WO2019159799A1 - Composite particle, powder, resin composition, and molded article - Google Patents

Composite particle, powder, resin composition, and molded article Download PDF

Info

Publication number
WO2019159799A1
WO2019159799A1 PCT/JP2019/004303 JP2019004303W WO2019159799A1 WO 2019159799 A1 WO2019159799 A1 WO 2019159799A1 JP 2019004303 W JP2019004303 W JP 2019004303W WO 2019159799 A1 WO2019159799 A1 WO 2019159799A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
powder
ferrite
mass
composite
Prior art date
Application number
PCT/JP2019/004303
Other languages
French (fr)
Japanese (ja)
Inventor
康二 安賀
一隆 石井
Original Assignee
パウダーテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パウダーテック株式会社 filed Critical パウダーテック株式会社
Priority to JP2020500437A priority Critical patent/JPWO2019159799A1/en
Priority to TW108104593A priority patent/TWI814778B/en
Publication of WO2019159799A1 publication Critical patent/WO2019159799A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to composite particles, powder, a resin composition, and a molded body.
  • the electronic components By being mounted in a high density in the housing, the electronic components are close to each other and are easily affected by electromagnetic noise generated from the electronic circuit, and the heat generated from the electronic components is difficult to escape. Therefore, an electronic component that operates at a higher temperature and a material that can suppress electromagnetic noise are desired. Furthermore, electric vehicles and hybrid vehicles are also being electrically equipped, and there is a need for noise suppression materials around parts that operate at high temperatures for a long time.
  • An object of the present invention is to provide composite particles and powder excellent in electromagnetic wave shielding properties, to provide a molded body excellent in electromagnetic wave shielding properties, and a resin composition that can be suitably used for producing the molded body. To provide things.
  • the Mn ferrite has a composition in which the Mn content is 3.5% by mass or more and 20.0% by mass or less, and the Fe content is 50.0% by mass or more and 70.0% by mass or less [1].
  • a powder comprising a plurality of composite particles according to any one of [1] to [5].
  • [8] [6] A resin composition comprising the powder according to [7] and a resin material.
  • [9] A molded article produced using a material containing the powder according to [6] or [7] and a resin material.
  • the present invention it is possible to provide composite particles and powder excellent in electromagnetic wave shielding properties, to provide a molded body excellent in electromagnetic wave shielding properties, and a resin composition that can be suitably used for producing the molded body. Things can be provided.
  • FIG. 2 is a cross-sectional SEM image of the composite particles of Example 1.
  • FIG. 3 is a cross-sectional SEM image of the composite particles of Example 2.
  • 6 is a cross-sectional SEM image of the composite particles of Example 3. It is a graph which shows the evaluation result of the electromagnetic wave shielding effect by KEC method.
  • the composite particle of the present invention includes a mother particle composed of Mn ferrite and a coating layer composed of a material containing at least one selected from the group consisting of Au, Ag, Pt, Ni and Pd. .
  • the powder of the present invention contains a plurality of the composite particles of the present invention.
  • the composite particle and powder excellent in the shielding property of electromagnetic waves can be provided.
  • Such an excellent effect can be obtained by providing the mother particles having excellent electromagnetic wave absorbability and the coating layer having excellent electromagnetic wave reflectivity so that they act synergistically.
  • the weight can be reduced compared to the case where the particles composed only of the metal material as described above are used. Therefore, for example, it can be suitably applied to mobile terminals such as mobile phones, smartphones, and tablets.
  • the amount of expensive metal used can be suppressed, and the overall cost can be reduced.
  • the mother particles are composed of Mn ferrite among various ferrites, not only is the resistance low, but the ionic radius of Mn is close to that of Fe, so that it is easily incorporated into the crystal structure regularly. Even if it is exposed to a plating solution, an acid or an alkali solution used when forming the layer, an effect that Mn is hardly eluted over a relatively long time can be obtained. Further, since the mother particles are composed of Mn ferrite, the adhesion between the mother particles and the coating layer described in detail later can be improved, and the effects of the present invention described in the present specification can be prolonged. It can be obtained stably over a period of time.
  • the composite particles and powder can be adjusted to a color tone other than black. More specifically, by providing a coating layer composed of a material containing Au, the color tone of the composite particles and powder can be adjusted to gold. In addition, by providing a coating layer made of a material containing at least one selected from the group consisting of Ag, Pt, Ni, and Pd, the color tone of the composite particles and powder is suitably adjusted to a color tone of white to silver. be able to. Thereby, for example, not only can the color tone of the molded product containing composite particles and powder be suitably adjusted to a white to silver color tone, but also the molded product can contain a colorant (including providing a printing layer). Thereby, a molded object can be adjusted to a desired color tone.
  • the conductivity of the composite particles, powders, and compacts containing these can be made excellent.
  • it is mixed with resin and applied while controlling an external magnetic field during molding, and by orienting the particles along the magnetic field lines, a conductive path (path) is selectively formed in a specific direction, and a resin molded body
  • the resistance can be anisotropic.
  • particles in a molded body produced using the powder of the present invention, particles (composite particles) can be suitably joined under relatively mild conditions. Thereby, the shielding property and electromagnetic strength of the electromagnetic wave about a molded object can be made compatible at a higher level.
  • the frequency characteristics of the magnetic permeability of the composite particles can be controlled by controlling the thickness of the coating layer made of a material containing a highly conductive noble metal.
  • particles that do not have a coating layer as described above cannot sufficiently obtain the effect of electromagnetic wave reflection as described above, and have sufficiently excellent electromagnetic wave shielding properties as a whole. It can not be.
  • a molded body as a sintered body is produced using a composition containing powder, it is usually necessary to make the temperature higher than the Curie temperature of ferrite in order to sufficiently improve the bonding strength of the particles. For this reason, it is difficult to exhibit sufficient characteristics in the finally obtained molded body.
  • the sintering process is performed at a temperature lower than the Curie temperature, the strength of the molded body becomes insufficient.
  • the color tone of the particles is black with low brightness, it is difficult to adjust the color tone of the molded body containing the powder.
  • the conductivity of the particles, powders, and compacts containing them cannot be made sufficiently excellent.
  • the volume resistance tends to be higher than that of Mn ferrite particles, and even if a coating layer is provided, the resistance is difficult to decrease, or eddy current The electromagnetic wave shielding effect at a low frequency due to loss is reduced.
  • the mother particle is composed of Mn ferrite.
  • Mn ferrite is generally soft ferrite.
  • the permeability can be easily controlled in a wide frequency range (for example, 1 MHz to 1 GHz) by adjusting the thickness of the coating layer and the like.
  • the Mn ferrite constituting the mother particles has a composition in which the Mn content is from 3.5% by mass to 20.0% by mass and the Fe content is from 50.0% by mass to 70.0% by mass. It is preferable.
  • the volume resistance is low, and an electromagnetic wave shielding effect due to eddy current loss is easily obtained even in a low frequency region.
  • the Mn content is less than 3.5% by mass, although depending on the manufacturing conditions, not only is it easy to oxidize but the magnetization tends to decrease, and the volume resistance increases, resulting in eddy current loss. There is a possibility that the electromagnetic wave shielding effect at a low frequency is reduced.
  • the Fe content when the Mn content is higher than 20.0 mass%, the Fe content is relatively decreased, the volume resistance is likely to be increased, and the electromagnetic wave shielding effect at low frequencies caused by eddy current loss can be reduced. There is sex.
  • the volume resistance tends to be high, and the electromagnetic wave shielding effect at low frequencies caused by eddy current loss may be reduced. .
  • the Fe content is larger than 70.0% by mass, although depending on the manufacturing conditions, it is easy to oxidize and the magnetization is not only easily lowered, but also the volume resistance is increased, so low frequency due to eddy current loss. There is a possibility that the electromagnetic wave shielding effect in is reduced.
  • the Mn content is preferably 3.5% by mass or more and 20.0% by mass or less, more preferably 5.0% by mass or more and 19.0% by mass or less. More preferably, it is 4 mass% or more and 18.0 mass% or less. Thereby, the effect mentioned above is exhibited more notably.
  • the Fe content is preferably 50.0% by mass or more and 70.0% by mass or less, more preferably 51.0% by mass or more and 66.0% by mass or less, More preferably, it is 52.0 mass% or more and 65.0 mass% or less. Thereby, the effect mentioned above is exhibited more notably.
  • the content of metal elements (Fe, Mn, etc.) constituting the mother particles is measured as follows.
  • the Mn ferrite preferably contains only Fe and Mn as metal components. From the above viewpoint, it is desirable that the content of all components (elements) other than Fe, Mn, and O contained in the Mn ferrite does not exceed the amount of impurities. Specifically, the content of all components (elements) other than Fe, Mn, and O contained in the Mn ferrite is preferably less than 0.1% by mass, and less than 0.05% by mass. More preferably, the content is less than 0.01% by mass.
  • the Curie point (also referred to as Curie temperature) of the Mn ferrite constituting the mother particle is preferably 200 ° C. or higher and 500 ° C. or lower, and more preferably 250 ° C. or higher and 480 ° C. or lower.
  • the heat resistance of the composite particles and the molded body produced using the composite particles can be made excellent, and for example, it can be suitably applied to a molded body used in a high temperature environment.
  • the Curie temperature itself is not too high, there is no problem, but the Curie point of the ferrite is determined by the composition, and usually the above ferrite composition does not exceed 500 ° C.
  • the above Curie point is obtained from measurement of change in magnetization of ferrite powder due to temperature change using a vibrating sample magnetometer (VSM) (VSM-5 manufactured by Toei Kogyo Co., Ltd.).
  • VSM vibrating sample magnetometer
  • the temperature when the tangent of the curve crosses the line where the magnetization becomes 0 from the low temperature side immediately before the magnetization becomes 0 can be set as the Curie point.
  • ferrite can be measured for magnetic properties such as saturation magnetization, remanent magnetization, coercive force, etc. using a vibration sample type magnetometer.
  • the above magnetic characteristics are obtained as follows. That is, first, ferrite powder to be measured was packed in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in a vibration sample type magnetometer (VSM-C7-10A manufactured by Toei Kogyo Co., Ltd.). Next, an applied magnetic field was applied, sweeped to 5 kOe, and then the applied magnetic field was reduced to create a hysteresis curve. Thereafter, the saturation magnetization, residual magnetization and coercive force of the ferrite powder were determined from the data of this curve. The powder as an aggregate of composite particles described later was obtained in the same manner.
  • a preferable range of the saturation magnetization of the mother particles is 70 to 95 emu / g, a preferable range of the residual magnetization is 0.5 to 10 emu / g, and a preferable range of the coercive force is 10 to 80 Oe.
  • the preferable range of the saturation magnetization of the powder (composite particles) as an aggregate of the composite particles is 30 to 90 emu / g, the preferable range of the residual magnetization is 0.5 to 9 emu / g, and the preferable range of the coercive force is 10 ⁇ 80 Oe.
  • the shape of the mother particle is not particularly limited, but is preferably a true sphere. Thereby, in the molded object manufactured using the powder which concerns on this invention, the filling rate of powder can be made higher and the shielding property (absorbency, reflectivity) of electromagnetic waves can be improved more.
  • the term “spherical” means a true sphere or a shape that is sufficiently close to a true sphere, and specifically means that the shape factor SF-1 is 100 or more and 120 or less.
  • the shape factor SF-1 of the mother particles is preferably 100 or more and 120 or less, and more preferably 100 or more and 115 or less.
  • the shape factor SF-1 of the particles is obtained as follows. First, using a scanning electron microscope (FE-SEM (SU-8020, manufactured by Hitachi High-Technologies Corporation)) and an energy dispersive X-ray analyzer (EDX) (E-MAX manufactured by Horiba, Ltd.), particles can be seen in one field of view. The magnification is set so that about 3 to 50 pieces are included (for example, 1000 to 2000 times in the examples and comparative examples described later), and the equivalent particle diameter, outer circumference, Automatically measure 1000 or more particles of length, width and area.
  • FE-SEM SU-8020, manufactured by Hitachi High-Technologies Corporation
  • EDX energy dispersive X-ray analyzer
  • E-MAX energy dispersive X-ray analyzer
  • the particles clearly overlap each other (peripheral length is more than 1.8 times the perimeter calculated from the equivalent circle diameter) and fine powder (the equivalent circle diameter is less than 1 ⁇ m). (Small one) is excluded, the maximum length (horizontal ferret diameter) R of the particles and the area is the projected area S, and the value of SF-1 is calculated by the following formula. The closer the particle shape is to a spherical shape, the closer to 100.
  • SF-1 can be calculated as 200 or more particles per particle, and the average value can be used as the SF-1 of the powder.
  • the mother particle constituting the single composite particle may be composed of, for example, a single particle, or a joined body (including aggregates) of a plurality of fine particles.
  • the coating layer covers at least a part of the mother particles. And the coating layer is comprised with the material containing at least 1 sort (s) selected from the group which consists of Au, Ag, Pt, Ni, and Pd.
  • the above metal elements may be included in the coating layer as a single metal or may be included as a constituent component of the alloy.
  • the coating layer only needs to be made of a material containing at least one selected from the group consisting of Au, Ag, Pt, Ni, and Pd. Among them, as the constituent material of the coating layer, at least Au and Ag are used. One is preferred.
  • Au and Ag are composite particles having a relatively low melting point among the metals constituting the group, even when sintered at a relatively low temperature in the production of a molded body as a sintered body. They can be suitably joined together. Moreover, the frequency characteristic of the magnetic permeability of the composite particles can be more suitably controlled by controlling the thickness of the coating layer.
  • the sum of the content ratios of Au and Ag in the coating layer is preferably 80% by mass or more, and more preferably 90% by mass or more. Thereby, the effects as described above are more remarkably exhibited.
  • the thickness of the coating layer is not particularly limited, but is preferably 10 nm or more and 500 nm or less, more preferably 10 nm or more and 400 nm or less, and further preferably 10 nm or more and 300 nm or less.
  • the thickness of the coating layer can be determined by the following method. That is, after embedding the particles in a resin, cross-section processing of the particles was performed using an ion milling device, and the obtained sample for photographing was produced. The obtained sample for photographing is photographed with FE-SEM, and the length of the scale included in the image analysis software or the image (value described), and the actual measurement value of the scale in the SEM image and the coating layer It can be calculated using an actual measurement value by a thickness ruler.
  • the Fe-SEM Hitachi High-Technologies SU-8020 was used.
  • IM-4000 manufactured by Hitachi High-Technologies was used as the ion milling device.
  • Epoxy resin was used as the embedding resin.
  • the particle size of the composite particle is a volume average particle size. The volume average particle diameter can be measured by the method described later.
  • the balance between electromagnetic wave absorption and electromagnetic wave reflection can be made more suitable, and the overall electromagnetic wave shielding effect can be made particularly excellent.
  • the composite particles of the present invention may have any structure as long as they include the mother particles and the coating layer as described above.
  • the composite particle may have at least one intermediate layer between the mother particle and the coating layer.
  • a coating layer made of a material other than Au, Ag, Pt, Ni, and Pd may be provided on the surface of the coating layer described above.
  • examples of such a coating layer include a surface treatment layer using various coupling agents such as a silane coupling agent.
  • first coating layer made of a material containing at least one selected from the group consisting of Au, Ag, Pt, Ni and Pd on the surface of the mother particle, Au
  • second coating layer made of a material other than Ag, Pt, Ni, and Pd may be provided.
  • the volume average particle size of the composite particles is preferably 1.0 ⁇ m or more and 20 ⁇ m or less, more preferably 1.5 ⁇ m or more and 18 ⁇ m or less, and further preferably 2.0 ⁇ m or more and 15 ⁇ m or less.
  • the volume average particle diameter is determined by the following measurement. That is, first, 10 g of powder as a sample and 80 ml of water are placed in a 100 ml beaker, and two drops of a dispersant (sodium hexametaphosphate) are added. Next, dispersion is performed using an ultrasonic homogenizer (UH-150, manufactured by SMT Co. LTD.). At this time, the output level of the ultrasonic homogenizer is set to 4, and dispersion is performed for 20 seconds. Thereafter, bubbles formed on the surface of the beaker are removed, and introduced into a laser diffraction particle size distribution measuring device (SALD-7500 nano manufactured by Shimadzu Corporation) to perform measurement. The measurement conditions at this time were pump speed 7, refractive index 1.70-0.50i, and internal ultrasonic irradiation time 30.
  • SALD-7500 nano nano manufactured by Shimadzu Corporation
  • Composite particles in which a coating layer is formed on mother particles composed of Mn ferrite are likely to aggregate in water and may not be able to be measured with high accuracy.
  • the volume average particle diameter can be calculated using the above-described particle image analysis data.
  • BET specific surface area of the powder (aggregate of composite particles) of the present invention is preferably equal to or less than 1 m 2 / g or more 9m 2 / g, more preferably not more than 1 m 2 / g or more 8m 2 / g, More preferably, it is 3 m 2 / g or more and 8 m 2 / g or less.
  • the adhesiveness of the composite particles and the resin material in the molded body of the present invention can be further improved, and the durability of the molded body is particularly excellent. can do.
  • the BET specific surface area can be determined by measurement using a specific surface area measuring device (model: Macsorb HM model-1208 (manufactured by Mountec)).
  • the tap density of the powder (aggregate of composite particles) of the present invention is preferably 1.8 g / cm 3 or more and 3.0 g / cm 3 or less, and 2.0 g / cm 3 or more and 3.0 g / cm 3 or less. It is more preferable that Thereby, it becomes easy to make high the filling rate of the composite particle in the molded object of this invention.
  • a tap density means the density calculated
  • a USP tap density measuring device Pane Tester PT-X, manufactured by Hosokawa Micron
  • Electrical resistivity at 25 ° C. of the powder of the present invention is preferably equal to or less than 1.0 ⁇ 10 -5 or more 10 ⁇ ⁇ cm, 1.0 ⁇ 10 -5 or more 1.0 ⁇ 10 - It is more preferably 1 ⁇ ⁇ cm or less, and further preferably 1.0 ⁇ 10 ⁇ 5 or more and 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less.
  • the electric resistivity (volume resistivity) of the mother particles of the present invention at 25 ° C. is preferably 1 ⁇ 10 2 to 5.0 ⁇ 10 8 ⁇ ⁇ cm, and 1 ⁇ 10 2 to 1.0 ⁇ 10 7. More preferably, it is ⁇ ⁇ cm, and further preferably 1.0 ⁇ 10 3 to 1.0 ⁇ 10 6 ⁇ ⁇ cm.
  • the powder of the present invention only needs to contain a plurality of the composite particles of the present invention, and may further include particles other than the composite particles of the present invention.
  • the content of particles other than the composite particles of the present invention in the powder of the present invention is preferably 10% by mass or less, more preferably 5.0% by mass or less, and 1.0% More preferably, it is at most mass%.
  • the composite particles of the present invention can be produced by forming a coating layer on the surface of Mn ferrite particles produced by a predetermined method by various plating methods.
  • Examples of the plating method for forming the coating layer include wet plating methods such as electrolytic plating and electroless plating, and dry plating methods such as vacuum deposition, sputtering, and ion plating.
  • the wet plating method is preferable.
  • the electroless plating method is more preferable.
  • the Mn ferrite particles to be the mother particles may be produced by any method, but can be suitably produced by, for example, the method described below.
  • the Mn ferrite particles to be the mother particles can be suitably produced by thermally spraying a ferrite raw material prepared to a predetermined composition in the air and then rapidly solidifying it (first method).
  • a granulated material can be suitably used as the ferrite raw material.
  • the method for preparing the ferrite raw material is not particularly limited, and for example, a dry method or a wet method may be used. Moreover, you may use combining a dry type and a wet type.
  • An example of a method for preparing a ferrite raw material (granulated product) is as follows. That is, a plurality of kinds of raw materials containing a metal element are weighed and mixed so as to correspond to the composition of Mn ferrite particles (mother particles) to be manufactured, and then water is added to pulverize to prepare a slurry. The prepared pulverized slurry is granulated with a spray dryer and classified to prepare a granulated product having a predetermined particle size.
  • Another example of the method for preparing the ferrite raw material is as follows. That is, a plurality of raw materials containing metal elements are weighed and mixed so as to correspond to the composition of the Mn ferrite particles (mother particles) to be manufactured, and then dry pulverized to pulverize and disperse each raw material. Granulate with a granulator and classify to prepare a granulated product with a predetermined particle size. The granulated material prepared as described above is sprayed in the atmosphere to be ferritized.
  • a mixed gas of combustion gas and oxygen can be used as a combustible gas combustion flame.
  • the volume ratio of the combustion gas and oxygen is preferably 1: 3.5 or more and 1: 6.0 or less.
  • grains with a comparatively small particle size by condensation of the volatilized material can be advanced suitably.
  • the shape of the obtained Mn ferrite particles (base particles) can be suitably adjusted.
  • the proportion of particles to be removed by classification in a later step can be made smaller, and the yield of Mn ferrite particles (mother particles) can be further improved.
  • combustion gas used for thermal spraying examples include propane gas, propylene gas, and acetylene gas. Of these, propane gas can be preferably used.
  • nitrogen, oxygen, air etc. can be used as a granulated material conveyance gas.
  • the flow rate of the granulated material to be conveyed is preferably 20 m / second or more and 60 m / second or less.
  • the thermal spraying is preferably performed at a temperature of 1000 ° C. or more and 3500 ° C. or less, more preferably 2000 ° C. or more and 3500 ° C. or less.
  • the shape of the obtained Mn ferrite particles (base particles) can be further suitably adjusted.
  • the proportion of particles to be removed by classification in a later step can be made smaller, and the yield of Mn ferrite particles (mother particles) can be further improved.
  • the particles sprayed and ferritized in this way are rapidly solidified in water or in the atmosphere and collected by a cyclone and / or a filter.
  • the Mn ferrite particles collected by the cyclone and / or the collection filter are classified as necessary.
  • the particle size is adjusted to a desired particle size using an existing air classification, mesh filtration method, sedimentation method, or the like. It is also possible to separate and collect the particles having a large particle size with a cyclone or the like.
  • Mn ferrite particles (mother particles) can be preferably produced by the method described below (second method).
  • the Mn ferrite particles are, for example, pelletized a composition containing a ferrite raw material, pre-baked to obtain a pre-fired body, and after pulverizing and classifying the pre-fired body, Can be manufactured by a method having a main baking step of baking.
  • the Mn ferrite particles used for manufacturing the composite particles having the shape and size as described above can be efficiently manufactured. Further, unlike the wet granulation method using acid or alkali in the production process, it is possible to effectively prevent impurities derived from acid or alkali from remaining in the Mn ferrite particles (mother particles). Further, the durability and reliability of the composite particles and the resin composition produced using the composite particles and the molded body can be further improved.
  • the production of the pellet can be suitably performed by using a pressure molding machine.
  • the heating temperature in the preliminary firing step is not particularly limited, but is preferably 600 ° C. or more and 1200 ° C. or less, more preferably 650 ° C. or more and 1000 ° C. or less, and more preferably 700 ° C. or more and 900 ° C. or less. preferable.
  • a calcination of a temporary calcination object can be performed suitably and Mn ferrite particles used for manufacture of a composite particle of the shape and size as mentioned above can be manufactured more suitably.
  • two or more stages of heat treatment may be performed in the temporary firing step.
  • an irregular-shaped temporary fired body that has been pulverized and / or a sintered body that has been pulverized (fired at a higher temperature) are provided.
  • the volume average particle size of the temporarily fired body and / or the sintered body to be subjected to the main firing step is preferably 0.5 ⁇ m or more and 30 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the particle size of the irregularly shaped temporary fired body and / or sintered body is small, it is preferable to use a granulated product obtained by aggregating a plurality of particles.
  • the amount of the binder of the granulated product may be adjusted in order to easily disperse the raw material particles in the thermal spray frame.
  • the Mn ferrite particles used for manufacturing the composite particles having the shape and size as described above can be manufactured more efficiently.
  • the ratio of the particles to be removed by classification in the subsequent step can be reduced, and the yield of the Mn ferrite particles can be further improved.
  • the main firing step is preferably performed, for example, on a granulated product obtained by granulating a powder of a temporarily fired body (powder obtained by pulverization and classification).
  • the Mn ferrite particles used for manufacturing the composite particles having the shape and size as described above can be manufactured more efficiently.
  • the proportion of particles to be removed by classification in the subsequent step can be made smaller, and the yield of Mn ferrite particles can be further improved.
  • the main firing can be suitably performed by spraying the powder of the temporarily fired body in the air.
  • a mixed gas of combustion gas and oxygen can be used as a combustible gas combustion flame.
  • the volume ratio of the combustion gas and oxygen is preferably 1: 3.5 or more and 1: 6.0 or less.
  • combustion gas used for thermal spraying examples include propane gas, propylene gas, and acetylene gas. Of these, propane gas can be preferably used.
  • nitrogen, oxygen, air etc. can be used as a granulated material conveyance gas.
  • the flow rate of the granulated material to be conveyed is preferably 20 m / second or more and 60 m / second or less.
  • the thermal spraying is preferably performed at a temperature of 1000 ° C. or more and 3500 ° C. or less, more preferably 2000 ° C. or more and 3500 ° C. or less.
  • the formation of Mn ferrite particles having a relatively small particle size due to condensation of the volatilized material can be further promoted.
  • the shape of the obtained Mn ferrite particles can be further suitably adjusted.
  • the proportion of particles to be removed by classification in the subsequent step can be made smaller, and the yield of Mn ferrite particles can be further improved.
  • the Mn ferrite particles formed by the main firing by thermal spraying are rapidly cooled and solidified by being carried in an air stream by air supply in the atmosphere, and then Mn ferrite particles having a predetermined particle size range are collected and recovered. .
  • the rapidly solidified Mn ferrite particles are transported in an air flow by air supply, and particles having a large particle size fall in the middle of the air current transport, while other particles are transported downstream.
  • the flow rate is too large, even particles having a relatively large particle size are conveyed downstream, so that the average particle size of the Mn ferrite particles recovered downstream of the airflow tends to be too large. Thereafter, the recovered Mn ferrite powder may be classified as necessary.
  • the resin composition of the present invention contains the powder of the present invention described above and a resin material. Thereby, the resin composition which can be used suitably for manufacture of the molded object which is excellent in the shielding property of electromagnetic waves can be provided.
  • the resin material constituting the resin composition examples include epoxy resins, urethane resins, acrylic resins, silicone resins, various modified silicone resins (acrylic modified, urethane modified, epoxy modified, fluorine), polyamide resins, polyimide resins, and polyamideimides. Resins, fluorine, polyvinyl alcohol and the like can be mentioned, and one or more selected from these can be used in combination.
  • the resin composition may contain components (other components) other than the powder and resin material of the present invention.
  • Such components include solvents, fillers (organic fillers, inorganic fillers), plasticizers, antioxidants, dispersants, colorants such as pigments, heat conductive particles (particles with high heat conductivity). ) And the like.
  • the ratio (content ratio) of the powder of the present invention to the total solid content in the resin composition is preferably 50% by mass to 95% by mass, and more preferably 80% by mass to 95% by mass.
  • a molded body produced using the resin composition while having excellent dispersion stability of the powder of the present invention in the resin composition, storage stability of the resin composition, moldability of the resin composition, and the like.
  • the mechanical strength, shielding properties of electromagnetic waves, and the like can be further improved.
  • the ratio (content ratio) of the resin material to the total solid content in the resin composition is preferably 5% by mass or more and 50% by mass or less, and more preferably 5% by mass or more and 20% by mass or less.
  • a molded body produced using the resin composition while having excellent dispersion stability of the powder of the present invention in the resin composition, storage stability of the resin composition, moldability of the resin composition, and the like.
  • the mechanical strength, shielding properties of electromagnetic waves, and the like can be further improved.
  • the molded body of the present invention is manufactured using a material containing the powder of the present invention and a resin material. Thereby, the molded object which is excellent in the shielding property of electromagnetic waves can be provided.
  • the shaped product of the present invention may be of any use, but is preferably an electromagnetic shielding material. Thereby, the effect by this invention as mentioned above is exhibited more notably.
  • the molded product of the present invention can be suitably produced using the resin composition of the present invention as described above.
  • the molding method of the molded body examples include compression molding, extrusion molding, injection molding, blow molding, calendar molding, various coating methods, and the like.
  • the molded body may be formed by, for example, directly applying a resin composition on a member on which the molded body is to be formed, or a target member (for example, a printed wiring) after being separately manufactured. It may be installed on a substrate or a metal foil (such as a copper foil).
  • the powder according to the present invention may be used without mixing and dispersing in a resin or the like without performing a process such as firing.
  • the powder is molded, granulated, or coated into a desired shape.
  • firing may be performed (at a relatively low temperature so that the coating layer of the composite particles does not change), and the compact may be used as a sintered body.
  • the molded object of this invention should just contain the composite particle which concerns on this invention in the at least one part, for example, may have the area
  • pretreatment step intermediate step, post-treatment step
  • intermediate step post-treatment step
  • composite particles of the present invention are not limited to those manufactured by the method as described above, and may be manufactured by any method.
  • the composite particles, powder, and resin composition of the present invention have been representatively described for use in the production of an electromagnetic shielding material. You may use for manufacture other than an electromagnetic wave shielding material.
  • the composite particles and powder of the present invention may be used as magnetic core materials or fillers (particularly magnetic fillers).
  • the composite particles and powders of the present invention have a property that can be suitably detected by a metal detector. Therefore, the composite particle, powder, resin composition and molded product of the present invention may be used for the purpose of detection with a metal detector.
  • the composite particles and powder can be adjusted to a color tone other than black (for example, white to silver color tone).
  • the color tone of the molded product containing composite particles and powder is adjusted to a color tone other than black (for example, white to silver color tone) corresponding to the composite particles and powder, or a colorant is included in the molded product.
  • the molded product can be adjusted to a desired color tone. As a result, it can be suitably applied to various molded bodies applied to metal detectors.
  • the molded body of the present invention When the molded body of the present invention is applied to a metal detector, the molded body is provided on, for example, a base formed using a material other than the resin composition of the present invention and the surface of the base. And a surface layer formed using the resin composition of the present invention.
  • the molded body of the present invention When the molded body of the present invention is applied to a metal detector, the molded body preferably includes composite particles at least near the surface thereof. More specifically, the compact preferably contains composite particles in a region within 1.0 mm in the thickness direction from the surface, and the composite particles in a region within 0.5 mm in the thickness direction from the surface. It is more preferable that it contains.
  • the molded product of the present invention can be used for, for example, food production, processing, packaging (including packaging, the same applies hereinafter), cosmetics, and pharmaceuticals.
  • Foods are required to have high safety, but are generally manufactured, processed, and packaged in an environment where foreign substances are easily mixed. Therefore, by applying the present invention to an article used in the field of food production, processing, and packaging, a part of the article is separated, or at least a part of the article is mixed with another article. Etc. can be suitably detected.
  • the form of food in addition to solid form and semi-solid form (gel form of jelly, pudding, etc.), the form of food includes liquid, and the concept of food includes drinks and the like. Food additives and supplements (health supplements) are also included in the concept of food. In addition to natural products such as animal-derived meat, seafood, plant-derived vegetables, fruits, seeds, grains, beans, seaweed, and processed products thereof, artificial sweeteners, artificial seasonings such as artificial seasonings, etc. New products are also included in the concept of food.
  • Examples of molded products used in the production and processing of food include cooking appliances, cooking utensils, cooking utensils, tableware, clothing (articles worn on the human body), and packaging members used for food packaging And articles used in association therewith, as well as articles used for maintenance and repair of these.
  • hot plate hot plate, stove, gas burner, oven, toaster, microwave oven, dishwasher, dish dryer, scale (scale), kitchen timer, thermometer, water purifier, water purification filter (cartridge) Cooking equipment such as pans, pans, kettles, lids, knives, scissors, ladle, spatula, peeler, slicer, mixer, chopper, masher, rolling pin, mudler, whisk, pestle, bowl, drainer Bowl, cutting board, mat, rice paddle, mold, die cutting, lye removal, grater (food grader), frying (turner), pick, drainer, sieve, mill, drop lid, ice tray, grill, tongs, egg slicer Cooking utensils such as bowls, measuring cups, measuring spoons; towels, kitchen paper, towels, towels, paper towels Cooking utensils such as draining sheets, wrap film, oven paper, squeezed bags, virtues, pans, etc .; dishes, cups, bowls, chopsticks (including chopsticks), spoons, for
  • Example 1 Fe 2 O 3 and Mn 3 O 4 as raw materials were mixed at a predetermined ratio and mixed for 15 minutes with a Henschel mixer.
  • the mixture thus obtained was pelletized using a roller compactor, and then pre-fired using a rotary kiln at 1000 ° C. for 5 hours in the air.
  • the mixture was pulverized with a ball mill to obtain a powdery calcination body (calcination powder) having a volume average particle size of 1.8 ⁇ m.
  • the volume average particle size of the powder was determined by the following measurement. That is, first, 10 g of powder as a sample and 80 ml of water were placed in a 100 ml beaker, and two drops of a dispersant (sodium hexametaphosphate) were added. Subsequently, dispersion was performed using an ultrasonic homogenizer (UH-150 type manufactured by SMT Co Ltd). At this time, the output level of the ultrasonic homogenizer was set to 4, and dispersion was performed for 20 seconds. Thereafter, bubbles formed on the surface of the beaker were removed and introduced into a laser diffraction particle size distribution measuring apparatus (SALD-7500 nano manufactured by Shimadzu Corporation) for measurement. The measurement conditions at this time were pump speed 7, refractive index 1.70-0.50i, and internal ultrasonic irradiation time 30. In addition, it calculated
  • SALD-7500 nano laser diffraction particle size distribution measuring apparatus
  • the average value of SF-1 of the ferrite powder was 106.
  • the shape factor SF-1 was determined as follows. That is, first, using a scanning electron microscope (FE-SEM (SU-8020, manufactured by Hitachi High-Technology)) and an energy dispersive X-ray analyzer (EDX) (E-MAX manufactured by Horiba, Ltd.), a magnification of 1000 times And the equivalent circle diameter, outer circumference, length, width and area were automatically measured automatically using a particle analysis function which is a function attached to EDX.
  • FE-SEM scanning electron microscope
  • EDX energy dispersive X-ray analyzer
  • the particles clearly overlap each other (peripheral length is more than 1.8 times the perimeter calculated from the equivalent circle diameter) and fine powder (the equivalent circle diameter is less than 1 ⁇ m).
  • the value of SF-1 was calculated by the above formula, excluding the small ones), the maximum length (horizontal ferret diameter) R of the particles and the area as the projected area S.
  • SF-1 was calculated for each particle, and an average value of 200 particles or more was defined as SF-1 of the ferrite powder. In addition, it calculated
  • the BET specific surface area of the obtained ferrite powder was 0.68 m ⁇ 2 > / g.
  • the BET specific surface area was determined by measurement using a specific surface area measuring device (model: Macsorb HM model-1208 (manufactured by Mountec)). More specifically, about 5 g of the measurement sample was put in a standard sample cell dedicated to a specific surface area measurement apparatus, accurately weighed with a precision balance, the sample (ferrite powder) was set in the measurement port, and measurement was started. The measurement was performed by a one-point method, and the BET specific surface area was automatically calculated when the weight of the sample was input at the end of the measurement.
  • the measurement sample As a pretreatment before the measurement, about 20 g of the measurement sample was placed on the medicine wrapping paper, then degassed to ⁇ 0.1 MPa with a vacuum dryer, and it was confirmed that the degree of vacuum had reached ⁇ 0.1 MPa or less. Then, it heated at 200 degreeC for 2 hours.
  • the measurement environment was temperature: 10-30 ° C., humidity: 20-80% relative humidity, and no condensation.
  • the saturation magnetization was 87.1 emu / g
  • the residual magnetization was 2.8 emu / g
  • the coercive force was 42 Oe.
  • the above magnetic properties were obtained as follows. That is, first, ferrite powder to be measured was packed in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in a vibration sample type magnetometer (VSM-C7-10A manufactured by Toei Kogyo Co., Ltd.). Next, an applied magnetic field was applied, sweeped to 5 kOe, and then the applied magnetic field was reduced to create a hysteresis curve. Thereafter, the saturation magnetization, residual magnetization and coercive force of the ferrite powder were determined from the data of this curve. The powder as an aggregate of composite particles described later was obtained in the same manner. Moreover, it calculated
  • Example 2 In the production of Mn ferrite particles (ferrite powder) used as mother particles, the ratio of raw materials, pre-firing conditions, thermal spraying treatment conditions, classification conditions, and the formation conditions of the coating layer can be adjusted to adjust the powder (multiple The powder (aggregate of a plurality of composite particles) was produced in the same manner as in Example 1 except that the conditions of the aggregates of the composite particles were as shown in Tables 1 and 2.
  • Comparative Example 1 an aggregate including a plurality of particles composed of Mn—Mg—Sr ferrite was used as a target powder as it was. That is, the particles constituting the powder of this comparative example were composed of Mn—Mg—Sr ferrite and were not provided with a coating layer.
  • Comparative Example 2 A powder was produced in the same manner as in Example 1 except that instead of particles composed of Mn ferrite, particles composed of Mn—Mg—Sr ferrite were used as mother particles. That is, in this comparative example, the composite particles constituting the powder had mother particles composed of Mn—Mg—Sr ferrite and a coating layer composed of Ag provided on the surface thereof. It was.
  • Example 3 A powder was produced in the same manner as in Example 1 except that the formation of the coating layer on the ferrite powder was omitted. That is, in this comparative example, the ferrite powder was used as a target powder as it was.
  • Tables 1 and 2 collectively show the configurations of the powders of the Examples and Comparative Examples.
  • the color tone of the powders of the above Examples was white to silver, whereas the color tone of the powders of Comparative Examples 1 and 3 was black.
  • the content of components other than Ag in the coating layer was 0.1% by mass or less.
  • the content of Ag in the coating layer was determined by measurement using fluorescent X-rays. That is, 100 parts by mass of ferrite particles serving as mother particles were mixed with Ag powder at a ratio of 0.1 part by mass, 0.5 part by mass, and 1 part by mass with a ball mill (100 rpm) for 30 minutes, and then X-ray fluorescence After measuring the intensity of Ag with a measuring device (ZSX100s manufactured by Rigaku Corporation) and creating a calibration curve, X-ray fluorescence measurement was performed on the powders (aggregates of a plurality of composite particles) of each of the above Examples and Comparative Example 2. The intensity
  • the content of the component outside the composite particles in the powder was 0.1% by mass or less.
  • volume average particle diameter, magnetic properties, and SF-1 values of the powders of the respective Examples and Comparative Examples were determined by the same method as that for the ferrite powder described above.
  • the tap density was measured using a USP tap density measuring device (Powder Tester PT-X, manufactured by Hosokawa Micron Corporation) in accordance with JIS R1628.
  • the true density was measured using a fully automatic true density measuring device Macpycno manufactured by Mountec Co., Ltd. according to JIS Z 8807: 2012.
  • the Curie temperature and the thickness T of the coating layer in Table 1 were measured by the above methods.
  • FIG. 1 shows a cross-sectional SEM image of the composite particle of Example 1
  • FIG. 2 shows a cross-sectional SEM image of the composite particle of Example 2
  • FIG. 3 shows a cross-sectional SEM image of the composite particle of Example 3. showed that.
  • the obtained mixed liquid was poured into a mold for molding, and water was evaporated to produce a sheet-like molded body having a thickness of 1 mm.
  • the electromagnetic wave shielding ability (attenuation rate) of the magnetic field of the obtained sheet-like molded body was measured by the KEC method.
  • the electromagnetic wave shielding ability (attenuation rate) of the magnetic field was measured in the range of 0.1 MHz to 1 GHz.
  • Electrodes were attached to both ends, and a weight of 1 kg was placed on top of the electrode, and the electrical resistance was measured. did.
  • the electrical resistance was measured by applying a measurement voltage of 1 V with a 2182A nanovolt meter manufactured by Keithley Co., Ltd., measuring the resistance after 60 seconds, and calculating the volume resistance.
  • the present invention can provide composite particles and powder excellent in electromagnetic wave shielding properties, can provide a molded body excellent in electromagnetic wave shielding properties, and can be suitably used for producing the molded body.
  • a resin composition can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

The present invention provides a composite particle comprising: a mother particle composed of Mn ferrite and a covering layer composed of a material including at least one selected from the group consisting of Au, Ag, Pt, Ni, and Pd; a powder characterized by comprising a plurality of the composite particles; a resin composition characterized by comprising the powder and the resin material; and a molded article characterized by being produced using a material containing the powder and the resin material.

Description

複合粒子、粉末、樹脂組成物および成形体Composite particles, powder, resin composition and molded body
 本発明は、複合粒子、粉末、樹脂組成物および成形体に関する。 The present invention relates to composite particles, powder, a resin composition, and a molded body.
 近年の電子機器の小型化、軽量化に伴い(例えば、スマートフォン等)、電子機器に搭載される電子部品(モジュール、基板等を含む)についても、小型化されるとともに高密度で電子機器の筐体内部に実装され、高周波で動作させる場合が多くなっている。 With recent downsizing and weight reduction of electronic devices (for example, smartphones), electronic components (including modules, substrates, etc.) mounted on electronic devices are also reduced in size and high density. It is often mounted inside the body and operated at a high frequency.
 筐体内に高密度で実装されることにより、電子部品同士の距離が近く、電子回路から発生する電磁波ノイズの影響を受けやすくなっているとともに、電子部品から発生する熱が逃げにくい構造になりやすいため、より高い温度で動作する電子部品と電磁波ノイズ抑制できる材料が求められている。さらに、電気自動車、ハイブリッド車等においても電装化が進んでおり、高温で長時間動作する部品の周囲のノイズ抑制材料が求められている。 By being mounted in a high density in the housing, the electronic components are close to each other and are easily affected by electromagnetic noise generated from the electronic circuit, and the heat generated from the electronic components is difficult to escape. Therefore, an electronic component that operates at a higher temperature and a material that can suppress electromagnetic noise are desired. Furthermore, electric vehicles and hybrid vehicles are also being electrically equipped, and there is a need for noise suppression materials around parts that operate at high temperatures for a long time.
 銀粉を電磁波シールド材に用いることが知られている(例えば、特許文献1参照)。
 しかしながら、銀粉を用いた場合、電磁波の遮蔽性が十分に得られないという問題があった。
It is known to use silver powder as an electromagnetic shielding material (see, for example, Patent Document 1).
However, when silver powder is used, there is a problem that sufficient shielding properties against electromagnetic waves cannot be obtained.
日本国特開2016-076444号公報Japanese Unexamined Patent Publication No. 2016-076444
 本発明の目的は、電磁波の遮蔽性に優れる複合粒子、粉末を提供すること、電磁波の遮蔽性に優れる成形体を提供すること、また、前記成形体の製造に好適に用いることができる樹脂組成物を提供することにある。 An object of the present invention is to provide composite particles and powder excellent in electromagnetic wave shielding properties, to provide a molded body excellent in electromagnetic wave shielding properties, and a resin composition that can be suitably used for producing the molded body. To provide things.
 このような目的は、下記の本発明により達成される。 Such an object is achieved by the present invention described below.
[1]
 Mnフェライトで構成された母粒子と、
 Au、Ag、Pt、NiおよびPdよりなる群から選択される少なくとも1種を含む材料で構成された被覆層とを備えることを特徴とする複合粒子。
[1]
Mother particles composed of Mn ferrite;
A composite particle comprising: a coating layer made of a material containing at least one selected from the group consisting of Au, Ag, Pt, Ni, and Pd.
[2]
 前記Mnフェライトは、Mnの含有率が3.5質量%以上20.0質量%以下、Feの含有率が50.0質量%以上70.0質量%以下の組成を有している[1]に記載の複合粒子。
[2]
The Mn ferrite has a composition in which the Mn content is 3.5% by mass or more and 20.0% by mass or less, and the Fe content is 50.0% by mass or more and 70.0% by mass or less [1]. The composite particles according to 1.
[3]
 前記Mnフェライトのキュリー点が、200℃以上500℃以下である[1]または[2]に記載の複合粒子。
[3]
The composite particle according to [1] or [2], in which the Curie point of the Mn ferrite is 200 ° C. or higher and 500 ° C. or lower.
[4]
 前記被覆層の厚さが、10nm以上500nm以下である[1]~[3]のいずれか1項に記載の複合粒子。
[5]
 前記母粒子の形状が、真球状である[1]~[4]のいずれか1項に記載の複合粒子。
[4]
The composite particle according to any one of [1] to [3], wherein the coating layer has a thickness of 10 nm to 500 nm.
[5]
The composite particle according to any one of [1] to [4], wherein the mother particle has a true spherical shape.
[6]
 [1]~[5]のいずれか1項に記載の複合粒子を複数個含むことを特徴とする粉末。
[7]
 前記複合粒子の体積平均粒径が、1.0μm以上20μm以下である[6]に記載の粉末。
[6]
A powder comprising a plurality of composite particles according to any one of [1] to [5].
[7]
The powder according to [6], wherein the composite particles have a volume average particle diameter of 1.0 μm or more and 20 μm or less.
[8]
 [6]または[7]に記載の粉末と、樹脂材料とを含むことを特徴とする樹脂組成物。
[9]
 [6]または[7]に記載の粉末と、樹脂材料とを含む材料を用いて製造されたことを特徴とする成形体。
[8]
[6] A resin composition comprising the powder according to [7] and a resin material.
[9]
A molded article produced using a material containing the powder according to [6] or [7] and a resin material.
 本発明によれば、電磁波の遮蔽性に優れる複合粒子、粉末を提供すること、電磁波の遮蔽性に優れる成形体を提供すること、また、前記成形体の製造に好適に用いることができる樹脂組成物を提供することができる。 According to the present invention, it is possible to provide composite particles and powder excellent in electromagnetic wave shielding properties, to provide a molded body excellent in electromagnetic wave shielding properties, and a resin composition that can be suitably used for producing the molded body. Things can be provided.
実施例1の複合粒子の断面SEM像である。2 is a cross-sectional SEM image of the composite particles of Example 1. FIG. 実施例2の複合粒子の断面SEM像である。3 is a cross-sectional SEM image of the composite particles of Example 2. 実施例3の複合粒子の断面SEM像である。6 is a cross-sectional SEM image of the composite particles of Example 3. KEC法による電磁波シールド効果の評価結果を示すグラフである。It is a graph which shows the evaluation result of the electromagnetic wave shielding effect by KEC method.
 以下、本発明の好適な実施形態について詳細な説明をする。
 《複合粒子および粉末》
 まず、本発明の複合粒子および粉末について説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail.
<Composite particles and powder>
First, the composite particles and powder of the present invention will be described.
 本発明の複合粒子は、Mnフェライトで構成された母粒子と、Au、Ag、Pt、NiおよびPdよりなる群から選択される少なくとも1種を含む材料で構成された被覆層とを備えている。 The composite particle of the present invention includes a mother particle composed of Mn ferrite and a coating layer composed of a material containing at least one selected from the group consisting of Au, Ag, Pt, Ni and Pd. .
 そして、本発明の粉末は、本発明の複合粒子を複数個含んでいる。
 これにより、電磁波の遮蔽性に優れる複合粒子、粉末を提供することができる。このような優れた効果は、電磁波の吸収性に優れた母粒子と、電磁波の反射性に優れた被覆層とを備えることにより、これらが相乗的に作用することにより得られる。
The powder of the present invention contains a plurality of the composite particles of the present invention.
Thereby, the composite particle and powder excellent in the shielding property of electromagnetic waves can be provided. Such an excellent effect can be obtained by providing the mother particles having excellent electromagnetic wave absorbability and the coating layer having excellent electromagnetic wave reflectivity so that they act synergistically.
 また、Mnフェライトで構成された母粒子を備えることにより、上記のような金属材料だけで構成された粒子を用いる場合に比べて軽量化を図ることができる。したがって、例えば、携帯電話、スマートフォン、タブレット等の携帯端末等により好適に適用することができる。 Also, by providing the mother particles composed of Mn ferrite, the weight can be reduced compared to the case where the particles composed only of the metal material as described above are used. Therefore, for example, it can be suitably applied to mobile terminals such as mobile phones, smartphones, and tablets.
 また、高価な金属の使用量を抑制することができ、全体としてのコストダウンを図ることができる。 Also, the amount of expensive metal used can be suppressed, and the overall cost can be reduced.
 また、母粒子が、各種フェライトの中でも特にMnフェライトで構成されていることにより、低抵抗となりやすいだけでなく、Mnのイオン半径がFeに近いため結晶構造中に規則的に取り込まれやすく、被覆層を形成する際に使用するめっき液や酸又はアルカリ液に晒されても比較的長時間にわたってMnが溶出しにくいという効果が得られる。また、母粒子がMnフェライトで構成されていることにより、母粒子と後に詳述する被覆層との密着性を優れたものとすることができ、本明細書に記載の本発明による効果を長期間にわたって安定的に得ることができる。 In addition, since the mother particles are composed of Mn ferrite among various ferrites, not only is the resistance low, but the ionic radius of Mn is close to that of Fe, so that it is easily incorporated into the crystal structure regularly. Even if it is exposed to a plating solution, an acid or an alkali solution used when forming the layer, an effect that Mn is hardly eluted over a relatively long time can be obtained. Further, since the mother particles are composed of Mn ferrite, the adhesion between the mother particles and the coating layer described in detail later can be improved, and the effects of the present invention described in the present specification can be prolonged. It can be obtained stably over a period of time.
 また、複合粒子や粉末を黒色以外の色調に調整することができる。より具体的には、Auを含む材料で構成された被覆層を備えることにより、複合粒子、粉末の色調を金色に調整することができる。また、Ag、Pt、NiおよびPdよりなる群から選択される少なくとも1種を含む材料で構成された被覆層を備えることにより、複合粒子、粉末の色調を白色~銀色の色調に好適に調整することができる。これにより、例えば、複合粒子、粉末を含む成形体の色調を白色~銀色の色調に好適に調整することができるだけでなく、成形体に着色剤を含ませること(印刷層を設けることを含む)により、成形体を所望の色調に調整することができる。 Also, the composite particles and powder can be adjusted to a color tone other than black. More specifically, by providing a coating layer composed of a material containing Au, the color tone of the composite particles and powder can be adjusted to gold. In addition, by providing a coating layer made of a material containing at least one selected from the group consisting of Ag, Pt, Ni, and Pd, the color tone of the composite particles and powder is suitably adjusted to a color tone of white to silver. be able to. Thereby, for example, not only can the color tone of the molded product containing composite particles and powder be suitably adjusted to a white to silver color tone, but also the molded product can contain a colorant (including providing a printing layer). Thereby, a molded object can be adjusted to a desired color tone.
 また、複合粒子や粉末、これらを含む成形体の導電性を優れたものとすることができる。特に樹脂と混合し、成形する際に外部磁場を制御しながら印加し、粒子を磁力線に沿って配向させることで特定の方向に選択的に導電性のパス(経路)を形成させ、樹脂成形体の抵抗に異方性を持たすことができる。 Also, the conductivity of the composite particles, powders, and compacts containing these can be made excellent. In particular, it is mixed with resin and applied while controlling an external magnetic field during molding, and by orienting the particles along the magnetic field lines, a conductive path (path) is selectively formed in a specific direction, and a resin molded body The resistance can be anisotropic.
 また、例えば、本発明の粉末を用いて製造される成形体において、比較的温和な条件で、粒子(複合粒子)同士を好適に接合することができる。これにより、成形体についての電磁波の遮蔽性および機械強度をより高いレベルで両立することができる。 Also, for example, in a molded body produced using the powder of the present invention, particles (composite particles) can be suitably joined under relatively mild conditions. Thereby, the shielding property and electromagnetic strength of the electromagnetic wave about a molded object can be made compatible at a higher level.
 また、導電性の高い貴金属を含む材料で構成された被覆層の厚さを制御することで、複合粒子の透磁率の周波数特性を制御することができる。 Further, the frequency characteristics of the magnetic permeability of the composite particles can be controlled by controlling the thickness of the coating layer made of a material containing a highly conductive noble metal.
 これに対し、上記のような構成を有さない粒子では、上記のような優れた効果が得られない。 On the other hand, the above-described excellent effects cannot be obtained with particles having no structure as described above.
 例えば、上記のような被覆層を有していない粒子(単なるフェライト粒子)では、前述したような電磁波の反射の効果が十分に得られず、全体としての電磁波の遮蔽性を十分に優れたものとすることができない。また、粉末を含む組成物を用いて焼結体としての成形体を製造する場合に、粒子の接合強度を十分に向上させるためには、通常、フェライトのキュリー温度よりも高温にする必要があるため、最終的に得られる成形体において、十分な特性を発揮させることが困難となる。また、キュリー温度よりも低い温度で焼結処理を施した場合には、成形体の強度が不十分となる。また、粒子の色調が明度の低い黒色となるため、粉末を含む成形体の色調の調整が困難となる。また、粒子や粉末、これらを含む成形体の導電性を十分に優れたものとすることができない。 For example, particles that do not have a coating layer as described above (simply ferrite particles) cannot sufficiently obtain the effect of electromagnetic wave reflection as described above, and have sufficiently excellent electromagnetic wave shielding properties as a whole. It can not be. Further, when a molded body as a sintered body is produced using a composition containing powder, it is usually necessary to make the temperature higher than the Curie temperature of ferrite in order to sufficiently improve the bonding strength of the particles. For this reason, it is difficult to exhibit sufficient characteristics in the finally obtained molded body. Moreover, when the sintering process is performed at a temperature lower than the Curie temperature, the strength of the molded body becomes insufficient. Further, since the color tone of the particles is black with low brightness, it is difficult to adjust the color tone of the molded body containing the powder. In addition, the conductivity of the particles, powders, and compacts containing them cannot be made sufficiently excellent.
 また、Mnフェライト粒子の表面に被覆層が設けられている場合であっても、当該被覆層の構成材料が上記のようなものでない場合、前述したような電磁波の反射の効果が十分に得られず、全体としての電磁波の遮蔽性を十分に優れたものとすることができない。 Even when a coating layer is provided on the surface of the Mn ferrite particles, if the constituent material of the coating layer is not as described above, the effect of reflecting electromagnetic waves as described above can be sufficiently obtained. Therefore, the shielding property of the electromagnetic wave as a whole cannot be made sufficiently excellent.
 また、単なる金属粒子(Mnフェライトで構成された母粒子を有していない粒子)を用いた場合、前述したような電磁波の吸収の効果が十分に得られず、全体としての電磁波の遮蔽性を十分に優れたものとすることができない。また、粒子全体としての比重が増し、粉末や成形体の軽量化を図ることが困難となる。また、一般に、粉末や成形体の生産コストが増大する。 In addition, when simple metal particles (particles that do not have mother particles composed of Mn ferrite) are used, the electromagnetic wave absorption effect as described above cannot be sufficiently obtained, and the electromagnetic wave shielding property as a whole is reduced. It cannot be made good enough. In addition, the specific gravity of the whole particle increases, and it is difficult to reduce the weight of the powder and the molded body. In general, the production cost of the powder and the molded body increases.
 また、母粒子が、Mnフェライトの代わりに他のフェライトで構成されたものであると、Mnフェライト粒子と比べて体積抵抗が高くなりやすく、被覆層を設けても抵抗が下がりにくいか、渦電流損に起因する低い周波数での電磁波シールド効果が小さくなってしまう。 In addition, if the mother particles are composed of other ferrites instead of Mn ferrite, the volume resistance tends to be higher than that of Mn ferrite particles, and even if a coating layer is provided, the resistance is difficult to decrease, or eddy current The electromagnetic wave shielding effect at a low frequency due to loss is reduced.
 (母粒子)
 母粒子は、Mnフェライトで構成されている。
 そして、Mnフェライトは、一般に、ソフトフェライトである。
 これにより、被覆層の厚さ等を調整することで、広い周波数領域(例えば、1MHz~1GHz)において、透磁率を容易に制御することができる。
(Mother particles)
The mother particle is composed of Mn ferrite.
And Mn ferrite is generally soft ferrite.
Thereby, the permeability can be easily controlled in a wide frequency range (for example, 1 MHz to 1 GHz) by adjusting the thickness of the coating layer and the like.
 特に、母粒子を構成するMnフェライトは、Mnの含有率が3.5質量%以上20.0質量%以下、Feの含有率が50.0質量%以上70.0質量%以下の組成を有しているのが好ましい。 In particular, the Mn ferrite constituting the mother particles has a composition in which the Mn content is from 3.5% by mass to 20.0% by mass and the Fe content is from 50.0% by mass to 70.0% by mass. It is preferable.
 これにより、体積抵抗が低いものとなり、低周波領域においても渦電流損に起因する電磁波シールド効果が得られやすくなる。 As a result, the volume resistance is low, and an electromagnetic wave shielding effect due to eddy current loss is easily obtained even in a low frequency region.
 これに対し、Mnの含有率が3.5質量%よりも小さい場合、製造条件にもよるが、酸化しやすく磁化は下がりやすくなるだけでなく、体積抵抗が高くなるため、渦電流損に起因する低周波における電磁波シールド効果が小さくなる可能性がある。 On the other hand, when the Mn content is less than 3.5% by mass, although depending on the manufacturing conditions, not only is it easy to oxidize but the magnetization tends to decrease, and the volume resistance increases, resulting in eddy current loss. There is a possibility that the electromagnetic wave shielding effect at a low frequency is reduced.
 また、Mnの含有率が20.0質量%よりも大きい場合、相対的にFeの含有量が下がり、体積抵抗が高くなりやすく、渦電流損に起因する低周波における電磁波シールド効果が小さくなる可能性がある。 In addition, when the Mn content is higher than 20.0 mass%, the Fe content is relatively decreased, the volume resistance is likely to be increased, and the electromagnetic wave shielding effect at low frequencies caused by eddy current loss can be reduced. There is sex.
 また、Feの含有率が50.0質量%よりも小さい場合、体積抵抗が高くなりやすく、渦電流損に起因する低周波における電磁波シールド効果が小さくなる可能性がある。      Further, when the Fe content is less than 50.0% by mass, the volume resistance tends to be high, and the electromagnetic wave shielding effect at low frequencies caused by eddy current loss may be reduced. .
 また、Feの含有率が70.0質量%よりも大きい場合、製造条件にもよるが酸化しやすく磁化は下がりやすくなりだけでなく、体積抵抗が高くなるため、渦電流損に起因する低周波における電磁波シールド効果が小さくなる可能性がある。 Further, when the Fe content is larger than 70.0% by mass, although depending on the manufacturing conditions, it is easy to oxidize and the magnetization is not only easily lowered, but also the volume resistance is increased, so low frequency due to eddy current loss. There is a possibility that the electromagnetic wave shielding effect in is reduced.
 前記Mnフェライトにおいて、Mnの含有率は、3.5質量%以上20.0質量%以下であるのが好ましく、5.0質量%以上19.0質量%以下であるのがより好ましく、6.4質量%以上18.0質量%以下であるのが更に好ましい。
 これにより、前述した効果がより顕著に発揮される。
In the Mn ferrite, the Mn content is preferably 3.5% by mass or more and 20.0% by mass or less, more preferably 5.0% by mass or more and 19.0% by mass or less. More preferably, it is 4 mass% or more and 18.0 mass% or less.
Thereby, the effect mentioned above is exhibited more notably.
 また、前記Mnフェライトにおいて、Feの含有率は、50.0質量%以上70.0質量%以下であるのが好ましく、51.0質量%以上66.0質量%以下であるのがより好ましく、52.0質量%以上65.0質量%以下であるのが更に好ましい。
 これにより、前述した効果がより顕著に発揮される。
In the Mn ferrite, the Fe content is preferably 50.0% by mass or more and 70.0% by mass or less, more preferably 51.0% by mass or more and 66.0% by mass or less, More preferably, it is 52.0 mass% or more and 65.0 mass% or less.
Thereby, the effect mentioned above is exhibited more notably.
 母粒子を構成する金属元素(Fe、Mn等)の含有量は、以下のようにして測定するものとする。 The content of metal elements (Fe, Mn, etc.) constituting the mother particles is measured as follows.
 すなわち、母粒子:0.2gを秤量し、純水:60mlに1Nの塩酸:20mlおよび1Nの硝酸:20mlを加えたものを加熱し、フェライト粒子を完全溶解させた水溶液を準備し、ICP分析装置(島津製作所製、ICPS-1000IV)を用いた測定を行うことにより、金属元素の含有量を求めることができる。 That is, 0.2 g of mother particles were weighed, 60 ml of pure water was added with 20 ml of 1N hydrochloric acid: 20 ml and 1N nitric acid: 20 ml to prepare an aqueous solution in which ferrite particles were completely dissolved, and ICP analysis By performing measurement using an apparatus (ICPS-1000IV, manufactured by Shimadzu Corporation), the content of the metal element can be obtained.
 Mnフェライトは、金属成分として、Fe、Mnのみを含むことが望ましい。上記観点から、Mnフェライト中に含まれるFe、Mn、O以外の全成分(元素)の含有率は、不純物量程度を超えて存在しないことが望ましい。
 具体的には、Mnフェライト中に含まれるFe、Mn、O以外の全成分(元素)の含有率は、0.1質量%未満であるのが好ましく、0.05質量%未満であることがより好ましく、0.01質量%未満であることが更に好ましい。
The Mn ferrite preferably contains only Fe and Mn as metal components. From the above viewpoint, it is desirable that the content of all components (elements) other than Fe, Mn, and O contained in the Mn ferrite does not exceed the amount of impurities.
Specifically, the content of all components (elements) other than Fe, Mn, and O contained in the Mn ferrite is preferably less than 0.1% by mass, and less than 0.05% by mass. More preferably, the content is less than 0.01% by mass.
 母粒子を構成するMnフェライトのキュリー点(キュリー温度ともいう)は、200℃以上500℃以下であるのが好ましく、250℃以上480℃以下であるのがより好ましい。 The Curie point (also referred to as Curie temperature) of the Mn ferrite constituting the mother particle is preferably 200 ° C. or higher and 500 ° C. or lower, and more preferably 250 ° C. or higher and 480 ° C. or lower.
 これにより、複合粒子や複合粒子を用いて製造される成形体等の耐熱性を優れたものとすることができ、例えば、高温環境下で用いられる成形体にも好適に適用することができる。 As a result, the heat resistance of the composite particles and the molded body produced using the composite particles can be made excellent, and for example, it can be suitably applied to a molded body used in a high temperature environment.
 これに対し、キュリー温度が低すぎると、複合粒子や複合粒子を用いて製造される成形体等の耐熱性が低下し、適用できる部品、部材、場所等が制限されてしまう可能性がある。 On the other hand, if the Curie temperature is too low, the heat resistance of the composite particles or a molded body produced using the composite particles is lowered, and there is a possibility that applicable parts, members, places, and the like are limited.
 また、キュリー温度が高すぎること自体は問題ないが、フェライトのキュリー点は組成によって決まり、通常、前記のフェライト組成では500℃を超えることはない。 Also, although the Curie temperature itself is not too high, there is no problem, but the Curie point of the ferrite is determined by the composition, and usually the above ferrite composition does not exceed 500 ° C.
 上述のキュリー点は、振動試料型磁力計(VSM)(東英工業製VSM-5型)を用いた、温度変化によるフェライト粉末の磁化の変化の測定から求めるものとする。得られた磁化の温度変化曲線において、磁化が0となる直前の低温側から曲線の接線が、磁化が0となる線を横切るときの温度をキュリー点とすることができる。 The above Curie point is obtained from measurement of change in magnetization of ferrite powder due to temperature change using a vibrating sample magnetometer (VSM) (VSM-5 manufactured by Toei Kogyo Co., Ltd.). In the obtained temperature change curve of magnetization, the temperature when the tangent of the curve crosses the line where the magnetization becomes 0 from the low temperature side immediately before the magnetization becomes 0 can be set as the Curie point.
 また、フェライトについて、振動試料型磁気測定装置を用いて、飽和磁化、残留磁化、保磁力などの磁気特性を測定することができる。 Also, ferrite can be measured for magnetic properties such as saturation magnetization, remanent magnetization, coercive force, etc. using a vibration sample type magnetometer.
 上記の磁気特性は以下のようにして求める。すなわち、まず、内径5mm、高さ2mmのセルに測定対象のフェライト粉末を詰めて振動試料型磁気測定装置(東英工業社製 VSM-C7-10A)にセットした。次に、印加磁場を加え、5kOeまで掃引し、次いで、印加磁場を減少させ、ヒステリシスカーブを作製した。その後、このカーブのデータよりフェライト粉末についての飽和磁化、残留磁化および保磁力を求めた。なお、後に述べる複合粒子の集合体としての粉末についても同様にして求めた。 The above magnetic characteristics are obtained as follows. That is, first, ferrite powder to be measured was packed in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in a vibration sample type magnetometer (VSM-C7-10A manufactured by Toei Kogyo Co., Ltd.). Next, an applied magnetic field was applied, sweeped to 5 kOe, and then the applied magnetic field was reduced to create a hysteresis curve. Thereafter, the saturation magnetization, residual magnetization and coercive force of the ferrite powder were determined from the data of this curve. The powder as an aggregate of composite particles described later was obtained in the same manner.
 母粒子の飽和磁化の好ましい範囲は70~95emu/gであり、残留磁化の好ましい範囲は0.5~10emu/gであり、保磁力の好ましい範囲は10~80Oeである。
 複合粒子の集合体としての粉末(複合粒子)の飽和磁化の好ましい範囲は30~90emu/gであり、残留磁化の好ましい範囲は0.5~9emu/gであり、保磁力の好ましい範囲は10~80Oeである。
A preferable range of the saturation magnetization of the mother particles is 70 to 95 emu / g, a preferable range of the residual magnetization is 0.5 to 10 emu / g, and a preferable range of the coercive force is 10 to 80 Oe.
The preferable range of the saturation magnetization of the powder (composite particles) as an aggregate of the composite particles is 30 to 90 emu / g, the preferable range of the residual magnetization is 0.5 to 9 emu / g, and the preferable range of the coercive force is 10 ~ 80 Oe.
 母粒子の形状は、特に限定されないが、真球状であるのが好ましい。
 これにより、本発明に係る粉末を用いて製造される成形体において、粉末の充填率をより高くすることができ、電磁波のシールド性(吸収性、反射性)をより向上させることができる。
The shape of the mother particle is not particularly limited, but is preferably a true sphere.
Thereby, in the molded object manufactured using the powder which concerns on this invention, the filling rate of powder can be made higher and the shielding property (absorbency, reflectivity) of electromagnetic waves can be improved more.
 なお、本明細書において、真球状とは、真球または十分に真球に近い形状のことを言い、具体的には、形状係数SF-1が100以上120以下のことをいう。 In this specification, the term “spherical” means a true sphere or a shape that is sufficiently close to a true sphere, and specifically means that the shape factor SF-1 is 100 or more and 120 or less.
 また、母粒子の形状係数SF-1は、100以上120以下であるのが好ましく、100以上115以下であるのがより好ましい。 Further, the shape factor SF-1 of the mother particles is preferably 100 or more and 120 or less, and more preferably 100 or more and 115 or less.
 粒子の形状係数SF-1は、次のようにして求めるものとする。
 まず、走査型電子顕微鏡(FE-SEM(SU-8020、日立ハイテクノロジー社製))およびエネルギー分散型X線分析装置(EDX)(堀場製作所製E-MAX)を用いて、粒子が1視野に3~50個程度入るように倍率を設定し(例えば、後述する実施例および比較例では1000~2000倍に設定した)、EDX付属の機能である粒子解析機能を用いて円相当径、外周、長さ、幅、面積を自動で1000個以上の粒子を自動測定する。
The shape factor SF-1 of the particles is obtained as follows.
First, using a scanning electron microscope (FE-SEM (SU-8020, manufactured by Hitachi High-Technologies Corporation)) and an energy dispersive X-ray analyzer (EDX) (E-MAX manufactured by Horiba, Ltd.), particles can be seen in one field of view. The magnification is set so that about 3 to 50 pieces are included (for example, 1000 to 2000 times in the examples and comparative examples described later), and the equivalent particle diameter, outer circumference, Automatically measure 1000 or more particles of length, width and area.
 得られたデータのうち、明らかに粒子同士が重なっているもの(周囲長が円相当径から計算される周囲長の1.8倍以上のもの)、および、微粉(円相当径が1μmよりも小さいもの)を除外し、粒子の最大長(水平フェレ径)R、面積を投影面積Sとし、下記式により、SF-1の値を算出する。粒子の形状が球形に近いほど100に近い値となる。 Among the obtained data, the particles clearly overlap each other (peripheral length is more than 1.8 times the perimeter calculated from the equivalent circle diameter) and fine powder (the equivalent circle diameter is less than 1 μm). (Small one) is excluded, the maximum length (horizontal ferret diameter) R of the particles and the area is the projected area S, and the value of SF-1 is calculated by the following formula. The closer the particle shape is to a spherical shape, the closer to 100.
 SF-1=(R/S)×(π/4)×100(ただし、式中、Rが粒子の最大長(水平フェレ径)(μm)、SはArea(投影面積、単位μm)を示す。) SF-1 = (R 2 / S) × (π / 4) × 100 (where R is the maximum particle length (horizontal ferret diameter) (μm), and S is Area (projection area, unit μm 2 ) Is shown.)
 SF-1は、1粒子毎に200粒子以上算出し、平均値を粉末のSF-1として採用することができる。 SF-1 can be calculated as 200 or more particles per particle, and the average value can be used as the SF-1 of the powder.
 単一の複合粒子を構成する母粒子は、例えば、単一の粒子で構成されたものであってもよいし、複数の微粒子の接合体(凝集体を含む)であってもよい。 The mother particle constituting the single composite particle may be composed of, for example, a single particle, or a joined body (including aggregates) of a plurality of fine particles.
 (被覆層)
 被覆層は、母粒子の少なくとも一部を被覆するものである。そして、被覆層は、Au、Ag、Pt、NiおよびPdよりなる群から選択される少なくとも1種を含む材料で構成されている。
(Coating layer)
The coating layer covers at least a part of the mother particles. And the coating layer is comprised with the material containing at least 1 sort (s) selected from the group which consists of Au, Ag, Pt, Ni, and Pd.
 上記の金属元素(Au、Ag、Pt、Ni、Pd)は、被覆層中に、単体金属として含まれていてもよいし、合金の構成成分として含まれていてもよい。 The above metal elements (Au, Ag, Pt, Ni, Pd) may be included in the coating layer as a single metal or may be included as a constituent component of the alloy.
 被覆層は、Au、Ag、Pt、NiおよびPdよりなる群から選択される少なくとも1種を含む材料で構成されていればよいが、中でも、被覆層の構成材料としては、AuおよびAgの少なくとも一方が好ましい。 The coating layer only needs to be made of a material containing at least one selected from the group consisting of Au, Ag, Pt, Ni, and Pd. Among them, as the constituent material of the coating layer, at least Au and Ag are used. One is preferred.
 Au、Agは、前記の群を構成する金属の中でも、比較的融点が低く、焼結体としての成形体を製造する場合において、比較的低い温度で焼結した場合であっても、複合粒子同士を好適に接合することができる。また、被覆層の厚さを制御することで、複合粒子の透磁率の周波数特性をより好適に制御することができる。 Au and Ag are composite particles having a relatively low melting point among the metals constituting the group, even when sintered at a relatively low temperature in the production of a molded body as a sintered body. They can be suitably joined together. Moreover, the frequency characteristic of the magnetic permeability of the composite particles can be more suitably controlled by controlling the thickness of the coating layer.
 被覆層中におけるAuおよびAgの含有率の和は、80質量%以上であるのが好ましく、90質量%以上であるのがより好ましい。
 これにより、前述したような効果がより顕著に発揮される。
The sum of the content ratios of Au and Ag in the coating layer is preferably 80% by mass or more, and more preferably 90% by mass or more.
Thereby, the effects as described above are more remarkably exhibited.
 被覆層の厚さは、特に限定されないが、10nm以上500nm以下であるのが好ましく、10nm以上400nm以下であるのがより好ましく、10nm以上300nm以下であるのがさらに好ましい。 The thickness of the coating layer is not particularly limited, but is preferably 10 nm or more and 500 nm or less, more preferably 10 nm or more and 400 nm or less, and further preferably 10 nm or more and 300 nm or less.
 これにより、金属の使用量を抑制しつつ電磁波をより効果的に反射させることができる。
 被覆層の厚さは次のような方法で求めることができる。
 すなわち、粒子を樹脂に包埋したのち、イオンミリング装置を用いて粒子の断面加工を行い、得られた撮影用サンプルを作製した。
 得られた撮影用サンプルをFE-SEMにて撮影し、画像解析ソフトウエアまたは画像に入った縮尺の長さ(記載された値)、および、SEM像における縮尺の定規による実測値と被覆層の厚さの定規による実測値を用いて算出することができる。Fe-SEMは日立ハイテクノロジーズ製SU-8020を使用した。イオンミリング装置は日立ハイテクノロジーズ製IM-4000を使用した。包埋用樹脂はエポキシ樹脂を使用した。
Thereby, electromagnetic waves can be reflected more effectively while suppressing the amount of metal used.
The thickness of the coating layer can be determined by the following method.
That is, after embedding the particles in a resin, cross-section processing of the particles was performed using an ion milling device, and the obtained sample for photographing was produced.
The obtained sample for photographing is photographed with FE-SEM, and the length of the scale included in the image analysis software or the image (value described), and the actual measurement value of the scale in the SEM image and the coating layer It can be calculated using an actual measurement value by a thickness ruler. As the Fe-SEM, Hitachi High-Technologies SU-8020 was used. IM-4000 manufactured by Hitachi High-Technologies was used as the ion milling device. Epoxy resin was used as the embedding resin.
 複合粒子の粒径をD[μm]、被覆層の厚さをT[μm]としたとき、0.0010≦T/D≦0.10の関係を満足するのが好ましく、0.0030≦T/D≦0.080の関係を満足するのがより好ましく、0.0050≦T/D≦0.050の関係を満足するのがさらに好ましい。
 なお、上記の複合粒子の粒径は、体積平均粒径である。体積平均粒径は、後述の方法にて測定することができる。
When the particle diameter of the composite particles is D [μm] and the thickness of the coating layer is T [μm], it is preferable to satisfy the relationship of 0.0010 ≦ T / D ≦ 0.10, and 0.0030 ≦ T It is more preferable to satisfy the relationship of /D≦0.080, and it is even more preferable to satisfy the relationship of 0.0050 ≦ T / D ≦ 0.050.
The particle size of the composite particle is a volume average particle size. The volume average particle diameter can be measured by the method described later.
 これにより、電磁波の吸収と、電磁波の反射とのバランスをより好適なものとすることができ、全体としての電磁波遮蔽効果を特に優れたものとすることができる。 Thereby, the balance between electromagnetic wave absorption and electromagnetic wave reflection can be made more suitable, and the overall electromagnetic wave shielding effect can be made particularly excellent.
 本発明の複合粒子は、前述したような母粒子と被覆層とを備えるものであればよく、その他の構成を有していてもよい。 The composite particles of the present invention may have any structure as long as they include the mother particles and the coating layer as described above.
 例えば、複合粒子は、母粒子と被覆層との間に少なくとも1層の中間層を有していてもよい。 For example, the composite particle may have at least one intermediate layer between the mother particle and the coating layer.
 また、前述した被覆層の表面には、Au、Ag、Pt、NiおよびPd以外の材料で構成されたコート層が設けられていてもよい。このようなコート層としては、例えば、シランカップリング剤等の各種カップリング剤による表面処理層等が挙げられる。 In addition, a coating layer made of a material other than Au, Ag, Pt, Ni, and Pd may be provided on the surface of the coating layer described above. Examples of such a coating layer include a surface treatment layer using various coupling agents such as a silane coupling agent.
 また、母粒子の表面には、Au、Ag、Pt、NiおよびPdよりなる群から選択される少なくとも1種を含む材料で構成された被覆層(第1の被覆層)に加えて、Au、Ag、Pt、Ni、Pd以外の材料で構成された他の被覆層(第2の被覆層)が設けられていてもよい。 In addition to the coating layer (first coating layer) made of a material containing at least one selected from the group consisting of Au, Ag, Pt, Ni and Pd on the surface of the mother particle, Au, Another coating layer (second coating layer) made of a material other than Ag, Pt, Ni, and Pd may be provided.
 複合粒子の体積平均粒径は、1.0μm以上20μm以下であるのが好ましく、1.5μm以上18μm以下であるのがより好ましく、2.0μm以上15μm以下であるのがさらに好ましい。 The volume average particle size of the composite particles is preferably 1.0 μm or more and 20 μm or less, more preferably 1.5 μm or more and 18 μm or less, and further preferably 2.0 μm or more and 15 μm or less.
 これにより、複合粒子と樹脂とを混合して成形体を成形する際に粒子間の空隙を小さくし、密に磁性体(母粒子)が充填した状態を作り出しやすい。 This makes it easy to create a state in which the gap between the particles is reduced and the magnetic substance (mother particles) are densely packed when the composite particle and the resin are mixed to form the formed body.
 体積平均粒径は、以下のような測定により求めるものとする。すなわち、まず、試料としての粉末:10gと水:80mlを100mlのビーカーに入れ、分散剤(ヘキサメタリン酸ナトリウム)を2滴添加する。次いで、超音波ホモジナイザー(SMT.Co.LTD.製UH-150型)を用い分散を行う。このとき、超音波ホモジナイザーの出力レベルを4に設定し、20秒間分散を行う。その後、ビーカー表面にできた泡を取り除き、レーザー回折式粒度分布測定装置(島津製作所製SALD-7500nano)に導入し、測定を行う。このときの測定条件はポンプスピード7、屈折率1.70-0.50i、内部超音波照射時間30とした。 The volume average particle diameter is determined by the following measurement. That is, first, 10 g of powder as a sample and 80 ml of water are placed in a 100 ml beaker, and two drops of a dispersant (sodium hexametaphosphate) are added. Next, dispersion is performed using an ultrasonic homogenizer (UH-150, manufactured by SMT Co. LTD.). At this time, the output level of the ultrasonic homogenizer is set to 4, and dispersion is performed for 20 seconds. Thereafter, bubbles formed on the surface of the beaker are removed, and introduced into a laser diffraction particle size distribution measuring device (SALD-7500 nano manufactured by Shimadzu Corporation) to perform measurement. The measurement conditions at this time were pump speed 7, refractive index 1.70-0.50i, and internal ultrasonic irradiation time 30.
 Mnフェライトで構成される母粒子に被覆層が形成された複合粒子は、水中で凝集しやすく精度の高い測定ができない場合がある。その場合は、上述の粒子の画像解析データを用いて体積平均粒径を算出することができる。 Composite particles in which a coating layer is formed on mother particles composed of Mn ferrite are likely to aggregate in water and may not be able to be measured with high accuracy. In that case, the volume average particle diameter can be calculated using the above-described particle image analysis data.
 すなわち、粒子解析結果でSF-1算出時に使用した粒子のデータを用い、i番目の粒子の円相当径をd、粒子の体積をVとすると、V=4/3×π×(d/2)としてVを算出し、体積平均径D50=Σ(V・d)/Σ(V)として算出することができる。 That is, using the particle data used when calculating SF-1 in the particle analysis result, where the equivalent circle diameter of the i-th particle is d i and the volume of the particle is V i , V i = 4/3 × π × ( V i can be calculated as d i / 2) 3 and can be calculated as volume average diameter D 50 = Σ (V i · d i ) / Σ (V i ).
 本発明の粉末(複合粒子の集合体)のBET比表面積は、1m/g以上9m/g以下であるのが好ましく、1m/g以上8m/g以下であるのがより好ましく、3m/g以上8m/g以下であるのがさらに好ましい。 BET specific surface area of the powder (aggregate of composite particles) of the present invention is preferably equal to or less than 1 m 2 / g or more 9m 2 / g, more preferably not more than 1 m 2 / g or more 8m 2 / g, More preferably, it is 3 m 2 / g or more and 8 m 2 / g or less.
 これにより、電磁波のシールド性をより向上させることができるとともに、本発明の成形体における複合粒子と樹脂材料との密着性をより向上させることができ、成形体の耐久性を特に優れたものとすることができる。 Thereby, while being able to improve the shielding property of electromagnetic waves more, the adhesiveness of the composite particles and the resin material in the molded body of the present invention can be further improved, and the durability of the molded body is particularly excellent. can do.
 なお、BET比表面積は、比表面積測定装置(型式:Macsorb HM model-1208(マウンテック社製))を用いた測定により求めることができる。 The BET specific surface area can be determined by measurement using a specific surface area measuring device (model: Macsorb HM model-1208 (manufactured by Mountec)).
 本発明の粉末(複合粒子の集合体)のタップ密度は、1.8g/cm以上3.0g/cm以下であるのが好ましく、2.0g/cm以上3.0g/cm以下であるのがより好ましい。
 これにより、本発明の成形体における複合粒子の充填率を高くしやすくなる。
The tap density of the powder (aggregate of composite particles) of the present invention is preferably 1.8 g / cm 3 or more and 3.0 g / cm 3 or less, and 2.0 g / cm 3 or more and 3.0 g / cm 3 or less. It is more preferable that
Thereby, it becomes easy to make high the filling rate of the composite particle in the molded object of this invention.
 なお、本明細書中において、タップ密度とは、JIS R1628に準拠した測定により求められる密度のことをいう。
 タッピング装置としては、USPタップ密度測定装置(パウダテスターPT-X、ホソカワミクロン社製)を用いることができる。
In addition, in this specification, a tap density means the density calculated | required by the measurement based on JISR1628.
As the tapping device, a USP tap density measuring device (Powder Tester PT-X, manufactured by Hosokawa Micron) can be used.
 本発明の粉末の25℃における電気抵抗率(体積抵抗率)は、1.0×10-5以上10Ω・cm以下であるのが好ましく、1.0×10-5以上1.0×10-1Ω・cm以下であるのがより好ましく、1.0×10-5以上1.0×10-2Ω・cm以下であるのがさらに好ましい。 Electrical resistivity at 25 ° C. of the powder of the present invention (volume resistivity) is preferably equal to or less than 1.0 × 10 -5 or more 10Ω · cm, 1.0 × 10 -5 or more 1.0 × 10 - It is more preferably 1 Ω · cm or less, and further preferably 1.0 × 10 −5 or more and 1.0 × 10 −2 Ω · cm or less.
 本発明の母粒子の25℃における電気抵抗率(体積抵抗率)は、1×10~5.0×10Ω・cmであるのが好ましく、1×10~1.0×10Ω・cmであるのがより好ましく、1.0×10~1.0×10Ω・cmであるのがさらに好ましい。 The electric resistivity (volume resistivity) of the mother particles of the present invention at 25 ° C. is preferably 1 × 10 2 to 5.0 × 10 8 Ω · cm, and 1 × 10 2 to 1.0 × 10 7. More preferably, it is Ω · cm, and further preferably 1.0 × 10 3 to 1.0 × 10 6 Ω · cm.
 これにより、複合粒子と樹脂とを混合して成形体を成形した際に(樹脂との混合比率にもよるが)導電性のパスを形成しやすくなり、樹脂成形体の抵抗をより効果的に低くすることができる。 This makes it easier to form a conductive path when the composite particles and the resin are mixed to form a molded body (depending on the mixing ratio with the resin), and the resistance of the resin molded body is more effectively reduced. Can be lowered.
 また、本発明の粉末は、本発明の複合粒子を複数個含んでいればよく、本発明の複合粒子以外の粒子をさらに含んでいてもよい。 The powder of the present invention only needs to contain a plurality of the composite particles of the present invention, and may further include particles other than the composite particles of the present invention.
 このような場合、本発明の粉末中における本発明の複合粒子以外の粒子の含有率は、10質量%以下であるのが好ましく、5.0質量%以下であるのがより好ましく、1.0質量%以下であるのがさらに好ましい。
 これにより、前述したような本発明による効果がより確実に発揮される。
In such a case, the content of particles other than the composite particles of the present invention in the powder of the present invention is preferably 10% by mass or less, more preferably 5.0% by mass or less, and 1.0% More preferably, it is at most mass%.
Thereby, the effect by this invention as mentioned above is exhibited more reliably.
 《複合粒子の製造方法》
 次に、本発明に係る複合粒子の製造方法について説明する。
<< Production method of composite particles >>
Next, the manufacturing method of the composite particle which concerns on this invention is demonstrated.
 本発明の複合粒子は、所定の方法で製造したMnフェライト粒子の表面に、各種めっき法により、被覆層を形成することにより、製造することができる。 The composite particles of the present invention can be produced by forming a coating layer on the surface of Mn ferrite particles produced by a predetermined method by various plating methods.
 被覆層を形成するためのめっき法としては、例えば、電解めっき、無電解めっき等の湿式めっき法、真空蒸着、スパッタリング、イオンプレーティング等の乾式めっき法等が挙げられるが、湿式めっき法が好ましく、無電解めっき法がより好ましい。 Examples of the plating method for forming the coating layer include wet plating methods such as electrolytic plating and electroless plating, and dry plating methods such as vacuum deposition, sputtering, and ion plating. The wet plating method is preferable. The electroless plating method is more preferable.
 母粒子となるべきMnフェライト粒子は、いかなる方法で製造してもよいが、例えば、以下に述べるような方法により、好適に製造することができる。 The Mn ferrite particles to be the mother particles may be produced by any method, but can be suitably produced by, for example, the method described below.
 例えば、母粒子となるべきMnフェライト粒子は、所定の組成に調製したフェライト原料を、大気中で溶射して、次いで急冷凝固すること(第1の方法)により好適に製造することができる。
 この方法では、フェライト原料としては、造粒物を好適に用いることができる。
For example, the Mn ferrite particles to be the mother particles can be suitably produced by thermally spraying a ferrite raw material prepared to a predetermined composition in the air and then rapidly solidifying it (first method).
In this method, a granulated material can be suitably used as the ferrite raw material.
 フェライト原料を調製する方法は、特に限定されず、例えば、乾式による方法を用いてもよいし、湿式による方法を用いてもよい。また、乾式と湿式とを組み合わせて使用してもよい。 The method for preparing the ferrite raw material is not particularly limited, and for example, a dry method or a wet method may be used. Moreover, you may use combining a dry type and a wet type.
 フェライト原料(造粒物)の調製方法の一例を挙げると以下の通りである。
 すなわち、製造すべきMnフェライト粒子(母粒子)の組成に対応するように、金属元素を含む複数種の原料を秤量・混合した後、水を加えて粉砕しスラリーを作製する。作製した粉砕スラリーをスプレードライヤーで造粒して、分級して所定粒径の造粒物を調製する。
An example of a method for preparing a ferrite raw material (granulated product) is as follows.
That is, a plurality of kinds of raw materials containing a metal element are weighed and mixed so as to correspond to the composition of Mn ferrite particles (mother particles) to be manufactured, and then water is added to pulverize to prepare a slurry. The prepared pulverized slurry is granulated with a spray dryer and classified to prepare a granulated product having a predetermined particle size.
 また、フェライト原料(造粒物)の調製方法の他の一例を挙げると以下の通りである。
 すなわち、製造すべきMnフェライト粒子(母粒子)の組成に対応するように、金属元素を含む複数種の原料を秤量、混合した後、乾式粉砕を行い、各原材料を粉砕分散させ、その混合物をグラニュレーターで造粒し、分級して所定粒径の造粒物を調製する。
 上記のようにして調製された造粒物を大気中で溶射してフェライト化する。
Another example of the method for preparing the ferrite raw material (granulated product) is as follows.
That is, a plurality of raw materials containing metal elements are weighed and mixed so as to correspond to the composition of the Mn ferrite particles (mother particles) to be manufactured, and then dry pulverized to pulverize and disperse each raw material. Granulate with a granulator and classify to prepare a granulated product with a predetermined particle size.
The granulated material prepared as described above is sprayed in the atmosphere to be ferritized.
 溶射には、可燃性ガス燃焼炎として燃焼ガスと酸素との混合気体を用いることができる。 For thermal spraying, a mixed gas of combustion gas and oxygen can be used as a combustible gas combustion flame.
 燃焼ガスと酸素との容積比は、1:3.5以上1:6.0以下であるのが好ましい。
 これにより、揮発した材料の凝縮による粒径が比較的小さい粒子の形成を好適に進行させることができる。また、得られるMnフェライト粒子(母粒子)の形状を好適に調整することができる。また、後の工程での分級等の処理を省略または簡略化することができ、Mnフェライト粒子(母粒子)の生産性をさらに優れたものとすることができる。また、後の工程での分級により除去する粒子の割合をより少ないものとすることができ、Mnフェライト粒子(母粒子)の収率をさらに優れたものとすることができる。
The volume ratio of the combustion gas and oxygen is preferably 1: 3.5 or more and 1: 6.0 or less.
Thereby, formation of the particle | grains with a comparatively small particle size by condensation of the volatilized material can be advanced suitably. Moreover, the shape of the obtained Mn ferrite particles (base particles) can be suitably adjusted. In addition, it is possible to omit or simplify the processing such as classification in the subsequent steps, and to further improve the productivity of the Mn ferrite particles (base particles). In addition, the proportion of particles to be removed by classification in a later step can be made smaller, and the yield of Mn ferrite particles (mother particles) can be further improved.
 例えば、燃焼ガス10Nmhrに対して酸素35Nmhr以上60Nmhr以下の割合で用いることができる。 For example, it can be used in the following proportions oxygen 35 Nm 3 hr or 60 Nm 3 hr relative to the combustion gases 10 Nm 3 hr.
 溶射に用いる燃焼ガスとしては、プロパンガス、プロピレンガス、アセチレンガス等が挙げられる。中でも、プロパンガスを好適に用いることができる。 Examples of the combustion gas used for thermal spraying include propane gas, propylene gas, and acetylene gas. Of these, propane gas can be preferably used.
 また、造粒物を可燃性ガス中に搬送するために、造粒物搬送ガスとして窒素、酸素、空気等を用いることができる。
 搬送される造粒物の流速は、20m/秒以上60m/秒以下であるのが好ましい。
Moreover, in order to convey a granulated material in combustible gas, nitrogen, oxygen, air etc. can be used as a granulated material conveyance gas.
The flow rate of the granulated material to be conveyed is preferably 20 m / second or more and 60 m / second or less.
 また、前記溶射は、温度1000℃以上3500℃以下で行うのが好ましく、2000℃以上3500℃以下で行うのがより好ましい。 The thermal spraying is preferably performed at a temperature of 1000 ° C. or more and 3500 ° C. or less, more preferably 2000 ° C. or more and 3500 ° C. or less.
 上記のような条件を満足することにより、揮発した材料の凝縮による粒径が比較的小さい粒子の形成をさらに好適に進行させることができる。また、得られるMnフェライト粒子(母粒子)の形状をさらに好適に調整することができる。また、後の工程での分級等の処理を省略または簡略化することができ、Mnフェライト粒子(母粒子)の生産性をさらに優れたものとすることができる。また、後の工程での分級により除去する粒子の割合をより少ないものとすることができ、Mnフェライト粒子(母粒子)の収率をさらに優れたものとすることができる。 By satisfying the above conditions, formation of particles having a relatively small particle diameter due to condensation of the volatilized material can be further suitably advanced. Moreover, the shape of the obtained Mn ferrite particles (base particles) can be further suitably adjusted. In addition, it is possible to omit or simplify the processing such as classification in the subsequent steps, and to further improve the productivity of the Mn ferrite particles (base particles). In addition, the proportion of particles to be removed by classification in a later step can be made smaller, and the yield of Mn ferrite particles (mother particles) can be further improved.
 このようにして溶射してフェライト化された粒子は、水中または大気で急冷凝固され、これをサイクロンおよび/またはフィルターによって捕集する。 The particles sprayed and ferritized in this way are rapidly solidified in water or in the atmosphere and collected by a cyclone and / or a filter.
 その後、サイクロンおよび/または捕集用フィルターで回収したMnフェライト粒子は、必要に応じて分級を行う。分級方法としては、既存の風力分級、メッシュ濾過法、沈降法など用いて所望の粒径に粒度調整する。なお、サイクロン等で粒径の大きい粒子と分離して回収することも可能である。 Thereafter, the Mn ferrite particles collected by the cyclone and / or the collection filter are classified as necessary. As a classification method, the particle size is adjusted to a desired particle size using an existing air classification, mesh filtration method, sedimentation method, or the like. It is also possible to separate and collect the particles having a large particle size with a cyclone or the like.
 また、Mnフェライト粒子(母粒子)は、以下に述べるような方法(第2の方法)により、好適に製造することができる。 Further, the Mn ferrite particles (mother particles) can be preferably produced by the method described below (second method).
 すなわち、Mnフェライト粒子(母粒子)は、例えば、フェライト原料を含む組成物をペレット化し、仮焼成して仮焼成体を得る仮焼成工程と、仮焼成体を粉砕、分級した後、仮焼成粉を焼成する本焼成工程とを有する方法により、製造することができる。 That is, the Mn ferrite particles (mother particles) are, for example, pelletized a composition containing a ferrite raw material, pre-baked to obtain a pre-fired body, and after pulverizing and classifying the pre-fired body, Can be manufactured by a method having a main baking step of baking.
 これにより、前述したような形状、大きさの複合粒子の製造に用いるMnフェライト粒子を効率よく製造することができる。また、製造過程において、酸やアルカリを用いる湿式の造粒法とは異なり、Mnフェライト粒子(母粒子)に、酸やアルカリが由来の不純物等が残存することを効果的に防止することができ、複合粒子や複合粒子を用いて製造される樹脂組成物、成形体の耐久性、信頼性をより優れたものとすることができる。
 ペレットの作製は、加圧成型機を用いることにより好適に行うことができる。
Thereby, the Mn ferrite particles used for manufacturing the composite particles having the shape and size as described above can be efficiently manufactured. Further, unlike the wet granulation method using acid or alkali in the production process, it is possible to effectively prevent impurities derived from acid or alkali from remaining in the Mn ferrite particles (mother particles). Further, the durability and reliability of the composite particles and the resin composition produced using the composite particles and the molded body can be further improved.
The production of the pellet can be suitably performed by using a pressure molding machine.
 仮焼成工程での加熱温度は、特に限定されないが、600℃以上1200℃以下であるのが好ましく、650℃以上1000℃以下であるのがより好ましく、700℃以上900℃以下であるのがさらに好ましい。 The heating temperature in the preliminary firing step is not particularly limited, but is preferably 600 ° C. or more and 1200 ° C. or less, more preferably 650 ° C. or more and 1000 ° C. or less, and more preferably 700 ° C. or more and 900 ° C. or less. preferable.
 これにより、仮焼成体の粉砕を好適に行うことができ、前述したような形状、大きさの複合粒子の製造に用いるMnフェライト粒子をより好適に製造することができる。
 仮焼成工程では、2段階以上の加熱処理(焼成処理)を行ってもよい。
Thereby, a calcination of a temporary calcination object can be performed suitably and Mn ferrite particles used for manufacture of a composite particle of the shape and size as mentioned above can be manufactured more suitably.
In the temporary firing step, two or more stages of heat treatment (firing treatment) may be performed.
 本焼成工程には、粉砕処理が施された不定形状の仮焼成体および/または粉砕処理が施された(より高い温度で焼成された)焼結体が供される。
 本焼成工程に供される仮焼成体および/または焼結体の体積平均粒径は、0.5μm以上30μm以下であるのが好ましく、0.5μm以上20μm以下であるのがより好ましい。または不定形状の仮焼成体および/または焼結体の粒径が小さい場合には複数の粒子を凝集させた造粒物を用いることが好ましい。造粒物を用いる場合は、溶射フレーム中で原料粒子が容易に分散しやすくするため造粒物のバインダー量を調整してもよい。
In the main firing step, an irregular-shaped temporary fired body that has been pulverized and / or a sintered body that has been pulverized (fired at a higher temperature) are provided.
The volume average particle size of the temporarily fired body and / or the sintered body to be subjected to the main firing step is preferably 0.5 μm or more and 30 μm or less, and more preferably 0.5 μm or more and 20 μm or less. Alternatively, when the particle size of the irregularly shaped temporary fired body and / or sintered body is small, it is preferable to use a granulated product obtained by aggregating a plurality of particles. When using the granulated product, the amount of the binder of the granulated product may be adjusted in order to easily disperse the raw material particles in the thermal spray frame.
 これにより、前述したような形状、大きさの複合粒子の製造に用いるMnフェライト粒子をより効率よく製造することができる。また、後の工程での分級等の処理を省略または簡略化することができ、Mnフェライト粒子の生産性をより優れたものとすることができる。また、後の工程での分級により除去する粒子の割合を少ないものとすることができ、Mnフェライト粒子の収率をより優れたものとすることができる。 Thereby, the Mn ferrite particles used for manufacturing the composite particles having the shape and size as described above can be manufactured more efficiently. In addition, it is possible to omit or simplify the processing such as classification in the subsequent steps, and to further improve the productivity of the Mn ferrite particles. Moreover, the ratio of the particles to be removed by classification in the subsequent step can be reduced, and the yield of the Mn ferrite particles can be further improved.
 本焼成工程は、例えば、仮焼成体の粉末(粉砕、分級処理により得られた粉末)を造粒することにより得られた造粒物に対して行うのが好ましい。 The main firing step is preferably performed, for example, on a granulated product obtained by granulating a powder of a temporarily fired body (powder obtained by pulverization and classification).
 これにより、前述したような形状、大きさの複合粒子の製造に用いるMnフェライト粒子をより効率よく製造することができる。また、後の工程での分級等の処理を省略または簡略化することができ、Mnフェライト粒子の生産性をさらに優れたものとすることができる。また、後の工程での分級により除去する粒子の割合をより少ないものとすることができ、Mnフェライト粒子の収率をさらに優れたものとすることができる。 Thereby, the Mn ferrite particles used for manufacturing the composite particles having the shape and size as described above can be manufactured more efficiently. In addition, it is possible to omit or simplify the processing such as classification in the subsequent steps, and to further improve the productivity of the Mn ferrite particles. Further, the proportion of particles to be removed by classification in the subsequent step can be made smaller, and the yield of Mn ferrite particles can be further improved.
 本焼成は、仮焼成体の粉末を大気中で溶射することにより好適に行うことができる。
 溶射には、可燃性ガス燃焼炎として燃焼ガスと酸素との混合気体を用いることができる。
The main firing can be suitably performed by spraying the powder of the temporarily fired body in the air.
For thermal spraying, a mixed gas of combustion gas and oxygen can be used as a combustible gas combustion flame.
 燃焼ガスと酸素との容積比は、1:3.5以上1:6.0以下であるのが好ましい。
 これにより、揮発した材料の凝縮による粒径が比較的小さいMnフェライト粒子の形成を好適に進行させることができる。また、得られるMnフェライト粒子の形状をさらに好適に調整することができる。また、後の工程での分級等の処理を省略または簡略化することができ、Mnフェライト粒子の生産性をさらに優れたものとすることができる。また、後の工程での分級により除去する粒子の割合をより少ないものとすることができ、Mnフェライト粒子の収率をさらに優れたものとすることができる。
The volume ratio of the combustion gas and oxygen is preferably 1: 3.5 or more and 1: 6.0 or less.
Thereby, formation of Mn ferrite particles having a relatively small particle size due to condensation of the volatilized material can be suitably advanced. In addition, the shape of the obtained Mn ferrite particles can be further suitably adjusted. In addition, it is possible to omit or simplify the processing such as classification in the subsequent steps, and to further improve the productivity of the Mn ferrite particles. Further, the proportion of particles to be removed by classification in the subsequent step can be made smaller, and the yield of Mn ferrite particles can be further improved.
 例えば、燃焼ガス10Nmhrに対して酸素35Nmhr以上60Nmhr以下の割合で用いることができる。 For example, it can be used in the following proportions oxygen 35 Nm 3 hr or 60 Nm 3 hr relative to the combustion gases 10 Nm 3 hr.
 溶射に用いる燃焼ガスとしては、プロパンガス、プロピレンガス、アセチレンガス等が挙げられる。中でも、プロパンガスを好適に用いることができる。 Examples of the combustion gas used for thermal spraying include propane gas, propylene gas, and acetylene gas. Of these, propane gas can be preferably used.
 また、造粒物を可燃性ガス中に搬送するために、造粒物搬送ガスとして窒素、酸素、空気等を用いることができる。
 搬送される造粒物の流速は、20m/秒以上60m/秒以下であるのが好ましい。
Moreover, in order to convey a granulated material in combustible gas, nitrogen, oxygen, air etc. can be used as a granulated material conveyance gas.
The flow rate of the granulated material to be conveyed is preferably 20 m / second or more and 60 m / second or less.
 また、前記溶射は、温度1000℃以上3500℃以下で行うのが好ましく、2000℃以上3500℃以下で行うのがより好ましい。 The thermal spraying is preferably performed at a temperature of 1000 ° C. or more and 3500 ° C. or less, more preferably 2000 ° C. or more and 3500 ° C. or less.
 上記のような条件を満足することにより、揮発した材料の凝縮による粒径が比較的小さいMnフェライト粒子の形成をさらに好適に進行させることができる。また、得られるMnフェライト粒子の形状をさらに好適に調整することができる。また、後の工程での分級等の処理を省略または簡略化することができ、Mnフェライト粒子の生産性をさらに優れたものとすることができる。また、後の工程での分級により除去する粒子の割合をより少ないものとすることができ、Mnフェライト粒子の収率をさらに優れたものとすることができる。 By satisfying the above conditions, the formation of Mn ferrite particles having a relatively small particle size due to condensation of the volatilized material can be further promoted. In addition, the shape of the obtained Mn ferrite particles can be further suitably adjusted. In addition, it is possible to omit or simplify the processing such as classification in the subsequent steps, and to further improve the productivity of the Mn ferrite particles. Further, the proportion of particles to be removed by classification in the subsequent step can be made smaller, and the yield of Mn ferrite particles can be further improved.
 続いて、溶射による本焼成で形成されたMnフェライト粒子を大気中で空気給気による気流に乗せて搬送することによって急冷凝固した後に、所定の粒径範囲のMnフェライト粒子を捕集し回収する。 Subsequently, the Mn ferrite particles formed by the main firing by thermal spraying are rapidly cooled and solidified by being carried in an air stream by air supply in the atmosphere, and then Mn ferrite particles having a predetermined particle size range are collected and recovered. .
 前記捕集は、急冷凝固したMnフェライト粒子を空気給気による気流に乗せて搬送し、粒径が大きい粒子は気流搬送の途中で落下する一方、それ以外の粒子は下流まで気流搬送されることを利用し、所望の粒径範囲のMnフェライト粒子を気流の下流側に設けたサイクロンおよび/またはフィルターによって捕集する方法により行うことができる。 In the collection, the rapidly solidified Mn ferrite particles are transported in an air flow by air supply, and particles having a large particle size fall in the middle of the air current transport, while other particles are transported downstream. , And a method of collecting Mn ferrite particles having a desired particle size range by a cyclone and / or a filter provided on the downstream side of the airflow.
 前記気流搬送時の流速を20m/秒以上60m/秒以下とすることにより、粒径が大きい粒子を特に高い選択性で落下させることができ、所定の粒径範囲のMnフェライト粒子をより効率よく回収することができる。流速が小さすぎると、粒径が比較的小さい粒子までも気流搬送の途中で落下してしまうため、気流の下流で回収されるMnフェライト粒子の平均粒径が小さすぎるものとなるか、あるいは、気流の下流で回収されるMnフェライト粒子の絶対量が少なくなり、生産性が低下する。一方、流速が大きすぎると、粒径が比較的大きい粒子までも下流まで搬送されるため、気流の下流で回収されるMnフェライト粒子の平均粒径が大きすぎるものとなりやすくなる。
 その後、回収したMnフェライト粉末について、必要に応じて分級を行ってもよい。
By setting the flow velocity at the time of air flow to 20 m / second or more and 60 m / second or less, particles having a large particle size can be dropped with particularly high selectivity, and Mn ferrite particles having a predetermined particle size range can be more efficiently obtained. It can be recovered. If the flow rate is too small, even particles with a relatively small particle size will fall in the middle of the air flow conveyance, so the average particle size of the Mn ferrite particles recovered downstream of the air flow will be too small, or The absolute amount of Mn ferrite particles recovered downstream of the airflow is reduced, and productivity is reduced. On the other hand, if the flow rate is too large, even particles having a relatively large particle size are conveyed downstream, so that the average particle size of the Mn ferrite particles recovered downstream of the airflow tends to be too large.
Thereafter, the recovered Mn ferrite powder may be classified as necessary.
 《樹脂組成物》
 次に、本発明の樹脂組成物について説明する。
<Resin composition>
Next, the resin composition of the present invention will be described.
 本発明の樹脂組成物は、前述した本発明の粉末と、樹脂材料とを含んでいる。
 これにより、電磁波の遮蔽性に優れる成形体の製造に好適に用いることができる樹脂組成物を提供することができる。
The resin composition of the present invention contains the powder of the present invention described above and a resin material.
Thereby, the resin composition which can be used suitably for manufacture of the molded object which is excellent in the shielding property of electromagnetic waves can be provided.
 樹脂組成物を構成する樹脂材料としては、例えば、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、シリコーン樹脂、各種変性シリコーン樹脂(アクリル変性、ウレタン変性、エポキシ変性、フッ素)、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素、ポリビニルアルコール等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。 Examples of the resin material constituting the resin composition include epoxy resins, urethane resins, acrylic resins, silicone resins, various modified silicone resins (acrylic modified, urethane modified, epoxy modified, fluorine), polyamide resins, polyimide resins, and polyamideimides. Resins, fluorine, polyvinyl alcohol and the like can be mentioned, and one or more selected from these can be used in combination.
 また、樹脂組成物は、本発明の粉末、樹脂材料以外の成分(その他の成分)を含んでいてもよい。 Moreover, the resin composition may contain components (other components) other than the powder and resin material of the present invention.
 このような成分としては、例えば、溶媒、充填剤(有機充填剤、無機充填剤)、可塑剤、酸化防止剤、分散剤、顔料等の着色剤、熱伝導性粒子(熱伝導性の高い粒子)等が挙げられる。 Examples of such components include solvents, fillers (organic fillers, inorganic fillers), plasticizers, antioxidants, dispersants, colorants such as pigments, heat conductive particles (particles with high heat conductivity). ) And the like.
 樹脂組成物中における全固形分に対する本発明の粉末の比率(含有率)は、50質量%以上95質量%以下であるのが好ましく、80質量%以上95質量%以下であるのがより好ましい。 The ratio (content ratio) of the powder of the present invention to the total solid content in the resin composition is preferably 50% by mass to 95% by mass, and more preferably 80% by mass to 95% by mass.
 これにより、樹脂組成物中における本発明の粉末の分散安定性、樹脂組成物の保存安定性、樹脂組成物の成形性等を優れたものとしつつ、樹脂組成物を用いて製造される成形体の機械的強度、電磁波の遮蔽性等をより優れたものとすることができる。 As a result, a molded body produced using the resin composition while having excellent dispersion stability of the powder of the present invention in the resin composition, storage stability of the resin composition, moldability of the resin composition, and the like. The mechanical strength, shielding properties of electromagnetic waves, and the like can be further improved.
 樹脂組成物中における全固形分に対する樹脂材料の比率(含有率)は、5質量%以上50質量%以下であるのが好ましく、5質量%以上20質量%以下であるのがより好ましい。 The ratio (content ratio) of the resin material to the total solid content in the resin composition is preferably 5% by mass or more and 50% by mass or less, and more preferably 5% by mass or more and 20% by mass or less.
 これにより、樹脂組成物中における本発明の粉末の分散安定性、樹脂組成物の保存安定性、樹脂組成物の成形性等を優れたものとしつつ、樹脂組成物を用いて製造される成形体の機械的強度、電磁波の遮蔽性等をより優れたものとすることができる。 As a result, a molded body produced using the resin composition while having excellent dispersion stability of the powder of the present invention in the resin composition, storage stability of the resin composition, moldability of the resin composition, and the like. The mechanical strength, shielding properties of electromagnetic waves, and the like can be further improved.
 《成形体》
 次に、本発明の成形体について説明する。
 本発明の成形体は、本発明の粉末と、樹脂材料とを含む材料を用いて製造されたものである。
 これにより、電磁波の遮蔽性に優れる成形体を提供することができる。
<Molded body>
Next, the molded product of the present invention will be described.
The molded body of the present invention is manufactured using a material containing the powder of the present invention and a resin material.
Thereby, the molded object which is excellent in the shielding property of electromagnetic waves can be provided.
 本発明の成形体は、いかなる用途のものであってもよいが、電磁波シールド材であるのが好ましい。
 これにより、前述したような本発明による効果がより顕著に発揮される。
The shaped product of the present invention may be of any use, but is preferably an electromagnetic shielding material.
Thereby, the effect by this invention as mentioned above is exhibited more notably.
 本発明の成形体は、前述したような本発明の樹脂組成物を用いて好適に製造することができる。 The molded product of the present invention can be suitably produced using the resin composition of the present invention as described above.
 成形体の成形方法としては、例えば、圧縮成形、押出成形、射出成形、ブロー成形、カレンダー成形、各種塗布法等が挙げられる。また、成形体は、例えば、成形体を形成すべき部材上に、直接樹脂組成物を付与することにより形成するものであってもよいし、別途作製した後に目的とする部材(例えば、プリント配線基板や金属箔(例えば、銅箔等)等)上に設置されるものであってもよい。 Examples of the molding method of the molded body include compression molding, extrusion molding, injection molding, blow molding, calendar molding, various coating methods, and the like. The molded body may be formed by, for example, directly applying a resin composition on a member on which the molded body is to be formed, or a target member (for example, a printed wiring) after being separately manufactured. It may be installed on a substrate or a metal foil (such as a copper foil).
 なお、本発明に係る粉末は、樹脂等に混合、分散して焼成等の工程を行わずに使用してもよく、例えば、粉末を所望の形に成型、造粒、塗工等の工程を行った後、焼成を行い、(複合粒子の被覆層が変質しないような比較的低い温度で)焼結体としての成形体の製造に用いるものであってもよい。 The powder according to the present invention may be used without mixing and dispersing in a resin or the like without performing a process such as firing. For example, the powder is molded, granulated, or coated into a desired shape. After the firing, firing may be performed (at a relatively low temperature so that the coating layer of the composite particles does not change), and the compact may be used as a sintered body.
 なお、本発明の成形体は、その少なくとも一部に本発明に係る複合粒子を含んでいればよく、例えば、複合粒子を含まない領域を有していてもよい。 In addition, the molded object of this invention should just contain the composite particle which concerns on this invention in the at least one part, for example, may have the area | region which does not contain a composite particle.
 以上、本発明の好適な実施形態について説明したが、本発明は、これらに限定されるものではない。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to these embodiments.
 例えば、本発明の複合粒子の製造方法では、必要に応じて、前述した工程に加えて、他の工程(前処理工程、中間工程、後処理工程)を有していてもよい。 For example, in the method for producing composite particles of the present invention, other steps (pretreatment step, intermediate step, post-treatment step) may be included in addition to the steps described above, if necessary.
 また、本発明の複合粒子は、前述したような方法で製造されたものに限定されず、いかなる方法で製造されたものであってもよい。 Further, the composite particles of the present invention are not limited to those manufactured by the method as described above, and may be manufactured by any method.
 また、前述した実施形態では、本発明の複合粒子、粉末、樹脂組成物を、電磁波シールド材の製造に用いる場合について代表的に説明したが、本発明の複合粒子、粉末、樹脂組成物は、電磁波シールド材以外の製造に用いてもよい。例えば、本発明の複合粒子、粉末は、磁心材料やフィラー(特に、磁性フィラー)として用いられるものであってもよい。 In the above-described embodiment, the composite particles, powder, and resin composition of the present invention have been representatively described for use in the production of an electromagnetic shielding material. You may use for manufacture other than an electromagnetic wave shielding material. For example, the composite particles and powder of the present invention may be used as magnetic core materials or fillers (particularly magnetic fillers).
 また、本発明の複合粒子、粉末は、金属探知機によって好適に検出される性質を有している。
 したがって、本発明の複合粒子、粉末、樹脂組成物および成形体は、金属探知機で検知することを目的に使用されるものであってもよい。
Moreover, the composite particles and powders of the present invention have a property that can be suitably detected by a metal detector.
Therefore, the composite particle, powder, resin composition and molded product of the present invention may be used for the purpose of detection with a metal detector.
 特に、本発明によれば、前述したように、複合粒子や粉末を黒色以外の色調(例えば、白色~銀色の色調)に調整することができる。これにより、例えば、複合粒子、粉末を含む成形体の色調を複合粒子、粉末に対応する黒色以外の色調(例えば、白色~銀色の色調)に調整したり、成形体に着色剤を含ませること(印刷層を設けることを含む)により、成形体を所望の色調に調整することができる。その結果、金属探知機に適用される各種の成形体に好適に適用することができる。 In particular, according to the present invention, as described above, the composite particles and powder can be adjusted to a color tone other than black (for example, white to silver color tone). Thereby, for example, the color tone of the molded product containing composite particles and powder is adjusted to a color tone other than black (for example, white to silver color tone) corresponding to the composite particles and powder, or a colorant is included in the molded product. (Including providing a printing layer), the molded product can be adjusted to a desired color tone. As a result, it can be suitably applied to various molded bodies applied to metal detectors.
 本発明の成形体が金属探知機に適用されるものである場合、当該成形体は、例えば、本発明の樹脂組成物以外の材料を用いて形成された基部と、当該基部の表面に設けられ、本発明の樹脂組成物を用いて形成された表面層とを有していてもよい。 When the molded body of the present invention is applied to a metal detector, the molded body is provided on, for example, a base formed using a material other than the resin composition of the present invention and the surface of the base. And a surface layer formed using the resin composition of the present invention.
 本発明の成形体が金属探知機に適用されるものである場合、当該成形体は、少なくとも、その表面付近に複合粒子を含んでいるのが好ましい。
 より具体的には、成形体は、その表面から厚さ方向に1.0mm以内の領域に複合粒子を含んでいるのが好ましく、その表面から厚さ方向に0.5mm以内の領域に複合粒子を含んでいるのがより好ましい。
When the molded body of the present invention is applied to a metal detector, the molded body preferably includes composite particles at least near the surface thereof.
More specifically, the compact preferably contains composite particles in a region within 1.0 mm in the thickness direction from the surface, and the composite particles in a region within 0.5 mm in the thickness direction from the surface. It is more preferable that it contains.
 本発明の成形体が金属探知機に適用されるものである場合、当該成形体の用途としては、例えば、食品の製造、加工、包装(梱包を含む。以下同様)の現場用、化粧品、医薬部外品の製造、加工、包装の現場用、医薬品の製造、加工、包装の現場用、上記以外の製品の製造、加工、包装の現場用、医療現場用、細胞培養、組織培養、器官培養、遺伝子組み換え等の生物学的処理を行う現場用、化合物の合成等の化学的処理を行う現場用等が挙げられる。中でも、食品の製造、加工、包装現場で用いられるものであるのが好ましい。 When the molded product of the present invention is applied to a metal detector, the molded product can be used for, for example, food production, processing, packaging (including packaging, the same applies hereinafter), cosmetics, and pharmaceuticals. Production of quasi-drugs, processing, packaging sites, pharmaceutical manufacturing, processing, packaging sites, other products manufacturing, processing, packaging sites, medical sites, cell culture, tissue culture, organ culture In-situ use for biological treatment such as genetic recombination, and on-site use for chemical treatment such as compound synthesis. Especially, it is preferable that it is used in the manufacture of food, processing, and packaging sites.
 食品には、高い安全性が求められるが、一般に、異物が混入しやすい環境で製造、加工、包装が行われている。したがって、本発明を食品の製造、加工、包装の現場で用いられる物品に適用することにより、当該物品からその一部が分離したことや、当該物品の少なくとも一部が他の物品の混入したこと等を好適に検知することができる。 Foods are required to have high safety, but are generally manufactured, processed, and packaged in an environment where foreign substances are easily mixed. Therefore, by applying the present invention to an article used in the field of food production, processing, and packaging, a part of the article is separated, or at least a part of the article is mixed with another article. Etc. can be suitably detected.
 なお、本明細書において、食品の形態には、固形状、半固形状(ゼリー、プリン等のゲル状等)に加え、液状が含まれ、食品は、飲み物等も含む概念である。また、食品添加物やサプリメント(健康補助食品)も食品の概念に含まれる。また、動物由来の食肉、魚介類、植物由来の野菜、果実、種子、穀物、豆類、海藻のような天然物やこれらの加工物に加え、人工甘味料、人工調味料等のような人工的な合成品も食品の概念に含む。 In addition, in this specification, in addition to solid form and semi-solid form (gel form of jelly, pudding, etc.), the form of food includes liquid, and the concept of food includes drinks and the like. Food additives and supplements (health supplements) are also included in the concept of food. In addition to natural products such as animal-derived meat, seafood, plant-derived vegetables, fruits, seeds, grains, beans, seaweed, and processed products thereof, artificial sweeteners, artificial seasonings such as artificial seasonings, etc. New products are also included in the concept of food.
 食品の製造、加工現場で用いられる成形体としては、例えば、調理機器類、調理器具類、調理用具類、食器類、衣服類(人体に装着して用いる物品)、食品の包装に用いる包装部材、および、これらに付随して用いられる物品、ならびに、これらのメンテナンス、修理等に用いる物品等が挙げられる。 Examples of molded products used in the production and processing of food include cooking appliances, cooking utensils, cooking utensils, tableware, clothing (articles worn on the human body), and packaging members used for food packaging And articles used in association therewith, as well as articles used for maintenance and repair of these.
 より具体的には、例えば、ホットプレート、コンロ、ガスバーナー、オーブン、トースター、電子レンジ、食器洗浄機、食器乾燥機、秤(スケール)、キッチンタイマー、温度計、浄水器、浄水フィルター(カートリッジ)等の調理機器類;鍋、フライパン、やかんや、これらの蓋、包丁、はさみ、おたま(レードル)、ヘラ、ピーラー、スライサー、ミキサー、チョッパー、マッシャー、麺棒、マドラー、泡立て器、ざる、ボウル、水切り器、まな板、マット、しゃもじ、成形型、型抜き、灰汁取り、おろし金(フードグレーダー)、フライ返し(ターナー)、ピック、水切り器、篩、ミル、落し蓋、製氷皿、焼き網、トング、卵切器、計量カップ、計量スプーン等の調理器具類;布巾、キッチンペーパー、手ぬぐい、タオル、紙タオル、水切りシート、ラップフィルム、オーブンペーパー、絞り出し袋、五徳、鍋敷き等の調理用具類;皿、コップ、椀、箸(菜箸を含む)、スプーン、フォーク、ナイフ、蟹甲殻類大腿部歩脚身取出器具(カニスプーン、カニフォーク)等の食器類;エプロン、白衣、マスク、手袋、靴、靴下、下着、帽子、眼鏡等の衣服類(人体に装着して用いる物品);食品用ラミネートフィルム等の食品用包装フィルム、包装用チューブ、食品用収納ボトル、プラスチック性密閉容器等の食品包装部材;その他、干物干し網、ホース、まな板立て、食器立て、スポンジ、たわし、洗剤容器、砥石、シャープナーや、これらの構成部材等が挙げられるが、これらに限定されない。 More specifically, for example, hot plate, stove, gas burner, oven, toaster, microwave oven, dishwasher, dish dryer, scale (scale), kitchen timer, thermometer, water purifier, water purification filter (cartridge) Cooking equipment such as pans, pans, kettles, lids, knives, scissors, ladle, spatula, peeler, slicer, mixer, chopper, masher, rolling pin, mudler, whisk, pestle, bowl, drainer Bowl, cutting board, mat, rice paddle, mold, die cutting, lye removal, grater (food grader), frying (turner), pick, drainer, sieve, mill, drop lid, ice tray, grill, tongs, egg slicer Cooking utensils such as bowls, measuring cups, measuring spoons; towels, kitchen paper, towels, towels, paper towels Cooking utensils such as draining sheets, wrap film, oven paper, squeezed bags, virtues, pans, etc .; dishes, cups, bowls, chopsticks (including chopsticks), spoons, forks, knives, shellfish thigh legs Tableware such as take-out appliances (crab spoon, crab fork); Apron, lab coat, mask, gloves, shoes, socks, underwear, hat, glasses, etc. (articles worn on the human body); food laminate film, etc. Food packaging films, packaging tubes, food storage bottles, plastic sealed containers, and other food packaging materials; dried fish nets, hoses, chopping boards, tableware, sponges, scourers, detergent containers, grindstones, sharpeners These constituent members and the like can be mentioned, but are not limited thereto.
 以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。以下の説明で、特に温度条件を示していない処理、測定については、室温(25℃)で行った。 Hereinafter, the present invention will be described in detail based on examples and comparative examples, but the present invention is not limited thereto. In the following description, treatments and measurements that do not particularly indicate temperature conditions were performed at room temperature (25 ° C.).
 《1》複合粒子、粉末の製造
 各実施例および各比較例の複合粒子、粉末を以下のようにして製造した。
<< 1 >> Manufacture of Composite Particles and Powders Composite particles and powders of Examples and Comparative Examples were manufactured as follows.
(実施例1)
 まず、原料としてのFeおよびMnを所定の割合で混合し、ヘンシェルミキサーで15分間混合した。
Example 1
First, Fe 2 O 3 and Mn 3 O 4 as raw materials were mixed at a predetermined ratio and mixed for 15 minutes with a Henschel mixer.
 このようにして得られた混合物を、ローラコンパクターを用いてペレット化した後、大気中、1000℃で5時間ロータリーキルンを用いて仮焼成を行った。 The mixture thus obtained was pelletized using a roller compactor, and then pre-fired using a rotary kiln at 1000 ° C. for 5 hours in the air.
 仮焼成後、ボ-ルミルで粉砕し、体積平均粒径が1.8μmの粉末状の仮焼成体(仮焼粉)を得た。 After calcination, the mixture was pulverized with a ball mill to obtain a powdery calcination body (calcination powder) having a volume average particle size of 1.8 μm.
 次に、得られた粉末状の仮焼成体を用いて、プロパン:酸素=10Nm/hr:35Nm/hrの可燃性ガス燃焼炎中に流速40m/秒の条件で溶射を行った。このとき、造粒物を連続的に流動させながら溶射したため、溶射、急冷後の粒子は互いに結着することなく独立していた。続いて、冷却された粒子を気流の下流側に設けたサイクロンによって回収した。これにより、複数個のMnフェライト粒子からなるフェライト粉末(Mnフェライト粉末)(体積平均粒径:27.5μm)を得た。得られたフェライト粉末を気流分級し、体積平均粒径4.7μmを得た。 Next, using the obtained powdery calcined body, propane: oxygen = 10 Nm 3 / hr: it was sprayed at a flow rate of 40 m / sec in the combustible gas combustion flame of 35 Nm 3 / hr. At this time, since the granulated material was sprayed while continuously flowing, the particles after spraying and quenching were independent without being bound to each other. Subsequently, the cooled particles were collected by a cyclone provided on the downstream side of the airflow. This obtained the ferrite powder (Mn ferrite powder) (volume average particle diameter: 27.5 micrometers) which consists of several Mn ferrite particles. The obtained ferrite powder was air-flow classified to obtain a volume average particle size of 4.7 μm.
 なお、粉末の体積平均粒径は、以下のような測定により求めた。すなわち、まず、試料としての粉末:10gと水:80mlとを100mlのビーカーに入れ、分散剤(ヘキサメタリン酸ナトリウム)を2滴添加した。次いで、超音波ホモジナイザー(SMT.Co.LTD.製UH-150型)を用い分散を行った。このとき、超音波ホモジナイザーの出力レベルを4に設定し、20秒間分散を行った。その後、ビーカー表面にできた泡を取り除き、レーザー回折式粒度分布測定装置(島津製作所製SALD-7500nano)に導入し、測定を行った。このときの測定条件はポンプスピード7、屈折率1.70-0.50i、内部超音波照射時間30とした。なお、後に述べる他の実施例および比較例についても同様にして求めた。 The volume average particle size of the powder was determined by the following measurement. That is, first, 10 g of powder as a sample and 80 ml of water were placed in a 100 ml beaker, and two drops of a dispersant (sodium hexametaphosphate) were added. Subsequently, dispersion was performed using an ultrasonic homogenizer (UH-150 type manufactured by SMT Co Ltd). At this time, the output level of the ultrasonic homogenizer was set to 4, and dispersion was performed for 20 seconds. Thereafter, bubbles formed on the surface of the beaker were removed and introduced into a laser diffraction particle size distribution measuring apparatus (SALD-7500 nano manufactured by Shimadzu Corporation) for measurement. The measurement conditions at this time were pump speed 7, refractive index 1.70-0.50i, and internal ultrasonic irradiation time 30. In addition, it calculated | required similarly about the other Example and comparative example which are mentioned later.
 また、フェライト粉末のSF-1の平均値は、106であった。 The average value of SF-1 of the ferrite powder was 106.
 形状係数SF-1は、以下のようにして求めた。
 すなわち、まず、走査型電子顕微鏡(FE-SEM(SU-8020、日立ハイテクノロジー社製))およびエネルギー分散型X線分析装置(EDX)(堀場製作所製E-MAX)を用いて、倍率1000倍に設定して、EDX付属の機能である粒子解析機能を用いて円相当径、外周、長さ、幅、面積を自動で1000個以上の粒子を自動測定した。
The shape factor SF-1 was determined as follows.
That is, first, using a scanning electron microscope (FE-SEM (SU-8020, manufactured by Hitachi High-Technology)) and an energy dispersive X-ray analyzer (EDX) (E-MAX manufactured by Horiba, Ltd.), a magnification of 1000 times And the equivalent circle diameter, outer circumference, length, width and area were automatically measured automatically using a particle analysis function which is a function attached to EDX.
 得られたデータのうち、明らかに粒子同士が重なっているもの(周囲長が円相当径から計算される周囲長の1.8倍以上のもの)、および、微粉(円相当径が1μmよりも小さいもの)を除外し、粒子の最大長(水平フェレ径)R、面積を投影面積Sとし、上記式により、SF-1の値を算出した。 Among the obtained data, the particles clearly overlap each other (peripheral length is more than 1.8 times the perimeter calculated from the equivalent circle diameter) and fine powder (the equivalent circle diameter is less than 1 μm). The value of SF-1 was calculated by the above formula, excluding the small ones), the maximum length (horizontal ferret diameter) R of the particles and the area as the projected area S.
 SF-1は、1粒子毎に算出し、200粒子以上の平均値をフェライト粉末のSF-1とした。なお、後に述べる他の実施例および比較例についても同様にして求めた。 SF-1 was calculated for each particle, and an average value of 200 particles or more was defined as SF-1 of the ferrite powder. In addition, it calculated | required similarly about the other Example and comparative example which are mentioned later.
 また、得られたフェライト粉末のBET比表面積は0.68m/gであった。
 BET比表面積は、比表面積測定装置(型式:Macsorb HM model-1208(マウンテック社製))を用いた測定により求めた。より具体的には、測定試料を比表面積測定装置専用の標準サンプルセルに約5g入れ、精密天秤で正確に秤量し、測定ポートに試料(フェライト粉末)をセットし、測定を開始した。測定は1点法で行い、測定終了時に試料の重量を入力すると、BET比表面積が自動的に算出された。なお、測定前に前処理として、測定試料を薬包紙に20g程度を取り分けた後、真空乾燥機で-0.1MPaまで脱気し-0.1MPa以下に真空度が到達していることを確認した後、200℃で2時間加熱した。測定環境は、温度:10~30℃、湿度:相対湿度で20~80%で、結露なしの条件とした。
Moreover, the BET specific surface area of the obtained ferrite powder was 0.68 m < 2 > / g.
The BET specific surface area was determined by measurement using a specific surface area measuring device (model: Macsorb HM model-1208 (manufactured by Mountec)). More specifically, about 5 g of the measurement sample was put in a standard sample cell dedicated to a specific surface area measurement apparatus, accurately weighed with a precision balance, the sample (ferrite powder) was set in the measurement port, and measurement was started. The measurement was performed by a one-point method, and the BET specific surface area was automatically calculated when the weight of the sample was input at the end of the measurement. As a pretreatment before the measurement, about 20 g of the measurement sample was placed on the medicine wrapping paper, then degassed to −0.1 MPa with a vacuum dryer, and it was confirmed that the degree of vacuum had reached −0.1 MPa or less. Then, it heated at 200 degreeC for 2 hours. The measurement environment was temperature: 10-30 ° C., humidity: 20-80% relative humidity, and no condensation.
 また、フェライト粉末について、振動試料型磁気測定装置を用いて測定を行ったところ、飽和磁化:87.1emu/g、残留磁化:2.8emu/g、保磁力:42Oeであった。 Further, when the ferrite powder was measured using a vibration sample type magnetometer, the saturation magnetization was 87.1 emu / g, the residual magnetization was 2.8 emu / g, and the coercive force was 42 Oe.
 上記の磁気特性は以下のようにして求めた。すなわち、まず、内径5mm、高さ2mmのセルに測定対象のフェライト粉末を詰めて振動試料型磁気測定装置(東英工業社製 VSM-C7-10A)にセットした。次に、印加磁場を加え、5kOeまで掃引し、次いで、印加磁場を減少させ、ヒステリシスカーブを作製した。その後、このカーブのデータよりフェライト粉末についての飽和磁化、残留磁化および保磁力を求めた。なお、後に述べる複合粒子の集合体としての粉末についても同様にして求めた。また、後に述べる他の実施例および比較例についても同様にして求めた。 The above magnetic properties were obtained as follows. That is, first, ferrite powder to be measured was packed in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in a vibration sample type magnetometer (VSM-C7-10A manufactured by Toei Kogyo Co., Ltd.). Next, an applied magnetic field was applied, sweeped to 5 kOe, and then the applied magnetic field was reduced to create a hysteresis curve. Thereafter, the saturation magnetization, residual magnetization and coercive force of the ferrite powder were determined from the data of this curve. The powder as an aggregate of composite particles described later was obtained in the same manner. Moreover, it calculated | required similarly about the other Example and comparative example which are mentioned later.
 得られたフェライト粉末0.2gを秤量し、純水60mlに1Nの塩酸20mlおよび1Nの硝酸20mlを加えたものを加熱し、フェライト粉末を完全溶解させた水溶液を準備し、ICP分析装置(島津製作所製ICPS-1000IV)を用いてFe、Mn、MgおよびSrの含有量を測定した。また、後に述べる他の実施例および比較例についても同様にして求めた。 0.2 g of the obtained ferrite powder was weighed, 60 ml of pure water added with 20 ml of 1N hydrochloric acid and 20 ml of 1N nitric acid was heated to prepare an aqueous solution in which the ferrite powder was completely dissolved, and an ICP analyzer (Shimadzu) The contents of Fe, Mn, Mg and Sr were measured using ICPS-1000IV manufactured by Seisakusho. Moreover, it calculated | required similarly about the other Example and comparative example which are mentioned later.
 その後、得られたフェライト粉末に対して無電解めっきを施すことにより、Mnフェライトで構成された母粒子の表面に、Agで構成された被覆層を有する複合粒子を複数個含む粉末が得られた。 Thereafter, electroless plating was performed on the obtained ferrite powder to obtain a powder containing a plurality of composite particles having a coating layer composed of Ag on the surface of the mother particle composed of Mn ferrite. .
(実施例2、3)
 母粒子として用いるMnフェライト粒子(フェライト粉末)の製造において、原料の比率、仮焼成の条件、溶射処理条件、分級条件を調整するとともに、被覆層の形成条件を調整することにより、粉末(複数個の複合粒子の集合体)の条件を表1、表2に示すようにした以外は、前記実施例1と同様にして粉末(複数個の複合粒子の集合体)を製造した。
(Examples 2 and 3)
In the production of Mn ferrite particles (ferrite powder) used as mother particles, the ratio of raw materials, pre-firing conditions, thermal spraying treatment conditions, classification conditions, and the formation conditions of the coating layer can be adjusted to adjust the powder (multiple The powder (aggregate of a plurality of composite particles) was produced in the same manner as in Example 1 except that the conditions of the aggregates of the composite particles were as shown in Tables 1 and 2.
(比較例1)
 本比較例では、Mn-Mg-Sr系フェライトで構成された粒子を複数個含む集合体をそのまま目的とする粉末として用いた。すなわち、本比較例の粉末を構成する粒子は、Mn-Mg-Sr系フェライトで構成されており、被覆層が設けられていないものであった。
(Comparative Example 1)
In this comparative example, an aggregate including a plurality of particles composed of Mn—Mg—Sr ferrite was used as a target powder as it was. That is, the particles constituting the powder of this comparative example were composed of Mn—Mg—Sr ferrite and were not provided with a coating layer.
(比較例2)
 母粒子として、Mnフェライトで構成された粒子の代わりに、Mn-Mg-Sr系フェライトで構成された粒子を用いた以外は、前記実施例1と同様に粉末を製造した。すなわち、本比較例では、粉末を構成する複合粒子が、Mn-Mg-Sr系フェライトで構成された母粒子と、その表面に設けられた、Agで構成された被覆層とを有するものであった。
(Comparative Example 2)
A powder was produced in the same manner as in Example 1 except that instead of particles composed of Mn ferrite, particles composed of Mn—Mg—Sr ferrite were used as mother particles. That is, in this comparative example, the composite particles constituting the powder had mother particles composed of Mn—Mg—Sr ferrite and a coating layer composed of Ag provided on the surface thereof. It was.
(比較例3)
 フェライト粉末に対する被覆層の形成を省略した以外は、前記実施例1と同様に粉末を製造した。すなわち、本比較例では、フェライト粉末をそのまま目的とする粉末として用いた。
(Comparative Example 3)
A powder was produced in the same manner as in Example 1 except that the formation of the coating layer on the ferrite powder was omitted. That is, in this comparative example, the ferrite powder was used as a target powder as it was.
 前記各実施例および各比較例の粉末の構成を表1、表2にまとめて示した。
 なお、前記各実施例の粉末の色調は、白色~銀色であったのに対し、比較例1、3の粉末の色調は、黒色であった。
Tables 1 and 2 collectively show the configurations of the powders of the Examples and Comparative Examples.
The color tone of the powders of the above Examples was white to silver, whereas the color tone of the powders of Comparative Examples 1 and 3 was black.
 また、前記各実施例および比較例2では、母粒子中におけるフェライト以外の成分の含有率は、0.1質量%以下であった。 In each of the above Examples and Comparative Example 2, the content of components other than ferrite in the mother particles was 0.1% by mass or less.
 また、前記各実施例および比較例2では、被覆層中におけるAg以外の成分の含有率は、0.1質量%以下であった。被覆層のAgの含有量は、蛍光X線を用いた測定により求めた。すなわち、母粒子となるフェライト粒子100質量部に、Agの粉末を0.1質量部、0.5質量部、1質量部の割合で、ボールミル(100rpm)、30分間混合した後、蛍光X線測定装置(株式会社リガク製ZSX100s)でAgの強度を測定し、検量線を作成した後、前記各実施例および比較例2の粉末(複数個の複合粒子の集合体)について、蛍光X線測定装置でAgの強度を測定し、Ag含有量を算出した。 Further, in each of the above Examples and Comparative Example 2, the content of components other than Ag in the coating layer was 0.1% by mass or less. The content of Ag in the coating layer was determined by measurement using fluorescent X-rays. That is, 100 parts by mass of ferrite particles serving as mother particles were mixed with Ag powder at a ratio of 0.1 part by mass, 0.5 part by mass, and 1 part by mass with a ball mill (100 rpm) for 30 minutes, and then X-ray fluorescence After measuring the intensity of Ag with a measuring device (ZSX100s manufactured by Rigaku Corporation) and creating a calibration curve, X-ray fluorescence measurement was performed on the powders (aggregates of a plurality of composite particles) of each of the above Examples and Comparative Example 2. The intensity | strength of Ag was measured with the apparatus and Ag content was computed.
 また、前記各実施例および比較例2では、粉末中における前記複合粒子外の成分の含有率は、0.1質量%以下であった。 In each of the above Examples and Comparative Example 2, the content of the component outside the composite particles in the powder was 0.1% by mass or less.
 また、前記各実施例および各比較例の粉末全体としての体積平均粒径、磁気特性、SF-1の値は、前述したフェライト粉末についての測定と同様の方法で求めた。 In addition, the volume average particle diameter, magnetic properties, and SF-1 values of the powders of the respective Examples and Comparative Examples were determined by the same method as that for the ferrite powder described above.
 また、タップ密度は、JIS R1628に準拠して、USPタップ密度測定装置(パウダテスターPT-X、ホソカワミクロン社製)を用いて測定した。 Moreover, the tap density was measured using a USP tap density measuring device (Powder Tester PT-X, manufactured by Hosokawa Micron Corporation) in accordance with JIS R1628.
 また、真密度はJIS Z 8807:2012に準拠して、マウンテック社製全自動真密度測定装置Macpycnoを用いて測定した。
 表1のキュリー温度、被覆層の厚さTは、それぞれ上記の方法にて測定した。
The true density was measured using a fully automatic true density measuring device Macpycno manufactured by Mountec Co., Ltd. according to JIS Z 8807: 2012.
The Curie temperature and the thickness T of the coating layer in Table 1 were measured by the above methods.
 また、図1に、実施例1の複合粒子の断面SEM像を示し、図2に、実施例2の複合粒子の断面SEM像を示し、図3に、実施例3の複合粒子の断面SEM像を示した。 1 shows a cross-sectional SEM image of the composite particle of Example 1, FIG. 2 shows a cross-sectional SEM image of the composite particle of Example 2, and FIG. 3 shows a cross-sectional SEM image of the composite particle of Example 3. showed that.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 《2》KEC法による電磁波シールド能力の評価
 前記各実施例および各比較例で得られた粉末70質量部とバインダー樹脂(PVA)が固形分として30質量部となるように10質量%PVA水溶液をそれぞれ秤量し、自転公転混合装置で5分間分散混合した。
<< 2 >> Evaluation of Electromagnetic Shielding Ability by KEC Method A 10% by mass PVA aqueous solution was prepared so that 70 parts by mass of the powder and binder resin (PVA) obtained in each of the Examples and Comparative Examples were 30 parts by mass as a solid content. Each was weighed and dispersed and mixed for 5 minutes with a rotation and revolution mixing device.
 得られた混合液を成型用の型に流し込み、水分を蒸発させて厚さ1mmのシート状の成型体を作製した。 The obtained mixed liquid was poured into a mold for molding, and water was evaporated to produce a sheet-like molded body having a thickness of 1 mm.
 得られたシート状成型体をKEC法で磁界の電磁波シールド能力(減衰率)を測定した。なお、磁界の電磁波シールド能力(減衰率)測定は、0.1MHz~1GHzの範囲で実施した。 The electromagnetic wave shielding ability (attenuation rate) of the magnetic field of the obtained sheet-like molded body was measured by the KEC method. The electromagnetic wave shielding ability (attenuation rate) of the magnetic field was measured in the range of 0.1 MHz to 1 GHz.
 《3》電気抵抗率
 前記各実施例および各比較例で得られた粉末を用いて、電気抵抗率についての評価を以下のようにして行った。
<< 3 >> Electric resistivity Using the powders obtained in the above Examples and Comparative Examples, the electric resistivity was evaluated as follows.
 まず、断面積が4cmのフッ素樹脂製のシリンダーに高さ4mmとなるように試料としての粉末を充填した後、両端に電極を取り付け、さらにその上から1kgの分銅を乗せて電気抵抗を測定した。電気抵抗の測定は、ケースレ一社製2182A型ナノボルトメーターにて測定電圧1Vを印加し60秒後の抵抗を測定し、体積抵抗を算出した。 First, after filling powder as a sample in a fluororesin cylinder with a cross-sectional area of 4 cm 2 to a height of 4 mm, electrodes were attached to both ends, and a weight of 1 kg was placed on top of the electrode, and the electrical resistance was measured. did. The electrical resistance was measured by applying a measurement voltage of 1 V with a 2182A nanovolt meter manufactured by Keithley Co., Ltd., measuring the resistance after 60 seconds, and calculating the volume resistance.
 各実施例および各比較例について、KEC法による電磁波シールド効果の評価結果を図4に示し、電気抵抗率の結果を表3に示す。 For each example and each comparative example, the evaluation results of the electromagnetic shielding effect by the KEC method are shown in FIG. 4, and the results of electrical resistivity are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図4から明らかなように、本発明では、被覆層の厚さによって電磁波シールド能力(減衰率)の周波数依存性が低周波数側にシフトしていることが確認され、Mnフェライト粒子(母粒子)表面に存在する金属被膜(被覆層)によって電磁波がシールドされていることが確認されたのに対し、比較例1、3では金属被覆がないため満足のいく結果が得られなかった。また、比較例2では、電磁波シールド能力の立ち上がりが高周波側にシフトしているだけでなく、電磁波シールド能力が実施例1よりも劣る結果であった。 As is clear from FIG. 4, in the present invention, it was confirmed that the frequency dependency of the electromagnetic wave shielding ability (attenuation rate) was shifted to the lower frequency side by the thickness of the coating layer, and Mn ferrite particles (mother particles) While it was confirmed that the electromagnetic wave was shielded by the metal coating (coating layer) existing on the surface, in Comparative Examples 1 and 3, satisfactory results could not be obtained because there was no metal coating. In Comparative Example 2, not only the rising of the electromagnetic wave shielding ability was shifted to the high frequency side, but also the electromagnetic wave shielding ability was inferior to that of Example 1.
 本発明は、電磁波の遮蔽性に優れる複合粒子、粉末を提供することができ、電磁波の遮蔽性に優れる成形体を提供することができ、また、前記成形体の製造に好適に用いることができる樹脂組成物を提供することができる。 The present invention can provide composite particles and powder excellent in electromagnetic wave shielding properties, can provide a molded body excellent in electromagnetic wave shielding properties, and can be suitably used for producing the molded body. A resin composition can be provided.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2018年2月13日出願の日本特許出願(特願2018-023566)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on Feb. 13, 2018 (Japanese Patent Application No. 2018-023566), the contents of which are incorporated herein by reference.

Claims (9)

  1.  Mnフェライトで構成された母粒子と、
     Au、Ag、Pt、NiおよびPdよりなる群から選択される少なくとも1種を含む材料で構成された被覆層とを備えることを特徴とする複合粒子。
    Mother particles composed of Mn ferrite;
    A composite particle comprising: a coating layer made of a material containing at least one selected from the group consisting of Au, Ag, Pt, Ni, and Pd.
  2.  前記Mnフェライトは、Mnの含有率が3.5質量%以上20.0質量%以下、Feの含有率が50.0質量%以上70.0質量%以下の組成を有している請求項1に記載の複合粒子。 The Mn ferrite has a composition in which a Mn content is 3.5% by mass or more and 20.0% by mass or less, and a Fe content is 50.0% by mass or more and 70.0% by mass or less. The composite particles according to 1.
  3.  前記Mnフェライトのキュリー点が、200℃以上500℃以下である請求項1または2に記載の複合粒子。 The composite particle according to claim 1, wherein the Mn ferrite has a Curie point of 200 ° C. or more and 500 ° C. or less.
  4.  前記被覆層の厚さが、10nm以上500nm以下である請求項1~3のいずれか1項に記載の複合粒子。 The composite particle according to any one of claims 1 to 3, wherein the coating layer has a thickness of 10 nm to 500 nm.
  5.  前記母粒子の形状が、真球状である請求項1~4のいずれか1項に記載の複合粒子。 The composite particle according to any one of claims 1 to 4, wherein the mother particle has a true spherical shape.
  6.  請求項1~5のいずれか1項に記載の複合粒子を複数個含むことを特徴とする粉末。 A powder comprising a plurality of the composite particles according to any one of claims 1 to 5.
  7.  前記複合粒子の体積平均粒径が、1.0μm以上20μm以下である請求項6に記載の粉末。 The powder according to claim 6, wherein the composite particles have a volume average particle diameter of 1.0 μm or more and 20 μm or less.
  8.  請求項6または7に記載の粉末と、樹脂材料とを含むことを特徴とする樹脂組成物。 A resin composition comprising the powder according to claim 6 or 7 and a resin material.
  9.  請求項6または7に記載の粉末と、樹脂材料とを含む材料を用いて製造されたことを特徴とする成形体。
     
    A molded body produced by using a material containing the powder according to claim 6 or 7 and a resin material.
PCT/JP2019/004303 2018-02-13 2019-02-06 Composite particle, powder, resin composition, and molded article WO2019159799A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020500437A JPWO2019159799A1 (en) 2018-02-13 2019-02-06 Composite particles, powders, resin compositions and moldings
TW108104593A TWI814778B (en) 2018-02-13 2019-02-12 Composite particles, powders, resin compositions and molded bodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-023566 2018-02-13
JP2018023566 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159799A1 true WO2019159799A1 (en) 2019-08-22

Family

ID=67620030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004303 WO2019159799A1 (en) 2018-02-13 2019-02-06 Composite particle, powder, resin composition, and molded article

Country Status (3)

Country Link
JP (1) JPWO2019159799A1 (en)
TW (1) TWI814778B (en)
WO (1) WO2019159799A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149794A1 (en) * 2020-01-24 2021-07-29 パウダーテック株式会社 Ferrite powder and method for producing same
EP4043402A4 (en) * 2019-10-07 2023-10-18 Powdertech Co., Ltd. Ferrite powder, ferrite resin composite material, and electromagnetic shielding material, electronic material, or electronic component
EP4098622A4 (en) * 2020-01-27 2024-03-27 Powdertech Co Ltd Ferrite powder and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112313758B (en) * 2018-06-25 2023-02-28 积水化学工业株式会社 Conductive particle, conductive material, and connection structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228142A (en) * 1998-02-18 1999-08-24 Katsuhiko Yamada Production of ferrite
JP2003318015A (en) * 2002-04-24 2003-11-07 Toda Kogyo Corp Spherical ferrite particle for radio wave absorbent and method of manufacturing the same
KR20070097626A (en) * 2006-03-28 2007-10-05 신경자 Primer paint for electromagnetic waves sheild and extiction, and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127324B2 (en) * 2015-01-28 2017-05-17 パウダーテック株式会社 Magnetic filler
CN107275023B (en) * 2016-04-08 2019-03-01 中国人民解放军国防科学技术大学 Golden shell magnetic bead and its preparation method and application
CN109804516B (en) * 2016-08-26 2021-11-02 纽卡润特有限公司 Wireless connector system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228142A (en) * 1998-02-18 1999-08-24 Katsuhiko Yamada Production of ferrite
JP2003318015A (en) * 2002-04-24 2003-11-07 Toda Kogyo Corp Spherical ferrite particle for radio wave absorbent and method of manufacturing the same
KR20070097626A (en) * 2006-03-28 2007-10-05 신경자 Primer paint for electromagnetic waves sheild and extiction, and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043402A4 (en) * 2019-10-07 2023-10-18 Powdertech Co., Ltd. Ferrite powder, ferrite resin composite material, and electromagnetic shielding material, electronic material, or electronic component
WO2021149794A1 (en) * 2020-01-24 2021-07-29 パウダーテック株式会社 Ferrite powder and method for producing same
EP4095101A4 (en) * 2020-01-24 2024-03-20 Powdertech Co Ltd Ferrite powder and method for producing same
EP4098622A4 (en) * 2020-01-27 2024-03-27 Powdertech Co Ltd Ferrite powder and method for producing same

Also Published As

Publication number Publication date
TW201935491A (en) 2019-09-01
JPWO2019159799A1 (en) 2021-03-04
TWI814778B (en) 2023-09-11

Similar Documents

Publication Publication Date Title
WO2019159799A1 (en) Composite particle, powder, resin composition, and molded article
TWI236393B (en) Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder
US20190040226A1 (en) Ferrite powder, resin composition, and molded article
TWI445494B (en) Electromagnetic wave interference suppressor, flat cable for high frequency signal, flexible printed substrate, and electromagnetic wave interference suppressing sheet
TW527612B (en) Low-temperature burnt ferrite material and ferrite parts using the same
WO2017191737A1 (en) Ferrite powder, resin composition, and molded article
MXPA06003463A (en) Microwave susceptor for cooking and browning applications.
TW201202447A (en) Copper powder for conductive paste and conductive paste
WO2017191725A1 (en) Ferrite powder, resin composition, electromagnetic shielding material, electronic circuit substrate, electronic circuit component, and electronic device housing
WO2019159800A1 (en) Composite particles, powder, resin composition, and molded body
TW201806872A (en) Ferrite powder, resin composition, and molded article
WO2019027023A1 (en) Composite particles, powder, resin composition and moulded body
JP7269661B2 (en) Mn ferrite powder, resin composition, electromagnetic shielding material, electronic material and electronic component
WO2019146661A1 (en) Composite particle, powder, resin composition, and molded article
JP4129385B2 (en) Method for producing dried potato powder
Hamid et al. Effects of natural rubber on microwave absorption characteristics of some Li–Ni–Zn ferrite–thermoplastic natural rubber composites
JP2013175383A (en) Composite dielectric material and dielectric antenna using the same
JPWO2019159796A1 (en) Mn-Mg-based ferrite powder, resin composition, electromagnetic wave shielding material, electronic material and electronic component
JP2008011733A (en) Dried potato powder, and powdery food using the dried potato powder
TWI244894B (en) Method for producing tea leaves with gold foil
JPS6076542A (en) Electrically conductive resin
JP2003259818A (en) Combined food obtained by attaching fine powder food to water-soluble material powder
JP2023160276A (en) Method for manufacturing sheet made of collection of flat powder by joining gap between flat surfaces of flat powder made of metal, alloy, metal oxide, or inorganic compound with collection of metal or metal oxide nanoparticles
JP2015017314A (en) Nickel powder and production method of the same
CN109473244A (en) A kind of thermistor material and preparation method thereof based on lanthanum chromium cobalt/cobalt oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754015

Country of ref document: EP

Kind code of ref document: A1