously from 51-53.
 無線受信部15は、受信アンテナ6が接続されている。無線受信部15は、センサ装置30が送信する周波数が300MHz~3GHzのUHF帯の無線信号を受信アンテナ6にて受信し、受信した信号を復調して得られた受信データを処理部11へ与える。なおセンサ装置30から監視装置10へ送信されるUHF帯の無線信号は、ASK変調方式以外の変調方式で変調されている必要はなく、どのような変調方式を採用してもよい。 The reception antenna 6 is connected to the wireless reception unit 15. The radio receiving unit 15 receives a UHF band radio signal having a frequency of 300 MHz to 3 GHz transmitted by the sensor device 30 at the receiving antenna 6 and supplies the received data obtained by demodulating the received signal to the processing unit 11. . The UHF band radio signal transmitted from the sensor device 30 to the monitoring device 10 does not need to be modulated by a modulation scheme other than the ASK modulation scheme, and any modulation scheme may be employed.
 また本実施の形態に係る監視装置10は、記憶部12に記憶されたプログラム12aを処理部11が読み出して実行することにより、要求信号送信部21、応答信号受信部22及びセンサ位置判定部23等が処理部11にソフトウェア的な機能ブロックとして実現される。要求信号送信部21は、無線送信部14の動作を制御することによって、車両1の各車輪3に搭載された4つのセンサ装置30に対して、タイヤ空気圧の検知結果の送信を要求する要求信号を送信する処理を行う。要求信号送信部21は、例えばタイヤ空気圧の検知結果を要求する命令などを含む送信データを生成して無線送信部14へ与えることにより、3つの送信アンテナ51~53から個別データが異なる要求信号の送信を無線送信部14に行わせることができる。 Further, in the monitoring device 10 according to the present embodiment, the processing unit 11 reads and executes the program 12a stored in the storage unit 12, whereby the request signal transmission unit 21, the response signal reception unit 22, and the sensor position determination unit 23. And the like are realized as software functional blocks in the processing unit 11. The request signal transmitter 21 controls the operation of the wireless transmitter 14 to request the four sensor devices 30 mounted on the wheels 3 of the vehicle 1 to transmit the tire pressure detection results. Process to send. The request signal transmission unit 21 generates, for example, transmission data including a command for requesting a tire air pressure detection result and supplies the transmission data to the wireless transmission unit 14, thereby request signals having different individual data from the three transmission antennas 51 to 53. Transmission can be performed by the wireless transmission unit 14.
 応答信号受信部22は、無線受信部15が受信した応答信号に対応する受信データを取得すると共に、取得した受信データに含まれる各種の情報を抽出して取得する処理を行う。受信データに含まれる情報は、例えばタイヤ空気圧の検知結果に係る情報、個別データ及びセンサID等の情報である。応答信号受信部22は、取得した情報に基づいて、各車輪3のタイヤ空気圧が正常範囲内であるか否かを判定する処理を行い、正常範囲内でない場合には報知装置8を用いた運転者への報知を行うことができる。タイヤ空気圧の正常範囲については、これを判定するための閾値が記憶部12に予め記憶されている。また応答信号受信部22は、受信データから取得した個別データ及びセンサIDをセンサ位置判定部23へ与える。 The response signal receiving unit 22 acquires received data corresponding to the response signal received by the wireless receiving unit 15 and performs processing for extracting and acquiring various types of information included in the acquired received data. The information included in the received data is, for example, information related to the tire air pressure detection result, individual data, and sensor ID. The response signal receiving unit 22 performs a process of determining whether or not the tire air pressure of each wheel 3 is within the normal range based on the acquired information. If the response signal receiving unit 22 is not within the normal range, the operation using the notification device 8 is performed. Can be notified to the person. For the normal range of the tire pressure, a threshold for determining this is stored in the storage unit 12 in advance. The response signal receiving unit 22 gives the individual data and sensor ID acquired from the received data to the sensor position determining unit 23.
 センサ位置判定部23は、センサ装置30から受信した応答信号に含まれる個別データ及びセンサIDに基づいて、この応答信号を送信したセンサ装置30がいずれの車輪3に設けられたものであるか否か、その搭載位置を判定する処理を行う。センサ位置判定部23は、例えば図6に示したセンサ位置情報12bに基づいて、応答信号に含まれる個別コードが「00」であり、且つ、センサIDがS1である場合、この応答信号の送信元が車両1の右前の車輪3に搭載されたセンサ装置30であると判定することができる。またセンサ位置判定部23は、記憶部12に記憶されたセンサ位置情報12bを参照し、受信した応答信号に含まれる個別データ及びセンサIDの組み合わせが、センサ位置情報12bに記憶された組み合わせのいずれかと一致するか否かを判定する。センサ位置判定部23は、両組み合わせが一致する場合、車輪3の交換などが行われておらず、センサ装置30の位置はセンサ位置情報12bに記憶された位置であると判定する。これに対して両組み合わせが一致しない場合、センサ位置判定部23は、車輪3の交換などが行われたと判断し、新たに取得した個別データ及びセンサIDの組み合わせをセンサ位置情報12bに記憶することで、センサ位置情報12bを更新する。なお監視装置10は、センサ位置情報12bを更新する前に要求信号の送信を再度行い、個別データ及びセンサIDの組み合わせが一致しないことを複数回確認した後にセンサ位置情報12bを更新してもよい。 Based on the individual data and sensor ID included in the response signal received from the sensor device 30, the sensor position determination unit 23 determines which wheel 3 is provided with the sensor device 30 that has transmitted this response signal. Or the process which determines the mounting position is performed. For example, when the individual code included in the response signal is “00” and the sensor ID is S1, the sensor position determination unit 23 transmits the response signal based on the sensor position information 12b illustrated in FIG. It can be determined that the original is the sensor device 30 mounted on the right front wheel 3 of the vehicle 1. The sensor position determination unit 23 refers to the sensor position information 12b stored in the storage unit 12, and the combination of the individual data and the sensor ID included in the received response signal is any of the combinations stored in the sensor position information 12b. It is determined whether or not they match. If both combinations match, the sensor position determination unit 23 determines that the wheel 3 is not exchanged and the position of the sensor device 30 is the position stored in the sensor position information 12b. On the other hand, if the two combinations do not match, the sensor position determination unit 23 determines that the wheel 3 has been replaced, and stores the newly acquired combination of individual data and sensor ID in the sensor position information 12b. Thus, the sensor position information 12b is updated. The monitoring apparatus 10 may transmit the request signal again before updating the sensor position information 12b, and update the sensor position information 12b after confirming that the combination of the individual data and the sensor ID does not match a plurality of times. .
 またセンサ装置30は、監視装置10からの要求信号を受信しない場合であっても、周期的にタイヤ空気圧の検知結果を監視装置10へ送信する。センサ装置30が周期的に送信する信号にはタイヤ空気圧の検知結果に係る情報及びセンサIDが含まれ、個別データは含まれていない。センサ装置30からの周期的な信号を受信した監視装置10の処理部11は、受信した信号を復調して得られた受信データからセンサIDを取得し、センサ位置判定部23へ与える。センサ位置判定部23は、与えられたセンサIDを基に記憶部12のセンサ位置情報12bを参照し、受信した信号が車両1のいずれの位置に搭載されたセンサ装置30からのものであるかを判定する。この場合にセンサ位置判定部23は、車両1の車輪3の交換などは行われていないものとして位置を判定すればよい。 Further, even when the sensor device 30 does not receive the request signal from the monitoring device 10, the sensor device 30 periodically transmits the tire air pressure detection result to the monitoring device 10. The signal periodically transmitted by the sensor device 30 includes information related to the tire air pressure detection result and the sensor ID, and does not include individual data. The processing unit 11 of the monitoring device 10 that has received the periodic signal from the sensor device 30 acquires the sensor ID from the reception data obtained by demodulating the received signal, and provides the sensor ID to the sensor position determination unit 23. The sensor position determination unit 23 refers to the sensor position information 12b of the storage unit 12 based on the given sensor ID, and which position of the vehicle 1 the received signal is from the sensor device 30 mounted on. Determine. In this case, the sensor position determination unit 23 may determine the position on the assumption that the wheel 3 of the vehicle 1 has not been replaced.
 図7は、本実施の形態に係るセンサ装置30の構成を示すブロック図である。本実施の形態に係るセンサ装置30は、制御部(プロセッサ)31、記憶部(ストレージ)32、空気圧検知部33、無線受信部(トランシーバ)34及び無線送信部(トランシーバ)35等を備えて構成されている。制御部31は、例えばCPU又はマイコン(マイクロコンピュータ)等を用いて構成され、センサ装置30の各部の動作を制御する。なお図示は省略するがセンサ装置30は電池を備えており、センサ装置30の各部は電池から供給されている電力により動作する。 FIG. 7 is a block diagram showing a configuration of the sensor device 30 according to the present embodiment. The sensor device 30 according to the present embodiment includes a control unit (processor) 31, a storage unit (storage) 32, an air pressure detection unit 33, a wireless reception unit (transceiver) 34, a wireless transmission unit (transceiver) 35, and the like. Has been. The control unit 31 is configured using, for example, a CPU or a microcomputer (microcomputer), and controls the operation of each unit of the sensor device 30. Although illustration is omitted, the sensor device 30 includes a battery, and each part of the sensor device 30 operates by electric power supplied from the battery.
 記憶部32は、例えばマスクROM(Read Only Memory)又はEEPROM等の不揮発性のメモリ素子を用いて構成されている。本実施の形態において記憶部32は、センサ装置30に対して付されるセンサID32aを記憶している。なお各センサ装置30のセンサIDは、少なくとも、車両1に搭載された4つのセンサ装置30について重複しないように設定される。記憶部32のセンサID32aは、例えばセンサ装置30の製造工程にて記憶されてもよく、車両1の製造工程において記憶されてもよく、これら以外の場所で記憶されてもよい。 The storage unit 32 is configured using a non-volatile memory element such as a mask ROM (Read Only Memory) or an EEPROM. In the present embodiment, the storage unit 32 stores a sensor ID 32 a assigned to the sensor device 30. The sensor ID of each sensor device 30 is set so as not to overlap at least for the four sensor devices 30 mounted on the vehicle 1. The sensor ID 32a of the storage unit 32 may be stored, for example, in the manufacturing process of the sensor device 30, may be stored in the manufacturing process of the vehicle 1, or may be stored in a place other than these.
 空気圧検知部33は、例えばタイヤ内に設けられたダイヤフラムの空気圧に応じた変化量をセンサにて検知することによって、タイヤの空気圧を検知する。空気圧検知部33は、タイヤの空気圧に応じた電気信号を出力する。制御部31は空気圧検知部33が出力する電気信号をサンプリングして取得し、取得した値をタイヤ空気圧の検知結果に係る情報とすることができる。 The air pressure detecting unit 33 detects the air pressure of the tire by detecting, for example, a change amount corresponding to the air pressure of a diaphragm provided in the tire with a sensor. The air pressure detection unit 33 outputs an electrical signal corresponding to the tire air pressure. The control unit 31 can sample and acquire the electrical signal output from the air pressure detection unit 33, and can use the acquired value as information related to the tire pressure detection result.
 無線受信部34は、受信アンテナ34aが接続されている。無線受信部34は、監視装置10が送信するLF帯の無線信号を受信アンテナ34aにて受信し、受信した信号を復調して得られた受信データを制御部31へ与える。また、無線送信部35は、送信アンテナ35aが接続されている。無線送信部35は、制御部31から与えられた送信用のデータを変調した電気信号を送信アンテナ35aへ出力することによって、UHF帯の無線信号を送信する。 The radio reception unit 34 is connected to a reception antenna 34a. The radio reception unit 34 receives the LF band radio signal transmitted from the monitoring device 10 by the reception antenna 34 a, and gives the reception data obtained by demodulating the received signal to the control unit 31. The wireless transmission unit 35 is connected to a transmission antenna 35a. The wireless transmission unit 35 transmits a UHF band wireless signal by outputting, to the transmission antenna 35a, an electric signal obtained by modulating transmission data provided from the control unit 31.
 また本実施の形態に係るセンサ装置30の制御部31には、要求信号受信部41、識別情報取得部42及び応答信号送信部43等の機能ブロックが設けられる。要求信号受信部41は、所定の周期で無線受信部34を動作させることによって、監視装置10からの要求信号の受信の有無を確認する。無線受信部34にて要求信号を受信した場合、要求信号受信部41は、無線受信部34から与えられるデータを取得する事によって、監視装置10が送信した要求信号に係る受信データを取得する。なお車両1には4つのセンサ装置30が搭載されているが、監視装置10からの要求信号の受信の有無を確認するタイミングは4つのセンサ装置30で非同期であり、受信の有無を確認する周期は同じである。 Further, the control unit 31 of the sensor device 30 according to the present embodiment is provided with functional blocks such as a request signal receiving unit 41, an identification information acquiring unit 42, a response signal transmitting unit 43, and the like. The request signal receiving unit 41 confirms whether or not a request signal is received from the monitoring device 10 by operating the wireless receiving unit 34 at a predetermined cycle. When the request signal is received by the wireless reception unit 34, the request signal reception unit 41 acquires the received data related to the request signal transmitted by the monitoring device 10 by acquiring data provided from the wireless reception unit 34. Although four sensor devices 30 are mounted on the vehicle 1, the timing for confirming whether or not the request signal is received from the monitoring device 10 is asynchronous in the four sensor devices 30, and the period for confirming whether or not the signal is received. Are the same.
 識別情報取得部42は、要求信号受信部41が取得した受信データに含まれる個別データを抽出して取得する。応答信号送信部43は、要求信号受信部41が監視装置10からの要求信号に係る受信データを取得した場合に、空気圧検知部33によるタイヤ空気圧の検知結果を取得する。応答信号送信部43は、取得したタイヤ空気圧の検知結果と、識別情報取得部42が取得した個別データと、記憶部32に記憶されたセンサID32aとを含む送信データを生成する。応答信号送信部43は、生成した送信データを無線送信部35へ与えることによって、この送信データを応答信号として監視装置10へ送信する。 The identification information acquisition unit 42 extracts and acquires individual data included in the reception data acquired by the request signal reception unit 41. The response signal transmission unit 43 acquires the tire air pressure detection result by the air pressure detection unit 33 when the request signal reception unit 41 acquires the reception data related to the request signal from the monitoring device 10. The response signal transmission unit 43 generates transmission data including the acquired tire pressure detection result, the individual data acquired by the identification information acquisition unit 42, and the sensor ID 32 a stored in the storage unit 32. The response signal transmission unit 43 sends the generated transmission data to the wireless transmission unit 35, thereby transmitting this transmission data to the monitoring device 10 as a response signal.
 なお本実施の形態においてセンサ装置30は、1回の要求信号の受信に対して、応答信号の送信を3回行う。3回の応答信号の送信間隔はランダムな時間であり、これは制御部31の乱数発生機能及びタイマ機能を用いて実現される。応答信号送信部43は、1回目の応答信号を送信し、ランダムな時間を待機し、2回目の応答信号を送信し、ランダムな時間を待機し、3回目の応答信号を送信する。3回の応答信号の内容は同一である。2回のランダムな待機時間はそれぞれ異なる。応答信号送信部43は、待機の必要が生じる都度、乱数発生機能により待機時間を決定し、決定した待機時間をタイマ機能にてカウントする。 In the present embodiment, the sensor device 30 transmits a response signal three times in response to receiving a request signal once. The transmission interval of the three response signals is a random time, which is realized by using the random number generation function and the timer function of the control unit 31. The response signal transmission unit 43 transmits a first response signal, waits for a random time, transmits a second response signal, waits for a random time, and transmits a third response signal. The contents of the three response signals are the same. The two random waiting times are different. The response signal transmission unit 43 determines the standby time by the random number generation function every time the standby is required, and counts the determined standby time by the timer function.
 またセンサ装置30は、監視装置10からの要求信号を受信しない場合であっても、周期的にタイヤ空気圧の検知結果を監視装置10へ送信する。センサ装置30の制御部31は、所定の周期で空気圧検知部33によるタイヤ空気圧の検知結果を取得する。制御部31は、取得したタイヤ空気圧の検知結果と、記憶部32に記憶されたセンサID32aとを含む送信データを生成して無線送信部35へ与えることによって、監視装置10に対する周期的なタイヤ空気圧の通知を行う。 Further, even when the sensor device 30 does not receive the request signal from the monitoring device 10, the sensor device 30 periodically transmits the tire air pressure detection result to the monitoring device 10. The control unit 31 of the sensor device 30 acquires the tire air pressure detection result by the air pressure detection unit 33 at a predetermined cycle. The control unit 31 generates transmission data including the acquired tire pressure detection result and the sensor ID 32a stored in the storage unit 32 and supplies the transmission data to the wireless transmission unit 35, whereby the periodic tire pressure for the monitoring device 10 is obtained. Notification of.
<通信手順>
 図8は、監視装置10から4つのセンサ装置30への要求信号の送信に係る時間を説明するための模式図である。なお図8には、要求信号及び応答信号の送受信の様子をタイミングチャートとして示しており、上側に送信アンテナ51~53からの要求信号の送信タイミングを示し、下側に4つのセンサ装置30による要求信号の受信タイミングを示している。監視装置10は、例えば車両1のイグニッションスイッチがオフ状態からオン状態へ切り替えられた場合に、センサ装置30への要求信号の送信を行う。このときに監視装置10は、3つの送信アンテナ51~53から同時に要求信号を送信することによって、4つのセンサ装置30に対して同時に要求信号を送信する。
<Communication procedure>
FIG. 8 is a schematic diagram for explaining times related to transmission of request signals from the monitoring device 10 to the four sensor devices 30. FIG. 8 is a timing chart showing how the request signal and the response signal are transmitted and received. The transmission timing of the request signal from the transmission antennas 51 to 53 is shown on the upper side, and the request by the four sensor devices 30 is shown on the lower side. The signal reception timing is shown. For example, when the ignition switch of the vehicle 1 is switched from the off state to the on state, the monitoring device 10 transmits a request signal to the sensor device 30. At this time, the monitoring device 10 transmits request signals to the four sensor devices 30 simultaneously by transmitting request signals from the three transmission antennas 51 to 53 simultaneously.
 監視装置10は、3つの送信アンテナ51~53から要求信号の同時送信を所定時間T1に亘って行う。このときに監視装置10は、タイヤ空気圧に関する情報の送信を要求する命令などと、送信に用いられる送信アンテナ5のアンテナIDに対応する個別データとを含む要求信号を、所定時間T1の間に繰り返して送信する。所定時間T1は、例えば数百ミリ秒~数秒の時間が設定される。 The monitoring apparatus 10 performs simultaneous transmission of request signals from the three transmission antennas 51 to 53 over a predetermined time T1. At this time, the monitoring apparatus 10 repeats a request signal including a command for requesting transmission of information related to tire pressure and individual data corresponding to the antenna ID of the transmission antenna 5 used for transmission during a predetermined time T1. To send. For example, the predetermined time T1 is set to several hundred milliseconds to several seconds.
 監視装置10が3つの送信アンテナ51~53から同時に送信した要求信号は、各車輪3のセンサ装置30にて受信される。各センサ装置30は、無線受信部34による監視装置10からの要求信号の受信を、所定周期T2で繰り返し行っている。即ち各センサ装置30は、所定周期T2が経過する毎に1回の頻度で、監視装置10からの要求信号の有無を確認している。センサ装置30による受信タイミングの所定周期T2は、監視装置10が要求信号を送信する所定時間T1と略同じ時間に設定される。即ち、T2≒T1である。また更に、所定周期T2は所定時間T1以下であることが好ましい。即ち、T2≦T1であることが好ましい。 The request signal transmitted simultaneously from the three transmission antennas 51 to 53 by the monitoring device 10 is received by the sensor device 30 of each wheel 3. Each sensor device 30 repeatedly receives the request signal from the monitoring device 10 by the wireless reception unit 34 at a predetermined cycle T2. That is, each sensor device 30 confirms the presence or absence of a request signal from the monitoring device 10 at a frequency of once every time the predetermined period T2 elapses. The predetermined period T2 of the reception timing by the sensor device 30 is set to substantially the same time as the predetermined time T1 when the monitoring device 10 transmits the request signal. That is, T2≈T1. Furthermore, it is preferable that the predetermined period T2 is not more than the predetermined time T1. That is, it is preferable that T2 ≦ T1.
 また4つのセンサ装置30による要求信号の受信タイミングは、同期が取られておらず、各々のタイミングで行われる。ただしこれは、4つのセンサ装置30の受信タイミングを意図的に同期させる必要はないという程度であり、4つのセンサ装置30の受信タイミングを意図的に相異させる必要はない。各センサ装置30が要求信号を受信する周期T2は数百ミリ秒~数秒であり、1回の受信に要する時間は数ミリ秒程度であるため、4つのセンサ装置30の受信タイミングを意図的に同期させるのでなければ、4つのセンサ装置30の受信タイミングには自ずとずれが生じることが期待される。また仮に複数のセンサ装置30の受信タイミングが一致したとしても、各センサ装置30による要求信号の受信には全く問題はない。このような場合には複数のセンサ装置30による応答信号の送信タイミングが重複するという問題が生じ得るが、本実施の形態に係る車載通信システム100ではその後の応答信号の送信タイミングをずらすことでこれを解決している。 Further, the reception timings of the request signals by the four sensor devices 30 are not synchronized and are performed at each timing. However, this is such that the reception timings of the four sensor devices 30 do not need to be intentionally synchronized, and the reception timings of the four sensor devices 30 do not need to be intentionally different. The period T2 at which each sensor device 30 receives the request signal is several hundred milliseconds to several seconds, and the time required for one reception is about several milliseconds, so the reception timing of the four sensor devices 30 is intentionally set. Unless synchronized, it is expected that the reception timings of the four sensor devices 30 will naturally shift. Even if the reception timings of the plurality of sensor devices 30 coincide, there is no problem in receiving the request signal by each sensor device 30. In such a case, there may be a problem that the transmission timings of the response signals by the plurality of sensor devices 30 overlap, but in the in-vehicle communication system 100 according to the present embodiment, this can be done by shifting the transmission timing of the subsequent response signals. Has solved.
 3つの送信アンテナ51~53から送信された要求信号は、4つのセンサ装置30にて受信される。各センサ装置30は、タイヤ空気圧の検知結果を取得すると共に受信した要求信号から個別データを取得して、タイヤ空気圧の検知結果と、個別データと、自身のセンサIDとを含む応答信号を送信する。図9は、センサ装置30から監視装置10への応答信号の送信に係る時間を説明するための模式図である。なお図9には、横軸を時間tとするタイミングチャートが示してあり、上側に監視装置10による要求信号の送信タイミングを示し、中央にセンサ装置30による要求信号の受信タイミングを示し、下側にセンサ装置30による応答信号の送信タイミングを示している。 Request signals transmitted from the three transmission antennas 51 to 53 are received by the four sensor devices 30. Each sensor device 30 acquires a tire air pressure detection result, acquires individual data from the received request signal, and transmits a response signal including the tire air pressure detection result, the individual data, and its own sensor ID. . FIG. 9 is a schematic diagram for explaining a time related to transmission of a response signal from the sensor device 30 to the monitoring device 10. FIG. 9 shows a timing chart in which the horizontal axis represents time t. The upper side shows the transmission timing of the request signal by the monitoring device 10, the central portion shows the reception timing of the request signal by the sensor device 30, and the lower side. The transmission timing of the response signal by the sensor device 30 is shown in FIG.
 本実施の形態に係る車載通信システム100では、各センサ装置30がランダムな時間を隔てて応答信号を3回送信する。センサ装置30が1回の応答信号を送信する所定時間T3は、監視装置10が要求信号を送信する所定時間T1より十分に短い時間である。即ち、T3<<T1である。応答信号を送信する所定時間T3は、例えば数ミリ秒~数十ミリ秒の時間が設定される。また1回目の応答信号の送信開始から3回目の応答信号の送信完了までの時間は、所定時間T1より短いことが好ましい。このように、センサ装置30がランダムな時間を隔てて応答信号を3回送信することによって、いずれか1回の応答信号の送信に重複が発生した場合であっても、別の2回の応答信号の送信は重複せずに行われることが期待できる。 In the in-vehicle communication system 100 according to the present embodiment, each sensor device 30 transmits a response signal three times at random intervals. The predetermined time T3 for the sensor device 30 to transmit one response signal is a time sufficiently shorter than the predetermined time T1 for the monitoring device 10 to transmit the request signal. That is, T3 << T1. The predetermined time T3 for transmitting the response signal is set to, for example, several milliseconds to several tens of milliseconds. The time from the start of transmission of the first response signal to the completion of transmission of the third response signal is preferably shorter than the predetermined time T1. In this way, even if there is an overlap in the transmission of any one response signal by the sensor device 30 transmitting the response signal three times at random intervals, another two responses Signal transmission can be expected to be performed without duplication.
<フローチャート>
 図10及び図11は、本実施の形態に係る監視装置10が行う通信処理の手順を示すフローチャートである。本実施の形態に係る監視装置10の処理部11は、車両1のイグニッションスイッチがオフ状態からオン状態へ切り替えられたか否かを判定する(ステップS11)。イグニッションスイッチがオフ状態からオン状態へ切り替えられていない場合(S11:NO)、処理部11は、イグニッションスイッチがオフ状態からオン状態へ切り替えられるまで待機する。イグニッションスイッチがオフ状態からオン状態へ切り替えられた場合(S11:YES)、処理部11の要求信号送信部21は、3つの送信アンテナ51~53から、送信アンテナ51~53毎の個別データを含む要求信号を、所定時間T1に亘って送信する(ステップS12)。
<Flowchart>
FIG. 10 and FIG. 11 are flowcharts showing a procedure of communication processing performed by the monitoring apparatus 10 according to the present embodiment. The processing unit 11 of the monitoring device 10 according to the present embodiment determines whether or not the ignition switch of the vehicle 1 has been switched from the off state to the on state (step S11). When the ignition switch is not switched from the off state to the on state (S11: NO), the processing unit 11 waits until the ignition switch is switched from the off state to the on state. When the ignition switch is switched from the off state to the on state (S11: YES), the request signal transmission unit 21 of the processing unit 11 includes individual data for each of the transmission antennas 51 to 53 from the three transmission antennas 51 to 53. The request signal is transmitted over a predetermined time T1 (step S12).
 次いで処理部11の応答信号受信部22は、無線受信部15にていずれかのセンサ装置30からの応答信号を受信したか否かを判定する(ステップS13)。応答信号を受信していない場合(S13:NO)、応答信号受信部22は、応答信号を受信するまで待機する。応答信号を受信した場合(S13:YES)、応答信号受信部22は、受信した応答信号をバッファなどのメモリに一時的に記憶する(ステップS14)。応答信号受信部22は、4つのセンサ装置30の全てから応答信号の受信を完了したか否かを判定する(ステップS15)。全ての応答信号の受信を完了していない場合(S15:NO)、応答信号受信部22は、ステップS13へ処理を戻す。 Next, the response signal receiving unit 22 of the processing unit 11 determines whether or not the response signal from any of the sensor devices 30 is received by the wireless receiving unit 15 (step S13). When the response signal is not received (S13: NO), the response signal receiving unit 22 waits until the response signal is received. When the response signal is received (S13: YES), the response signal receiving unit 22 temporarily stores the received response signal in a memory such as a buffer (step S14). The response signal receiving unit 22 determines whether or not reception of response signals from all of the four sensor devices 30 has been completed (step S15). If reception of all response signals has not been completed (S15: NO), the response signal receiving unit 22 returns the process to step S13.
 全ての応答信号の受信を完了した場合(S15:YES)、処理部11のセンサ位置判定部23は、バッファなどのメモリに蓄積した応答信号に含まれる個別データ及びセンサIDの組み合わせを取得する(ステップS16)。次いでセンサ位置判定部23は、記憶部12に記憶されたセンサ位置情報12bを参照する(ステップS17)。センサ位置判定部23は、応答信号から取得した個別データ及びセンサIDの組み合わせと、センサ位置情報12bに記憶された個別データ及びセンサIDの組み合わせとが一致するか否かを判定する(ステップS18)。両組み合わせが一致する場合(S18:YES)、センサ位置判定部23は、ステップS22へ処理を進める。 When reception of all response signals is completed (S15: YES), the sensor position determination unit 23 of the processing unit 11 acquires a combination of individual data and sensor ID included in the response signal accumulated in a memory such as a buffer ( Step S16). Next, the sensor position determination unit 23 refers to the sensor position information 12b stored in the storage unit 12 (step S17). The sensor position determination unit 23 determines whether or not the combination of the individual data and sensor ID acquired from the response signal matches the combination of the individual data and sensor ID stored in the sensor position information 12b (step S18). . If the two combinations match (S18: YES), the sensor position determination unit 23 proceeds to step S22.
 両組み合わせが一致しない場合(S18:NO)、センサ位置判定部23は、再確認処理を行う(ステップS19)。再確認処理は、各センサ装置30への要求信号の送信から応答信号の受信までをもう一度行い、応答信号に含まれる個別データ及びセンサIDの組み合わせをもう一度取得する処理である。センサ位置判定部23は、再確認処理にて取得した個別データ及びセンサIDの組み合わせと、記憶部12のセンサ位置情報12bに記憶された個別データ及びセンサIDの組み合わせとが一致するか否かを判定する(ステップS20)。両組み合わせが一致する場合(S20:YES)、センサ位置判定部23は、ステップS22へ処理を進める。両組み合わせが一致しない場合(S20:NO)、センサ位置判定部23は、新たに応答信号から取得した個別データ及びセンサIDの組み合わせをセンサ位置情報12bに記憶することによって、センサ位置情報12bを更新し(ステップS21)、ステップS22へ処理を進める。 If the combinations do not match (S18: NO), the sensor position determination unit 23 performs reconfirmation processing (step S19). The reconfirmation process is a process of performing again from transmission of a request signal to each sensor device 30 to reception of a response signal, and again acquiring a combination of individual data and sensor ID included in the response signal. The sensor position determination unit 23 determines whether or not the combination of the individual data and sensor ID acquired in the reconfirmation process matches the combination of the individual data and sensor ID stored in the sensor position information 12b of the storage unit 12. Determination is made (step S20). If the two combinations match (S20: YES), the sensor position determination unit 23 proceeds to step S22. When the two combinations do not match (S20: NO), the sensor position determination unit 23 updates the sensor position information 12b by storing the combination of the individual data and the sensor ID newly acquired from the response signal in the sensor position information 12b. (Step S21), the process proceeds to Step S22.
 処理部11は、車両1の4つの車輪3について、バッファなどのメモリに蓄積した応答信号に含まれるタイヤ空気圧の検知結果を取得する(ステップS22)。処理部11は、取得したタイヤ空気圧の検知結果と、予め記憶した閾値とを比較することによって、タイヤ空気圧に異常があるか否かを判定する(ステップS23)。タイヤ空気圧に異常がある場合(S23:YES)、処理部11のセンサ位置判定部23は、異常があると判定したタイヤ空気圧の検知結果と共に応答信号に含まれていた個別コード及びセンサIDを取得して記憶部12に記憶されたセンサ位置情報12bを参照することにより、異常がある車輪3の位置を判定する(ステップS24)。次いで処理部11は、有線通信部13にて報知装置8へ報知を行う命令を送信することにより、車輪3の位置を示してタイヤ空気圧に異常がある旨を運転者に報知し(ステップS25)、処理を終了する。タイヤ空気圧に異常がない場合(S23:NO)、処理部11は、報知を行うことなく、処理を終了する。 The processing unit 11 acquires the tire air pressure detection result included in the response signal stored in a memory such as a buffer for the four wheels 3 of the vehicle 1 (step S22). The processing unit 11 determines whether or not there is an abnormality in the tire air pressure by comparing the acquired tire air pressure detection result with a threshold value stored in advance (step S23). When the tire pressure is abnormal (S23: YES), the sensor position determination unit 23 of the processing unit 11 acquires the individual code and sensor ID included in the response signal together with the tire pressure detection result determined to be abnormal. The position of the wheel 3 having an abnormality is determined by referring to the sensor position information 12b stored in the storage unit 12 (step S24). Next, the processing unit 11 transmits a command for notification to the notification device 8 through the wired communication unit 13, thereby indicating the position of the wheel 3 and notifying the driver that there is an abnormality in the tire pressure (step S25). The process is terminated. When there is no abnormality in the tire pressure (S23: NO), the processing unit 11 ends the process without performing notification.
 図12は、本実施の形態に係るセンサ装置30が行う通信処理の手順を示すフローチャートである。本実施の形態に係るセンサ装置30の制御部31は、タイマ機能により所定周期T2を計時しており、無線信号の受信の有無を確認するタイミングに至ったか否かを判定する(ステップS31)。受信タイミングに至っていない場合(S31:NO)、制御部31は、所定周期T2が経過して受信タイミングに至るまで待機する。受信タイミングに至った場合(S31:YES)、制御部31の要求信号受信部41は、無線受信部34にて無線信号の受信処理を行う(ステップS32)。要求信号受信部41は、無線受信部34にて監視装置10からの要求信号を受信したか否かを判定する(ステップS33)。要求信号を受信していない場合(S33:NO)、要求信号受信部41は、ステップS31へ処理を戻す。 FIG. 12 is a flowchart showing a communication process performed by the sensor device 30 according to the present embodiment. The control unit 31 of the sensor device 30 according to the present embodiment measures the predetermined period T2 by the timer function, and determines whether or not the timing for confirming whether or not a radio signal is received has been reached (step S31). When the reception timing has not been reached (S31: NO), the control unit 31 stands by until the predetermined period T2 has elapsed and the reception timing is reached. When the reception timing is reached (S31: YES), the request signal receiving unit 41 of the control unit 31 performs a radio signal reception process in the radio receiving unit 34 (step S32). The request signal receiver 41 determines whether or not the wireless receiver 34 has received a request signal from the monitoring device 10 (step S33). When the request signal has not been received (S33: NO), the request signal receiving unit 41 returns the process to step S31.
 要求信号を受信した場合(S33:YES)、制御部31の識別情報取得部42は、受信した要求信号に含まれる個別データを取得する(ステップS34)。制御部31の応答信号送信部43は、空気圧検知部33によるタイヤ空気圧の検知結果を取得する(ステップS35)。また応答信号送信部43は、記憶部32に記憶されたセンサID32aを取得する(ステップS36)。 When the request signal is received (S33: YES), the identification information acquisition unit 42 of the control unit 31 acquires the individual data included in the received request signal (step S34). The response signal transmission unit 43 of the control unit 31 acquires a tire air pressure detection result by the air pressure detection unit 33 (step S35). Moreover, the response signal transmission part 43 acquires sensor ID32a memorize | stored in the memory | storage part 32 (step S36).
 次いで応答信号送信部43は、ステップS35にて取得したタイヤ空気圧の検知結果と、ステップS34にて取得した個別コードと、ステップS36にて取得したセンサIDとを含む応答信号を、無線送信部35にて監視装置10へ送信する(ステップS37)。応答信号の送信完了後、応答信号送信部43は、乱数発生機能により発生させた乱数に応じて待機時間を決定し、決定した待機時間をタイマ機能により計時することによって、ランダムな時間を待機する(ステップS38)。ランダム時間の待機後、応答信号送信部43は、同じ内容の応答信号を無線送信部35にて送信する(ステップS39)。応答信号の送信完了後、応答信号送信部43は、再度決定したランダムな時間を待機する(ステップS40)。ランダム時間の待機後、応答信号送信部43は、同じ内容の応答信号を無線送信部35にて送信し(ステップS41)、応答信号送信処理を終了する。 Next, the response signal transmission unit 43 transmits a response signal including the tire air pressure detection result acquired in step S35, the individual code acquired in step S34, and the sensor ID acquired in step S36 to the wireless transmission unit 35. To the monitoring device 10 (step S37). After completing the transmission of the response signal, the response signal transmission unit 43 determines a standby time according to the random number generated by the random number generation function, and waits for a random time by counting the determined standby time by the timer function. (Step S38). After waiting for the random time, the response signal transmission unit 43 transmits the response signal having the same content in the wireless transmission unit 35 (step S39). After completing the transmission of the response signal, the response signal transmission unit 43 waits for the determined random time again (step S40). After waiting for the random time, the response signal transmission unit 43 transmits the response signal having the same content in the wireless transmission unit 35 (step S41), and ends the response signal transmission process.
 図13は、本実施の形態に係るセンサ装置30が行う周期通知信号の送信処理の手順を示すフローチャートである。本実施の形態に係るセンサ装置30は、所定の周期でタイヤ空気圧の検知結果を通知する周期通知信号を監視装置10へ送信する処理を行っている。センサ装置30の制御部31は、所定の周期が経過してタイヤ空気圧の検知結果を送信するタイミングに至ったか否かを判定する(ステップS51)。送信タイミングに至っていないと判定した場合(S51:NO)、制御部31は、送信タイミングに至るまで待機する。 FIG. 13 is a flowchart illustrating a procedure of a cycle notification signal transmission process performed by the sensor device 30 according to the present embodiment. The sensor device 30 according to the present embodiment performs a process of transmitting a cycle notification signal for notifying a tire air pressure detection result to the monitoring device 10 at a predetermined cycle. The control unit 31 of the sensor device 30 determines whether or not the predetermined period has passed and the timing for transmitting the tire air pressure detection result has been reached (step S51). If it is determined that the transmission timing has not been reached (S51: NO), the control unit 31 waits until the transmission timing is reached.
 送信タイミングに至った場合(S51:YES)、制御部31は、空気圧検知部33によるタイヤ空気圧の検知結果を取得する(ステップS52)。また制御部31は、記憶部32に記憶されたセンサID32aを取得する(ステップS53)。次いで制御部31は、ステップS52にて取得したタイヤ空気圧の検知結果と、ステップS53にて取得したセンサIDとを含む周期通知信号を、無線送信部35にて監視装置10へ送信し(ステップS54)、処理を終了する。 When the transmission timing is reached (S51: YES), the control unit 31 acquires the detection result of the tire air pressure by the air pressure detection unit 33 (step S52). Moreover, the control part 31 acquires sensor ID32a memorize | stored in the memory | storage part 32 (step S53). Next, the control unit 31 transmits a cycle notification signal including the tire air pressure detection result acquired in step S52 and the sensor ID acquired in step S53 to the monitoring device 10 by the wireless transmission unit 35 (step S54). ), The process is terminated.
 図14は、本実施の形態に係る監視装置10が行う周期通知信号の受信処理の手順を示すフローチャートである。本実施の形態に係る監視装置10の処理部11は、無線受信部15にていずれかのセンサ装置30からの周期通知信号を受信したか否かを判定する(ステップS61)。周期通知信号を受信していない場合(S61:NO)、処理部11は、周期通知信号を受信するまで待機する。 FIG. 14 is a flowchart showing a procedure of a period notification signal reception process performed by the monitoring apparatus 10 according to the present embodiment. The processing unit 11 of the monitoring apparatus 10 according to the present embodiment determines whether the wireless reception unit 15 has received a period notification signal from any of the sensor devices 30 (step S61). When the period notification signal has not been received (S61: NO), the processing unit 11 stands by until the period notification signal is received.
 周期通知信号を受信した場合(S61:YES)、処理部11は、受信した周期通知信号に含まれるセンサIDを取得する(ステップS62)。また処理部11は、記憶部12に記憶されたセンサ位置情報12bを参照する(ステップS63)。処理部11は、ステップS62にて取得したセンサIDに対応付けてセンサ位置情報12bに記憶された位置を取得することにより、受信した周期通知信号の送信元のセンサ装置30が搭載されている車輪3の位置を判定する(ステップS64)。 When the periodic notification signal is received (S61: YES), the processing unit 11 acquires the sensor ID included in the received periodic notification signal (step S62). The processing unit 11 refers to the sensor position information 12b stored in the storage unit 12 (step S63). The processing unit 11 acquires the position stored in the sensor position information 12b in association with the sensor ID acquired in step S62, so that the wheel on which the sensor device 30 that is the transmission source of the received periodic notification signal is mounted. 3 is determined (step S64).
 次いで処理部11は、受信した周期通知信号に含まれるタイヤ空気圧の検知結果を取得する(ステップS65)。処理部11は、取得したタイヤ空気圧の検知結果と、予め記憶した閾値とを比較することによって、タイヤ空気圧に異常があるか否かを判定する(ステップS66)。タイヤ空気圧に異常がある場合(S66:YES)、処理部11は、有線通信部13にて報知装置8へ報知を行う命令を送信することにより、車輪3の位置を示してタイヤ空気圧に異常がある旨を運転者に報知し(ステップS67)、処理を終了する。タイヤ空気圧に異常がない場合(S66:NO)、処理部11は、報知を行うことなく、処理を終了する。 Next, the processing unit 11 acquires a tire air pressure detection result included in the received cycle notification signal (step S65). The processing unit 11 determines whether or not there is an abnormality in the tire pressure by comparing the acquired tire pressure detection result with a threshold value stored in advance (step S66). When there is an abnormality in the tire pressure (S66: YES), the processing unit 11 indicates the position of the wheel 3 by transmitting a command for notification to the notification device 8 through the wired communication unit 13, and the tire pressure is abnormal. The driver is notified of this (step S67), and the process is terminated. When there is no abnormality in the tire air pressure (S66: NO), the processing unit 11 ends the process without performing notification.
<まとめ>
 以上の構成の本実施の形態に係る車載通信システム100では、車両1の車体には監視装置10が設けられ、車両1の4つの車輪3にはそれぞれセンサ装置30が設けられている。車体には3つの送信アンテナ51~53が離隔して配置され、監視装置10は送信アンテナ51~53を用いて4つのセンサ装置30へ無線信号を送信する。また車体には4つのセンサ装置30に対して共通の受信アンテナ6が設けられ、監視装置10は受信アンテナ6を用いてセンサ装置30からの無線信号を受信する。
<Summary>
In the in-vehicle communication system 100 according to the present embodiment having the above configuration, the monitoring device 10 is provided on the vehicle body of the vehicle 1, and the sensor device 30 is provided on each of the four wheels 3 of the vehicle 1. Three transmission antennas 51 to 53 are spaced apart from each other on the vehicle body, and the monitoring device 10 transmits radio signals to the four sensor devices 30 using the transmission antennas 51 to 53. The vehicle body is provided with a common receiving antenna 6 for the four sensor devices 30, and the monitoring device 10 receives a radio signal from the sensor device 30 using the receiving antenna 6.
 3つの送信アンテナ51~53にはそれぞれ異なるアンテナID(個別データ)が割り当てられる。監視装置10は、個別データを含む送信データを送信アンテナ51~53毎に生成し、この送信データを変調した要求信号を3つの送信アンテナ51~53から同時に送信する。異なる個別データを含む要求信号を3つの送信アンテナ51~53から同時に送信することによって、3つの要求信号は適宜に重畳されてセンサ装置30にて受信される。重畳された要求信号が各センサ装置30にて受信される際の波形は、3つの送信アンテナ51~53に対するセンサ装置30の距離及び位置等に応じて変化する。センサ装置30は、重畳された要求信号を受信し、受信した要求信号に含まれる個別データを取得し、取得した個別データを含む応答信号を監視装置10へ送信する。 Different antenna IDs (individual data) are assigned to the three transmission antennas 51 to 53, respectively. The monitoring apparatus 10 generates transmission data including individual data for each of the transmission antennas 51 to 53, and simultaneously transmits request signals obtained by modulating the transmission data from the three transmission antennas 51 to 53. By simultaneously transmitting request signals including different individual data from the three transmission antennas 51 to 53, the three request signals are appropriately superimposed and received by the sensor device 30. The waveform when the superimposed request signal is received by each sensor device 30 changes according to the distance and position of the sensor device 30 with respect to the three transmission antennas 51 to 53. The sensor device 30 receives the superimposed request signal, acquires individual data included in the received request signal, and transmits a response signal including the acquired individual data to the monitoring device 10.
 監視装置10は、センサ装置30からの応答信号を受信し、受信した応答信号に含まれる個別データを取得する。監視装置10が受信する応答信号に含まれる個別データは、一又は複数の個別データが重畳されたものとなる。このため監視装置10は、応答信号に含まれる個別データに基づいて、この応答信号の送信元のセンサ装置30が4つの車輪3のいずれに搭載されているものであるかを判定することができる。 The monitoring device 10 receives the response signal from the sensor device 30 and acquires individual data included in the received response signal. The individual data included in the response signal received by the monitoring device 10 is obtained by superimposing one or a plurality of individual data. Therefore, the monitoring device 10 can determine which of the four wheels 3 the sensor device 30 that is the transmission source of the response signal is mounted on the basis of the individual data included in the response signal. .
 これにより監視装置10は、例えば4つのセンサ装置30と順番に無線通信を行う構成と比較して、4つのセンサ装置30への要求信号の送信を同時に行うことができるため、4つのセンサ装置30との無線通信に要する時間を短縮することができる。 As a result, the monitoring device 10 can transmit request signals to the four sensor devices 30 at the same time, for example, compared with a configuration in which wireless communication is sequentially performed with the four sensor devices 30, for example. The time required for wireless communication can be reduced.
 また本実施の形態に係る車載通信システム100では、監視装置10が個別データを含む送信データをASK変調方式で変調して要求信号を生成する。ASK変調方式は、デジタルデータに含まれる各ビットを、0/1の値に応じた振幅に変調する方式であり、値が異なる複数の信号が重畳された場合には振幅が変化する。各センサ装置30にて受信される要求信号の振幅を適宜の閾値で判定した場合、この要求信号から取得される個別データは重畳の有無及び重畳された信号の数等に依存して変化する。このため各センサ装置30にて受信された要求信号に含まれる個別データに基づいて、各センサ装置30の位置を判定することができる。 In the in-vehicle communication system 100 according to the present embodiment, the monitoring device 10 modulates transmission data including individual data by the ASK modulation method to generate a request signal. The ASK modulation method is a method of modulating each bit included in digital data to an amplitude corresponding to a value of 0/1, and the amplitude changes when a plurality of signals having different values are superimposed. When the amplitude of the request signal received by each sensor device 30 is determined with an appropriate threshold, the individual data acquired from the request signal changes depending on the presence / absence of superimposition, the number of superimposed signals, and the like. Therefore, the position of each sensor device 30 can be determined based on the individual data included in the request signal received by each sensor device 30.
 また本実施の形態においては、車両1には車体の右前、右後、左前及び左後の4ヶ所に車輪3が設けられる。車両1の車体には、右側に寄せて設けた送信アンテナ51、左側に寄せて設けた送信アンテナ52、及び、後側に寄せて設けた送信アンテナ53が備えられる。これにより、右側の車輪3に設けられたセンサ装置30には右側の送信アンテナ51からの無線信号が受信され、左側の車輪3に設けられたセンサ装置30には左側の送信アンテナ52からの無線信号が受信され、後側の車輪3に設けられたセンサ装置30には後側の送信アンテナ53からの無線信号が受信されることが期待できる。これにより、各センサ装置30が1つ又は2つの送信アンテナ51~53からの無線信号を受信することが期待できる。 Further, in the present embodiment, the vehicle 1 is provided with wheels 3 at four locations on the right front, right rear, left front and left rear of the vehicle body. The vehicle body of the vehicle 1 includes a transmission antenna 51 provided close to the right side, a transmission antenna 52 provided close to the left side, and a transmission antenna 53 provided close to the rear side. Thus, the sensor device 30 provided on the right wheel 3 receives a radio signal from the right transmission antenna 51, and the sensor device 30 provided on the left wheel 3 receives the radio signal from the left transmission antenna 52. A signal is received, and it can be expected that the sensor device 30 provided on the rear wheel 3 receives a radio signal from the rear transmission antenna 53. Thereby, it can be expected that each sensor device 30 receives radio signals from one or two transmission antennas 51 to 53.
 また本実施の形態においては、右側の送信アンテナ51から送信される要求信号の送信範囲51aに、右前及び右後の車輪3を含み、且つ、左前及び左後の車輪3を含まない。また左側の送信アンテナ52から送信される要求信号の送信範囲52aに、左前及び左後の車輪3を含み、且つ、右前及び右後の車輪3を含まない。また後側の送信アンテナ53から送信される要求信号の送信範囲53aに、右後及び左後の車輪3を含み、且つ、右前及び左前の車輪3を含まない。これらにより、右前の車輪3に設けられたセンサ装置30は、右側の送信アンテナ51からの要求信号を受信する。左前の車輪3に設けられたセンサ装置30は、左側の送信アンテナ52からの要求信号を受信する。右後の車輪3に設けられたセンサ装置30は、右側の送信アンテナ51からの要求信号と後側の送信アンテナ53からの要求信号とが重畳された信号を受信する。左後の車輪に設けられたセンサ装置30は、左側の送信アンテナ52からの要求信号と後側の送信アンテナ53からの要求信号とが重畳された信号を受信する。よって、4つのセンサ装置30が受信する要求信号をそれぞれ異なるものとすることができる。 In the present embodiment, the transmission range 51a of the request signal transmitted from the right transmission antenna 51 includes the right front and right rear wheels 3 and does not include the left front and left rear wheels 3. The transmission range 52a of the request signal transmitted from the left transmission antenna 52 includes the left front and left rear wheels 3 and does not include the right front and right rear wheels 3. The transmission range 53a of the request signal transmitted from the rear transmission antenna 53 includes the right rear and left rear wheels 3, and does not include the right front and left front wheels 3. Accordingly, the sensor device 30 provided on the right front wheel 3 receives the request signal from the right transmitting antenna 51. The sensor device 30 provided on the left front wheel 3 receives a request signal from the left transmission antenna 52. The sensor device 30 provided on the right rear wheel 3 receives a signal in which a request signal from the right transmission antenna 51 and a request signal from the rear transmission antenna 53 are superimposed. The sensor device 30 provided on the left rear wheel receives a signal in which a request signal from the left transmission antenna 52 and a request signal from the rear transmission antenna 53 are superimposed. Therefore, the request signals received by the four sensor devices 30 can be different from each other.
 また本実施の形態においては、車両1の車輪3に設けられた4つのセンサ装置30は、それぞれ異なるタイミングで監視装置10からの要求信号を受信する。これにより、要求信号の受信に応じた各センサ装置30の応答信号の送信タイミングを異なるタイミングとすることができ、4つのセンサ装置30による応答信号の送信が重複して行われることを回避できる。 In the present embodiment, the four sensor devices 30 provided on the wheels 3 of the vehicle 1 receive request signals from the monitoring device 10 at different timings. Thereby, the transmission timing of the response signal of each sensor device 30 according to reception of the request signal can be set to a different timing, and the transmission of the response signal by the four sensor devices 30 can be avoided.
 また本実施の形態においては、センサ装置30がランダムな時間を隔てて応答信号を3回送信する。これにより、例えば複数のセンサ装置30による応答信号の送信が重複した場合であっても、その後の応答信号の送信は異なるタイミングで行われることが期待できるため、監視装置10が4つのセンサ装置30からの応答信号を受信できる可能性が高まる。 In the present embodiment, the sensor device 30 transmits a response signal three times at random intervals. Thereby, for example, even when transmission of response signals by a plurality of sensor devices 30 overlaps, it is expected that the subsequent transmission of response signals is performed at different timings. The possibility of receiving a response signal from is increased.
 また本実施の形態においては、センサ装置30が受信した要求信号に含まれる個別データと共に、自身に付されたセンサIDを応答信号に含めて送信する。監視装置10は、センサ装置30からの応答信号に含まれる個別コード及びセンサIDに基づいて、応答信号の送信元のセンサ装置30を判定する。監視装置10は、例えば個別コード及びセンサIDと各センサIDの搭載位置との対応をセンサ位置情報12bとして記憶しておくことにより、受信した応答信号に含まれる個別コード及びセンサIDに基づいて、送信元のセンサ装置30が車両1のいずれの車輪3に設けられたものであるかを判定することができる。 In the present embodiment, the sensor ID attached to the sensor device 30 is transmitted together with the individual data included in the request signal received by the sensor device 30. The monitoring device 10 determines the sensor device 30 that is the transmission source of the response signal based on the individual code and the sensor ID included in the response signal from the sensor device 30. Based on the individual code and sensor ID included in the received response signal, for example, the monitoring device 10 stores the correspondence between the individual code and sensor ID and the mounting position of each sensor ID as the sensor position information 12b. It can be determined on which wheel 3 of the vehicle 1 the sensor device 30 of the transmission source is provided.
 なお本実施の形態においては、監視装置10からセンサ装置30へLF帯の無線信号を送信し、センサ装置30から監視装置10へUHF帯又はRF帯の無線信号を送信する構成としたが、これに限るものではなく、無線通信の周波数帯は適宜に設定すればよい。また監視装置10がASK変調方式にて変調を行う構成としたが、これに限るものではなく、ASK変調方式以外の変調方式で変調を行う構成であってよい。またセンサ装置30から監視装置10への無線信号の送信については、どのような変調方式を採用してもよい。また本実施の形態においては、4つの車輪3を有する車両1を例に説明したが、3つ以下又は5つ以上の車輪3を有する車両1についても本技術を適用してよい。 In the present embodiment, a radio signal in the LF band is transmitted from the monitoring device 10 to the sensor device 30 and a radio signal in the UHF band or the RF band is transmitted from the sensor device 30 to the monitoring device 10. The frequency band for wireless communication may be set as appropriate. Moreover, although the monitoring apparatus 10 is configured to perform modulation using the ASK modulation method, the present invention is not limited thereto, and may be configured to perform modulation using a modulation method other than the ASK modulation method. Further, any modulation method may be adopted for transmission of a radio signal from the sensor device 30 to the monitoring device 10. In the present embodiment, the vehicle 1 having four wheels 3 has been described as an example. However, the present technology may be applied to a vehicle 1 having three or less or five or more wheels 3.
 また本実施の形態に係る車載通信システム100が備える3つの送信アンテナ51~53は、上述のようなタイヤ空気圧監視システムとしての処理に用いられるのみでなく、例えばユーザが所持する携帯キーとの無線通信に応じて車両1のドアのロック/アンロックを制御するドアロック制御システムに用いられる。図15は、本実施の形態に係る送信アンテナ51~53の共有を説明するための模式図である。例えば車両1には、上述の車載通信システム100と共に、車両1のドアのロック/アンロックを制御するドアロック制御システム101が搭載されている。ドアロック制御システム101は、ロック制御装置90及びロック機構91を備えている。ロック制御装置90は、3つの送信アンテナ51~53と1つの受信アンテナ6とを用いてユーザが所持する携帯キー92との間で無線通信を行う。ロック制御装置90は、正規の携帯キー92との間で無線通信が成立した場合、ロック機構91にドアのロック/アンロックを行う命令を出力する。ロック機構91は、ロック制御装置90から与えられる命令に応じて、車両1の各ドアに設けられたアクチュエータなどを動作させることにより、ドアのロック/アンロックを実施する。 Further, the three transmission antennas 51 to 53 provided in the in-vehicle communication system 100 according to the present embodiment are not only used for processing as the tire pressure monitoring system as described above, but also, for example, wirelessly with a portable key possessed by the user. It is used for a door lock control system that controls locking / unlocking of the door of the vehicle 1 according to communication. FIG. 15 is a schematic diagram for explaining sharing of transmission antennas 51 to 53 according to the present embodiment. For example, the vehicle 1 includes a door lock control system 101 that controls locking / unlocking of the door of the vehicle 1 together with the above-described in-vehicle communication system 100. The door lock control system 101 includes a lock control device 90 and a lock mechanism 91. The lock control device 90 performs wireless communication with the portable key 92 possessed by the user using the three transmission antennas 51 to 53 and one reception antenna 6. The lock control device 90 outputs a command for locking / unlocking the door to the lock mechanism 91 when wireless communication is established with the regular portable key 92. The lock mechanism 91 locks / unlocks the door by operating an actuator or the like provided on each door of the vehicle 1 in accordance with a command given from the lock control device 90.
 車載通信システム100及びドアロック制御システム101が3つの送信アンテナ51~53を共用することによって、車両1に搭載されるアンテナの数を低減することができる。一般的に、ドアロック制御システムに用いられるLF帯の無線信号の送信用アンテナは車両の右側、左側及び後側に設けられる場合が多いため、上述の車載通信システム100が要求信号を送信するための送信アンテナ51~53との共有が好適である。 Since the in-vehicle communication system 100 and the door lock control system 101 share the three transmission antennas 51 to 53, the number of antennas mounted on the vehicle 1 can be reduced. Generally, antennas for transmitting radio signals in the LF band used for door lock control systems are often provided on the right side, left side, and rear side of a vehicle, so that the above-described in-vehicle communication system 100 transmits a request signal. Sharing with the other transmission antennas 51 to 53 is preferable.
 なお、車載通信システム100及びドアロック制御システム101が送信アンテナ51~53を共用する場合には、両システムで同時に送信アンテナ51~53を使用することはできないため、何らかの条件に応じて送信アンテナ51~53を使用するシステムを切り替える必要がある。例えば車両1のイグニッションスイッチがオフ状態の場合にはドアロック制御システム101が送信アンテナ51~53を使用し、イグニッションスイッチがオン状態の場合には車載通信システム100が送信アンテナ51~53を使用する構成とすることができる。ただし切り替えの条件はイグニッションスイッチの状態に限らず、これ以外の種々の条件としてよい。 Note that when the in-vehicle communication system 100 and the door lock control system 101 share the transmission antennas 51 to 53, the transmission antennas 51 to 53 cannot be used simultaneously in both systems. It is necessary to switch the system using ~ 53. For example, when the ignition switch of the vehicle 1 is off, the door lock control system 101 uses the transmission antennas 51 to 53, and when the ignition switch is on, the in-vehicle communication system 100 uses the transmission antennas 51 to 53. It can be configured. However, the switching condition is not limited to the state of the ignition switch, and may be various other conditions.
 今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is defined not by the above-described meaning but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1 車両
 3 車輪
 6 受信アンテナ(受信用アンテナ)
 8 報知装置
 10 監視装置(車載通信装置、車体側通信装置)
 11 処理部
 12 記憶部
 12a プログラム(通信プログラム)
 12b センサ位置情報
 13 有線通信部
 14 無線送信部(生成部)
 15 無線受信部(復調部)
 21 要求信号送信部
 22 応答信号受信部
 23 センサ位置判定部(判定部)
 30 センサ装置(車輪側通信装置)
 31 制御部
 32 記憶部
 32a センサID
 33 空気圧検知部
 34 無線受信部
 34a 受信アンテナ
 35 無線送信部
 35a 送信アンテナ
 41 要求信号受信部
 42 識別情報取得部
 43 応答信号送信部
 51~53 送信アンテナ(送信用アンテナ)
 51a~53a 送信範囲
 90 ロック制御装置
 91 ロック機構
 92 携帯キー
 100 車載通信システム
 101 ドアロック制御システム
 
1 vehicle 3 wheel 6 receiving antenna (receiving antenna)
8 Notification device 10 Monitoring device (vehicle communication device, vehicle body side communication device)
11 Processing Unit 12 Storage Unit 12a Program (Communication Program)
12b Sensor position information 13 Wired communication unit 14 Wireless transmission unit (generation unit)
15 Radio receiver (demodulator)
21 Request signal transmission unit 22 Response signal reception unit 23 Sensor position determination unit (determination unit)
30 Sensor device (wheel side communication device)
31 Control Unit 32 Storage Unit 32a Sensor ID
33 Air Pressure Detection Unit 34 Wireless Reception Unit 34a Reception Antenna 35 Wireless Transmission Unit 35a Transmission Antenna 41 Request Signal Reception Unit 42 Identification Information Acquisition Unit 43 Response Signal Transmission Unit 51 to 53 Transmission Antenna (Transmission Antenna)
51a to 53a Transmission range 90 Lock control device 91 Lock mechanism 92 Portable key 100 In-vehicle communication system 101 Door lock control system

Claims (11)

  1.  車両に離隔して配置された複数の送信用アンテナ、及び、前記車両に設けられた受信用アンテナを用いて、前記車両の複数の車輪にそれぞれ設けられた複数の車輪側通信装置との間で無線通信を行う車載通信装置において、
     前記送信用アンテナ毎に定められた識別情報を含む送信データを変調することで要求信号を生成する生成部と、
     前記生成部が生成した前記送信用アンテナ毎の要求信号を、各送信用アンテナから同時に送信する要求信号送信部と、
     前記要求信号送信部が送信した前記要求信号を受信した前記車輪側通信装置が前記要求信号に含まれる識別情報を含めて送信する応答信号を、前記受信用アンテナを用いて受信する応答信号受信部と、
     前記応答信号受信部が受信した応答信号を復調する復調部と、
     前記復調部が復調した受信データに含まれる識別情報に基づいて、前記応答信号の送信元の前記車輪側通信装置が前記複数の車輪のいずれに搭載されているかを判定する判定部と
     を備える車載通信装置。
    Using a plurality of transmitting antennas arranged at a distance from the vehicle and a receiving antenna provided on the vehicle, a plurality of wheel side communication devices respectively provided on a plurality of wheels of the vehicle. In an in-vehicle communication device that performs wireless communication,
    A generation unit that generates a request signal by modulating transmission data including identification information determined for each of the transmission antennas;
    A request signal transmission unit that transmits the request signal for each of the transmission antennas generated by the generation unit simultaneously from each transmission antenna;
    A response signal receiving unit that receives, using the receiving antenna, a response signal that the wheel side communication device that has received the request signal transmitted by the request signal transmitting unit transmits including the identification information included in the request signal. When,
    A demodulator that demodulates the response signal received by the response signal receiver;
    On-vehicle vehicle comprising: a determination unit that determines on which of the plurality of wheels the wheel-side communication device that is the transmission source of the response signal is based on identification information included in the reception data demodulated by the demodulation unit Communication device.
  2.  前記生成部は、前記送信データをASK(Amplitude Shift Keying)変調方式で変調する、請求項1に記載の車載通信装置。 The in-vehicle communication device according to claim 1, wherein the generation unit modulates the transmission data by an ASK (Amplitude Shift Keying) modulation method.
  3.  前記車両には車体の右前、右後、左前及び左後にそれぞれ前記車輪が設けられており、
     前記複数の送信用アンテナには、前記車体の右側に寄せて設けられた右側送信用アンテナと、前記車体の左側に寄せて設けられた左側送信用アンテナと、前記車体の後側に寄せて設けられた後側送信用アンテナとを含む、請求項1又は請求項2に記載の車載通信装置。
    The vehicle is provided with the wheels on the right front, right rear, left front and left rear of the vehicle body,
    The plurality of transmitting antennas are provided with a right transmitting antenna provided near the right side of the vehicle body, a left transmitting antenna provided near the left side of the vehicle body, and a rear side of the vehicle body. The in-vehicle communication device according to claim 1, further comprising a rear transmission antenna.
  4.  前記右側送信用アンテナから送信される前記応答信号の送信範囲に、右前及び右後の前記車輪を含み、且つ、左前及び左後の前記車輪を含まず、
     前記左側送信用アンテナから送信される前記応答信号の送信範囲に、左前及び左後の前記車輪を含み、且つ、右前及び右後の前記車輪を含まず、
     前記後側送信用アンテナから送信される前記応答信号の送信範囲に、右後及び左後の前記車輪を含み、且つ、右前及び左前の前記車輪を含まない、請求項3に記載の車載通信装置。
    The transmission range of the response signal transmitted from the right transmitting antenna includes the right front and right rear wheels, and does not include the left front and left rear wheels.
    The transmission range of the response signal transmitted from the left transmitting antenna includes the left front and left rear wheels, and does not include the right front and right rear wheels.
    The in-vehicle communication device according to claim 3, wherein a transmission range of the response signal transmitted from the rear transmission antenna includes the right rear and left rear wheels and does not include the right front and left front wheels. .
  5.  前記送信用アンテナは、可搬型通信器との間で無線通信を行って前記車両のドアロックを制御するシステムと共用のアンテナである、請求項3又は請求項4に記載の車載通信装置。 The in-vehicle communication device according to claim 3 or 4, wherein the transmitting antenna is an antenna shared with a system that controls a door lock of the vehicle by performing wireless communication with a portable communication device.
  6.  車両の複数の車輪にそれぞれ設けられた複数の車輪側通信装置と、
     前記車両に離隔して配置された複数の送信用アンテナ、及び、前記車両に設けられた受信用アンテナを用いて、前記複数の車輪側通信装置との間で無線通信を行う車体側通信装置と
     を備え、
     前記車体側通信装置は、
     前記送信用アンテナ毎に定められた識別情報を含む送信データを変調することで要求信号を生成する生成部と、
     前記生成部が生成した前記送信用アンテナ毎の要求信号を、各送信用アンテナから同時に送信する要求信号送信部と
     を有し、
     前記車輪側通信装置は、
     前記複数の送信用アンテナから同時に送信されて重畳された前記要求信号を受信する要求信号受信部と、
     前記要求信号受信部が受信した要求信号に含まれる識別情報を取得する識別情報取得部と、
     前記識別情報取得部が取得した識別情報を含む応答信号を送信する応答信号送信部と
     を有し、
     前記車体側通信装置は、更に、
     前記車輪側通信装置が送信した応答信号を、前記受信用アンテナを用いて受信する応答信号受信部と、
     前記応答信号受信部が受信した応答信号を復調する復調部と、
     前記復調部が復調した受信データに含まれる識別情報に基づいて、前記応答信号の送信元の前記車輪側通信装置が前記複数の車輪のいずれに搭載されているかを判定する判定部と
     を有する、車載通信システム。
    A plurality of wheel side communication devices respectively provided on a plurality of wheels of the vehicle;
    A vehicle body side communication device that performs wireless communication with the plurality of wheel side communication devices using a plurality of transmission antennas disposed apart from the vehicle and a reception antenna provided in the vehicle; With
    The vehicle body side communication device is:
    A generation unit that generates a request signal by modulating transmission data including identification information determined for each of the transmission antennas;
    A request signal transmission unit that transmits the request signal for each of the transmission antennas generated by the generation unit simultaneously from each of the transmission antennas, and
    The wheel side communication device is:
    A request signal receiving unit that receives the request signal superimposed and transmitted simultaneously from the plurality of transmitting antennas;
    An identification information acquisition unit for acquiring identification information included in the request signal received by the request signal reception unit;
    A response signal transmission unit that transmits a response signal including the identification information acquired by the identification information acquisition unit, and
    The vehicle body side communication device further includes:
    A response signal receiving unit that receives the response signal transmitted by the wheel side communication device using the receiving antenna;
    A demodulator that demodulates the response signal received by the response signal receiver;
    A determination unit that determines which of the plurality of wheels the wheel-side communication device of the transmission source of the response signal is based on identification information included in the reception data demodulated by the demodulation unit. In-vehicle communication system.
  7.  前記複数の車輪側通信装置による前記要求信号の受信タイミングは、それぞれ異なるタイミングである、請求項6に記載の車載通信システム。 The in-vehicle communication system according to claim 6, wherein reception timings of the request signals by the plurality of wheel side communication devices are different timings.
  8.  前記車輪側通信装置の前記応答信号送信部は、前記応答信号をランダムな時間を隔てて複数回送信する、請求項6又は請求項7に記載の車載通信システム。 The in-vehicle communication system according to claim 6 or 7, wherein the response signal transmission unit of the wheel side communication device transmits the response signal a plurality of times at random intervals.
  9.  前記車輪側通信装置の前記応答信号送信部は、前記車輪側通信装置に付された第2識別情報を含む応答信号を送信し、
     前記車体側通信装置の前記判定部は、前記応答信号受信部が受信した応答信号に含まれる識別情報及び第2識別情報に基づいて判定を行う、請求項6乃至請求項8のいずれか1つに記載の車載通信システム。
    The response signal transmitter of the wheel side communication device transmits a response signal including second identification information attached to the wheel side communication device,
    The said determination part of the said vehicle body side communication apparatus performs determination based on the identification information and 2nd identification information which are contained in the response signal which the said response signal receiving part received. The in-vehicle communication system described in 1.
  10.  車両に離隔して配置された複数の送信用アンテナ、及び、前記車両に設けられた受信用アンテナを用いて、前記車両の複数の車輪にそれぞれ設けられた複数の車輪側通信装置との間で無線通信を行う車載通信装置に、
     前記送信用アンテナ毎に定められた識別情報を含む送信データを変調することで要求信号を生成し、
     生成した前記送信用アンテナ毎の要求信号を、各送信用アンテナから同時に送信し、
     前記要求信号を受信した前記車輪側通信装置が前記要求信号に含まれる識別情報を含めて送信する応答信号を、前記受信用アンテナを用いて受信し、
     受信した応答信号を復調し、
     復調した受信データに含まれる識別情報に基づいて、前記応答信号の送信元の前記車輪側通信装置が前記複数の車輪のいずれに搭載されているかを判定する
     処理を実行させる通信プログラム。
    Using a plurality of transmitting antennas arranged at a distance from the vehicle and a receiving antenna provided on the vehicle, a plurality of wheel side communication devices respectively provided on a plurality of wheels of the vehicle. In-vehicle communication devices that perform wireless communication
    A request signal is generated by modulating transmission data including identification information determined for each of the transmission antennas,
    The generated request signal for each transmitting antenna is transmitted simultaneously from each transmitting antenna,
    The wheel side communication device that has received the request signal receives a response signal that includes the identification information included in the request signal, and receives the response signal using the reception antenna.
    Demodulate the received response signal,
    A communication program for executing processing for determining which of the plurality of wheels the wheel-side communication device that is the transmission source of the response signal is mounted based on identification information included in demodulated reception data.
  11.  車両の複数の車輪にそれぞれ設けられた複数の車輪側通信装置と、前記車両の車体に搭載された車体側通信装置とが、前記車体に離隔して配置された複数の送信用アンテナ、及び、前記車両に設けられた受信用アンテナを用いて無線通信を行う通信方法において、
     前記車体側通信装置が、前記送信用アンテナ毎に定められた識別情報を含む送信データを変調することで要求信号を生成し、
     前記車体側通信装置が、生成した前記送信用アンテナ毎の要求信号を、各送信用アンテナから同時に送信し、
     前記車輪側通信装置が、前記複数の送信用アンテナから同時に送信されて重畳された前記要求信号を受信し、
     前記車輪側通信装置が、受信した要求信号に含まれる識別情報を取得し、
     前記車輪側通信装置が、取得した識別情報を含む応答信号を送信し、
     前記車体側通信装置が、前記車輪側通信装置が送信した応答信号を、前記受信用アンテナを用いて受信し、
     前記車体側通信装置が、受信した応答信号を復調し、復調した受信データに含まれる識別情報に基づいて、前記応答信号の送信元の前記車輪側通信装置が前記複数の車輪のいずれに搭載されているかを判定する、通信方法。
    A plurality of wheel-side communication devices respectively provided on a plurality of wheels of the vehicle, and a plurality of transmission antennas arranged separately from the vehicle body, and a vehicle body-side communication device mounted on the vehicle body of the vehicle; and In a communication method for performing wireless communication using a receiving antenna provided in the vehicle,
    The vehicle body side communication device generates a request signal by modulating transmission data including identification information determined for each transmission antenna,
    The vehicle body side communication device transmits the generated request signal for each transmitting antenna simultaneously from each transmitting antenna,
    The wheel side communication device receives the request signal superimposed and transmitted simultaneously from the plurality of transmitting antennas,
    The wheel side communication device acquires the identification information included in the received request signal,
    The wheel side communication device transmits a response signal including the acquired identification information,
    The vehicle body side communication device receives the response signal transmitted by the wheel side communication device using the reception antenna,
    The vehicle body side communication device demodulates the received response signal, and based on the identification information included in the demodulated reception data, the wheel side communication device that is the transmission source of the response signal is mounted on any of the plurality of wheels. A communication method for determining whether or not
PCT/JP2019/006772 2018-03-15 2019-02-22 In-vehicle communication device, in-vehicle communication system, communication program, and communication method WO2019176503A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018048084A JP2019156281A (en) 2018-03-15 2018-03-15 On-vehicle communication device, on-vehicle communication system, communication program, and communication method
JP2018-048084 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019176503A1 true WO2019176503A1 (en) 2019-09-19

Family

ID=67908176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006772 WO2019176503A1 (en) 2018-03-15 2019-02-22 In-vehicle communication device, in-vehicle communication system, communication program, and communication method

Country Status (2)

Country Link
JP (1) JP2019156281A (en)
WO (1) WO2019176503A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207223A (en) * 2003-12-25 2005-08-04 Omron Corp Remote control system for vehicle and tire pneumatic pressure monitoring system
JP2014089158A (en) * 2012-10-31 2014-05-15 Tokai Rika Co Ltd Terminal position determination system
JP2015223965A (en) * 2014-05-28 2015-12-14 株式会社オートネットワーク技術研究所 Tire air pressure monitoring system
JP2017109573A (en) * 2015-12-15 2017-06-22 株式会社オートネットワーク技術研究所 Tire air pressure monitoring system, monitoring device, and detection device
JP2017197101A (en) * 2016-04-28 2017-11-02 株式会社オートネットワーク技術研究所 Tire air pressure monitoring system and monitoring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207223A (en) * 2003-12-25 2005-08-04 Omron Corp Remote control system for vehicle and tire pneumatic pressure monitoring system
JP2014089158A (en) * 2012-10-31 2014-05-15 Tokai Rika Co Ltd Terminal position determination system
JP2015223965A (en) * 2014-05-28 2015-12-14 株式会社オートネットワーク技術研究所 Tire air pressure monitoring system
JP2017109573A (en) * 2015-12-15 2017-06-22 株式会社オートネットワーク技術研究所 Tire air pressure monitoring system, monitoring device, and detection device
JP2017197101A (en) * 2016-04-28 2017-11-02 株式会社オートネットワーク技術研究所 Tire air pressure monitoring system and monitoring device

Also Published As

Publication number Publication date
JP2019156281A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP4356748B2 (en) Vehicle control system, in-vehicle device, and portable device
JP6428950B2 (en) In-vehicle device and vehicle communication system
US10369965B2 (en) Electronic key system, on-board device, and electronic key
CN110121434B (en) Tire condition detection device
JP2004150124A (en) Remote control system for vehicle
WO2017098726A1 (en) Vehicle-mounted device, portable device, and vehicle wireless communication system
US11386727B2 (en) Transmission control device
JP2001322411A (en) Air-pressure detecting device and tire condition monitoring system
JP2006205838A (en) On-vehicle receiver
JP2010266314A (en) Tire-monitoring system
WO2017098721A1 (en) On-vehicle device, mobile device, and wireless communication system for vehicles
WO2019176503A1 (en) In-vehicle communication device, in-vehicle communication system, communication program, and communication method
CN106828675A (en) The intelligent control method of electric bicycle
JP7300690B2 (en) Wireless communication system for vehicles, in-vehicle device for wireless communication system for vehicle, portable device for wireless communication system for vehicle
WO2019111682A1 (en) Communications system for vehicles, on-board communications device, and communications method for vehicles
JP2005309958A (en) Tire state monitoring system of vehicle and detector used for the system
WO2019111646A1 (en) Communications system for vehicles, on-board communications device, and communications method for vehicles
JP2008024175A (en) Tire state monitoring device
WO2018211943A1 (en) Onboard device and communication system for vehicles
JP2019087888A (en) System for vehicle
JP2005324610A (en) Vehicle control system
WO2015146815A1 (en) Communication system and vehicle body-side communication apparatus
US20210206348A1 (en) Vehicle control apparatus
US11469930B2 (en) Vehicle control apparatus
WO2015146817A1 (en) Communication system and vehicle body-side communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768079

Country of ref document: EP

Kind code of ref document: A1