WO2019176144A1 - Composition for model material - Google Patents

Composition for model material Download PDF

Info

Publication number
WO2019176144A1
WO2019176144A1 PCT/JP2018/034068 JP2018034068W WO2019176144A1 WO 2019176144 A1 WO2019176144 A1 WO 2019176144A1 JP 2018034068 W JP2018034068 W JP 2018034068W WO 2019176144 A1 WO2019176144 A1 WO 2019176144A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
model material
model
meth
group
Prior art date
Application number
PCT/JP2018/034068
Other languages
French (fr)
Japanese (ja)
Inventor
智久 西本
智史 久保
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Publication of WO2019176144A1 publication Critical patent/WO2019176144A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the present invention relates to a model material composition for modeling a model material by a material jet stereolithography method, a material jet stereolithography composition set comprising the model material composition, and the model material composition
  • the present invention relates to a method for producing an optical modeling product using the material or the composition set for material jet optical modeling.
  • a method for producing a three-dimensional structure by widely irradiating a photocurable resin composition with light such as ultraviolet rays to continuously form a cured layer having a predetermined shape is widely known.
  • a photo-curable resin composition is ejected from a material jet nozzle, and immediately after that, the resin composition is cured by irradiating light such as ultraviolet rays, thereby laminating a cured layer having a predetermined shape to form a three-dimensional structure.
  • An optical modeling method (hereinafter also referred to as “material jet stereolithography”) using a material jet method (inkjet method) for producing a small-sized model that can freely create a three-dimensional modeled object based on CAD (Computer Aided Design) data.
  • material jet method inkjet method
  • CAD Computer Aided Design
  • Patent Document 1 discloses a predetermined amount of a monofunctional ethylenically unsaturated monomer, a polyfunctional ethylenically unsaturated monomer that does not contain a urethane group, a urethane-containing ethylenically unsaturated monomer, and a photopolymerization initiator.
  • the resin composition for model materials containing this is disclosed.
  • Patent Document 2 discloses a resin composition for a model material containing a monofunctional ethylenically unsaturated monomer, a polyfunctional ethylenically unsaturated monomer, an oligomer and a photopolymerization initiator.
  • the shape of the composition that has landed earlier tends to collapse due to the weight of the composition overlying, ease of wetting and lack of adhesion.
  • the model material and the model material and the support material are mixed with each other, or the overlying composition for the model material slides down from the composition that has landed first, so that three-dimensional Sagging tends to occur in the three-dimensional shape, and it has been difficult to accurately stack the composition for a model material in the vertical direction.
  • the conventional resin composition for a model material cannot sufficiently cope with the speeding up of the material jet stereolithography, and the composition for a model material that can realize a three-dimensional structure having high modeling accuracy at a high modeling speed. There is a request for.
  • the present invention provides a composition for a model material suitable for a material jet stereolithography method capable of realizing high modeling accuracy and excellent mechanical properties even during high-speed modeling of a three-dimensional structure by a material jet method. For the purpose.
  • a composition for a model material for modeling a model material by a material jet stereolithography method including a polymerizable monomer, a photopolymerization initiator, and a silicone-modified urethane oligomer having a polymerizable group at 25 ° C.
  • the polymerizable group of the silicone-modified urethane oligomer is a group selected from the group consisting of an acryloyl group, a methacryloyl group, a vinyl group, an allyl group, and a vinyl ether group, according to the above [1] or [2] Composition for model materials.
  • Composition Composition.
  • a silicone-modified urethane oligomer having a polymerizable group is represented by the following formula (1): [Where, IP represents an isophorone diisocyanate unit, PAG represents a polypropylene glycol unit and / or a polyethylene glycol unit; HEA represents the acrylic end, n is 0-30, a is 1-50, b is 1-50]
  • composition for model materials [10] The composition for a model material according to [9], including the monofunctional ethylenically unsaturated monomer (A) in an amount of 40% by mass or more based on the total mass of the polymerizable compound. [11] The composition for a model material according to [9] or [10], comprising 1 to 30% by mass of the polyfunctional ethylenically unsaturated monomer (B) with respect to the total mass of the polymerizable compound.
  • the monofunctional ethylenically unsaturated monomer (A) according to any one of [9] to [11], wherein the monofunctional ethylenically unsaturated monomer (A) is a monofunctional ethylenically unsaturated monomer having a cyclic structure in the molecule.
  • Composition for model materials [13] The SP values of the monofunctional ethylenically unsaturated monomer (A) and the polyfunctional ethylenically unsaturated monomer (B) are 11.0 or less, respectively, in the above [9] to [12] The composition for model materials in any one. [14] The composition for model material according to any one of [1] to [13], further including a colorant.
  • a material jet comprising the model material composition according to any one of [1] to [14] and a support material composition for modeling the support material by a material jet stereolithography method.
  • Stereolithography composition set [16] The composition set for material jet stereolithography according to [15], wherein the support material composition is water-soluble.
  • An optically shaped article is manufactured using the model material composition according to any one of [1] to [14] or the material jet stereolithography composition set according to [15] or [16].
  • a model material composition comprising: curing a composition for a model material by irradiating an active energy ray having an accumulated light amount per layer of 300 mJ / cm 2 or more in a wavelength range of 320 to 410 nm. Production method.
  • composition for a model material suitable for a material jet stereolithography method capable of realizing high modeling accuracy and excellent mechanical properties even during high-speed modeling of a three-dimensional structure by a material jet method. be able to.
  • the composition for a model material of the present invention includes a polymerizable monomer, a photopolymerization initiator, and a silicone-modified urethane oligomer having a polymerizable group (hereinafter also referred to as “silicone-modified urethane oligomer (S)”).
  • a silicone-modified urethane oligomer having a polymerizable group hereinafter also referred to as “silicone-modified urethane oligomer (S)”.
  • the composition for a model material of the present invention when the composition for a model material of the present invention is continuously dropped from a material jet nozzle, the composition for the model material on which the outermost surface of the dropped droplet of the composition for a model material and the droplet of the composition land
  • the siloxane group is arranged on any of the outermost surfaces of the cured product, and due to this relative relationship, the contact angle of the dropped model material composition on the cured material surface of the model material composition that has landed earlier Can be increased.
  • the siloxane groups exist as the molecular structure of the urethane oligomer, a compound having a siloxane group is used alone. Compared with the case of blending with siloxane, the siloxane groups are more easily aligned to the outside of the droplets or the cured product. In addition, the intermolecular force due to the siloxane groups can be exerted firmly on the cured product surface and the droplet surface, and the cured material of the model material composition that has landed first and the dropped droplet are firmly bonded. .
  • the composition for a model material of the present invention can be accurately stacked in the vertical direction even when continuously discharged from a material jet nozzle, and can ensure high modeling accuracy during high-speed modeling.
  • the “model material” means a cured product of the model material composition, and a product finally obtained from the cured product is referred to as an “optically shaped product”.
  • the number average molecular weight of the silicone-modified urethane oligomer (S) contained in the model material composition is preferably 1,000 to 10,000, more preferably 1,200 or more, and even more preferably 1, It is 400 or more, particularly preferably 1,600 or more, more preferably 9,000 or less, further preferably 8,000 or less, and particularly preferably 7,000 or less.
  • the number average molecular weight of the silicone-modified urethane oligomer (S) is within the above range, when a composition for a model material is dropped from a material jet nozzle, a sufficient amount of siloxane groups is formed on the outermost surface of the dropped droplet.
  • the number average molecular weight of the silicone-modified urethane oligomer (S) can be determined using gel permeation chromatography (GPC) or matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF-MS).
  • the polymerizable group of the silicone-modified urethane oligomer (S) is polymerized in the model material composition by active radicals or acids generated from the photopolymerization initiator contained in the model material composition.
  • Any group that can participate in a crosslinking reaction with a compound (polymerizable monomer) is not particularly limited, and acryloyl group, methacryloyl group, vinyl group, allyl group, vinyl ether group, acrylamide group, methacrylamide group, epoxy group, oxetanyl group Etc.
  • a group selected from the group consisting of acryloyl group, methacryloyl group, vinyl group, allyl group and vinyl ether group is preferable, and acryloyl group or methacryloyl group is more preferable.
  • the alkoxy group used as the hydrolyzable group with poor photopolymerizability is not regarded as the polymerizable group which is the subject of the present invention.
  • the polymerizable group possessed by the silicone-modified urethane oligomer (S) is a polymerizable group having a slower reaction rate than the polymerizable group possessed by the polymerizable compound (polymerizable monomer) constituting the composition for a model material.
  • the polymerizable group possessed by the silicone-modified urethane oligomer (S) is polymerized with a slower reaction rate than the polymerizable group possessed by the polymerizable compound (polymerizable monomer) constituting the model material composition. It is preferably a sex group.
  • the polymerizable group that the silicone-modified urethane oligomer (S) has is preferably, for example, a methacryloyl group, and the polymerizable group that the silicone-modified urethane oligomer (S) has is methacryloyl. More preferably, the polymerizable group (polymerizable monomer) of the polymerizable compound (polymerizable monomer) constituting the model material composition is an acryloyl group.
  • the structure of the silicone-modified urethane oligomer (S) contained in the model material composition of the present invention is not particularly limited, and a conventionally known silicone-modified urethane oligomer having a polymerizable group can be used.
  • S) has two or more polymerizable groups in one molecule, the silicone-modified urethane oligomer (S) and the polymerizable compound (polymerizable) in the droplet of the model material composition dropped from the material jet nozzle Monomer)).
  • the silicone-modified urethane oligomer (S) is present on the outermost surface of the droplet, and the siloxane group of the silicone-modified urethane oligomer (S) is liquid. If it is located on the outermost side of the droplet, the modeling accuracy at the time of high-speed modeling can be effectively improved.
  • the silicone-modified urethane oligomer (S) contained in the model material composition of the present invention preferably has one polymerizable group in one molecule.
  • One polymerizable group in one molecule may be present at one end or side chain of the silicone-modified urethane oligomer (S), and it is easier to take the above preferred arrangement, so that it is at the end of the oligomer molecular chain. More preferably it is present.
  • the terminal part of the oligomer molecular chain means the terminal part (one terminal) of the main chain and the terminal part of the side chain of the silicone-modified urethane oligomer (S).
  • the silicone-modified urethane oligomer (S) contained in the model material composition is preferably a silicone-modified urethane (meth) acrylate oligomer, and more preferably a silicone-modified urethane acrylate oligomer.
  • a silicone-modified urethane (meth) acrylate oligomer preferably a silicone-modified urethane (meth) acrylate oligomer.
  • isocyanate used for the urethane component which comprises silicone modified urethane acrylate Aliphatic type, aromatic type, alicyclic type etc.
  • tolylene diisocyanate (TDI), xylylene diisocyanate ( XDI) 4,4-diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), hydrogenated xylylene diisocyanate (H6XDI), naphthalene diisocyanate (NDI), norbornene diisocyanate (NBDI), 1,5- It may be pentamethylene diisocyanate (PDI) or the like.
  • TDI tolylene diisocyanate
  • XDI xylylene diisocyanate
  • MDI 4,4-diphenylmethane diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • H6XDI hydrogenated xylylene diisocyanate
  • NDI naphthalene diiso
  • silicone-modified urethane oligomer (S) examples include a silicone-modified urethane oligomer having a structure represented by the following formula (1).
  • silicone modified urethane oligomer (S) only 1 type may be used and it may be used in combination of 2 or more type.
  • siloxane compound having a structure represented by the following formula (1) the modeling accuracy at the time of high-speed modeling can be effectively increased.
  • IP represents an isophorone diisocyanate unit
  • PAG represents a polypropylene glycol unit and / or a polyethylene glycol unit
  • HEA represents an acrylic terminal.
  • n is 0 to 30, preferably 1 to 20, and more preferably 5 to 15. Further, a is 1 to 50, preferably 2 to 40, more preferably 3 to 30, and b is 1 to 50, preferably 2 to 40, more preferably 3 to 30. is there.
  • the silicone-modified urethane oligomer (S) can be prepared by a conventionally known method. For example, it can be prepared by a method described in JP-A No. 2004-160932 or Japanese Patent No. 6035325. That is, an isocyanate component, a polyhydric alcohol having a polysiloxane skeleton, and a compound having a hydroxyl group and a (meth) acryloyl group are reacted at an appropriate molar ratio using a catalyst such as dibutyltin laurate or dibutyltin acetate. It can prepare by the usual urethanation reaction.
  • a commercially available product may be used as the silicone-modified urethane oligomer (S) contained in the model material composition.
  • the content of the silicone-modified urethane oligomer (S) in the model material composition of the present invention is preferably 0.1% by mass or more, more preferably 0.8% by mass relative to the total mass of the model material composition. It is 5 mass% or more, More preferably, it is 1 mass% or more, Most preferably, it is 2 mass% or more. Moreover, it is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
  • the content of the silicone-modified urethane oligomer (S) is within the above upper and lower limits, a sufficient amount of siloxane groups are uniformly present on the outermost surface of the model material composition dropped from the material jet nozzle. It is possible to improve the modeling accuracy during high-speed modeling.
  • the range of the said content is defined as the sum total of the content.
  • the composition for a model material of the present invention preferably contains a polymerizable monomer, and preferably contains a monofunctional ethylenically unsaturated monomer (A) as the polymerizable monomer.
  • the monofunctional ethylenically unsaturated monomer (A) is a component having a property of being polymerized and cured by irradiation with active energy rays such as ultraviolet rays, and a polymerizable monomer having one ethylenic double bond in the molecule. It is.
  • active energy rays such as ultraviolet rays
  • a polymerizable monomer having one ethylenic double bond in the molecule It is.
  • (meth) acrylate” represents both and / or acrylate and methacrylate
  • “(meth) acrylamide” represents both and / or acrylamide and methacrylamide. Only one type may be used as the monofunctional ethylenically unsaturated monomer (A), or two
  • the monofunctional ethylenically unsaturated monomer (A) includes an alkyl (meth) acrylate having a linear or branched alkyl group, an alicyclic structure, an aromatic ring structure or Examples thereof include (meth) acrylates having a cyclic structure such as a heterocyclic structure, and monofunctional ethylenically unsaturated monomers containing nitrogen atoms such as (meth) acrylamide and N-vinyl lactams.
  • an alicyclic structure is an aliphatic cyclic structure in which carbon atoms are cyclically bonded
  • an aromatic ring structure is an aromatic cyclic structure in which carbon atoms are cyclically bonded
  • a heterocyclic structure is a carbon atom.
  • a structure in which one or more heteroatoms are bonded in a cyclic manner is
  • alkyl (meth) acrylate having a linear or branched alkyl group preferably include a linear or branched alkyl group having preferably 4 to 30 carbon atoms, more preferably 6 to 20 carbon atoms.
  • Alkyl (meth) acrylates having Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl (meth) acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, decyl (Meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, isomyristyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, 2-ethylhexyl-dig
  • Examples of the (meth) acrylate having an alicyclic structure include (meth) acrylates preferably having an alicyclic structure having 6 to 20 carbon atoms, more preferably 8 to 15 carbon atoms. Specifically, for example, cyclohexyl (meth) acrylate, 4-t-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate, 3, 3, 5 -Trimethylcyclohexanol (meth) acrylate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid and the like.
  • Examples of the (meth) acrylate having an aromatic ring structure include (meth) acrylates preferably having an aromatic ring structure having 6 to 20 carbon atoms, more preferably 8 to 15 carbon atoms. Specifically, for example, phenoxyethyl (meth) acrylate, phenoxy-polyethylene glycol (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, nonylphenol ethylene oxide adduct (meth) acrylate, 2- (meth) acrylate And acryloyloxyethyl-phthalic acid, neopentyl glycol-acrylic acid-benzoic acid ester and the like.
  • Examples of the (meth) acrylate having a heterocyclic structure include (meth) acrylates preferably having a heterocyclic structure having 5 to 20 carbon atoms, more preferably 7 to 15 carbon atoms. Specifically, for example, tetrahydrofurfuryl (meth) acrylate, cyclic trimethylolpropane formal (meth) acrylate, 4- (meth) acryloyloxymethyl-2-methyl-2-ethyl-1,3-dioxolane, 4 -(Meth) acryloyloxymethyl-2-cyclohexyl-1,3-dioxolane and the like.
  • monofunctional ethylenically unsaturated monomers containing nitrogen atoms which are different from the above (meth) acrylates, include, for example, (meth) acrylamide [eg, N, N-dimethylacrylamide, N, N-diethylacrylamide] N-isopropylacrylamide, hydroxyethylacrylamide, hydroxypropylacrylamide, N, N-acryloylmorpholine, etc.], N-vinyl lactams (eg, N-vinylpyrrolidone, N-vinylcaprolactam, etc.), N-vinylformamide, etc. Can be mentioned.
  • (meth) acrylamide eg, N, N-dimethylacrylamide, N, N-diethylacrylamide] N-isopropylacrylamide, hydroxyethylacrylamide, hydroxypropylacrylamide, N, N-acryloylmorpholine, etc.
  • N-vinyl lactams eg,
  • the monofunctional ethylenically unsaturated monomer (A) contained in the model material composition is preferably a monofunctional ethylenically unsaturated monomer having a cyclic structure in the molecule.
  • the monofunctional ethylenically unsaturated monomer (A) has a cyclic structure in the molecule, compared with other monomers having no cyclic structure, It is excellent in compatibility with the resulting silicone-modified urethane oligomer (S), the glass transition temperature (Tg) of the model material molded article is high, and is excellent in hardness and heat resistance.
  • the content of the monofunctional ethylenically unsaturated monomer having a cyclic structure in the molecule is based on the total mass of the monofunctional ethylenically unsaturated monomer (A). Preferably it is 50% by mass or more, more preferably 80% by mass or more, and all monofunctional ethylenically unsaturated monomers (A) contained in the model material composition have a cyclic structure in the molecule It may be.
  • the monofunctional ethylenically unsaturated monomer (A) is preferably a (meth) acrylate monomer.
  • a (meth) acrylate monomer having a cyclic structure in the molecule is preferable, and isobornyl (meth) acrylate, phenoxyethyl (meth) acrylate, 3,3,5-trimethylcyclohexanol (meth) acrylate And at least one selected from the group consisting of cyclic trimethylolpropane formal (meth) acrylate, more preferably isobornyl (meth) acrylate and phenoxyethyl (meth) acrylate, particularly isobornyl acrylate. preferable.
  • the composition for a model material compared to other monomers having an aromatic ring structure or a heterocyclic structure
  • S silicone-modified urethane oligomer
  • Tg glass transition temperature
  • the content of the monofunctional ethylenically unsaturated monomer (A) in the model material composition of the present invention is preferably 40% by mass or more based on the total mass of the polymerizable compound contained in the model material composition. More preferably, it is 45 mass% or more, and still more preferably 50 mass% or more.
  • the content of the monofunctional ethylenically unsaturated monomer (A) is not less than the above lower limit value, it becomes easy to be compatible with the silicone-modified urethane oligomer (S) that is an essential component of the model material composition, and the curing step
  • the silicone-modified urethane oligomer (S) can be quickly arranged on the surface of the shaped article.
  • the content of the monofunctional ethylenically unsaturated monomer (A) is preferably 95% by mass or less, more preferably 90% by mass with respect to the total mass of the polymerizable compound contained in the model material composition. % Or less, and more preferably 80% by mass or less.
  • the silicone-modified urethane oligomer (S) is also included in the polymerizable compound.
  • the model material composition of the present invention preferably contains a polyfunctional ethylenically unsaturated monomer (B) as a polymerizable monomer.
  • the polyfunctional ethylenically unsaturated monomer (B) is a component having a property of being polymerized and cured by irradiation with active energy rays, and a polymerizable monomer having two or more ethylenic double bonds in the molecule. . Only one type may be used as the polyfunctional ethylenically unsaturated monomer (B), or two or more types may be used in combination.
  • Examples of the polyfunctional ethylenically unsaturated monomer (B) include linear or branched alkylene glycol di (meth) acrylate or alkylene glycol tri (meth) acrylate, alkylene glycol tetra (meth) having 10 to 25 carbon atoms.
  • acrylates As acrylates, cyclohexanedimethanol di (meth) acrylate, dimethyloltricyclodecane di (meth) acrylate, bisphenol A ethylene oxide Id adduct di (meth) acrylate, bisphenol A propylene oxide adduct di (meth) acrylate, vinyl ether group-containing (meth) acrylic acid esters, bifunctional or more amino acrylates.
  • vinyl ether group-containing (meth) acrylic acid esters examples include 2- (vinyloxyethoxy) ethyl (meth) acrylate.
  • Bifunctional or higher aminoacrylates are considered to be able to suppress polymerization inhibition due to oxygen in the air, and can improve the curing rate when irradiated with ultraviolet rays, particularly when irradiated with low energy ultraviolet rays using a light emitting diode (LED).
  • bifunctional or higher functional amino acrylates for example, amino (meth) acrylate, amine-modified polyether (meth) acrylate, amine-modified polyester (meth) acrylate, amine-modified epoxy (meth) acrylate, amine-modified urethane (meth) acrylate, etc. Is mentioned.
  • the composition for a model material it is preferably a (meth) acrylate monomer, such as dipropylene glycol di (meth) acrylate or tripropylene glycol di (meth) acrylate.
  • Glycerin propoxy tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate and bifunctional or higher amino acrylate are more preferable, and dipropylene glycol di (meth) acrylate , Tripropylene glycol di (meth) acrylate, glycerin propoxy tri (meth) acrylate and bifunctional or higher functional amino acrylates are more preferable, dipropylene glycol diacrylate, tripropylene glycol dia It relates and bifunctional or more amino acrylates are particularly preferred.
  • the content of the polyfunctional ethylenically unsaturated monomer (B) in the composition for model material of the present invention is preferably 1 to 30 mass relative to the total mass of the polymerizable compound contained in the composition for model material. %, More preferably 3% by mass or more, further preferably 5% by mass or more, and more preferably 28% by mass or less.
  • content of the polyfunctional ethylenically unsaturated monomer (B) is within the above upper and lower limits, both high modeling accuracy and excellent mechanical properties can be achieved even during high-speed modeling.
  • the content of the hydrophilic (water-soluble) ethylenically unsaturated monomer is preferably as small as possible.
  • the compatibility with the silicone-modified urethane oligomer (S), which is an essential component of the composition for the model material is increased. Since the siloxane group is quickly arranged on the surface of the modeled object, the modeling accuracy can be increased. Further, swelling deformation of the model material (finally, an optically modeled product) due to water or moisture absorption after photocuring or after curing can be suppressed.
  • the content of the hydrophilic ethylenically unsaturated monomer in the composition for a model material of the present invention is such that the monofunctional ethylenically unsaturated monomer (A) and the polyfunctional ethylenically unsaturated monomer (B ) Is preferably 50% by mass or less, more preferably 25% by mass or less, and still more preferably 10% by mass or less.
  • the model material composition does not contain a hydrophilic ethylenically unsaturated monomer (ie, 0% by mass), in other words, a monofunctional ethylenically unsaturated monomer ( A) and the polyfunctional ethylenically unsaturated monomer (B) are all hydrophobic (water-insoluble) monomers.
  • hydrophilic (water-soluble) ethylenically unsaturated monomer means an ethylenically unsaturated monomer having an SP value of more than 11.0.
  • hydrophilic ethylenically unsaturated monomers include hydroxyl group-containing (meth) acrylates, (meth) acrylamide derivatives, (meth) acryloylmorpholines, N-vinyl lactams, N-vinylformamide, and the like. More specifically, the compound illustrated as a water-soluble monofunctional ethylenically unsaturated monomer which the composition for support materials mentioned later can contain is mentioned.
  • the ethylenically unsaturated monomer contained in the model material composition is preferably hydrophobic, and the monofunctional ethylenically unsaturated monomer (A) and the polyfunctional ethylenically unsaturated monomer
  • the SP value of the body (B) is preferably 11.0 or less, more preferably 10.5 or less, and still more preferably 10.0 or less.
  • the lower limit value of the SP value of the monofunctional ethylenically unsaturated monomer (A) and the polyfunctional ethylenically unsaturated monomer (B) is preferably 7.0 or more, more preferably 7.2. It is above, More preferably, it is 7.5 or more.
  • the ratio of the saturated monomer (B) By increasing the ratio of the saturated monomer (B), the surface property of the resulting shaped article can be improved.
  • the SP value is a solubility parameter
  • the SP value of each monomer is obtained by calculation from the molecular structure.
  • the solubility parameter of each ethylenically unsaturated monomer in the present specification is obtained by calculation from the molecular structure of the solubility parameter of the acrylic monomer, and for each (meth) acrylic monomer in this specification,
  • the solubility parameter means a value at 25 ° C. obtained by the Fedors method (Yuji Harasaki, “Basic Science of Coating”, Chapter 3, page 35, 1977, published by Tsuji Shoten).
  • the composition for a model material of the present invention preferably contains a monofunctional ethylenically unsaturated monomer (A) and a polyfunctional ethylenically unsaturated monomer (B) as the polymerizable monomer.
  • A monofunctional ethylenically unsaturated monomer
  • B polyfunctional ethylenically unsaturated monomer
  • the composition for a model material of the present invention is a polymerizable compound other than the silicone-modified urethane oligomer (S), the monofunctional ethylenically unsaturated monomer (A), and the polyfunctional ethylenically unsaturated monomer (B).
  • S silicone-modified urethane oligomer
  • A monofunctional ethylenically unsaturated monomer
  • B polyfunctional ethylenically unsaturated monomer
  • other polymerizable compounds include polymerizable oligomers other than the silicone-modified urethane oligomer (S) [hereinafter also referred to as “oligomer (C)”].
  • the oligomer (C) is a component having a property of being polymerized and cured by irradiation with active energy rays.
  • oligomer refers to those having a weight average molecular weight Mw of 800 to 10,000. More preferably, the lower limit of the weight average molecular weight Mw is more than 1,000.
  • the weight average molecular weight Mw means a weight average molecular weight in terms of polystyrene measured by GPC (Gel Permeation Chromatography). Only one type may be used as the oligomer (C), or two or more types may be used in combination.
  • oligomer (C) examples include an epoxy (meth) acrylate oligomer, a polyester (meth) acrylate oligomer, a non-silicone-modified urethane (meth) acrylate oligomer, a polyether (meth) acrylate oligomer, and an aminoacrylate.
  • the oligomer (C) is preferably a bifunctional or higher polyfunctional oligomer, and more preferably a bifunctional oligomer.
  • an oligomer having a urethane group is preferable, more preferably a non-silicone-modified urethane (meth) acrylate oligomer, and still more preferably. It is a non-silicone modified urethane acrylate oligomer.
  • composition for model materials of this invention contains an oligomer (C), it is 30 mass% or less with respect to the gross mass of the polymeric compound contained in the composition for model materials, More preferably, it is 25 mass% or less. More preferably, it is 20 mass% or less.
  • the composition for a model material of the present invention may not contain the oligomer (C), but when the oligomer (C), particularly a non-silicone modified urethane oligomer, is used in combination with the silicone modified urethane oligomer, both hardness and toughness can be achieved. More preferable.
  • the content of the silicone-modified urethane oligomer is preferably 1 to 50% by mass, more preferably 2 to 40% by mass, based on the total mass of the non-silicone-modified urethane oligomer.
  • the content thereof is preferably 30% by mass or less, more preferably based on the total mass of the polymerizable compounds contained in the composition for model materials. Is 25% by mass or less, more preferably 20% by mass or less.
  • the composition for a model material of the present invention may not contain other polymerizable compounds, but the lower limit of the content of the other polymerizable compound is the value of the polymerizable compound contained in the composition for a model material. It is 1 mass% or more normally with respect to the total mass, Preferably it is 2 mass% or more.
  • the model material composition of the present invention contains a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited as long as it is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region.
  • photopolymerization initiator examples include benzoin compounds having 14 to 18 carbon atoms (for example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, etc.), acetophenone compounds having 8 to 18 carbon atoms [for example, Acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, etc.], anthraquinone compounds having 14 to 19 carbon atoms [for example, 2-ethyl ant Quinone, 2-t-butylanthraquinone, 2-chloroanth
  • acetophenone compounds and acylphosphine oxide compounds. At least one selected from the group consisting of 1-hydroxycyclohexyl phenyl ketone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, or 2-methyl-1- [4- (methylthio) phenyl] -2 -Morpholinopropan-1-one and the like are preferable.
  • a photoinitiator you may use the product marketed, for example, DAROCURE TPO, IRGACURE184, IRGACURE907, etc. made from BASF.
  • the content of the photopolymerization initiator in the composition for model material is preferably 2 to 15% by mass, more preferably 3 to 10% by mass, based on the total mass of the composition for model material.
  • the content of the photopolymerization initiator is not less than the above lower limit, unreacted polymerization components can be sufficiently reduced, and the curability of the model material can be sufficiently increased.
  • the content of the photopolymerization initiator is not more than the above upper limit, the amount of the photopolymerization initiator remaining unreacted in the model material can be reduced, and the unreacted photopolymerization initiator remains. It is possible to suppress yellowing of the optically shaped product generated by doing so.
  • composition for model material can contain other additives as necessary within the range not impairing the effects of the present invention.
  • other additives include storage stabilizers, surface conditioners, antioxidants, colorants, ultraviolet absorbers, light stabilizers, polymerization inhibitors, chain transfer agents, fillers, diluent solvents, thickeners, and the like. Is mentioned.
  • the surface conditioner is a component that adjusts the surface tension of the model material composition to an appropriate range, and the type thereof is not particularly limited. By making the surface tension of the model material composition within an appropriate range, it is possible to stabilize the ejection properties and to suppress interfacial mixing between the model material composition and the support material composition. As a result, it is possible to obtain a shaped article with good dimensional accuracy.
  • Examples of the surface conditioner include silicone compounds.
  • Examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane.
  • the content thereof is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, based on the total mass of the model material composition. Yes, preferably 3.0% by mass or less, more preferably 1.5% by mass or less.
  • the content of the surface conditioner is within the above range, the surface tension of the model material composition is easily adjusted to an appropriate range.
  • the storage stabilizer is a component that can enhance the storage stability of the model material composition. Further, clogging of the head caused by polymerization of the polymerizable compound by thermal energy can be prevented.
  • Examples of the storage stabilizer include hindered amine compounds (HALS), phenolic antioxidants, phosphorus antioxidants, and the like.
  • the content thereof is preferably 0.05 to 3% by mass based on the total mass of the model material composition from the viewpoint of easily obtaining the above effect. .
  • the model material composition of the present invention may further contain a colorant.
  • a colorant is not included.
  • the colorant is not particularly limited.
  • the model material composition of the present invention is non-aqueous, a pigment that is easily dispersed uniformly in a water-insoluble medium and a dye that is easily dissolved are preferable.
  • an inorganic pigment or an organic pigment can be used.
  • inorganic pigments include titanium oxide, zinc oxide, zinc oxide, lithopone, iron oxide, aluminum oxide, silicon dioxide, kaolinite, montmorillonite, talc, barium sulfate, calcium carbonate, silica, alumina, cadmium red, red rose, molybdenum Red, chrome vermilion, molybdate orange, yellow lead, chrome yellow, cadmium yellow, yellow iron oxide, titanium yellow, chrome oxide, pyridian, cobalt green, titanium cobalt green, cobalt chrome green, ultramarine blue, ultramarine blue, bitumen, Examples include cobalt blue, cerulean blue, manganese violet, cobalt violet, and mica.
  • organic pigments examples include organic pigments such as azo, azomethine, polyazo, phthalocyanine, quinacridone, anthraquinone, indigo, thioindigo, quinophthalone, benzimidazolone, and isoindoline. Carbon black made of acidic, neutral or basic carbon may be used. Furthermore, crosslinked acrylic resin hollow particles or the like may be used as the organic pigment.
  • black and pigments of three primary colors of cyan, magenta, and yellow are usually used, but pigments having other hues, metallic luster pigments such as gold and silver, colorless Alternatively, a light-colored extender pigment can also be used depending on the purpose.
  • the above colorants may be used alone or in combination of two or more.
  • two or more kinds of organic pigments or solid solutions of organic pigments can be used in combination.
  • a different colorant may be used for each droplet and liquid to be ejected, or the same colorant may be used.
  • the dispersion of the colorant for example, bead mill, ball mill, sand mill, attritor, roll mill, jet mill, homogenizer, paint shaker, kneader, agitator, Henschel mixer, colloid mill, ultrasonic homogenizer, pearl mill, wet jet mill, etc.
  • An apparatus can be used, and a mixer such as a line mixer may be used.
  • classification may be performed using a centrifuge, a filter, a cross flow, or the like for the purpose of removing coarse particles of the colorant.
  • a dispersant When dispersing the colorant, a dispersant can be added.
  • the type of the dispersant is not particularly limited, but a known polymer dispersant is preferably used.
  • the content of the dispersant is appropriately selected depending on the purpose of use, and can be set to 0.01 to 5% by mass with respect to the total mass of the model material composition, for example.
  • the content of the colorant is appropriately selected depending on the color and purpose of use, but is 0.05 to 30% by mass with respect to the total mass of the composition for model material from the viewpoint of image density and storage stability. It is preferably 0.1 to 10% by mass.
  • the angle (hereinafter also referred to as “contact angle MM”) is preferably 40 ° or more, more preferably 45 ° or more, still more preferably 48 ° or more, and particularly preferably 50 ° or more.
  • the contact angle refers to an angle formed by the droplet surface and the solid surface at a portion where the droplet contacts the solid surface, and is an index representing the so-called wettability of the droplet.
  • the contact angle MM of the model material composition was measured 0.3 seconds after the composition (droplet) landed on the cured product (solid surface) because the composition was landed by irradiation with energy rays. The standard time until curing is set. If the contact angle MM of the model material composition is equal to or greater than the above lower limit, the excess between the cured material of the model material composition that has landed first and the model material composition that forms the next layer overlapping therewith It is possible to suppress the spread of wetting, and it is difficult for distortion and displacement to occur, and the repair capability when distortion or displacement occurs is high, and even when discharging continuously from the material jet nozzle, it can be stacked accurately in the vertical direction. It is possible to ensure high modeling accuracy during high-speed modeling.
  • the upper limit value of the contact angle MM of the model material composition is not particularly limited, but is usually 70 ° or less, and preferably 65 ° or less from the viewpoint of achieving both high modeling accuracy and excellent mechanical properties. .
  • the contact angle MM of the model material composition can be controlled by adjusting the type and blending amount of the silicone-modified urethane oligomer (S) described above. For example, adjusting the number average molecular weight of the silicone-modified urethane oligomer (S) in the range of 1,000 to 10,000, and the content of the silicone-modified urethane oligomer (S) with respect to the total mass of the model material composition By adjusting to the range of 0.1 to 20% by mass, the contact angle MM can be increased.
  • the contact angle MM in the present invention is a contact angle formed by the droplets of the model material composition with respect to the cured product of the model material composition droplets, and the measurement method will be described in Examples described later.
  • the surface tension of the composition for a model material of the present invention is preferably 24 to 30 mN / m, more preferably 24.5 mN / m or more, further preferably 25 mN / m or more, more preferably 29. 5 mN / m or less, more preferably 29 mN / m or more.
  • the surface tension is within the above range, droplets ejected from the nozzle can be formed normally even during high-speed ejection of material jets, ensuring adequate droplet volume and landing accuracy, and generating satellites. It is possible to suppress, and it becomes easy to improve modeling accuracy.
  • the surface tension of the composition for a model material can be controlled by adjusting the type and blending amount of the silicone-modified urethane oligomer (S) described above and the type and blending amount of the surface modifier. it can.
  • the surface tension of the composition for model materials can be measured according to the method as described in an Example.
  • the composition for a model material of the present invention has a viscosity of 20 to 500 mPa ⁇ s at 25 ° C. because it is used for material jet stereolithography. From the viewpoint of improving dischargeability from the material jet nozzle, the viscosity at 25 ° C. is preferably 20 to 400 mPa ⁇ s, and more preferably 20 to 300 mPa ⁇ s.
  • the viscosity can be measured according to JIS Z 8803 using an R100 viscometer.
  • the viscosity of the composition for a model material can be controlled by adjusting the type of the polymerizable compound and the blending ratio thereof, the type of the diluent solvent and the thickener, the amount of addition thereof, and the like.
  • the method for producing the composition for model material of the present invention is not particularly limited. For example, it can be produced by uniformly mixing the components constituting the model material composition using a mixing and stirring device or the like.
  • composition set for material jet stereolithography The composition for a model material of the present invention is excellent in modeling accuracy at the time of high-speed modeling, and can be accurately stacked in the height direction even when discharged continuously from a material jet nozzle. For this reason, it is possible to form a three-dimensional structure only with the composition for the model material, but by using it in combination with a support material for supporting the model material during the three-dimensional modeling, a complicated shape or a dense shape is higher. It can be modeled with accuracy. Therefore, the present invention also covers a composition set for material jet stereolithography comprising the composition for model material of the present invention and a composition for support material for modeling a support material by a material jet stereolithography method. To do.
  • composition for a support material is a photocurable composition for a support material that provides the support material by photocuring. After the model material is created, it can be removed from the model material by physically peeling the support material from the model material or by dissolving the support material in an organic solvent or water.
  • the composition for a model material of the present invention can be used in combination with various conventionally known compositions as a composition for a support material, but does not damage the model material when the support material is removed, and the environment. It is preferable that the support material composition that constitutes the stereolithography composition set of the present invention is water-soluble because the support material can be easily removed cleanly and easily in detail.
  • Such a water-soluble composition for a support material preferably contains a water-soluble monofunctional ethylenically unsaturated monomer, a water-soluble resin, and a photopolymerization initiator.
  • the water-soluble monofunctional ethylenically unsaturated monomer is (
  • the water-soluble resin contains at least one selected from the group consisting of an oxyethylene group, an oxypropylene group, and an oxytetramethylene group
  • the photopolymerization initiator is an acylphosphine oxide-based derivative. It is preferable to include a photopolymerization initiator.
  • Examples of the water-soluble monofunctional ethylenically unsaturated monomer contained in the support material composition include, for example, a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meth) acrylate, hydroxypropyl ( Meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.], hydroxyl group-containing (meth) acrylate having a number average molecular weight (Mn) of 200 to 1,000 [for example, polyethylene glycol mono (meth) acrylate, monoalkoxy (from 1 to carbon atoms) 4) Polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meth) acrylate of PEG-PPG block polymer, etc.], carbon Number 3 15 (meth) acrylamide derivatives [e
  • the content of the water-soluble monofunctional ethylenically unsaturated monomer contained in the support material composition is 19% by mass to 80% by mass with respect to 100% by mass of the total mass of the support material composition. It is preferable. When the content is within the above range, the removability of the support material with water can be improved without reducing the support force of the support material.
  • the water-soluble resin contained in the composition for the support material is for imparting moderate hydrophilicity to the support material, and by adding this, a support material having both water removability and support power is obtained. be able to.
  • the water-soluble resin preferably contains at least one selected from the group consisting of an oxyethylene group, an oxypropylene group, and an oxytetramethylene group. This is because the water removability can be further improved without reducing the support force of the support material.
  • Specific examples of the water-soluble resin include oxyethylene such as polyethylene glycol, polypropylene glycol, poly (oxytetramethylene) glycol, polyoxytetramethylene polyoxyethylene glycol, and polyoxytetramethylene polyoxypropylene glycol.
  • a polyoxyalkylene glycol containing at least one selected from the group consisting of a group, an oxypropylene group and an oxytetramethylene group a polyoxyalkylene glycol containing at least one selected from the group consisting of a group, an oxypropylene group and an oxytetramethylene group.
  • the said water-soluble resin may be used individually by 1 type, and may use 2 or more types together.
  • the content of the water-soluble resin in the support material composition of the present invention is preferably 15% by mass or more and 75% by mass or less with respect to 100% by mass of the total mass of the support material composition. If the content is within the above range, the removability by water can be improved without reducing the support force of the support material.
  • the number average molecular weight Mn of the water-soluble resin is preferably 100 to 5,000.
  • the number average molecular weight Mn of the water-soluble resin is preferably 200 to 3,000, more preferably 400 to 2,000.
  • the support composition may contain other additives as necessary.
  • additives include a photopolymerization initiator, a water-soluble organic solvent, an antioxidant, a colorant, a pigment dispersant, a storage stabilizer, a surface conditioner, an ultraviolet absorber, a light stabilizer, and a polymerization inhibitor. , Chain transfer agents, fillers and the like.
  • the compounds described above as photopolymerization initiators that can be contained in the model material composition may be used in the same manner.
  • the photopolymerization initiator is excellent in curability with an LED light source, and the molded article is colored. From the viewpoint of being small, it is preferable to include an acyl phosphine oxide-based photopolymerization initiator.
  • the support material composition contains a photopolymerization initiator, the content thereof is preferably 2 to 20% by mass, more preferably 3 to 10% by mass, based on the total mass of the support material composition. .
  • the content of the photopolymerization initiator is not less than the above lower limit, unreacted polymerization components are sufficiently reduced, and the curability of the support material can be sufficiently increased.
  • the content of the photopolymerization initiator is not more than the above upper limit, it is easy to avoid remaining unreacted photopolymerization initiator in the support material.
  • the water-soluble organic solvent is a component that improves the solubility of the support material obtained by photocuring the support material composition in water. Moreover, it is a component which adjusts the composition for support materials to low viscosity.
  • the content is preferably 35% by mass or less, more preferably 30% by mass or less, based on the total mass of the composition for support material. Further, the content is preferably 3% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more.
  • the dimensional accuracy of the material may deteriorate.
  • the content of the water-soluble organic solvent is not more than the above upper limit, it is easy to suppress such leaching.
  • the content of the water-soluble organic solvent in the support material composition is equal to or higher than the above lower limit, it is easy to improve the solubility of the support material in water, and the support material composition is adjusted to a low viscosity. It's easy to do.
  • water-soluble organic solvent examples include alkylene glycol monoacetate having a linear or branched alkylene group (for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol).
  • alkylene glycol monoacetate having a linear or branched alkylene group for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol.
  • alkylene glycol monoalkyl ethers having linear or branched alkylene groups [eg ethylene glycol monomethyl ether, propylene glycol monomethyl Ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether , Triethylene glycol monomethyl ether, tripropylene glycol monomethyl ether, tetraethylene glycol monomethyl ether, tetrapropylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monoethyl ether, Triethylene glycol monoethyl ether, tripropylene glycol monoethyl ether, tetraethylene glycol monoethyl ether, tetrapropylene glycol monoe
  • the water-soluble organic solvent is triethylene glycol monomethyl ether or dipropylene. More preferred is glycol monomethyl ether acetate.
  • the viscosity of the composition for a support material of the present invention is preferably 20 to 500 mPa ⁇ s at 25 ° C., more preferably 20 to 400 mPa ⁇ s, from the viewpoint of improving dischargeability from the material jet nozzle. preferable.
  • the above-mentioned viscosity can be measured using an R100 viscometer in accordance with JIS Z 8 803.
  • the method for producing the composition for support material of the present invention is not particularly limited.
  • the composition for the support material can be produced by uniformly mixing the components constituting the composition for support material using a mixing and stirring device or the like.
  • This invention manufactures a three-dimensional molded article by the stereolithography method by a material jet system using the composition for model materials of this invention, or the composition set for material jet stereolithography of this invention. A method is also provided.
  • the manufacturing method of the optical modeling product of the present invention is particularly limited as long as it is a method of manufacturing a three-dimensional modeling object by an optical modeling method by a material jet method using the model material composition or the optical modeling composition set of the present invention.
  • the production method of the present invention includes a step of photocuring the model material composition to obtain a model material, and photocuring the support material composition to obtain the support material. And a step of removing the support material from the model material.
  • the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the material jet type 3D printer is prepared, and each of the material for the model material and the support material is based on the prepared slice data.
  • the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
  • Examples of the light for curing the composition for the model material and the composition for the support material include active energy rays such as far infrared rays, infrared rays, visible rays, near ultraviolet rays, ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and X rays. It is done. Among these, near ultraviolet rays or ultraviolet rays are preferable from the viewpoint of the ease and efficiency of the curing operation.
  • the light source examples include conventionally known high pressure mercury lamps, metal halide lamps, and UV-LEDs.
  • the LED system is preferable from the viewpoint that the equipment can be downsized and the power consumption is small.
  • the composition for a model material is cured by irradiating an active energy ray having an accumulated light amount per layer of 300 mJ / cm 2 or more in a wavelength region of 320 to 410 nm.
  • an active energy ray having an accumulated light amount per layer of 300 mJ / cm 2 or more in a wavelength region of 320 to 410 nm By irradiating active energy rays with a high integrated light amount in the wavelength range of 320 to 410 nm, the cross-linking reaction of a component having a polymerizable group (for example, acryloyl group) having a relatively high reaction rate is promoted.
  • a component having a polymerizable group for example, acryloyl group
  • a material jet Since the crosslinking reaction of the polymerizable monomer is first accelerated and the crosslinking of the silicone-modified urethane oligomer (S) is delayed in the time until the droplet of the composition for the model material discharged from the nozzle lands and cures, the silicone is delayed.
  • the integrated light amount is more preferably 300 mJ / cm 2 or more, and further preferably 500 mJ / cm 2 or more.
  • the upper limit of the peak illuminance is not particularly limited, but is usually 2,000 mJ / cm 2 or less from the viewpoint of preventing energy saving and substrate damage.
  • each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 ⁇ m from the balance with the modeling speed.
  • the obtained shaped product is a combination of model material and support material.
  • the support material is removed from the modeled product to obtain an optical modeled product that is a model material.
  • the removal of the support material is preferably performed by, for example, immersing a shaped article obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
  • Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
  • a stereolithography product is obtained by the above process.
  • the optical modeling product manufactured using such a model material composition or optical modeling composition set of the present invention has good dimensional accuracy.
  • Model Material Composition Table 1 shows the details and abbreviations of the components constituting the model material composition used in the examples.
  • the SP value of the monofunctional ethylenically unsaturated copolymer (A) and the polyfunctional ethylenically unsaturated monomer (B) is the Fedors method (written by Yuji Harasaki, “Basic Science of Coating”, No. (Chapter 3, p. 35, 1977, published by Sakai Shoten) means a value at 25 ° C., calculated according to the following method.
  • Fedors considers that both the cohesive energy density and the molar volume depend on the type and number of substituents, and proposes the following formula and a constant corresponding to each substituent.
  • is the SP value (cal / cm 3 ) 1/2
  • ⁇ E is the cohesive energy density
  • V is the molar volume
  • ⁇ ei is the evaporation energy (cal / mol) of each atom or atomic group
  • ⁇ vi is each atom.
  • the molar volume of the atomic group (cm 3 / mol).
  • Tg 25 ° C. or higher, the following value is added to the molar volume.
  • n is the number of main chain skeleton atoms in the repeating unit in the compound
  • 4n is added to ⁇ vi when n ⁇ 3
  • 2n is added to ⁇ vi when n ⁇ 3.
  • Model Material Composition According to the composition shown in Table 2, the components constituting each model material composition were uniformly mixed using a mixing and stirring device, and after stirring, a glass filter (Kiriyama Seisakusho) was prepared. The mixture was subjected to suction filtration using the above-mentioned product, and the compositions 1 and 2 for model materials of Examples 1 and 2 were prepared.
  • ⁇ Wettability (pipette droplet diameter)>
  • the model material composition produced in Example 1 was applied onto a 188 ⁇ m thick polyethylene terephthalate film (white PET film manufactured by Teijin DuPont Films, trade name “U292W”) using a bar coater (# 14). Then, a printing film having a thickness of 3 ⁇ m was formed.
  • the light source for curing the printed film is an illuminance of 508 mW / cm 2 (UVR-N1 manufactured by UV Checker GS Yuasa Lighting) using a UV-LED curing device (aluminum substrate module NSSU100AT manufactured by Nichia Corporation, LED peak wavelength 365 nm). Irradiation).
  • a transparent PET film having no UV-cut function is bonded to the surface of the print film in order to impart an oxygen inhibition suppressing effect, and the total integrated light amount including precuring is 23 mJ / cm 2 .
  • the model material cured film A was obtained by irradiating with ultraviolet rays so as to be cured, and peeling the bonded PET film. Subsequently, using a micropipette, a drop volume of 5.0 ⁇ 0.2 ⁇ L of the model material was dropped on the surface of the model material cured film A, and 20 seconds later, using the above-described UV-LED curing device.
  • the length of the diameter was measured by irradiating and curing with ultraviolet rays so that the total accumulated light amount was 138 mJ / cm 2 .
  • the measured value of Table 3 evaluated 3 times by the same composition, and displayed the average value.
  • Example 2 Using the model material composition prepared in Example 2, a model material cured film B was prepared in the same manner as in Example 1 above.
  • ⁇ Contact angle MM> A model material that forms each model material cured film on the surface of each model material cured film described above using the contact angle measuring device “PG-X” manufactured by Matsubo Co., Ltd. and setting the dynamic mode to the dropping mode.
  • Each of the compositions was discharged at a drop volume of 1.8 ⁇ 0.1 ⁇ L, and the contact angle of the droplets was measured 0.3 seconds after the droplets of the composition landed on the model material cured film.
  • the contact angle of the model material composition with respect to the model material cured film was expressed as MM.
  • compositions for model materials prepared in Examples 1 and 2 above is a polyethylene terephthalate having a thickness of 100 ⁇ m using an ink jet recording apparatus (Fuji Film Co., Ltd. DMP-2831, head 10 pL specification) equipped with a piezo ink jet nozzle. It was laminated on a film (transparent PET film manufactured by Toray Industries, Inc., trade name “Lumirror QT92”), and the modeling accuracy was evaluated.
  • the head discharge conditions in this ink jet recording apparatus the voltage was 30 V, the frequency was 20 kHz, the head temperature was 40 ° C., and the clearance between the head and the PET film was 2 mm.
  • a UV-LED curing device (aluminum substrate module NVSU119C manufactured by Nichia Corporation, LED peak wavelength 375 nm, illuminance 800 mW / cm 2 ) was installed as a light source so as to run alongside the head. 0.4 seconds after the model material composition landed on the PET film or the model material cured film as the lower layer, the total accumulated light amount was adjusted to 43 mJ / cm 2 and cured by irradiating with ultraviolet rays. As input data of a modeled object, one side of a 0.3 mm square was used as one layer, and 100 layers were stacked in order to produce a quadrangular prism. The height of the column was measured according to the following criteria, and the modeling accuracy was evaluated.
  • the model material compositions prepared in Examples 1 and 2 above were each 75 ⁇ m thick polyethylene terephthalate film (transparent PET film manufactured by Toray Industries, Inc., trade name “Lumirror 75S10”) ) To form a printed film having a thickness of 8 ⁇ m.
  • the light source for curing the printed film is a high-pressure mercury lamp curing device (eye graphics company ECS-151S unit, high-pressure mercury lamp H015-L312, peak wavelength 365 nm), and an illuminance of 330 mW / cm 2 (UV checker GS Yuasa Lighting) Irradiation was performed under the conditions of actual measurement using UVR-N1 manufactured by the manufacturer.
  • This printed film was cured by irradiating with ultraviolet rays so that the total accumulated light amount was 570 mJ / cm 2 , thereby obtaining each model material cured film for evaluating the warpage of the modeled object.
  • the level of warpage was confirmed according to the following criteria. ⁇ Evaluation criteria> Evaluation ⁇ : No warpage Evaluation ⁇ : Slight warpage Evaluation ⁇ : Large warpage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The present invention pertains to a model material composition that is for forming a model material by material-jetting stereolithography, that comprises a polymerizable monomer, a photopolymerization initiator, and a silicone-modified urethane oligomer containing a polymerizable group, and that has a viscosity of 20-500 mPa·s at 25°C.

Description

モデル材用組成物Composition for model materials
 本発明は、マテリアルジェット光造形法によりモデル材を造形するためのモデル材用組成物、および前記モデル材用組成物を含んでなるマテリアルジェット光造形用組成物セット、ならびに、前記モデル材用組成物または前記マテリアルジェット光造形用組成物セットを用いる光造形品の製造方法に関する。 The present invention relates to a model material composition for modeling a model material by a material jet stereolithography method, a material jet stereolithography composition set comprising the model material composition, and the model material composition The present invention relates to a method for producing an optical modeling product using the material or the composition set for material jet optical modeling.
 従来、光硬化性樹脂組成物に紫外線等の光を照射して所定の形状を有する硬化層を連続的に形成することにより、立体造形物を作製する方法が広く知られている。中でも、マテリアルジェットノズルから光硬化性樹脂組成物を吐出させ、その直後に紫外線等の光を照射して樹脂組成物を硬化させることにより、所定の形状を有する硬化層を積層して立体造形物を作製するマテリアルジェット方式(インクジェット方式)による光造形法(以下、「マテリアルジェット光造形法」ともいう)は、CAD(Computer Aided Design)データに基づいて自由に立体造形物を作製できる小型の造形装置(3Dプリンター)により実現可能な造形法として、広く注目されている。 Conventionally, a method for producing a three-dimensional structure by widely irradiating a photocurable resin composition with light such as ultraviolet rays to continuously form a cured layer having a predetermined shape is widely known. Among them, a photo-curable resin composition is ejected from a material jet nozzle, and immediately after that, the resin composition is cured by irradiating light such as ultraviolet rays, thereby laminating a cured layer having a predetermined shape to form a three-dimensional structure. An optical modeling method (hereinafter also referred to as “material jet stereolithography”) using a material jet method (inkjet method) for producing a small-sized model that can freely create a three-dimensional modeled object based on CAD (Computer Aided Design) data. As a modeling method that can be realized by an apparatus (3D printer), it is attracting widespread attention.
 マテリアルジェット光造形法においては、通常、最終的に立体造形物を構成するモデル材と、立体造形中に該モデル材を支えるためのサポート材を併用することにより、中空形状等を有する複雑な形状の立体造形品を形成できることから、近年、サポート材と組み合わせて用いる、マテリアルジェット光造形用の種々のモデル材用樹脂組成物が開発されている。例えば、特許文献1には、所定量の単官能エチレン性不飽和単量体、ウレタン基を含有しない多官能エチレン性不飽和単量体、ウレタン含有エチレン性不飽和単量体および光重合開始剤を含有する、モデル材用の樹脂組成物が開示されている。また、特許文献2には、単官能エチレン性不飽和単量体、多官能性エチレン性不飽和単量体、オリゴマーおよび光重合開始剤を含有するモデル材用樹脂組成物が開示されている。 In the material jet stereolithography method, a complicated shape having a hollow shape or the like is usually obtained by using a model material that finally forms a three-dimensional model and a support material for supporting the model material during three-dimensional modeling. In recent years, various resin compositions for model material for material jet stereolithography, which are used in combination with a support material, have been developed. For example, Patent Document 1 discloses a predetermined amount of a monofunctional ethylenically unsaturated monomer, a polyfunctional ethylenically unsaturated monomer that does not contain a urethane group, a urethane-containing ethylenically unsaturated monomer, and a photopolymerization initiator. The resin composition for model materials containing this is disclosed. Patent Document 2 discloses a resin composition for a model material containing a monofunctional ethylenically unsaturated monomer, a polyfunctional ethylenically unsaturated monomer, an oligomer and a photopolymerization initiator.
特許第6060216号公報Japanese Patent No. 6060216 特開2017-31249号公報JP 2017-31249 A
 近年、マテリアルジェット光造形法の高速化が求められており、その実現のためには、マテリアルジェットノズルから吐出された光硬化性組成物が着弾して光硬化された後、前記組成物の硬化層上に重なる層を形成する光硬化性組成物がマテリアルジェットノズルから吐出され着弾するまでの一連のサイクル時間を短くする必要がある。しかしながら、上記特許文献1および2に開示されるようなモデル材用樹脂組成物では、先に着弾したモデル材用組成物が硬化した後に、次の層を形成するモデル材用組成物が該組成物上に着弾する場合、サポート材が存在する場合でさえも、上に重なる組成物の重みや濡れ広がりやすさ、付着力の欠如により先に着弾した組成物の形状が崩れやすくなる。また、積層サイクルを重ねていくとモデル材同士やモデル材とサポート材において両者が混ざり合ったり、上に重なるモデル材用組成物が先に着弾した組成物からずり落ちたりすることにより、三次元立体形状にダレが生じやすくなり、モデル材用組成物を垂直方向に精度よく積み上げることが難しかった。このため、従来のモデル材用樹脂組成物では、マテリアルジェット光造形法の高速化に十分に対応できず、高い造形精度を有する三次元立体構造を速い造形速度で実現し得るモデル材用組成物に対する要求が存在する。 In recent years, there has been a demand for high-speed material jet stereolithography, and in order to achieve this, after the photocurable composition discharged from the material jet nozzle has landed and photocured, the composition is cured. It is necessary to shorten a series of cycle times until the photocurable composition forming a layer overlapping the layer is discharged from the material jet nozzle and landed. However, in the resin composition for a model material as disclosed in Patent Documents 1 and 2, the composition for a model material that forms the next layer after the previously landed composition for the model material is cured is the composition. In the case of landing on an object, even when a support material is present, the shape of the composition that has landed earlier tends to collapse due to the weight of the composition overlying, ease of wetting and lack of adhesion. In addition, when the stacking cycle is repeated, the model material and the model material and the support material are mixed with each other, or the overlying composition for the model material slides down from the composition that has landed first, so that three-dimensional Sagging tends to occur in the three-dimensional shape, and it has been difficult to accurately stack the composition for a model material in the vertical direction. For this reason, the conventional resin composition for a model material cannot sufficiently cope with the speeding up of the material jet stereolithography, and the composition for a model material that can realize a three-dimensional structure having high modeling accuracy at a high modeling speed. There is a request for.
 そこで、本発明は、マテリアルジェット方式による三次元立体構造の高速造形時においても高い造形精度および優れた機械的特性を実現し得る、マテリアルジェット光造形法に適したモデル材用組成物を提供することを目的とする。 Therefore, the present invention provides a composition for a model material suitable for a material jet stereolithography method capable of realizing high modeling accuracy and excellent mechanical properties even during high-speed modeling of a three-dimensional structure by a material jet method. For the purpose.
 本発明は、以下の好適な態様を提供するものである。
[1]マテリアルジェット光造形法によりモデル材を造形するためのモデル材用組成物であって、重合性モノマー、光重合開始剤、および重合性基を有するシリコーン変性ウレタンオリゴマーを含み、25℃における粘度が20~500mPa・sである、モデル材用組成物。
[2]モデル材用組成物を、該モデル材用組成物の硬化物上に滴下して着弾させたとき、着弾0.3秒後におけるモデル材用組成物の液滴の前記硬化物に対する接触角が40°以上である、前記[1]に記載のモデル材用組成物。
[3]シリコーン変性ウレタンオリゴマーが有する重合性基が、アクリロイル基、メタクリロイル基、ビニル基、アリル基およびビニルエーテル基からなる群から選択される基である、前記[1]または[2]に記載のモデル材用組成物。
[4]モデル材用組成物の総質量に対して、重合性基を有するシリコーン変性ウレタンオリゴマーを0.1~20質量%含む、前記[1]~[3]のいずれかに記載のモデル材用組成物。
[5]表面張力が24~30mN/mである、前記[1]~[4]のいずれかに記載のモデル材用組成物。
[6]重合性基を有するシリコーン変性ウレタンオリゴマーの数平均分子量が1,000~10,000である、前記[1]~[5]のいずれかに記載のモデル材用組成物。
[7]重合性基を有するシリコーン変性ウレタンオリゴマーが一分子中に1つの重合性基を有するシリコーン変性ウレタンオリゴマーである、前記[1]~[6]のいずれかに記載のモデル材組成物。
[8]重合性基を有するシリコーン変性ウレタンオリゴマーが下記式(1):
Figure JPOXMLDOC01-appb-C000002
〔式中、
 IPはイソホロンジイソシアネート単位を表し、
 PAGは、ポリプロピレングリコール単位および/またはポリエチレングリコール単位を表し、
 HEAはアクリル末端を表し、
 nは0~30であり、aは1~50であり、bは1~50である〕
で示される構造を有する、前記[1]~[7]のいずれかに記載のモデル材用組成物。
[9]重合性モノマーとして、単官能エチレン性不飽和単量体(A)および多官能エチレン性不飽和単量体(B)を含む、前記[1]~[8]のいずれかに記載のモデル材用組成物。
[10]重合性化合物の総質量に対して、単官能エチレン性不飽和単量体(A)を40質量%以上含む、前記[9]に記載のモデル材用組成物。
[11]重合性化合物の総質量に対して、多官能エチレン性不飽和単量体(B)を1~30質量%含む、前記[9]または[10]に記載のモデル材用組成物。
[12]単官能エチレン性不飽和単量体(A)が、分子内に環状構造を有する単官能エチレン性不飽和単量体である、前記[9]~[11]のいずれかに記載のモデル材用組成物。
[13]単官能エチレン性不飽和単量体(A)および多官能エチレン性不飽和単量体(B)のSP値が、それぞれ11.0以下である、前記[9]~[12]のいずれかに記載のモデル材用組成物。
[14]着色剤をさらに含む、前記[1]~[13]のいずれかに記載のモデル材用組成物。
[15]前記[1]~[14]のいずれかに記載のモデル材用組成物と、マテリアルジェット光造形法によりサポート材を造形するためのサポート材用組成物とを含んでなる、マテリアルジェット光造形用組成物セット。
[16]サポート材用組成物が水溶性である、前記[15]に記載のマテリアルジェット光造形用組成物セット。
[17]前記[1]~[14]のいずれかに記載のモデル材用組成物または前記[15]若しくは[16]に記載のマテリアルジェット光造形用組成物セットを用いて光造形品を製造する方法であって、320~410nmの波長域において1レイヤーあたりの積算光量が300mJ/cm以上の活性エネルギー線を照射することによりモデル材用組成物を硬化させることを含む、光造形品の製造方法。
The present invention provides the following preferred embodiments.
[1] A composition for a model material for modeling a model material by a material jet stereolithography method, including a polymerizable monomer, a photopolymerization initiator, and a silicone-modified urethane oligomer having a polymerizable group at 25 ° C. A composition for a model material having a viscosity of 20 to 500 mPa · s.
[2] When the model material composition is dropped onto the cured product of the model material composition and landed, the contact of the droplet of the model material composition with the cured product after 0.3 seconds of landing The composition for model materials according to [1], wherein the angle is 40 ° or more.
[3] The polymerizable group of the silicone-modified urethane oligomer is a group selected from the group consisting of an acryloyl group, a methacryloyl group, a vinyl group, an allyl group, and a vinyl ether group, according to the above [1] or [2] Composition for model materials.
[4] The model material according to any one of [1] to [3], including 0.1 to 20% by mass of a silicone-modified urethane oligomer having a polymerizable group with respect to the total mass of the composition for model material. Composition.
[5] The model material composition according to any one of [1] to [4], wherein the surface tension is 24 to 30 mN / m.
[6] The composition for a model material according to any one of [1] to [5], wherein the number average molecular weight of the silicone-modified urethane oligomer having a polymerizable group is 1,000 to 10,000.
[7] The model material composition according to any one of [1] to [6], wherein the silicone-modified urethane oligomer having a polymerizable group is a silicone-modified urethane oligomer having one polymerizable group in one molecule.
[8] A silicone-modified urethane oligomer having a polymerizable group is represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000002
[Where,
IP represents an isophorone diisocyanate unit,
PAG represents a polypropylene glycol unit and / or a polyethylene glycol unit;
HEA represents the acrylic end,
n is 0-30, a is 1-50, b is 1-50]
The composition for a model material according to any one of [1] to [7], which has a structure represented by:
[9] The polymerizable monomer according to any one of [1] to [8], including a monofunctional ethylenically unsaturated monomer (A) and a polyfunctional ethylenically unsaturated monomer (B). Composition for model materials.
[10] The composition for a model material according to [9], including the monofunctional ethylenically unsaturated monomer (A) in an amount of 40% by mass or more based on the total mass of the polymerizable compound.
[11] The composition for a model material according to [9] or [10], comprising 1 to 30% by mass of the polyfunctional ethylenically unsaturated monomer (B) with respect to the total mass of the polymerizable compound.
[12] The monofunctional ethylenically unsaturated monomer (A) according to any one of [9] to [11], wherein the monofunctional ethylenically unsaturated monomer (A) is a monofunctional ethylenically unsaturated monomer having a cyclic structure in the molecule. Composition for model materials.
[13] The SP values of the monofunctional ethylenically unsaturated monomer (A) and the polyfunctional ethylenically unsaturated monomer (B) are 11.0 or less, respectively, in the above [9] to [12] The composition for model materials in any one.
[14] The composition for model material according to any one of [1] to [13], further including a colorant.
[15] A material jet comprising the model material composition according to any one of [1] to [14] and a support material composition for modeling the support material by a material jet stereolithography method. Stereolithography composition set.
[16] The composition set for material jet stereolithography according to [15], wherein the support material composition is water-soluble.
[17] An optically shaped article is manufactured using the model material composition according to any one of [1] to [14] or the material jet stereolithography composition set according to [15] or [16]. A model material composition comprising: curing a composition for a model material by irradiating an active energy ray having an accumulated light amount per layer of 300 mJ / cm 2 or more in a wavelength range of 320 to 410 nm. Production method.
 本発明によれば、マテリアルジェット方式による三次元立体構造の高速造形時においても高い造形精度および優れた機械的特性を実現し得る、マテリアルジェット光造形法に適したモデル材用組成物を提供することができる。 According to the present invention, there is provided a composition for a model material suitable for a material jet stereolithography method capable of realizing high modeling accuracy and excellent mechanical properties even during high-speed modeling of a three-dimensional structure by a material jet method. be able to.
 以下、本発明の実施の形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. Note that the scope of the present invention is not limited to the embodiment described here, and various modifications can be made without departing from the spirit of the present invention.
 <モデル材用組成物>
 本発明のモデル材用組成物は、重合性モノマー、光重合開始剤、および、重合性基を有するシリコーン変性ウレタンオリゴマー(以下、「シリコーン変性ウレタンオリゴマー(S)」ともいう)を含む。
 本発明のモデル材用組成物をマテリアルジェットノズルから滴下した場合、該モデル材用組成物の液滴の最表面にシリコーン変性ウレタンオリゴマー(S)が有するシロキサン基が速やかに配置されると想定される。すなわち、本発明のモデル材用組成物をマテリアルジェットノズルから連続的に滴下する場合、滴下されたモデル材用組成物の液滴の最表面および該組成物の液滴が着弾するモデル材用組成物の硬化物の最表面のいずれにもシロキサン基が配置しており、この相対関係により、先に着弾したモデル材用組成物の硬化物表面に対する、滴下されたモデル材用組成物の接触角を大きくすることができる。このような液滴または硬化物最表面へのシロキサン基の配列に関して、本発明のモデル材用組成物では、シロキサン基がウレタンオリゴマーの分子構造として存在しているため、シロキサン基を有する化合物を単独で配合する場合と比較して、より正確にシロキサン基が液滴または硬化物の外側を向いて整列しやすい。あわせて、硬化物表面と液滴表面においてシロキサン基同士による分子間力を強固に働かすことができ、先に着弾したモデル材用組成物の硬化物と滴下された液滴とが強固に結合する。これら2つの効果により、先に着弾したモデル材用組成物の硬化物とそこに重なる次の層を形成するモデル材用組成物の液滴との間において、歪みやずれが生じ難くなり、また、歪みやずれが生じた場合の修復能力を向上させることができると考えられる。このため、本発明のモデル材用組成物は、マテリアルジェットノズルから連続して吐出される場合にも垂直方向に精度よく積み上がることができ、高速造形時における高い造形精度を確保することができる。なお、本発明において、原則として「モデル材」はモデル材用組成物の硬化物を意味し、該硬化物から最終的に得られるものを「光造形品」と称する。
<Model material composition>
The composition for a model material of the present invention includes a polymerizable monomer, a photopolymerization initiator, and a silicone-modified urethane oligomer having a polymerizable group (hereinafter also referred to as “silicone-modified urethane oligomer (S)”).
When the composition for a model material of the present invention is dropped from a material jet nozzle, it is assumed that the siloxane group of the silicone-modified urethane oligomer (S) is quickly arranged on the outermost surface of the droplet of the composition for a model material. The That is, when the composition for a model material of the present invention is continuously dropped from a material jet nozzle, the composition for the model material on which the outermost surface of the dropped droplet of the composition for a model material and the droplet of the composition land The siloxane group is arranged on any of the outermost surfaces of the cured product, and due to this relative relationship, the contact angle of the dropped model material composition on the cured material surface of the model material composition that has landed earlier Can be increased. Regarding the arrangement of siloxane groups on the outermost surface of such droplets or cured products, in the composition for a model material of the present invention, since the siloxane groups exist as the molecular structure of the urethane oligomer, a compound having a siloxane group is used alone. Compared with the case of blending with siloxane, the siloxane groups are more easily aligned to the outside of the droplets or the cured product. In addition, the intermolecular force due to the siloxane groups can be exerted firmly on the cured product surface and the droplet surface, and the cured material of the model material composition that has landed first and the dropped droplet are firmly bonded. . These two effects make it difficult for distortion and displacement to occur between the hardened material of the model material composition landed first and the droplet of the model material composition forming the next layer overlapping therewith, and It is considered that the repair ability in the case where distortion or deviation occurs can be improved. For this reason, the composition for a model material of the present invention can be accurately stacked in the vertical direction even when continuously discharged from a material jet nozzle, and can ensure high modeling accuracy during high-speed modeling. . In the present invention, in principle, the “model material” means a cured product of the model material composition, and a product finally obtained from the cured product is referred to as an “optically shaped product”.
 本発明において、モデル材用組成物に含まれるシリコーン変性ウレタンオリゴマー(S)の数平均分子量は、好ましくは1,000~10,000であり、より好ましくは1,200以上、さらに好ましくは1,400以上、特に好ましくは1,600以上であり、また、より好ましくは9,000以下、さらに好ましくは8,000以下、特に好ましくは7,000以下である。シリコーン変性ウレタンオリゴマー(S)の数平均分子量が上記範囲内であると、モデル材用組成物をマテリアルジェットノズルから滴下した場合に、滴下された液滴の最表面に十分な量のシロキサン基を素早く均一に配置することができ、接触するモデル材用組成物の液滴または硬化物との接触角にばらつきが生じ難くなる。これにより、高速造形時の造形精度を向上させることができる。
 なお、シリコーン変性ウレタンオリゴマー(S)の数平均分子量は、ゲル浸透クロマトグラフィー(GPC)やマトリックス支援レーザー脱離イオン化飛行時間型質量分析法(MALDI-TOF-MS)を用いて求めることができる。
In the present invention, the number average molecular weight of the silicone-modified urethane oligomer (S) contained in the model material composition is preferably 1,000 to 10,000, more preferably 1,200 or more, and even more preferably 1, It is 400 or more, particularly preferably 1,600 or more, more preferably 9,000 or less, further preferably 8,000 or less, and particularly preferably 7,000 or less. When the number average molecular weight of the silicone-modified urethane oligomer (S) is within the above range, when a composition for a model material is dropped from a material jet nozzle, a sufficient amount of siloxane groups is formed on the outermost surface of the dropped droplet. It can be arranged quickly and uniformly, and variations in the contact angle with the droplets or cured product of the model material composition that comes into contact are less likely to occur. Thereby, the modeling precision at the time of high-speed modeling can be improved.
The number average molecular weight of the silicone-modified urethane oligomer (S) can be determined using gel permeation chromatography (GPC) or matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF-MS).
 本発明において、シリコーン変性ウレタンオリゴマー(S)が有する重合性基は、モデル材用組成物中に含まれる光重合開始剤から発生した活性ラジカルや酸などによって、モデル材用組成物中の重合性化合物(重合性モノマー)との架橋反応に関与し得る基であれば特に限定されず、アクリロイル基、メタクリロイル基、ビニル基、アリル基、ビニルエーテル基、アクリルアミド基、メタクリルアミド基、エポキシ基、オキセタニル基等が挙げられる。中でも、光硬化における反応速度や反応効率の観点から、アクリロイル基、メタクリロイル基、ビニル基、アリル基およびビニルエーテル基からなる群から選択される基が好ましく、アクリロイル基またはメタクリロイル基がより好ましい。なお、光重合性に乏しい加水分解基となるアルコキシ基は、本発明の対象となる重合性基とみなさない。 In the present invention, the polymerizable group of the silicone-modified urethane oligomer (S) is polymerized in the model material composition by active radicals or acids generated from the photopolymerization initiator contained in the model material composition. Any group that can participate in a crosslinking reaction with a compound (polymerizable monomer) is not particularly limited, and acryloyl group, methacryloyl group, vinyl group, allyl group, vinyl ether group, acrylamide group, methacrylamide group, epoxy group, oxetanyl group Etc. Among these, from the viewpoint of reaction rate and reaction efficiency in photocuring, a group selected from the group consisting of acryloyl group, methacryloyl group, vinyl group, allyl group and vinyl ether group is preferable, and acryloyl group or methacryloyl group is more preferable. In addition, the alkoxy group used as the hydrolyzable group with poor photopolymerizability is not regarded as the polymerizable group which is the subject of the present invention.
 特に、シリコーン変性ウレタンオリゴマー(S)の有する重合性基が、モデル材用組成物を構成する重合性化合物(重合性モノマー)の有する重合性基よりも反応速度が遅い重合性基であると、マテリアルジェットノズルから滴下されたモデル材用組成物の液滴が着弾し、次の硬化工程において、シリコーン変性ウレタンオリゴマーが架橋する前に、シリコーン変性ウレタンオリゴマー(S)が有するシロキサン基を液滴の最表面に素早くかつ均質に配置させることができる。このため、本発明においては、シリコーン変性ウレタンオリゴマー(S)の有する重合性基が、モデル材用組成物を構成する重合性化合物(重合性モノマー)が有する重合性基よりも反応速度の遅い重合性基であることが好ましい。具体的には、本発明の一実施態様において、シリコーン変性ウレタンオリゴマー(S)が有する重合性基は、例えばメタクリロイル基であることが好ましく、シリコーン変性ウレタンオリゴマー(S)の有する重合性基がメタクリロイル基であり、かつ、モデル材用組成物を構成する重合性化合物(重合性モノマー)の有する重合性基がアクリロイル基であることがより好ましい。 In particular, the polymerizable group possessed by the silicone-modified urethane oligomer (S) is a polymerizable group having a slower reaction rate than the polymerizable group possessed by the polymerizable compound (polymerizable monomer) constituting the composition for a model material. The droplets of the model material composition dropped from the material jet nozzle land and before the silicone-modified urethane oligomer crosslinks in the next curing step, the siloxane group of the silicone-modified urethane oligomer (S) is removed. It can be quickly and uniformly placed on the outermost surface. For this reason, in the present invention, the polymerizable group possessed by the silicone-modified urethane oligomer (S) is polymerized with a slower reaction rate than the polymerizable group possessed by the polymerizable compound (polymerizable monomer) constituting the model material composition. It is preferably a sex group. Specifically, in one embodiment of the present invention, the polymerizable group that the silicone-modified urethane oligomer (S) has is preferably, for example, a methacryloyl group, and the polymerizable group that the silicone-modified urethane oligomer (S) has is methacryloyl. More preferably, the polymerizable group (polymerizable monomer) of the polymerizable compound (polymerizable monomer) constituting the model material composition is an acryloyl group.
 本発明のモデル材用組成物に含まれるシリコーン変性ウレタンオリゴマー(S)の構造は特に限定されず、従来公知の重合性基を有するシリコーン変性ウレタンオリゴマーを用いることができるが、シリコーン変性ウレタンオリゴマー(S)が一分子中に2つ以上の重合性基を有する場合、マテリアルジェットノズルから滴下されたモデル材用組成物の液滴において、該シリコーン変性ウレタンオリゴマー(S)と重合性化合物(重合性モノマー)との架橋反応が進み易くなる。このため、重合性化合物(重合性モノマー)との架橋前に液滴の最表面にシリコーン変性ウレタンオリゴマー(S)が有するシロキサン基が素早く均一に配置し難くなる傾向にある。マテリアルジェットノズルから滴下されたモデル材用組成物の液滴において、シリコーン変性ウレタンオリゴマー(S)が液滴の最表面に存在し、かつ、該シリコーン変性ウレタンオリゴマー(S)が有するシロキサン基が液滴の最も外側に位置していると、高速造形時の造形精度を効果的に向上させることができる。したがって、本発明のモデル材用組成物に含まれるシリコーン変性ウレタンオリゴマー(S)は、一分子中に1つの重合性基を有するものであることが好ましい。一分子中に1つ存在する重合性基は、シリコーン変性ウレタンオリゴマー(S)の片末端または側鎖に存在していてよく、上記好適な配置をより取りやすいことからオリゴマー分子鎖の末端部に存在することがより好ましい。なお、オリゴマー分子鎖の末端部とは、シリコーン変性ウレタンオリゴマー(S)の主鎖の末端部(片末端)および側鎖の末端部を意味する。 The structure of the silicone-modified urethane oligomer (S) contained in the model material composition of the present invention is not particularly limited, and a conventionally known silicone-modified urethane oligomer having a polymerizable group can be used. When S) has two or more polymerizable groups in one molecule, the silicone-modified urethane oligomer (S) and the polymerizable compound (polymerizable) in the droplet of the model material composition dropped from the material jet nozzle Monomer)). For this reason, it exists in the tendency for the siloxane group which silicone modified urethane oligomer (S) has to arrange | position to the outermost surface of a droplet quickly and uniformly before bridge | crosslinking with a polymeric compound (polymerizable monomer). In the droplet of the model material composition dropped from the material jet nozzle, the silicone-modified urethane oligomer (S) is present on the outermost surface of the droplet, and the siloxane group of the silicone-modified urethane oligomer (S) is liquid. If it is located on the outermost side of the droplet, the modeling accuracy at the time of high-speed modeling can be effectively improved. Therefore, the silicone-modified urethane oligomer (S) contained in the model material composition of the present invention preferably has one polymerizable group in one molecule. One polymerizable group in one molecule may be present at one end or side chain of the silicone-modified urethane oligomer (S), and it is easier to take the above preferred arrangement, so that it is at the end of the oligomer molecular chain. More preferably it is present. The terminal part of the oligomer molecular chain means the terminal part (one terminal) of the main chain and the terminal part of the side chain of the silicone-modified urethane oligomer (S).
 本発明において、モデル材用組成物に含まれるシリコーン変性ウレタンオリゴマー(S)としては、シリコーン変性ウレタン(メタ)アクリレートオリゴマーが好ましく、シリコーン変性ウレタンアクリレートオリゴマーがより好ましい。シリコーン変性ウレタンアクリレートを構成するウレタン成分に用いられるイソシアネートには特に制限はなく、脂肪族系、芳香族系、脂環族系などであってよく、例えばトリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)4,4-ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、水添キシリレンジイソシアネート(H6XDI)、ナフタレンジイソシアネート(NDI)、ノルボルネンジイソシアネート(NBDI)、1,5-ペンタメチレンジイソシアネート(PDI)等であってよい。 In the present invention, the silicone-modified urethane oligomer (S) contained in the model material composition is preferably a silicone-modified urethane (meth) acrylate oligomer, and more preferably a silicone-modified urethane acrylate oligomer. There is no restriction | limiting in particular in the isocyanate used for the urethane component which comprises silicone modified urethane acrylate, Aliphatic type, aromatic type, alicyclic type etc. may be sufficient, for example, tolylene diisocyanate (TDI), xylylene diisocyanate ( XDI) 4,4-diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), hydrogenated xylylene diisocyanate (H6XDI), naphthalene diisocyanate (NDI), norbornene diisocyanate (NBDI), 1,5- It may be pentamethylene diisocyanate (PDI) or the like.
 本発明において、シリコーン変性ウレタンオリゴマー(S)としては、具体的には、例えば下記式(1)で表される構造を有するシリコーン変性ウレタンオリゴマーが挙げられる。シリコーン変性ウレタンオリゴマー(S)として、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。下記式(1)で表される構造を有するシロキサン化合物を用いることにより、高速造形時の造形精度を効果的に高めることができる。 In the present invention, specific examples of the silicone-modified urethane oligomer (S) include a silicone-modified urethane oligomer having a structure represented by the following formula (1). As silicone modified urethane oligomer (S), only 1 type may be used and it may be used in combination of 2 or more type. By using a siloxane compound having a structure represented by the following formula (1), the modeling accuracy at the time of high-speed modeling can be effectively increased.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(1)中、IPはイソホロンジイソシアネート単位を表し、PAGはポリプロピレングリコール単位および/またはポリエチレングリコール単位を表し、HEAはアクリル末端を表す。
 nは0~30であり、好ましくは1~20であり、より好ましくは5~15である。また、aは1~50であり、好ましくは2~40であり、より好ましくは3~30であり、bは1~50であり、好ましくは2~40であり、より好ましくは3~30である。
In the above formula (1), IP represents an isophorone diisocyanate unit, PAG represents a polypropylene glycol unit and / or a polyethylene glycol unit, and HEA represents an acrylic terminal.
n is 0 to 30, preferably 1 to 20, and more preferably 5 to 15. Further, a is 1 to 50, preferably 2 to 40, more preferably 3 to 30, and b is 1 to 50, preferably 2 to 40, more preferably 3 to 30. is there.
 シリコーン変性ウレタンオリゴマー(S)は、従来公知の方法により調製することができ、例えば、特開2004-160932や特許6035325に記載の方法により調製し得る。すなわち、イソシアネート成分とポリシロキサン骨格を有する多価アルコール、水酸基と(メタ)アクリロイル基を有する化合物とを、ジブチル錫ラウレートやジブチル錫アセテート等の触媒を使用しながら、適当なモル比にて反応させるといった通常行われるウレタン化反応により調製することができる。 The silicone-modified urethane oligomer (S) can be prepared by a conventionally known method. For example, it can be prepared by a method described in JP-A No. 2004-160932 or Japanese Patent No. 6035325. That is, an isocyanate component, a polyhydric alcohol having a polysiloxane skeleton, and a compound having a hydroxyl group and a (meth) acryloyl group are reacted at an appropriate molar ratio using a catalyst such as dibutyltin laurate or dibutyltin acetate. It can prepare by the usual urethanation reaction.
 本発明において、モデル材用組成物に含まれるシリコーン変性ウレタンオリゴマー(S)として市販品を用いてもよい。 In the present invention, a commercially available product may be used as the silicone-modified urethane oligomer (S) contained in the model material composition.
 本発明のモデル材用組成物における、シリコーン変性ウレタンオリゴマー(S)の含有量は、モデル材用組成物の総質量に対して、好ましくは0.1質量%以上であり、より好ましくは0.5質量%以上であり、さらに好ましくは1質量%以上であり、特に好ましくは2質量%以上である。また、好ましくは20質量%以下であり、より好ましくは15質量%以下であり、さらに好ましくは10質量%以下である。シリコーン変性ウレタンオリゴマー(S)の含有量が上記上限下限の範囲内にあると、マテリアルジェットノズルから滴下されたモデル材用組成物の液滴の最表面に十分な量のシロキサン基を均一に存在させることができ、高速造形時の造形精度を効果的に向上させることができる。なお、シリコーン変性ウレタンオリゴマー(S)を2種以上含む場合、上記含有量の範囲はその含有量の合計として定められる。 The content of the silicone-modified urethane oligomer (S) in the model material composition of the present invention is preferably 0.1% by mass or more, more preferably 0.8% by mass relative to the total mass of the model material composition. It is 5 mass% or more, More preferably, it is 1 mass% or more, Most preferably, it is 2 mass% or more. Moreover, it is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less. When the content of the silicone-modified urethane oligomer (S) is within the above upper and lower limits, a sufficient amount of siloxane groups are uniformly present on the outermost surface of the model material composition dropped from the material jet nozzle. It is possible to improve the modeling accuracy during high-speed modeling. In addition, when 2 or more types of silicone modified urethane oligomers (S) are included, the range of the said content is defined as the sum total of the content.
 本発明のモデル材用組成物は、重合性モノマーを含み、重合性モノマーとして単官能エチレン性不飽和単量体(A)を含むことが好ましい。単官能エチレン性不飽和単量体(A)は、紫外線等の活性エネルギー線の照射により重合して硬化する特性を有する成分であり、分子内にエチレン性二重結合を1つ有する重合性モノマーである。なお、本明細書において「(メタ)アクリレート」は、アクリレートおよびメタクリレートの双方またはいずれかを表し、「(メタ)アクリルアミド」は、アクリルアミドおよびメタクリルアミドの双方またはいずれかを表す。単官能エチレン性不飽和単量体(A)として1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。 The composition for a model material of the present invention preferably contains a polymerizable monomer, and preferably contains a monofunctional ethylenically unsaturated monomer (A) as the polymerizable monomer. The monofunctional ethylenically unsaturated monomer (A) is a component having a property of being polymerized and cured by irradiation with active energy rays such as ultraviolet rays, and a polymerizable monomer having one ethylenic double bond in the molecule. It is. In the present specification, “(meth) acrylate” represents both and / or acrylate and methacrylate, and “(meth) acrylamide” represents both and / or acrylamide and methacrylamide. Only one type may be used as the monofunctional ethylenically unsaturated monomer (A), or two or more types may be used in combination.
 本発明において、単官能エチレン性不飽和単量体(A)としては、直鎖状または分枝状のアルキル基を有するアルキル(メタ)アクリレート、分子内に、脂環式構造、芳香環構造または複素環構造等の環状構造を有する(メタ)アクリレート、ならびに(メタ)アクリルアミドおよびN-ビニルラクタム類などの窒素原子を含有する単官能エチレン性不飽和単量体等が挙げられる。なお、本明細書において、脂環式構造は炭素原子が環状に結合した脂肪族の環状構造を、芳香環構造は炭素原子が環状に結合した芳香族の環状構造を、複素環構造は炭素原子および1以上のヘテロ原子が環状に結合した構造をいう。 In the present invention, the monofunctional ethylenically unsaturated monomer (A) includes an alkyl (meth) acrylate having a linear or branched alkyl group, an alicyclic structure, an aromatic ring structure or Examples thereof include (meth) acrylates having a cyclic structure such as a heterocyclic structure, and monofunctional ethylenically unsaturated monomers containing nitrogen atoms such as (meth) acrylamide and N-vinyl lactams. In this specification, an alicyclic structure is an aliphatic cyclic structure in which carbon atoms are cyclically bonded, an aromatic ring structure is an aromatic cyclic structure in which carbon atoms are cyclically bonded, and a heterocyclic structure is a carbon atom. And a structure in which one or more heteroatoms are bonded in a cyclic manner.
 直鎖状または分枝状のアルキル基を有するアルキル(メタ)アクリレートとしては、例えば、好ましくは炭素数4~30の、より好ましくは炭素数6~20の直鎖状または分枝状のアルキル基を有するアルキル(メタ)アクリレートが挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、2-エチルヘキシル-ジグリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、t-ブチル(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシ-ジエチレングリコール(メタ)アクリレート、メトキシ-トリエチレングリコール(メタ)アクリレート、メトキシ-ポリエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、カプロラクトン(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-コハク酸等が挙げられる。 Examples of the alkyl (meth) acrylate having a linear or branched alkyl group preferably include a linear or branched alkyl group having preferably 4 to 30 carbon atoms, more preferably 6 to 20 carbon atoms. Alkyl (meth) acrylates having Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl (meth) acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, decyl (Meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, isomyristyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, 2-ethylhexyl-diglycol (meth) acrylate, stearyl ( (Meth) acrylate, isostearyl (meth) acrylate, t-butyl (meth) acrylate, β-carboxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2 Hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- (2-ethoxyethoxy) ethyl (meth) acrylate, butoxyethyl (meth) acrylate, ethoxy-diethylene glycol (meth) acrylate, methoxy-triethylene glycol (Meth) acrylate, methoxy-polyethylene glycol (meth) acrylate, methoxydipropylene glycol (meth) acrylate, caprolactone (meth) acrylate, 2- (meth) acryloyloxyethyl-succinic acid and the like.
 脂環式構造を有する(メタ)アクリレートとしては、例えば、好ましくは炭素数6~20の、より好ましくは炭素数8~15の脂環式構造を有する(メタ)アクリレートが挙げられる。具体的には、例えば、シクロヘキシル(メタ)アクリレート、4-t-ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、3,3,5-トリメチルシクロヘキサノール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸等が挙げられる。 Examples of the (meth) acrylate having an alicyclic structure include (meth) acrylates preferably having an alicyclic structure having 6 to 20 carbon atoms, more preferably 8 to 15 carbon atoms. Specifically, for example, cyclohexyl (meth) acrylate, 4-t-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate, 3, 3, 5 -Trimethylcyclohexanol (meth) acrylate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid and the like.
 芳香環構造を有する(メタ)アクリレートとしては、例えば、好ましくは炭素数6~20の、より好ましくは炭素数8~15の芳香環構造を有する(メタ)アクリレートが挙げられる。具体的には、例えば、フェノキシエチル(メタ)アクリレート、フェノキシ-ポリエチレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ノニルフェノールエチレンオキサイド付加物(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-フタル酸、ネオペンチルグリコール-アクリル酸-安息香酸エステル等が挙げられる。 Examples of the (meth) acrylate having an aromatic ring structure include (meth) acrylates preferably having an aromatic ring structure having 6 to 20 carbon atoms, more preferably 8 to 15 carbon atoms. Specifically, for example, phenoxyethyl (meth) acrylate, phenoxy-polyethylene glycol (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, nonylphenol ethylene oxide adduct (meth) acrylate, 2- (meth) acrylate And acryloyloxyethyl-phthalic acid, neopentyl glycol-acrylic acid-benzoic acid ester and the like.
 複素環構造を有する(メタ)アクリレートとしては、例えば、好ましくは炭素数5~20の、より好ましくは炭素数7~15の複素環構造を有する(メタ)アクリレートが挙げられる。具体的には、例えば、テトラヒドロフルフリル(メタ)アクリレート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、4-(メタ)アクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2-シクロヘキシル-1,3-ジオキソラン等が挙げられる。 Examples of the (meth) acrylate having a heterocyclic structure include (meth) acrylates preferably having a heterocyclic structure having 5 to 20 carbon atoms, more preferably 7 to 15 carbon atoms. Specifically, for example, tetrahydrofurfuryl (meth) acrylate, cyclic trimethylolpropane formal (meth) acrylate, 4- (meth) acryloyloxymethyl-2-methyl-2-ethyl-1,3-dioxolane, 4 -(Meth) acryloyloxymethyl-2-cyclohexyl-1,3-dioxolane and the like.
 また、上記(メタ)アクリレートとは異なる、窒素原子を含有する単官能エチレン性不飽和単量体としては、例えば、(メタ)アクリルアミド〔例えば、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、ヒドロキシエチルアクリルアミド、ヒドロキシプロピルアクリルアミド、N,N-アクリロイルモルフォリン等〕、N-ビニルラクタム類〔例えば、N-ビニルピロリドン、N-ビニルカプロラクタム等〕、N-ビニルホルムアミド等が挙げられる。 Further, monofunctional ethylenically unsaturated monomers containing nitrogen atoms, which are different from the above (meth) acrylates, include, for example, (meth) acrylamide [eg, N, N-dimethylacrylamide, N, N-diethylacrylamide] N-isopropylacrylamide, hydroxyethylacrylamide, hydroxypropylacrylamide, N, N-acryloylmorpholine, etc.], N-vinyl lactams (eg, N-vinylpyrrolidone, N-vinylcaprolactam, etc.), N-vinylformamide, etc. Can be mentioned.
 これらの中でも、モデル材用組成物が含む単官能エチレン性不飽和単量体(A)としては、分子内に環状構造を有する単官能エチレン性不飽和単量体が好ましい。単官能エチレン性不飽和単量体(A)が分子内に環状構造を有するものであると、環状構造を有さない他の単量体と比較して、モデル材用組成物の必須成分となるシリコーン変性ウレタンオリゴマー(S)との相溶性に優れ、モデル材造形物のガラス転移温度(Tg)が高くなり、硬度や耐熱性に優れる。本発明のモデル材用組成物において、分子内に環状構造を有する単官能エチレン性不飽和単量体の含有量は、単官能エチレン性不飽和単量体(A)の総質量に対して、好ましくは50質量%以上であり、より好ましくは80質量%以上であり、モデル材用組成物に含まれる全ての単官能エチレン性不飽和単量体(A)が分子内に環状構造を有するものであってもよい。 Among these, the monofunctional ethylenically unsaturated monomer (A) contained in the model material composition is preferably a monofunctional ethylenically unsaturated monomer having a cyclic structure in the molecule. When the monofunctional ethylenically unsaturated monomer (A) has a cyclic structure in the molecule, compared with other monomers having no cyclic structure, It is excellent in compatibility with the resulting silicone-modified urethane oligomer (S), the glass transition temperature (Tg) of the model material molded article is high, and is excellent in hardness and heat resistance. In the composition for model material of the present invention, the content of the monofunctional ethylenically unsaturated monomer having a cyclic structure in the molecule is based on the total mass of the monofunctional ethylenically unsaturated monomer (A). Preferably it is 50% by mass or more, more preferably 80% by mass or more, and all monofunctional ethylenically unsaturated monomers (A) contained in the model material composition have a cyclic structure in the molecule It may be.
 また、単官能エチレン性不飽和単量体(A)としては、(メタ)アクリレート系の単量体であることが好ましい。特に、分子内に環状構造を有する(メタ)アクリレート系の単量体であることが好ましく、イソボルニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、3,3,5-トリメチルシクロヘキサノール(メタ)アクリレートおよび環状トリメチロールプロパンフォルマル(メタ)アクリレートからなる群から選択される少なくとも1種を含むことがより好ましく、イソボルニル(メタ)アクリレートおよびフェノキシエチル(メタ)アクリレートがさらに好ましく、イソボルニルアクリレートが特に好ましい。中でも、分子内に脂環式構造を有する単官能(メタ)アクリレート系単量体を含むことにより、他の芳香環構造や複素環構造を有する単量体と比較して、モデル材用組成物の必須成分となるシリコーン変性ウレタンオリゴマー(S)との相溶性に優れ、モデル材による造形物のガラス転移温度(Tg)が高くなり、硬度や耐熱性に優れる。 The monofunctional ethylenically unsaturated monomer (A) is preferably a (meth) acrylate monomer. In particular, a (meth) acrylate monomer having a cyclic structure in the molecule is preferable, and isobornyl (meth) acrylate, phenoxyethyl (meth) acrylate, 3,3,5-trimethylcyclohexanol (meth) acrylate And at least one selected from the group consisting of cyclic trimethylolpropane formal (meth) acrylate, more preferably isobornyl (meth) acrylate and phenoxyethyl (meth) acrylate, particularly isobornyl acrylate. preferable. Above all, by including a monofunctional (meth) acrylate monomer having an alicyclic structure in the molecule, the composition for a model material compared to other monomers having an aromatic ring structure or a heterocyclic structure It is excellent in compatibility with the silicone-modified urethane oligomer (S), which is an essential component, and has a high glass transition temperature (Tg) of a modeled article made of a model material, and is excellent in hardness and heat resistance.
 本発明のモデル材用組成物における単官能エチレン性不飽和単量体(A)の含有量は、モデル材用組成物に含まれる重合性化合物の総質量に対して、好ましくは40質量%以上、より好ましくは45質量%以上、さらに好ましくは50質量%以上である。単官能エチレン性不飽和単量体(A)の含有量が上記下限値以上であると、モデル材用組成物の必須成分となるシリコーン変性ウレタンオリゴマー(S)と相溶し易くなり、硬化工程において造形物の表面に該シリコーン変性ウレタンオリゴマー(S)を速やかに配列させることができる。これにより、モデル材用組成物に適度な強度および硬度を付与することができ、得られるモデル材(最終的に光造形品)の反りを抑えることができる。また、得られる光造形品の表面性を高めることができる。また、単官能エチレン性不飽和単量体(A)の含有量は、モデル材用組成物に含まれる重合性化合物の総質量に対して、好ましくは95質量%以下であり、より好ましく90質量%以下であり、さらに好ましくは80質量%以下である。単官能エチレン性不飽和単量体(A)に加えて多官能エチレン性不飽和単量体(B)を適量添加することにより、高い機械的強度を有する造形物を得ることができる。なお、本発明において、シリコーン変性ウレタンオリゴマー(S)も重合性化合物に含まれる。 The content of the monofunctional ethylenically unsaturated monomer (A) in the model material composition of the present invention is preferably 40% by mass or more based on the total mass of the polymerizable compound contained in the model material composition. More preferably, it is 45 mass% or more, and still more preferably 50 mass% or more. When the content of the monofunctional ethylenically unsaturated monomer (A) is not less than the above lower limit value, it becomes easy to be compatible with the silicone-modified urethane oligomer (S) that is an essential component of the model material composition, and the curing step The silicone-modified urethane oligomer (S) can be quickly arranged on the surface of the shaped article. Thereby, moderate intensity | strength and hardness can be provided to the composition for model materials, and the curvature of the model material (finally optical modeling article) obtained can be suppressed. Moreover, the surface property of the obtained optical modeling article can be improved. The content of the monofunctional ethylenically unsaturated monomer (A) is preferably 95% by mass or less, more preferably 90% by mass with respect to the total mass of the polymerizable compound contained in the model material composition. % Or less, and more preferably 80% by mass or less. By adding an appropriate amount of the polyfunctional ethylenically unsaturated monomer (B) in addition to the monofunctional ethylenically unsaturated monomer (A), a shaped article having high mechanical strength can be obtained. In the present invention, the silicone-modified urethane oligomer (S) is also included in the polymerizable compound.
 本発明のモデル材用組成物は、重合性モノマーとして多官能エチレン性不飽和単量体(B)を含むことが好ましい。多官能エチレン性不飽和単量体(B)は、活性エネルギー線の照射により重合して硬化する特性を有する成分であり、分子内にエチレン性二重結合を2つ以上有する重合性モノマーである。多官能エチレン性不飽和単量体(B)として1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。 The model material composition of the present invention preferably contains a polyfunctional ethylenically unsaturated monomer (B) as a polymerizable monomer. The polyfunctional ethylenically unsaturated monomer (B) is a component having a property of being polymerized and cured by irradiation with active energy rays, and a polymerizable monomer having two or more ethylenic double bonds in the molecule. . Only one type may be used as the polyfunctional ethylenically unsaturated monomer (B), or two or more types may be used in combination.
 多官能エチレン性不飽和単量体(B)としては、例えば、炭素数10~25の直鎖または分岐のアルキレングリコールジ(メタ)アクリレートまたはアルキレングリコールトリ(メタ)アクリレート、アルキレングリコールテトラ(メタ)アクリレート、アルキレングリコールペンタ(メタ)アクリレート、アルキレングリコールヘキサ(メタ)アクリレートとして、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-nブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(200)ジ(メタ)アクリレート、ポリエチレングリコール(400)ジ(メタ)アクリレート、ポリエチレングリコール(600)ジ(メタ)アクリレート、ポリエチレングリコール(1000)ジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(400)ジ(メタ)アクリレート、ポリプロピレングリコール(700)ジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等、炭素数10~30の環状構造含有ジ(メタ)アクリレートまたはトリ(メタ)アクリレートとして、シクロヘキサンジメタノールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート等、ビニルエーテル基含有(メタ)アクリル酸エステル類、2官能以上のアミノアクリレート類等が挙げられる。 Examples of the polyfunctional ethylenically unsaturated monomer (B) include linear or branched alkylene glycol di (meth) acrylate or alkylene glycol tri (meth) acrylate, alkylene glycol tetra (meth) having 10 to 25 carbon atoms. 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol diacrylate as acrylate, alkylene glycol penta (meth) acrylate, alkylene glycol hexa (meth) acrylate (Meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-nbutyl-2-ethyl-1,3-propanediol di (meth) acrylate, 3-Methyl-1,5-pentane Diol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol (200) di (meth) acrylate, polyethylene glycol (400) di (meth) ) Acrylate, polyethylene glycol (600) di (meth) acrylate, polyethylene glycol (1000) di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (400) di ( (Meth) acrylate, polypropylene glycol (700) di (meth) acrylate, neopentyl glycol di (meth) acrylate, hydroxypiva Neopentyl glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, glycerin propoxytri (meth) acrylate, ditrimethylolpropane tetra (Meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. ) As acrylates, cyclohexanedimethanol di (meth) acrylate, dimethyloltricyclodecane di (meth) acrylate, bisphenol A ethylene oxide Id adduct di (meth) acrylate, bisphenol A propylene oxide adduct di (meth) acrylate, vinyl ether group-containing (meth) acrylic acid esters, bifunctional or more amino acrylates.
 ビニルエーテル基含有(メタ)アクリル酸エステル類としては、例えば、(メタ)アクリル酸2-(ビニロキシエトキシ)エチル等が挙げられる。 Examples of the vinyl ether group-containing (meth) acrylic acid esters include 2- (vinyloxyethoxy) ethyl (meth) acrylate.
 2官能以上のアミノアクリレート類は、空気中の酸素による重合阻害を抑制できると考えられ、紫外線照射時、特に、発光ダイオード(LED)を使用した低エネルギーの紫外線照射時における硬化速度を向上できる。2官能以上のアミノアクリレート類として、例えば、アミノ(メタ)アクリレート、アミン変性ポリエーテル(メタ)アクリレート、アミン変性ポリエステル(メタ)アクリレート、アミン変性エポキシ(メタ)アクリレート、アミン変性ウレタン(メタ)アクリレート等が挙げられる。 Bifunctional or higher aminoacrylates are considered to be able to suppress polymerization inhibition due to oxygen in the air, and can improve the curing rate when irradiated with ultraviolet rays, particularly when irradiated with low energy ultraviolet rays using a light emitting diode (LED). As bifunctional or higher functional amino acrylates, for example, amino (meth) acrylate, amine-modified polyether (meth) acrylate, amine-modified polyester (meth) acrylate, amine-modified epoxy (meth) acrylate, amine-modified urethane (meth) acrylate, etc. Is mentioned.
 これらの中でも、モデル材用組成物の硬化性を向上させる観点から、(メタ)アクリレート系の単量体であることが好ましく、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレートおよび2官能以上のアミノアクリレートがより好ましく、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレートおよび2官能以上のアミノアクリレート類がさらに好ましく、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレートおよび2官能以上のアミノアクリレート類が特に好ましい。 Among these, from the viewpoint of improving the curability of the composition for a model material, it is preferably a (meth) acrylate monomer, such as dipropylene glycol di (meth) acrylate or tripropylene glycol di (meth) acrylate. , Glycerin propoxy tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate and bifunctional or higher amino acrylate are more preferable, and dipropylene glycol di (meth) acrylate , Tripropylene glycol di (meth) acrylate, glycerin propoxy tri (meth) acrylate and bifunctional or higher functional amino acrylates are more preferable, dipropylene glycol diacrylate, tripropylene glycol dia It relates and bifunctional or more amino acrylates are particularly preferred.
 本発明のモデル材用組成物における多官能エチレン性不飽和単量体(B)の含有量は、モデル材用組成物に含まれる重合性化合物の総質量に対して、好ましくは1~30質量%であり、より好ましくは3質量%以上であり、さらに好ましくは5質量%以上であり、より好ましくは28質量%以下である。多官能エチレン性不飽和単量体(B)の含有量が上記上限下限の範囲内にあると、高速造形時においても高い造形精度および優れた機械的特性を両立することができる。 The content of the polyfunctional ethylenically unsaturated monomer (B) in the composition for model material of the present invention is preferably 1 to 30 mass relative to the total mass of the polymerizable compound contained in the composition for model material. %, More preferably 3% by mass or more, further preferably 5% by mass or more, and more preferably 28% by mass or less. When the content of the polyfunctional ethylenically unsaturated monomer (B) is within the above upper and lower limits, both high modeling accuracy and excellent mechanical properties can be achieved even during high-speed modeling.
 さらに、本発明のモデル材用組成物において、親水性(水溶性)のエチレン性不飽和単量体の含有量は少ないほど好ましい。モデル材用組成物が親水性のエチレン性不飽和単量体の含有量が少ないと、モデル材用組成物の必須成分となるシリコーン変性ウレタンオリゴマー(S)との相溶性が増し、硬化工程においてシロキサン基が造形物の表面に速やかに配列するため、造形精度を高めることができる。また、光硬化時や硬化後の水または吸湿によるモデル材(最終的に光造形品)の膨潤変形を抑制することができる。したがって、本発明のモデル材用組成物における親水性のエチレン性不飽和単量体の含有量は、単官能エチレン性不飽和単量体(A)および多官能エチレン性不飽和単量体(B)の総質量に対して、好ましくは50質量%以下であり、より好ましくは25質量%以下であり、さらに好ましくは10質量%以下である。本発明の好適な一実施態様において、モデル材用組成物は親水性のエチレン性不飽和単量体を含有せず(すなわち0質量%)、言い換えると、単官能エチレン性不飽和単量体(A)および多官能エチレン性不飽和単量体(B)は全て疎水性(非水溶性)の単量体である。なお、本発明において「親水性(水溶性)のエチレン性不飽和単量体」とは、SP値が11.0を超えるエチレン性不飽和単量体を意味する。親水性のエチレン性不飽和単量体としては、例えば、水酸基含有(メタ)アクリレート、(メタ)アクリルアミド誘導体、(メタ)アクリロイルモルフォリン、N-ビニルラクタム類、N-ビニルホルムアミド等が挙げられ、より具体的には、後述するサポート材用組成物が含有し得る水溶性単官能エチレン性不飽和単量体として例示する化合物が挙げられる。 Furthermore, in the composition for model material of the present invention, the content of the hydrophilic (water-soluble) ethylenically unsaturated monomer is preferably as small as possible. When the composition for the model material is low in the content of the hydrophilic ethylenically unsaturated monomer, the compatibility with the silicone-modified urethane oligomer (S), which is an essential component of the composition for the model material, is increased. Since the siloxane group is quickly arranged on the surface of the modeled object, the modeling accuracy can be increased. Further, swelling deformation of the model material (finally, an optically modeled product) due to water or moisture absorption after photocuring or after curing can be suppressed. Therefore, the content of the hydrophilic ethylenically unsaturated monomer in the composition for a model material of the present invention is such that the monofunctional ethylenically unsaturated monomer (A) and the polyfunctional ethylenically unsaturated monomer (B ) Is preferably 50% by mass or less, more preferably 25% by mass or less, and still more preferably 10% by mass or less. In a preferred embodiment of the present invention, the model material composition does not contain a hydrophilic ethylenically unsaturated monomer (ie, 0% by mass), in other words, a monofunctional ethylenically unsaturated monomer ( A) and the polyfunctional ethylenically unsaturated monomer (B) are all hydrophobic (water-insoluble) monomers. In the present invention, “hydrophilic (water-soluble) ethylenically unsaturated monomer” means an ethylenically unsaturated monomer having an SP value of more than 11.0. Examples of hydrophilic ethylenically unsaturated monomers include hydroxyl group-containing (meth) acrylates, (meth) acrylamide derivatives, (meth) acryloylmorpholines, N-vinyl lactams, N-vinylformamide, and the like. More specifically, the compound illustrated as a water-soluble monofunctional ethylenically unsaturated monomer which the composition for support materials mentioned later can contain is mentioned.
 本発明においては、モデル材用組成物に含まれるエチレン性不飽和単量体が疎水性であることが好ましく、単官能エチレン性不飽和単量体(A)および多官能エチレン性不飽和単量体(B)のSP値は、それぞれ11.0以下であることが好ましく、より好ましくは10.5以下であり、さらに好ましくは10.0以下である。また、単官能エチレン性不飽和単量体(A)および多官能エチレン性不飽和単量体(B)のSP値の下限値は、好ましくは7.0以上であり、より好ましくは7.2以上であり、さらに好ましくは7.5以上である。なお、SP値の単位としては、従来慣用的に使用される(cal/cm1/2を用いる。また、SI単位に変換する場合は、約2.0455倍すると(J/cm1/2となる。単官能エチレン性不飽和単量体(A)および多官能エチレン性不飽和単量体(B)のSP値が上記上限下限の範囲内であると、モデル材用組成物の必須成分となるシリコーン変性ウレタンオリゴマー(S)のSP値との差が少なくなり、相溶性が良好となるため、造形精度を向上させることができる。また、光硬化時や硬化後の水または吸湿によるモデル材(最終的に光造形品)の膨潤変形を抑制することができる。さらに、本発明のモデル材用組成物において、用いるシリコーン変性ウレタンオリゴマー(S)のSP値との差が少ないSP値を有する単官能エチレン性不飽和単量体(A)および多官能エチレン性不飽和単量体(B)の割合を高めることにより、得られる造形品の表面性を向上させることができる。 In the present invention, the ethylenically unsaturated monomer contained in the model material composition is preferably hydrophobic, and the monofunctional ethylenically unsaturated monomer (A) and the polyfunctional ethylenically unsaturated monomer The SP value of the body (B) is preferably 11.0 or less, more preferably 10.5 or less, and still more preferably 10.0 or less. Moreover, the lower limit value of the SP value of the monofunctional ethylenically unsaturated monomer (A) and the polyfunctional ethylenically unsaturated monomer (B) is preferably 7.0 or more, more preferably 7.2. It is above, More preferably, it is 7.5 or more. In addition, as a unit of SP value, conventionally used (cal / cm 3 ) 1/2 is used. In the case of conversion to SI unit, when it is multiplied by about 2.0455, it becomes (J / cm 3 ) 1/2 . Silicone which is an essential component of the composition for model material when the SP value of the monofunctional ethylenically unsaturated monomer (A) and the polyfunctional ethylenically unsaturated monomer (B) is within the above upper and lower limits Since the difference from the SP value of the modified urethane oligomer (S) is reduced and the compatibility is improved, the modeling accuracy can be improved. Further, swelling deformation of the model material (finally, an optically modeled product) due to water or moisture absorption after photocuring or after curing can be suppressed. Furthermore, in the composition for a model material of the present invention, the monofunctional ethylenically unsaturated monomer (A) and the polyfunctional ethylenically unsaturated monomer having an SP value with little difference from the SP value of the silicone-modified urethane oligomer (S) to be used. By increasing the ratio of the saturated monomer (B), the surface property of the resulting shaped article can be improved.
 ここで、SP値は溶解度パラメータであり、各単量体のSP値は分子構造から計算により求められることが知られている。本明細書における各エチレン性不飽和単量体の溶解度パラメータは、アクリル系モノマーの溶解度パラメータは分子構造から計算により求められることが知られており、本明細書における各(メタ)アクリル系モノマーの溶解度パラメータはFedorsの方法(原崎勇次著,「コーティングの基礎科学」,第3章,35頁,1977年,槙書店発行)により得られる25℃での値を意味する。 Here, it is known that the SP value is a solubility parameter, and the SP value of each monomer is obtained by calculation from the molecular structure. It is known that the solubility parameter of each ethylenically unsaturated monomer in the present specification is obtained by calculation from the molecular structure of the solubility parameter of the acrylic monomer, and for each (meth) acrylic monomer in this specification, The solubility parameter means a value at 25 ° C. obtained by the Fedors method (Yuji Harasaki, “Basic Science of Coating”, Chapter 3, page 35, 1977, published by Tsuji Shoten).
 本発明のモデル材用組成物は、重合性モノマーとして、単官能エチレン性不飽和単量体(A)および多官能エチレン性不飽和単量体(B)を含むことが好ましい。重合性モノマーとして上記2種類の配合量を調整することにより、モデル材用組成物から得られるモデル材の物性や機械的特性(強度や硬度、靱性等)を所望の範囲に制御しやすくなり、優れた機械的特性を有する光造形品を得ることができる。 The composition for a model material of the present invention preferably contains a monofunctional ethylenically unsaturated monomer (A) and a polyfunctional ethylenically unsaturated monomer (B) as the polymerizable monomer. By adjusting the blending amount of the above two types as the polymerizable monomer, it becomes easy to control the physical properties and mechanical properties (strength, hardness, toughness, etc.) of the model material obtained from the model material composition within a desired range, An optically shaped article having excellent mechanical properties can be obtained.
 さらに、本発明のモデル材用組成物は、シリコーン変性ウレタンオリゴマー(S)、単官能エチレン性不飽和単量体(A)および多官能エチレン性不飽和単量体(B)以外の重合性化合物(以下、「その他の重合性化合物」ともいう)を含んでいてもよい。そのような重合性化合物としては、例えば、シリコーン変性ウレタンオリゴマー(S)以外の重合性のオリゴマー〔以下、「オリゴマー(C)」ともいう〕が挙げられる。オリゴマー(C)は、活性エネルギー線の照射により重合して硬化する特性を有する成分である。オリゴマー(C)を配合することにより、得られるモデル材の破断強度を高め、適度な靱性を有し、曲げても割れにくい光造形品を得ることができる。
 ここで、本明細書中において「オリゴマー」とは、重量平均分子量Mwが800~10,000のものをいう。より好ましくは、重量平均分子量Mwの下限値が1,000を超えるものをいう。重量平均分子量Mwは、GPC(Gel Permeation Chromatography)で測定したポリスチレン換算の重量平均分子量を意味する。オリゴマー(C)として1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
Furthermore, the composition for a model material of the present invention is a polymerizable compound other than the silicone-modified urethane oligomer (S), the monofunctional ethylenically unsaturated monomer (A), and the polyfunctional ethylenically unsaturated monomer (B). (Hereinafter also referred to as “other polymerizable compounds”). Examples of such a polymerizable compound include polymerizable oligomers other than the silicone-modified urethane oligomer (S) [hereinafter also referred to as “oligomer (C)”]. The oligomer (C) is a component having a property of being polymerized and cured by irradiation with active energy rays. By blending the oligomer (C), it is possible to increase the breaking strength of the model material to be obtained, to obtain an optically shaped article having appropriate toughness and not easily broken even when bent.
As used herein, “oligomer” refers to those having a weight average molecular weight Mw of 800 to 10,000. More preferably, the lower limit of the weight average molecular weight Mw is more than 1,000. The weight average molecular weight Mw means a weight average molecular weight in terms of polystyrene measured by GPC (Gel Permeation Chromatography). Only one type may be used as the oligomer (C), or two or more types may be used in combination.
 オリゴマー(C)としては、例えば、エポキシ(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、非シリコーン変性のウレタン(メタ)アクリレートオリゴマー、ポリエーテル(メタ)アクリレートオリゴマー、アミノアクリレート等が挙げられる。オリゴマー(C)としては、2官能以上の多官能オリゴマーが好ましく、2官能オリゴマーがより好ましい。また、材料選択の幅が広く、様々な特性を有する材料を選択できる観点から、好ましくはウレタン基を有するオリゴマーであり、より好ましくは非シリコーン変性のウレタン(メタ)アクリレートオリゴマーであり、さらに好ましくは非シリコーン変性のウレタンアクリレートオリゴマーである。 Examples of the oligomer (C) include an epoxy (meth) acrylate oligomer, a polyester (meth) acrylate oligomer, a non-silicone-modified urethane (meth) acrylate oligomer, a polyether (meth) acrylate oligomer, and an aminoacrylate. The oligomer (C) is preferably a bifunctional or higher polyfunctional oligomer, and more preferably a bifunctional oligomer. Moreover, from the viewpoint of selecting a material having a wide range of material selection and various characteristics, an oligomer having a urethane group is preferable, more preferably a non-silicone-modified urethane (meth) acrylate oligomer, and still more preferably. It is a non-silicone modified urethane acrylate oligomer.
 本発明のモデル材用組成物がオリゴマー(C)を含む場合、モデル材用組成物に含まれる重合性化合物の総質量に対して、例えば30質量%以下であり、より好ましくは25質量%以下であり、さらに好ましくは20質量%以下である。本発明のモデル材用組成物は、オリゴマー(C)を含まなくてもよいが、オリゴマー(C)、特に非シリコーン変性ウレタンオリゴマーを、シリコーン変性ウレタンオリゴマーと併用すると硬さや靱性を両立させることができ、より好ましい。その場合、シリコーン変性ウレタンオリゴマーの含有量は、非シリコーン変性ウレタンオリゴマーの総質量に対して、好ましくは1~50質量%であり、より好ましくは2~40質量%である。 When the composition for model materials of this invention contains an oligomer (C), it is 30 mass% or less with respect to the gross mass of the polymeric compound contained in the composition for model materials, More preferably, it is 25 mass% or less. More preferably, it is 20 mass% or less. The composition for a model material of the present invention may not contain the oligomer (C), but when the oligomer (C), particularly a non-silicone modified urethane oligomer, is used in combination with the silicone modified urethane oligomer, both hardness and toughness can be achieved. More preferable. In that case, the content of the silicone-modified urethane oligomer is preferably 1 to 50% by mass, more preferably 2 to 40% by mass, based on the total mass of the non-silicone-modified urethane oligomer.
 本発明のモデル材用組成物がその他の重合性化合物を含む場合、その含有量は、モデル材用組成物に含まれる重合性化合物の総質量に対して、好ましくは30質量%以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下である。本発明のモデル材用組成物は、その他の重合性化合物を含んでいなくてもよいが、その他の重合性化合物の含有量の下限値は、モデル材用組成物に含まれる重合性化合物の総質量に対して、通常1質量%以上、好ましくは2質量%以上である。 When the composition for model materials of the present invention contains other polymerizable compounds, the content thereof is preferably 30% by mass or less, more preferably based on the total mass of the polymerizable compounds contained in the composition for model materials. Is 25% by mass or less, more preferably 20% by mass or less. The composition for a model material of the present invention may not contain other polymerizable compounds, but the lower limit of the content of the other polymerizable compound is the value of the polymerizable compound contained in the composition for a model material. It is 1 mass% or more normally with respect to the total mass, Preferably it is 2 mass% or more.
 本発明のモデル材用組成物は、光重合開始剤を含む。光重合開始剤は、紫外線、近紫外線または可視光領域の波長の光を照射するとラジカル反応を促進する化合物であれば、特に限定されない。光重合開始剤としては、例えば、炭素数14~18のベンゾイン化合物〔例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等〕、炭素数8~18のアセトフェノン化合物〔例えば、アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン等〕、炭素数14~19のアントラキノン化合物〔例えば、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等〕、炭素数13~17のチオキサントン化合物〔例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン等〕、炭素数16~17のケタール化合物〔例えば、アセトフェノンジメチルケタール、ベンジルジメチルケタール等〕、炭素数13~21のベンゾフェノン化合物〔例えば、ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノン等〕、炭素数22~28のアシルフォスフィンオキサイド化合物〔例えば、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス-(2、6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド〕、これらの化合物の混合物等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、モデル材用組成物を光硬化させて得られる造形品に優れた耐光性を付与し、造形品の黄変を抑制することができることから、アセトフェノン化合物およびアシルフォスフィンオキサイド化合物から選択される少なくとも1種を含むことが好ましく、1-ヒドロキシシクロヘキシルフェニルケトン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、または2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン等が好ましい。また、光重合開始剤としては、市販されている製品を用いてもよく、例えば、BASF社製のDAROCURE TPO、IRGACURE184、IRGACURE907等が挙げられる。 The model material composition of the present invention contains a photopolymerization initiator. The photopolymerization initiator is not particularly limited as long as it is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region. Examples of the photopolymerization initiator include benzoin compounds having 14 to 18 carbon atoms (for example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, etc.), acetophenone compounds having 8 to 18 carbon atoms [for example, Acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, etc.], anthraquinone compounds having 14 to 19 carbon atoms [for example, 2-ethyl ant Quinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone, etc.], thioxanthone compounds having 13 to 17 carbon atoms [eg, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, etc.] A ketal compound having 16 to 17 carbon atoms [for example, acetophenone dimethyl ketal, benzyldimethyl ketal, etc.], a benzophenone compound having 13 to 21 carbon atoms [for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 ′ -Bismethylaminobenzophenone, etc.], acylphosphine oxide compounds having 22 to 28 carbon atoms [for example, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis- (2,6-dimethoxyben Yl) -2,4,4-trimethyl pentyl phosphine oxide, bis (2,4,6-trimethylbenzoyl) - phenyl phosphine oxide], mixtures of these compounds. These may be used alone or in combination of two or more. Among these, since it can impart excellent light resistance to a shaped article obtained by photocuring the composition for a model material and suppress yellowing of the shaped article, it is selected from acetophenone compounds and acylphosphine oxide compounds. At least one selected from the group consisting of 1-hydroxycyclohexyl phenyl ketone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, or 2-methyl-1- [4- (methylthio) phenyl] -2 -Morpholinopropan-1-one and the like are preferable. Moreover, as a photoinitiator, you may use the product marketed, for example, DAROCURE TPO, IRGACURE184, IRGACURE907, etc. made from BASF.
 モデル材用組成物における光重合開始剤の含有量は、モデル材用組成物の総質量に基づいて、好ましくは2~15質量%であり、より好ましくは3~10質量%である。光重合開始剤の含有量が上記下限値以上であると、未反応の重合成分を十分に低減させて、モデル材の硬化性を十分に高めることができる。一方、光重合開始剤の含有量が上記の上限以下であると、モデル材中に未反応のまま残存する光重合開始剤の量を低減することができ、未反応の光重合開始剤が残存することにより生じる光造形品の黄変を抑制することができる。 The content of the photopolymerization initiator in the composition for model material is preferably 2 to 15% by mass, more preferably 3 to 10% by mass, based on the total mass of the composition for model material. When the content of the photopolymerization initiator is not less than the above lower limit, unreacted polymerization components can be sufficiently reduced, and the curability of the model material can be sufficiently increased. On the other hand, when the content of the photopolymerization initiator is not more than the above upper limit, the amount of the photopolymerization initiator remaining unreacted in the model material can be reduced, and the unreacted photopolymerization initiator remains. It is possible to suppress yellowing of the optically shaped product generated by doing so.
 モデル材用組成物は、本発明の効果を阻害しない範囲で、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、保存安定剤、表面調整剤、酸化防止剤、着色剤、紫外線吸収剤、光安定剤、重合禁止剤、連鎖移動剤、充填剤、希釈溶媒、増粘剤等が挙げられる。 The composition for model material can contain other additives as necessary within the range not impairing the effects of the present invention. Examples of other additives include storage stabilizers, surface conditioners, antioxidants, colorants, ultraviolet absorbers, light stabilizers, polymerization inhibitors, chain transfer agents, fillers, diluent solvents, thickeners, and the like. Is mentioned.
 表面調整剤は、モデル材用組成物の表面張力を適切な範囲に調整する成分であり、その種類は特に限定されない。モデル材用組成物の表面張力を適切な範囲にすることで、吐出性を安定化させることができるとともに、モデル材用組成物とサポート材用組成物との界面混じりを抑制することができる。その結果、寸法精度が良好な造形物を得ることができる。 The surface conditioner is a component that adjusts the surface tension of the model material composition to an appropriate range, and the type thereof is not particularly limited. By making the surface tension of the model material composition within an appropriate range, it is possible to stabilize the ejection properties and to suppress interfacial mixing between the model material composition and the support material composition. As a result, it is possible to obtain a shaped article with good dimensional accuracy.
 表面調整剤としては、例えば、シリコーン系化合物等が挙げられる。シリコーン系化合物としては、例えば、ポリジメチルシロキサン構造を有するシリコーン系化合物等が挙げられる。具体的には、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリアラルキル変性ポリジメチルシロキサン等が挙げられる。これらとして、商品名でBYK-300、BYK-302、BYK-306、BYK-307、BYK-310、BYK-315、BYK-320、BYK-322、BYK-323、BYK-325、BYK-330、BYK-331、BYK-333、BYK-337、BYK-344、BYK-370、BYK-375、BYK-377、BYK-UV3500、BYK-UV3510、BYK-UV3570(以上、ビックケミー社製)、TEGO-Rad2100、TEGO-Rad2200N、TEGO-Rad2250、TEGO-Rad2300、TEGO-Rad2500、TEGO-Rad2600、TEGO-Rad2700(以上、デグサ社製)、グラノール100、グラノール115、グラノール400、グラノール410、グラノール435、グラノール440、グラノール450、B-1484、ポリフローATF-2、KL-600、UCR-L72、UCR-L93(共栄社化学社製)等を用いてもよい。また、シリコーン径化合物以外の表面調整剤(例えば、フッ素系表面調整剤等)を用いてもよい。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the surface conditioner include silicone compounds. Examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane. These include BYK-300, BYK-302, BYK-306, BYK-307, BYK-310, BYK-315, BYK-320, BYK-322, BYK-323, BYK-325, BYK-330, BYK-331, BYK-333, BYK-337, BYK-344, BYK-370, BYK-375, BYK-377, BYK-UV3500, BYK-UV3510, BYK-UV3570 (above, manufactured by BYK Chemie), TEGO-Rad2100 , TEGO-Rad2200N, TEGO-Rad2250, TEGO-Rad2300, TEGO-Rad2500, TEGO-Rad2600, TEGO-Rad2700 (manufactured by Degussa), Granol 100, Granol 115, Granol 400, Grano Le 410, Granol 435, Granol 440, Granol 450, B-1484, Polyflow ATF-2, KL-600, UCR-L72, UCR-L93 (manufactured by Kyoeisha Chemical Co., Ltd.) and the like may be used. Further, a surface conditioner other than the silicone diameter compound (for example, a fluorine-based surface conditioner) may be used. These may be used alone or in combination of two or more.
 モデル材用組成物が表面調整剤を含有する場合、その含有量は、モデル材用組成物の総質量に基づいて、好ましくは0.005質量%以上、より好ましくは0.01質量%以上であり、好ましくは3.0質量%以下、より好ましくは1.5質量%以下である。表面調整剤の含有量が上記の範囲内である場合、モデル材用組成物の表面張力を適切な範囲に調整しやすい。 When the model material composition contains a surface conditioner, the content thereof is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, based on the total mass of the model material composition. Yes, preferably 3.0% by mass or less, more preferably 1.5% by mass or less. When the content of the surface conditioner is within the above range, the surface tension of the model material composition is easily adjusted to an appropriate range.
 保存安定化剤は、モデル材用組成物の保存安定性を高めることができる成分である。また、熱エネルギーにより重合性化合物が重合することで生じるヘッド詰まりを防止することができる。保存安定化剤としては、例えば、ヒンダードアミン系化合物(HALS)、フェノール系酸化防止剤、リン系酸化防止剤等が挙げられる。具体的には、ハイドロキノン、メトキノン、ベンゾキノン、p-メトキシフェノール、ハイドロキノンモノメチルエーテル、ハイドロキノンモノブチルエーテル、TEMPO、4-ヒドロキシ-TEMPO、TEMPOL、クペロンAl、IRGASTAB UV-10、IRGASTAB UV-22、FIRSTCURE ST-1(ALBEMARLE社製)、t-ブチルカテコール、ピロガロール、BASF社製のTINUVIN 111 FDL、TINUVIN 144、TINUVIN 292、TINUVIN XP40、TINUVIN XP60、TINUVIN 400等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 The storage stabilizer is a component that can enhance the storage stability of the model material composition. Further, clogging of the head caused by polymerization of the polymerizable compound by thermal energy can be prevented. Examples of the storage stabilizer include hindered amine compounds (HALS), phenolic antioxidants, phosphorus antioxidants, and the like. Specifically, hydroquinone, methoquinone, benzoquinone, p-methoxyphenol, hydroquinone monomethyl ether, hydroquinone monobutyl ether, TEMPO, 4-hydroxy-TEMPO, TEMPOL, cuperon Al, IRGASTAB UV-10, IRGASTAB UV-22, FIRSTCURE ST- 1 (manufactured by ALBEMARLE), t-butylcatechol, pyrogallol, TINUVIN 111 FDL, TINUVIN 144, TINUVIN 292, TINUVIN XP40, TINUVIN XP60, TINUVIN 400, etc. manufactured by BASF. These may be used alone or in combination of two or more.
 モデル材用組成物が保存安定化剤を含有する場合、上記効果を得やすい観点から、その含有量はモデル材用組成物の総質量に基づいて、好ましくは0.05~3質量%である。 When the model material composition contains a storage stabilizer, the content thereof is preferably 0.05 to 3% by mass based on the total mass of the model material composition from the viewpoint of easily obtaining the above effect. .
 <着色剤>
 本発明のモデル材用組成物は、着色剤をさらに含んでいてもよい。但し、本発明のモデル材用組成物が、無色透明のクリア組成物である場合には、着色剤は含まれない。
<Colorant>
The model material composition of the present invention may further contain a colorant. However, when the composition for a model material of the present invention is a colorless and transparent clear composition, a colorant is not included.
 上記着色剤としては特に限定されないが、本発明のモデル材用組成物は非水系であることから、非水溶性媒体に均一に分散しやすい顔料、溶解しやすい染料が好ましい。 The colorant is not particularly limited. However, since the model material composition of the present invention is non-aqueous, a pigment that is easily dispersed uniformly in a water-insoluble medium and a dye that is easily dissolved are preferable.
 上記顔料としては、無機顔料、有機顔料のいずれも使用できる。無機顔料としては、例えば、酸化チタン、亜鉛華、酸化亜鉛、リトポン、酸化鉄、酸化アルミニウム、二酸化ケイ素、カオリナイト、モンモリロナイト、タルク、硫酸バリウム、炭酸カルシウム、シリカ、アルミナ、カドミウムレッド、べんがら、モリブデンレッド、クロムバーミリオン、モリブデートオレンジ、黄鉛、クロムイエロー、カドミウムイエロー、黄色酸化鉄、チタンイエロー、酸化クロム、ピリジアン、コバルトグリーン、チタンコバルトグリーン、コバルトクロムグリーン、群青、ウルトラマリンブルー、紺青、コバルトブルー、セルリアンブルー、マンガンバイオレット、コバルトバイオレット、マイカ等が挙げられる。有機顔料としては、例えば、アゾ系、アゾメチン系、ポリアゾ系、フタロシアニン系、キナクリドン系、アントラキノン系、インジゴ系、チオインジゴ系、キノフタロン系、ベンズイミダゾロン系、イソインドリン系等の有機顔料が挙げられる。また、酸性、中性または塩基性カーボンからなるカーボンブラックを用いてもよい。さらに、架橋したアクリル樹脂の中空粒子等も有機顔料として用いてもよい。 As the pigment, either an inorganic pigment or an organic pigment can be used. Examples of inorganic pigments include titanium oxide, zinc oxide, zinc oxide, lithopone, iron oxide, aluminum oxide, silicon dioxide, kaolinite, montmorillonite, talc, barium sulfate, calcium carbonate, silica, alumina, cadmium red, red rose, molybdenum Red, chrome vermilion, molybdate orange, yellow lead, chrome yellow, cadmium yellow, yellow iron oxide, titanium yellow, chrome oxide, pyridian, cobalt green, titanium cobalt green, cobalt chrome green, ultramarine blue, ultramarine blue, bitumen, Examples include cobalt blue, cerulean blue, manganese violet, cobalt violet, and mica. Examples of organic pigments include organic pigments such as azo, azomethine, polyazo, phthalocyanine, quinacridone, anthraquinone, indigo, thioindigo, quinophthalone, benzimidazolone, and isoindoline. Carbon black made of acidic, neutral or basic carbon may be used. Furthermore, crosslinked acrylic resin hollow particles or the like may be used as the organic pigment.
 本発明のモデル材用組成物には、通常、黒色、並びにシアン、マゼンタ、およびイエローの3原色の顔料が用いられるが、その他の色相を有する顔料や、金、銀色等の金属光沢顔料、無色または淡色の体質顔料等も目的に応じて用いることができる。 In the composition for a model material of the present invention, black and pigments of three primary colors of cyan, magenta, and yellow are usually used, but pigments having other hues, metallic luster pigments such as gold and silver, colorless Alternatively, a light-colored extender pigment can also be used depending on the purpose.
 上記着色剤は、1種単独のみならず、2種以上を混合して使用してもよい。また、本発明においては、2種類以上の有機顔料または有機顔料の固溶体を組み合わせて用いることもできる。また、打滴する液滴および液体ごとに異なる着色剤を用いてもよいし、同一の着色剤を用いてもよい。 The above colorants may be used alone or in combination of two or more. In the present invention, two or more kinds of organic pigments or solid solutions of organic pigments can be used in combination. Moreover, a different colorant may be used for each droplet and liquid to be ejected, or the same colorant may be used.
 上記着色剤の分散には、例えばビーズミル、ボールミル、サンドミル、アトライター、ロールミル、ジェットミル、ホモジナイザー、ペイントシェーカー、ニーダー、アジテータ、ヘンシェルミキサ、コロイドミル、超音波ホモジナイザー、パールミル、湿式ジェットミル等の分散装置を用いることができ、また、ラインミキサー等の混合機を用いてもよい。さらに、上記着色剤の分散後、着色剤の粗大粒子を除去する目的で、遠心分離機、フィルター、クロスフロー等を用いて分級処理を行ってもよい。 For the dispersion of the colorant, for example, bead mill, ball mill, sand mill, attritor, roll mill, jet mill, homogenizer, paint shaker, kneader, agitator, Henschel mixer, colloid mill, ultrasonic homogenizer, pearl mill, wet jet mill, etc. An apparatus can be used, and a mixer such as a line mixer may be used. Furthermore, after the dispersion of the colorant, classification may be performed using a centrifuge, a filter, a cross flow, or the like for the purpose of removing coarse particles of the colorant.
 上記着色剤の分散を行う際には、分散剤を添加することができる。分散剤としては、その種類に特に制限はないが、公知の高分子分散剤を用いることが好ましい。 When dispersing the colorant, a dispersant can be added. The type of the dispersant is not particularly limited, but a known polymer dispersant is preferably used.
 上記分散剤の含有量は、使用目的により適宜選択されるが、例えば、モデル材用組成物の全質量に対し、0.01~5質量%と設定できる。 The content of the dispersant is appropriately selected depending on the purpose of use, and can be set to 0.01 to 5% by mass with respect to the total mass of the model material composition, for example.
 また、上記着色剤を添加するにあたっては、必要に応じて、分散助剤として、各種着色剤に応じたシナージストを用いることも可能である。 In addition, when adding the colorant, it is possible to use a synergist according to various colorants as a dispersion aid, if necessary.
 上記着色剤の含有量は、色、および使用目的により適宜選択されるが、画像濃度および保存安定性の観点から、モデル材用組成物の総質量に対し、0.05~30質量%であることが好ましく、0.1~10質量%であることがさらに好ましい。 The content of the colorant is appropriately selected depending on the color and purpose of use, but is 0.05 to 30% by mass with respect to the total mass of the composition for model material from the viewpoint of image density and storage stability. It is preferably 0.1 to 10% by mass.
 本発明のモデル材用組成物は、該モデル材用組成物の硬化物上に滴下して着弾させたとき、着弾0.3秒後におけるモデル材用組成物の液滴の前記硬化物に対する接触角(以下、「接触角MM」ともいう)が、好ましくは40°以上であり、より好ましくは45°以上であり、さらに好ましくは48°以上であり、特に好ましくは50°以上である。ここで、上記接触角とは、液滴が固体表面と接触した部分における液滴表面と固体表面とが成す角をいい、いわゆる液滴の濡れ性を表す指標である。また、上記接触角の測定時点を上記組成物(液滴)が上記硬化物(固体面)に着弾してから0.3秒後としたのは、上記組成物が着弾後にエネルギー線の照射により硬化するまでの標準的な時間に合わせたものである。モデル材用組成物の接触角MMが上記下限値以上であると、先に着弾したモデル材用組成物の硬化物とそこに重なる次の層を形成するモデル材用組成物との間における過剰な濡れ広がりを抑制でき、歪みやずれが生じ難く、また、歪みやずれが生じた場合の修復能力が高くなり、マテリアルジェットノズルから連続して吐出する場合にも垂直方向に精度よく積み上げることができ、高速造形時における高い造形精度を確保することができる。モデル材用組成物の接触角MMの上限値は特に限定されるものではないが、通常70°以下であり、高い造形精度および優れた機械的特性を両立し得る観点からは65°以下が好ましい。 When the model material composition of the present invention is dropped on the cured product of the model material composition and landed, the contact of the droplet of the model material composition with the cured product after 0.3 seconds of landing The angle (hereinafter also referred to as “contact angle MM”) is preferably 40 ° or more, more preferably 45 ° or more, still more preferably 48 ° or more, and particularly preferably 50 ° or more. Here, the contact angle refers to an angle formed by the droplet surface and the solid surface at a portion where the droplet contacts the solid surface, and is an index representing the so-called wettability of the droplet. The contact angle was measured 0.3 seconds after the composition (droplet) landed on the cured product (solid surface) because the composition was landed by irradiation with energy rays. The standard time until curing is set. If the contact angle MM of the model material composition is equal to or greater than the above lower limit, the excess between the cured material of the model material composition that has landed first and the model material composition that forms the next layer overlapping therewith It is possible to suppress the spread of wetting, and it is difficult for distortion and displacement to occur, and the repair capability when distortion or displacement occurs is high, and even when discharging continuously from the material jet nozzle, it can be stacked accurately in the vertical direction. It is possible to ensure high modeling accuracy during high-speed modeling. The upper limit value of the contact angle MM of the model material composition is not particularly limited, but is usually 70 ° or less, and preferably 65 ° or less from the viewpoint of achieving both high modeling accuracy and excellent mechanical properties. .
 本発明においてモデル材用組成物の接触角MMは、先に説明したシリコーン変性ウレタンオリゴマー(S)の種類およびその配合量等を調整することにより制御することができる。例えば、シリコーン変性ウレタンオリゴマー(S)の数平均分子量を1,000~10,000の範囲に調整すること、モデル材用組成物の総質量に対してシリコーン変性ウレタンオリゴマー(S)の含有量を0.1~20質量%の範囲に調整することにより、接触角MMを大きくすることができる。なお、本発明における接触角MMは、モデル材用組成物の液滴の硬化物に対するモデル材用組成物の液滴のなす接触角であり、その測定方法は後述する実施例に記載する。 In the present invention, the contact angle MM of the model material composition can be controlled by adjusting the type and blending amount of the silicone-modified urethane oligomer (S) described above. For example, adjusting the number average molecular weight of the silicone-modified urethane oligomer (S) in the range of 1,000 to 10,000, and the content of the silicone-modified urethane oligomer (S) with respect to the total mass of the model material composition By adjusting to the range of 0.1 to 20% by mass, the contact angle MM can be increased. The contact angle MM in the present invention is a contact angle formed by the droplets of the model material composition with respect to the cured product of the model material composition droplets, and the measurement method will be described in Examples described later.
 本発明のモデル材用組成物の表面張力は、好ましくは24~30mN/mであり、より好ましくは24.5mN/m以上であり、さらに好ましくは25mN/m以上であり、より好ましくは29.5mN/m以下であり、さらに好ましくは29mN/m以上である。表面張力が上記範囲内であると、マテリアルジェットの高速吐出時においてもノズルからの吐出液滴を正常に形成することができ、適切な液滴量や着弾精度を確保することやサテライトの発生を抑制することが可能であり、造形精度を向上させやすくなる。 The surface tension of the composition for a model material of the present invention is preferably 24 to 30 mN / m, more preferably 24.5 mN / m or more, further preferably 25 mN / m or more, more preferably 29. 5 mN / m or less, more preferably 29 mN / m or more. When the surface tension is within the above range, droplets ejected from the nozzle can be formed normally even during high-speed ejection of material jets, ensuring adequate droplet volume and landing accuracy, and generating satellites. It is possible to suppress, and it becomes easy to improve modeling accuracy.
 本発明においてモデル材用組成物の表面張力は、先に説明したシリコーン変性ウレタンオリゴマー(S)の種類およびその配合量ならびに表面調整剤の種類およびその配合量等を調整することにより制御することができる。なお、モデル材用組成物の表面張力は、実施例に記載の方法に従い測定することができる。 In the present invention, the surface tension of the composition for a model material can be controlled by adjusting the type and blending amount of the silicone-modified urethane oligomer (S) described above and the type and blending amount of the surface modifier. it can. In addition, the surface tension of the composition for model materials can be measured according to the method as described in an Example.
 本発明のモデル材用組成物は、マテリアルジェット光造形法に用いるため、25℃で20~500mPa・sの粘度を有する。マテリアルジェットノズルからの吐出性を良好にする観点から、25℃における粘度が20~400mPa・sであることが好ましく、20~300mPa・sであることがより好ましい。上記粘度の測定は、JIS Z 8803に準拠し、R100型粘度計を用いて行うことができる。モデル材用組成物の粘度は、重合性化合物の種類およびその配合比率、希釈溶媒や増粘剤の種類およびその添加量等を調整することにより制御することができる。 The composition for a model material of the present invention has a viscosity of 20 to 500 mPa · s at 25 ° C. because it is used for material jet stereolithography. From the viewpoint of improving dischargeability from the material jet nozzle, the viscosity at 25 ° C. is preferably 20 to 400 mPa · s, and more preferably 20 to 300 mPa · s. The viscosity can be measured according to JIS Z 8803 using an R100 viscometer. The viscosity of the composition for a model material can be controlled by adjusting the type of the polymerizable compound and the blending ratio thereof, the type of the diluent solvent and the thickener, the amount of addition thereof, and the like.
 本発明のモデル材用組成物の製造方法は特に限定されず。例えば、混合攪拌装置等を用いて、モデル材用組成物を構成する成分を均一に混合することにより製造することができる。 The method for producing the composition for model material of the present invention is not particularly limited. For example, it can be produced by uniformly mixing the components constituting the model material composition using a mixing and stirring device or the like.
 <マテリアルジェット光造形用組成物セット>
 本発明のモデル材用組成物は、高速造形時における造形精度に優れており、マテリアルジェットノズルから連続して吐出する場合にも高さ方向に精度よく積み上げることができる。このため、モデル材用組成物のみで三次元立体構造を造形し得るが、立体造形中にモデル材を支持するためのサポート材と組み合わせて用いることにより、複雑な形状や緻密な形状をより高い精度で造形することができる。したがって、本発明は、本発明のモデル材用組成物と、マテリアルジェット光造形法によりサポート材を造形するためのサポート材用組成物とを含んでなるマテリアルジェット光造形用組成物セットも対象とする。
<Composition set for material jet stereolithography>
The composition for a model material of the present invention is excellent in modeling accuracy at the time of high-speed modeling, and can be accurately stacked in the height direction even when discharged continuously from a material jet nozzle. For this reason, it is possible to form a three-dimensional structure only with the composition for the model material, but by using it in combination with a support material for supporting the model material during the three-dimensional modeling, a complicated shape or a dense shape is higher. It can be modeled with accuracy. Therefore, the present invention also covers a composition set for material jet stereolithography comprising the composition for model material of the present invention and a composition for support material for modeling a support material by a material jet stereolithography method. To do.
 <サポート材用組成物>
 サポート材用組成物は、光硬化によりサポート材を与える、サポート材用の光硬化性組成物である。モデル材を作成後、サポート材をモデル材から物理的に剥離することにより、または、サポート材を有機溶媒もしくは水に溶解させることにより、モデル材から除去することができる。本発明のモデル材用組成物は、サポート材用組成物として従来公知の種々の組成物との組み合わせにおいて用いることができるが、サポート材を除去する際にモデル材を破損することがなく、環境に優しく、細部まできれいにかつ容易にサポート材を除去することができるため、本発明の光造形用組成物セットを構成するサポート材用組成物は水溶性であることが好ましい。
<Composition for support material>
The composition for a support material is a photocurable composition for a support material that provides the support material by photocuring. After the model material is created, it can be removed from the model material by physically peeling the support material from the model material or by dissolving the support material in an organic solvent or water. The composition for a model material of the present invention can be used in combination with various conventionally known compositions as a composition for a support material, but does not damage the model material when the support material is removed, and the environment. It is preferable that the support material composition that constitutes the stereolithography composition set of the present invention is water-soluble because the support material can be easily removed cleanly and easily in detail.
 そのような水溶性のサポート材用組成物としては、水溶性単官能エチレン性不飽和単量体と、水溶性樹脂と、光重合開始剤とを含むことが好ましい。優れた水による除去性とサポート力とを兼ね備えたサポート材を形成するために、より具体的には、上記サポート材用組成物において、上記水溶性単官能エチレン性不飽和単量体は、(メタ)アクリルアミド誘導体を含み、上記水溶性樹脂は、オキシエチレン基、オキシプロピレン基およびオキシテトラメチレン基からなる群から選ばれる少なくとも1種を含み、上記光重合開始剤は、アシルフォスフィンオキサイド系の光重合開始剤を含むことが好ましい。 Such a water-soluble composition for a support material preferably contains a water-soluble monofunctional ethylenically unsaturated monomer, a water-soluble resin, and a photopolymerization initiator. In order to form a support material having both excellent water removability and support power, more specifically, in the support material composition, the water-soluble monofunctional ethylenically unsaturated monomer is ( The water-soluble resin contains at least one selected from the group consisting of an oxyethylene group, an oxypropylene group, and an oxytetramethylene group, and the photopolymerization initiator is an acylphosphine oxide-based derivative. It is preferable to include a photopolymerization initiator.
 サポート材用組成物に含まれる水溶性の単官能エチレン性不飽和単量体としては、例えば、炭素数5~15の水酸基含有(メタ)アクリレート〔例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等〕、数平均分子量(Mn)200~1,000の水酸基含有(メタ)アクリレート〔例えばポリエチレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリプロピレングリコールモノ(メタ)アクリレート、PEG-PPGブロックポリマーのモノ(メタ)アクリレート等〕、炭素数3~15の(メタ)アクリルアミド誘導体〔例えば(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミド等〕、(メタ)アクリロイルモルフォリン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the water-soluble monofunctional ethylenically unsaturated monomer contained in the support material composition include, for example, a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meth) acrylate, hydroxypropyl ( Meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.], hydroxyl group-containing (meth) acrylate having a number average molecular weight (Mn) of 200 to 1,000 [for example, polyethylene glycol mono (meth) acrylate, monoalkoxy (from 1 to carbon atoms) 4) Polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meth) acrylate of PEG-PPG block polymer, etc.], carbon Number 3 15 (meth) acrylamide derivatives [eg (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N ′ -Dimethyl (meth) acrylamide, N, N'-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, N-hydroxybutyl (meth) acrylamide, etc.], (meth) Examples include acryloyl morpholine. These may be used alone or in combination of two or more.
 サポート材用組成物に含まれる水溶性単官能エチレン性不飽和単量体の含有量は、上記サポート材用組成物の総質量100質量%に対して、19質量%以上80質量%以下であることが好ましい。上記含有量が上記範囲内であると、サポート材のサポート力を低下させることなく、水によるサポート材の除去性を向上させることができる。 The content of the water-soluble monofunctional ethylenically unsaturated monomer contained in the support material composition is 19% by mass to 80% by mass with respect to 100% by mass of the total mass of the support material composition. It is preferable. When the content is within the above range, the removability of the support material with water can be improved without reducing the support force of the support material.
 サポート材用組成物に含まれる水溶性樹脂は、サポート材に適度の親水性を付与するためのものであり、これを添加することにより水による除去性とサポート力とを兼ね備えたサポート材を得ることができる。上記水溶性樹脂は、オキシエチレン基、オキシプロピレン基およびオキシテトラメチレン基からなる群から選ばれる少なくとも1種を含むことが好ましい。サポート材のサポート力を低下させずに水除去性をより向上できるからである。上記水溶性樹脂としては、具体的には、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリ(オキシテトラメチレン)グリコール、ポリオキシテトラメチレンポリオキシエチレングリコール、ポリオキシテトラメチレンポリオキシプロピレングリコール等の、オキシエチレン基、オキシプロピレン基およびオキシテトラメチレン基からなる群から選ばれる少なくとも1種を含むポリオキシアルキレングリコールが挙げられる。上記水溶性樹脂は、1種単独で使用してもよく、2種以上を併用してもよい。 The water-soluble resin contained in the composition for the support material is for imparting moderate hydrophilicity to the support material, and by adding this, a support material having both water removability and support power is obtained. be able to. The water-soluble resin preferably contains at least one selected from the group consisting of an oxyethylene group, an oxypropylene group, and an oxytetramethylene group. This is because the water removability can be further improved without reducing the support force of the support material. Specific examples of the water-soluble resin include oxyethylene such as polyethylene glycol, polypropylene glycol, poly (oxytetramethylene) glycol, polyoxytetramethylene polyoxyethylene glycol, and polyoxytetramethylene polyoxypropylene glycol. And a polyoxyalkylene glycol containing at least one selected from the group consisting of a group, an oxypropylene group and an oxytetramethylene group. The said water-soluble resin may be used individually by 1 type, and may use 2 or more types together.
 本発明のサポート材用組成物における上記水溶性樹脂の含有量は、上記サポート材用組成物の総質量100質量%に対して、15質量%以上75質量%以下であることが好ましい。上記含有量が上記範囲内であると、サポート材のサポート力を低下させることなく、水による除去性を向上させることができる。 The content of the water-soluble resin in the support material composition of the present invention is preferably 15% by mass or more and 75% by mass or less with respect to 100% by mass of the total mass of the support material composition. If the content is within the above range, the removability by water can be improved without reducing the support force of the support material.
 前記水溶性樹脂の数平均分子量Mnは、好ましくは100~5,000である。水溶性樹脂のMnが前記範囲内であると、光硬化前の前記水溶性樹脂と相溶し、かつ、光硬化後の前記水溶性樹脂と相溶しない。その結果、サポート材用組成物を光硬化させて得られるサポート材の自立性を高め、かつ、サポート材の水への溶解性を高めることができる。水溶性樹脂の数平均分子量Mnは、好ましくは200~3,000、より好ましくは400~2,000である。 The number average molecular weight Mn of the water-soluble resin is preferably 100 to 5,000. When the Mn of the water-soluble resin is within the above range, it is compatible with the water-soluble resin before photocuring and is not compatible with the water-soluble resin after photocuring. As a result, the self-supporting property of the support material obtained by photocuring the composition for support material can be enhanced, and the solubility of the support material in water can be enhanced. The number average molecular weight Mn of the water-soluble resin is preferably 200 to 3,000, more preferably 400 to 2,000.
 サポート材用組成物には、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、光重合開始剤、水溶性有機溶剤、酸化防止剤、着色剤、顔料分散剤、保存安定化剤、表面調整剤、紫外線吸収剤、光安定剤、重合禁止剤、連鎖移動剤、充填剤等が挙げられる。 The support composition may contain other additives as necessary. Examples of other additives include a photopolymerization initiator, a water-soluble organic solvent, an antioxidant, a colorant, a pigment dispersant, a storage stabilizer, a surface conditioner, an ultraviolet absorber, a light stabilizer, and a polymerization inhibitor. , Chain transfer agents, fillers and the like.
 光重合開始剤としては、モデル材用組成物に含有され得る光重合開始剤として上記に述べた化合物を同様に使用してよいが、LED光源での硬化性に優れ、かつ造形物の着色が少ないといった観点から、アシルフォスフィンオキサイド系の光重合開始剤を含むことが好ましい。サポート材用組成物が光重合開始剤を含有する場合、その含有量は、サポート材用組成物の総質量に基づいて、好ましくは2~20質量%、より好ましくは3~10質量%である。光重合開始剤の含有量が上記の下限以上であると、未反応の重合成分を十分に低減させて、サポート材の硬化性を十分に高めやすい。一方、光重合開始剤の含有量が上記の上限以下であると、未反応の光重合開始剤がサポート材に残存することを回避しやすい。 As the photopolymerization initiator, the compounds described above as photopolymerization initiators that can be contained in the model material composition may be used in the same manner. However, the photopolymerization initiator is excellent in curability with an LED light source, and the molded article is colored. From the viewpoint of being small, it is preferable to include an acyl phosphine oxide-based photopolymerization initiator. When the support material composition contains a photopolymerization initiator, the content thereof is preferably 2 to 20% by mass, more preferably 3 to 10% by mass, based on the total mass of the support material composition. . When the content of the photopolymerization initiator is not less than the above lower limit, unreacted polymerization components are sufficiently reduced, and the curability of the support material can be sufficiently increased. On the other hand, when the content of the photopolymerization initiator is not more than the above upper limit, it is easy to avoid remaining unreacted photopolymerization initiator in the support material.
 水溶性有機溶剤は、サポート材用組成物を光硬化させて得られるサポート材の水への溶解性を向上させる成分である。また、サポート材用組成物を低粘度に調整する成分である。サポート材用組成物が水溶性有機溶剤を含有する場合、その含有量は、サポート材用組成物の総質量に基づいて、好ましくは35質量%以下、より好ましくは30質量%以下である。また、上記含有量は、好ましくは3質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上である。サポート材用組成物中の水溶性有機溶剤の量が多すぎると、サポート材用組成物を光硬化させる際に、水溶性有機溶剤の浸み出しが生じ、サポート材の上層に成形されたモデル材の寸法精度が悪化することがある。水溶性有機溶剤の含有量が上記の上限以下である場合、このような浸み出しを抑制しやすい。また、サポート材用組成物中の水溶性有機溶剤の含有量が上記の下限以上であると、サポート材の水への溶解性を向上させやすく、かつ、サポート材用組成物を低粘度に調整しやすい。 The water-soluble organic solvent is a component that improves the solubility of the support material obtained by photocuring the support material composition in water. Moreover, it is a component which adjusts the composition for support materials to low viscosity. When the composition for support material contains a water-soluble organic solvent, the content is preferably 35% by mass or less, more preferably 30% by mass or less, based on the total mass of the composition for support material. Further, the content is preferably 3% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. When the amount of the water-soluble organic solvent in the support material composition is too large, when the support material composition is photocured, the water-soluble organic solvent oozes out, and the model is formed in the upper layer of the support material. The dimensional accuracy of the material may deteriorate. When the content of the water-soluble organic solvent is not more than the above upper limit, it is easy to suppress such leaching. In addition, when the content of the water-soluble organic solvent in the support material composition is equal to or higher than the above lower limit, it is easy to improve the solubility of the support material in water, and the support material composition is adjusted to a low viscosity. It's easy to do.
 水溶性有機溶剤としては、例えば、直鎖状または分枝状のアルキレン基を有するアルキレングリコールモノアセテート〔例えばエチレングリコールモノアセテート、プロピレングリコールモノアセテート、ジエチレングリコールモノアセテート、ジプロピレングリコールモノアセテート、トリエチレングリコールモノアセテート、トリプロピレングリコールモノアセテート、テトラエチレングリコールモノアセテート、テトラプロピレングリコールモノアセテート等〕、直鎖状または分枝状のアルキレン基を有するアルキレングリコールモノアルキルエーテル〔例えばエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、テトラエチレングリコールモノメチルエーテル、テトラプロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテル、トリプロピレングリコールモノエチルエーテル、テトラエチレングリコールモノエチルエーテル、テトラプロピレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、ジエチレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、トリエチレングリコールモノプロピルエーテル、トリプロピレングリコールモノプロピルエーテル、テトラエチレングリコールモノプロピルエーテル、テトラプロピレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、テトラプロピレングリコールモノブチルエーテル等〕、直鎖状または分枝状のアルキレン基を有するアルキレングリコールジアセテート〔例えばエチレングリコールジアセテート、プロピレングリコールジアセテート、ジエチレングリコールジアセテート、ジプロピレングリコールジアセテート、トリエチレングリコールジアセテート、トリプロピレングリコールジアセテート、テトラエチレングリコールジアセテート、テトラプロピレングリコールジアセテート等〕、直鎖状または分枝状のアルキレン基を有するアルキレングリコールジアルキルエーテル〔例えばエチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、テトラプロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、トリプロピレングリコールジエチルエーテル、テトラエチレングリコールジエチルエーテル、テトラプロピレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールジプロピルエーテル、ジエチレングリコールジプロピルエーテル、ジプロピレングリコールジプロピルエーテル、トリエチレングリコールジプロピルエーテル、トリプロピレングリコールジプロピルエーテル、テトラエチレングリコールジプロピルエーテル、テトラプロピレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジブチルエーテル、トリエチレングリコールジブチルエーテル、トリプロピレングリコールジブチルエーテル、テトラエチレングリコールジブチルエーテル、テトラプロピレングリコールジブチルエーテル等〕、直鎖状または分枝状のアルキレン基を有するアルキレングリコールモノアルキルエーテルアセテート〔例えば、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノメチルエーテルアセテート、テトラエチレングリコールモノメチルエーテルアセテート、テトラプロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、トリプロピレングリコールモノエチルエーテルアセテート、テトラエチレングリコールモノエチルエーテルアセテート、テトラプロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、ジエチレングリコールモノプロピルエーテルアセテート、ジプロピレングリコールモノプロピルエーテルアセテート、トリエチレングリコールモノプロピルエーテルアセテート、トリプロピレングリコールモノプロピルエーテルアセテート、テトラエチレングリコールモノプロピルエーテルアセテート、テトラプロピレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、トリエチレングリコールモノブチルエーテルアセテート、トリプロピレングリコールモノブチルエーテルアセテート、テトラエチレングリコールモノブチルエーテルアセテート、テトラプロピレングリコールモノブチルエーテルアセテート等〕等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、サポート材の水への溶解性を向上させやすく、かつ、サポート材用組成物を低粘度に調整しやすい観点から、水溶性有機溶剤は、トリエチレングリコールモノメチルエーテル、または、ジプロピレングリコールモノメチルエーテルアセテートであることがより好ましい。 Examples of the water-soluble organic solvent include alkylene glycol monoacetate having a linear or branched alkylene group (for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol). Monoacetate, tripropylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, etc.], alkylene glycol monoalkyl ethers having linear or branched alkylene groups [eg ethylene glycol monomethyl ether, propylene glycol monomethyl Ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether , Triethylene glycol monomethyl ether, tripropylene glycol monomethyl ether, tetraethylene glycol monomethyl ether, tetrapropylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monoethyl ether, Triethylene glycol monoethyl ether, tripropylene glycol monoethyl ether, tetraethylene glycol monoethyl ether, tetrapropylene glycol monoethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, diethylene glycol monopropyl ether, dipropylene glycol Propyl ether, triethylene glycol monopropyl ether, tripropylene glycol monopropyl ether, tetraethylene glycol monopropyl ether, tetrapropylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether , Triethylene glycol monobutyl ether, tripropylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, etc.), alkylene glycol diacetate having a linear or branched alkylene group (for example, ethylene glycol diacetate, Propylene rubber Recall diacetate, diethylene glycol diacetate, dipropylene glycol diacetate, triethylene glycol diacetate, tripropylene glycol diacetate, tetraethylene glycol diacetate, tetrapropylene glycol diacetate, etc.), linear or branched alkylene group Alkylene glycol dialkyl ethers [for example, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrapropylene glycol dimethyl ether, ethylene glycol Diethyl ether, propylene glycol diethyl ether, diethylene glycol diethyl ether, dipropylene glycol diethyl ether, triethylene glycol diethyl ether, tripropylene glycol diethyl ether, tetraethylene glycol diethyl ether, tetrapropylene glycol diethyl ether, ethylene glycol dipropyl ether, Propylene glycol dipropyl ether, diethylene glycol dipropyl ether, dipropylene glycol dipropyl ether, triethylene glycol dipropyl ether, tripropylene glycol dipropyl ether, tetraethylene glycol dipropyl ether, tetrapropylene glycol dipropyl ether, ethylene glycol dibu Ether, propylene glycol dibutyl ether, diethylene glycol dibutyl ether, dipropylene glycol dibutyl ether, triethylene glycol dibutyl ether, tripropylene glycol dibutyl ether, tetraethylene glycol dibutyl ether, tetrapropylene glycol dibutyl ether, etc.), linear or branched Alkylene glycol monoalkyl ether acetate having an alkylene group of [for example, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, triethylene glycol monomethyl ether acetate, tripropylene Glycol monomethyl ether acetate, tetraethylene glycol monomethyl ether acetate, tetrapropylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol monoethyl ether acetate, triethylene glycol Monoethyl ether acetate, tripropylene glycol monoethyl ether acetate, tetraethylene glycol monoethyl ether acetate, tetrapropylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, propylene glycol monopropyl ether acetate Diethylene glycol monopropyl ether acetate, dipropylene glycol monopropyl ether acetate, triethylene glycol monopropyl ether acetate, tripropylene glycol monopropyl ether acetate, tetraethylene glycol monopropyl ether acetate, tetrapropylene glycol monopropyl ether acetate, ethylene glycol monobutyl ether Acetate, propylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monobutyl ether acetate, triethylene glycol monobutyl ether acetate, tripropylene glycol monobutyl ether acetate, tetraethylene glycol mono Chill ether acetate, tetraethylene glycol monobutyl ether acetate, etc.] and the like. These may be used alone or in combination of two or more. Among these, from the viewpoint of easily improving the solubility of the support material in water and easily adjusting the composition for the support material to low viscosity, the water-soluble organic solvent is triethylene glycol monomethyl ether or dipropylene. More preferred is glycol monomethyl ether acetate.
 本発明のサポート材用組成物の粘度は、マテリアルジェットノズルからの吐出性を良好にする観点から、25℃において20~500mPa・sであることが好ましく、20~400mPa・sであることがより好ましい。上記粘度の測定は、JIS Z 8 803に準拠し、R100型粘度計を用いて行うことができる。 The viscosity of the composition for a support material of the present invention is preferably 20 to 500 mPa · s at 25 ° C., more preferably 20 to 400 mPa · s, from the viewpoint of improving dischargeability from the material jet nozzle. preferable. The above-mentioned viscosity can be measured using an R100 viscometer in accordance with JIS Z 8 803.
 本発明のサポート材用組成物の製造方法は特に限定されず、例えば、混合攪拌装置等を用いて、サポート材用組成物を構成する成分を均一に混合することにより製造することができる。 The method for producing the composition for support material of the present invention is not particularly limited. For example, the composition for the support material can be produced by uniformly mixing the components constituting the composition for support material using a mixing and stirring device or the like.
 <光造形品の製造方法>
 本発明は、本発明のモデル材用組成物、または、本発明のマテリアルジェット光造形用組成物セットを用いて、マテリアルジェット方式による光造形法により立体造形物を製造する、光造形品の製造方法も提供する。
<Production method of stereolithography product>
This invention manufactures a three-dimensional molded article by the stereolithography method by a material jet system using the composition for model materials of this invention, or the composition set for material jet stereolithography of this invention. A method is also provided.
 本発明の光造形品の製造方法は、本発明のモデル材用組成物または光造形用組成物セットを用いて、マテリアルジェット方式による光造形法により立体造形物を製造する方法である限り特に限定されないが、本発明の好ましい一実施態様において、本発明の製造方法は、モデル材用組成物を光硬化させてモデル材を得ると共に、サポート材用組成物を光硬化させてサポート材を得る工程と、モデル材からサポート材を除去する工程とを含む。 The manufacturing method of the optical modeling product of the present invention is particularly limited as long as it is a method of manufacturing a three-dimensional modeling object by an optical modeling method by a material jet method using the model material composition or the optical modeling composition set of the present invention. However, in a preferred embodiment of the present invention, the production method of the present invention includes a step of photocuring the model material composition to obtain a model material, and photocuring the support material composition to obtain the support material. And a step of removing the support material from the model material.
 本発明の製造方法において、例えば、作製する物体の3次元CADデータをもとに、マテリアルジェット方式で積層して立体造形物を構成するモデル材用組成物のデータ、および、作製途上の立体造形物を支持するサポート材用組成物のデータを作製し、さらにマテリアルジェット方式の3Dプリンタで各組成物を吐出するスライスデータを作製し、作製したスライスデータに基づきモデル材用およびサポート材用の各組成物を吐出後、光硬化処理を層ごとに繰り返し、モデル材用組成物の硬化物(モデル材)およびサポート材用組成物の硬化物(サポート材)からなる光造形物を作製することができる。 In the manufacturing method of the present invention, for example, based on the three-dimensional CAD data of the object to be manufactured, the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the material jet type 3D printer is prepared, and each of the material for the model material and the support material is based on the prepared slice data. After discharging the composition, the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
 モデル材用組成物およびサポート材用組成物を硬化させる光としては、例えば、遠赤外線、赤外線、可視光線、近紫外線、紫外線、電子線、α線、γ線およびエックス線等の活性エネルギー線が挙げられる。これらの中でも、硬化作業の容易性および効率性の観点から、近紫外線または紫外線であることが好ましい。 Examples of the light for curing the composition for the model material and the composition for the support material include active energy rays such as far infrared rays, infrared rays, visible rays, near ultraviolet rays, ultraviolet rays, electron beams, α rays, γ rays, and X rays. It is done. Among these, near ultraviolet rays or ultraviolet rays are preferable from the viewpoint of the ease and efficiency of the curing operation.
 光源としては、従来公知の高圧水銀灯、メタルハライドランプ、UV-LEDなどが挙げられる。これらの中でも、設備を小型化することができ、かつ、消費電力が小さいという観点からは、LED方式であることが好ましい。 Examples of the light source include conventionally known high pressure mercury lamps, metal halide lamps, and UV-LEDs. Among these, the LED system is preferable from the viewpoint that the equipment can be downsized and the power consumption is small.
 本発明の好適な一実施態様において、モデル材用組成物の硬化は、320~410nmの波長域において1レイヤーあたりの積算光量が300mJ/cm以上の活性エネルギー線を照射することにより行われる。320~410nmの波長域において、高い積算光量の活性エネルギー線を照射することにより、反応速度の比較的速い重合性基(例えばアクリロイル基等)を有する成分の架橋反応が促進される。このため、例えば、重合性基としてアクリロイル基を有する重合性モノマーを用い、アクリロイル基より反応速度の遅い重合性基(例えばメタクリロイル基)を有するシリコーン変性ウレタンオリゴマー(S)を用いることにより、マテリアルジェットノズルから吐出されたモデル材用組成物の液滴が着弾して硬化するまでの時間において、先に重合性モノマーの架橋反応が促進され、シリコーン変性ウレタンオリゴマー(S)の架橋が遅れるため、シリコーン変性ウレタンオリゴマー(S)をモデル材用組成物の液滴の最表面に配列させるための時間を与えることができ、モデル材用組成物の造形精度を向上させることができると考えられる。本発明において、上記積算光量は300mJ/cm以上であることがより好ましく、500mJ/cm以上であることがさらに好ましい。上記ピーク照度の上限値は特に限定されないが、通常、省エネルギー量や基材ダメージを防ぐ観点から2,000mJ/cm以下である。 In a preferred embodiment of the present invention, the composition for a model material is cured by irradiating an active energy ray having an accumulated light amount per layer of 300 mJ / cm 2 or more in a wavelength region of 320 to 410 nm. By irradiating active energy rays with a high integrated light amount in the wavelength range of 320 to 410 nm, the cross-linking reaction of a component having a polymerizable group (for example, acryloyl group) having a relatively high reaction rate is promoted. For this reason, for example, by using a polymerizable monomer having an acryloyl group as a polymerizable group and using a silicone-modified urethane oligomer (S) having a polymerizable group (for example, methacryloyl group) having a slower reaction rate than the acryloyl group, a material jet Since the crosslinking reaction of the polymerizable monomer is first accelerated and the crosslinking of the silicone-modified urethane oligomer (S) is delayed in the time until the droplet of the composition for the model material discharged from the nozzle lands and cures, the silicone is delayed. It is thought that time for arranging the modified urethane oligomer (S) on the outermost surface of the droplet of the model material composition can be given, and the modeling accuracy of the model material composition can be improved. In the present invention, the integrated light amount is more preferably 300 mJ / cm 2 or more, and further preferably 500 mJ / cm 2 or more. The upper limit of the peak illuminance is not particularly limited, but is usually 2,000 mJ / cm 2 or less from the viewpoint of preventing energy saving and substrate damage.
 立体造形物を構成する各層の厚みは、造形精度の観点からは薄いほうが好ましいが、造形速度とのバランスからは5~30μmが好ましい。 The thickness of each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 μm from the balance with the modeling speed.
 得られた造形品は、モデル材とサポート材とが組み合わされたものである。かかる造形品からサポート材を除去してモデル材である光造形品を得る。サポート材の除去は、例えば、サポート材を溶解させる除去溶剤に得られた造形品を浸漬し、サポート材を柔軟にした後、ブラシなどでモデル材表面からサポート材を除去して行うことが好ましい。サポート材の除去溶剤には水、水溶性溶剤、例えばグリコール系溶剤、アルコール系溶剤などを用いてもよい。これらは、単独で、あるいは複数用いてもよい。 The obtained shaped product is a combination of model material and support material. The support material is removed from the modeled product to obtain an optical modeled product that is a model material. The removal of the support material is preferably performed by, for example, immersing a shaped article obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like. . Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
 以上の工程により光造形品が得られる。このような本発明のモデル材用組成物または光造形用組成物セットを用いて製造された光造形品は、寸法精度が良好である。 A stereolithography product is obtained by the above process. The optical modeling product manufactured using such a model material composition or optical modeling composition set of the present invention has good dimensional accuracy.
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記ない限り、質量%及び質量部である。 Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” and “parts” in the examples are% by mass and parts by mass.
1.モデル材用組成物
 実施例において用いたモデル材用組成物を構成する成分の詳細および略号を表1に示す。
1. Model Material Composition Table 1 shows the details and abbreviations of the components constituting the model material composition used in the examples.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1中、単官能エチレン性不飽和共重合体(A)および多官能エチレン性不飽和単量体(B)のSP値は、Fedorsの方法(原崎勇次著,「コーティングの基礎科学」,第3章,35頁,1977年,槙書店発行)により得られる25℃での値を意味し、以下の方法に従い算出した値である。
 Fedorsは、凝集エネルギー密度とモル体積の両方が、置換基の種類および数に依存していると考え、以下の式と各々の置換基に応じた定数を提案している。
 δ=(ΔE/V)1/2=(ΣΔei/ΣΔvi)1/2
 ここで、δはSP値(cal/cm1/2、ΔEは凝集エネルギー密度、Vはモル体積、Δeiは各々の原子又は原子団の蒸発エネルギー(cal/mol)、Δviは各々の原子または原子団のモル体積(cm/mol)である。
 また、Tgが25℃以上の化合物については、モル体積に次の値を加算する。化合物中の繰り返し単位中の主鎖骨格原子数をnとした場合、n<3のときはΔviに4nを加え、n≧3のときはΔviに2nを加える。
In Table 1, the SP value of the monofunctional ethylenically unsaturated copolymer (A) and the polyfunctional ethylenically unsaturated monomer (B) is the Fedors method (written by Yuji Harasaki, “Basic Science of Coating”, No. (Chapter 3, p. 35, 1977, published by Sakai Shoten) means a value at 25 ° C., calculated according to the following method.
Fedors considers that both the cohesive energy density and the molar volume depend on the type and number of substituents, and proposes the following formula and a constant corresponding to each substituent.
δ = (ΔE / V) 1/2 = (ΣΔei / ΣΔvi) 1/2
Where δ is the SP value (cal / cm 3 ) 1/2 , ΔE is the cohesive energy density, V is the molar volume, Δei is the evaporation energy (cal / mol) of each atom or atomic group, and Δvi is each atom. Alternatively, the molar volume of the atomic group (cm 3 / mol).
For compounds having a Tg of 25 ° C. or higher, the following value is added to the molar volume. When n is the number of main chain skeleton atoms in the repeating unit in the compound, 4n is added to Δvi when n <3, and 2n is added to Δvi when n ≧ 3.
(1)モデル材用組成物の調製
 表2に示す組成に従い、各モデル材用組成物を構成する成分を、それぞれ、混合攪拌装置を用いて均一に混合し、撹拌後、グラスフィルター(桐山製作所製)を用いて、この混合物を吸引ろ過し、実施例1および2のモデル材用組成物1および2を調製した。
(1) Preparation of Model Material Composition According to the composition shown in Table 2, the components constituting each model material composition were uniformly mixed using a mixing and stirring device, and after stirring, a glass filter (Kiriyama Seisakusho) was prepared. The mixture was subjected to suction filtration using the above-mentioned product, and the compositions 1 and 2 for model materials of Examples 1 and 2 were prepared.
(2)モデル材用組成物の物性
 上記実施例1および2において調製したモデル材用組成物の粘度および表面張力を、以下に示す方法に従い測定した。結果を表2に示す。
(2) Physical property of model material composition Viscosity and surface tension of the model material composition prepared in Examples 1 and 2 were measured according to the following methods. The results are shown in Table 2.
 <粘度の測定>
 各モデル材用組成物の粘度は、R100型粘度計(東機産業社製)を用いて、25℃、コーン回転数5rpmの条件下測定した。
<Measurement of viscosity>
The viscosity of each model material composition was measured using an R100 viscometer (manufactured by Toki Sangyo Co., Ltd.) under conditions of 25 ° C. and cone rotation speed 5 rpm.
 <表面張力の測定>
 各モデル材用組成物の表面張力は、25℃における、測定開始から20秒後の値を、全自動平衡式エレクトロ表面張力計ESB-V(協和界面科学社製)を用いて測定した。
<Measurement of surface tension>
The surface tension of each composition for model materials was measured at 25 ° C., 20 seconds after the start of measurement, using a fully automatic equilibrium electro surface tension meter ESB-V (manufactured by Kyowa Interface Science Co., Ltd.).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(3)モデル材用組成物の硬化膜物性および造形特性の評価
 上記実施例1および2において調製したモデル材用組成物の硬化膜物性および造形特性を、以下に示す方法に従い評価した。各結果を表3に示す。
(3) Evaluation of Cured Film Properties and Modeling Properties of Model Material Composition The cured film properties and modeling properties of the model material compositions prepared in Examples 1 and 2 were evaluated according to the following methods. Table 3 shows the results.
 <濡れ性(ピペット液滴径)>
 実施例1で作製したモデル材用組成物を、バーコーター(♯14)を用いて、厚さ188μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム社製の白色PETフィルム、商品名“U292W”)上に塗布し、厚さ3μmの印字膜を形成した。印字膜を硬化する光源は、UV-LED硬化装置(日亜化学社製アルミ基板モジュールNSSU100AT、LEDピーク波長365nm)を用いて、照度508mW/cm(UVチェッカーGSユアサ・ライティング製UVR-N1にて実測)の条件にて照射した。この印字膜を仮硬化の後、酸素阻害抑制効果を付与するためにUVカット機能のない透明PETフィルムを印字膜の表面に貼合し、仮硬化を含めた全積算光量が23mJ/cmとなるように紫外線を照射して硬化させて、貼合したPETフィルムを剥がしてモデル材硬化膜Aとした。
 続いて、モデル材硬化膜Aの表面に対して、マイクロピペットを用いて、モデル材用をドロップ体積5.0±0.2μL滴下し、20秒後に、前述のUV-LED硬化装置を用いて、全積算光量が138mJ/cmとなるように紫外線を照射して硬化させて、直径の長さを測定した。なお、表3の測定値は、同一組成物により3回評価を実施し、その平均値を表示した。
<Wettability (pipette droplet diameter)>
The model material composition produced in Example 1 was applied onto a 188 μm thick polyethylene terephthalate film (white PET film manufactured by Teijin DuPont Films, trade name “U292W”) using a bar coater (# 14). Then, a printing film having a thickness of 3 μm was formed. The light source for curing the printed film is an illuminance of 508 mW / cm 2 (UVR-N1 manufactured by UV Checker GS Yuasa Lighting) using a UV-LED curing device (aluminum substrate module NSSU100AT manufactured by Nichia Corporation, LED peak wavelength 365 nm). Irradiation). After preliminarily curing this print film, a transparent PET film having no UV-cut function is bonded to the surface of the print film in order to impart an oxygen inhibition suppressing effect, and the total integrated light amount including precuring is 23 mJ / cm 2 . The model material cured film A was obtained by irradiating with ultraviolet rays so as to be cured, and peeling the bonded PET film.
Subsequently, using a micropipette, a drop volume of 5.0 ± 0.2 μL of the model material was dropped on the surface of the model material cured film A, and 20 seconds later, using the above-described UV-LED curing device. The length of the diameter was measured by irradiating and curing with ultraviolet rays so that the total accumulated light amount was 138 mJ / cm 2 . In addition, the measured value of Table 3 evaluated 3 times by the same composition, and displayed the average value.
 実施例2で作製したモデル材用組成物を用いて、上記実施例1と同様の方法によりモデル材硬化膜Bを作製した。 Using the model material composition prepared in Example 2, a model material cured film B was prepared in the same manner as in Example 1 above.
 <接触角MM>
 上述の各モデル材硬化膜の表面に対して、株式会社マツボー社製の接触角測定装置“PG-X”を用いて、動的モードをドロッピングモードとし、各モデル材硬化膜を構成するモデル材用組成物を、それぞれ、ドロップ体積1.8±0.1μLで吐出させ、組成物の液滴がモデル材硬化膜上に着弾した0.3秒後における液滴の接触角を測定した。表3において、モデル材硬化膜に対するモデル材用組成物の接触角をMMと表示した。
<Contact angle MM>
A model material that forms each model material cured film on the surface of each model material cured film described above using the contact angle measuring device “PG-X” manufactured by Matsubo Co., Ltd. and setting the dynamic mode to the dropping mode. Each of the compositions was discharged at a drop volume of 1.8 ± 0.1 μL, and the contact angle of the droplets was measured 0.3 seconds after the droplets of the composition landed on the model material cured film. In Table 3, the contact angle of the model material composition with respect to the model material cured film was expressed as MM.
 <造形精度>
 上記実施例1および2で作製したモデル材用組成物を、それぞれ、ピエゾ型インクジェットノズルを備えたインクジェット記録装置(冨士フィルム社 DMP-2831、ヘッド10pL仕様)を用いて、厚さ100μmのポリエチレンテレフタレートフィルム(東レ社製の透明PETフィルム、商品名“ルミラーQT92”)上に積層し、造形精度を評価した。このインクジェット記録装置におけるヘッド吐出条件として、電圧は30V、周波数は20kHz、ヘッド温度は40℃、ヘッドとPETフィルムとのクリアランスは2mmとした。また、光源としてUV-LED硬化装置(日亜化学社製アルミ基板モジュールNVSU119C、LEDピーク波長375nm、照度800mW/cm)をヘッドと併走するように設置した。モデル材用組成物がPETフィルムもしくは下層となるモデル材硬化膜に着弾した0.4秒後に、全積算光量が43mJ/cmとなるように調整し、紫外線を照射して硬化させた。造形物のインプットデータとして、1辺0.3mm四角を1レイヤーとし、四角柱を作製するため、100レイヤー積層した。以下の基準によりその柱の高さを計測し、造形精度を評価した。
<Modeling accuracy>
Each of the compositions for model materials prepared in Examples 1 and 2 above is a polyethylene terephthalate having a thickness of 100 μm using an ink jet recording apparatus (Fuji Film Co., Ltd. DMP-2831, head 10 pL specification) equipped with a piezo ink jet nozzle. It was laminated on a film (transparent PET film manufactured by Toray Industries, Inc., trade name “Lumirror QT92”), and the modeling accuracy was evaluated. As the head discharge conditions in this ink jet recording apparatus, the voltage was 30 V, the frequency was 20 kHz, the head temperature was 40 ° C., and the clearance between the head and the PET film was 2 mm. Further, a UV-LED curing device (aluminum substrate module NVSU119C manufactured by Nichia Corporation, LED peak wavelength 375 nm, illuminance 800 mW / cm 2 ) was installed as a light source so as to run alongside the head. 0.4 seconds after the model material composition landed on the PET film or the model material cured film as the lower layer, the total accumulated light amount was adjusted to 43 mJ / cm 2 and cured by irradiating with ultraviolet rays. As input data of a modeled object, one side of a 0.3 mm square was used as one layer, and 100 layers were stacked in order to produce a quadrangular prism. The height of the column was measured according to the following criteria, and the modeling accuracy was evaluated.
 <評価基準>
 評価◎:高さ2000μm以上
 評価○:高さ1000~2000μm
 評価×:高さ1000μm未満
<Evaluation criteria>
Evaluation ◎: Height 2000 μm or more Evaluation ○: Height 1000 to 2000 μm
Evaluation x: Height less than 1000 μm
 <造形物の表面性>
 上述の濡れ性試験において作製した各モデル材硬化膜の表面状態を目視にて確認し、ピンポールやハジキ、ブツなど欠点の頻度を観察した。以下の基準により造形物の表面性を評価した。
 <評価基準>
 評価◎:全く欠点なし
 評価○:わずかに欠点あり
 評価×:多数、欠点あり。
<Surface property of the model>
The surface state of each model material cured film produced in the above-described wettability test was visually confirmed, and the frequency of defects such as pin poles, repellencies, and irregularities was observed. The surface property of the shaped article was evaluated according to the following criteria.
<Evaluation criteria>
Evaluation (double-circle): There is no fault Evaluation (circle): There are some faults Evaluation x: There are many and a fault.
 <造形物の反り>
 上記実施例1および2で作製したモデル材用組成物を、それぞれ、バーコーター(♯36)を用いて、厚さ75μmのポリエチレンテレフタレートフィルム(東レ社製の透明PETフィルム、商品名“ルミラー75S10”)上に塗布し、厚さ8μmの印字膜を形成した。印字膜を硬化する光源は、高圧水銀ランプ硬化装置(アイグラフィックス社ECS-151Sユニット、高圧水銀ランプH015-L312、ピーク波長365nm)を用いて、照度330mW/cm(UVチェッカーGSユアサ・ライティング製UVR-N1にて実測)の条件にて照射した。この印字膜を全積算光量が570mJ/cmとなるように紫外線を照射して硬化させて、造形物の反りを評価するための各モデル材硬化膜を得た。以下の基準により、反りのレベルを確認した。
 <評価基準>
 評価◎:全く反りなし
 評価○:わずかに反りあり
 評価×:大きく反りあり
<War of shaped object>
Using the bar coater (# 36), the model material compositions prepared in Examples 1 and 2 above were each 75 μm thick polyethylene terephthalate film (transparent PET film manufactured by Toray Industries, Inc., trade name “Lumirror 75S10”) ) To form a printed film having a thickness of 8 μm. The light source for curing the printed film is a high-pressure mercury lamp curing device (eye graphics company ECS-151S unit, high-pressure mercury lamp H015-L312, peak wavelength 365 nm), and an illuminance of 330 mW / cm 2 (UV checker GS Yuasa Lighting) Irradiation was performed under the conditions of actual measurement using UVR-N1 manufactured by the manufacturer. This printed film was cured by irradiating with ultraviolet rays so that the total accumulated light amount was 570 mJ / cm 2 , thereby obtaining each model material cured film for evaluating the warpage of the modeled object. The level of warpage was confirmed according to the following criteria.
<Evaluation criteria>
Evaluation ◎: No warpage Evaluation ○: Slight warpage Evaluation ×: Large warpage
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Claims (17)

  1.  マテリアルジェット光造形法によりモデル材を造形するためのモデル材用組成物であって、重合性モノマー、光重合開始剤、および重合性基を有するシリコーン変性ウレタンオリゴマーを含み、25℃における粘度が20~500mPa・sである、モデル材用組成物。 A composition for a model material for modeling a model material by a material jet stereolithography method, comprising a polymerizable monomer, a photopolymerization initiator, and a silicone-modified urethane oligomer having a polymerizable group, and a viscosity at 25 ° C. of 20 The composition for model materials which is -500 mPa * s.
  2.  モデル材用組成物を、該モデル材用組成物の硬化物上に滴下して着弾させたとき、着弾0.3秒後におけるモデル材用組成物の液滴の前記硬化物に対する接触角が40°以上である、請求項1に記載のモデル材用組成物。 When the model material composition is dropped on the cured product of the model material composition and landed, the contact angle of the droplet of the model material composition with respect to the cured product after 40 seconds of landing is 40. The composition for model materials according to claim 1, which is at least °.
  3.  シリコーン変性ウレタンオリゴマーが有する重合性基が、アクリロイル基、メタクリロイル基、ビニル基、アリル基およびビニルエーテル基からなる群から選択される基である、請求項1または2に記載のモデル材用組成物。 The composition for model materials according to claim 1 or 2, wherein the polymerizable group of the silicone-modified urethane oligomer is a group selected from the group consisting of acryloyl group, methacryloyl group, vinyl group, allyl group and vinyl ether group.
  4.  モデル材用組成物の総質量に対して、重合性基を有するシリコーン変性ウレタンオリゴマーを0.1~20質量%含む、請求項1~3のいずれかに記載のモデル材用組成物。 4. The model material composition according to claim 1, comprising 0.1 to 20% by mass of a silicone-modified urethane oligomer having a polymerizable group with respect to the total mass of the model material composition.
  5.  表面張力が24~30mN/mである、請求項1~4のいずれかに記載のモデル材用組成物。 The composition for model material according to any one of claims 1 to 4, wherein the surface tension is 24 to 30 mN / m.
  6.  重合性基を有するシリコーン変性ウレタンオリゴマーの数平均分子量が1,000~10,000である、請求項1~5のいずれかに記載のモデル材用組成物。 The composition for a model material according to any one of claims 1 to 5, wherein the number average molecular weight of the silicone-modified urethane oligomer having a polymerizable group is 1,000 to 10,000.
  7.  重合性基を有するシリコーン変性ウレタンオリゴマーが一分子中に1つの重合性基を有するシリコーン変性ウレタンオリゴマーである、請求項1~6のいずれかに記載のモデル材組成物。 The model material composition according to any one of claims 1 to 6, wherein the silicone-modified urethane oligomer having a polymerizable group is a silicone-modified urethane oligomer having one polymerizable group in one molecule.
  8.  重合性基を有するシリコーン変性ウレタンオリゴマーが下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    〔式中、
     IPはイソホロンジイソシアネート単位を表し、
     PAGは、ポリプロピレングリコール単位および/またはポリエチレングリコール単位を表し、
     HEAはアクリル末端を表し、
     nは0~30であり、aは1~50であり、bは1~50である〕
    で示される構造を有する、請求項1~7のいずれかに記載のモデル材用組成物。
    The silicone-modified urethane oligomer having a polymerizable group is represented by the following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [Where,
    IP represents an isophorone diisocyanate unit,
    PAG represents a polypropylene glycol unit and / or a polyethylene glycol unit;
    HEA represents the acrylic end,
    n is 0-30, a is 1-50, b is 1-50]
    The composition for a model material according to any one of claims 1 to 7, which has a structure represented by:
  9.  重合性モノマーとして、単官能エチレン性不飽和単量体(A)および多官能エチレン性不飽和単量体(B)を含む、請求項1~8のいずれかに記載のモデル材用組成物。 The composition for a model material according to any one of claims 1 to 8, comprising a monofunctional ethylenically unsaturated monomer (A) and a polyfunctional ethylenically unsaturated monomer (B) as the polymerizable monomer.
  10.  重合性化合物の総質量に対して、単官能エチレン性不飽和単量体(A)を40質量%以上含む、請求項9に記載のモデル材用組成物。 The composition for model materials of Claim 9 which contains 40 mass% or more of monofunctional ethylenically unsaturated monomers (A) with respect to the gross mass of a polymeric compound.
  11.  重合性化合物の総質量に対して、多官能エチレン性不飽和単量体(B)を1~30質量%含む、請求項9または10に記載のモデル材用組成物。 The composition for a model material according to claim 9 or 10, comprising 1 to 30% by mass of the polyfunctional ethylenically unsaturated monomer (B) with respect to the total mass of the polymerizable compound.
  12.  単官能エチレン性不飽和単量体(A)が、分子内に環状構造を有する単官能エチレン性不飽和単量体である、請求項9~11のいずれかに記載のモデル材用組成物。 The composition for a model material according to any one of claims 9 to 11, wherein the monofunctional ethylenically unsaturated monomer (A) is a monofunctional ethylenically unsaturated monomer having a cyclic structure in the molecule.
  13.  単官能エチレン性不飽和単量体(A)および多官能エチレン性不飽和単量体(B)のSP値が、それぞれ11.0以下である、請求項9~12のいずれかに記載のモデル材用組成物。 The model according to any one of claims 9 to 12, wherein the SP values of the monofunctional ethylenically unsaturated monomer (A) and the polyfunctional ethylenically unsaturated monomer (B) are each 11.0 or less. Material composition.
  14.  着色剤をさらに含む、請求項1~13のいずれかに記載のモデル材用組成物。 The composition for model material according to any one of claims 1 to 13, further comprising a colorant.
  15.  請求項1~14のいずれかに記載のモデル材用組成物と、マテリアルジェット光造形法によりサポート材を造形するためのサポート材用組成物とを含んでなる、マテリアルジェット光造形用組成物セット。 A composition set for material jet stereolithography, comprising the composition for model material according to any one of claims 1 to 14 and a composition for support material for shaping a support material by a material jet stereolithography method. .
  16.  サポート材用組成物が水溶性である、請求項15に記載のマテリアルジェット光造形用組成物セット。 The composition set for material jet stereolithography according to claim 15, wherein the support material composition is water-soluble.
  17.  請求項1~14のいずれかに記載のモデル材用組成物または請求項15若しくは16に記載のマテリアルジェット光造形用組成物セットを用いて光造形品を製造する方法であって、320~410nmの波長域において1レイヤーあたりの積算光量が300mJ/cm以上の活性エネルギー線を照射することによりモデル材用組成物を硬化させることを含む、光造形品の製造方法。 A method for producing an optically shaped article using the composition for a model material according to any one of claims 1 to 14 or the composition set for material jet stereolithography according to claim 15 or 16, comprising 320 to 410 nm. A method for producing an optically shaped article, comprising: curing a composition for a model material by irradiating an active energy ray having an accumulated light amount per layer of 300 mJ / cm 2 or more in a wavelength range of.
PCT/JP2018/034068 2018-03-15 2018-09-13 Composition for model material WO2019176144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-048151 2018-03-15
JP2018048151A JP7186508B2 (en) 2018-03-15 2018-03-15 Composition for model material

Publications (1)

Publication Number Publication Date
WO2019176144A1 true WO2019176144A1 (en) 2019-09-19

Family

ID=67907024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034068 WO2019176144A1 (en) 2018-03-15 2018-09-13 Composition for model material

Country Status (2)

Country Link
JP (1) JP7186508B2 (en)
WO (1) WO2019176144A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115043986A (en) * 2022-04-29 2022-09-13 广州大学 High-strength photocuring 3D printing resin and preparation method thereof
EP4324864A1 (en) * 2022-08-19 2024-02-21 Sumitomo Rubber Industries, Ltd. Photocurable composition and shaped product formed from the photocurable composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485314A (en) * 1990-07-26 1992-03-18 Japan Synthetic Rubber Co Ltd Resin composition for optical three-dimensional formation
JP2001311917A (en) * 2000-02-24 2001-11-09 Hoya Healthcare Corp Contact lens material consisting of macromer having polysiloxane structure at side chain
JP2015208904A (en) * 2014-04-25 2015-11-24 コニカミノルタ株式会社 Three-dimensional molding apparatus
WO2017047693A1 (en) * 2015-09-15 2017-03-23 日立マクセル株式会社 Model material resin composition, ink set for optical shaping, and method for manufacturing optically shaped article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485314A (en) * 1990-07-26 1992-03-18 Japan Synthetic Rubber Co Ltd Resin composition for optical three-dimensional formation
JP2001311917A (en) * 2000-02-24 2001-11-09 Hoya Healthcare Corp Contact lens material consisting of macromer having polysiloxane structure at side chain
JP2015208904A (en) * 2014-04-25 2015-11-24 コニカミノルタ株式会社 Three-dimensional molding apparatus
WO2017047693A1 (en) * 2015-09-15 2017-03-23 日立マクセル株式会社 Model material resin composition, ink set for optical shaping, and method for manufacturing optically shaped article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115043986A (en) * 2022-04-29 2022-09-13 广州大学 High-strength photocuring 3D printing resin and preparation method thereof
EP4324864A1 (en) * 2022-08-19 2024-02-21 Sumitomo Rubber Industries, Ltd. Photocurable composition and shaped product formed from the photocurable composition

Also Published As

Publication number Publication date
JP7186508B2 (en) 2022-12-09
JP2019155809A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6615849B2 (en) Composition for model materials
JP5945902B2 (en) Ink jet ink composition
JP6751096B2 (en) Model material resin composition, stereolithography ink set, and method for producing stereolithography product
US8192804B2 (en) Photocurable ink composition, ink jet recording method, and recording matter
JP6796069B2 (en) Ink set for stereolithography and manufacturing method of stereolithography products
JP5564295B2 (en) Undercoat layer ink, inkjet recording method, printed matter
JP2017133020A (en) Energy ray-curable inkjet ink composition
EP3578338B1 (en) Model material ink set, support material composition, ink set, three-dimensional shaped object, and method for manufacturing three-dimensional shaped object
JP5930646B2 (en) Energy ray curable non-aqueous inkjet ink composition
JP5849949B2 (en) Inkjet ink and inkjet image forming method using the same
JP5884320B2 (en) Ink jet ink composition
JP7186508B2 (en) Composition for model material
JP2013006924A (en) Inkjet ink composition
US10683425B2 (en) Printing ink
JP6941655B2 (en) Composition for model material
JP6941654B2 (en) Composition for model material
JP2013155274A (en) Ink composition for inkjet
JP7217160B2 (en) model material clear composition
JP2019155801A (en) Composition for model material, and composition set for material jetting optical shaping
US20220281157A1 (en) Photo fabrication resin composition, model material composition, and photo-cured product thereof, and photo fabrication composition set
WO2021182509A1 (en) Clear modeling material composition, modeling material composition set, and composition set for stereolithography
JP2022097872A (en) Method for manufacturing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909589

Country of ref document: EP

Kind code of ref document: A1