WO2019168052A1 - Drone, control method therefor, and program - Google Patents

Drone, control method therefor, and program Download PDF

Info

Publication number
WO2019168052A1
WO2019168052A1 PCT/JP2019/007635 JP2019007635W WO2019168052A1 WO 2019168052 A1 WO2019168052 A1 WO 2019168052A1 JP 2019007635 W JP2019007635 W JP 2019007635W WO 2019168052 A1 WO2019168052 A1 WO 2019168052A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
altitude
crash
airbag
unit
Prior art date
Application number
PCT/JP2019/007635
Other languages
French (fr)
Japanese (ja)
Inventor
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2020503586A priority Critical patent/JPWO2019168052A1/en
Publication of WO2019168052A1 publication Critical patent/WO2019168052A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/30Constructional aspects of UAVs for safety, e.g. with frangible components
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/58Arrangements or adaptations of shock-absorbers or springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/299Rotor guards

Definitions

  • the present invention relates to a flying object (drone), in particular, a drone with improved safety, a control method therefor, and a program.
  • the drone can know the absolute position of its own aircraft in centimeters while flying. Even in farmland with a narrow and complex terrain typical in Japan, it is possible to fly autonomously with a minimum of manual maneuvering, and to disperse medicines efficiently and accurately.
  • a drone is deployed by enclosing a flying means, a flight control unit that operates the flying means, a crash determination unit that detects a crash, and a gas. And an airbag deployment unit that deploys the airbag based on detection of the crash by the crash determination unit.
  • An altitude measuring unit for measuring the altitude of the drone is further provided, and when the altitude of the drone measured when the crash determination unit detects a crash, the airbag deploying unit It may be developed.
  • An altitude measuring unit that measures the altitude of the drone is further provided, and when the altitude of the drone that is measured when the crash detecting unit detects a crash, is higher than a second altitude, the airbag deployment unit is configured so that the drone It is good also as what deploys the said airbag based on falling below after a crash and the said altitude becoming the said 2nd altitude or less.
  • the second altitude may be determined based on the drone falling speed.
  • the apparatus further includes a collision determination unit that detects that the drone is colliding with an obstacle, and the airbag deployment unit deploys the airbag based on the fact that the collision determination unit has detected a collision of the drone. It is good also as what makes it.
  • the drone may receive an emergency stop command transmitted from an operating device operated by a user, and the airbag deployment unit may deploy the airbag based on the emergency stop command. .
  • the airbag deployment unit may deploy the airbag based on an emergency stop signal transmitted from the flight control unit. Good.
  • the gravity center of the drone may be biased toward the bottom surface in a flight state, and the airbag may be deployed on the bottom surface side of the drone.
  • the medicine control unit further controls whether or not the medicine is ejected from the drone to the outside, and the medicine control unit stops the medicine ejection based on the fact that the crash determination unit has detected the crash. It may be a thing.
  • a drone control method is developed by enclosing a flying means, a flight control unit that operates the flying means, a crash determination unit that detects a crash, and gas.
  • a drone control method comprising: an airbag; and an airbag deployment unit that deploys the airbag based on the crash detection unit detecting the crash, and the step of operating the flying means; Detecting a crash of the drone, and deploying the airbag based on detecting the crash of the drone.
  • the method may further include the step of measuring the height of the drone and deploying the airbag when the height of the drone measured when the drone crash is detected is higher than a first height. .
  • the second altitude may be determined based on the drone falling speed.
  • It may further include a step of detecting that the drone is colliding with an obstacle and a step of deploying the airbag based on the detection of the collision of the drone.
  • It may further include a step of receiving an emergency stop command transmitted from an operating device operated by a user, and a step of deploying the airbag based on the emergency stop command.
  • It may further include a step of deploying the airbag based on an emergency stop signal transmitted from the flight control unit.
  • the apparatus may further include a medicine control unit that controls whether or not medicine is discharged from the drone to the outside, and further includes a step of stopping the medicine ejection based on the detection of the crash.
  • a drone control program includes a flight unit, a flight control unit that operates the flight unit, a crash determination unit that detects a crash, and an air that is deployed by enclosing gas.
  • a flight control command for operating the flying means comprising: a bag and an airbag deployment unit that deploys the airbag based on the crash detection unit detecting the crash;
  • a computer executes a crash detection command for detecting the crash of the drone and an airbag deployment command for deploying the airbag based on the detection of the crash of the drone.
  • the computer executes an altitude measurement command for measuring the altitude of the drone, and when the drone altitude measured when the drone crash is detected is higher than a first altitude, the computer is instructed to deploy the airbag. It may be executed.
  • the computer may be caused to execute a command to deploy the airbag based on the fact that the altitude is equal to or lower than the second altitude.
  • the second altitude may be determined based on the drone falling speed.
  • the computer may further execute a collision detection command for detecting that the drone is colliding with an obstacle and a command for deploying the airbag based on the detection of the collision of the drone.
  • the computer may further execute a command for receiving an emergency stop command transmitted from an operating device operated by a user and a command for deploying the airbag based on the emergency stop command.
  • the computer may further execute a command to deploy the airbag based on an emergency stop signal transmitted from the flight control unit.
  • the computer may further execute a command to stop the discharge of the medicine.
  • the computer program can be provided by downloading through a network such as the Internet, or can be provided by being recorded on various computer-readable recording media such as a CD-ROM.
  • the drone is a flowchart in which the drone is detected by a detection unit included in the drone and the airbag is deployed. It is a flowchart in which the drone detects that the drone has collided by a detection unit included in the drone and deploys an airbag. It is another embodiment of the drone which concerns on this invention, Comprising: It is a bottom view which shows a mode that the airbag of a drone is expand
  • FIG. 1 is a plan view of an embodiment of a drug spraying drone 100 according to the present invention
  • FIG. 2 is a front view thereof (viewed from the advancing direction side)
  • FIG. 3 is a right side view thereof.
  • drone refers to power means (electric power, prime mover, etc.) and control method (whether wireless or wired, autonomous flight type or manual control type).
  • power means electric power, prime mover, etc.
  • control method whether wireless or wired, autonomous flight type or manual control type.
  • Rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b) are means for flying the drone 100 Yes, considering the balance of flight stability, body size, and battery consumption, it is desirable to have 8 aircraft (4 sets of 2-stage rotor blades).
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are connected to the rotor blades 101-1a, 101-1b, 101-2a, 101- 2b, 101-3a, 101-3b, 101-4a, 101-4b
  • Rotating means typically an electric motor, but it may be a motor
  • the upper and lower rotors for example, 101-1a and 101-1b
  • their corresponding motors for example, 102-1a and 102-1b
  • the axes are collinear and rotate in opposite directions.
  • the radial member for supporting the propeller guard provided so that the rotor does not interfere with the foreign object is desirably a horizontal structure rather than horizontal. This is to prevent the member from buckling to the outside of the rotor blade and to interfere with the rotor at the time of collision.
  • feet 107-1, 107-2, 107-3, and 107-4 are provided below the drone 100 to support the airframe when placed on land.
  • the legs 107-1, 107-2, 107-3, 107-4 are rod-shaped members extending from the lower surface of the drone 100 toward the ground on land.
  • the legs 107-1, 107-2, 107-3, 107-4 are respectively arranged at substantially the rotation centers of the paired rotating blades 101 sharing the rotation axis, and in the present embodiment, there are four legs. .
  • medical agent generally refers to the liquid or powder disperse
  • the medicine tank 104 is a tank for storing medicine to be sprayed, and is preferably provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the chemical hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the chemical tank 104 and the chemical nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve as a support for the drug nozzle.
  • the pump 106 is a means for discharging the medicine from the nozzle.
  • FIG. 4 shows an overall conceptual diagram of a system using an embodiment of the drug spraying application of the drone 100 according to the present invention.
  • the controller 401 is a means for transmitting a command to the drone 100 by an operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.). Yes, it may be realized by a portable information device such as a general tablet terminal that operates a computer program.
  • the drone 100 according to the present invention is desirably controlled so as to perform autonomous flight, but it is desirable that a manual operation can be performed at the time of basic operations such as takeoff and return, and in an emergency.
  • an emergency operating device (not shown) that has a dedicated emergency stop function may be used (the emergency operating device has a large emergency stop button etc. so that it can respond quickly in an emergency) It is desirable to be a dedicated device with It is desirable that the controller 401 and the drone 100 perform wireless communication using Wi-Fi or the like.
  • the field 403 is a rice field, a field, or the like that is a target of drug spraying by the drone 100.
  • the topography of the field 403 is complicated, and a topographic map cannot be obtained in advance, or the topographic map and the situation at the site may be different.
  • the farm 403 is adjacent to houses, hospitals, schools, other crop farms, roads, railways, and the like. Further, there may be an obstacle such as a building or an electric wire in the field 403.
  • the base station 404 is a device that provides a base unit function of Wi-Fi communication, etc., and preferably functions as an RTK-GPS base station so that the exact position of the drone 100 can be provided (Wi-Fi
  • the communication master unit and the RTK-GPS base station may be independent devices).
  • the farming cloud 405 is typically a computer group operated on a cloud service and related software, and is desirably wirelessly connected to the controller 401 via a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growth status of the crop, and perform processing for determining the flight route.
  • the drone 100 may be provided with the topographic information and the like of the stored farm 403.
  • the history of the flight of the drone 100 and the captured video may be accumulated and various analysis processes may be performed.
  • the drone 100 takes off from the landing point 406 outside the field 403 and returns to the landing point 406 after spraying the medicine on the field 403 or when it is necessary to refill or charge the medicine.
  • the flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the takeoff starts.
  • the flight controller 501 is a component that controls the entire drone. Specifically, the flight controller 501 may be an embedded computer including a CPU, a memory, related software, and the like.
  • the flight controller 501 receives motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below.
  • 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b are controlled to control the flight of the drone 100.
  • the actual rotational speed of motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b is fed back to the flight controller 501, and normal rotation is performed. It is desirable to have a configuration that can monitor whether Alternatively, a configuration in which an optical sensor or the like is provided on the rotor blade 101 and the rotation of the rotor blade 101 is fed back to the flight controller 501 may be employed.
  • the software used by the flight controller 501 is desirably rewritable through a storage medium or the like for function expansion / change, problem correction, or through communication means such as Wi-Fi communication or USB. In this case, it is desirable to protect by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by illegal software is not performed. Further, a part of calculation processing used for control by the flight controller 501 may be executed by another computer that exists on the pilot 401, the farming cloud 405, or in another place. Since the flight controller 501 is highly important, some or all of the components may be duplicated.
  • the battery 502 is a means for supplying power to the flight controller 501 and other components of the drone, and is preferably rechargeable.
  • the battery 502 is preferably connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker.
  • the battery 502 is desirably a smart battery having a function of transmitting the internal state (amount of stored electricity, accumulated usage time, etc.) to the flight controller 501 in addition to the power supply function.
  • the flight controller 501 communicates with the pilot 401 via the Wi-Fi slave function 503 and further via the base station 404, receives necessary commands from the pilot 401, and sends necessary information to the pilot. It is desirable to be able to send to 401. In this case, it is desirable to encrypt the communication so that it is possible to prevent illegal acts such as interception, spoofing, and takeover of the device.
  • the base station 404 preferably has an RTK-GPS base station function in addition to a Wi-Fi communication function. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it is desirable to duplicate or multiplex, and each redundant GPS module 504 should use a different satellite in order to cope with the failure of a specific GPS satellite. It is desirable to control.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body (further, means for calculating the speed by integrating the acceleration), and is preferably a 6-axis sensor.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring geomagnetism.
  • the atmospheric pressure sensor 507 is a means for measuring atmospheric pressure, and can indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface using the reflection of laser light, and it is preferable to use an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface using reflection of sound waves such as ultrasonic waves.
  • sensors may be selected according to drone cost targets and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind sensor for measuring wind force, and the like may be added. In addition, these sensors are preferably duplexed or multiplexed. When there are a plurality of sensors having the same purpose, the flight controller 501 may use only one of them, and when a failure occurs, it may be switched to an alternative sensor. Alternatively, a plurality of sensors may be used at the same time, and when each measurement result does not match, it may be considered that a failure has occurred.
  • the flow sensor 510 is a means for measuring the flow rate of the medicine, and is preferably provided at a plurality of locations in the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become a predetermined amount or less.
  • the multispectral camera 512 is a means for capturing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle. Since the image characteristics and the lens orientation are different from those of the multispectral camera 512, the obstacle detection camera 513 is preferably a device different from the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to perform various settings.
  • Obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the internal maintenance cover are open.
  • the medicine inlet sensor 517 is a sensor that detects that the inlet of the medicine tank 104 is open. These sensors may be selected according to drone cost targets and performance requirements, and may be duplicated or multiplexed.
  • a sensor may be provided in the base station 404, the controller 401, or other place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information regarding wind power and wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 transmits a control signal to the pump 106 to adjust the medicine discharge amount and stop the medicine discharge. It is desirable that the current situation (for example, the rotational speed) of the pump 106 is fed back to the flight controller 501.
  • the LED 107 is a display means for informing the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used instead of or in addition to the LED.
  • the buzzer 518 is an output means for notifying a drone state (particularly an error state) by an audio signal.
  • the Wi-Fi handset function 519 is an optional component for communicating with an external computer or the like for software transfer or the like, separately from the controller 401. In place of or in addition to the Wi-Fi handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
  • the speaker 520 is an output means for notifying a drone state (particularly an error state) by a recorded human voice or synthesized voice. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 during the flight, and in such a case, the situation transmission by voice is effective.
  • the warning light 521 is a display unit such as a strobe light that notifies the drone state (particularly an error state).
  • the drone 100 according to the present invention includes an airbag 50.
  • the airbag 50 is retracted and stored inside the drone 100 during normal use.
  • the airbag 50 is fixed to the drone 100.
  • the fixing position of the airbag 50 is fixed below the center in the vertical direction of the drone 100. That is, as described above, the center of gravity of the drone 100 is biased toward the bottom surface in the flight state, and the airbag 50 is deployed on the bottom surface side of the drone 100. According to this configuration, the center of gravity of the drone 100 is closer to the bottom surface, and it is easy to reach the ground surface while maintaining the direction of the flight state during a crash. Since the drone 100 approaches the ground surface from the side of the deployed airbag 50, the airbag 50 can mitigate the impact at the time of a collision with a person or the like existing on the ground surface.
  • the airbag 50 is deployed so as to cover the bottom surface of the drone 100.
  • the airbag 50 has a vent at a portion fixed to the drone 100, and is deployed by sealing gas from the vent. Gas can be sealed in the airbag 50 by an appropriate method.
  • the airbag 50 may be configured to be instantly deployed to prevent a collision between the aircraft and a person or the like when the drone 100 crashes. For example, it is possible to instantaneously enclose the gas in the airbag 50 by disposing the explosive at a position communicating with the vent and firing the explosive.
  • the airbag 50 has a shape such that a part of a sphere is linearly cut when deployed, and is fixed to the drone 100 so that the spherical surface faces downward of the drone 100.
  • the airbag 50 is inflated further to the outside in the left-right direction of the drone 100 than the four legs 107-1, 107-2, 107-3, 107-4 of the drone 100. Further, the most projecting portion of the airbag 50 is inflated below the tips of the legs 107-1, 107-2, 107-3, 107-4. This is to prevent the tips of the feet 107-1, 107-2, 107-3, 107-4 from colliding with a person or the like when the drone 100 crashes.
  • the drone 100 includes rotating blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b, Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b, flight control unit 23, information acquisition unit 24, and determination unit 25
  • the airbag deployment unit 26 and a drug control unit 30 that controls the amount of drug discharged from the drone 100 are provided.
  • reference numerals for the rotor blades and the motor may be omitted.
  • the flight control unit 23 is a functional unit that controls the motor to control the number of rotations and the direction of rotation of the rotor blades so that the drone 100 flies within a section intended by the user 402.
  • the flight control unit 23 is a CPU implemented by a microcomputer or the like, and is realized by the flight controller 501 together with the medicine control unit 30.
  • the flight control unit 23 transmits a command value for the rotational speed of each motor for each motor.
  • the command value for the number of rotations of each motor is calculated from the planned flight path based on the input section information.
  • the flight path plan and command value calculation are performed on the farming cloud 405 shown in FIG. 4 and transmitted to the flight control unit 23 via the controller 401.
  • the flight control unit 23 controls take-off and landing of the drone 100.
  • the flight control unit 23 controls the evacuation behavior.
  • the retreat action includes, for example, a normal landing operation, an air stop such as hovering, and “emergency return” that moves immediately to a predetermined return point by the shortest route.
  • the predetermined return point is a point that is previously stored in the flight control unit 23, for example, a point that has taken off.
  • the predetermined return point is a land point where the user 402 can approach the drone 100, for example, and the user 402 can check the drone 100 that has reached the return point or manually carry it to another location. can do.
  • the evacuation action may be “normal return” that moves to a predetermined return point through an optimized route.
  • the optimized route is, for example, a route that is calculated with reference to a route in which medicine is dispersed before receiving a normal feedback command.
  • the drone 100 moves to a predetermined return point while spraying the drug via a route where the drug is not yet sprayed.
  • the evacuation action also includes an “emergency stop” in which all the rotating blades are stopped and the drone 100 is dropped downward from the spot.
  • the information acquisition unit 24 is a functional unit that acquires necessary information to determine whether or not the drone 100 is in a situation where the airbag should be deployed.
  • the information acquisition unit 24 includes an altitude measurement unit 241, a crash information acquisition unit 242 and a collision information acquisition unit 243.
  • the altitude measurement unit 241 may measure the aircraft altitude using a plurality of sensors.
  • a combination of sonar, infrared laser, barometric pressure sensor, acceleration sensor (preferably using a 6-axis gyro sensor), and GPS (preferably using the RTK-GPS method) may be used.
  • the measuring instruments and sensors may be multiplexed in preparation for failure.
  • Sonar can measure accurately when the field is the ground, but it is difficult to measure accurately when the field is water (in this case, an infrared laser is appropriate). It is because there is a weak point.
  • Sonar can measure accurately when the field is the ground, but it is difficult to measure accurately when the field is water (in this case, an infrared laser is appropriate). It is because there is a weak point.
  • a disturbance of GPS radio waves, an abnormality of a base station, or the like occurs, even if multiplexing is performed, it causes an overall failure, and therefore other measurement means may be provided.
  • the crash information acquisition unit 242 is a functional unit that acquires information necessary for determining whether or not the drone 100 has crashed, that is, a free fall.
  • the crash information acquisition unit 242 measures the altitude of the drone 100 in the same manner as the altitude measurement unit 241, for example, and calculates the altitude change rate.
  • the crash information acquisition unit 242 may acquire the acceleration in the height direction from the measurement value of the acceleration sensor included in the drone 100.
  • the crash information acquisition unit 242 receives a signal related to the emergency stop from the flight control unit 23 when the drone 100 crashes in the case of a free fall due to an emergency stop intentionally performed by the flight control unit 23 of the drone 100. You may acquire the information to that effect.
  • An emergency stop that is intentionally performed for example, when an abnormality occurs in the control of a motor, or when it is determined that evacuation by normal landing is impossible by detecting strong winds, an obstacle is caught. This is the case when it is determined that evacuation by landing is impossible.
  • the crash information acquisition unit 242 The information that the drone 100 crashes may be acquired by receiving the information.
  • the collision information acquisition unit 243 is a functional unit that acquires information necessary for determining whether or not the drone 100 is colliding with an obstacle. When drone 100 collides with an obstacle, there is a high probability that drone 100 will crash, so it is possible to crash drone 100 more safely by detecting the collision and using it to determine whether airbag 50 needs to be deployed. it can.
  • the collision information acquisition unit 243 includes a pressure detection element such as a micro switch or a piezo element, for example.
  • the collision information acquisition unit 243 is preferably installed in the propeller guard unit that is positioned at the outermost peripheral part of the drone 100.
  • a collision information acquisition unit 243 may be provided in each of the upper and lower propeller guards of the counter-rotating rotor.
  • a plurality of sensors for each direction may be provided around the propeller guard, but by providing a sensor at the part where the propeller guard connects to the aircraft body, a single sensor detects contact in multiple directions. May be.
  • the collision information acquisition unit 243 may acquire information on the collision by an acceleration sensor provided in the drone 100.
  • the drone 100 comes into contact with the obstacle, the drone 100 is accelerated in a direction opposite to the direction in which the obstacle comes into contact in a short time.
  • the acceleration sensor measures acceleration with an accuracy capable of measuring this short-term rapid acceleration.
  • the determination unit 25 is a functional unit that determines whether or not to deploy the airbag 50 based on information from the altitude measurement unit 241, the crash information acquisition unit 242 and the collision information acquisition unit 243.
  • the determination unit 25 includes a crash determination unit 251, a collision determination unit 252, and an airbag deployment determination unit 253.
  • the crash determination unit 251 determines whether or not the airbag 50 of the drone 100 should be deployed based on the result acquired by the crash information acquisition unit 242.
  • the crash determination unit 251 determines whether or not the drone 100 crashes based on the information that the drone 100 is moving downward at a predetermined speed or acceleration that the crash information acquisition unit 242 acquires during normal flight or hovering. Is determined.
  • the fall acceleration of the drone 100 at the time of the crash is expected to be a value obtained by adding the influence of the air resistance of the drone 100 to the acceleration of gravity. Therefore, the range of acceleration determined by the crash determination unit 251 to be “falling” may be a value stored in the crash determination unit 251 in advance. Moreover, the range of acceleration determined to be “falling” may be corrected as appropriate based on wind speed information acquired by an appropriate method.
  • the collision determination unit 252 determines that “the drone 100 has collided with an obstacle based on the information acquired by the collision information acquisition unit 243 that an object has contacted the drone 100 and a predetermined acceleration has occurred in the drone 100 due to the collision. Is determined.
  • the airbag deployment determination unit 253 refers to the altitude of the drone 100 measured by the altitude measurement unit 241 when it is determined that the drone 100 has crashed or collided.
  • the airbag deployment determination unit 253 When the altitude of the drone 100 when the drone 100 crashes or collides is higher than a predetermined altitude (hereinafter also referred to as “first altitude”), the airbag deployment determination unit 253 generates an airbag deployment signal, This is transmitted to the airbag deployment section 26.
  • the airbag deployment determination unit 253 does not generate an airbag deployment signal and the airbag 50 is not deployed. This is because, when the altitude at which the drone 100 starts to fall is equal to or lower than the first altitude, it is not necessary to deploy the airbag 50 because the degree of impact generated by the falling drone 100 hit is small.
  • the airbag deployment determination unit 253 causes the airbag to fall until the drone 100 falls and reaches a predetermined second altitude.
  • the deployment signal may be configured not to be transmitted to the airbag deployment section 26. This is because if the airbag 50 is deployed at an altitude higher than the second altitude, a large air resistance is generated, the drone 100 rotates or reverses, and the possibility of colliding with a person or the like at a place other than the airbag 50 increases.
  • the airbag deployment determination unit 253 drops the drone 100 downward after the crash, and the altitude measured by the altitude measurement unit 241
  • the air bag deployment signal is transmitted to the air bag deployment unit 26 based on the fact that the air pressure is lower than the second altitude.
  • the second altitude may be a fixed value determined in advance, or may be a fluctuating value calculated based on the drop speed of the drone 100.
  • the value may vary depending on the mass of the drone 100.
  • the fall speed of the drone 100 may be measured, and the second altitude may be corrected based on the drop speed.
  • the drug control unit 30 is a control unit that controls the amount or timing of spraying the drug solution from the drug tank 104.
  • an opening / closing means for opening and closing the drug solution path is provided somewhere in the path from the drug tank 104 to each drug nozzle 103-1, 103-2, 103-3, 103-4.
  • Various emergency operations may be executed after the release of the chemical solution is blocked by the opening / closing means.
  • the medicine control unit 30 may stop the pump 106 before executing the retreat action. This is because spraying the medicine on a flight route different from the normal time causes an adverse effect such as an excessive spraying amount or spraying the medicine on a place where the medicine should not be sprayed.
  • the crash determination unit 251 or the collision determination unit 252 detects a crash or collision of the drone 100
  • the crash determination unit 251 or the collision determination unit 252 generates a drug stop signal and transmits the drug stop signal to the drug control unit 30. To do.
  • the medicine stop signal is transmitted, the medicine control unit 30 stops the medicine spraying.
  • the crash determination unit 251 or the collision determination unit 252 determines the threshold value of each value such as altitude change, acceleration, contact detection, etc. that determines whether the drone 100 crashes or collides, and the airbag deployment determination unit 253 determines that the airbag 50 should be deployed.
  • the altitude threshold value may be a fixed threshold value stored in advance in the drone 100, or a variable threshold value that is changed according to the situation. In the case of the fluctuating threshold value, it may be automatically changed by an appropriate configuration connected to the drone 100 wirelessly or by wire, or may be manually changed by the user 402.
  • the determination unit 25 may determine the crash or collision based on the measurement result at a certain time point measured, and the altitude at which the airbag 50 is deployed, or may determine based on the measurement results of a plurality of past times. Good.
  • the determination unit 25 displays the fact that a crash or collision has been detected on the controller 401 monitored by the user 402 by an appropriate communication means possessed by the drone 100. Further, the determination unit 25 may display on the pilot 401 that the airbag 50 is deployed or that the airbag 50 is scheduled to be deployed after a predetermined time. Further, the determination unit 25 may be configured to display that the drone 100 has crashed or collided with display means, for example, an LED, that the drone 100 has.
  • the user 402 acquires the information of the drone 100 with the eyewear-type wearable terminal, it may be displayed or projected on the eyewear screen. Further, when the user 402 acquires the information on the drone 100 with the earphone-type wearable terminal, notification may be made by sound.
  • the drone 100 starts normal flight or hovering as planned (step S1).
  • the crash information acquisition unit 242 of the drone 100 acquires information regarding the altitude change and acceleration of the drone 100, and the crash determination unit 251 determines whether or not the drone 100 has crashed (step S2).
  • step S3 If no crash is detected, return to the operation of step S1 and continue normal flight.
  • the crash determination unit 251 detects the crash of the drone 100
  • the medicine control unit 30 stops the medicine spraying when the medicine is being sprayed (step S3).
  • the steps S1 to S2 may be executed when the medicine is not sprayed, such as during hovering immediately after the start of flight.
  • step S3 is omitted.
  • the airbag deployment determination unit 253 refers to the measurement value of the altitude measurement unit 241 and determines whether the altitude is higher than the first altitude (step S4). When the altitude of the drone 100 is equal to or lower than the first altitude, the airbag deployment unit 26 does not deploy the airbag 50. The drone 100 falls freely and reaches the surface.
  • the altitude measuring unit 241 When the altitude is higher than the first altitude, the altitude measuring unit 241 repeatedly measures the altitude during the free fall of the drone 100 (step S5), and the airbag deployment determining unit 253 determines whether the altitude is equal to or lower than the second altitude. (Step S6). When the altitude falls below the second altitude, the airbag deployment determination unit 253 generates an airbag deployment signal and transmits the airbag deployment signal to the airbag deployment unit 26. The airbag deployment unit 26 that has received the airbag deployment signal deploys the airbag 50 (step S7).
  • step S11 the drone 100 starts normal flight or hovering as planned flight.
  • the collision information acquisition unit 243 of the drone 100 acquires information about the collision such as the altitude change and acceleration of the drone 100, the measurement value of the contact detection sensor, and the collision determination unit 252 determines whether or not the drone 100 is colliding with an obstacle. Is determined (step S12).
  • step S11 If no collision is detected, the process returns to the operation of step S11 and continues normal flight.
  • the collision determination unit 252 detects a collision of the drone 100
  • the drug control unit 30 stops the drug spraying when the drug spraying is being performed (step S13).
  • or S12 may be performed when spraying of the chemical
  • the airbag deployment determination unit 253 refers to the measurement value of the altitude measurement unit 241 and determines whether the altitude is higher than the first altitude (step S14). When the altitude of the drone 100 is equal to or lower than the first altitude, the airbag deployment unit 26 does not deploy the airbag 50. The drone 100 falls freely and reaches the surface.
  • the altitude measuring unit 241 When the altitude is higher than the first altitude, the altitude measuring unit 241 repeatedly measures the altitude during the free fall of the drone 100 (step S15), and the airbag deployment determining unit 253 determines whether the altitude is equal to or lower than the second altitude. (Step S16). When the altitude falls below the second altitude, the airbag deployment determination unit 253 generates an airbag deployment signal and transmits the airbag deployment signal to the airbag deployment unit 26. The airbag deployment section 26 that has received the airbag deployment signal deploys the airbag 50 (step S17).
  • the second embodiment of the drone according to the present invention will be described with a focus on differences from the first embodiment described above.
  • the drone of the second embodiment differs from the drone of the first embodiment in that it has fixed wings.
  • the drone 200 has a casing 201 extending in the traveling direction, and fixed wings 202 that are orthogonal to the casing 201 and arranged substantially symmetrically on the left and right.
  • the drone 200 is inside the casing 201, and a control unit and a function unit for causing the drone 200 to fly in the flying state are arranged on the bottom side. According to this configuration, the center of gravity of the drone 200 is closer to the bottom surface, and it is easy to reach the ground surface while maintaining the direction of the flight state in the event of a crash.
  • an airbag 150 is disposed at a lower part in front of the joint portion with the fixed wing 202.
  • the airbag 150 is disposed so as to be deployable so as to protect the front end of the casing 201 in the traveling direction and a part of the bottom surface continuous to the front end.
  • the drone 200 having the fixed wings 202 there is a high possibility that the drone 200 will reach the ground surface from the front and bottom in the traveling direction at the time of the crash. Therefore, in the drone 200 configured such that the airbag 150 is deployed at the above-described position, the airbag 150 can mitigate an impact at the time of a collision with a person or the like existing on the ground surface.
  • the drone 200 having the fixed wing 202 can fly for a long time with energy saving compared to the drone 100 having the rotating wing, it is useful for a drone for monitoring, for example.
  • the drone 200 is assumed to fly at a higher altitude than the drone 100.
  • the drone 200 is assumed to be lighter than the drone 100 in the embodiment. Therefore, the altitude threshold at which the airbag 150 is deployed may be higher than that of the drone 100.
  • the threshold may be set, for example, between 5 meters and 10 meters.
  • the drone according to the present invention can provide a drone that can maintain high safety even during autonomous flight.

Abstract

[Problem] To provide a drone having high safety. [Solution] A drone comprising: flight means 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b; a flight control unit 23 for operating the flight means; a crash determination unit 251 for detecting a crash; an air bag 50 to be deployed by being filled with gas; and an air bag deploying part 26 for deploying the air bag on the basis of detection of a crash by the crash determination unit.

Description

ドローン、その制御方法、および、プログラムDrone, its control method, and program
本願発明は、飛行体(ドローン)、特に、安全性を高めたドローン、その制御方法、および、プログラムに関する。 The present invention relates to a flying object (drone), in particular, a drone with improved safety, a control method therefor, and a program.
一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。 Applications of small helicopters (multicopters) generally called drones are progressing. One important application field is the application of chemicals such as agricultural chemicals and liquid fertilizers to farmland (fields) (for example, Patent Document 1. In Japan, where farmland is narrow compared to Europe and America, manned airplanes and helicopters There are many cases where drone use is suitable.
準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。 With the technology such as the Quasi-Zenith Satellite System and RTK-GPS (Real-Time-Kinematic--Global-Positioning-System), the drone can know the absolute position of its own aircraft in centimeters while flying. Even in farmland with a narrow and complex terrain typical in Japan, it is possible to fly autonomously with a minimum of manual maneuvering, and to disperse medicines efficiently and accurately.
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。 On the other hand, there were cases where it was difficult to say that safety considerations were sufficient for autonomous flying drones for spraying agricultural chemicals. A drone loaded with drugs weighs several tens of kilograms, which can have serious consequences in the event of an accident such as falling on a person. Moreover, since the operator of the drone is usually not an expert, a foolproof mechanism is necessary, but this has not been sufficiently considered. Up to now, drone safety technology that presupposes maneuvering by humans existed (for example, addressing the safety issues peculiar to autonomous flight type drones for, for example, Patent Document 2, especially agricultural chemical spraying) There was no technology for that.
特許公開公報 特開2001-120151Patent Publication Gazette Japanese Patent Laid-Open No. 2001-120151 特許公開公報 特開2017-163265Patent publication gazette JP, 2017-163265, A
自律飛行時であっても、高い安全性を維持できるドローン(飛行体)を提供する。 To provide a drone (aircraft) that can maintain high safety even during autonomous flight.
 上記目的を達成するため、本発明の一の観点に係るドローンは、飛行手段と、前記飛行手段を稼働させる飛行制御部と、墜落を検知する墜落判定部と、気体が封入されることで展開されるエアバッグと、前記墜落判定部が前記墜落を検知したことに基づいて、前記エアバッグを展開させるエアバッグ展開部と、を備える。 In order to achieve the above object, a drone according to an aspect of the present invention is deployed by enclosing a flying means, a flight control unit that operates the flying means, a crash determination unit that detects a crash, and a gas. And an airbag deployment unit that deploys the airbag based on detection of the crash by the crash determination unit.
 前記ドローンの高度を測定する高度測定部をさらに備え、前記墜落判定部が墜落を検知したときに測定される前記ドローンの高度が第1高度より高いとき、前記エアバッグ展開部は前記エアバッグを展開させるものとしてもよい。 An altitude measuring unit for measuring the altitude of the drone is further provided, and when the altitude of the drone measured when the crash determination unit detects a crash, the airbag deploying unit It may be developed.
 前記ドローンの高度を測定する高度測定部をさらに備え、前記墜落判定部が墜落を検知したときに測定される前記ドローンの高度が第2高度より高いとき、前記エアバッグ展開部は、前記ドローンが墜落後に下方へ落下し、前記高度が前記第2高度以下になったことに基づいて、前記エアバッグを展開させるものとしてもよい。 An altitude measuring unit that measures the altitude of the drone is further provided, and when the altitude of the drone that is measured when the crash detecting unit detects a crash, is higher than a second altitude, the airbag deployment unit is configured so that the drone It is good also as what deploys the said airbag based on falling below after a crash and the said altitude becoming the said 2nd altitude or less.
 前記第2高度は、前記ドローンの落下速度に基づいて定められるものとしてもよい。 The second altitude may be determined based on the drone falling speed.
 前記ドローンが障害物に衝突していることを検知する衝突判定部をさらに備え、前記エアバッグ展開部は、前記衝突判定部が前記ドローンの衝突を検知したことに基づいて、前記エアバッグを展開させるものとしてもよい。 The apparatus further includes a collision determination unit that detects that the drone is colliding with an obstacle, and the airbag deployment unit deploys the airbag based on the fact that the collision determination unit has detected a collision of the drone. It is good also as what makes it.
 前記ドローンは、使用者に操作される操作機から送信される緊急停止指令を受信可能であり、前記エアバッグ展開部は、前記緊急停止指令に基づいて前記エアバッグを展開させる、ものとしてもよい。 The drone may receive an emergency stop command transmitted from an operating device operated by a user, and the airbag deployment unit may deploy the airbag based on the emergency stop command. .
 前記飛行制御部により意図的に行われる緊急停止により墜落する場合には、前記エアバッグ展開部は、前記飛行制御部から送信される緊急停止の信号に基づいて前記エアバッグを展開させるものとしてもよい。 In the case of a crash due to an emergency stop intentionally performed by the flight control unit, the airbag deployment unit may deploy the airbag based on an emergency stop signal transmitted from the flight control unit. Good.
 前記ドローンの重心は飛行状態において底面側に偏っており、前記エアバッグは前記ドローンの底面側に展開されるものとしてもよい。 The gravity center of the drone may be biased toward the bottom surface in a flight state, and the airbag may be deployed on the bottom surface side of the drone.
前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記薬剤制御部は、前記墜落判定部が前記墜落を検知したことに基づいて、前記薬剤の吐出を停止するものとしてもよい。 The medicine control unit further controls whether or not the medicine is ejected from the drone to the outside, and the medicine control unit stops the medicine ejection based on the fact that the crash determination unit has detected the crash. It may be a thing.
 また、本発明の別の観点に係るドローンの制御方法は、飛行手段と、前記飛行手段を稼働させる飛行制御部と、墜落を検知する墜落判定部と、気体が封入されることで展開されるエアバッグと、前記墜落判定部が前記墜落を検知したことに基づいて、前記エアバッグを展開させるエアバッグ展開部と、を備えるドローンの制御方法であって、前記飛行手段を稼働させるステップと、前記ドローンの墜落を検知するステップと、前記ドローンの墜落を検知したことに基づいて、前記エアバッグを展開させるステップと、を含む。 A drone control method according to another aspect of the present invention is developed by enclosing a flying means, a flight control unit that operates the flying means, a crash determination unit that detects a crash, and gas. A drone control method comprising: an airbag; and an airbag deployment unit that deploys the airbag based on the crash detection unit detecting the crash, and the step of operating the flying means; Detecting a crash of the drone, and deploying the airbag based on detecting the crash of the drone.
 前記ドローンの高度を測定するステップと、前記ドローンの墜落を検知したときに測定される前記ドローンの高度が第1高度より高いとき、前記エアバッグを展開するステップと、をさらに含むものとしてもよい。 The method may further include the step of measuring the height of the drone and deploying the airbag when the height of the drone measured when the drone crash is detected is higher than a first height. .
 前記ドローンの高度を測定するステップと、前記ドローンの墜落を検知したときに測定される前記ドローンの高度が第2高度より高いとき、前記ドローンが墜落後に下方へ落下し、前記高度が前記第2高度以下になったことに基づいて、前記エアバッグを展開させるステップと、をさらに含むものとしてもよい。 Measuring the height of the drone, and when the altitude of the drone measured when the drone crash is detected is higher than a second altitude, the drone falls downward after the crash, and the altitude is less than the second altitude. A step of deploying the airbag based on the fact that the altitude or lower is reached.
 前記第2高度は、前記ドローンの落下速度に基づいて定められるものとしてもよい。 The second altitude may be determined based on the drone falling speed.
 前記ドローンが障害物に衝突していることを検知するステップと、前記ドローンの衝突を検知したことに基づいて、前記エアバッグを展開させるステップと、をさらに含むものとしてもよい。 It may further include a step of detecting that the drone is colliding with an obstacle and a step of deploying the airbag based on the detection of the collision of the drone.
 使用者に操作される操作機から送信される緊急停止指令を受信するステップと、前記緊急停止指令に基づいて前記エアバッグを展開させるステップと、をさらに含むものとしてもよい。 It may further include a step of receiving an emergency stop command transmitted from an operating device operated by a user, and a step of deploying the airbag based on the emergency stop command.
 前記飛行制御部から送信される緊急停止の信号に基づいて前記エアバッグを展開させるステップをさらに含むものとしてもよい。 It may further include a step of deploying the airbag based on an emergency stop signal transmitted from the flight control unit.
前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記墜落を検知したことに基づいて、前記薬剤の吐出を停止するステップをさらに含むものとしてもよい。 The apparatus may further include a medicine control unit that controls whether or not medicine is discharged from the drone to the outside, and further includes a step of stopping the medicine ejection based on the detection of the crash.
 また、本発明の別の観点に係るドローン制御プログラムは、飛行手段と、前記飛行手段を稼働させる飛行制御部と、墜落を検知する墜落判定部と、気体が封入されることで展開されるエアバッグと、前記墜落判定部が前記墜落を検知したことに基づいて、前記エアバッグを展開させるエアバッグ展開部と、を備えるドローン制御プログラムであって、前記飛行手段を稼働させる飛行制御命令と、前記ドローンの墜落を検知する墜落検知命令と、前記ドローンの墜落を検知したことに基づいて、前記エアバッグを展開させるエアバッグ展開命令と、をコンピューターに実行させる。 In addition, a drone control program according to another aspect of the present invention includes a flight unit, a flight control unit that operates the flight unit, a crash determination unit that detects a crash, and an air that is deployed by enclosing gas. A flight control command for operating the flying means, the drone control program comprising: a bag and an airbag deployment unit that deploys the airbag based on the crash detection unit detecting the crash; A computer executes a crash detection command for detecting the crash of the drone and an airbag deployment command for deploying the airbag based on the detection of the crash of the drone.
 前記ドローンの高度を測定する高度測定命令をコンピューターに実行させ、前記ドローンの墜落を検知したときに測定される前記ドローンの高度が第1高度より高いとき、前記エアバッグを展開させる命令をコンピューターに実行させるものとしてもよい。 The computer executes an altitude measurement command for measuring the altitude of the drone, and when the drone altitude measured when the drone crash is detected is higher than a first altitude, the computer is instructed to deploy the airbag. It may be executed.
 前記ドローンの高度を測定する高度測定命令をコンピューターに実行させ、前記ドローンの墜落を検知したときに測定される前記ドローンの高度が第2高度より高いとき、前記ドローンが墜落後に下方へ落下し、前記高度が前記第2高度以下になったことに基づいて、前記エアバッグを展開させる命令をコンピューターに実行させるものとしてもよい。 Causing the computer to execute an altitude measuring instruction for measuring the altitude of the drone, and when the drone altitude measured when the drone crash is detected is higher than a second altitude, the drone falls downward after the crash, The computer may be caused to execute a command to deploy the airbag based on the fact that the altitude is equal to or lower than the second altitude.
 前記第2高度は、前記ドローンの落下速度に基づいて定められるものとしてもよい。 The second altitude may be determined based on the drone falling speed.
 前記ドローンが障害物に衝突していることを検知する衝突検知命令と、前記ドローンの衝突を検知したことに基づいて、前記エアバッグを展開させる命令と、をさらにコンピューターに実行させるものとしてもよい。 The computer may further execute a collision detection command for detecting that the drone is colliding with an obstacle and a command for deploying the airbag based on the detection of the collision of the drone. .
 使用者に操作される操作機から送信される緊急停止指令を受信する命令と、前記緊急停止指令に基づいて前記エアバッグを展開させる命令と、をさらにコンピューターに実行させるものとしてもよい。 The computer may further execute a command for receiving an emergency stop command transmitted from an operating device operated by a user and a command for deploying the airbag based on the emergency stop command.
 前記飛行制御部から送信される緊急停止の信号に基づいて前記エアバッグを展開させる命令をさらにコンピューターに実行させるものとしてもよい。 The computer may further execute a command to deploy the airbag based on an emergency stop signal transmitted from the flight control unit.
前記墜落を検知したことに基づいて、前記薬剤の吐出を停止する命令をさらにコンピューターに実行させるものとしてもよい。
なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
Based on the detection of the crash, the computer may further execute a command to stop the discharge of the medicine.
The computer program can be provided by downloading through a network such as the Internet, or can be provided by being recorded on various computer-readable recording media such as a CD-ROM.
自律飛行時であっても、高い安全性を維持できるドローン(飛行体)を提供する。 To provide a drone (aircraft) that can maintain high safety even during autonomous flight.
本願発明に係るドローンの実施の形態に係る平面図である。It is a top view concerning an embodiment of a drone concerning the invention in this application. 上記ドローンの正面図である。It is a front view of the drone. 上記ドローンの右側面図である。It is a right view of the above-mentioned drone. 上記ドローンの実施例を使用した薬剤散布システムの全体概念図の例である。It is an example of the whole conceptual diagram of the medicine distribution system using the example of the above-mentioned drone. 上記ドローンの実施例の制御機能を表した模式図である。It is the schematic diagram showing the control function of the Example of the said drone. 上記ドローンが有するエアバッグが展開している様子を示す正面図である。It is a front view which shows a mode that the airbag which the said drone has is expand | deployed. 上記エアバッグが展開している様子を示す右側面図である。It is a right view which shows a mode that the said airbag is expand | deployed. 上記ドローンが有する、上記ドローンがエアバッグを展開させるための構成に関する機能ブロック図である。It is a functional block diagram about the composition for the above-mentioned drone to have the above-mentioned drone deploy an airbag. 上記ドローンが、上記ドローンが有する検知部により上記ドローンの墜落を検知し、エアバッグの展開を行うフローチャートである。The drone is a flowchart in which the drone is detected by a detection unit included in the drone and the airbag is deployed. 上記ドローンが、上記ドローンが有する検知部により上記ドローンが衝突したことを検知し、エアバッグの展開を行うフローチャートである。It is a flowchart in which the drone detects that the drone has collided by a detection unit included in the drone and deploys an airbag. 本発明に係るドローンの別の実施の形態であって、ドローンのエアバッグが展開している様子を示す底面図である。It is another embodiment of the drone which concerns on this invention, Comprising: It is a bottom view which shows a mode that the airbag of a drone is expand | deployed. 上記ドローンのエアバッグが展開している様子を示す右側面図である。It is a right view which shows a mode that the airbag of the said drone is expand | deployed.
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。 Hereinafter, an embodiment for carrying out the present invention will be described with reference to the drawings. All figures are exemplary.
図1に本願発明に係る薬剤散布用ドローン100の実施例の平面図を、図2にその(進行方向側から見た)正面図を、図3にその右側面図を示す。なお、本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。 FIG. 1 is a plan view of an embodiment of a drug spraying drone 100 according to the present invention, FIG. 2 is a front view thereof (viewed from the advancing direction side), and FIG. 3 is a right side view thereof. In the specification of the present application, drone refers to power means (electric power, prime mover, etc.) and control method (whether wireless or wired, autonomous flight type or manual control type). First, it shall refer to the entire aircraft having a plurality of rotor blades.
回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b)(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられていることが望ましい。 Rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b) (also called rotors) are means for flying the drone 100 Yes, considering the balance of flight stability, body size, and battery consumption, it is desirable to have 8 aircraft (4 sets of 2-stage rotor blades).
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられていることが望ましい。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転することが望ましい。なお、一部の回転翼101-3b、および、モーター102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら上の構造であることが望ましい。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 The motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are connected to the rotor blades 101-1a, 101-1b, 101-2a, 101- 2b, 101-3a, 101-3b, 101-4a, 101-4b Rotating means (typically an electric motor, but it may be a motor), one for each rotor blade It is desirable that The upper and lower rotors (for example, 101-1a and 101-1b) in one set and their corresponding motors (for example, 102-1a and 102-1b) are used for drone flight stability, etc. It is desirable that the axes are collinear and rotate in opposite directions. Although some of the rotor blades 101-3b and the motor 102-3b are not shown, their positions are self-explanatory and are in the positions shown if there is a left side view. As shown in FIGS. 2 and 3, the radial member for supporting the propeller guard provided so that the rotor does not interfere with the foreign object is desirably a horizontal structure rather than horizontal. This is to prevent the member from buckling to the outside of the rotor blade and to interfere with the rotor at the time of collision.
 図2および図3に示すように、ドローン100の下側には、陸上に配置される場合において機体を支える足107-1、107-2、107-3、107-4が設けられている。足107-1、107-2、107-3、107-4は、陸上においてドローン100の下面から地面に向かって伸び出ている棒状の部材である。足107-1、107-2、107-3、107-4は、回転軸を共有して対になっている回転翼101の略回転中心にそれぞれ配置され、本実施形態においては4本である。 As shown in FIGS. 2 and 3, feet 107-1, 107-2, 107-3, and 107-4 are provided below the drone 100 to support the airframe when placed on land. The legs 107-1, 107-2, 107-3, 107-4 are rod-shaped members extending from the lower surface of the drone 100 toward the ground on land. The legs 107-1, 107-2, 107-3, 107-4 are respectively arranged at substantially the rotation centers of the paired rotating blades 101 sharing the rotation axis, and in the present embodiment, there are four legs. .
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられていることが望ましい。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 The drug nozzles 103-1, 103-2, 103-3, and 103-4 are means for spraying the drug downward, and it is preferable that four nozzles are provided. In addition, in this specification, a chemical | medical agent generally refers to the liquid or powder disperse | distributed to agricultural fields, such as an agricultural chemical, a herbicide, liquid fertilizer, an insecticide, a seed | species, and water.
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられていることが望ましい。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。 The medicine tank 104 is a tank for storing medicine to be sprayed, and is preferably provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance. The chemical hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the chemical tank 104 and the chemical nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve as a support for the drug nozzle. The pump 106 is a means for discharging the medicine from the nozzle.
図4に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。操縦器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されることが望ましいが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていることが望ましい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機(図示していない)を使用してもよい(非常用操作機は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であることが望ましい)。操縦器401とドローン100はWi-Fi等による無線通信を行なうことが望ましい。 FIG. 4 shows an overall conceptual diagram of a system using an embodiment of the drug spraying application of the drone 100 according to the present invention. This figure is a schematic diagram, and the scale is not accurate. The controller 401 is a means for transmitting a command to the drone 100 by an operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.). Yes, it may be realized by a portable information device such as a general tablet terminal that operates a computer program. The drone 100 according to the present invention is desirably controlled so as to perform autonomous flight, but it is desirable that a manual operation can be performed at the time of basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency operating device (not shown) that has a dedicated emergency stop function may be used (the emergency operating device has a large emergency stop button etc. so that it can respond quickly in an emergency) It is desirable to be a dedicated device with It is desirable that the controller 401 and the drone 100 perform wireless communication using Wi-Fi or the like.
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。 The field 403 is a rice field, a field, or the like that is a target of drug spraying by the drone 100. Actually, the topography of the field 403 is complicated, and a topographic map cannot be obtained in advance, or the topographic map and the situation at the site may be different. Usually, the farm 403 is adjacent to houses, hospitals, schools, other crop farms, roads, railways, and the like. Further, there may be an obstacle such as a building or an electric wire in the field 403.
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようにすることが望ましい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピューター群と関連ソフトウェアであり、操縦器401と携帯電話回線等で無線接続されていることが望ましい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行なってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行なってもよい。 The base station 404 is a device that provides a base unit function of Wi-Fi communication, etc., and preferably functions as an RTK-GPS base station so that the exact position of the drone 100 can be provided (Wi-Fi The communication master unit and the RTK-GPS base station may be independent devices). The farming cloud 405 is typically a computer group operated on a cloud service and related software, and is desirably wirelessly connected to the controller 401 via a mobile phone line or the like. The farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growth status of the crop, and perform processing for determining the flight route. In addition, the drone 100 may be provided with the topographic information and the like of the stored farm 403. In addition, the history of the flight of the drone 100 and the captured video may be accumulated and various analysis processes may be performed.
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。 Usually, the drone 100 takes off from the landing point 406 outside the field 403 and returns to the landing point 406 after spraying the medicine on the field 403 or when it is necessary to refill or charge the medicine. The flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the takeoff starts.
図5に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表した模式図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピューターであってよい。フライトコントローラー501は、操縦器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっていることが望ましい。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 The schematic diagram showing the control function of the Example of the drone for chemical distribution which concerns on FIG. 5 at this invention is shown. The flight controller 501 is a component that controls the entire drone. Specifically, the flight controller 501 may be an embedded computer including a CPU, a memory, related software, and the like. The flight controller 501 receives motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b are controlled to control the flight of the drone 100. The actual rotational speed of motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b is fed back to the flight controller 501, and normal rotation is performed. It is desirable to have a configuration that can monitor whether Alternatively, a configuration in which an optical sensor or the like is provided on the rotor blade 101 and the rotation of the rotor blade 101 is fed back to the flight controller 501 may be employed.
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっていることが望ましい。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護を行なうことが望ましい。また、フライトコントローラー501が制御に使用する計算処理の一部が、操縦器401上、または、営農クラウド405上や他の場所に存在する別のコンピューターによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 is desirably rewritable through a storage medium or the like for function expansion / change, problem correction, or through communication means such as Wi-Fi communication or USB. In this case, it is desirable to protect by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by illegal software is not performed. Further, a part of calculation processing used for control by the flight controller 501 may be executed by another computer that exists on the pilot 401, the farming cloud 405, or in another place. Since the flight controller 501 is highly important, some or all of the components may be duplicated.
バッテリー502は、フライトコントローラー501、および、ドローンのその他の構成要素に電力を供給する手段であり、充電式であることが望ましい。バッテリー502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されていることが望ましい。バッテリー502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をフライトコントローラー501に伝達する機能を有するスマートバッテリーであることが望ましい。 The battery 502 is a means for supplying power to the flight controller 501 and other components of the drone, and is preferably rechargeable. The battery 502 is preferably connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker. The battery 502 is desirably a smart battery having a function of transmitting the internal state (amount of stored electricity, accumulated usage time, etc.) to the flight controller 501 in addition to the power supply function.
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操縦器401とやり取りを行ない、必要な指令を操縦器401から受信すると共に、必要な情報を操縦器401に送信できることが望ましい。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておくことが望ましい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えていることが望ましい。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化しておくことが望ましく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御することが望ましい。 The flight controller 501 communicates with the pilot 401 via the Wi-Fi slave function 503 and further via the base station 404, receives necessary commands from the pilot 401, and sends necessary information to the pilot. It is desirable to be able to send to 401. In this case, it is desirable to encrypt the communication so that it is possible to prevent illegal acts such as interception, spoofing, and takeover of the device. The base station 404 preferably has an RTK-GPS base station function in addition to a Wi-Fi communication function. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it is desirable to duplicate or multiplex, and each redundant GPS module 504 should use a different satellite in order to cope with the failure of a specific GPS satellite. It is desirable to control.
6軸ジャイロセンサー505はドローン機体の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)であり、6軸センサーであることが望ましい。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーを使用することが望ましい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていることが望ましい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body (further, means for calculating the speed by integrating the acceleration), and is preferably a 6-axis sensor. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring geomagnetism. The atmospheric pressure sensor 507 is a means for measuring atmospheric pressure, and can indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface using the reflection of laser light, and it is preferable to use an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone body and the ground surface using reflection of sound waves such as ultrasonic waves. These sensors may be selected according to drone cost targets and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind sensor for measuring wind force, and the like may be added. In addition, these sensors are preferably duplexed or multiplexed. When there are a plurality of sensors having the same purpose, the flight controller 501 may use only one of them, and when a failure occurs, it may be switched to an alternative sensor. Alternatively, a plurality of sensors may be used at the same time, and when each measurement result does not match, it may be considered that a failure has occurred.
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられていることが望ましい。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器であることが望ましい。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操縦器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 The flow sensor 510 is a means for measuring the flow rate of the medicine, and is preferably provided at a plurality of locations in the path from the medicine tank 104 to the medicine nozzle 103. The liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become a predetermined amount or less. The multispectral camera 512 is a means for capturing the field 403 and acquiring data for image analysis. The obstacle detection camera 513 is a camera for detecting a drone obstacle. Since the image characteristics and the lens orientation are different from those of the multispectral camera 512, the obstacle detection camera 513 is preferably a device different from the multispectral camera 512. The switch 514 is a means for the user 402 of the drone 100 to perform various settings. Obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. . The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the internal maintenance cover are open. The medicine inlet sensor 517 is a sensor that detects that the inlet of the medicine tank 104 is open. These sensors may be selected according to drone cost targets and performance requirements, and may be duplicated or multiplexed. Further, a sensor may be provided in the base station 404, the controller 401, or other place outside the drone 100, and the read information may be transmitted to the drone. For example, a wind sensor may be provided in the base station 404, and information regarding wind power and wind direction may be transmitted to the drone 100 via Wi-Fi communication.
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっていることが望ましい。 The flight controller 501 transmits a control signal to the pump 106 to adjust the medicine discharge amount and stop the medicine discharge. It is desirable that the current situation (for example, the rotational speed) of the pump 106 is fed back to the flight controller 501.
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操縦器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 The LED 107 is a display means for informing the drone operator of the drone status. Display means such as a liquid crystal display may be used instead of or in addition to the LED. The buzzer 518 is an output means for notifying a drone state (particularly an error state) by an audio signal. The Wi-Fi handset function 519 is an optional component for communicating with an external computer or the like for software transfer or the like, separately from the controller 401. In place of or in addition to the Wi-Fi handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used. The speaker 520 is an output means for notifying a drone state (particularly an error state) by a recorded human voice or synthesized voice. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 during the flight, and in such a case, the situation transmission by voice is effective. The warning light 521 is a display unit such as a strobe light that notifies the drone state (particularly an error state). These input / output means may be selected according to drone cost targets and performance requirements, and may be duplexed / multiplexed.
上空を飛行するドローンにおいては、ドローンが墜落するときドローン下方に存在する人などに衝突した場合においても人などへの危害を防げる構成を有することが望ましい。具体的には、ドローンが墜落することを検知してドローン下部に展開するエアバッグを備えることが望ましい。 In a drone that flies over the sky, it is desirable to have a configuration that can prevent harm to a person even when the drone crashes and collides with a person existing below the drone. Specifically, it is desirable to provide an airbag that detects that the drone has crashed and is deployed at the bottom of the drone.
 図6および図7に示すように、本発明に係るドローン100は、エアバッグ50を備える。 6 and 7, the drone 100 according to the present invention includes an airbag 50.
 エアバッグ50は、通常使用時においては収縮してドローン100の内部に格納されている。エアバッグ50はドローン100に固定されている。エアバッグ50の固定位置は、ドローン100の上下方向において中央より下方に固定されている。すなわち、前述のように、ドローン100の重心は飛行状態において底面側に偏っており、エアバッグ50はドローン100の底面側に展開される。この構成によれば、ドローン100の重心が底面寄りになり、墜落時に飛行状態の向きを保って地表に到達しやすくなる。そして、ドローン100は展開されるエアバッグ50側から地表に接近するため、エアバッグ50により地表に存在する人等に対する衝突時の衝撃を緩和することができる。 The airbag 50 is retracted and stored inside the drone 100 during normal use. The airbag 50 is fixed to the drone 100. The fixing position of the airbag 50 is fixed below the center in the vertical direction of the drone 100. That is, as described above, the center of gravity of the drone 100 is biased toward the bottom surface in the flight state, and the airbag 50 is deployed on the bottom surface side of the drone 100. According to this configuration, the center of gravity of the drone 100 is closer to the bottom surface, and it is easy to reach the ground surface while maintaining the direction of the flight state during a crash. Since the drone 100 approaches the ground surface from the side of the deployed airbag 50, the airbag 50 can mitigate the impact at the time of a collision with a person or the like existing on the ground surface.
 エアバッグ50は、ドローン100の底面を覆うように展開される。エアバッグ50は、ドローン100との固定部分に通気口があり、この通気口から気体を封入することで展開される。エアバッグ50には適宜の方法で気体を封入することができる。エアバッグ50は、ドローン100の墜落時に機体と人等との衝突を防ぐため、瞬時に展開するように構成するとよい。例えば、通気口に連通する位置に火薬を配置し、火薬に発火することで、瞬時にエアバッグ50に気体を封入することができる。 The airbag 50 is deployed so as to cover the bottom surface of the drone 100. The airbag 50 has a vent at a portion fixed to the drone 100, and is deployed by sealing gas from the vent. Gas can be sealed in the airbag 50 by an appropriate method. The airbag 50 may be configured to be instantly deployed to prevent a collision between the aircraft and a person or the like when the drone 100 crashes. For example, it is possible to instantaneously enclose the gas in the airbag 50 by disposing the explosive at a position communicating with the vent and firing the explosive.
 エアバッグ50は、展開時において、球体の一部を直線的に切断したような形状をしており、球面がドローン100の下方に向くようにドローン100に固定されている。エアバッグ50は、ドローン100の4個の足107-1、107-2、107-3、107-4よりもドローン100の左右方向外側まで膨張する。また、エアバッグ50の最も突出した部分は、足107-1、107-2、107-3、107-4の先端よりも下方まで膨張する。ドローン100の墜落時において、足107-1、107-2、107-3、107-4の先端が人等に衝突するのを防ぐためである。 The airbag 50 has a shape such that a part of a sphere is linearly cut when deployed, and is fixed to the drone 100 so that the spherical surface faces downward of the drone 100. The airbag 50 is inflated further to the outside in the left-right direction of the drone 100 than the four legs 107-1, 107-2, 107-3, 107-4 of the drone 100. Further, the most projecting portion of the airbag 50 is inflated below the tips of the legs 107-1, 107-2, 107-3, 107-4. This is to prevent the tips of the feet 107-1, 107-2, 107-3, 107-4 from colliding with a person or the like when the drone 100 crashes.
 図9に示すように、本願発明に係るドローン100は、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bと、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bと、飛行制御部23と、情報取得部24と、判定部25と、エアバッグ展開部26と、ドローン100から吐出する薬剤の量を制御する薬剤制御部30と、を備える。なお、以降の説明で回転翼およびモーターの参照符号は省略することがある。 As shown in FIG. 9, the drone 100 according to the present invention includes rotating blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b, Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b, flight control unit 23, information acquisition unit 24, and determination unit 25 The airbag deployment unit 26 and a drug control unit 30 that controls the amount of drug discharged from the drone 100 are provided. In the following description, reference numerals for the rotor blades and the motor may be omitted.
 飛行制御部23は、モーターを制御することで回転翼の回転数および回転方向を制御して、ドローン100を使用者402が意図する区画内で飛行させる機能部である。具体的には、飛行制御部23はマイコン等で実装されるCPUであり、薬剤制御部30と共にフライトコントローラー501により実現される。飛行制御部23は、各モーターの回転数の指令値を、モーターごとに送信する。各モーターの回転数の指令値は、入力される区画の情報に基づいて計画される飛行経路から算出される。飛行経路の計画および指令値の計算は、図4に示す営農クラウド405上で行われ、操縦器401を介して飛行制御部23に伝達される。 The flight control unit 23 is a functional unit that controls the motor to control the number of rotations and the direction of rotation of the rotor blades so that the drone 100 flies within a section intended by the user 402. Specifically, the flight control unit 23 is a CPU implemented by a microcomputer or the like, and is realized by the flight controller 501 together with the medicine control unit 30. The flight control unit 23 transmits a command value for the rotational speed of each motor for each motor. The command value for the number of rotations of each motor is calculated from the planned flight path based on the input section information. The flight path plan and command value calculation are performed on the farming cloud 405 shown in FIG. 4 and transmitted to the flight control unit 23 via the controller 401.
 また、飛行制御部23は、ドローン100の離陸および着陸の制御を行う。 In addition, the flight control unit 23 controls take-off and landing of the drone 100.
 さらに、飛行制御部23は、退避行動の制御を行う。退避行動とは、例えば、通常の着陸動作、ホバリングを例とする空中停止や、最短のルートで直ちに所定の帰還地点まで移動する、「緊急帰還」を含む。所定の帰還地点とは、あらかじめ飛行制御部23に記憶させた地点であり、例えば離陸した地点である。所定の帰還地点とは、例えば使用者402がドローン100に近づくことが可能な陸上の地点であり、使用者402は帰還地点に到達したドローン100を点検したり、手動で別の場所に運んだりすることができる。 Furthermore, the flight control unit 23 controls the evacuation behavior. The retreat action includes, for example, a normal landing operation, an air stop such as hovering, and “emergency return” that moves immediately to a predetermined return point by the shortest route. The predetermined return point is a point that is previously stored in the flight control unit 23, for example, a point that has taken off. The predetermined return point is a land point where the user 402 can approach the drone 100, for example, and the user 402 can check the drone 100 that has reached the return point or manually carry it to another location. can do.
 また、退避行動は、最適化されたルートで所定の帰還地点まで移動する「通常帰還」であってもよい。最適化されたルートとは、例えば、通常帰還指令を受信する前に薬剤散布したルートを参照して算出されるルートである。例えば、ドローン100は、まだ薬剤を散布していないルートを経由して、薬剤を散布しながら所定の帰還地点まで移動する。 Further, the evacuation action may be “normal return” that moves to a predetermined return point through an optimized route. The optimized route is, for example, a route that is calculated with reference to a route in which medicine is dispersed before receiving a normal feedback command. For example, the drone 100 moves to a predetermined return point while spraying the drug via a route where the drug is not yet sprayed.
 さらに、退避行動は、すべての回転翼を停止させてドローン100をその場から下方に落下させる「緊急停止」も含む。 Furthermore, the evacuation action also includes an “emergency stop” in which all the rotating blades are stopped and the drone 100 is dropped downward from the spot.
 情報取得部24は、ドローン100がエアバッグを展開すべき状況であるか否かを判定するために、必要な情報を取得する機能部である。情報取得部24は、高度測定部241と、墜落情報取得部242と、衝突情報取得部243と、を備える。 The information acquisition unit 24 is a functional unit that acquires necessary information to determine whether or not the drone 100 is in a situation where the airbag should be deployed. The information acquisition unit 24 includes an altitude measurement unit 241, a crash information acquisition unit 242 and a collision information acquisition unit 243.
 高度測定部241は、複数のセンサーを使用して機体高度を測定してよい。高度の測定には、ソナー、赤外線レーザー、気圧センサー、加速度センサー(6軸ジャイロセンサーを使用することが好ましい)、GPS(RTK-GPS方式を使用することが好ましい)の組み合わせを使用してよい。この場合に、測定器やセンサーは故障に備えて多重化されていてもよい。 The altitude measurement unit 241 may measure the aircraft altitude using a plurality of sensors. For altitude measurement, a combination of sonar, infrared laser, barometric pressure sensor, acceleration sensor (preferably using a 6-axis gyro sensor), and GPS (preferably using the RTK-GPS method) may be used. In this case, the measuring instruments and sensors may be multiplexed in preparation for failure.
 加えて、複数の方式を併用してもよい。たとえば、ソナーは圃場が地面である場合には正確な測定が可能だが、圃場が水面である場合には正確な測定が難しい(この場合には赤外線レーザーが適切である)等、測定方式により得手不得手があるからである。また、GPSの電波の外乱や基地局の異常等が発生した場合には多重化していても全体障害となるため、その他の測定手段も提供されていてもよい。 In addition, multiple methods may be used in combination. For example, Sonar can measure accurately when the field is the ground, but it is difficult to measure accurately when the field is water (in this case, an infrared laser is appropriate). It is because there is a weak point. In addition, when a disturbance of GPS radio waves, an abnormality of a base station, or the like occurs, even if multiplexing is performed, it causes an overall failure, and therefore other measurement means may be provided.
 墜落情報取得部242は、ドローン100が墜落、すなわち自由落下をしているか否かを判定するために必要な情報を取得する機能部である。墜落情報取得部242は、例えば高度測定部241と同様にドローン100の高度を測定し、高度の変化速度を算出する。また、墜落情報取得部242は、ドローン100が有する加速度センサーの測定値から、高さ方向の加速度を取得してもよい。 The crash information acquisition unit 242 is a functional unit that acquires information necessary for determining whether or not the drone 100 has crashed, that is, a free fall. The crash information acquisition unit 242 measures the altitude of the drone 100 in the same manner as the altitude measurement unit 241, for example, and calculates the altitude change rate. The crash information acquisition unit 242 may acquire the acceleration in the height direction from the measurement value of the acceleration sensor included in the drone 100.
 また、墜落情報取得部242は、ドローン100の飛行制御部23により意図的に行われる緊急停止により自由落下する場合には、飛行制御部23から緊急停止に関する信号を受信してドローン100が墜落する旨の情報を取得してもよい。意図的に行われる緊急停止とは、例えばモーターの制御に異常が発生した場合や、強風を検知して通常着陸による退避が不可能であると判断された場合、障害物が引っ掛かったことにより通常着陸による退避が不可能であると判断された場合などである。 In addition, the crash information acquisition unit 242 receives a signal related to the emergency stop from the flight control unit 23 when the drone 100 crashes in the case of a free fall due to an emergency stop intentionally performed by the flight control unit 23 of the drone 100. You may acquire the information to that effect. An emergency stop that is intentionally performed, for example, when an abnormality occurs in the control of a motor, or when it is determined that evacuation by normal landing is impossible by detecting strong winds, an obstacle is caught. This is the case when it is determined that evacuation by landing is impossible.
 さらに、墜落情報取得部242は、使用者402により緊急操作機10又は操縦器401に入力される緊急停止指令に基づいてドローン100が自由落下する場合には、緊急操作機10又は操縦器401からの情報を受信してドローン100が墜落する旨の情報を取得してもよい。 Furthermore, when the drone 100 falls freely based on the emergency stop command input to the emergency controller 10 or the controller 401 by the user 402, the crash information acquisition unit 242 The information that the drone 100 crashes may be acquired by receiving the information.
 衝突情報取得部243は、ドローン100が障害物に衝突しているか否かを判定するために必要な情報を取得する機能部である。ドローン100が障害物に衝突すると、ドローン100が墜落する蓋然性が高いため、衝突したことを検知してエアバッグ50の展開要否の判定に用いることで、より安全にドローン100を墜落させることができる。 The collision information acquisition unit 243 is a functional unit that acquires information necessary for determining whether or not the drone 100 is colliding with an obstacle. When drone 100 collides with an obstacle, there is a high probability that drone 100 will crash, so it is possible to crash drone 100 more safely by detecting the collision and using it to determine whether airbag 50 needs to be deployed. it can.
 衝突情報取得部243は、例えばマイクロスイッチ、または、ピエゾ素子などの圧力検知素子を備える。この場合、衝突情報取得部243は、ドローン100の最も外周部に位置することになるプロペラガード部に設置することが好ましい。二重反転ローターの上下のプロペラガードのそれぞれに衝突情報取得部243を設けてもよい。プロペラガードの周囲に各方向別の複数のセンサーを備えてもよいが、プロペラガードが機体本体と接続する部分にセンサーを設けることで、ひとつのセンサーにより複数の方向への接触を検知するようにしてもよい。 The collision information acquisition unit 243 includes a pressure detection element such as a micro switch or a piezo element, for example. In this case, the collision information acquisition unit 243 is preferably installed in the propeller guard unit that is positioned at the outermost peripheral part of the drone 100. A collision information acquisition unit 243 may be provided in each of the upper and lower propeller guards of the counter-rotating rotor. A plurality of sensors for each direction may be provided around the propeller guard, but by providing a sensor at the part where the propeller guard connects to the aircraft body, a single sensor detects contact in multiple directions. May be.
 また、衝突情報取得部243は、ドローン100に備えられた加速度センサーによって衝突に関する情報を取得してもよい。ドローン100が障害物に接触するとき、ドローン100には、障害物が接触した方向とは逆向きの加速度が短時間で発生する。加速度センサーは、この短時間の急激な加速度を測定可能な精度で加速度を計測する。 Further, the collision information acquisition unit 243 may acquire information on the collision by an acceleration sensor provided in the drone 100. When the drone 100 comes into contact with the obstacle, the drone 100 is accelerated in a direction opposite to the direction in which the obstacle comes into contact in a short time. The acceleration sensor measures acceleration with an accuracy capable of measuring this short-term rapid acceleration.
 判定部25は、高度測定部241、墜落情報取得部242および衝突情報取得部243からの情報に基づいて、エアバッグ50を展開させるか否かを判定する機能部である。判定部25は、墜落判定部251と、衝突判定部252と、エアバッグ展開判定部253と、を有する。 The determination unit 25 is a functional unit that determines whether or not to deploy the airbag 50 based on information from the altitude measurement unit 241, the crash information acquisition unit 242 and the collision information acquisition unit 243. The determination unit 25 includes a crash determination unit 251, a collision determination unit 252, and an airbag deployment determination unit 253.
 墜落判定部251は、墜落情報取得部242により取得される結果に基づいて、ドローン100のエアバッグ50を展開すべき状況であるか否かを判定する。墜落判定部251は、通常飛行中又はホバリング中において、墜落情報取得部242が取得する、所定の速度又は加速度でドローン100が下方へ移動している情報に基づいて、「ドローン100が墜落している」と判定する。墜落時におけるドローン100の落下加速度は、重力加速度にドローン100の空気抵抗などの影響を加えた値になることが予想される。したがって、墜落判定部251が「墜落している」と判定する加速度の範囲は、あらかじめ墜落判定部251に保存される値であってもよい。また、適宜の方法で取得される風速の情報に基づいて、「墜落している」と判定する加速度の範囲を適宜補正してもよい。 The crash determination unit 251 determines whether or not the airbag 50 of the drone 100 should be deployed based on the result acquired by the crash information acquisition unit 242. The crash determination unit 251 determines whether or not the drone 100 crashes based on the information that the drone 100 is moving downward at a predetermined speed or acceleration that the crash information acquisition unit 242 acquires during normal flight or hovering. Is determined. The fall acceleration of the drone 100 at the time of the crash is expected to be a value obtained by adding the influence of the air resistance of the drone 100 to the acceleration of gravity. Therefore, the range of acceleration determined by the crash determination unit 251 to be “falling” may be a value stored in the crash determination unit 251 in advance. Moreover, the range of acceleration determined to be “falling” may be corrected as appropriate based on wind speed information acquired by an appropriate method.
 衝突判定部252は、衝突情報取得部243が取得する、ドローン100に物体が接触し、衝突によりドローン100に所定の加速度が発生した情報に基づいて、「ドローン100が障害物に衝突している」と判定する。 The collision determination unit 252 determines that “the drone 100 has collided with an obstacle based on the information acquired by the collision information acquisition unit 243 that an object has contacted the drone 100 and a predetermined acceleration has occurred in the drone 100 due to the collision. Is determined.
 エアバッグ展開判定部253は、ドローン100の墜落又は衝突が発生していると判定した場合において、高度測定部241が測定するドローン100の高度を参照する。ドローン100の墜落又は衝突が発生したときのドローン100の高度が所定高度(以下、「第1高度」ともいう。)より高い場合、エアバッグ展開判定部253は、エアバッグ展開信号を生成し、エアバッグ展開部26に伝達する。ドローン100の墜落又は衝突が発生したときのドローン100の高度が第1高度以下の場合、エアバッグ展開判定部253は、エアバッグ展開信号を生成せず、エアバッグ50は展開されない。ドローン100が落下を開始する高度が第1高度以下の場合は、落下するドローン100がぶつかって発生させる衝撃の程度が小さいため、エアバッグ50を展開する必要がないためである。 The airbag deployment determination unit 253 refers to the altitude of the drone 100 measured by the altitude measurement unit 241 when it is determined that the drone 100 has crashed or collided. When the altitude of the drone 100 when the drone 100 crashes or collides is higher than a predetermined altitude (hereinafter also referred to as “first altitude”), the airbag deployment determination unit 253 generates an airbag deployment signal, This is transmitted to the airbag deployment section 26. When the altitude of the drone 100 when the drone 100 crashes or collides is equal to or lower than the first altitude, the airbag deployment determination unit 253 does not generate an airbag deployment signal and the airbag 50 is not deployed. This is because, when the altitude at which the drone 100 starts to fall is equal to or lower than the first altitude, it is not necessary to deploy the airbag 50 because the degree of impact generated by the falling drone 100 hit is small.
 また、ドローン100の墜落又は衝突が発生したときのドローン100の高度が第1高度より高い場合、エアバッグ展開判定部253は、ドローン100が落下して所定の第2高度に到達するまでエアバッグ展開信号をエアバッグ展開部26に伝達しないように構成してもよい。第2高度より高い高度でエアバッグ50を展開すると、大きい空気抵抗が生じてドローン100が回転又は反転し、エアバッグ50以外の箇所で人等に衝突する可能性が高まるためである。 Further, when the altitude of the drone 100 when the drone 100 crashes or collides is higher than the first altitude, the airbag deployment determination unit 253 causes the airbag to fall until the drone 100 falls and reaches a predetermined second altitude. The deployment signal may be configured not to be transmitted to the airbag deployment section 26. This is because if the airbag 50 is deployed at an altitude higher than the second altitude, a large air resistance is generated, the drone 100 rotates or reverses, and the possibility of colliding with a person or the like at a place other than the airbag 50 increases.
 ドローン100の墜落又は衝突が発生したときのドローン100の高度が第2高度より高い場合、エアバッグ展開判定部253は、ドローン100が墜落後に下方へ落下し、高度測定部241により測定される高度が第2高度以下になったことに基づいて、エアバッグ展開信号をエアバッグ展開部26に伝達する。 If the altitude of the drone 100 when the drone 100 crashes or collides is higher than the second altitude, the airbag deployment determination unit 253 drops the drone 100 downward after the crash, and the altitude measured by the altitude measurement unit 241 The air bag deployment signal is transmitted to the air bag deployment unit 26 based on the fact that the air pressure is lower than the second altitude.
 第2高度は、あらかじめ定められた固定値であってもよいし、ドローン100の落下速度に基づいて算出される変動する値であってもよい。また、地表で人などにぶつかることで発生する衝撃の程度は、ドローン100の質量に応じて異なるため、ドローン100の質量に応じて変動する値であってもよい。また、ドローン100の落下速度を計測し、落下速度に基づいて第2高度を補正してもよい。 The second altitude may be a fixed value determined in advance, or may be a fluctuating value calculated based on the drop speed of the drone 100. In addition, since the degree of impact generated by hitting a person or the like on the ground surface differs depending on the mass of the drone 100, the value may vary depending on the mass of the drone 100. Moreover, the fall speed of the drone 100 may be measured, and the second altitude may be corrected based on the drop speed.
 薬剤制御部30は、薬剤タンク104から薬液を散布する量又はタイミングを制御する制御部である。例えば、薬剤タンク104から各薬剤ノズル103-1、103-2、103-3、103-4までの経路のどこかに、薬液経路を開閉する開閉手段が設けられていて、薬剤制御部30は、開閉手段により薬液の放出を遮断した後に各種の緊急動作を実行してもよい。また、薬剤制御部30は、退避行動を実行する前にポンプ106を停止してもよい。通常時とは異なる飛行経路で薬剤を散布すると散布量が過大になる、あるいは、散布すべきでない場所に薬剤を散布するなどの弊害が生じるからである。 The drug control unit 30 is a control unit that controls the amount or timing of spraying the drug solution from the drug tank 104. For example, an opening / closing means for opening and closing the drug solution path is provided somewhere in the path from the drug tank 104 to each drug nozzle 103-1, 103-2, 103-3, 103-4. Various emergency operations may be executed after the release of the chemical solution is blocked by the opening / closing means. Further, the medicine control unit 30 may stop the pump 106 before executing the retreat action. This is because spraying the medicine on a flight route different from the normal time causes an adverse effect such as an excessive spraying amount or spraying the medicine on a place where the medicine should not be sprayed.
 墜落判定部251又は衝突判定部252が、ドローン100の墜落又は衝突を検知する場合、墜落判定部251又は衝突判定部252は、薬剤停止信号を生成し、薬剤制御部30に薬剤停止信号を伝達する。薬剤制御部30は、薬剤停止信号が伝達されると、薬剤の散布を停止する。 When the crash determination unit 251 or the collision determination unit 252 detects a crash or collision of the drone 100, the crash determination unit 251 or the collision determination unit 252 generates a drug stop signal and transmits the drug stop signal to the drug control unit 30. To do. When the medicine stop signal is transmitted, the medicine control unit 30 stops the medicine spraying.
 墜落判定部251又は衝突判定部252がドローン100の墜落又は衝突を判定する高度変化、加速度、接触検知等の各値の閾値、ならびにエアバッグ展開判定部253がエアバッグ50を展開すべきと判定する高度の閾値は、予めドローン100に記憶されている固定された閾値であってもよいし、状況に応じて変更される変動する閾値であってもよい。変動する閾値の場合は、ドローン100に無線又は有線接続される適宜の構成により自動で変動されてもよいし、使用者402により手動で変更可能であってもよい。 The crash determination unit 251 or the collision determination unit 252 determines the threshold value of each value such as altitude change, acceleration, contact detection, etc. that determines whether the drone 100 crashes or collides, and the airbag deployment determination unit 253 determines that the airbag 50 should be deployed. The altitude threshold value may be a fixed threshold value stored in advance in the drone 100, or a variable threshold value that is changed according to the situation. In the case of the fluctuating threshold value, it may be automatically changed by an appropriate configuration connected to the drone 100 wirelessly or by wire, or may be manually changed by the user 402.
 判定部25は、計測されるある時点での計測結果に基づいて墜落又は衝突、およびエアバッグ50を展開する高度を判定してもよいし、過去複数回の計測結果に基づいて判定してもよい。 The determination unit 25 may determine the crash or collision based on the measurement result at a certain time point measured, and the altitude at which the airbag 50 is deployed, or may determine based on the measurement results of a plurality of past times. Good.
 判定部25は、ドローン100が有する適宜の通信手段により、使用者402が監視する操縦器401に、墜落又は衝突を検知した旨を表示する。また、判定部25は、エアバッグ50が展開すること、またはエアバッグ50が所定時間後に展開する予定であることを操縦器401に表示してもよい。また、判定部25は、ドローン100が有する表示手段、例えばLEDにより、ドローン100が墜落又は衝突している旨が表示されるように構成してもよい。 The determination unit 25 displays the fact that a crash or collision has been detected on the controller 401 monitored by the user 402 by an appropriate communication means possessed by the drone 100. Further, the determination unit 25 may display on the pilot 401 that the airbag 50 is deployed or that the airbag 50 is scheduled to be deployed after a predetermined time. Further, the determination unit 25 may be configured to display that the drone 100 has crashed or collided with display means, for example, an LED, that the drone 100 has.
 また、使用者402がドローン100の情報をアイウェア型ウェアラブル端末機により取得する場合には、アイウェアの画面上に表示または投影してもよい。また、使用者402がドローン100の情報をイヤホン型ウェアラブル端末機により取得する場合に、音により通知してもよい。 In addition, when the user 402 acquires the information of the drone 100 with the eyewear-type wearable terminal, it may be displayed or projected on the eyewear screen. Further, when the user 402 acquires the information on the drone 100 with the earphone-type wearable terminal, notification may be made by sound.
(ドローンが墜落を検知してエアバッグを展開するフロー)
 図9に示すように、まず、ドローン100は計画通りの飛行である通常飛行又はホバリングを開始する(ステップS1)。ドローン100の墜落情報取得部242がドローン100の高度変化や加速度等墜落に関する情報を取得し、墜落判定部251は、ドローン100が墜落しているか否かを判定する(ステップS2)。
(Flow where drone detects crash and deploys airbag)
As shown in FIG. 9, first, the drone 100 starts normal flight or hovering as planned (step S1). The crash information acquisition unit 242 of the drone 100 acquires information regarding the altitude change and acceleration of the drone 100, and the crash determination unit 251 determines whether or not the drone 100 has crashed (step S2).
 墜落が検知されない場合、ステップS1の動作に戻り、通常の飛行を継続する。墜落判定部251がドローン100の墜落を検知する場合、薬剤制御部30は、薬剤の散布を行っている場合には薬剤の散布を停止する(ステップS3)。なお、ステップS1乃至S2の工程は、例えば飛行開始直後のホバリング中など薬剤の散布が行われていないときに実行される場合もあり得る。薬剤の散布を行っていない場合は、ステップS3は省略される。 If no crash is detected, return to the operation of step S1 and continue normal flight. When the crash determination unit 251 detects the crash of the drone 100, the medicine control unit 30 stops the medicine spraying when the medicine is being sprayed (step S3). Note that the steps S1 to S2 may be executed when the medicine is not sprayed, such as during hovering immediately after the start of flight. When the medicine is not sprayed, step S3 is omitted.
 エアバッグ展開判定部253は、高度測定部241の測定値を参照して、高度が第1高度より高いか否かを判定する(ステップS4)。ドローン100の高度が第1高度以下の場合、エアバッグ展開部26はエアバッグ50の展開を行わない。ドローン100は、そのまま自由落下して地表に到達する。 The airbag deployment determination unit 253 refers to the measurement value of the altitude measurement unit 241 and determines whether the altitude is higher than the first altitude (step S4). When the altitude of the drone 100 is equal to or lower than the first altitude, the airbag deployment unit 26 does not deploy the airbag 50. The drone 100 falls freely and reaches the surface.
 高度が第1高度より高い場合、高度測定部241はドローン100の自由落下の間高度を繰り返し測定し(ステップS5)、エアバッグ展開判定部253は高度が第2高度以下か否かを判定する(ステップS6)。高度が第2高度以下になったとき、エアバッグ展開判定部253はエアバッグ展開信号を生成し、エアバッグ展開部26に伝達する。エアバッグ展開信号を受信したエアバッグ展開部26は、エアバッグ50を展開する(ステップS7)。 When the altitude is higher than the first altitude, the altitude measuring unit 241 repeatedly measures the altitude during the free fall of the drone 100 (step S5), and the airbag deployment determining unit 253 determines whether the altitude is equal to or lower than the second altitude. (Step S6). When the altitude falls below the second altitude, the airbag deployment determination unit 253 generates an airbag deployment signal and transmits the airbag deployment signal to the airbag deployment unit 26. The airbag deployment unit 26 that has received the airbag deployment signal deploys the airbag 50 (step S7).
(ドローン100が衝突を検知してエアバッグ50を展開するフロー)
 図10に示すように、まず、ドローン100は計画通りの飛行である通常飛行又はホバリングを開始する(ステップS11)。ドローン100の衝突情報取得部243がドローン100の高度変化や加速度、接触検知センサーの測定値等、衝突に関する情報を取得し、衝突判定部252は、ドローン100が障害物に衝突しているか否かを判定する(ステップS12)。
(Flow where drone 100 detects collision and deploys airbag 50)
As shown in FIG. 10, first, the drone 100 starts normal flight or hovering as planned flight (step S11). The collision information acquisition unit 243 of the drone 100 acquires information about the collision such as the altitude change and acceleration of the drone 100, the measurement value of the contact detection sensor, and the collision determination unit 252 determines whether or not the drone 100 is colliding with an obstacle. Is determined (step S12).
 衝突が検知されない場合、ステップS11の動作に戻り、通常の飛行を継続する。衝突判定部252がドローン100の衝突を検知する場合、薬剤制御部30は、薬剤の散布を行っている場合には薬剤の散布を停止する(ステップS13)。なお、ステップS11乃至S12の工程は、例えば飛行開始直後のホバリング中など薬剤の散布が行われていないときに実行される場合もあり得る。薬剤の散布を行っていない場合は、ステップS13は省略される。 If no collision is detected, the process returns to the operation of step S11 and continues normal flight. When the collision determination unit 252 detects a collision of the drone 100, the drug control unit 30 stops the drug spraying when the drug spraying is being performed (step S13). In addition, the process of step S11 thru | or S12 may be performed when spraying of the chemical | medical agent is not performed, for example during the hovering immediately after the start of flight. If the medicine is not sprayed, step S13 is omitted.
 エアバッグ展開判定部253は、高度測定部241の測定値を参照して、高度が第1高度より高いか否かを判定する(ステップS14)。ドローン100の高度が第1高度以下の場合、エアバッグ展開部26はエアバッグ50の展開を行わない。ドローン100は、そのまま自由落下して地表に到達する。 The airbag deployment determination unit 253 refers to the measurement value of the altitude measurement unit 241 and determines whether the altitude is higher than the first altitude (step S14). When the altitude of the drone 100 is equal to or lower than the first altitude, the airbag deployment unit 26 does not deploy the airbag 50. The drone 100 falls freely and reaches the surface.
 高度が第1高度より高い場合、高度測定部241はドローン100の自由落下の間高度を繰り返し測定し(ステップS15)、エアバッグ展開判定部253は高度が第2高度以下か否かを判定する(ステップS16)。高度が第2高度以下になったとき、エアバッグ展開判定部253はエアバッグ展開信号を生成し、エアバッグ展開部26に伝達する。エアバッグ展開信号を受信したエアバッグ展開部26は、エアバッグ50を展開する(ステップS17)。 When the altitude is higher than the first altitude, the altitude measuring unit 241 repeatedly measures the altitude during the free fall of the drone 100 (step S15), and the airbag deployment determining unit 253 determines whether the altitude is equal to or lower than the second altitude. (Step S16). When the altitude falls below the second altitude, the airbag deployment determination unit 253 generates an airbag deployment signal and transmits the airbag deployment signal to the airbag deployment unit 26. The airbag deployment section 26 that has received the airbag deployment signal deploys the airbag 50 (step S17).
(第2実施形態)
 本発明に係るドローンの第2実施形態について、先に説明した第1実施形態と異なる部分を中心に説明する。第2実施形態のドローンは、固定翼を有する点において第1実施形態のドローンと異なる。
(Second Embodiment)
The second embodiment of the drone according to the present invention will be described with a focus on differences from the first embodiment described above. The drone of the second embodiment differs from the drone of the first embodiment in that it has fixed wings.
 図11および図12に示すように、ドローン200は、進行方向に伸びる筐体201と、筐体201に直交して左右に略対称に配置される固定翼202を有する。 As shown in FIGS. 11 and 12, the drone 200 has a casing 201 extending in the traveling direction, and fixed wings 202 that are orthogonal to the casing 201 and arranged substantially symmetrically on the left and right.
 ドローン200は、筐体201の内部であって、飛行状態において底面側にドローン200を飛行させるための制御部および機能部が配置されている。この構成によれば、ドローン200の重心が底面寄りになり、墜落時に飛行状態の向きを保って地表に到達しやすくなる。 The drone 200 is inside the casing 201, and a control unit and a function unit for causing the drone 200 to fly in the flying state are arranged on the bottom side. According to this configuration, the center of gravity of the drone 200 is closer to the bottom surface, and it is easy to reach the ground surface while maintaining the direction of the flight state in the event of a crash.
 ドローン200の筐体201において、固定翼202との接合部分より前方下部には、エアバッグ150が配置されている。エアバッグ150は、筐体201の進行方向先端および先端に連続する底面の一部を保護するように展開可能に配置されている。固定翼202を有するドローン200においては、墜落時において進行方向先端および底面から地表に到達する可能性が高い。そのため、上述の位置にエアバッグ150が展開されるように構成されるドローン200においては、エアバッグ150により地表に存在する人等に対する衝突時の衝撃を緩和することができる。 In the casing 201 of the drone 200, an airbag 150 is disposed at a lower part in front of the joint portion with the fixed wing 202. The airbag 150 is disposed so as to be deployable so as to protect the front end of the casing 201 in the traveling direction and a part of the bottom surface continuous to the front end. In the drone 200 having the fixed wings 202, there is a high possibility that the drone 200 will reach the ground surface from the front and bottom in the traveling direction at the time of the crash. Therefore, in the drone 200 configured such that the airbag 150 is deployed at the above-described position, the airbag 150 can mitigate an impact at the time of a collision with a person or the like existing on the ground surface.
 固定翼202を有するドローン200は、回転翼を有するドローン100に比べて省エネルギーで長時間飛行することが可能であるため、例えば監視用のドローンに有用である。ドローン200は、ドローン100に比べて高い高度を飛行することが想定される。また、ドローン200は、実施の形態上、ドローン100よりも軽量であることが想定される。そのため、エアバッグ150を展開させる高度の閾値は、ドローン100よりも高くてもよい。当該閾値は、例えば5メートルから10メートルの間等に設定されてもよい。 Since the drone 200 having the fixed wing 202 can fly for a long time with energy saving compared to the drone 100 having the rotating wing, it is useful for a drone for monitoring, for example. The drone 200 is assumed to fly at a higher altitude than the drone 100. In addition, the drone 200 is assumed to be lighter than the drone 100 in the embodiment. Therefore, the altitude threshold at which the airbag 150 is deployed may be higher than that of the drone 100. The threshold may be set, for example, between 5 meters and 10 meters.
(本願発明による技術的に顕著な効果)
 本発明にかかるドローンにおいては、自律飛行時であっても、高い安全性を維持できるドローンを提供することができる。

 
(Technologically significant effect of the present invention)
The drone according to the present invention can provide a drone that can maintain high safety even during autonomous flight.

Claims (25)

  1.  飛行手段と、
     前記飛行手段を稼働させる飛行制御部と、
     墜落を検知する墜落判定部と、
     気体が封入されることで展開されるエアバッグと、
     前記墜落判定部が前記墜落を検知したことに基づいて、前記エアバッグを展開させるエアバッグ展開部と、
    を備えるドローン。
     
    Flight means;
    A flight control unit for operating the flight means;
    A crash determination unit that detects a crash;
    An airbag that is deployed by enclosing gas;
    Based on the fact that the crash determination unit has detected the crash, an airbag deployment unit that deploys the airbag;
    Drone equipped with.
  2.  前記ドローンの高度を測定する高度測定部をさらに備え、前記墜落判定部が墜落を検知したときに測定される前記ドローンの高度が第1高度より高いとき、前記エアバッグ展開部は前記エアバッグを展開する、請求項1記載のドローン。
     
    An altitude measuring unit for measuring the altitude of the drone is further provided, and when the altitude of the drone measured when the crash determination unit detects a crash, the airbag deploying unit The drone of claim 1, which is deployed.
  3.  前記ドローンの高度を測定する高度測定部をさらに備え、前記墜落判定部が墜落を検知したときに測定される前記ドローンの高度が第2高度より高いとき、前記エアバッグ展開部は、前記ドローンが墜落後に下方へ落下し、前記高度が前記第2高度以下になったことに基づいて、前記エアバッグを展開させる、請求項1又は2記載のドローン。
     
    An altitude measuring unit that measures the altitude of the drone is further provided, and when the altitude of the drone measured when the crash determination unit detects a crash, the airbag deployment unit is The drone according to claim 1 or 2, wherein the air bag is deployed based on the fact that it falls downward after a crash and the altitude is equal to or less than the second altitude.
  4.  前記第2高度は、前記ドローンの落下速度に基づいて定められる、請求項3記載のドローン。
     
    The drone according to claim 3, wherein the second altitude is determined based on a drop speed of the drone.
  5.  前記ドローンが障害物に衝突していることを検知する衝突判定部をさらに備え、前記エアバッグ展開部は、前記衝突判定部が前記ドローンの衝突を検知したことに基づいて、前記エアバッグを展開させる、請求項1乃至4のいずれかに記載のドローン。
     
    The apparatus further includes a collision determination unit that detects that the drone is colliding with an obstacle, and the airbag deployment unit deploys the airbag based on the fact that the collision determination unit has detected a collision of the drone. The drone according to any one of claims 1 to 4.
  6.  前記ドローンは、使用者に操作される操作機から送信される緊急停止指令を受信可能であり、前記エアバッグ展開部は、前記緊急停止指令に基づいて前記エアバッグを展開させる、請求項1乃至5のいずれかに記載のドローン。
     
    The drone can receive an emergency stop command transmitted from an operating device operated by a user, and the airbag deployment unit deploys the airbag based on the emergency stop command. 5. The drone according to any one of 5.
  7.  前記飛行制御部により意図的に行われる緊急停止により墜落する場合には、前記エアバッグ展開部は、前記飛行制御部から送信される緊急停止の信号に基づいて前記エアバッグを展開させる、請求項1乃至6のいずれかに記載のドローン。
     
    The airbag deployment unit deploys the airbag based on an emergency stop signal transmitted from the flight control unit when the airbag control unit crashes due to an emergency stop intentionally performed by the flight control unit. The drone according to any one of 1 to 6.
  8.  前記ドローンの重心は飛行状態において底面側に偏っており、前記エアバッグは前記ドローンの底面側に展開される、請求項1乃至7のいずれかに記載のドローン。
     
    The drone according to any one of claims 1 to 7, wherein a center of gravity of the drone is biased toward a bottom surface side in a flight state, and the airbag is deployed on a bottom surface side of the drone.
  9. 前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記薬剤制御部は、前記墜落判定部が前記墜落を検知したことに基づいて、前記薬剤の吐出を停止する、請求項1乃至8のいずれかに記載のドローン。
     
    The medicine control unit further controls whether or not the medicine is ejected from the drone to the outside, and the medicine control unit stops the medicine ejection based on the fact that the crash determination unit has detected the crash. The drone according to any one of claims 1 to 8.
  10.  飛行手段と、
     前記飛行手段を稼働させる飛行制御部と、
     墜落を検知する墜落判定部と、
     気体が封入されることで展開されるエアバッグと、
     前記墜落判定部が前記墜落を検知したことに基づいて、前記エアバッグを展開させるエアバッグ展開部と、
    を備えるドローンの制御方法であって、
     前記飛行手段を稼働させるステップと、
     前記ドローンの墜落を検知するステップと、
     前記ドローンの墜落を検知したことに基づいて、前記エアバッグを展開させるステップと、
    を含む、ドローンの制御方法。
     
    Flight means;
    A flight control unit for operating the flight means;
    A crash determination unit that detects a crash;
    An airbag that is deployed by enclosing gas;
    Based on the fact that the crash determination unit has detected the crash, an airbag deployment unit that deploys the airbag;
    A drone control method comprising:
    Operating the flying means;
    Detecting the drone crash;
    Deploying the airbag based on detecting the drone crash;
    Including drone control method.
  11.  前記ドローンの高度を測定するステップと、前記ドローンの墜落を検知したときに測定される前記ドローンの高度が第1高度より高いとき、前記エアバッグを展開するステップと、をさらに含む、請求項10記載のドローンの制御方法。
     
    The method further comprises: measuring the drone altitude; and deploying the airbag when the drone altitude measured when the drone crash is detected is higher than a first altitude. The drone control method described.
  12.  前記ドローンの高度を測定するステップと、前記ドローンの墜落を検知したときに測定される前記ドローンの高度が第2高度より高いとき、前記ドローンが墜落後に下方へ落下し、前記高度が前記第2高度以下になったことに基づいて、前記エアバッグを展開させるステップと、をさらに含む、請求項10又は11記載のドローンの制御方法。
     
    Measuring the height of the drone, and when the altitude of the drone measured when the drone crash is detected is higher than a second altitude, the drone falls downward after the crash, and the altitude is less than the second altitude. The drone control method according to claim 10 or 11, further comprising a step of deploying the airbag based on being below an altitude.
  13.  前記第2高度は、前記ドローンの落下速度に基づいて定められる、請求項12記載のドローンの制御方法。
     
    The drone control method according to claim 12, wherein the second altitude is determined based on a drop speed of the drone.
  14.  前記ドローンが障害物に衝突していることを検知するステップと、前記ドローンの衝突を検知したことに基づいて、前記エアバッグを展開させるステップと、をさらに含む、請求項10乃至13のいずれかに記載のドローンの制御方法。
     
    14. The method according to claim 10, further comprising: detecting that the drone is colliding with an obstacle; and deploying the airbag based on detecting the collision of the drone. The drone control method described in 1.
  15.  使用者に操作される操作機から送信される緊急停止指令を受信するステップと、前記緊急停止指令に基づいて前記エアバッグを展開させるステップと、をさらに含む、請求項10乃至14のいずれかに記載のドローンの制御方法。
     
    The method according to claim 10, further comprising: receiving an emergency stop command transmitted from an operating device operated by a user; and deploying the airbag based on the emergency stop command. The drone control method described.
  16.  前記飛行制御部から送信される緊急停止の信号に基づいて前記エアバッグを展開させるステップをさらに含む、請求項10乃至15のいずれかに記載のドローンの制御方法。
     
    The drone control method according to any one of claims 10 to 15, further comprising a step of deploying the airbag based on an emergency stop signal transmitted from the flight control unit.
  17. 前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記墜落を検知したことに基づいて、前記薬剤の吐出を停止するステップをさらに含む、請求項10乃至16のいずれかに記載のドローンの制御方法。
     
    The medicine control part which controls whether medicine is discharged from the drone outside is further included, and the step of stopping discharge of the medicine based on having detected the crushing is further included. The drone control method according to any one of the above.
  18.  飛行手段と、
     前記飛行手段を稼働させる飛行制御部と、
     墜落を検知する墜落判定部と、
     気体が封入されることで展開されるエアバッグと、
     前記墜落判定部が前記墜落を検知したことに基づいて、前記エアバッグを展開させるエアバッグ展開部と、
    を備えるドローン制御プログラムであって、
     前記飛行手段を稼働させる飛行制御命令と、
     前記ドローンの墜落を検知する墜落検知命令と、
     前記ドローンの墜落を検知したことに基づいて、前記エアバッグを展開させるエアバッグ展開命令と、
    をコンピューターに実行させる、ドローン制御プログラム。
     
    Flight means;
    A flight control unit for operating the flight means;
    A crash determination unit that detects a crash;
    An airbag that is deployed by enclosing gas;
    Based on the fact that the crash determination unit has detected the crash, an airbag deployment unit that deploys the airbag;
    A drone control program comprising:
    Flight control instructions for operating the flight means;
    A crash detection command to detect the crash of the drone;
    Based on detecting the drone crash, an airbag deployment command to deploy the airbag;
    A drone control program that makes a computer run.
  19.  前記ドローンの高度を測定する高度測定命令をコンピューターに実行させ、前記ドローンの墜落を検知したときに測定される前記ドローンの高度が第1高度より高いとき、前記エアバッグを展開させる命令をコンピューターに実行させる、請求項18記載のドローン制御プログラム。
     
    The computer executes an altitude measurement command for measuring the altitude of the drone, and when the drone altitude measured when the drone crash is detected is higher than a first altitude, the computer is instructed to deploy the airbag. The drone control program according to claim 18, which is executed.
  20.  前記ドローンの高度を測定する高度測定命令をコンピューターに実行させ、前記ドローンの墜落を検知したときに測定される前記ドローンの高度が第2高度より高いとき、前記ドローンが墜落後に下方へ落下し、前記高度が前記第2高度以下になったことに基づいて、前記エアバッグを展開させる命令をコンピューターに実行させる、請求項18又は19記載のドローン制御プログラム。
     
    Causing the computer to execute an altitude measuring instruction for measuring the altitude of the drone, and when the drone altitude measured when the drone crash is detected is higher than a second altitude, the drone falls downward after the crash, The drone control program according to claim 18 or 19, wherein the computer executes a command to deploy the airbag based on the fact that the altitude is equal to or lower than the second altitude.
  21.  前記第2高度は、前記ドローンの落下速度に基づいて定められる、請求項20記載のドローン制御プログラム。
     
    21. The drone control program according to claim 20, wherein the second altitude is determined based on a drop speed of the drone.
  22.  前記ドローンが障害物に衝突していることを検知する衝突検知命令と、前記ドローンの衝突を検知したことに基づいて、前記エアバッグを展開させる命令と、をさらにコンピューターに実行させる、請求項18乃至21のいずれかに記載のドローン制御プログラム。
     
    The computer further executes a collision detection command for detecting that the drone is colliding with an obstacle and a command for deploying the airbag based on the detection of the collision of the drone. The drone control program in any one of thru | or 21.
  23.  使用者に操作される操作機から送信される緊急停止指令を受信する命令と、前記緊急停止指令に基づいて前記エアバッグを展開させる命令と、をさらにコンピューターに実行させる、請求項18乃至22のいずれかに記載のドローン制御プログラム。
     
    23. The computer according to claim 18, further comprising: an instruction for receiving an emergency stop command transmitted from an operating device operated by a user; and a command for deploying the airbag based on the emergency stop command. The drone control program described in any one.
  24.  前記飛行制御部から送信される緊急停止の信号に基づいて前記エアバッグを展開させる命令をさらにコンピューターに実行させる、請求項18乃至23のいずれかに記載のドローン制御プログラム。
     
    The drone control program according to any one of claims 18 to 23, further causing a computer to execute an instruction to deploy the airbag based on an emergency stop signal transmitted from the flight control unit.
  25. 前記墜落を検知したことに基づいて、前記薬剤の吐出を停止する命令をさらにコンピューターに実行させる、請求項18乃至24のいずれかに記載のドローン制御プログラム。
     
    The drone control program according to any one of claims 18 to 24, further causing a computer to execute an instruction to stop the discharge of the medicine based on the detection of the crash.
PCT/JP2019/007635 2018-02-28 2019-02-27 Drone, control method therefor, and program WO2019168052A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020503586A JPWO2019168052A1 (en) 2018-02-28 2019-02-27 Drone, its control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018035042 2018-02-28
JP2018-035042 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019168052A1 true WO2019168052A1 (en) 2019-09-06

Family

ID=67805600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007635 WO2019168052A1 (en) 2018-02-28 2019-02-27 Drone, control method therefor, and program

Country Status (2)

Country Link
JP (1) JPWO2019168052A1 (en)
WO (1) WO2019168052A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110949670A (en) * 2019-12-11 2020-04-03 浙江辛巴达机器人科技有限公司 Pesticide sprays uses unmanned aerial vehicle
CN114348264A (en) * 2022-01-29 2022-04-15 国家海洋环境预报中心 Unmanned aerial vehicle search and rescue method and system based on marine environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006894A (en) * 1998-06-22 2000-01-11 New Delta Ind Co Radio controlled helicopter
JP2006001487A (en) * 2004-06-21 2006-01-05 Yanmar Co Ltd Unmanned helicopter
JP2009514740A (en) * 2005-11-09 2009-04-09 ベル ヘリコプター テクストロン インコーポレイテッド Aircraft collision mitigation system
JP2016088111A (en) * 2014-10-29 2016-05-23 ヤンマー株式会社 helicopter
JP2016222244A (en) * 2016-08-03 2016-12-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Collision protection device
JP2017056822A (en) * 2015-09-16 2017-03-23 株式会社マルチコプターラボ Radio control multicopter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015127630A1 (en) * 2014-02-27 2015-09-03 SZ DJI Technology Co., Ltd. Impact protection apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006894A (en) * 1998-06-22 2000-01-11 New Delta Ind Co Radio controlled helicopter
JP2006001487A (en) * 2004-06-21 2006-01-05 Yanmar Co Ltd Unmanned helicopter
JP2009514740A (en) * 2005-11-09 2009-04-09 ベル ヘリコプター テクストロン インコーポレイテッド Aircraft collision mitigation system
JP2016088111A (en) * 2014-10-29 2016-05-23 ヤンマー株式会社 helicopter
JP2017056822A (en) * 2015-09-16 2017-03-23 株式会社マルチコプターラボ Radio control multicopter
JP2016222244A (en) * 2016-08-03 2016-12-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Collision protection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110949670A (en) * 2019-12-11 2020-04-03 浙江辛巴达机器人科技有限公司 Pesticide sprays uses unmanned aerial vehicle
CN110949670B (en) * 2019-12-11 2021-01-29 奉节县堡家农业开发有限公司 Pesticide sprays uses unmanned aerial vehicle
CN114348264A (en) * 2022-01-29 2022-04-15 国家海洋环境预报中心 Unmanned aerial vehicle search and rescue method and system based on marine environment
CN114348264B (en) * 2022-01-29 2022-08-02 国家海洋环境预报中心 Unmanned aerial vehicle search and rescue method and system based on marine environment

Also Published As

Publication number Publication date
JPWO2019168052A1 (en) 2020-07-27

Similar Documents

Publication Publication Date Title
JP6752481B2 (en) Drones, how to control them, and programs
JP6727525B2 (en) Drone, drone control method, and drone control program
JP6733948B2 (en) Drone, its control method, and control program
JP6727498B2 (en) Agricultural drone with improved foolproof
JP6889502B2 (en) Drones, drone control methods, and drone control programs
JP6774667B2 (en) Unmanned aerial vehicle, its control system and control program
CN111556842B (en) Agricultural unmanned aerial vehicle for improving safety
JP6913979B2 (en) Drone
WO2019168052A1 (en) Drone, control method therefor, and program
JP6795244B2 (en) Drones, how to control them, and programs
JP7333947B2 (en) Drone, drone control method, and drone control program
JP6806403B2 (en) Drones, drone control methods, and drone control programs
JPWO2020095841A1 (en) Drone
JP6996792B2 (en) Drug discharge control system, its control method, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760457

Country of ref document: EP

Kind code of ref document: A1