WO2019167477A1 - Two-dimensional spectroscopy method and two-dimensional spectroscopy device - Google Patents

Two-dimensional spectroscopy method and two-dimensional spectroscopy device Download PDF

Info

Publication number
WO2019167477A1
WO2019167477A1 PCT/JP2019/001885 JP2019001885W WO2019167477A1 WO 2019167477 A1 WO2019167477 A1 WO 2019167477A1 JP 2019001885 W JP2019001885 W JP 2019001885W WO 2019167477 A1 WO2019167477 A1 WO 2019167477A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical pulse
pulse train
wavelength
dimensional
interference signal
Prior art date
Application number
PCT/JP2019/001885
Other languages
French (fr)
Japanese (ja)
Inventor
薫 美濃島
峰士 加藤
Original Assignee
国立大学法人電気通信大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人電気通信大学 filed Critical 国立大学法人電気通信大学
Priority to JP2019509003A priority Critical patent/JP7272652B2/en
Publication of WO2019167477A1 publication Critical patent/WO2019167477A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

In this two-dimensional spectroscopy method, divided optical pulse trains are obtained by dividing an optical pulse train in which a plurality of optical pulses having a predetermined frequency distribution are arranged chronologically, each of a plurality of optical pulse trains to be received after one of the divided optical pulse trains among the divided optical pulse trains acts on each of measurement areas of an object to be measured is made to interfere with another of the divided optical pulse trains among the plurality of divided optical pulse trains obtained by diving the optical pulse train, and wavelength information for each of the measurement areas of the object to be measured is obtained from the generated interference signals.

Description

2次元分光法及び2次元分光装置2D spectroscopy and 2D spectrometer
 本発明は、2次元分光法及び2次元分光装置に関する。本願は、2018年3月2日に、日本に出願された特願2018-038102号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a two-dimensional spectroscopy method and a two-dimensional spectroscopy apparatus. This application claims priority on March 2, 2018 based on Japanese Patent Application No. 2018-0308102 filed in Japan, the contents of which are incorporated herein by reference.
 従来、分光情報を得る手法として、撮像法やフーリエ変換赤外分光法(Fourier Transform Infrared Spectroscopy:FT-IR)、分散型の赤外分光法などをはじめとする多くの手法が用いられている。これらの手法では、2次元の空間情報と1次元の波長情報とを同時に得ることは困難であった。以下、2次元の空間情報と1次元の波長情報とをまとめて、2次元分光情報という場合がある。 Conventionally, as a technique for obtaining spectroscopic information, many techniques such as an imaging method, Fourier transform infrared spectroscopy (FT-IR), and a dispersive infrared spectroscopic method are used. In these methods, it is difficult to obtain two-dimensional spatial information and one-dimensional wavelength information at the same time. Hereinafter, the two-dimensional spatial information and the one-dimensional wavelength information may be collectively referred to as two-dimensional spectral information.
 近年、天文学や地球科学、物性分野などの学術分野では、2次元分光情報に含まれる各情報を同時にリアルタイムで取得可能な2次元分光への期待が高まっている。2次元分光は、面分光、あるいはハイパースペクトルイメージングとも呼ばれる。2次元分光情報が得られれば、例えば取得データから任意の波長の画像を抽出でき、例えば銀河などの拡がった天体について詳細に解析できる。従来の2次元分光法では、例えば2次元平面の各点(複数の測定領域)をスキャンしつつ、各点についてFT-IRを行い、2次元分光情報を取得できる。ところが、従来の2次元分光法では時間掃引に時間がかかるため、測定光路上の空気揺らぎによる影響を受けるという問題や、動的対象物の計測を行えない等の問題があった。一方、一度に2次元分光情報を取得できれば、空気揺らぎなどの影響を受けずに様々な動的対象物の分光計測を正確に行うことができる。 In recent years, in the academic fields such as astronomy, earth science, and physical properties, there is an increasing expectation for two-dimensional spectroscopy that can simultaneously acquire each information included in the two-dimensional spectroscopy information in real time. Two-dimensional spectroscopy is also called surface spectroscopy or hyperspectral imaging. If two-dimensional spectroscopic information is obtained, for example, an image of an arbitrary wavelength can be extracted from acquired data, and for example, an expanded celestial body such as a galaxy can be analyzed in detail. In the conventional two-dimensional spectroscopy, for example, two-dimensional spectroscopic information can be acquired by performing FT-IR for each point while scanning each point (a plurality of measurement regions) on the two-dimensional plane. However, in the conventional two-dimensional spectroscopy, since time sweeping takes time, there are problems such as being affected by air fluctuations on the measurement optical path and problems such as being unable to measure a dynamic object. On the other hand, if two-dimensional spectroscopic information can be acquired at once, it is possible to accurately perform spectroscopic measurement of various dynamic objects without being affected by air fluctuations.
 2次元分光の手法としては、2次元の空間情報と1次元の波長情報とを、例えば回折格子を用いて一度に取得する手法や、可変バンドパスフィルタで透過させる波長帯を掃引しながら取得する手法などが挙げられる。非特許文献1には、スライサー(Slicer)と呼ばれ、かつ、細長いミラーが複数配置された光学素子を備えたイメージスライサー型面分光ユニットが開示されている。非特許文献2及び非特許文献3には、可変バンドパスフィルタで透過させる波長帯を掃引しつつ、2次元の空間情報と1次元の波長情報とを取得する手法に適用可能な可変バンドパスフィルタが開示されている。 As a two-dimensional spectroscopy method, two-dimensional spatial information and one-dimensional wavelength information are acquired at once using, for example, a diffraction grating, or acquired while sweeping a wavelength band transmitted through a variable bandpass filter. The method etc. are mentioned. Non-Patent Document 1 discloses an image slicer type surface spectroscopic unit that is called a slicer and includes an optical element in which a plurality of elongated mirrors are arranged. Non-Patent Document 2 and Non-Patent Document 3 disclose a variable bandpass filter applicable to a technique for acquiring two-dimensional spatial information and one-dimensional wavelength information while sweeping a wavelength band transmitted by a variable bandpass filter. Is disclosed.
 しかしながら、非特許文献1に開示されているイメージスライサー型面分光ユニットを用いた場合、空間情報の分解能は撮像された画像の分割数に依存し、空間情報の分割数は最大でも24程度に抑えられるが、波長情報の半値幅は1nm程度に縮小できる。一方、非特許文献2に開示されている可変バンドパスフィルタで異なる波長帯の光を透過させて2次元の空間情報と1次元の波長情報とを取得すると、空間分解能が画像素子と略同等にまで向上する。非特許文献2や非特許文献3に開示されているイメージング装置では、非特許文献3に記載されているように、例えばファブリペローフィルタの熱膨張を抑えるために±0.1℃の温度安定度が求められる。つまり、従来の2次元分光では、高解像度と高分解能とを両立させることは難しいという問題があった。 However, when the image slicer type surface spectroscopic unit disclosed in Non-Patent Document 1 is used, the resolution of the spatial information depends on the number of divisions of the captured image, and the number of divisions of the spatial information is suppressed to about 24 at the maximum. However, the half width of the wavelength information can be reduced to about 1 nm. On the other hand, when two-dimensional spatial information and one-dimensional wavelength information are acquired by transmitting light of different wavelength bands with the variable bandpass filter disclosed in Non-Patent Document 2, the spatial resolution is substantially equal to that of the image element. To improve. In the imaging apparatus disclosed in Non-Patent Document 2 and Non-Patent Document 3, as described in Non-Patent Document 3, for example, a temperature stability of ± 0.1 ° C. is used to suppress thermal expansion of a Fabry-Perot filter. Is required. That is, the conventional two-dimensional spectroscopy has a problem that it is difficult to achieve both high resolution and high resolution.
 本発明は、上述の問題を解決するためになされたものであって、高解像度及び高分解能を両立可能な2次元分光法及び2次元分光装置を提供する。 The present invention has been made to solve the above-described problems, and provides a two-dimensional spectroscopy method and a two-dimensional spectroscopy apparatus that can achieve both high resolution and high resolution.
 本発明の2次元分光法は、相対的なチャープ量が異なる第1の光パルス列及び第2の光パルス列を生成する光パルス列生成工程と、前記第1の光パルス列を、被測定物体の互いに異なる測定領域に照射する光パルス列照射工程と、前記第1の光パルス列が前記被測定物体の前記測定領域のそれぞれに作用した後の複数の受光対象光パルス列のそれぞれと、前記第2の光パルス列とを干渉させて生成される干渉信号を計測する干渉信号計測工程と、前記干渉信号から前記被測定物体の前記測定領域ごとの波長情報を取得する波長情報取得工程と、を備える。 In the two-dimensional spectroscopy of the present invention, the first optical pulse train generating step for generating the first optical pulse train and the second optical pulse train having different relative chirp amounts and the first optical pulse train are different from each other in the object to be measured. An optical pulse train irradiating step for irradiating a measurement region; each of a plurality of light receiving target optical pulse trains after the first optical pulse train has acted on each of the measurement regions of the object to be measured; and the second optical pulse train; An interference signal measurement step of measuring an interference signal generated by causing interference with the signal, and a wavelength information acquisition step of acquiring wavelength information for each measurement region of the object to be measured from the interference signal.
 上述の2次元分光法では、前記光パルス列照射工程において、前記第1の光パルス列及び前記第2の光パルス列の少なくとも1つの光パルス列のチャープ量を調整することによって、前記波長情報取得工程において取得する前記波長情報の分解能を変化させてもよい。 In the above-described two-dimensional spectroscopy, in the optical pulse train irradiation step, the wavelength information acquisition step acquires the chirp amount of at least one optical pulse train of the first optical pulse train and the second optical pulse train. The resolution of the wavelength information to be changed may be changed.
 上述の2次元分光法では、前記干渉信号は互いに異なり干渉縞周波数が最も低い波長を示す干渉縞を有してもよい。前記波長情報取得工程において、前記干渉縞周波数が最も低い波長を前記被測定物体の前記測定領域ごとの波長情報として取得してもよい。 In the above-described two-dimensional spectroscopy, the interference signals may have interference fringes that are different from each other and indicate a wavelength having the lowest interference fringe frequency. In the wavelength information acquisition step, the wavelength having the lowest interference fringe frequency may be acquired as wavelength information for each measurement region of the object to be measured.
 上述の2次元分光法では、前記波長情報取得工程において、前記受光対象光パルス列に所定の遅延時間を付加して前記干渉信号を得るとともに、前記干渉信号を透過率の波長依存性を互いに逆としたフィルタを通過させた透過強度を取得し、取得した透過強度の比に基づいて前記被測定物体の前記測定領域ごとのスペクトル情報を取得してもよい。 In the above-described two-dimensional spectroscopy, in the wavelength information acquisition step, the interference signal is obtained by adding a predetermined delay time to the light receiving target optical pulse train, and the wavelength dependence of the transmittance of the interference signal is reversed to each other. The transmission intensity transmitted through the filter may be acquired, and the spectrum information for each measurement region of the object to be measured may be acquired based on the acquired transmission intensity ratio.
 本発明の2次元分光装置は、相対的なチャープ量が異なる第1の光パルス列及び第2の光パルス列を生成する光源部と、前記光源部から出射された前記第1の光パルス列を、被測定物体の互いに異なる測定領域に照射する光パルス列照射部と、前記第1の光パルス列が前記被測定物体の前記測定領域のそれぞれに作用した後の複数の受光対象光パルス列のそれぞれと前記第2の光パルス列との干渉信号を生成する干渉信号生成部と、前記干渉信号生成部で生成された前記干渉信号に基づいて前記被測定物体の前記測定領域ごとの波長情報を取得する波長情報取得部と、を備える。 The two-dimensional spectroscopic device of the present invention includes a light source unit that generates a first optical pulse train and a second optical pulse train having different relative chirp amounts, and a first optical pulse train emitted from the light source unit. An optical pulse train irradiating unit for irradiating different measurement regions of the measurement object, each of the plurality of light receiving target optical pulse trains after the first optical pulse train acts on each of the measurement regions of the measurement object, and the second An interference signal generation unit that generates an interference signal with the optical pulse train, and a wavelength information acquisition unit that acquires wavelength information for each measurement region of the object to be measured based on the interference signal generated by the interference signal generation unit And comprising.
 上述の2次元分光装置において、前記干渉信号は互いに異なり干渉縞周波数が最も低い波長を示す干渉縞を有してもよい。前記波長情報取得部では、前記干渉縞周波数が最も低い波長が前記被測定物体の前記測定領域ごとの波長情報として取得されてもよい。 In the above-described two-dimensional spectroscopic device, the interference signals may have interference fringes which are different from each other and indicate a wavelength having the lowest interference fringe frequency. In the wavelength information acquisition unit, the wavelength having the lowest interference fringe frequency may be acquired as wavelength information for each measurement region of the object to be measured.
 上述の2次元分光装置において、前記干渉信号生成部は前記受光対象光パルス列に所定の遅延時間を付加する遅延時間調整機構を備え、前記波長情報取得部は透過率の波長依存性が互いに逆になっているペアフィルタを備えてもよい。 In the above-described two-dimensional spectroscopic device, the interference signal generation unit includes a delay time adjustment mechanism that adds a predetermined delay time to the light reception target optical pulse train, and the wavelength information acquisition unit has the wavelength dependence of the transmittances opposite to each other. A pair filter may be provided.
 本発明によれば、高解像度及び高分解能を両立可能な2次元分光法及び2次元分光装置が提供される。 According to the present invention, a two-dimensional spectroscopic method and a two-dimensional spectroscopic device capable of achieving both high resolution and high resolution are provided.
本発明の2次元分光法を説明するための図であり、チャープ光パルス列の模式図である。It is a figure for demonstrating the two-dimensional spectroscopy of this invention, and is a schematic diagram of a chirped light pulse train. 光周波数コムの時間軸上の電場分布(上段)及び周波数軸上の強度分布(下段)を説明するための模式図である。It is a schematic diagram for demonstrating the electric field distribution (upper stage) and the intensity distribution (lower stage) on a frequency axis on the time axis of an optical frequency comb. 本発明の第1実施形態の2次元分光装置の構成を示す上面図である。It is a top view which shows the structure of the two-dimensional spectrometer of 1st Embodiment of this invention. 図3に示す2次元分光装置の変形例の構成を示す上面図である。It is a top view which shows the structure of the modification of the two-dimensional spectroscopy apparatus shown in FIG. 図3に示す2次元分光装置において干渉信号が生成される原理及び被測定物体の1つの測定領域の波長情報を説明するための模式図である。FIG. 4 is a schematic diagram for explaining the principle that an interference signal is generated in the two-dimensional spectroscopic device shown in FIG. 3 and wavelength information of one measurement region of an object to be measured. 図3に示す2次元分光装置の波長情報取得部の具体的構成の一例を示す上面図である。It is a top view which shows an example of the specific structure of the wavelength information acquisition part of the two-dimensional spectrometer shown in FIG. 図6に示す2次元分光装置の干渉信号生成部の一部の構成を示す模式図である。It is a schematic diagram which shows the structure of a part of interference signal generation part of the two-dimensional spectroscopy apparatus shown in FIG. 図6に示す2次元分光装置に適用可能なペアフィルタの透過率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the transmittance | permeability of the pair filter applicable to the two-dimensional spectrometer shown in FIG. 図6に示す2次元分光装置に適用可能なペアフィルタの透過強度の遅延時間依存性を示す模式図であり、ペアフィルタの一方のフィルタ(F1)の透過強度の遅延時間依存性を示す図である。It is a schematic diagram which shows the delay time dependence of the transmission intensity of a pair filter applicable to the two-dimensional spectrometer shown in FIG. 6, and is a figure which shows the delay time dependence of the transmission intensity of one filter (F1) of a pair filter. is there. 図6に示す2次元分光装置に適用可能なペアフィルタの透過強度の遅延時間依存性を示す模式図であり、ペアフィルタの他方のフィルタ(F2)の透過強度の遅延時間依存性を示す図である。It is a schematic diagram which shows the delay time dependence of the transmission intensity of the pair filter applicable to the two-dimensional spectrometer shown in FIG. 6, and is a figure which shows the delay time dependence of the transmission intensity of the other filter (F2) of the pair filter. is there. 図6に示す2次元分光装置に適用可能なペアフィルタの透過強度の遅延時間依存性を示す模式図であり、ペアフィルタの透過強度の比の遅延時間依存性を示す図である。It is a schematic diagram which shows the delay time dependence of the transmission intensity of a pair filter applicable to the two-dimensional spectrometer shown in FIG. 6, and is a figure which shows the delay time dependence of the ratio of the transmission intensity of a pair filter.
 以下、本発明の2次元分光法及び2次元分光装置の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the two-dimensional spectroscopy method and the two-dimensional spectroscopy apparatus of the present invention will be described with reference to the drawings.
[原理的説明]
 はじめに、本発明の2次元分光法の原理について、説明する。本発明の2次元分光法は、光パルス列生成工程と、光パルス列照射工程と、干渉信号計測工程と、波長情報取得工程と、を備える。光パルス列生成工程では、相対的なチャープ量が異なる第1の光パルス列及び第2の光パルス列を生成する。光パルス列照射工程では、第1の光パルス列を、被測定物体の互いに異なる測定領域に照射する。干渉信号計測工程では、第1の光パルス列が被測定物体の測定領域のそれぞれに作用した後の複数の受光対象光パルス列のそれぞれと第2の光パルス列とを干渉させ、干渉によって生成される干渉信号を計測する。波長情報取得工程では、干渉信号から被測定物体の測定領域ごとの波長情報を取得する。
[Principle explanation]
First, the principle of the two-dimensional spectroscopy of the present invention will be described. The two-dimensional spectroscopy of the present invention includes an optical pulse train generation step, an optical pulse train irradiation step, an interference signal measurement step, and a wavelength information acquisition step. In the optical pulse train generation step, a first optical pulse train and a second optical pulse train having different relative chirp amounts are generated. In the optical pulse train irradiation step, the first optical pulse train is applied to different measurement regions of the object to be measured. In the interference signal measuring step, the first optical pulse train is caused to interfere with each of the plurality of light receiving target optical pulse trains after the first optical pulse train has acted on each of the measurement regions of the object to be measured, and the interference generated by the interference. Measure the signal. In the wavelength information acquisition step, wavelength information for each measurement region of the object to be measured is acquired from the interference signal.
 本発明の一実施形態の2次元分光法は、照射する光パルス列照射工程において、2つの光パルス列のうち、少なくとも一方の光パルス列を、時間軸に対する所定の周波数分布を有する光パルスが時系列に複数配された光パルス列(いわゆる、チャープ光パルス列)とする。すなわち、2つの光パルス列のうち、少なくとも一方の光パルス列をチャープさせる。 In the two-dimensional spectroscopy of one embodiment of the present invention, in the optical pulse train irradiating step, at least one of the two optical pulse trains is optically pulsed with a predetermined frequency distribution with respect to the time axis in time series. A plurality of optical pulse trains (so-called chirp optical pulse trains) are used. That is, at least one of the two optical pulse trains is chirped.
 図1は、時間軸に対する所定の周波数分布を有する光パルスCP(k)が時系列に複数配された光パルス列(チャープ光パルス列)APの模式図である。kは、任意の自然数であり、光パルスの時間軸上の番号を表す。それぞれの光パルスCP(k)では、時間軸上で周波数が連続的に変化する。以下、光パルス列APをチャープ光パルス列APという場合がある。チャープ光パルス列APの生成手法は特に限定されない。本実施形態では、チャープ光パルス列APの生成手法の一例として、光周波数コムを分散媒質に通過させることによってチャープ光パルス列APを得る手法について説明する。 FIG. 1 is a schematic diagram of an optical pulse train (chirped optical pulse train) AP in which a plurality of optical pulses CP (k) having a predetermined frequency distribution with respect to the time axis are arranged in time series. k is an arbitrary natural number and represents a number on the time axis of the optical pulse. In each optical pulse CP (k), the frequency continuously changes on the time axis. Hereinafter, the optical pulse train AP may be referred to as a chirped optical pulse train AP. The method for generating the chirped optical pulse train AP is not particularly limited. In the present embodiment, a technique for obtaining a chirped optical pulse train AP by passing an optical frequency comb through a dispersion medium will be described as an example of a technique for generating a chirped optical pulse train AP.
 図2は、光周波数コムの時間軸上の電場分布(上段)及び周波数軸上の強度分布(すなわち、スペクトル分布、下段)を示す模式図である。図2に示すように、光周波数コムのパルスの時間幅τと周波数の広がりΔνとの間には、(1)式に示す関係が成り立つ。 FIG. 2 is a schematic diagram showing an electric field distribution on the time axis (upper stage) and an intensity distribution on the frequency axis (that is, spectral distribution, lower stage) of the optical frequency comb. As shown in FIG. 2, the relationship shown in the equation (1) is established between the time width τ of the pulse of the optical frequency comb and the frequency spread Δν.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図2の上段に示すように、一定の繰り返し時間Trepで発振される光パルス列は、周波数軸上で見ると一定の周波数間隔frepを有する。繰り返し時間Trepと周波数間隔frepとの間には、(2)式に示す関係が成り立つ。 As shown in the upper part of FIG. 2, the optical pulse train oscillated at a constant repetition time Trep has a constant frequency interval frep when viewed on the frequency axis. Between the repetition time T rep and the frequency interval f rep , the relationship shown in the equation (2) is established.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 それぞれの光パルス列は、光源の共振器等の内部で伝搬する多くの縦モードの重ね合わせから成り立っている。光パルス列は、これらの縦モードの重ね合わせの波である搬送波と、搬送波の包絡線を構成する波束によって構成されている。搬送波は、キャリアとも呼ばれる。搬送波の包絡線は、エンベロップとも呼ばれる。搬送波の速度と波束の速度は互いに異なるため、時間の経過に伴い、位相差が生じる。レーザー共振器は分散媒質によって構成される。時間軸上で所定の時間Trepの時間間隔ごとに繰り返し発せられる光パルス列では、隣り合うパルス間に位相のずれφCEOが生じる。位相のずれφCEOの周期は、時間TCEOで一周期する。繰り返し時間Trep、時間TCEO及び位相のずれφCEOの間には、(3)式に示す関係が成り立つ。 Each optical pulse train is composed of a superposition of many longitudinal modes propagating inside a resonator of the light source. The optical pulse train is composed of a carrier wave, which is a superposition wave of these longitudinal modes, and a wave packet constituting an envelope of the carrier wave. A carrier wave is also called a carrier. The envelope of the carrier wave is also called an envelope. Since the velocity of the carrier wave and the velocity of the wave packet are different from each other, a phase difference occurs with time. The laser resonator is constituted by a dispersion medium. In an optical pulse train that is repeatedly emitted at time intervals of a predetermined time T rep on the time axis, a phase shift φ CEO occurs between adjacent pulses. The period of the phase shift φ CEO is one period at time T CEO . The relationship shown in the equation (3) is established among the repetition time T rep , the time T CEO and the phase shift φ CEO .
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 時間軸上における上述の超短パルス列をフーリエ変換し、周波数軸上で観測すると、図2の下段に示すように、互いに時間間隔Trepの逆数に相当する繰り返し周波数frepの間隔をあけて並んだ多数の周波数モードが観測される。光周波数コムの全体のスペクトル幅は、超短光パルスの時間幅の逆数(1/τ)に相当する。 When the above ultrashort pulse train on the time axis is Fourier-transformed and observed on the frequency axis, as shown in the lower part of FIG. 2, they are arranged at intervals of the repetition frequency f rep corresponding to the reciprocal of the time interval T rep. Many frequency modes are observed. The overall spectral width of the optical frequency comb corresponds to the reciprocal (1 / τ) of the time width of the ultrashort optical pulse.
 図2の下段に示すように、光周波数コムのキャリア・エンベロップ・オフセット(Carrier Envelope Offset: CEO)fCEOは、時間TCEOの逆数に相当する。そして、キャリア・エンベロップ・オフセットfCEO、位相のずれφCEO、時間TCEOの間には、(4)式に示す関係が成り立つ。 As shown in the lower part of FIG. 2, the optical frequency comb of the carrier envelope offset (Carrier Envelope Offset: CEO) f CEO is equivalent to the reciprocal of the time T CEO. The carrier envelope offset f CEO, shift phi CEO phase, between the time T CEO, holds the relationship shown in equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 光コムのm番目のスペクトルの周波数は、繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOとをパラメータとして、(5)式のように表される。 The frequency of the m-th spectrum of the optical comb is expressed as in equation (5) using the repetition frequency f rep and the carrier envelope offset f CEO as parameters.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上述の相互関係をふまえ、光周波数コムをなす複数の周波数モードに関するパラメータを制御することで、搬送波や包絡線を制御できる。さらに、生成された光周波数コムに適当な分散を与えることによって、所望のチャープ量を有するチャープ光パルス列APが得られる。 Based on the above-mentioned interrelationship, the carrier wave and the envelope can be controlled by controlling the parameters related to the plurality of frequency modes forming the optical frequency comb. Further, by providing appropriate dispersion to the generated optical frequency comb, a chirped optical pulse train AP having a desired chirp amount can be obtained.
[2次元分光装置]
 図3は、本発明の2次元分光装置1Aの構成を示す上面図である。図3に示すように、2次元分光装置1Aは、光パルス列APを出射する光源3と、ハーフミラー12と、光パルス列照射部4と、干渉信号生成部6と、波長情報取得部8と、を備える。ハーフミラー12は、光源3から出射された光パルス列APを複数(図3では2つ)の分割光パルス列DP1,DP2に分ける。光パルス列照射部4は、分割光パルス列(第1の光パルス列)DP1を、被測定物体Sの互いに異なる測定領域に照射する。干渉信号生成部6は、分割光パルス列DP1が被測定物体Sの測定領域のそれぞれに作用した後の複数の受光対象光パルス列EPのそれぞれと分割光パルス列(第2の光パルス列)DP2との干渉信号IMGを生成する。波長情報取得部8は、干渉信号IMGに基づいて被測定物体Sの測定領域ごとの波長情報を取得する。なお、光源3及びハーフミラー12は、相対的なチャープ量が異なる分割光パルス列DP1,DP2を生成する光源部として機能する。
[Two-dimensional spectrometer]
FIG. 3 is a top view showing the configuration of the two-dimensional spectroscopic apparatus 1A of the present invention. As shown in FIG. 3, the two-dimensional spectroscopic device 1A includes a light source 3 that emits an optical pulse train AP, a half mirror 12, an optical pulse train irradiation unit 4, an interference signal generation unit 6, a wavelength information acquisition unit 8, Is provided. The half mirror 12 divides the optical pulse train AP emitted from the light source 3 into a plurality (two in FIG. 3) of divided optical pulse trains DP1 and DP2. The light pulse train irradiation unit 4 irradiates the measurement regions of the measurement object S different from each other with the divided light pulse train (first light pulse train) DP1. The interference signal generation unit 6 interferes with each of the plurality of light receiving target optical pulse trains EP after the split optical pulse train DP1 has acted on each of the measurement regions of the measured object S and the split optical pulse train (second optical pulse train) DP2. A signal IMG is generated. The wavelength information acquisition unit 8 acquires wavelength information for each measurement region of the measured object S based on the interference signal IMG. The light source 3 and the half mirror 12 function as a light source unit that generates the divided optical pulse trains DP1 and DP2 having different relative chirp amounts.
 光源3は、上述したように所望のチャープ量で制御された光パルス列APを出射する。
 光パルス列照射部4は、ハーフミラー12,14及び全反射ミラー16を備える。
The light source 3 emits the optical pulse train AP controlled with a desired amount of chirp as described above.
The optical pulse train irradiation unit 4 includes half mirrors 12 and 14 and a total reflection mirror 16.
 図3に示す構成では、光源3から発せられた光パルス列APがハーフミラー12によって分割光パルス列DP1,DP2に分けられる。分割光パルス列DP1は、ハーフミラー12及び全反射ミラー16によって反射され、ハーフミラー14を透過し、被測定物体Sに照射される。分割光パルス列D1は、被測定物体Sから反射されるとともに被測定物体Sの分光情報を含み、受光対象光パルス列EPとなって、ハーフミラー14で反射され、干渉信号生成部6に入射する。一方、ハーフミラー12によって分けられた分割光パルス列DP1,DP2のうち分割光パルス列DP2は、そのまま干渉信号生成部6に入射する。 In the configuration shown in FIG. 3, the optical pulse train AP emitted from the light source 3 is divided by the half mirror 12 into the divided optical pulse trains DP1 and DP2. The divided optical pulse train DP1 is reflected by the half mirror 12 and the total reflection mirror 16, passes through the half mirror 14, and is applied to the object S to be measured. The divided light pulse train D1 is reflected from the object to be measured S and includes spectral information of the object to be measured S, becomes a light receiving object light pulse train EP, is reflected by the half mirror 14, and enters the interference signal generator 6. On the other hand, the divided optical pulse train DP2 out of the divided optical pulse trains DP1 and DP2 divided by the half mirror 12 is incident on the interference signal generator 6 as it is.
 なお、受光対象光パルス列EPに被測定物体Sの分光情報が含まれればよい。そのため、分割光パルス列DP1が被測定物体Sの測定領域のそれぞれに作用する際、上述のように分割光パルス列DP1は、被測定物体Sに入射した後、被測定物体Sから反射してもよく、図4に示すように被測定物体Sを通過(透過)してもよい。図4は、本実施形態の2次元分光装置1Aの変形例である2次元分光装置1Bの構成を示す上面図である。図4の構成では、被測定物体Sは、全反射ミラー16と全反射ミラー15との間に配置される。 It should be noted that the spectral information of the measured object S may be included in the light reception target light pulse train EP. Therefore, when the divided optical pulse train DP1 acts on each of the measurement regions of the measured object S, the divided optical pulse train DP1 may be reflected from the measured object S after entering the measured object S as described above. 4 may pass (transmit) the measured object S as shown in FIG. FIG. 4 is a top view showing a configuration of a two-dimensional spectroscopic apparatus 1B which is a modification of the two-dimensional spectroscopic apparatus 1A of the present embodiment. In the configuration of FIG. 4, the measured object S is disposed between the total reflection mirror 16 and the total reflection mirror 15.
 図3及び図4では、光パルス列AP、分割光パルス列DP1,DP2及び受光対象光パルス列EPの光軸のみを図示しているが、これらの光パルス列は、不図示の光学系などによって拡散、集光及びコリメートされている。 3 and 4, only the optical axes of the optical pulse train AP, the divided optical pulse trains DP1 and DP2, and the light receiving target optical pulse train EP are illustrated. These optical pulse trains are diffused and collected by an optical system (not shown). Light and collimated.
 図5は、干渉信号が生成される原理及び被測定物体Sの一測定領域の波長情報を説明するための模式図である。図5に示すように、干渉信号生成部6では、分割光パルス列DP2と受光対象光パルス列EPが互いに異なる方向からビームスプリッター22に入射し、合わさる。一例として、干渉信号生成部6では、正チャープの分割光パルスDP2と負チャープの受光対象光パルス列EPとの干渉信号IMGが生成される。「負チャープ」は、波長軸(周波数軸)において正チャープとは逆のチャープを表す。分割光パルス列DP2と受光対象光パルス列EPを仮にビームスプリッター22で合わせ、生成された干渉信号IMGを回折格子24で波長分離した場合は、図5に示す<A>,<B>,<C>の各分布が得られる。図5の<A>のグラフは、波長と距離に換算した遅延時間との関係を示している。図5の<B>のグラフは、波長と干渉信号IMG及び包絡線EVの強度との関係を示している。図5の<C>のグラフは、遅延時間と包絡線EVの強度との関係を示している。 FIG. 5 is a schematic diagram for explaining the principle of generating an interference signal and the wavelength information of one measurement region of the object S to be measured. As shown in FIG. 5, in the interference signal generation unit 6, the split optical pulse train DP2 and the light receiving target optical pulse train EP are incident on the beam splitter 22 from different directions and are combined. As an example, the interference signal generation unit 6 generates an interference signal IMG between the split optical pulse DP2 of the positive chirp and the light receiving target optical pulse train EP of the negative chirp. “Negative chirp” represents a chirp opposite to a positive chirp on the wavelength axis (frequency axis). If the split optical pulse train DP2 and the light receiving target optical pulse train EP are combined by the beam splitter 22, and the generated interference signal IMG is wavelength-separated by the diffraction grating 24, <A>, <B>, <C> shown in FIG. Each distribution is obtained. The graph <A> in FIG. 5 shows the relationship between the wavelength and the delay time converted into distance. The graph <B> in FIG. 5 shows the relationship between the wavelength and the intensity of the interference signal IMG and the envelope EV. The graph <C> in FIG. 5 shows the relationship between the delay time and the intensity of the envelope EV.
 本実施形態の波長情報取得部8は、干渉信号生成部6に連結しており、例えば干渉信号IMGを複数の画素ごとに検出可能な受光素子及びコンピュータに組み込まれたプログラムなどによって構成されている。 The wavelength information acquisition unit 8 according to the present embodiment is connected to the interference signal generation unit 6 and includes, for example, a light receiving element capable of detecting the interference signal IMG for each of a plurality of pixels and a program incorporated in a computer. .
[2次元分光法]
 本発明の2次元分光法は、光パルス列照射工程と、干渉信号計測工程と、波長情報取得工程と、を備える。光パルス列照射工程では、時間軸に対する所定の周波数分布を有する光パルスが時系列に複数配された光パルス列APが複数に分けられた分割光パルス列DP1,DP2のうち、一方の分割光パルス列DP1を、被測定物体Sの互いに異なる測定領域に照射する。干渉信号計測工程では、分割光パルス列DP1が被測定物体Sの測定領域のそれぞれに作用した後の複数の受光対象光パルス列EPのそれぞれと分割光パルス列DP2とを干渉させて生成される干渉信号IMGを計測する。波長情報取得工程では、干渉信号IMGから被測定物体Sの測定領域ごとの波長情報を取得する。図3に示す2次元分光装置1Aを用いて、上述の各工程を行うことができる。
[Two-dimensional spectroscopy]
The two-dimensional spectroscopy of the present invention includes an optical pulse train irradiation step, an interference signal measurement step, and a wavelength information acquisition step. In the optical pulse train irradiation step, one of the divided optical pulse trains DP1 and DP2 in which a plurality of optical pulse trains AP in which a plurality of optical pulses having a predetermined frequency distribution with respect to the time axis are arranged in time series is divided into a plurality of divided optical pulse trains DP1. Irradiate different measurement areas of the object S to be measured. In the interference signal measurement step, an interference signal IMG generated by causing the divided optical pulse train DP2 to interfere with each of the plurality of light receiving target optical pulse trains EP after the divided optical pulse train DP1 has acted on each of the measurement regions of the object S to be measured. Measure. In the wavelength information acquisition step, wavelength information for each measurement region of the measured object S is acquired from the interference signal IMG. Using the two-dimensional spectroscopic apparatus 1A shown in FIG.
 光パルス列照射工程では、光源3から出射された光パルス列APをハーフミラー12で少なくとも2つの分割光パルス列DP1,DP2に分け、一方の分割光パルス列DP1を全反射ミラー16で反射させた後にハーフミラー14を透過させ、被測定物体Sの互いに異なる測定領域に照射する。分割光パルス列DP1は、被測定物体Sから反射し、被測定物体Sの分光情報を波長情報として保有する。光パルス列照射工程では、分割光パルス列DP1を、受光対象光パルス列EPとしてハーフミラー14で反射させ、干渉信号生成部6に入射させる。 In the optical pulse train irradiation step, the optical pulse train AP emitted from the light source 3 is divided into at least two divided optical pulse trains DP1 and DP2 by the half mirror 12, and one of the split optical pulse trains DP1 is reflected by the total reflection mirror 16 and then the half mirror. 14 is transmitted and irradiated to different measurement areas of the object S to be measured. The divided optical pulse train DP1 reflects from the measured object S and holds the spectral information of the measured object S as wavelength information. In the optical pulse train irradiation step, the divided optical pulse train DP1 is reflected by the half mirror 14 as the light receiving target optical pulse train EP and is incident on the interference signal generator 6.
 本実施形態の2次元分光法では、2つの分割光パルス列DP1,DP2のうちの分割光パルス列DP2をハーフミラー12において透過させ、干渉信号生成部6に入射させる。本実施形態では、分割光パルス列DP2は、チャープ光パルス列である受光対象光パルス列EPに対してチャープフリーである。ただし、分割光パルス列DP2が受光対象光パルス列EPに対してチャープフリーである替わりに、分割光パルス列DP2に受光対象光パルス列EPとは時間軸上で逆向きのチャープがかかっていてもよい。 In the two-dimensional spectroscopy of the present embodiment, the divided optical pulse train DP2 of the two divided optical pulse trains DP1 and DP2 is transmitted through the half mirror 12 and is incident on the interference signal generation unit 6. In the present embodiment, the divided optical pulse train DP2 is chirp-free with respect to the light receiving target optical pulse train EP that is a chirped optical pulse train. However, instead of the split optical pulse train DP2 being chirp-free with respect to the light reception target optical pulse train EP, the split optical pulse train DP2 may be chirped in the opposite direction on the time axis with respect to the light reception target optical pulse train EP.
 干渉信号計測工程では、互いに異なる方向から干渉信号生成部6に入射した受光対象光パルス列EPと分割光パルス列DP2とを合わせ、干渉信号IMGを生成する。干渉信号IMGは、互いに異なり、且つ干渉縞周波数が最も低い波長を示す干渉縞を有する。図5の<B>のグラフに示すように、干渉信号IMGには、波長軸上の間隔が不均一である干渉縞が複数出現する。「最も低い」とは、干渉信号IMGに含まれる干渉縞周波数の中で相対的に最も低いことを意味し、波長軸上の間隔が最も広いことを意味する。 In the interference signal measuring step, the light reception target optical pulse train EP and the split optical pulse train DP2 incident on the interference signal generator 6 from different directions are combined to generate an interference signal IMG. The interference signal IMG has interference fringes which are different from each other and indicate a wavelength having the lowest interference fringe frequency. As shown in the graph of <B> in FIG. 5, a plurality of interference fringes with nonuniform intervals on the wavelength axis appear in the interference signal IMG. “Lowest” means that the interference fringe frequency included in the interference signal IMG is relatively lowest, and means that the interval on the wavelength axis is the widest.
 波長情報取得工程では、前述の干渉縞周波数が最も低い波長を前記被測定物体の前記測定領域ごとの波長情報として取得する。具体的には、受光素子によって干渉信号IMGを検出する。例えば、分光測定のターゲット波長帯が近赤外であれば、受光素子として、InGaAsのVGA程度のアレイセンサや撮像素子を適用できる。分光測定時の波長帯が可視光であれば、受光素子として、Siからなる8Kの画像素子を用いることができる。その他に、受光素子としては、遠赤外のボロメーターやX線のシンチレータ方式、紫外域のCCDの画像素子が挙げられる。 In the wavelength information acquisition step, the wavelength having the lowest interference fringe frequency is acquired as wavelength information for each measurement region of the object to be measured. Specifically, the interference signal IMG is detected by the light receiving element. For example, if the target wavelength band for spectroscopic measurement is near-infrared, an array sensor or an image sensor of the order of InGaAs VGA can be applied as the light receiving element. If the wavelength band at the time of spectroscopic measurement is visible light, an 8K image element made of Si can be used as the light receiving element. Other examples of the light receiving element include a far-infrared bolometer, an X-ray scintillator method, and an ultraviolet CCD image element.
 波長情報取得工程では、遅延時間(Delay)を変化させ、光パルス列APのスペクトル形状と略同じ包絡線EVを有する干渉信号IMGを得る。包絡線EVの強度のピーク値は、光源3から出射される光パルス列APの強度に依存する。 In the wavelength information acquisition step, the delay time (Delay) is changed to obtain an interference signal IMG having an envelope EV substantially the same as the spectrum shape of the optical pulse train AP. The peak value of the intensity of the envelope EV depends on the intensity of the optical pulse train AP emitted from the light source 3.
 図6は、図3に示す2次元分光装置1Aの波長情報取得部8の具体的な構成の一例を示した2次元分光装置1Cの上面図である。図6に示す2次元分光装置1Cは、図3に示す2次元分光装置1Aの基本構成に加え、波長情報取得部8として、ハーフミラー31と、全反射ミラー32と、ペアフィルタPFと、2台の撮像カメラ(撮像部)41,42と、画像処理部50と、を備える。撮像カメラ41,42は、互いに同じ画素数を有する。 FIG. 6 is a top view of the two-dimensional spectrometer 1C showing an example of a specific configuration of the wavelength information acquisition unit 8 of the two-dimensional spectrometer 1A shown in FIG. A two-dimensional spectroscopic device 1C shown in FIG. 6 includes a half mirror 31, a total reflection mirror 32, a pair filter PF, 2 as a wavelength information acquisition unit 8 in addition to the basic configuration of the two-dimensional spectroscopic device 1A shown in FIG. Imaging cameras (imaging units) 41 and 42 and an image processing unit 50 are provided. The imaging cameras 41 and 42 have the same number of pixels.
 2次元分光装置1Cでは、分割光パルス列DP1の進路上において、ハーフミラー14が全反射ミラー16の手前側に配置されている。被測定物体Sは、ハーフミラー14を透過する分割光パルス列DP1の進路上に配置されている。被測定物体Sに入射した分割光パルス列DP1には、被測定物体Sの各測定領域の波長情報(分光情報)が付加される。分割光パルス列DP1は、各測定領域の波長情報を含む受光対象光パルス列EPとしてハーフミラー14に向けて反射される。受光対象光パルス列EPは、ハーフミラー14及び全反射ミラー16によって反射され、2次元分光装置1A,1Bと同様に干渉信号生成部6に入射する。 In the two-dimensional spectroscopic device 1C, the half mirror 14 is disposed in front of the total reflection mirror 16 on the path of the divided optical pulse train DP1. The object to be measured S is disposed on the path of the divided optical pulse train DP1 that passes through the half mirror 14. Wavelength information (spectral information) of each measurement region of the measured object S is added to the divided light pulse train DP1 incident on the measured object S. The divided optical pulse train DP1 is reflected toward the half mirror 14 as a light receiving target optical pulse train EP including wavelength information of each measurement region. The light receiving target optical pulse train EP is reflected by the half mirror 14 and the total reflection mirror 16 and enters the interference signal generation unit 6 as in the two-dimensional spectroscopic devices 1A and 1B.
 図7は、2次元分光装置1Cにおける干渉信号生成部6の一部の構成を示す模式図である。図7に示すように、干渉信号生成部6に入射した受光対象光パルス列EPには、例えば遅延時間調整機構26によって、所定の遅延時間が付加される。遅延時間調整機構26は、それぞれの反射面27rが対向するように配置された2個の全反射プリズム27を有する。遅延時間調整機構26が不図示の制御部によって矢印Mに沿って移動することによって、受光対象光パルス列EPの光路長が変わる。遅延時間調整機構26の移動量に応じた遅延時間が受光対象光パルス列EPに付加される。 FIG. 7 is a schematic diagram showing a partial configuration of the interference signal generation unit 6 in the two-dimensional spectroscopic apparatus 1C. As shown in FIG. 7, a predetermined delay time is added to the light reception target optical pulse train EP incident on the interference signal generation unit 6 by, for example, the delay time adjustment mechanism 26. The delay time adjustment mechanism 26 has two total reflection prisms 27 arranged so that the respective reflection surfaces 27r face each other. When the delay time adjusting mechanism 26 is moved along the arrow M by a control unit (not shown), the optical path length of the light receiving target optical pulse train EP is changed. A delay time corresponding to the amount of movement of the delay time adjusting mechanism 26 is added to the light receiving target optical pulse train EP.
 なお、図示していないが、2次元分光装置1A,1B,1Cは、互いに位相差を有する干渉信号IMGを取得する構成を備える。このような構成では、例えば分割光パルス列DP2をさらに2つに分け、一方の分割光パルス列DP2の位相を他方の分割光パルス列DP2に対して所定量(好ましくは、90°)ずらし、それぞれの分割光パルス列DP2と受光対象光パルス列EPとを干渉させ、生成されるそれぞれの干渉信号の包絡線強度を取得する。取得した包絡線強度は、波長情報取得部8に入射する。 Although not shown, the two- dimensional spectrometers 1A, 1B, and 1C have a configuration for acquiring the interference signal IMG having a phase difference from each other. In such a configuration, for example, the divided optical pulse train DP2 is further divided into two, and the phase of one of the divided optical pulse trains DP2 is shifted by a predetermined amount (preferably 90 °) with respect to the other divided optical pulse train DP2. The optical pulse train DP2 and the light receiving target optical pulse train EP are caused to interfere with each other, and the envelope intensity of each generated interference signal is acquired. The acquired envelope intensity enters the wavelength information acquisition unit 8.
 受光対象光パルス列EPには、干渉信号生成部6に入射した分割光パルス列DP2と所定の遅延時間が付加される。受光対象光パルス列EPは例えばビームスプリッター22によって合波され、干渉信号IMGが生成される。図6に示すように、干渉信号IMG(合波光パルス列MP)は、干渉信号生成部6からハーフミラー31に入射する。ハーフミラー31によって、干渉信号IMGは2つに分けられ、一方の干渉信号IMG1は、全反射ミラー32によって反射され、ペアフィルタPFのフィルタF1に入射する。他方の干渉信号IMG2は、ハーフミラー31からフィルタF2に入射する。なお、フィルタF1,F2は、撮像カメラ41,42の入射部に一体化されていてもよい。 The split optical pulse train DP2 incident on the interference signal generator 6 and a predetermined delay time are added to the light receiving target optical pulse train EP. The light reception target optical pulse train EP is combined by, for example, the beam splitter 22 to generate an interference signal IMG. As shown in FIG. 6, the interference signal IMG (the combined optical pulse train MP) enters the half mirror 31 from the interference signal generation unit 6. The interference signal IMG is divided into two by the half mirror 31, and one interference signal IMG1 is reflected by the total reflection mirror 32 and enters the filter F1 of the pair filter PF. The other interference signal IMG2 enters the filter F2 from the half mirror 31. The filters F1 and F2 may be integrated with the incident portions of the imaging cameras 41 and 42.
 図8は、ペアフィルタPFを構成するフィルタF1,F2の透過率の波長依存性の一例を示すグラフである。図8に示すように、ペアフィルタF1,F2の透過率の波長依存性は、互いに逆であることが好ましい。フィルタF1の透過率は、波長が増加するにしたがって概ね低下する。一方、フィルタF2の透過率は、波長が増加するにしたがって概ね上昇する。このようにペアフィルタF1,F2の透過率の波長依存性が互いに逆であることによって、包絡線EVの強度(以下、包絡線強度ELという場合がある)に関する光強度比と波長との1対1対応が成立する。 FIG. 8 is a graph showing an example of the wavelength dependence of the transmittance of the filters F1 and F2 constituting the pair filter PF. As shown in FIG. 8, it is preferable that the wavelength dependence of the transmittance of the pair filters F1 and F2 is opposite to each other. The transmittance of the filter F1 generally decreases as the wavelength increases. On the other hand, the transmittance of the filter F2 generally increases as the wavelength increases. Thus, since the wavelength dependence of the transmittance of the pair filters F1 and F2 is opposite to each other, a pair of the light intensity ratio and the wavelength relating to the intensity of the envelope EV (hereinafter sometimes referred to as envelope intensity EL). One correspondence is established.
 図6に示すように、フィルタF1,F2を通過した合波光パルス列MP1,MP2は、撮像カメラ41,42の受光部(図示略)に入射する。撮像カメラ41,42の各受光部の入力情報は、画像処理部50に送信される。画像処理部50は、例えばコンピュータである。画像処理部50には、画像処理プログラム等のプログラムが内蔵されている。画像処理部50は、プログラムを用いて撮像カメラ41,42からの入力情報を適宜処理する。 As shown in FIG. 6, the combined optical pulse trains MP1 and MP2 that have passed through the filters F1 and F2 are incident on the light receiving portions (not shown) of the imaging cameras 41 and 42. Input information of each light receiving unit of the imaging cameras 41 and 42 is transmitted to the image processing unit 50. The image processing unit 50 is a computer, for example. The image processing unit 50 incorporates a program such as an image processing program. The image processing unit 50 appropriately processes input information from the imaging cameras 41 and 42 using a program.
 2次元分光装置1Cを用いた2次元分光法は、上述と同様の光パルス列照射工程と、干渉信号計測工程及び波長情報取得工程とを備える。 The two-dimensional spectroscopy using the two-dimensional spectrometer 1C includes an optical pulse train irradiation step, an interference signal measurement step, and a wavelength information acquisition step similar to those described above.
 干渉信号計測工程では、被測定物体Sの測定領域のそれぞれに作用した後の複数の受光対象光パルス列EPのそれぞれと、分割光パルス列DP2とを、ビームスプリッター22などを用いて合わせ、互いに干渉させる。被測定物体Sの測定領域ごとのスペクトル情報(波長情報)を取得するために、合波光パルス列MPは、波長情報取得部8に送られる。 In the interference signal measurement step, each of the plurality of light receiving target light pulse trains EP after acting on each of the measurement regions of the object S to be measured is combined with the divided light pulse train DP2 by using the beam splitter 22 or the like to interfere with each other. . In order to acquire spectrum information (wavelength information) for each measurement region of the object S to be measured, the combined optical pulse train MP is sent to the wavelength information acquisition unit 8.
 図9A、図9B及び図9Cは、フィルタF1,F2の透過強度の遅延時間依存性を示す模式図である。波長情報取得工程では、遅延時間調整機構26を用いて時間掃引をかけた合波光パルス列MPを分岐して生成された合波光パルス列MP1,MP2は、図8に示す透過率の波長依存性を有するフィルタF1,F2のそれぞれを通過する。このことによって、図9A及び図9Bのそれぞれに示すように遅延時間に伴って透過強度が変化する。撮像カメラ41,42を用いて、前述のように遅延時間に伴う合波光パルス列MP1,MP2の透過強度を取得できる。図9A及び図9Bのそれぞれにおける破線は、フィルタF1またはフィルタF2を透過しなかった場合の合波光パルス列MP1,MP2の透過光強度を表す。 FIG. 9A, FIG. 9B, and FIG. 9C are schematic diagrams showing the delay time dependence of the transmission intensity of the filters F1 and F2. In the wavelength information acquisition step, the combined optical pulse trains MP1 and MP2 generated by branching the combined optical pulse train MP subjected to time sweep using the delay time adjusting mechanism 26 have the wavelength dependency of the transmittance shown in FIG. Passes through each of the filters F1, F2. As a result, the transmission intensity changes with the delay time as shown in FIGS. 9A and 9B. Using the imaging cameras 41 and 42, the transmission intensities of the combined optical pulse trains MP1 and MP2 associated with the delay time can be acquired as described above. A broken line in each of FIGS. 9A and 9B represents the transmitted light intensity of the multiplexed light pulse trains MP1 and MP2 when the light does not pass through the filter F1 or the filter F2.
 被測定物体Sの個々の測定領域は、撮像カメラ41,42の各画素に対応する。図9Cに示すように、フィルタF1,F2における透過強度の比をとると、それぞれのフィルタF1,F2の透過率比と等しい値が表れる。これらのことをふまえ、波長情報取得工程では、ペアフィルタF1,F2を用いることによって、撮像カメラ41,42で取得した被測定物体Sの測定領域ごとの包絡線強度ELの比を画像処理部50で算出する。撮像カメラ41,42の各画素について算出した包絡線強度ELの比に基づいて、各画素の信号強度比を求め、包絡線強度ELの分布内の各強度を発現する波長を決定する。決定された波長と包絡線強度ELとの対応関係に基づいて、撮像カメラ41,42の各画素、すなわち被測定物体Sの各測定領域のスペクトル分布(波長情報)を取得する。 Each measurement area of the object S to be measured corresponds to each pixel of the imaging cameras 41 and 42. As shown in FIG. 9C, when the ratio of the transmission intensity in the filters F1 and F2 is taken, a value equal to the transmittance ratio of each of the filters F1 and F2 appears. Based on these facts, in the wavelength information acquisition step, by using the pair filters F1 and F2, the ratio of the envelope intensity EL for each measurement region of the object S to be measured acquired by the imaging cameras 41 and 42 is determined by the image processing unit 50. Calculate with Based on the ratio of the envelope intensity EL calculated for each pixel of the imaging cameras 41 and 42, the signal intensity ratio of each pixel is obtained, and the wavelength that expresses each intensity in the distribution of the envelope intensity EL is determined. Based on the correspondence relationship between the determined wavelength and the envelope intensity EL, the spectral distribution (wavelength information) of each pixel of the imaging cameras 41, 42, that is, each measurement region of the measured object S is acquired.
 遅延時間調整機構26を用いて、遅延時間を変化させたときの各遅延時間の波長情報を取得し、元の遅延時間に対する波長変化と比較する。このことによって、測定対象物における各波長の位相がどの程度変化したかということがわかり、位相スペクトルを計測できる。ただし、その場合の位相スペクトルの変化は、波長に対して一意に決まる位相スペクトルとなる変化に限られる。 The wavelength information of each delay time when the delay time is changed is acquired using the delay time adjustment mechanism 26, and compared with the wavelength change with respect to the original delay time. Thus, it can be seen how much the phase of each wavelength in the measurement object has changed, and the phase spectrum can be measured. However, the change in the phase spectrum in that case is limited to a change that becomes a phase spectrum uniquely determined with respect to the wavelength.
 以上説明したように、本実施形態の2次元分光法は、上述の光パルス列照射工程、干渉信号計測工程及び波長情報取得工程を備える。本実施形態の2次元分光法によれば、光パルス列照射工程において、光源3から発せられた光パルス列A0の個々の光パルスCP(k)の波長幅(すなわち、チャープ量)を調整することによって、波長情報取得工程において取得する波長情報の分解能を変化させることができる。本実施形態の2次元分光法では、波長分解能は、干渉信号IMGの低周波領域のピークの波長幅によって決まる。このことをふまえ、光周波数コムをなす複数の周波数モードに関するパラメータ(繰り返し周波数frepやキャリア・エンベロップ・オフセットfCEOなど)を制御することによって搬送波や包絡線を制御できる。適当な分散素子を用いることによって、チャープ光パルス列APの個々の光パルスCP(k)のチャープ量を所望の量に調整できる。上述のように、チャープ光パルス列APの光パルスCP(k)のチャープ量を大きくすることで、干渉信号IMGの低周波領域のピークの波長幅を狭くし、2次元分光法の波長分解能を高くすることができる。すなわち、本実施形態の2次元分光法は、分光測定における高解像度及び高分解能を両立できる。 As described above, the two-dimensional spectroscopy of this embodiment includes the above-described optical pulse train irradiation step, interference signal measurement step, and wavelength information acquisition step. According to the two-dimensional spectroscopy of this embodiment, by adjusting the wavelength width (that is, the chirp amount) of each optical pulse CP (k) of the optical pulse train A0 emitted from the light source 3 in the optical pulse train irradiation step. The resolution of the wavelength information acquired in the wavelength information acquisition step can be changed. In the two-dimensional spectroscopy of the present embodiment, the wavelength resolution is determined by the peak wavelength width of the interference signal IMG in the low frequency region. Based on this, the carrier wave and the envelope can be controlled by controlling the parameters (repetition frequency f rep , carrier envelope offset f CEO, etc.) relating to a plurality of frequency modes forming the optical frequency comb. By using an appropriate dispersion element, the chirp amount of each optical pulse CP (k) of the chirped optical pulse train AP can be adjusted to a desired amount. As described above, by increasing the chirp amount of the optical pulse CP (k) of the chirped optical pulse train AP, the wavelength width of the peak in the low frequency region of the interference signal IMG is narrowed, and the wavelength resolution of the two-dimensional spectroscopy is increased. can do. That is, the two-dimensional spectroscopy of the present embodiment can achieve both high resolution and high resolution in spectroscopic measurement.
 チャープ光パルス列APの個々の光パルスCP(k)のチャープ量を調節する手法には、例えば、ハーフミラー12と全反射ミラー16との間に分散媒体を配置し、この分散媒体中に分割光パルス列DP1を通過させる手法がある。分散媒質の代わりに、例えば所定の長さを有するガラスロッドやシングルモードファイバや、回折格子対やプリズムペアを用いてもよい。このように、本実施形態の2次元分光法では、分光測定のキャリアである光パルス列のチャープ量を調整することによって、分光測定時の分解能を変えることができ、2次元分光装置1A,1Bの大型化を抑えられる。 As a method for adjusting the chirp amount of each optical pulse CP (k) of the chirped optical pulse train AP, for example, a dispersion medium is arranged between the half mirror 12 and the total reflection mirror 16, and the divided light is dispersed in the dispersion medium. There is a method of passing the pulse train DP1. Instead of the dispersion medium, for example, a glass rod having a predetermined length, a single mode fiber, a diffraction grating pair, or a prism pair may be used. As described above, in the two-dimensional spectroscopy of the present embodiment, the resolution at the time of spectroscopic measurement can be changed by adjusting the chirp amount of the optical pulse train that is a carrier for spectroscopic measurement. Increase in size can be suppressed.
 本実施形態の2次元分光法によれば、互いにチャープ量の異なる光パルスCP(k)が時系列に並んだチャープ光パルス列を用いてスペクトル干渉を行い、そのスペクトル干渉の結果に基づいて被測定物体Sの測定領域の波長情報を取得できる。また、分光測定のターゲット波長帯を含む波長帯の光を出射可能な光源、及びそのターゲット波長帯に感度を有する受光素子や検出器があれば、任意のターゲット波長帯の2次元分光を行うことができる。言い換えれば、本実施形態の2次元分光法は、使う波長に依存しない。また、分光測定のターゲットの波長帯は、ターゲットの波長帯に合わせて波長変換を行う、あるいはターゲットの波長帯の光周波数コムを用いることによって容易に調整できる。そのため、従来の分光法や分光装置のように、ターゲットの波長帯の変更に伴ってフィルタなどの光学部品を交換する必要もなく、非常に高価な超広帯域の光学部品を使用する必要もない。 According to the two-dimensional spectroscopy of the present embodiment, spectral interference is performed using a chirped optical pulse train in which optical pulses CP (k) having different chirp amounts are arranged in time series, and measurement is performed based on the result of the spectral interference. The wavelength information of the measurement region of the object S can be acquired. If there is a light source that can emit light in the wavelength band including the target wavelength band of spectroscopic measurement, and a light receiving element or detector having sensitivity in the target wavelength band, two-dimensional spectroscopy in any target wavelength band is performed. Can do. In other words, the two-dimensional spectroscopy of this embodiment does not depend on the wavelength used. The wavelength band of the target for spectroscopic measurement can be easily adjusted by performing wavelength conversion in accordance with the wavelength band of the target or using an optical frequency comb in the wavelength band of the target. Therefore, unlike conventional spectroscopic methods and spectroscopic apparatuses, it is not necessary to replace optical components such as a filter in accordance with the change of the target wavelength band, and it is not necessary to use very expensive ultra-wideband optical components.
 本実施形態の2次元分光法によれば、前述のようにスペクトル干渉させる分割光パルス列DP2と受光対象光パルス列EPとの相対チャープ量によって、波長分解能を決めるとともに、容易に調整できる。このことによって、従来のように空間情報の高解像度化または波長情報の高分解能化の何れか一方ではなく、高解像度化及び高分解能化を容易に両立できる。 According to the two-dimensional spectroscopy of the present embodiment, the wavelength resolution can be determined and easily adjusted by the relative chirp amount between the split optical pulse train DP2 and the light receiving target optical pulse train EP that cause spectral interference as described above. Thus, it is possible to easily achieve both high resolution and high resolution, instead of either increasing the resolution of spatial information or increasing the resolution of wavelength information as in the prior art.
 本実施形態の2次元分光法によれば、空間情報の分解能は、被測定物体Sに分割光パルス列DP1を照射するために使われる照射光学系(例えば、対物レンズを含む)及び受光素子の画素サイズによって決まる。照射光学系におけるパラメータや受光素子の画素サイズを調整することによって、任意のターゲット波長で高解像度の分光計測画像を取得できる。なお、空間情報の最も高い分解能は、光源3から出射される光パルス列APの回折限界で決まる。 According to the two-dimensional spectroscopy of this embodiment, the resolution of the spatial information is determined by the irradiation optical system (including the objective lens, for example) used for irradiating the object S to be measured with the divided optical pulse train DP1 and the pixels of the light receiving element. It depends on the size. By adjusting the parameters in the irradiation optical system and the pixel size of the light receiving element, a high-resolution spectroscopic measurement image can be acquired at an arbitrary target wavelength. The highest resolution of the spatial information is determined by the diffraction limit of the optical pulse train AP emitted from the light source 3.
 本実施形態の2次元分光法によれば、被測定物体Sの測定領域からの信号を、分割光パルス列DP2とのスペクトル干渉によって干渉信号IMGとして検出する。このことによって、干渉信号IMGの検出と同時に、被測定物体Sの測定領域(受光素子の一画素に相当)のそれぞれにおいて何色の信号に反応があったか、すなわちいずれの波長の信号に反応があったかが判明し、波長情報を瞬時に取得できる。このことによって、周囲環境の変化の影響を受けずに2次元分光を行うとともに、測定精度を向上させることができる。 According to the two-dimensional spectroscopy of the present embodiment, a signal from the measurement region of the measurement object S is detected as an interference signal IMG by spectral interference with the divided light pulse train DP2. As a result, simultaneously with the detection of the interference signal IMG, what color signal has reacted in each of the measurement regions (corresponding to one pixel of the light receiving element) of the measured object S, that is, which wavelength signal has reacted. As a result, wavelength information can be acquired instantaneously. This makes it possible to perform two-dimensional spectroscopy without being affected by changes in the surrounding environment and improve measurement accuracy.
 本実施形態の2次元分光法及び2次元分光装置1Cによれば、ペアフィルタPFを用いるので、各フィルタF1,F2を通った合成光パルス列MP1,MP2について遅延時間に対して略単調変化する強度比が得られる。このことによって、合成光パルス列MP1,MP2の強度比と遅延時間(すなわち、波長)の組み合わせを一義的に決め、被測定物体Sの各測定領域における分光スペクトルを取得できる。このような手法は、任意のスペクトルを有する光を出射する光源に適用できる。また、被測定物体Sの各測定領域の波長情報を、撮像カメラ41,42の各画素で受光した強度に基づいて特定できる。 According to the two-dimensional spectroscopic method and the two-dimensional spectroscopic apparatus 1C of the present embodiment, since the pair filter PF is used, the intensity that changes substantially monotonously with respect to the delay time for the combined optical pulse trains MP1 and MP2 that have passed through the filters F1 and F2. A ratio is obtained. As a result, the combination of the intensity ratio of the combined optical pulse trains MP1 and MP2 and the delay time (that is, the wavelength) is uniquely determined, and the spectral spectrum in each measurement region of the measurement object S can be acquired. Such a method can be applied to a light source that emits light having an arbitrary spectrum. Further, the wavelength information of each measurement region of the measured object S can be specified based on the intensity received by each pixel of the imaging cameras 41 and 42.
 すなわち、本実施形態の2次元分光法及び2次元分光装置1Cによれば、2次元の空間情報及び1次元の波長情報からなる3次元情報を高精度に取得できる。本実施形態の2次元分光法及び2次元分光装置1Cによれば、1次元の波長情報を、単一の波長や色ではなく、スペクトルすなわち波長依存性を有する強度分布として取得できる。したがって、2次元分光装置1Cをターゲット波長域に依存しないハイパースペクトルカメラのように作動させることができる。 That is, according to the two-dimensional spectroscopy and the two-dimensional spectrometer 1C of the present embodiment, three-dimensional information including two-dimensional spatial information and one-dimensional wavelength information can be acquired with high accuracy. According to the two-dimensional spectroscopic method and the two-dimensional spectroscopic device 1C of the present embodiment, one-dimensional wavelength information can be acquired as a spectrum, that is, an intensity distribution having wavelength dependency, instead of a single wavelength or color. Therefore, the two-dimensional spectroscopic device 1C can be operated like a hyperspectral camera that does not depend on the target wavelength range.
 本実施形態の2次元分光装置1A,1B,1Cによれば、高解像度及び高分解能の2次元分光を可能とし、上述の2次元分光法と同様の効果が得られる。 According to the two- dimensional spectrometers 1A, 1B, and 1C of the present embodiment, high-resolution and high-resolution two-dimensional spectroscopy is possible, and the same effect as the above-described two-dimensional spectroscopy can be obtained.
 以上、本発明の好ましい実施形態について詳述したが、本発明は上述の特定の実施形態に限定されない。本発明は、特許請求の範囲内に記載された本発明の要旨の範囲内において、変更可能である。 The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the specific embodiments described above. The present invention can be modified within the scope of the gist of the present invention described in the claims.
 例えば、本発明の2次元分光法に用いるチャープ光パルス列は、上述の実施形態で説明したように光周波数コムによって生成されるものに限定されない。上述の実施形態では、分割光パルス列(第1の光パルス列及び第2の光パルス列)DP1,DP2の両方がチャープされ、互いにチャープ量が異なるものであったが、本発明では、第1の光パルス列及び第2の光パルス列の少なくとも一方がチャープされていてもよい。すなわち、第1の光パルス列及び第2の光パルス列の何れか一方のみがチャープフリーであっても構わない。 For example, the chirped optical pulse train used in the two-dimensional spectroscopy of the present invention is not limited to the one generated by the optical frequency comb as described in the above embodiment. In the above-described embodiment, both of the divided optical pulse trains (first optical pulse train and second optical pulse train) DP1 and DP2 are chirped and have different chirp amounts from each other. At least one of the pulse train and the second optical pulse train may be chirped. That is, only one of the first optical pulse train and the second optical pulse train may be chirp-free.
 また、上述の実施形態では、被測定物体Sにおいて分割光パルス列DP1の進行方向の最も手前側の表面から反射した受光対象光パルス列EPのみを考慮している。そのため、図5の<B>のグラフに示すように、干渉信号IMGには、波長軸上の縞間隔が最も広い干渉縞が1つだけ現れる。つまり、干渉信号IMGには、干渉縞周波数が最も低い波長を1つだけ示す干渉縞が現れる。しかしながら、被測定物体Sにおいて分割光パルス列DP1の進行方向の最も手前側の表面に加えて、例えば被測定物体Sの厚み方向の内部からも受光対象光パルス列EPが反射される場合、複数の干渉信号IMGが得られる。つまり、被測定物体Sの厚み方向において受光対象光パルス列EPが反射される位置の数と同数の干渉信号IMGを取得できる。これらの複数の干渉信号IMGによって、受光対象光パルス列EPが反射される各位置について、干渉縞周波数が最も低い波長の情報が得られる。これらの複数の波長に基づいて、被測定物体Sの断層像が得られる。 Further, in the above-described embodiment, only the light reception target optical pulse train EP reflected from the frontmost surface of the measured object S in the traveling direction of the divided optical pulse train DP1 is considered. Therefore, as shown in the graph <B> in FIG. 5, only one interference fringe having the widest fringe spacing on the wavelength axis appears in the interference signal IMG. That is, in the interference signal IMG, an interference fringe indicating only one wavelength having the lowest interference fringe frequency appears. However, in addition to the surface closest to the traveling direction of the divided optical pulse train DP1 in the measured object S, for example, when the received light pulse train EP is reflected also from the inside in the thickness direction of the measured object S, a plurality of interferences are caused. A signal IMG is obtained. That is, it is possible to acquire the same number of interference signals IMG as the number of positions where the light reception target optical pulse train EP is reflected in the thickness direction of the measurement object S. With the plurality of interference signals IMG, information on the wavelength having the lowest interference fringe frequency is obtained for each position where the light reception target optical pulse train EP is reflected. A tomographic image of the object S to be measured is obtained based on the plurality of wavelengths.
 被測定物体Sの断層像を得るためには、被測定物体Sとして、厚み方向に、光パルス列APの少なくとも一部を透過して受光対象光パルス列EPを反射可能な部分を有する物体を配置する。
 上述の実施形態の2次元分光装置1A、1B、1Cにおける被測定物体Sとして、光源3から出射される光パルス列APの波長帯において透過性を有する被測定物体Sを配置するだけで、被測定物体Sの断層像の計測が可能となる。
In order to obtain a tomographic image of the object S to be measured, an object having a part capable of transmitting at least a part of the optical pulse train AP and reflecting the optical pulse train EP to be received is arranged in the thickness direction as the object S to be measured. .
As the measurement object S in the two- dimensional spectroscopic devices 1A, 1B, and 1C of the above-described embodiment, the measurement object S having transparency in the wavelength band of the optical pulse train AP emitted from the light source 3 is disposed. The tomographic image of the object S can be measured.
1A,1B,1C・・・2次元分光装置
AP・・・光パルス列
DP1,DP2・・・分割光パルス列
EP・・・受光対象光パルス列
MP1,MP2・・・合成光パルス列
S・・・被測定物体
1A, 1B, 1C ... Two-dimensional spectroscopic device AP ... Optical pulse train DP1, DP2 ... Divided optical pulse train EP ... Light receiving target optical pulse train MP1, MP2 ... Synthetic optical pulse train S ... Measured object

Claims (7)

  1.  相対的なチャープ量が異なる第1の光パルス列及び第2の光パルス列を生成する光パルス列生成工程と、
     前記第1の光パルス列を、被測定物体の互いに異なる測定領域に照射する光パルス列照射工程と、
     前記第1の光パルス列が前記被測定物体の前記測定領域のそれぞれに作用した後の複数の受光対象光パルス列のそれぞれと、前記第2の光パルス列とを干渉させて生成される干渉信号を計測する干渉信号計測工程と、
     前記干渉信号から前記被測定物体の前記測定領域ごとの波長情報を取得する波長情報取得工程と、
     を備える2次元分光法。
    An optical pulse train generating step for generating a first optical pulse train and a second optical pulse train having different relative chirp amounts;
    An optical pulse train irradiating step of irradiating different measurement regions of the object to be measured with the first optical pulse train;
    Measures an interference signal generated by causing each of a plurality of light receiving target optical pulse trains after the first optical pulse train to act on each of the measurement regions of the object to be measured to interfere with the second optical pulse train. Interference signal measurement process to
    A wavelength information acquisition step of acquiring wavelength information for each measurement region of the object to be measured from the interference signal;
    Two-dimensional spectroscopy.
  2.  前記光パルス列照射工程において、前記第1の光パルス列及び前記第2の光パルス列の少なくとも1つの光パルス列のチャープ量を調整することによって、前記波長情報取得工程において取得する前記波長情報の分解能を変化させる、
     請求項1に記載の2次元分光法。
    In the optical pulse train irradiation step, the resolution of the wavelength information acquired in the wavelength information acquisition step is changed by adjusting a chirp amount of at least one optical pulse train of the first optical pulse train and the second optical pulse train. Let
    The two-dimensional spectroscopy according to claim 1.
  3.  前記干渉信号は互いに異なり干渉縞周波数が最も低い波長を示す干渉縞を有し、
     前記波長情報取得工程において、
      前記干渉縞周波数が最も低い波長を前記被測定物体の前記測定領域ごとの波長情報として取得する、
     請求項1または請求項2に記載の2次元分光法。
    The interference signals have interference fringes that are different from each other and indicate the wavelength having the lowest interference fringe frequency;
    In the wavelength information acquisition step,
    The wavelength having the lowest interference fringe frequency is obtained as wavelength information for each measurement region of the measured object.
    The two-dimensional spectroscopy according to claim 1 or 2.
  4.  前記波長情報取得工程において、
     前記受光対象光パルス列に所定の遅延時間を付加して前記干渉信号を得るとともに、前記干渉信号を透過率の波長依存性を互いに逆としたフィルタを通過させた透過強度を取得し、取得した透過強度の比に基づいて前記被測定物体の前記測定領域ごとのスペクトル情報を取得する、
     請求項1または請求項2に記載の2次元分光法。
    In the wavelength information acquisition step,
    A predetermined delay time is added to the optical pulse train to be received to obtain the interference signal, and the transmission intensity obtained by allowing the interference signal to pass through a filter in which the wavelength dependences of the transmittances are opposite to each other is obtained, and the obtained transmission is obtained. Obtaining spectral information for each measurement region of the object to be measured based on the intensity ratio;
    The two-dimensional spectroscopy according to claim 1 or 2.
  5.  相対的なチャープ量が異なる第1の光パルス列及び第2の光パルス列を生成する光源部と、
     前記光源部から出射された前記第1の光パルス列を、被測定物体の互いに異なる測定領域に照射する光パルス列照射部と、
     前記第1の光パルス列が前記被測定物体の前記測定領域のそれぞれに作用した後の複数の受光対象光パルス列のそれぞれと前記第2の光パルス列との干渉信号を生成する干渉信号生成部と、
     前記干渉信号生成部で生成された前記干渉信号に基づいて前記被測定物体の前記測定領域ごとの波長情報を取得する波長情報取得部と、
     を備える2次元分光装置。
    A light source unit that generates a first optical pulse train and a second optical pulse train having different relative chirp amounts;
    An optical pulse train irradiating unit for irradiating the first optical pulse train emitted from the light source unit to different measurement regions of the object to be measured;
    An interference signal generation unit configured to generate an interference signal between each of the plurality of light receiving target optical pulse trains after the first optical pulse train has acted on each of the measurement regions of the object to be measured and the second optical pulse train;
    A wavelength information acquisition unit that acquires wavelength information for each measurement region of the object to be measured based on the interference signal generated by the interference signal generation unit;
    A two-dimensional spectroscopic device.
  6.  前記干渉信号は互いに異なり干渉縞周波数が最も低い波長を示す干渉縞を有し、
     前記波長情報取得部では、
      前記干渉縞周波数が最も低い波長が前記被測定物体の前記測定領域ごとの波長情報として取得される、
     請求項5に記載の2次元分光装置。
    The interference signals have interference fringes that are different from each other and indicate the wavelength having the lowest interference fringe frequency;
    In the wavelength information acquisition unit,
    The wavelength having the lowest interference fringe frequency is acquired as wavelength information for each measurement region of the measured object.
    The two-dimensional spectroscopic apparatus according to claim 5.
  7.  前記干渉信号生成部は前記受光対象光パルス列に所定の遅延時間を付加する遅延時間調整機構を備え、
     前記波長情報取得部は透過率の波長依存性が互いに逆になっているペアフィルタを備える、
     請求項5に記載の2次元分光装置。
    The interference signal generation unit includes a delay time adjustment mechanism that adds a predetermined delay time to the light reception target optical pulse train,
    The wavelength information acquisition unit includes a pair filter in which the wavelength dependency of transmittance is opposite to each other,
    The two-dimensional spectroscopic apparatus according to claim 5.
PCT/JP2019/001885 2018-03-02 2019-01-22 Two-dimensional spectroscopy method and two-dimensional spectroscopy device WO2019167477A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509003A JP7272652B2 (en) 2018-03-02 2019-01-22 Two-dimensional spectroscopy and two-dimensional spectroscopic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018038102 2018-03-02
JP2018-038102 2018-03-02

Publications (1)

Publication Number Publication Date
WO2019167477A1 true WO2019167477A1 (en) 2019-09-06

Family

ID=67805731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001885 WO2019167477A1 (en) 2018-03-02 2019-01-22 Two-dimensional spectroscopy method and two-dimensional spectroscopy device

Country Status (2)

Country Link
JP (1) JP7272652B2 (en)
WO (1) WO2019167477A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282434A (en) * 1988-05-07 1989-11-14 Japan Spectroscopic Co Fourier spectroscope
US20110069309A1 (en) * 2009-09-18 2011-03-24 Newbury Nathan R Comb-based spectroscopy with synchronous sampling for real-time averaging
JP2013507005A (en) * 2009-10-02 2013-02-28 イムラ アメリカ インコーポレイテッド Optical signal processing by mode-locked laser
JP2015530598A (en) * 2012-10-04 2015-10-15 ザイゴ コーポレーションZygo Corporation Position monitoring system with reduced noise

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107727058B (en) * 2017-09-28 2020-06-19 清华大学 Optical frequency comb six-degree-of-freedom measuring method and measuring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282434A (en) * 1988-05-07 1989-11-14 Japan Spectroscopic Co Fourier spectroscope
US20110069309A1 (en) * 2009-09-18 2011-03-24 Newbury Nathan R Comb-based spectroscopy with synchronous sampling for real-time averaging
JP2013507005A (en) * 2009-10-02 2013-02-28 イムラ アメリカ インコーポレイテッド Optical signal processing by mode-locked laser
JP2015530598A (en) * 2012-10-04 2015-10-15 ザイゴ コーポレーションZygo Corporation Position monitoring system with reduced noise

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATO, T. ET AL.: "Non-Scanning Three-Dimensional Imaging Using Two-Dimensional Spectroscopy and Spectral Interferometry with a Chirped Frequency Comb", 2017 CONFERENCE ON LASERS AND ELECTRO- OPTICS PACIFIC RIM(CLEO-PR, 31 July 2017 (2017-07-31), pages 1 - 2, XP033260583, doi:10.1109/CLEOPR.2017.8118724 *

Also Published As

Publication number Publication date
JPWO2019167477A1 (en) 2021-01-07
JP7272652B2 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
EP2149776B1 (en) Optical coherence tomographic imaging method and optical coherence tomographic imaging apparatus
EP2526392B1 (en) Compact interferometer spectrometer
CN103063304B (en) Image plane interference Hyper spectral Imaging device and method is sheared in dispersion
US7206073B2 (en) Dispersed fourier transform spectrometer
KR101891036B1 (en) Fast parallel optical coherence tomography image making apparatus and method
CN103033265A (en) Device and method of space heterodyning interference hyper spectrum imaging
WO2013115018A9 (en) Optical coherence tomography device and optical coherence tomography method
Allen et al. Miniature spatial heterodyne spectrometer for remote laser induced breakdown and Raman spectroscopy using Fresnel collection optics
EP2675341A1 (en) Apparatus and method for optical coherence tomography
Moiseev Reduction of CCD observations made with a scanning Fabry–Perot interferometer. III. Wavelength scale refinement
Barducci et al. Developing a new hyperspectral imaging interferometer for earth observation
WO2018213212A1 (en) Standoff trace chemical detection with active infrared spectroscopy
EP3327411A1 (en) Optical system
JP7272652B2 (en) Two-dimensional spectroscopy and two-dimensional spectroscopic device
Viskovatykh et al. Combined optical-coherence and spectral microscopy based on tunable acousto-optic filters of images
CN108362381B (en) Wide-field large-aperture spatial heterodyne interference imaging spectrometer
US20180195902A1 (en) Titled filter imaging spectrometer
JP7194437B2 (en) Interference signal strength acquisition method and interference signal strength acquisition device
US11041754B2 (en) Standoff trace chemical detection with active infrared spectroscopy
Barducci et al. Simulation of the performance of a stationary imaging interferometer for high-resolution monitoring of the Earth
JP2021047130A (en) Spectrometry device and method
Yan et al. Optical spectrum analyzers and typical applications in astronomy and remote sensing
JP7194438B2 (en) Two-dimensional spectroscopic measurement method and two-dimensional spectroscopic measurement device
Roesler An overview of the SHS technique and applications
Barducci et al. Performance assessment of a stationary imaging interferometer for high-resolution remote sensing

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019509003

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760779

Country of ref document: EP

Kind code of ref document: A1