WO2019159776A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2019159776A1
WO2019159776A1 PCT/JP2019/004174 JP2019004174W WO2019159776A1 WO 2019159776 A1 WO2019159776 A1 WO 2019159776A1 JP 2019004174 W JP2019004174 W JP 2019004174W WO 2019159776 A1 WO2019159776 A1 WO 2019159776A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling device
wiring layer
heat
cooling
conductive member
Prior art date
Application number
PCT/JP2019/004174
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 倉橋
克樹 奥野
好成 奥野
南 和彦
誠二 松島
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2020500426A priority Critical patent/JP7201658B2/en
Priority to CN201980006502.6A priority patent/CN111480228A/en
Publication of WO2019159776A1 publication Critical patent/WO2019159776A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a cooling device for cooling a heat-generating element such as an electronic element (eg, a semiconductor element).
  • a heat-generating element such as an electronic element (eg, a semiconductor element).
  • the vertical direction of the cooling device according to the present invention is not limited, in the present specification and claims, in order to facilitate understanding of the configuration of the cooling device, a heat generating element in the cooling device is mounted.
  • the side to be applied is defined as the upper side of the cooling device and the opposite side is defined as the lower side of the cooling device.
  • a surface perpendicular to the thickness direction of each component of the cooling device is referred to as a plane of each component, and a direction parallel to the plane of each component is referred to as a plane direction of each component.
  • aluminum is used to include both pure aluminum and aluminum alloys, and the term “copper” refers to both pure copper and copper alloys. Used to mean including.
  • Patent Document 1 Japanese Patent No. 5150905 (Patent Document 1) and (Patent No. 5145591 (Patent Document 2), a plurality of metal layers and carbon fiber layers are alternately stacked.
  • a metal-carbon fiber composite material is known which is bonded and integrated in a state of being formed, and International Publication No. 2009/051094 (Patent Document 3) describes a metal-scale piece using scaly graphite particles as carbon particles.
  • Patent Document 3 describes a metal-scale piece using scaly graphite particles as carbon particles.
  • a graphite particle composite is disclosed.
  • JP-A-2015-25158 Patent Document 4
  • JP-A-2015-217655 Patent Document 5
  • JP-A-2017-88913 Patent Document 6
  • the metal-carbon particle composite material described above has anisotropy in thermal conductivity, and is expected to be used as a material for members that require high thermal conductivity.
  • a cooling device that cools a semiconductor element as a heat generating element is required to have high thermal conductivity in order to obtain high cooling performance. Therefore, it is possible to use a metal-carbon particle composite material as a material of a member constituting the cooling device, as disclosed in JP-A-2016-132113 (Patent Document 7), JP-A-2016-152241 (Patent Document 8), No. 2016-207799 (Patent Document 9) and the like.
  • Patent Document 10 discloses a material for a heat diffusion plate of a heating element module that has high thermal conductivity in two of three directions orthogonal to each other and low heat in the other direction. It discloses that a carbon-based material having conductivity and high orientation is used.
  • Such a cooling device includes a plurality of cooling device constituent members joined and integrated in a stacked manner, and is arranged as an insulating layer made of a ceramic material or the like as the plurality of constituent members.
  • An upper heat conductive member for example, an upper wiring layer
  • a lower heat conductive member for example, a lower wiring layer, a buffer layer, and a cooling member disposed below the insulating layer are included. That is, the insulating layer is disposed between the upper heat conductive member and the lower heat conductive member.
  • the exothermic element is mounted on the upper heat conductive member.
  • Japanese Patent No. 5150905 Japanese Patent No. 5145591 International Publication No. 2009/051094 Japanese Patent Laying-Open No. 2015-25158 JP2015-217655A JP 2017-88913 JP 2016-132113 A Japanese Unexamined Patent Publication No. 2016-152241 Japanese Unexamined Patent Publication No. 2016-207799 JP 2012-222160 A
  • cooling devices having such a laminated structure have been required to have higher cooling performance as the heat generating elements have higher performance and heat generation.
  • an object of the present invention is to provide a cooling device having high cooling performance.
  • the present invention provides the following means.
  • a cooling device for cooling an exothermic element A plurality of cooling device components that are joined and integrated in a stacked manner,
  • the plurality of constituent members including an insulating layer, an upper heat conductive member disposed on the upper side of the insulating layer, and a lower heat conductive member disposed on the lower side of the insulating layer
  • the upper heat conductive member has a heat conductivity in the thickness direction and a heat conductivity in the first direction along the plane higher than the heat conductivity in the second direction perpendicular to the thickness direction and the first direction.
  • the lower heat conductive member has a heat conductivity in the thickness direction and a heat conductivity in the first direction along the plane higher than the heat conductivity in the second direction perpendicular to the thickness direction and the first direction.
  • the cooling device wherein the upper heat conducting member and the lower heat conducting member are arranged such that the first direction of the upper heat conducting member and the first direction of the lower heat conducting member intersect in plan view .
  • the thickness of the upper heat conducting member is different from the thickness of the lower heat conducting member, At least the thicker heat conducting member of the upper heat conducting member and the lower heat conducting member has a longitudinal direction and a short side direction, and the first direction of the thicker heat conducting member is the thicker heat conducting member. 2.
  • At least one of the upper heat conductive member and the lower heat conductive member is formed of a metal-anisotropic particle composite material including a metal matrix and anisotropic particles dispersed in the metal matrix.
  • the plurality of constituent members further includes an upper buffer layer disposed on an upper side of the upper heat conducting member,
  • the linear expansion coefficient in the same direction as the direction of the minimum linear expansion coefficient of the upper thermal conductive member in the upper buffer layer is smaller than the minimum linear expansion coefficient of the linear thermal expansion coefficient in the planar direction of the upper thermal conductive member.
  • the present invention has the following effects.
  • the upper heat conducting member and the lower heat conducting member are arranged so that the first direction of the upper heat conducting member and the first direction of the lower heat conducting member intersect in plan view, thereby generating a heat generating element.
  • the thermal conductivity of the cooling device in the direction from the position toward the cooling member increases. Thereby, a cooling device having high cooling performance can be provided. Further, it is not always necessary to perform complicated processing on the heat conducting member, and therefore the cooling device can be manufactured at low cost.
  • the cooling performance of the cooling device can be improved.
  • both the cooling performance of the cooling device can be improved, and further, the stress such as the thermal stress generated in the cooling device can be relaxed, so that the reliability of the cooling device can be improved.
  • FIG. 1 is a schematic perspective view of a cooling device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic front view of the cooling device.
  • FIG. 3 is a schematic perspective view for explaining the orientation of the anisotropic material.
  • FIG. 4 is a schematic perspective view of a cooling device according to the second embodiment of the present invention.
  • FIG. 5 is a schematic perspective view of a cooling device according to a third embodiment of the present invention.
  • FIG. 6 is a schematic perspective view of a cooling device according to a fourth embodiment of the present invention.
  • FIG. 7 is a schematic front view of the cooling device used for evaluating the cooling performance of the cooling device by simulation.
  • FIG. 8 is a schematic plan view of the cooling device.
  • the cooling device 1 is for the exothermic element 8, that is, for cooling the exothermic element 8.
  • the exothermic element 8 include semiconductor elements such as power semiconductor elements (eg, IGBT elements).
  • the cooling device 1 includes a plurality of cooling device constituent members that are joined and integrated in a stacked manner. Specifically, as the plurality of constituent members, the insulating layer 3 and an upper side of the insulating layer 3 are arranged. And at least one lower heat conductive member 12 disposed on the lower side of the insulating layer 3.
  • the number of the upper heat conducting members 11 is one, which is the upper wiring layer 2.
  • the first lower heat conductive members 12 are the lower wiring layer 4 and the second lower heat conductive members 12.
  • the buffer layer 5 and the third lower heat conducting member 12 are plate-like cooling members 6.
  • the upper wiring layer 2, the insulating layer 3, the lower wiring layer 4, the buffer layer 5 and the cooling member 6 are joined and integrated by a predetermined joining means in a state where they are laminated in this order from top to bottom.
  • the cooling device 1 is formed.
  • the joining means is not limited, and brazing, clad rolling, sintering (eg, discharge plasma sintering) or the like is used.
  • the upper wiring layer 2 (upper heat conducting member 11) is also called an upper circuit layer, and has a flat mounting surface 1a composed of the upper surface thereof.
  • the heat generating element 8 is joined to the substantially central portion of the mounting surface 1a with a solder layer 9.
  • the solder layer 9 is made of a tin alloy (Sn alloy) or the like. If the exothermic element 8 is a semiconductor element, the semiconductor element is bonded to the mounting surface 1a of the upper wiring layer 2 to form the semiconductor element module 10.
  • the insulating layer 3 has electrical insulation and is made of a ceramic material such as aluminum nitride (AlN), silicon nitride, or alumina.
  • AlN aluminum nitride
  • silicon nitride silicon nitride
  • alumina aluminum nitride
  • the lower wiring layer 4 (first lower heat conducting member 12) is also called a lower circuit layer, and is joined to the lower surface of the insulating layer 3.
  • the buffer layer 5 (second lower heat conducting member 12) is a layer for relieving stress such as thermal stress generated in the cooling device 1.
  • the cooling member 6 (third lower heat conducting member 12) cools the heat-generating element 8, and in the first embodiment, the cooling member 6 is a cooling plate.
  • the cooling member 6 is not limited to being a cooling plate.
  • a heat radiating member that cools the heat generating element 8 by radiating the heat of the heat generating element 8 (e.g., a heat sink).
  • a heat radiating plate or a heat diffusing member (eg, heat diffusing plate).
  • the cooling member 6 is of a liquid cooling type or an air cooling type that cools the heat generating element 8 by transferring the heat conducted from the heat generating element 8 to the cooling member 6 to the cooling medium. Also good.
  • a liquid cooling type generally, a flow path (not shown) through which a cooling liquid as a cooling medium flows is provided inside the cooling member 6.
  • heat generated in the heat generating element 8 is sequentially conducted from the heat generating element 8 to the solder layer 9, the upper wiring layer 2, the insulating layer 3, the lower wiring layer 4, the buffer layer 5 and the cooling member 6. As a result, the exothermic element 8 is cooled and its temperature decreases.
  • the arrows X, Y, and Z in FIGS. 1 and 2 respectively indicate the longitudinal direction X of each component of the cooling device 1 (upper wiring layer 2, insulating layer 3, lower wiring layer 4, buffer layer 5 and cooling member 6).
  • the lateral direction Y and the thickness direction Z are shown.
  • the longitudinal direction X, the lateral direction Y, and the thickness direction Z are orthogonal to each other, for example.
  • the longitudinal direction X, the lateral direction Y, and the thickness direction of each constituent member coincide with the longitudinal direction, the lateral direction, and the thickness direction of the cooling device 1.
  • the upper wiring layer 2 has a longitudinal direction X and a short direction Y.
  • the shape of the upper wiring layer 2 in plan view is a substantially rectangular shape.
  • the upper wiring layer 2 is formed of an anisotropic material having anisotropy in thermal conductivity.
  • the insulating layer 3 has a longitudinal direction X and a short direction Y.
  • the shape of the insulating layer 3 in plan view is a substantially rectangular shape.
  • the insulating layer 3 is made of a ceramic material as described above, and has no anisotropy in thermal conductivity.
  • the lower wiring layer 4 has a longitudinal direction X and a short direction Y. Specifically, the shape of the lower wiring layer 4 in plan view is substantially the same as the shape of the upper wiring layer 2 in plan view, that is, substantially rectangular. is there. Further, the lower wiring layer 4 is formed of an anisotropic material having anisotropy in thermal conductivity.
  • the buffer layer 5 has a longitudinal direction X and a short direction Y.
  • the shape of the buffer layer 5 in plan view is substantially the same as the shape of the upper wiring layer 2 in plan view, that is, substantially rectangular.
  • the buffer layer 5 is made of a metal material such as aluminum or copper, and has no anisotropy in thermal conductivity.
  • the cooling member 6 has a longitudinal direction X and a short direction Y.
  • the shape of the cooling member 6 in plan view is substantially the same as the shape of the upper wiring layer 2 in plan view, that is, substantially rectangular.
  • the cooling member 6 is formed of a metal material such as aluminum or copper, and has no anisotropy in thermal conductivity.
  • the length (that is, the length in the longitudinal direction X of the upper wiring layer 2) and the width (that is, the length in the short direction Y of the upper wiring layer 2) of the upper wiring layer 2 are larger than the length and width of the insulating layer 3, respectively. small.
  • the length and width of the lower wiring layer 4 are substantially equal to the length and width of the upper wiring layer 2, respectively.
  • the length and width of the buffer layer 5 are substantially equal to the length and width of the upper wiring layer 2, respectively.
  • the length and width of the cooling member 6 are larger than the length and width of the upper wiring layer 2, respectively.
  • the upper wiring layer 2, the insulating layer 3, the lower wiring layer 4, the buffer layer 5, and the cooling member 6 have a longitudinal direction X and a lateral direction Y that coincide with each other in a plan view. Are stacked so that their center positions coincide with each other.
  • the thickness of the upper wiring layer 2 is not limited and is preferably in the range of 0.1 to 2 mm.
  • the thickness of the insulating layer 3 is not limited and is, for example, in the range of 0.1 to 2 mm.
  • the thickness of the lower wiring layer 4 is not limited and is preferably in the range of 0.1 to 2 mm.
  • the thickness of the buffer layer 5 is not limited and is preferably in the range of 0.1 to 3 mm.
  • the thickness of the cooling member 6 is not limited and is preferably in the range of 0.2 to 3 mm.
  • the exothermic element 8 has a substantially rectangular shape in plan view.
  • the longitudinal direction X and the short direction Y of the exothermic element 8 are the same as the longitudinal direction X and the short direction Y of the upper wiring layer 2.
  • the heat generating element 8 is joined by the solder layer 9 so that the center position of the heat generating element 8 coincides with the center position of the mounting surface 1a of the upper wiring layer 2.
  • Arrows a, b, and c in the figure indicate three axial directions in the anisotropic material 20 that intersect each other.
  • the a-axis direction, the b-axis direction, and the c-axis direction are orthogonal to each other.
  • the anisotropic material 20 has two directions of the a-axis direction, the b-axis direction, and the c-axis direction, and the c-axis direction in which the thermal conductivity in the a-axis direction and the b-axis direction is the other direction. It has an anisotropy of higher than the thermal conductivity.
  • the surface formed by the a-axis direction and the b-axis direction is the high heat conduction surface (indicated by dot hatching) AB of the anisotropic material 20, and the direction parallel to the high heat conduction surface AB (a axis direction and b). (Including the axial direction) is the high heat conduction direction of the anisotropic material 20, and the c-axis direction, which is the direction perpendicular to the high heat conduction surface AB, is the low heat conduction direction of the anisotropic material 20.
  • the symbol “BC” is a surface formed by the b-axis direction and the c-axis direction in the anisotropic material 20
  • the symbol “CA” is a surface formed by the c-axis direction and the a-axis direction in the anisotropic material 20.
  • the thermal conductivity (ka, kb) in the direction parallel to the high thermal conductivity surface AB of the anisotropic material 20 is not limited, and is preferably 400 W / (m ⁇ K) or more. Further, the thermal conductivity kc in the c-axis direction of the anisotropic material 20 is not limited and is preferably 30 W / (m ⁇ K) or more.
  • the anisotropic material 20 is not limited as long as it has the above-described anisotropy in thermal conductivity, and preferably a metal matrix (not shown) and a number of anisotropic materials dispersed in the metal matrix. It is preferable that it is made of a metal-anisotropic particle composite material containing conductive particles (not shown). In this case, the thermal conductivity of the heat conducting members 11 and 12 can be reliably increased.
  • Anisotropic particles have anisotropy in thermal conductivity.
  • the thermal conductivity in the planar direction of the particle is higher than the thermal conductivity in the thickness direction of the particle. It has directionality.
  • the plane of the particle means a plane perpendicular to the thickness direction of the particle, and the plane direction of the particle means a direction parallel to the plane of the particle.
  • anisotropic particles carbon particles, hexagonal boron nitride particles (h-BN particles) and the like are used.
  • carbon particles scaly graphite particles, carbon fibers and the like are used.
  • metal of the metal matrix aluminum, copper or the like is used.
  • the metal-anisotropic particle composite material generally, a large number of anisotropic particles are dispersed in the metal matrix in a state of being oriented in the direction of the high heat conduction surface of the anisotropic material 20.
  • the metal-anisotropic particle composite material is also called a metal-carbon particle composite material.
  • fibrous carbon particles eg, short carbon fiber
  • one or two or more selected from the group consisting of pitch-based carbon fiber, PAN-based carbon fiber, vapor-grown carbon fiber, and carbon nanotube are used as the carbon fiber.
  • pitch-based carbon fiber PAN-based carbon fiber
  • vapor-grown carbon fiber vapor-grown carbon fiber
  • carbon nanotube carbon nanotube
  • the size of the anisotropic particles is not limited.
  • the average length of the anisotropic particles in the longest axial direction is 0.1 ⁇ m to 2 mm.
  • the method for producing the metal-anisotropic particle composite material is not limited, and examples thereof include a molten metal stirring method, a powder sintering method, a powder extrusion method, and a coating + sintering method.
  • the molten metal stirring method is a method in which an anisotropic powder (eg, scaly graphite powder) as anisotropic particles is placed in a molten metal (eg, aluminum molten metal), mixed with stirring, and cooled and solidified.
  • the powder sintering method is a method of pressure-sintering a mixture of metal powder (eg, aluminum powder) and anisotropic powder (eg, scaly graphite powder) as anisotropic particles.
  • the powder extrusion method is a method of extruding a mixture of metal powder (eg, aluminum powder) and anisotropic powder (eg, scaly graphite powder) as anisotropic particles.
  • the coating + sintering method refers to a plurality of coating foils obtained by coating anisotropic powder (eg, scaly graphite powder) as anisotropic particles on metal foil (eg, aluminum foil). It is a method of laminating and integrating by sintering.
  • anisotropic powder eg, scaly graphite powder
  • metal foil eg, aluminum foil
  • the upper wiring layer 2 has a high thermal conductive surface AB (indicated by a two-dot chain line) AB of the anisotropic material 20 in the short direction Y and the thickness direction Z of the upper wiring layer 2. Is formed of an anisotropic material 20 so as to be substantially parallel to the line. Accordingly, the thermal conductivity in the thickness direction Z and the thermal conductivity in the short direction Y of the upper wiring layer 2 are higher than the thermal conductivity in the longitudinal direction X of the upper wiring layer 2.
  • the short direction Y of the upper wiring layer 2 corresponds to the first direction along the plane of the upper heat conductive member described in the claims
  • the longitudinal direction X of the upper wiring layer 2 is , Corresponding to the thickness direction of the upper heat conducting member and the second direction perpendicular to the first direction.
  • the first direction of the upper wiring layer 2 is directed to the short direction Y of the upper wiring layer 2. More specifically, the first direction of the upper wiring layer 2 coincides with the short direction Y of the upper wiring layer 2. Yes.
  • the second direction of the upper wiring layer 2 faces the longitudinal direction X of the upper wiring layer 2. More specifically, the second direction of the upper wiring layer 2 coincides with the longitudinal direction X of the upper wiring layer 2.
  • the lower wiring layer 4 is formed of the anisotropic material 20 so that the high thermal conductivity surface (indicated by a two-dot chain line) AB of the anisotropic material 20 is substantially parallel to the thickness direction Z and the longitudinal direction X of the lower wiring layer 4. . Therefore, the thermal conductivity in the thickness direction Z and the thermal conductivity in the longitudinal direction X of the lower wiring layer 4 are higher than the thermal conductivity in the short direction Y of the lower wiring layer 4.
  • the longitudinal direction X of the lower wiring layer 4 corresponds to the first direction along the plane of the lower heat conducting member described in the claims
  • the short direction Y of the lower wiring layer 4 is , Corresponding to the thickness direction of the lower heat conducting member and the second direction perpendicular to the first direction.
  • the first direction of the lower wiring layer 4 is directed to the longitudinal direction X of the lower wiring layer 4. More specifically, the first direction of the lower wiring layer 4 coincides with the longitudinal direction X of the lower wiring layer 4.
  • the second direction of the lower wiring layer 4 faces the short direction Y of the lower wiring layer 4. More specifically, the second direction of the lower wiring layer 4 coincides with the short direction Y of the lower wiring layer 4.
  • the first direction of the upper wiring layer 2 faces the short direction Y of the upper wiring layer 2 and the first direction of the lower wiring layer 4 faces the longitudinal direction X of the lower wiring layer 4.
  • the upper wiring layer 2 and the lower wiring layer 4 are insulating layers such that the first direction of the upper wiring layer 2 and the first direction of the lower wiring layer 4 intersect (in detail, orthogonal) in a plan view of the cooling device 1. 3 are arranged on both upper and lower sides.
  • the cooling device 1 of the first embodiment has the following advantages.
  • both the thermal conductivity in the thickness direction Z of the upper wiring layer 2 and the thermal conductivity in the thickness direction Z of the lower wiring layer 4 are both high, the heat of the heat generating element 8 is rapidly conducted toward the cooling member 6. . Thereby, the cooling performance of the cooling device 1 is enhanced.
  • the upper wiring layer 2 and the lower wiring layer are 4, and the first direction (short direction Y) of the upper wiring layer 2 and the first direction (longitudinal direction X) of the lower wiring layer 4 intersect in plan view (details). Then, when the heat of the heat generating element 8 is conducted from the heat generating element 8 to the cooling member 6, the heat diffusion direction changes. Therefore, heat is effectively diffused in the plane direction of the cooling device 1. Thereby, the cooling performance of the cooling device 1 is improved.
  • the heat of the heat generating element 8 is widely spread in the plane direction of the one wiring layer. Diffused. Thereby, the cooling performance of the cooling device 1 is improved.
  • the heat conductive member disposed at a position farther from the position of the exothermic element 8 in the heat conduction direction of the exothermic element 8 in the cooling device 1 is the lower wiring layer.
  • the first direction of the lower wiring layer 4 is oriented in the longitudinal direction X, so that the cooling device 1 is compared with the case where the first direction of the upper wiring layer 2 is oriented in the longitudinal direction X. The cooling performance is improved.
  • the cooling device 1 has high cooling performance.
  • the cooling device 1 can be manufactured at low cost.
  • At least one of the upper wiring layer 2 and the lower wiring layer 4 is formed of a metal-anisotropic particle composite material including a metal matrix and anisotropic particles dispersed in the metal matrix.
  • the anisotropic particles preferably contain both flaky graphite particles and carbon fibers. The reason is as follows.
  • the composite material when the scaly graphite particles are dispersed in the metal matrix of the metal-anisotropic particle composite material, the composite material has a high thermal conductivity. Furthermore, when not only scaly graphite particles but also carbon fibers are dispersed in the metal matrix of the composite material, the composite material can reduce the linear expansion coefficient of the composite material while maintaining high thermal conductivity.
  • the cooling performance of the cooling device 1 can be improved, and further, the thermal stress generated in the cooling device 1 can be improved.
  • the stress can be relaxed, and therefore the reliability (eg, bonding reliability) of the cooling device 1 can be improved.
  • FIG. 4 is a view for explaining a cooling device 101 according to the second embodiment of the present invention.
  • elements having the same action as the elements of the cooling device 1 of the first embodiment are denoted by reference numerals obtained by adding 100 to the reference numerals assigned to the elements of the cooling apparatus 1.
  • the second embodiment will be described below with a focus on differences from the first embodiment.
  • the lower wiring layer 104 is made of a metal material such as aluminum or copper, and has no anisotropy in thermal conductivity.
  • the buffer layer 105 is formed of an anisotropic material having anisotropy in thermal conductivity. More specifically, the buffer layer 105 is formed of the anisotropic material 20 so that the high heat conduction surface AB of the anisotropic material (see FIG. 3, reference numeral 20) is substantially parallel to the thickness direction Z and the longitudinal direction X of the buffer layer 105. ing. Therefore, the thermal conductivity in the thickness direction Z and the thermal conductivity in the longitudinal direction X of the buffer layer 105 are higher than the thermal conductivity in the short direction Y of the buffer layer 105.
  • the thickness of the buffer layer 105 is larger than the thickness of the upper wiring layer 102.
  • the longitudinal direction X of the buffer layer 105 corresponds to the first direction along the plane of the lower heat conducting member described in the claims
  • the short direction Y of the buffer layer 105 is the patent. This corresponds to the thickness direction of the lower heat conducting member and the second direction perpendicular to the first direction described in the claims.
  • the first direction of the buffer layer 105 faces the longitudinal direction X of the buffer layer 105, and in detail, the first direction of the buffer layer 105 coincides with the longitudinal direction X of the buffer layer 105.
  • the second direction of the buffer layer 105 faces the short direction Y of the buffer layer 105, and in detail, the second direction of the buffer layer 105 coincides with the short direction Y of the buffer layer 105.
  • the upper wiring layer 102 and the buffer layer 105 are crossed in the plan view (the orthogonal direction, in detail, the first direction (short direction Y) of the upper wiring layer 102 and the first direction (longitudinal direction X) of the buffer layer 105).
  • the insulating layer 103 is disposed on both upper and lower sides.
  • the cooling device 101 of the second embodiment since the thickness of the buffer layer 105 is larger than the thickness of the upper wiring layer 102, the heat of the heat generating element 8 is diffused more widely in the planar direction of the buffer layer 105. . Thereby, the cooling performance of the cooling device 101 is improved.
  • the cooling device 101 has high cooling performance.
  • At least one of the upper wiring layer 102 and the buffer layer 105 is formed of a metal-anisotropic particle composite material including a metal matrix and anisotropic particles dispersed in the metal matrix.
  • the anisotropic particles preferably contain both flaky graphite particles and carbon fibers. The reason is as described above.
  • FIG. 5 is a view for explaining a cooling device 201 according to the third embodiment of the present invention.
  • action as the element of the cooling device 1 of the said 1st Embodiment is attached
  • FIG. Hereinafter, the third embodiment will be described below with a focus on differences from the first embodiment.
  • the lower wiring layer 204 is formed of a metal material such as aluminum or copper and has no anisotropy in thermal conductivity.
  • the cooling member 206 is formed of an anisotropic material having anisotropy in thermal conductivity. More specifically, the cooling member 206 is formed of the anisotropic material 20 so that the high heat conduction surface AB of the anisotropic material (see FIG. 3, reference numeral 20) is substantially parallel to the thickness direction Z and the longitudinal direction X of the cooling member 206. ing. Therefore, the thermal conductivity in the thickness direction Z and the thermal conductivity in the longitudinal direction X of the cooling member 206 are higher than the thermal conductivity in the short direction Y of the cooling member 206.
  • the thickness of the cooling member 206 is larger than the thickness of the upper wiring layer 202.
  • the longitudinal direction X of the cooling member 206 corresponds to the first direction along the plane of the lower heat conducting member described in the claims
  • the short direction Y of the cooling member 206 is the patent. This corresponds to the thickness direction of the lower heat conducting member and the second direction perpendicular to the first direction described in the claims.
  • the first direction of the cooling member 206 is directed to the longitudinal direction X of the cooling member 206. More specifically, the first direction of the cooling member 206 coincides with the longitudinal direction X of the cooling member 206.
  • the second direction of the cooling member 206 faces the short direction Y of the cooling member 206. Specifically, the second direction of the cooling member 206 coincides with the short direction Y of the cooling member 206.
  • the first direction (short direction Y) of the upper wiring layer 202 and the first direction (longitudinal direction X) of the cooling member 206 intersect each other in plan view.
  • the insulating layer 203 is disposed on both upper and lower sides.
  • the cooling device 201 of the third embodiment since the thickness of the cooling member 206 is thicker than the thickness of the upper wiring layer 202, the heat of the heat generating element 8 is diffused more widely in the planar direction of the cooling member 206. . Thereby, the cooling performance of the cooling device 201 is improved.
  • the cooling device 201 has high cooling performance.
  • At least one of the upper wiring layer 202 and the cooling member 206 is formed of a metal-anisotropic particle composite material including a metal matrix and anisotropic particles dispersed in the metal matrix.
  • the anisotropic particles preferably contain both flaky graphite particles and carbon fibers. The reason is as described above.
  • FIG. 6 is a view for explaining a cooling device 301 according to the fourth embodiment of the present invention.
  • action as the element of the cooling device 1 of the said 1st Embodiment is attached
  • the fourth embodiment will be described below with a focus on differences from the first embodiment.
  • the cooling device 301 according to the fourth embodiment further includes an upper buffer layer 307 disposed on the upper side of the upper wiring layer 302 as a plurality of cooling device constituent members.
  • the upper buffer layer 307 is a layer for relieving stress such as thermal stress generated in the cooling device 301, and is bonded to the upper wiring layer 302 in a state of being laminated on the upper wiring layer 302.
  • the thickness of the upper buffer layer 307 is thinner than the thickness of the lower wiring layer 302.
  • the upper buffer layer 307 has a mounting surface 301a formed from the upper surface thereof.
  • the linear expansion coefficient in the same direction as the direction of the minimum linear expansion coefficient of the upper wiring layer 302 in the upper buffer layer 307 is more than the minimum linear expansion coefficient among the linear expansion coefficients in the planar direction of the upper wiring layer 302. It is getting smaller.
  • the above-mentioned linear expansion coefficient means an average linear expansion coefficient in the range of 25 to 300 ° C.
  • the cooling device 301 of the fourth embodiment since the upper buffer layer 307 is disposed on the upper side of the upper wiring layer 302, stress such as thermal stress generated in the cooling device 301 can be relieved.
  • the reliability (eg, bonding reliability) of the cooling device 301 can be improved.
  • the material of the upper buffer layer 307 is not limited, and is particularly preferably a metal-carbon fiber composite material including a metal matrix and carbon fibers dispersed in the metal matrix. In this case, the linear expansion coefficient of the upper buffer layer 307 can be reliably reduced.
  • the upper buffer layer 307 may be disposed above the upper wiring layer 102 of the cooling device 101 of the second embodiment, or the cooling device of the third embodiment.
  • 201 may be disposed on the upper side of the upper wiring layer 202.
  • the lower wiring layer, the buffer layer, and the cooling member are disposed below the insulating layer.
  • the buffer layer is provided below the insulating layer. May not be disposed, and the lower wiring layer may not be disposed below the insulating layer.
  • the present invention there are a plurality of upper heat conductive members, and two or more of the plurality of upper heat conductive members are the heat conductivity in the thickness direction and the heat conductivity in the first direction along the plane. Is higher than the thermal conductivity in the thickness direction and in the second direction perpendicular to the first direction, and these upper heat conductive member and lower heat conductive member are in the first direction and lower direction of these upper heat conductive members. You may arrange
  • the number of lower heat conductive members is plural, and two or more of the plurality of lower heat conductive members are heat conductivity in the thickness direction and heat conductivity in the first direction along the plane. Is higher than the thermal conductivity in the thickness direction and the second direction perpendicular to the first direction, and the upper heat conducting member and the lower heat conducting member are You may arrange
  • the software used for the simulation is thermal fluid analysis software “FloTHERM” manufactured by Mentor Graphics Corporation.
  • the cooling device 501 is formed by joining and integrating the upper wiring layer 502, the insulating layer 503, the lower wiring layer 504, the buffer layer 505, and the cooling member 506 in order from the top to the bottom. Is formed.
  • the cooling member 506 is a cooling plate.
  • the upper wiring layer 502 corresponds to the upper heat conductive member 511
  • the lower wiring layer 504, the buffer layer 505, and the cooling member 506 all correspond to the lower heat conductive member 512.
  • the upper wiring layer 502, the insulating layer 503, the lower wiring layer 504, the buffer layer 505, and the cooling member 506 are each substantially rectangular in plan view, and as shown in FIG.
  • the layers are stacked such that the longitudinal direction X and the lateral direction Y coincide with each other and the center positions thereof also coincide with each other. In FIG. 8, the cooling member 506 is not shown.
  • the exothermic element 508 has a substantially rectangular shape in plan view.
  • the longitudinal direction X and the short direction Y of the exothermic element 508 coincide with the longitudinal direction X and the short direction Y of the upper wiring layer 502 and
  • the heat generating element 508 is joined by the solder layer 509 so that the center position of the heat generating element 508 coincides with the center position of the mounting surface 501 a of the upper wiring layer 502.
  • Table 1 shows the conditions of each component of the cooling device 501 applied to the simulation.
  • the thermal conductivity of the exothermic element 508 was set to depend on the temperature t (unit: ° C.). Moreover, the thickness of the upper wiring layer 502 was set to three types of 0.4, 0.6, and 1.0 mm.
  • “kab” is the thermal conductivity in the direction parallel to the high thermal conductive surface AB of the anisotropic material (see FIG. 3, reference numeral 20).
  • “Kc” is the thermal conductivity in the c-axis direction, which is the low thermal conduction direction of the anisotropic material 20.
  • the high thermal conductivity surface AB of the anisotropic material is a surface formed by the a-axis direction and the b-axis direction of the anisotropic material as described above, and the thermal conductivity ka in the a-axis direction is equal to the thermal conductivity kb in the b-axis direction.
  • the periphery of the cooling device 501 was filled with a sealing material (not shown) having a thermal conductivity of 3 W / (m ⁇ K).
  • a heat source 128.65 W was set on the upper surface of the exothermic element 508. This heat is finally radiated from the cooling member 506 through a process of conducting the solder layer 509, the upper wiring layer 502, the insulating layer 503, the lower wiring layer 504, and the buffer layer 505 in this order from the heat generating element 508.
  • the above-described heat conduction process was simulated by setting a heat transfer coefficient of 15000 W / (m 2 ⁇ K) on the bottom surface of the cooling member 506. Then, the environmental temperature was set to 25 ° C. as the initial temperature, and the maximum temperature of the exothermic element 508 when the temperature change of the cooling device 501 reached a steady state was set as the maximum temperature of the exothermic element 508.
  • the “anisotropic material (ZX)” is an upper wiring layer 502 so that the material of the upper wiring layer 502 is an anisotropic material and the high thermal conductivity surface of the anisotropic material is parallel to the thickness direction Z and the longitudinal direction X of the upper wiring layer 502.
  • ZX anisotropic material
  • 502 is formed of an anisotropic material, that is, the high heat conduction direction of the upper wiring layer 502 is the thickness direction Z and the longitudinal direction X.
  • the “anisotropic material (YZ)” means that the upper wiring layer 502 is made of an anisotropic material, and the high heat conduction surface of the anisotropic material is parallel to the short direction Y and the thickness direction Z of the upper wiring layer 502. This means that the layer 502 is formed of an anisotropic material, that is, the high heat conduction direction of the upper wiring layer 502 is the short direction Y and the thickness direction Z.
  • thickness 0.4 mm is the thicknesses of the upper wiring layer 502, respectively.
  • the upper wiring layer 502 as a heat conducting member has a thickness of 0.4, 0.6, or 1.0 mm
  • the upper wiring layer 502 is made of an anisotropic material.
  • the maximum temperature of the heat generating element 508 was lower than that in the case where the material of the upper wiring layer 502 was pure aluminum.
  • the high heat conduction direction of the upper wiring layer 502 is the thickness direction Z and the longitudinal direction X
  • the heat generation characteristics are higher than when the high heat conduction direction of the upper wiring layer 502 is the short direction Y and the thickness direction Z.
  • the maximum temperature of the element 508 was low. Further, the maximum temperature of the heat generating element 508 was lower when the upper wiring layer 502 was thicker.
  • the material of the heat conduction member is an anisotropic material, and the high heat conduction direction of the heat conduction member is the thickness direction Z and the longitudinal direction X. It turned out that a thicker member is better.
  • the upper wiring layer 502 is set to 0.6 mm
  • the lower wiring layer 504 is set to 0.6 mm
  • the buffer layer 505 is set to 1.2 mm
  • the buffer layer 505 is made of pure aluminum.
  • the maximum temperature of the exothermic element 508 when pure aluminum and an anisotropic material are used as the material of 502 and the lower wiring layer 504 was examined by simulation. The results are shown in Table 3.
  • the maximum temperature of the heat generating element 508 is the lowest because the material of the upper wiring layer 502 is an anisotropic material, and the high heat conduction direction of the upper wiring layer 502 is the short direction Y and the thickness direction Z. And the material of the lower wiring layer 504 is an anisotropic material, and the high heat conduction direction of the lower wiring layer 504 is the thickness direction Z and the longitudinal direction X. In this case, the maximum temperature of the heat generating element 508 was 76.87 ° C.
  • the high heat conduction direction of the upper heat conduction member 511 and the high heat conduction direction of the lower heat conduction member 512 are different (crossed).
  • the cooling performance of the cooling device 501 is improved as compared with the case where the high heat conduction direction and the high heat conduction direction of the lower heat conduction member 512 coincide (parallel), and the high heat conduction direction of the lower heat conduction member 512 is thicker. It is shown that the cooling performance of the cooling device 501 is improved in the direction Z and the longitudinal direction X than in the case where the high heat conduction direction of the upper heat conducting member 511 is the thickness direction Z and the longitudinal direction X.
  • the thickness of the upper wiring layer 502 is set to 0.6 mm
  • the material of the upper wiring layer 502 is set to pure aluminum
  • the thickness of the lower wiring layer 504 is set to 0.6 mm
  • the thickness of the buffer layer 505 is set to 1.2 mm.
  • the maximum temperature of the heat generating element 508 when pure aluminum and an anisotropic material are used as the material of the layer 504 and the buffer layer 505 was examined by simulation. The results are shown in Table 4.
  • the maximum temperature of the heat generating element 508 is the lowest because the material of the lower wiring layer 504 is an anisotropic material, and the high heat conduction direction of the lower wiring layer 504 is the short direction Y and the thickness direction Z. And the material of the buffer layer 505 is an anisotropic material, and the high heat conduction direction of the buffer layer 505 is the thickness direction Z and the longitudinal direction X. In this case, the maximum temperature of the heat generating element 508 was 77.73 ° C.
  • the maximum temperature of 77.73 ° C. is higher than the maximum temperature of 76.87 ° C. of the lowest exothermic element 508 in the case of the simulation example 2 described above. Therefore, in the case where anisotropic materials are used as the materials of the two heat conducting members, respectively, the case where the insulating layer 503 is disposed between the two heat conducting members (that is, in the case of the simulation example 2), the two heat conducting members. It is estimated that the cooling performance of the cooling device 501 is improved as compared with the case where the insulating layer 503 is disposed on the upper side or the lower side of the member (that is, in the case of the simulation example 3).
  • the thickness of the upper wiring layer 502 is set to 0.6 mm
  • the thickness of the lower wiring layer 504 is set to 0.6 mm
  • the material of the lower wiring layer 504 is set to pure aluminum
  • the thickness of the buffer layer 505 is set to 1.2 mm.
  • the maximum temperature of the heat generating element 508 when pure aluminum and an anisotropic material are used as the material of the layer 502 and the buffer layer 505 was examined by simulation. The results are shown in Table 5.
  • the maximum temperature of the heat generating element 508 is the lowest because the material of the upper wiring layer 502 is an anisotropic material, and the high heat conduction direction of the upper wiring layer 502 is the short direction Y and the thickness direction Z. And the material of the buffer layer 505 is an anisotropic material, and the high heat conduction direction of the buffer layer 505 is the thickness direction Z and the longitudinal direction X. In this case, the maximum temperature of the heat generating element 508 was 76.30 ° C.
  • this maximum temperature of 76.30 ° C. is lower than the maximum temperature of 76.87 ° C. of the lowest exothermic element 508 in the case of the simulation example 2 described above. Therefore, when the anisotropic material is used as the material of the thick heat conduction member (that is, in the case of the simulation example 4), the cooling device 501 is more than when the anisotropic material is used as the material of the thin heat conduction member (ie, in the case of the simulation example 2). It is estimated that the cooling performance is improved.
  • the present invention can be used for a cooling device for cooling a heat-generating element such as an electronic element (eg, a semiconductor element).
  • a heat-generating element such as an electronic element (eg, a semiconductor element).
  • Cooling device 2 1, 101, 201, 301: Cooling device 2, 102, 202, 302: Upper wiring layer 3, 103, 203, 303: Insulating layer 4, 104, 204, 304: Lower wiring layer 5, 105, 205, 305: Buffer layer 6, 106, 206, 306: Cooling member 307: Upper buffer layer 8, 108, 208, 308: Exothermic element 11, 111, 211, 311: Upper heat conductive member 12, 112, 212, 312: Lower heat Conductive member

Abstract

This cooling device (1) is equipped with a plurality of cooling device components that are integrally joined in a laminated state, wherein the plurality of components comprise an electric insulation layer (3), an upper heat conduction member (11) disposed on the upper side of the electric insulation layer (3), and a lower heat conduction member (12) disposed on the lower side of the electric insulation layer (3). In the upper heat conduction member (11), the thermal conductivity in the thickness direction Z and the thermal conductivity in a first direction parallel to the flat surface are higher than the thermal conductivity in a second direction perpendicular to the thickness direction and the first direction. In the lower heat conduction member (12), the thermal conductivity in the thickness direction Z and the thermal conductivity in a first direction parallel to the flat surface are higher than the thermal conductivity in a second direction perpendicular to the thickness direction Z and the first direction. The upper heat conduction member (11) and the lower heat conduction member (12) are arranged in such a manner that the first direction of the upper heat conduction member (11) intersects with the first direction of the lower heat conduction member (12) in a plan view.

Description

冷却装置Cooling system
 本発明は、電子素子(例:半導体素子)等の発熱性素子を冷却する冷却装置に関する。 The present invention relates to a cooling device for cooling a heat-generating element such as an electronic element (eg, a semiconductor element).
 ここで、本発明に係る冷却装置の上下方向は限定されるものではないが、本明細書及び特許請求の範囲では、冷却装置の構成を理解し易くするため、冷却装置における発熱性素子が搭載される側を冷却装置の上側、及び、その反対側を冷却装置の下側と定義する。 Here, although the vertical direction of the cooling device according to the present invention is not limited, in the present specification and claims, in order to facilitate understanding of the configuration of the cooling device, a heat generating element in the cooling device is mounted. The side to be applied is defined as the upper side of the cooling device and the opposite side is defined as the lower side of the cooling device.
 さらに、本発明に係る冷却装置では、冷却装置の各構成部材の厚さ方向に垂直な面を各構成部材の平面といい、各構成部材の平面に平行な方向を各構成部材の平面方向という。 Furthermore, in the cooling device according to the present invention, a surface perpendicular to the thickness direction of each component of the cooling device is referred to as a plane of each component, and a direction parallel to the plane of each component is referred to as a plane direction of each component. .
 また、本明細書では、特に文中に明示する場合を除いて、「アルミニウム」の語は純アルミニウム及びアルミニウム合金の双方を含む意味で用いられ、「銅」の語は純銅及び銅合金の双方を含む意味で用いられる。 In this specification, unless otherwise specified in the text, the term “aluminum” is used to include both pure aluminum and aluminum alloys, and the term “copper” refers to both pure copper and copper alloys. Used to mean including.
 金属-炭素粒子複合材として、例えば特許第5150905号公報(特許文献1)や(特許第5145591号公報(特許文献2)に記載されているように、金属層と炭素繊維層が交互に複数積層された状態で接合一体化された金属-炭素繊維複合材が知られている。また、国際公開第2009/051094号(特許文献3)は、炭素粒子として鱗片状黒鉛粒子を用いた金属-鱗片状黒鉛粒子複合材を開示している。 As a metal-carbon particle composite material, for example, as described in Japanese Patent No. 5150905 (Patent Document 1) and (Patent No. 5145591 (Patent Document 2), a plurality of metal layers and carbon fiber layers are alternately stacked. A metal-carbon fiber composite material is known which is bonded and integrated in a state of being formed, and International Publication No. 2009/051094 (Patent Document 3) describes a metal-scale piece using scaly graphite particles as carbon particles. A graphite particle composite is disclosed.
 金属-炭素粒子複合材について開示したその他の特許文献として、特開2015-25158号公報(特許文献4)、特開2015-217655号公報(特許文献5)、特開2017-88913号公報(特許文献6)等がある。 As other patent documents disclosing metal-carbon particle composite materials, JP-A-2015-25158 (Patent Document 4), JP-A-2015-217655 (Patent Document 5), JP-A-2017-88913 (Patent Document) Reference 6).
 上述した金属-炭素粒子複合材は熱伝導性に異方性を有するものであり、高い熱伝導性が要求される部材の材料としての利用が期待されている。 The metal-carbon particle composite material described above has anisotropy in thermal conductivity, and is expected to be used as a material for members that require high thermal conductivity.
 ところで、発熱性素子として例えば半導体素子を冷却する冷却装置には、高い冷却性能を得るために高い熱伝導性が要求される。そこで、冷却装置を構成する部材の材料として金属-炭素粒子複合材を用いることが、特開2016-132113号公報(特許文献7)、特開2016-152241号公報(特許文献8)、特開2016-207799号公報(特許文献9)等に提案されている。 Incidentally, for example, a cooling device that cools a semiconductor element as a heat generating element is required to have high thermal conductivity in order to obtain high cooling performance. Therefore, it is possible to use a metal-carbon particle composite material as a material of a member constituting the cooling device, as disclosed in JP-A-2016-132113 (Patent Document 7), JP-A-2016-152241 (Patent Document 8), No. 2016-207799 (Patent Document 9) and the like.
 また、特開2012-222160号公報(特許文献10)は、発熱体モジュールの熱拡散板の材料として、互いに直交する三方向のうち二方向に高熱伝導性を有し、残りの一方向に低熱伝導性を有する配向性の高い炭素系材料を用いることを開示している。 Japanese Patent Laying-Open No. 2012-222160 (Patent Document 10) discloses a material for a heat diffusion plate of a heating element module that has high thermal conductivity in two of three directions orthogonal to each other and low heat in the other direction. It discloses that a carbon-based material having conductivity and high orientation is used.
 このような冷却装置は、互いに積層状に接合一体化された複数の冷却装置構成部材を備えており、複数の構成部材として、セラミック材等からなる絶縁層と、絶縁層の上側に配置される上熱伝導部材(例:上配線層)と、絶縁層の下側に配置される下熱伝導部材(例:下配線層、緩衝層、冷却部材)とを含んでいる。すなわち、絶縁層は上熱伝導部材と下熱伝導部材との間に配置されている。発熱性素子は上熱伝導部材の上側に搭載される。 Such a cooling device includes a plurality of cooling device constituent members joined and integrated in a stacked manner, and is arranged as an insulating layer made of a ceramic material or the like as the plurality of constituent members. An upper heat conductive member (for example, an upper wiring layer) and a lower heat conductive member (for example, a lower wiring layer, a buffer layer, and a cooling member) disposed below the insulating layer are included. That is, the insulating layer is disposed between the upper heat conductive member and the lower heat conductive member. The exothermic element is mounted on the upper heat conductive member.
特許第5150905号公報Japanese Patent No. 5150905 特許第5145591号公報Japanese Patent No. 5145591 国際公開第2009/051094号International Publication No. 2009/051094 特開2015-25158号公報Japanese Patent Laying-Open No. 2015-25158 特開2015-217655号公報JP2015-217655A 特開2017-88913号公報JP 2017-88913 特開2016-132113号公報JP 2016-132113 A 特開2016-152241号公報Japanese Unexamined Patent Publication No. 2016-152241 特開2016-207799号公報Japanese Unexamined Patent Publication No. 2016-207799 特開2012-222160号公報JP 2012-222160 A
 このような積層構造を有する冷却装置に対して、近年、発熱性素子の高性能化及び発熱量の増加に伴い益々高い冷却性能が要求されてきている。 In recent years, cooling devices having such a laminated structure have been required to have higher cooling performance as the heat generating elements have higher performance and heat generation.
 そこで本発明は、高い冷却性能を有する冷却装置を提供することを目的とする。本発明のその他の目的及び利点は、以下の好ましい実施形態から明らかにされるであろう。 Therefore, an object of the present invention is to provide a cooling device having high cooling performance. Other objects and advantages of the present invention will become apparent from the following preferred embodiments.
 本発明は以下の手段を提供する。 The present invention provides the following means.
 [1] 発熱性素子を冷却する冷却装置であって、
 互いに積層状に接合一体化された複数の冷却装置構成部材を備え、
 前記複数の構成部材として、絶縁層と、前記絶縁層の上側に配置される上熱伝導部材と、前記絶縁層の下側に配置される下熱伝導部材とを含み、
 前記上熱伝導部材は、厚さ方向の熱伝導率と平面に沿う第1方向の熱伝導率とが前記厚さ方向及び前記第1方向に垂直な第2方向の熱伝導率よりも高いものであり、
 前記下熱伝導部材は、厚さ方向の熱伝導率と平面に沿う第1方向の熱伝導率とが前記厚さ方向及び前記第1方向に垂直な第2方向の熱伝導率よりも高いものであり、
 前記上熱伝導部材と前記下熱伝導部材は、前記上熱伝導部材の前記第1方向と前記下熱伝導部材の前記第1方向とが平面視において交差するように配置されている、冷却装置。
[1] A cooling device for cooling an exothermic element,
A plurality of cooling device components that are joined and integrated in a stacked manner,
As the plurality of constituent members, including an insulating layer, an upper heat conductive member disposed on the upper side of the insulating layer, and a lower heat conductive member disposed on the lower side of the insulating layer,
The upper heat conductive member has a heat conductivity in the thickness direction and a heat conductivity in the first direction along the plane higher than the heat conductivity in the second direction perpendicular to the thickness direction and the first direction. And
The lower heat conductive member has a heat conductivity in the thickness direction and a heat conductivity in the first direction along the plane higher than the heat conductivity in the second direction perpendicular to the thickness direction and the first direction. And
The cooling device, wherein the upper heat conducting member and the lower heat conducting member are arranged such that the first direction of the upper heat conducting member and the first direction of the lower heat conducting member intersect in plan view .
 [2] 前記上熱伝導部材の厚さと前記下熱伝導部材の厚さが相異しており、
 前記上熱伝導部材と前記下熱伝導部材のうち少なくとも厚い方の熱伝導部材は長手方向及び短手方向を有するとともに、前記厚い方の熱伝導部材の前記第1方向が前記厚い方の熱伝導部材の前記長手方向に向いている前項1記載の冷却装置。
[2] The thickness of the upper heat conducting member is different from the thickness of the lower heat conducting member,
At least the thicker heat conducting member of the upper heat conducting member and the lower heat conducting member has a longitudinal direction and a short side direction, and the first direction of the thicker heat conducting member is the thicker heat conducting member. 2. The cooling device according to item 1, wherein the cooling device is oriented in the longitudinal direction of the member.
 [3] 前記厚い方の熱伝導部材は前記下熱伝導部材である前項2記載の冷却装置。 [3] The cooling device according to item 2, wherein the thicker heat conduction member is the lower heat conduction member.
 [4] 前記下熱伝導部材は長手方向及び短手方向を有するとともに、前記下熱伝導部材の前記第1方向が前記下熱伝導部材の前記長手方向に向いている前項1記載の冷却装置。 [4] The cooling device according to item 1, wherein the lower heat conductive member has a longitudinal direction and a short side direction, and the first direction of the lower heat conductive member faces the longitudinal direction of the lower heat conductive member.
 [5] 前記上熱伝導部材及び前記下熱伝導部材のうち少なくとも一つは、金属マトリックスと金属マトリックス中に分散した異方性粒子とを含む金属-異方性粒子複合材で形成されており、
 前記異方性粒子は鱗片状黒鉛粒子及び炭素繊維の両方を含んでいる前項1~4のいずれかに記載の冷却装置。
[5] At least one of the upper heat conductive member and the lower heat conductive member is formed of a metal-anisotropic particle composite material including a metal matrix and anisotropic particles dispersed in the metal matrix. ,
5. The cooling device according to any one of items 1 to 4, wherein the anisotropic particles include both scaly graphite particles and carbon fibers.
 [6] 前記複数の構成部材として、前記上熱伝導部材の上側に配置される上緩衝層を更に含み、
 前記上熱伝導部材の平面方向の線膨張係数のうち最小の線膨張係数よりも、前記上緩衝層における、前記上熱伝導部材の前記最小線膨張係数の方向と同じ方向の線膨張係数の方が小さい前項1~5のいずれかに記載の冷却装置。
[6] The plurality of constituent members further includes an upper buffer layer disposed on an upper side of the upper heat conducting member,
The linear expansion coefficient in the same direction as the direction of the minimum linear expansion coefficient of the upper thermal conductive member in the upper buffer layer is smaller than the minimum linear expansion coefficient of the linear thermal expansion coefficient in the planar direction of the upper thermal conductive member. 6. The cooling device according to any one of items 1 to 5, wherein the is small.
 本発明は以下の効果を奏する。 The present invention has the following effects.
 前項1では、上熱伝導部材と下熱伝導部材が、上熱伝導部材の第1方向と下熱伝導部材の第1方向とが平面視において交差するように配置されることにより、発熱性素子の位置から冷却部材に向かう方向における冷却装置の熱伝導率が高くなる。これにより、高い冷却性能を有する冷却装置を提供できる。また、熱伝導部材に対して必ずしも複雑な加工を施すことを要せず、したがって冷却装置を安価に製造可能である。 In the preceding paragraph 1, the upper heat conducting member and the lower heat conducting member are arranged so that the first direction of the upper heat conducting member and the first direction of the lower heat conducting member intersect in plan view, thereby generating a heat generating element. The thermal conductivity of the cooling device in the direction from the position toward the cooling member increases. Thereby, a cooling device having high cooling performance can be provided. Further, it is not always necessary to perform complicated processing on the heat conducting member, and therefore the cooling device can be manufactured at low cost.
 前項2~4では、いずれも冷却装置の冷却性能の向上を図りうる。 In any of the preceding items 2 to 4, the cooling performance of the cooling device can be improved.
 前項5及び6では、いずれも冷却装置の冷却性能の向上を図りうるし、更に、冷却装置に発生する熱応力等の応力を緩和することができ、そのため冷却装置の信頼性の向上も図りうる。 In the preceding paragraphs 5 and 6, both the cooling performance of the cooling device can be improved, and further, the stress such as the thermal stress generated in the cooling device can be relaxed, so that the reliability of the cooling device can be improved.
図1は、本発明の第1実施形態に係る冷却装置の概略斜視図である。FIG. 1 is a schematic perspective view of a cooling device according to a first embodiment of the present invention. 図2は、同冷却装置の概略正面図である。FIG. 2 is a schematic front view of the cooling device. 図3は、異方性材の方位を説明する概略斜視図である。FIG. 3 is a schematic perspective view for explaining the orientation of the anisotropic material. 図4は、本発明の第2実施形態に係る冷却装置の概略斜視図である。FIG. 4 is a schematic perspective view of a cooling device according to the second embodiment of the present invention. 図5は、本発明の第3実施形態に係る冷却装置の概略斜視図である。FIG. 5 is a schematic perspective view of a cooling device according to a third embodiment of the present invention. 図6は、本発明の第4実施形態に係る冷却装置の概略斜視図である。FIG. 6 is a schematic perspective view of a cooling device according to a fourth embodiment of the present invention. 図7は、冷却装置の冷却性能をシミュレーションにより評価するために用いた冷却装置の概略正面図である。FIG. 7 is a schematic front view of the cooling device used for evaluating the cooling performance of the cooling device by simulation. 図8は、同冷却装置の概略平面図である。FIG. 8 is a schematic plan view of the cooling device.
 次に、本発明の幾つかの実施形態について図面を参照して以下に説明する。 Next, some embodiments of the present invention will be described below with reference to the drawings.
 図1及び2に示すように、本発明の第1実施形態に係る冷却装置1は、発熱性素子8用のものであり、すなわち発熱性素子8を冷却するためのものである。発熱性素子8としては例えばパワー半導体素子(例:IGBT素子)等の半導体素子が挙げられる。 As shown in FIGS. 1 and 2, the cooling device 1 according to the first embodiment of the present invention is for the exothermic element 8, that is, for cooling the exothermic element 8. Examples of the exothermic element 8 include semiconductor elements such as power semiconductor elements (eg, IGBT elements).
 冷却装置1は、互いに積層状に接合一体化された複数の冷却装置構成部材を備えたものであり、具体的には、複数の構成部材として、絶縁層3と、絶縁層3の上側に配置された少なくとも一つの上熱伝導部材11と、絶縁層3の下側に配置された少なくとも一つの下熱伝導部材12とを備えている。 The cooling device 1 includes a plurality of cooling device constituent members that are joined and integrated in a stacked manner. Specifically, as the plurality of constituent members, the insulating layer 3 and an upper side of the insulating layer 3 are arranged. And at least one lower heat conductive member 12 disposed on the lower side of the insulating layer 3.
 本第1実施形態では、上熱伝導部材11の数は一つであり、それは上配線層2である。下熱伝導部材12の数は複数であり、具体的には三つである。説明の便宜上、三つの下熱伝導部材12を上から下へ順に第1~第3下熱伝導部材とするとき、第1下熱伝導部材12は下配線層4、第2下熱伝導部材12は緩衝層5、及び、第3下熱伝導部材12は板状の冷却部材6である。そして、上配線層2、絶縁層3、下配線層4、緩衝層5及び冷却部材6が上から下へこの記載の順に積層された状態で所定の接合手段により接合一体化されており、これにより冷却装置1が形成されている。 In the first embodiment, the number of the upper heat conducting members 11 is one, which is the upper wiring layer 2. There are a plurality of lower heat conducting members 12, specifically three. For convenience of explanation, when the three lower heat conductive members 12 are first to third lower heat conductive members in order from top to bottom, the first lower heat conductive members 12 are the lower wiring layer 4 and the second lower heat conductive members 12. The buffer layer 5 and the third lower heat conducting member 12 are plate-like cooling members 6. The upper wiring layer 2, the insulating layer 3, the lower wiring layer 4, the buffer layer 5 and the cooling member 6 are joined and integrated by a predetermined joining means in a state where they are laminated in this order from top to bottom. Thus, the cooling device 1 is formed.
 接合手段は限定されるものではなく、ろう付け、クラッド圧延、焼結(例:放電プラズマ焼結)などが用いられる。 The joining means is not limited, and brazing, clad rolling, sintering (eg, discharge plasma sintering) or the like is used.
 上配線層2(上熱伝導部材11)は上回路層とも呼ばれているものであり、その上面からなる平坦状の搭載面1aを有している。発熱性素子8はこの搭載面1aの略中央部にはんだ層9で接合される。はんだ層9はすず合金(Sn合金)等からなる。もし発熱性素子8が半導体素子である場合、半導体素子が上配線層2の搭載面1aに接合されることにより半導体素子モジュール10が形成される。 The upper wiring layer 2 (upper heat conducting member 11) is also called an upper circuit layer, and has a flat mounting surface 1a composed of the upper surface thereof. The heat generating element 8 is joined to the substantially central portion of the mounting surface 1a with a solder layer 9. The solder layer 9 is made of a tin alloy (Sn alloy) or the like. If the exothermic element 8 is a semiconductor element, the semiconductor element is bonded to the mounting surface 1a of the upper wiring layer 2 to form the semiconductor element module 10.
 絶縁層3は電気絶縁性を有するものであり、窒化アルミニウム(AlN)、窒化ケイ素、アルミナ等のセラミック材で形成されている。上配線層2は絶縁層3の上面に接合されている。 The insulating layer 3 has electrical insulation and is made of a ceramic material such as aluminum nitride (AlN), silicon nitride, or alumina. The upper wiring layer 2 is bonded to the upper surface of the insulating layer 3.
 下配線層4(第1下熱伝導部材12)は下回路層とも呼ばれているものであり、絶縁層3の下面に接合されている。 The lower wiring layer 4 (first lower heat conducting member 12) is also called a lower circuit layer, and is joined to the lower surface of the insulating layer 3.
 緩衝層5(第2下熱伝導部材12)は冷却装置1に発生する熱応力等の応力を緩和するための層である。 The buffer layer 5 (second lower heat conducting member 12) is a layer for relieving stress such as thermal stress generated in the cooling device 1.
 冷却部材6(第3下熱伝導部材12)は、発熱性素子8を冷却するものであり、本第1実施形態では冷却部材6は冷却板である。 The cooling member 6 (third lower heat conducting member 12) cools the heat-generating element 8, and in the first embodiment, the cooling member 6 is a cooling plate.
 なお本発明では、冷却部材6は冷却板であることに限定されるものではなく、その他に例えば、発熱性素子8の熱を放散することで発熱性素子8を冷却する放熱部材(例:ヒートシンク、放熱板)であって良いし、熱拡散部材(例:熱拡散板)であっても良い。さらに本発明では、冷却部材6は、発熱性素子8から冷却部材6に伝導されてきた熱を冷却媒体に移動させることで発熱性素子8を冷却する液冷式又は空冷式のものであっても良い。冷却部材6が例えば液冷式のものである場合、一般に冷却部材6の内部には冷却媒体としての冷却液が流通する流路(図示せず)が設けられる。 In the present invention, the cooling member 6 is not limited to being a cooling plate. In addition, for example, a heat radiating member that cools the heat generating element 8 by radiating the heat of the heat generating element 8 (e.g., a heat sink). , A heat radiating plate) or a heat diffusing member (eg, heat diffusing plate). Further, in the present invention, the cooling member 6 is of a liquid cooling type or an air cooling type that cools the heat generating element 8 by transferring the heat conducted from the heat generating element 8 to the cooling member 6 to the cooling medium. Also good. When the cooling member 6 is, for example, a liquid cooling type, generally, a flow path (not shown) through which a cooling liquid as a cooling medium flows is provided inside the cooling member 6.
 冷却装置1では、発熱性素子8に発生した熱は発熱性素子8からはんだ層9、上配線層2、絶縁層3、下配線層4、緩衝層5及び冷却部材6に順次伝導し、その結果、発熱性素子8が冷却されてその温度が低下する。 In the cooling device 1, heat generated in the heat generating element 8 is sequentially conducted from the heat generating element 8 to the solder layer 9, the upper wiring layer 2, the insulating layer 3, the lower wiring layer 4, the buffer layer 5 and the cooling member 6. As a result, the exothermic element 8 is cooled and its temperature decreases.
 図1及び2中の矢印X、Y及びZは、それぞれ、冷却装置1の各構成部材(上配線層2、絶縁層3、下配線層4、緩衝層5及び冷却部材6)の長手方向X、短手方向Y及び厚さ方向Zを示している。長手方向X、短手方向Y及び厚さ方向Zは例えば互いに直交している。なお、各構成部材の長手方向X、短手方向Y及び厚さ方向は、冷却装置1の長手方向、短手方向及び厚さ方向と一致している。 The arrows X, Y, and Z in FIGS. 1 and 2 respectively indicate the longitudinal direction X of each component of the cooling device 1 (upper wiring layer 2, insulating layer 3, lower wiring layer 4, buffer layer 5 and cooling member 6). The lateral direction Y and the thickness direction Z are shown. The longitudinal direction X, the lateral direction Y, and the thickness direction Z are orthogonal to each other, for example. In addition, the longitudinal direction X, the lateral direction Y, and the thickness direction of each constituent member coincide with the longitudinal direction, the lateral direction, and the thickness direction of the cooling device 1.
 上配線層2は長手方向X及び短手方向Yを有するものであり、詳述すると上配線層2の平面視の形状は略長方形状である。さらに、上配線層2は熱伝導性に異方性を有する異方性材で形成されている。 The upper wiring layer 2 has a longitudinal direction X and a short direction Y. In detail, the shape of the upper wiring layer 2 in plan view is a substantially rectangular shape. Further, the upper wiring layer 2 is formed of an anisotropic material having anisotropy in thermal conductivity.
 絶縁層3は長手方向X及び短手方向Yを有するものであり、詳述すると絶縁層3の平面視の形状は略長方形状である。さらに、絶縁層3は上述したようにセラミック材で形成されており、熱伝導性に異方性を有していない。 The insulating layer 3 has a longitudinal direction X and a short direction Y. In detail, the shape of the insulating layer 3 in plan view is a substantially rectangular shape. Furthermore, the insulating layer 3 is made of a ceramic material as described above, and has no anisotropy in thermal conductivity.
 下配線層4は長手方向X及び短手方向Yを有するものであり、詳述すると下配線層4の平面視の形状は上配線層2の平面視の形状と略同じ、即ち略長方形状である。さらに、下配線層4は熱伝導性に異方性を有する異方性材で形成されている。 The lower wiring layer 4 has a longitudinal direction X and a short direction Y. Specifically, the shape of the lower wiring layer 4 in plan view is substantially the same as the shape of the upper wiring layer 2 in plan view, that is, substantially rectangular. is there. Further, the lower wiring layer 4 is formed of an anisotropic material having anisotropy in thermal conductivity.
 緩衝層5は長手方向X及び短手方向Yを有するものであり、詳述すると緩衝層5の平面視の形状は上配線層2の平面視の形状と略同じ、即ち略長方形状である。さらに、本第1実施形態では、緩衝層5はアルミニウム、銅等の金属材で形成されており、熱伝導性に異方性を有していない。 The buffer layer 5 has a longitudinal direction X and a short direction Y. In detail, the shape of the buffer layer 5 in plan view is substantially the same as the shape of the upper wiring layer 2 in plan view, that is, substantially rectangular. Furthermore, in the first embodiment, the buffer layer 5 is made of a metal material such as aluminum or copper, and has no anisotropy in thermal conductivity.
 冷却部材6は長手方向X及び短手方向Yを有するものであり、詳述すると冷却部材6の平面視の形状は上配線層2の平面視の形状と略同じ、即ち略長方形状である。さらに、本第1実施形態では、冷却部材6はアルミニウム、銅等の金属材で形成されており、熱伝導性に異方性を有していない。 The cooling member 6 has a longitudinal direction X and a short direction Y. In detail, the shape of the cooling member 6 in plan view is substantially the same as the shape of the upper wiring layer 2 in plan view, that is, substantially rectangular. Furthermore, in the first embodiment, the cooling member 6 is formed of a metal material such as aluminum or copper, and has no anisotropy in thermal conductivity.
 上配線層2の長さ(即ち上配線層2の長手方向Xの長さ)及び幅(即ち上配線層2の短手方向Yの長さ)はそれぞれ絶縁層3の長さ及び幅よりも小さい。下配線層4の長さ及び幅はそれぞれ上配線層2の長さ及び幅と略等しい。緩衝層5の長さ及び幅はそれぞれ上配線層2の長さ及び幅と略等しい。冷却部材6の長さ及び幅はそれぞれ上配線層2の長さ及び幅よりも大きい。 The length (that is, the length in the longitudinal direction X of the upper wiring layer 2) and the width (that is, the length in the short direction Y of the upper wiring layer 2) of the upper wiring layer 2 are larger than the length and width of the insulating layer 3, respectively. small. The length and width of the lower wiring layer 4 are substantially equal to the length and width of the upper wiring layer 2, respectively. The length and width of the buffer layer 5 are substantially equal to the length and width of the upper wiring layer 2, respectively. The length and width of the cooling member 6 are larger than the length and width of the upper wiring layer 2, respectively.
 そして、冷却装置1では、上配線層2、絶縁層3、下配線層4、緩衝層5及び冷却部材6は、平面視において、それぞれの長手方向X及び短手方向Yが互いに一致し且つそれぞれの中心位置も互いに一致するように積層されている。 In the cooling device 1, the upper wiring layer 2, the insulating layer 3, the lower wiring layer 4, the buffer layer 5, and the cooling member 6 have a longitudinal direction X and a lateral direction Y that coincide with each other in a plan view. Are stacked so that their center positions coincide with each other.
 上配線層2の厚さは限定されるものではなく、好ましくは0.1~2mmの範囲であることが良い。絶縁層3の厚さは限定されるものではなく、例えば0.1~2mmの範囲である。下配線層4の厚さは限定されるものではなく、好ましくは0.1~2mmの範囲であることが良い。緩衝層5の厚さは限定されるものではなく、好ましくは0.1~3mmの範囲であることが良い。冷却部材6の厚さは限定されるものではなく、好ましくは0.2~3mmの範囲であることが良い。 The thickness of the upper wiring layer 2 is not limited and is preferably in the range of 0.1 to 2 mm. The thickness of the insulating layer 3 is not limited and is, for example, in the range of 0.1 to 2 mm. The thickness of the lower wiring layer 4 is not limited and is preferably in the range of 0.1 to 2 mm. The thickness of the buffer layer 5 is not limited and is preferably in the range of 0.1 to 3 mm. The thickness of the cooling member 6 is not limited and is preferably in the range of 0.2 to 3 mm.
 発熱性素子8は平面視略長方形状のものであり、例えば、平面視において、発熱性素子8の長手方向X及び短手方向Yが上配線層2の長手方向X及び短手方向Yと一致し且つ発熱性素子8の中心位置が上配線層2の搭載面1aの中心位置と一致するようにはんだ層9で接合されている。 The exothermic element 8 has a substantially rectangular shape in plan view. For example, in the plan view, the longitudinal direction X and the short direction Y of the exothermic element 8 are the same as the longitudinal direction X and the short direction Y of the upper wiring layer 2. In addition, the heat generating element 8 is joined by the solder layer 9 so that the center position of the heat generating element 8 coincides with the center position of the mounting surface 1a of the upper wiring layer 2.
 次に、上配線層2及び下配線層4を形成する上述の異方性材について図3を参照して以下に説明する。 Next, the anisotropic material for forming the upper wiring layer 2 and the lower wiring layer 4 will be described below with reference to FIG.
 同図中の矢印a、b及びcは、異方性材20における互いに交差する三つの軸方向を示している。本第1実施形態では、a軸方向、b軸方向及びc軸方向は互いに直交している。 Arrows a, b, and c in the figure indicate three axial directions in the anisotropic material 20 that intersect each other. In the first embodiment, the a-axis direction, the b-axis direction, and the c-axis direction are orthogonal to each other.
 同図に示すように、異方性材20はa軸方向、b軸方向及びc軸方向のうちの二方向であるa軸方向及びb軸方向の熱伝導率が他の一方向であるc軸方向の熱伝導率よりも高いという異方性を有している。 As shown in the figure, the anisotropic material 20 has two directions of the a-axis direction, the b-axis direction, and the c-axis direction, and the c-axis direction in which the thermal conductivity in the a-axis direction and the b-axis direction is the other direction. It has an anisotropy of higher than the thermal conductivity.
 すなわち、異方性材20のa軸方向、b軸方向及びc軸方向の熱伝導率をそれぞれka、kb及びkcとするとき、異方性材20の熱伝導率は「ka>kc」及び「kb>kc」という関係を満たしている。また、kaとkbは等しい(即ち「ka=kb」)。ただし本発明では、kaとkbは等しいことに限定されず相異していても良い。 That is, when the thermal conductivity in the a-axis direction, the b-axis direction, and the c-axis direction of the anisotropic material 20 is ka, kb, and kc, respectively, the thermal conductivity of the anisotropic material 20 is “ka> kc” and “kb> kc”. Is satisfied. Further, ka and kb are equal (that is, “ka = kb”). However, in the present invention, ka and kb are not limited to being equal and may be different.
 したがって、異方性材20において、a軸方向とb軸方向とが作る面が異方性材20の高熱伝導面(ドットハッチングで示す)ABであり、高熱伝導面ABに平行な方向(a軸方向及びb軸方向を含む)が異方性材20の高熱伝導方向であり、高熱伝導面ABに垂直な方向であるc軸方向が異方性材20の低熱伝導方向である。 Accordingly, in the anisotropic material 20, the surface formed by the a-axis direction and the b-axis direction is the high heat conduction surface (indicated by dot hatching) AB of the anisotropic material 20, and the direction parallel to the high heat conduction surface AB (a axis direction and b). (Including the axial direction) is the high heat conduction direction of the anisotropic material 20, and the c-axis direction, which is the direction perpendicular to the high heat conduction surface AB, is the low heat conduction direction of the anisotropic material 20.
 なお、同図中の符号「BC」は異方性材20におけるb軸方向とc軸方向とが作る面、符号「CA」は異方性材20におけるc軸方向とa軸方向とが作る面である。 In the figure, the symbol “BC” is a surface formed by the b-axis direction and the c-axis direction in the anisotropic material 20, and the symbol “CA” is a surface formed by the c-axis direction and the a-axis direction in the anisotropic material 20.
 異方性材20の高熱伝導面ABに平行な方向の熱伝導率(ka、kb)は限定されるものではなく、好ましくは400W/(m・K)以上であることが良い。また、異方性材20のc軸方向の熱伝導率kcは限定されるものではなく、好ましくは30W/(m・K)以上であることが良い。 The thermal conductivity (ka, kb) in the direction parallel to the high thermal conductivity surface AB of the anisotropic material 20 is not limited, and is preferably 400 W / (m · K) or more. Further, the thermal conductivity kc in the c-axis direction of the anisotropic material 20 is not limited and is preferably 30 W / (m · K) or more.
 異方性材20は、熱伝導性に上述したような異方性を有するものであれば限定されるものではなく、好ましくは、金属マトリックス(図示せず)と金属マトリックス中に分散した多数の異方性粒子(図示せず)とを含む金属-異方性粒子複合材からなるものであることが良い。この場合、熱伝導部材11、12の熱伝導率を確実に高めることができる。 The anisotropic material 20 is not limited as long as it has the above-described anisotropy in thermal conductivity, and preferably a metal matrix (not shown) and a number of anisotropic materials dispersed in the metal matrix. It is preferable that it is made of a metal-anisotropic particle composite material containing conductive particles (not shown). In this case, the thermal conductivity of the heat conducting members 11 and 12 can be reliably increased.
 異方性粒子は、熱伝導性に異方性を有するものであり、詳述すると例えば、粒子の厚さ方向の熱伝導率よりも当該粒子の平面方向の熱伝導率の方が高いという異方性を有するものである。なお、粒子の平面とは粒子の厚さ方向に垂直な面をいい、粒子の平面方向とは粒子の平面に平行な方向をいう。 Anisotropic particles have anisotropy in thermal conductivity. In detail, for example, the thermal conductivity in the planar direction of the particle is higher than the thermal conductivity in the thickness direction of the particle. It has directionality. The plane of the particle means a plane perpendicular to the thickness direction of the particle, and the plane direction of the particle means a direction parallel to the plane of the particle.
 異方性粒子としては炭素粒子、六方晶窒化ホウ素粒子(h-BN粒子)等が用いられる。炭素粒子としては鱗片状黒鉛粒子、炭素繊維等が用いられる。金属マトリックスの金属としてはアルミニウム、銅等が用いられる。金属-異方性粒子複合材では、一般に多数の異方性粒子は異方性材20の高熱伝導面方向に配向した状態で金属マトリックス中に分散している。異方性粒子が炭素粒子である場合、金属-異方性粒子複合材は金属-炭素粒子複合材とも呼ばれる。 As anisotropic particles, carbon particles, hexagonal boron nitride particles (h-BN particles) and the like are used. As the carbon particles, scaly graphite particles, carbon fibers and the like are used. As the metal of the metal matrix, aluminum, copper or the like is used. In the metal-anisotropic particle composite material, generally, a large number of anisotropic particles are dispersed in the metal matrix in a state of being oriented in the direction of the high heat conduction surface of the anisotropic material 20. When the anisotropic particles are carbon particles, the metal-anisotropic particle composite material is also called a metal-carbon particle composite material.
 炭素繊維としては繊維状の炭素粒子(例:短炭素繊維)を用いることができる。具体的には、炭素繊維として、ピッチ系炭素繊維、PAN系炭素繊維、気相成長炭素繊維及びカーボンナノチューブからなる群より選択される一種又は二種以上が用いられる。二種以上が用いられる場合、当該二種以上が混合されて用いられることが好ましい。 As the carbon fiber, fibrous carbon particles (eg, short carbon fiber) can be used. Specifically, one or two or more selected from the group consisting of pitch-based carbon fiber, PAN-based carbon fiber, vapor-grown carbon fiber, and carbon nanotube are used as the carbon fiber. When 2 or more types are used, it is preferable that the 2 or more types are mixed and used.
 異方性粒子の大きさは限定されるものではなく、例えば、異方性粒子の最長軸方向の平均長さは0.1μm~2mmである。 The size of the anisotropic particles is not limited. For example, the average length of the anisotropic particles in the longest axial direction is 0.1 μm to 2 mm.
 金属-異方性粒子複合材の製造方法は限定されるものではなく、例えば、溶湯撹拌法、粉末焼結法、粉末押出法、塗工+焼結法などが挙げられる。 The method for producing the metal-anisotropic particle composite material is not limited, and examples thereof include a molten metal stirring method, a powder sintering method, a powder extrusion method, and a coating + sintering method.
 溶湯撹拌法とは、溶融した金属(例:アルミニウム溶湯)に異方性粒子としての異方性粉末(例:鱗片状黒鉛粉末)を入れて撹拌混合し冷却凝固させる方法である。粉末焼結法とは、金属粉末(例:アルミニウム粉末)と異方性粒子としての異方性粉末(例:鱗片状黒鉛粉末)との混合物を加圧焼結する方法である。粉末押出法とは、金属粉末(例:アルミニウム粉末)と異方性粒子としての異方性粉末(例:鱗片状黒鉛粉末)との混合物を押出加工する方法である。塗工+焼結法とは、金属箔(例:アルミニウム箔)上に異方性粒子としての異方性粉末(例:鱗片状黒鉛粉末)を塗工して得られた塗工箔を複数積層して焼結一体化する方法である。 The molten metal stirring method is a method in which an anisotropic powder (eg, scaly graphite powder) as anisotropic particles is placed in a molten metal (eg, aluminum molten metal), mixed with stirring, and cooled and solidified. The powder sintering method is a method of pressure-sintering a mixture of metal powder (eg, aluminum powder) and anisotropic powder (eg, scaly graphite powder) as anisotropic particles. The powder extrusion method is a method of extruding a mixture of metal powder (eg, aluminum powder) and anisotropic powder (eg, scaly graphite powder) as anisotropic particles. The coating + sintering method refers to a plurality of coating foils obtained by coating anisotropic powder (eg, scaly graphite powder) as anisotropic particles on metal foil (eg, aluminum foil). It is a method of laminating and integrating by sintering.
 図1に示すように、本第1実施形態では、上配線層2は、異方性材20の高熱伝導面(二点鎖線で示す)ABが上配線層2の短手方向Y及び厚さ方向Zと略平行になるように異方性材20で形成されている。したがって、上配線層2の厚さ方向Zの熱伝導率と短手方向Yの熱伝導率は上配線層2の長手方向Xの熱伝導率よりも高い。 As shown in FIG. 1, in the first embodiment, the upper wiring layer 2 has a high thermal conductive surface AB (indicated by a two-dot chain line) AB of the anisotropic material 20 in the short direction Y and the thickness direction Z of the upper wiring layer 2. Is formed of an anisotropic material 20 so as to be substantially parallel to the line. Accordingly, the thermal conductivity in the thickness direction Z and the thermal conductivity in the short direction Y of the upper wiring layer 2 are higher than the thermal conductivity in the longitudinal direction X of the upper wiring layer 2.
 ここで、上配線層2の短手方向Yは、特許請求の範囲に記載された、上熱伝導部材の平面に沿う第1方向に対応しており、また上配線層2の長手方向Xは、特許請求の範囲に記載された、上熱伝導部材の厚さ方向及び第1方向に垂直な第2方向に対応している。 Here, the short direction Y of the upper wiring layer 2 corresponds to the first direction along the plane of the upper heat conductive member described in the claims, and the longitudinal direction X of the upper wiring layer 2 is , Corresponding to the thickness direction of the upper heat conducting member and the second direction perpendicular to the first direction.
 したがって、上配線層2の第1方向は上配線層2の短手方向Yに向いており、詳述すると上配線層2の第1方向は上配線層2の短手方向Yと一致している。上配線層2の第2方向は上配線層2の長手方向Xに向いており、詳述すると上配線層2の第2方向は上配線層2の長手方向Xと一致している。 Accordingly, the first direction of the upper wiring layer 2 is directed to the short direction Y of the upper wiring layer 2. More specifically, the first direction of the upper wiring layer 2 coincides with the short direction Y of the upper wiring layer 2. Yes. The second direction of the upper wiring layer 2 faces the longitudinal direction X of the upper wiring layer 2. More specifically, the second direction of the upper wiring layer 2 coincides with the longitudinal direction X of the upper wiring layer 2.
 下配線層4は、異方性材20の高熱伝導面(二点鎖線で示す)ABが下配線層4の厚さ方向Z及び長手方向Xと略平行になるように異方性材20で形成されている。したがって、下配線層4の厚さ方向Zの熱伝導率と長手方向Xの熱伝導率は下配線層4の短手方向Yの熱伝導率よりも高い。 The lower wiring layer 4 is formed of the anisotropic material 20 so that the high thermal conductivity surface (indicated by a two-dot chain line) AB of the anisotropic material 20 is substantially parallel to the thickness direction Z and the longitudinal direction X of the lower wiring layer 4. . Therefore, the thermal conductivity in the thickness direction Z and the thermal conductivity in the longitudinal direction X of the lower wiring layer 4 are higher than the thermal conductivity in the short direction Y of the lower wiring layer 4.
 ここで、下配線層4の長手方向Xは、特許請求の範囲に記載された、下熱伝導部材の平面に沿う第1方向に対応しており、また下配線層4の短手方向Yは、特許請求の範囲に記載された、下熱伝導部材の厚さ方向及び第1方向に垂直な第2方向に対応している。 Here, the longitudinal direction X of the lower wiring layer 4 corresponds to the first direction along the plane of the lower heat conducting member described in the claims, and the short direction Y of the lower wiring layer 4 is , Corresponding to the thickness direction of the lower heat conducting member and the second direction perpendicular to the first direction.
 したがって、下配線層4の第1方向は下配線層4の長手方向Xに向いており、詳述すると下配線層4の第1方向は下配線層4の長手方向Xと一致している。下配線層4の第2方向は下配線層4の短手方向Yに向いており、詳述すると下配線層4の第2方向は下配線層4の短手方向Yと一致している。 Therefore, the first direction of the lower wiring layer 4 is directed to the longitudinal direction X of the lower wiring layer 4. More specifically, the first direction of the lower wiring layer 4 coincides with the longitudinal direction X of the lower wiring layer 4. The second direction of the lower wiring layer 4 faces the short direction Y of the lower wiring layer 4. More specifically, the second direction of the lower wiring layer 4 coincides with the short direction Y of the lower wiring layer 4.
 さらに、上述したように上配線層2の第1方向が上配線層2の短手方向Yに向くとともに下配線層4の第1方向が下配線層4の長手方向Xに向いていることから、上配線層2と下配線層4は、上配線層2の第1方向と下配線層4の第1方向とが冷却装置1の平面視において交差(詳述すると直交)するように絶縁層3の上下両側に配置されている。 Furthermore, as described above, the first direction of the upper wiring layer 2 faces the short direction Y of the upper wiring layer 2 and the first direction of the lower wiring layer 4 faces the longitudinal direction X of the lower wiring layer 4. The upper wiring layer 2 and the lower wiring layer 4 are insulating layers such that the first direction of the upper wiring layer 2 and the first direction of the lower wiring layer 4 intersect (in detail, orthogonal) in a plan view of the cooling device 1. 3 are arranged on both upper and lower sides.
 本第1実施形態の冷却装置1には次のような利点がある。 The cooling device 1 of the first embodiment has the following advantages.
 上配線層2の厚さ方向Zの熱伝導率と下配線層4の厚さ方向Zの熱伝導率がともに高いことにより、発熱性素子8の熱が冷却部材6に向かって迅速に伝導する。これにより、冷却装置1の冷却性能が高められている。 Since both the thermal conductivity in the thickness direction Z of the upper wiring layer 2 and the thermal conductivity in the thickness direction Z of the lower wiring layer 4 are both high, the heat of the heat generating element 8 is rapidly conducted toward the cooling member 6. . Thereby, the cooling performance of the cooling device 1 is enhanced.
 さらに、上配線層2と下配線層は4、上配線層2の第1方向(短手方向Y)と下配線層4の第1方向(長手方向X)とが平面視において交差(詳述すると直交)するように配置されていることにより、発熱性素子8の熱が発熱性素子8から冷却部材6に伝導する時に熱の拡散方向が変化する。そのため、熱は冷却装置1の平面方向に効果的に拡散される。これにより、冷却装置1の冷却性能が向上する。 Further, the upper wiring layer 2 and the lower wiring layer are 4, and the first direction (short direction Y) of the upper wiring layer 2 and the first direction (longitudinal direction X) of the lower wiring layer 4 intersect in plan view (details). Then, when the heat of the heat generating element 8 is conducted from the heat generating element 8 to the cooling member 6, the heat diffusion direction changes. Therefore, heat is effectively diffused in the plane direction of the cooling device 1. Thereby, the cooling performance of the cooling device 1 is improved.
 さらに、上配線層2及び下配線層4のうち一方の配線層の第1方向がその長手方向Xに向いていることにより、発熱性素子8の熱は当該一方の配線層の平面方向に広く拡散される。これにより、冷却装置1の冷却性能が向上する。 Furthermore, since the first direction of one of the upper wiring layer 2 and the lower wiring layer 4 is directed in the longitudinal direction X, the heat of the heat generating element 8 is widely spread in the plane direction of the one wiring layer. Diffused. Thereby, the cooling performance of the cooling device 1 is improved.
 さらに、上配線層2及び下配線層4のうち冷却装置1における発熱性素子8の熱の熱伝導方向において発熱性素子8の位置からより遠い位置に配置されている熱伝導部材は下配線層4であって、この下配線層4の第1方向がその長手方向Xに向いていることにより、上配線層2の第1方向がその長手方向Xに向いている場合に比べて冷却装置1の冷却性能が向上する。 Further, of the upper wiring layer 2 and the lower wiring layer 4, the heat conductive member disposed at a position farther from the position of the exothermic element 8 in the heat conduction direction of the exothermic element 8 in the cooling device 1 is the lower wiring layer. 4, the first direction of the lower wiring layer 4 is oriented in the longitudinal direction X, so that the cooling device 1 is compared with the case where the first direction of the upper wiring layer 2 is oriented in the longitudinal direction X. The cooling performance is improved.
 したがって、冷却装置1は高い冷却性能を有している。 Therefore, the cooling device 1 has high cooling performance.
 また、上配線層2及び下配線層4に対して必ずしも複雑な加工を施すことを要せず、したがって冷却装置1を安価に製造可能である。 Further, it is not always necessary to perform complicated processing on the upper wiring layer 2 and the lower wiring layer 4, and therefore the cooling device 1 can be manufactured at low cost.
 ここで、冷却装置1において、上配線層2及び下配線層4のうち少なくとも一方は、金属マトリックスと金属マトリックス中に分散した異方性粒子とを含む金属-異方性粒子複合材で形成されており、異方性粒子は鱗片状黒鉛粒子及び炭素繊維の両方を含んでいることが好ましい。その理由は以下のとおりである。 Here, in the cooling device 1, at least one of the upper wiring layer 2 and the lower wiring layer 4 is formed of a metal-anisotropic particle composite material including a metal matrix and anisotropic particles dispersed in the metal matrix. The anisotropic particles preferably contain both flaky graphite particles and carbon fibers. The reason is as follows.
 すなわち、金属-異方性粒子複合材の金属マトリックス中に鱗片状黒鉛粒子が分散している場合、当該複合材は高い熱伝導率を有する。さらに、複合材の金属マトリックス中に鱗片状黒鉛粒子だけではなく炭素繊維が分散している場合、当該複合材は高い熱伝導率を保持したままで当該複合材の線膨張係数を小さくできる。 That is, when the scaly graphite particles are dispersed in the metal matrix of the metal-anisotropic particle composite material, the composite material has a high thermal conductivity. Furthermore, when not only scaly graphite particles but also carbon fibers are dispersed in the metal matrix of the composite material, the composite material can reduce the linear expansion coefficient of the composite material while maintaining high thermal conductivity.
 したがって、複合材の金属マトリックス中に鱗片状黒鉛粒子と炭素繊維との両方が分散している場合、冷却装置1の冷却性能の向上を図りうるし、更に、冷却装置1に発生する熱応力等の応力を緩和することができ、そのため冷却装置1の信頼性(例:接合信頼性)の向上も図りうる。 Therefore, when both the scaly graphite particles and the carbon fibers are dispersed in the metal matrix of the composite material, the cooling performance of the cooling device 1 can be improved, and further, the thermal stress generated in the cooling device 1 can be improved. The stress can be relaxed, and therefore the reliability (eg, bonding reliability) of the cooling device 1 can be improved.
 図4は、本発明の第2実施形態に係る冷却装置101を説明するための図である。同図において、上記第1実施形態の冷却装置1の要素と同じ作用を奏する要素には、冷却装置1の要素に付された符号に100を加算した符号が付されている。以下、本第2実施形態について上記第1実施形態との相異点を中心に以下に説明する。 FIG. 4 is a view for explaining a cooling device 101 according to the second embodiment of the present invention. In the figure, elements having the same action as the elements of the cooling device 1 of the first embodiment are denoted by reference numerals obtained by adding 100 to the reference numerals assigned to the elements of the cooling apparatus 1. Hereinafter, the second embodiment will be described below with a focus on differences from the first embodiment.
 本第2実施形態の冷却装置101では、下配線層104はアルミニウム、銅等の金属材で形成されており、熱伝導性に異方性を有していない。 In the cooling device 101 of the second embodiment, the lower wiring layer 104 is made of a metal material such as aluminum or copper, and has no anisotropy in thermal conductivity.
 緩衝層105は熱伝導性に異方性を有する異方性材で形成されている。詳述すると、緩衝層105は、異方性材(図3参照、符号20)の高熱伝導面ABが緩衝層105の厚さ方向Z及び長手方向Xと略平行になるように異方性材20で形成されている。したがって、緩衝層105の厚さ方向Zの熱伝導率と長手方向Xの熱伝導率は緩衝層105の短手方向Yの熱伝導率よりも高い。 The buffer layer 105 is formed of an anisotropic material having anisotropy in thermal conductivity. More specifically, the buffer layer 105 is formed of the anisotropic material 20 so that the high heat conduction surface AB of the anisotropic material (see FIG. 3, reference numeral 20) is substantially parallel to the thickness direction Z and the longitudinal direction X of the buffer layer 105. ing. Therefore, the thermal conductivity in the thickness direction Z and the thermal conductivity in the longitudinal direction X of the buffer layer 105 are higher than the thermal conductivity in the short direction Y of the buffer layer 105.
 また、緩衝層105の厚さは上配線層102の厚さよりも厚い。 Further, the thickness of the buffer layer 105 is larger than the thickness of the upper wiring layer 102.
 ここで、緩衝層105の長手方向Xは、特許請求の範囲に記載された、下熱伝導部材の平面に沿う第1方向に対応しており、また緩衝層105の短手方向Yは、特許請求の範囲に記載された、下熱伝導部材の厚さ方向及び第1方向に垂直な第2方向に対応している。 Here, the longitudinal direction X of the buffer layer 105 corresponds to the first direction along the plane of the lower heat conducting member described in the claims, and the short direction Y of the buffer layer 105 is the patent. This corresponds to the thickness direction of the lower heat conducting member and the second direction perpendicular to the first direction described in the claims.
 したがって、緩衝層105の第1方向は緩衝層105の長手方向Xに向いており、詳述すると緩衝層105の第1方向は緩衝層105の長手方向Xと一致している。緩衝層105の第2方向は緩衝層105の短手方向Yに向いており、詳述すると緩衝層105の第2方向は緩衝層105の短手方向Yと一致している。 Therefore, the first direction of the buffer layer 105 faces the longitudinal direction X of the buffer layer 105, and in detail, the first direction of the buffer layer 105 coincides with the longitudinal direction X of the buffer layer 105. The second direction of the buffer layer 105 faces the short direction Y of the buffer layer 105, and in detail, the second direction of the buffer layer 105 coincides with the short direction Y of the buffer layer 105.
 さらに、上配線層102と緩衝層105は、上配線層102の第1方向(短手方向Y)と緩衝層105の第1方向(長手方向X)とが平面視において交差(詳述すると直交)するように絶縁層103の上下両側に配置されている。 Furthermore, the upper wiring layer 102 and the buffer layer 105 are crossed in the plan view (the orthogonal direction, in detail, the first direction (short direction Y) of the upper wiring layer 102 and the first direction (longitudinal direction X) of the buffer layer 105). The insulating layer 103 is disposed on both upper and lower sides.
 本第2実施形態の冷却装置101によれば、緩衝層105の厚さが上配線層102の厚さよりも厚いことにより、発熱性素子8の熱は緩衝層105の平面方向により広く拡散される。これにより、冷却装置101の冷却性能が向上する。 According to the cooling device 101 of the second embodiment, since the thickness of the buffer layer 105 is larger than the thickness of the upper wiring layer 102, the heat of the heat generating element 8 is diffused more widely in the planar direction of the buffer layer 105. . Thereby, the cooling performance of the cooling device 101 is improved.
 したがって、冷却装置101は高い冷却性能を有している。 Therefore, the cooling device 101 has high cooling performance.
 ここで、冷却装置101において、上配線層102及び緩衝層105のうち少なくとも一方は、金属マトリックスと金属マトリックス中に分散した異方性粒子とを含む金属-異方性粒子複合材で形成されており、異方性粒子は鱗片状黒鉛粒子及び炭素繊維の両方を含んでいることが好ましい。その理由は上述のとおりである。 Here, in the cooling device 101, at least one of the upper wiring layer 102 and the buffer layer 105 is formed of a metal-anisotropic particle composite material including a metal matrix and anisotropic particles dispersed in the metal matrix. The anisotropic particles preferably contain both flaky graphite particles and carbon fibers. The reason is as described above.
 図5は、本発明の第3実施形態に係る冷却装置201を説明するための図である。同図において、上記第1実施形態の冷却装置1の要素と同じ作用を奏する要素には、冷却装置1の要素に付された符号に200を加算した符号が付されている。以下、本第3実施形態について上記第1実施形態との相異点を中心に以下に説明する。 FIG. 5 is a view for explaining a cooling device 201 according to the third embodiment of the present invention. In the same figure, the element which has the same effect | action as the element of the cooling device 1 of the said 1st Embodiment is attached | subjected the code | symbol which added 200 to the code | symbol attached | subjected to the element of the cooling device 1. FIG. Hereinafter, the third embodiment will be described below with a focus on differences from the first embodiment.
 本第3実施形態の冷却装置201では、下配線層204はアルミニウム、銅等の金属材で形成されており、熱伝導性に異方性を有していない。 In the cooling device 201 of the third embodiment, the lower wiring layer 204 is formed of a metal material such as aluminum or copper and has no anisotropy in thermal conductivity.
 冷却部材206は熱伝導性に異方性を有する異方性材で形成されている。詳述すると、冷却部材206は、異方性材(図3参照、符号20)の高熱伝導面ABが冷却部材206の厚さ方向Z及び長手方向Xと略平行になるように異方性材20で形成されている。したがって、冷却部材206の厚さ方向Zの熱伝導率と長手方向Xの熱伝導率は冷却部材206の短手方向Yの熱伝導率よりも高い。 The cooling member 206 is formed of an anisotropic material having anisotropy in thermal conductivity. More specifically, the cooling member 206 is formed of the anisotropic material 20 so that the high heat conduction surface AB of the anisotropic material (see FIG. 3, reference numeral 20) is substantially parallel to the thickness direction Z and the longitudinal direction X of the cooling member 206. ing. Therefore, the thermal conductivity in the thickness direction Z and the thermal conductivity in the longitudinal direction X of the cooling member 206 are higher than the thermal conductivity in the short direction Y of the cooling member 206.
 また、冷却部材206の厚さは上配線層202の厚さよりも厚い。 Further, the thickness of the cooling member 206 is larger than the thickness of the upper wiring layer 202.
 ここで、冷却部材206の長手方向Xは、特許請求の範囲に記載された、下熱伝導部材の平面に沿う第1方向に対応しており、また冷却部材206の短手方向Yは、特許請求の範囲に記載された、下熱伝導部材の厚さ方向及び第1方向に垂直な第2方向に対応している。 Here, the longitudinal direction X of the cooling member 206 corresponds to the first direction along the plane of the lower heat conducting member described in the claims, and the short direction Y of the cooling member 206 is the patent. This corresponds to the thickness direction of the lower heat conducting member and the second direction perpendicular to the first direction described in the claims.
 したがって、冷却部材206の第1方向は冷却部材206の長手方向Xに向いており、詳述すると冷却部材206の第1方向は冷却部材206の長手方向Xと一致している。冷却部材206の第2方向は冷却部材206の短手方向Yに向いており、詳述すると冷却部材206の第2方向は冷却部材206の短手方向Yと一致している。 Therefore, the first direction of the cooling member 206 is directed to the longitudinal direction X of the cooling member 206. More specifically, the first direction of the cooling member 206 coincides with the longitudinal direction X of the cooling member 206. The second direction of the cooling member 206 faces the short direction Y of the cooling member 206. Specifically, the second direction of the cooling member 206 coincides with the short direction Y of the cooling member 206.
 さらに、上配線層202と冷却部材206は、上配線層202の第1方向(短手方向Y)と冷却部材206の第1方向(長手方向X)とが平面視において交差(詳述すると直交)するように絶縁層203の上下両側に配置されている。 Further, in the upper wiring layer 202 and the cooling member 206, the first direction (short direction Y) of the upper wiring layer 202 and the first direction (longitudinal direction X) of the cooling member 206 intersect each other in plan view. The insulating layer 203 is disposed on both upper and lower sides.
 本第3実施形態の冷却装置201によれば、冷却部材206の厚さが上配線層202の厚さよりも厚いことにより、発熱性素子8の熱は冷却部材206の平面方向により広く拡散される。これにより、冷却装置201の冷却性能が向上する。 According to the cooling device 201 of the third embodiment, since the thickness of the cooling member 206 is thicker than the thickness of the upper wiring layer 202, the heat of the heat generating element 8 is diffused more widely in the planar direction of the cooling member 206. . Thereby, the cooling performance of the cooling device 201 is improved.
 したがって、冷却装置201は高い冷却性能を有している。 Therefore, the cooling device 201 has high cooling performance.
 ここで、冷却装置201において、上配線層202及び冷却部材206のうち少なくとも一方は、金属マトリックスと金属マトリックス中に分散した異方性粒子とを含む金属-異方性粒子複合材で形成されており、異方性粒子は鱗片状黒鉛粒子及び炭素繊維の両方を含んでいることが好ましい。その理由は上述のとおりである。 Here, in the cooling device 201, at least one of the upper wiring layer 202 and the cooling member 206 is formed of a metal-anisotropic particle composite material including a metal matrix and anisotropic particles dispersed in the metal matrix. The anisotropic particles preferably contain both flaky graphite particles and carbon fibers. The reason is as described above.
 図6は、本発明の第4実施形態に係る冷却装置301を説明するための図である。同図において、上記第1実施形態の冷却装置1の要素と同じ作用を奏する要素には、冷却装置1の要素に付された符号に300を加算した符号が付されている。以下、本第4実施形態について上記第1実施形態との相異点を中心に以下に説明する。 FIG. 6 is a view for explaining a cooling device 301 according to the fourth embodiment of the present invention. In the same figure, the element which has the same effect | action as the element of the cooling device 1 of the said 1st Embodiment is attached | subjected the code | symbol which added 300 to the code | symbol attached | subjected to the element of the cooling device 1. FIG. Hereinafter, the fourth embodiment will be described below with a focus on differences from the first embodiment.
 本第4実施形態の冷却装置301は、複数の冷却装置構成部材として、上配線層302の上側に配置される上緩衝層307を更に含んでいる。 The cooling device 301 according to the fourth embodiment further includes an upper buffer layer 307 disposed on the upper side of the upper wiring layer 302 as a plurality of cooling device constituent members.
 上緩衝層307は、冷却装置301に発生する熱応力等の応力を緩和するための層であり、上配線層302に対して上側に積層された状態で上配線層302に接合されている。 The upper buffer layer 307 is a layer for relieving stress such as thermal stress generated in the cooling device 301, and is bonded to the upper wiring layer 302 in a state of being laminated on the upper wiring layer 302.
 上緩衝層307の厚さは下配線層302の厚さよりも薄い。上緩衝層307はその上面からなる搭載面301aを有している。 The thickness of the upper buffer layer 307 is thinner than the thickness of the lower wiring layer 302. The upper buffer layer 307 has a mounting surface 301a formed from the upper surface thereof.
 さらに、上配線層302の平面方向の線膨張係数のうち最小の線膨張係数よりも、上緩衝層307における、上配線層302の最小線膨張係数の方向と同じ方向の線膨張係数の方が小さくなっている。 Furthermore, the linear expansion coefficient in the same direction as the direction of the minimum linear expansion coefficient of the upper wiring layer 302 in the upper buffer layer 307 is more than the minimum linear expansion coefficient among the linear expansion coefficients in the planar direction of the upper wiring layer 302. It is getting smaller.
 ここで、上述の線膨張係数とは25~300℃の範囲における平均線膨張係数を意味している。 Here, the above-mentioned linear expansion coefficient means an average linear expansion coefficient in the range of 25 to 300 ° C.
 本第4実施形態の冷却装置301によれば、上配線層302の上側に上緩衝層307が配置されているので、冷却装置301に発生する熱応力等の応力を緩和することができ、そのため冷却装置301の信頼性(例:接合信頼性)の向上を図りうる。 According to the cooling device 301 of the fourth embodiment, since the upper buffer layer 307 is disposed on the upper side of the upper wiring layer 302, stress such as thermal stress generated in the cooling device 301 can be relieved. The reliability (eg, bonding reliability) of the cooling device 301 can be improved.
 上緩衝層307の材料は限定されるものではなく、特に、金属マトリックスと金属マトリックス中に分散した炭素繊維とを含む金属-炭素繊維複合材であることが好ましい。この場合、上緩衝層307の線膨張係数を確実に小さくすることができる。 The material of the upper buffer layer 307 is not limited, and is particularly preferably a metal-carbon fiber composite material including a metal matrix and carbon fibers dispersed in the metal matrix. In this case, the linear expansion coefficient of the upper buffer layer 307 can be reliably reduced.
 ここで、本発明に係る冷却装置では、上緩衝層307は、上記第2実施形態の冷却装置101の上配線層102の上側に配置されていてもよいし、上記第3実施形態の冷却装置201の上配線層202の上側に配置されていてもよい。 Here, in the cooling device according to the present invention, the upper buffer layer 307 may be disposed above the upper wiring layer 102 of the cooling device 101 of the second embodiment, or the cooling device of the third embodiment. 201 may be disposed on the upper side of the upper wiring layer 202.
 以上で本発明の幾つかの実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で様々に変更可能である。 Although several embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
 また、上記第1~第4実施形態では、絶縁層の下側に下配線層、緩衝層及び冷却部材が配置されているが、本発明では、その他に例えば、絶縁層の下側に緩衝層が配置されていなくても良いし、絶縁層の下側に下配線層が配置されていなくても良い。 In the first to fourth embodiments, the lower wiring layer, the buffer layer, and the cooling member are disposed below the insulating layer. In the present invention, for example, the buffer layer is provided below the insulating layer. May not be disposed, and the lower wiring layer may not be disposed below the insulating layer.
 さらに、本発明では、上熱伝導部材の数が複数であって当該複数の上熱伝導部材のうち二つ以上が、厚さ方向の熱伝導率と平面に沿う第1方向の熱伝導率とが厚さ方向及び第1方向に垂直な第2方向の熱伝導率よりも高いものであり、これらの上熱伝導部材と下熱伝導部材が、これらの上熱伝導部材の第1方向と下熱伝導部材の第1方向とが平面視において交差するように配置されていても良い。 Furthermore, in the present invention, there are a plurality of upper heat conductive members, and two or more of the plurality of upper heat conductive members are the heat conductivity in the thickness direction and the heat conductivity in the first direction along the plane. Is higher than the thermal conductivity in the thickness direction and in the second direction perpendicular to the first direction, and these upper heat conductive member and lower heat conductive member are in the first direction and lower direction of these upper heat conductive members. You may arrange | position so that the 1st direction of a heat conductive member may cross | intersect in planar view.
 さらに、本発明では、下熱伝導部材の数が複数であって当該複数の下熱伝導部材のうち二つ以上が、厚さ方向の熱伝導率と平面に沿う第1方向の熱伝導率とが厚さ方向及び第1方向に垂直な第2方向の熱伝導率よりも高いものであり、上熱伝導部材とこれらの下熱伝導部材が、上熱伝導部材の第1方向とこれらの下熱伝導部材の第1方向とが平面視において交差するように配置されていても良い。 Furthermore, in the present invention, the number of lower heat conductive members is plural, and two or more of the plurality of lower heat conductive members are heat conductivity in the thickness direction and heat conductivity in the first direction along the plane. Is higher than the thermal conductivity in the thickness direction and the second direction perpendicular to the first direction, and the upper heat conducting member and the lower heat conducting member are You may arrange | position so that the 1st direction of a heat conductive member may cross | intersect in planar view.
 [冷却装置の冷却性能の評価]
 次に、本発明に係る冷却装置の冷却性能を評価するため、冷却装置の上配線層の搭載面に搭載された発熱性素子の最高温度を様々な条件でシミュレーションにより調べた。
[Evaluation of cooling performance of cooling device]
Next, in order to evaluate the cooling performance of the cooling device according to the present invention, the maximum temperature of the exothermic element mounted on the mounting surface of the upper wiring layer of the cooling device was examined by simulation under various conditions.
 シミュレーションに用いたソフトウェアはMentor Graphics Corporation社製の熱流体解析ソフトウェア「FloTHERM」である。 The software used for the simulation is thermal fluid analysis software “FloTHERM” manufactured by Mentor Graphics Corporation.
 このシミュレーションでそのモデルとして用いた冷却装置501を図7及び8に示す。これらの図に示すように、冷却装置501は、上から下へ順に上配線層502、絶縁層503、下配線層504、緩衝層505及び冷却部材506が積層された状態でこれらが接合一体化されて形成されたものである。冷却部材506は具体的には冷却板である。上配線層502は上熱伝導部材511に対応し、下配線層504、緩衝層505及び冷却部材506はいずれも下熱伝導部材512に対応している。 7 and 8 show a cooling device 501 used as a model in this simulation. As shown in these drawings, the cooling device 501 is formed by joining and integrating the upper wiring layer 502, the insulating layer 503, the lower wiring layer 504, the buffer layer 505, and the cooling member 506 in order from the top to the bottom. Is formed. Specifically, the cooling member 506 is a cooling plate. The upper wiring layer 502 corresponds to the upper heat conductive member 511, and the lower wiring layer 504, the buffer layer 505, and the cooling member 506 all correspond to the lower heat conductive member 512.
 冷却装置501において、上配線層502、絶縁層503、下配線層504、緩衝層505及び冷却部材506は、それぞれ平面視略長方形状のものであり、図8に示すように、平面視において、それぞれの長手方向X及び短手方向Yが互いに一致し且つそれぞれの中心位置も互いに一致するように積層されている。なお、図8には冷却部材506は図示されていない。 In the cooling device 501, the upper wiring layer 502, the insulating layer 503, the lower wiring layer 504, the buffer layer 505, and the cooling member 506 are each substantially rectangular in plan view, and as shown in FIG. The layers are stacked such that the longitudinal direction X and the lateral direction Y coincide with each other and the center positions thereof also coincide with each other. In FIG. 8, the cooling member 506 is not shown.
 発熱性素子508は平面視略長方形状のものであり、平面視において、発熱性素子508の長手方向X及び短手方向Yが上配線層502の長手方向X及び短手方向Yと一致し且つ発熱性素子508の中心位置が上配線層502の搭載面501aの中心位置と一致するようにはんだ層509で接合されている。 The exothermic element 508 has a substantially rectangular shape in plan view. In the plan view, the longitudinal direction X and the short direction Y of the exothermic element 508 coincide with the longitudinal direction X and the short direction Y of the upper wiring layer 502 and The heat generating element 508 is joined by the solder layer 509 so that the center position of the heat generating element 508 coincides with the center position of the mounting surface 501 a of the upper wiring layer 502.
 シミュレーションに適用した冷却装置501の各構成部材の条件を表1に示す。 Table 1 shows the conditions of each component of the cooling device 501 applied to the simulation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、発熱性素子508の熱伝導率を温度t(単位:℃)に依存するように設定した。また、上配線層502の厚さを0.4、0.6及び1.0mmの三種類に設定した。 As shown in Table 1, the thermal conductivity of the exothermic element 508 was set to depend on the temperature t (unit: ° C.). Moreover, the thickness of the upper wiring layer 502 was set to three types of 0.4, 0.6, and 1.0 mm.
 なお、上配線層502、下配線層504及び緩衝層505の熱伝導率欄において、「kab」は異方性材(図3参照、符号20)の高熱伝導面ABに平行な方向の熱伝導率であり、「kc」は異方性材20の低熱伝導方向であるc軸方向の熱伝導率である。異方性材の高熱伝導面ABは上述したように異方性材のa軸方向とb軸方向とで作る面であり、a軸方向の熱伝導率kaとb軸方向の熱伝導率kbとは等しいと設定した。 In the thermal conductivity column of the upper wiring layer 502, the lower wiring layer 504, and the buffer layer 505, “kab” is the thermal conductivity in the direction parallel to the high thermal conductive surface AB of the anisotropic material (see FIG. 3, reference numeral 20). “Kc” is the thermal conductivity in the c-axis direction, which is the low thermal conduction direction of the anisotropic material 20. The high thermal conductivity surface AB of the anisotropic material is a surface formed by the a-axis direction and the b-axis direction of the anisotropic material as described above, and the thermal conductivity ka in the a-axis direction is equal to the thermal conductivity kb in the b-axis direction. Set.
 また、冷却装置501の周囲には熱伝導率が3W/(m・K)の封止材(図示せず)が充填されていると設定した。発熱性素子508は発熱性素子508の上面で均一に発熱すると仮定し、発熱性素子508の上面に熱源128.65Wを設定した。この熱は、発熱性素子508から、はんだ層509、上配線層502、絶縁層503、下配線層504及び緩衝層505を順に伝導する過程を経て、最終的に冷却部材506から放熱される。そこで、冷却部材506の底面に熱伝達係数15000W/(m・K)を設定することで、上述の熱伝導過程を模した。そして、初期温度として環境温度を25℃に設定し、冷却装置501の温度変化が定常状態になった時の発熱性素子508の最高温度を、発熱性素子508の最高温度とした。 In addition, it was set that the periphery of the cooling device 501 was filled with a sealing material (not shown) having a thermal conductivity of 3 W / (m · K). Assuming that the exothermic element 508 generates heat uniformly on the upper surface of the exothermic element 508, a heat source 128.65 W was set on the upper surface of the exothermic element 508. This heat is finally radiated from the cooling member 506 through a process of conducting the solder layer 509, the upper wiring layer 502, the insulating layer 503, the lower wiring layer 504, and the buffer layer 505 in this order from the heat generating element 508. Therefore, the above-described heat conduction process was simulated by setting a heat transfer coefficient of 15000 W / (m 2 · K) on the bottom surface of the cooling member 506. Then, the environmental temperature was set to 25 ° C. as the initial temperature, and the maximum temperature of the exothermic element 508 when the temperature change of the cooling device 501 reached a steady state was set as the maximum temperature of the exothermic element 508.
 <シミュレーション例1>
 冷却装置501の複数の熱伝導部材(即ち上配線層502、下配線層504、緩衝層505及び冷却部材506)のうち材料及び厚さを変更する熱伝導部材を上配線層502だけに設定し、更に、下配線層504の厚さを0.6mm、下配線層504の材料を純アルミニウム(純Al)、緩衝層505の厚さを1.2mm及び緩衝層505の材料を純アルミニウム(純Al)に設定した。また、熱伝導部材の材料が純アルミニウムである場合、当該熱伝導部材は熱伝導性に異方性を有していないものと設定した。そして、上配線層502の材料として純アルミニウムと異方性材を用いた場合の発熱性素子508の最高温度をシミュレーションにより調べた。その結果(発熱性素子508の最高温度)を表2に示す。
<Simulation example 1>
Of the plurality of heat conductive members (that is, the upper wiring layer 502, the lower wiring layer 504, the buffer layer 505, and the cooling member 506) of the cooling device 501, only the upper wiring layer 502 is set as the heat conductive member that changes the material and thickness. Further, the thickness of the lower wiring layer 504 is 0.6 mm, the material of the lower wiring layer 504 is pure aluminum (pure Al), the thickness of the buffer layer 505 is 1.2 mm, and the material of the buffer layer 505 is pure aluminum (pure Al). Moreover, when the material of the heat conductive member was pure aluminum, the heat conductive member was set to have no anisotropy in heat conductivity. The maximum temperature of the exothermic element 508 when pure aluminum and an anisotropic material were used as the material of the upper wiring layer 502 was examined by simulation. The results (maximum temperature of the heat generating element 508) are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、「純Al」とは上配線層502の材料が純アルミニウムであることを意味している。「異方性材(ZX)」とは上配線層502の材料が異方性材であって異方性材の高熱伝導面が上配線層502の厚さ方向Z及び長手方向Xと平行になるように上配線層502が異方性材で形成されていること、すなわち上配線層502の高熱伝導方向が厚さ方向Z及び長手方向Xであることを意味している。「異方性材(YZ)」とは上配線層502の材料が異方性材であって異方性材の高熱伝導面が上配線層502の短手方向Y及び厚さ方向Zと平行になるように上配線層502が異方性材で形成されていること、すなわち上配線層502の高熱伝導方向が短手方向Y及び厚さ方向Zであることを意味している。 In Table 2, “pure Al” means that the material of the upper wiring layer 502 is pure aluminum. The “anisotropic material (ZX)” is an upper wiring layer 502 so that the material of the upper wiring layer 502 is an anisotropic material and the high thermal conductivity surface of the anisotropic material is parallel to the thickness direction Z and the longitudinal direction X of the upper wiring layer 502. This means that 502 is formed of an anisotropic material, that is, the high heat conduction direction of the upper wiring layer 502 is the thickness direction Z and the longitudinal direction X. The “anisotropic material (YZ)” means that the upper wiring layer 502 is made of an anisotropic material, and the high heat conduction surface of the anisotropic material is parallel to the short direction Y and the thickness direction Z of the upper wiring layer 502. This means that the layer 502 is formed of an anisotropic material, that is, the high heat conduction direction of the upper wiring layer 502 is the short direction Y and the thickness direction Z.
 なお、以下の表3~5中の「純Al」、「異方性材(ZX)」及び「異方性材(YZ)」の意味も上記と同様である。 The meanings of “pure Al”, “anisotropic material (ZX)” and “anisotropic material (YZ)” in the following Tables 3 to 5 are the same as described above.
 さらに、表2において、「厚さ0.4mm」、「厚さ0.6mm」及び「厚さ1.0mm」とはそれぞれ上配線層502の厚さである。 Furthermore, in Table 2, “thickness 0.4 mm”, “thickness 0.6 mm”, and “thickness 1.0 mm” are the thicknesses of the upper wiring layer 502, respectively.
 表2から分かるように、熱伝導部材としての上配線層502の厚さが0.4、0.6及び1.0mmのどの場合でも、上配線層502の材料が異方性材である場合の方が上配線層502の材料が純アルミニウムである場合よりも発熱性素子508の最高温度が低かった。また、上配線層502の高熱伝導方向が厚さ方向Z及び長手方向Xである場合の方が上配線層502の高熱伝導方向が短手方向Y及び厚さ方向Zである場合よりも発熱性素子508の最高温度が低かった。また、上配線層502が厚い方が発熱性素子508の最高温度が低かった。 As can be seen from Table 2, when the upper wiring layer 502 as a heat conducting member has a thickness of 0.4, 0.6, or 1.0 mm, the upper wiring layer 502 is made of an anisotropic material. However, the maximum temperature of the heat generating element 508 was lower than that in the case where the material of the upper wiring layer 502 was pure aluminum. Further, when the high heat conduction direction of the upper wiring layer 502 is the thickness direction Z and the longitudinal direction X, the heat generation characteristics are higher than when the high heat conduction direction of the upper wiring layer 502 is the short direction Y and the thickness direction Z. The maximum temperature of the element 508 was low. Further, the maximum temperature of the heat generating element 508 was lower when the upper wiring layer 502 was thicker.
 したがって、冷却装置501の冷却性能を高くするためには、熱伝導部材の材料が異方性材であって熱伝導部材の高熱伝導方向が厚さ方向Z及び長手方向Xであること、及び、熱伝導部材が厚い方が良いことが分かった。 Therefore, in order to increase the cooling performance of the cooling device 501, the material of the heat conduction member is an anisotropic material, and the high heat conduction direction of the heat conduction member is the thickness direction Z and the longitudinal direction X. It turned out that a thicker member is better.
 <シミュレーション例2>
 上配線層502の厚さを0.6mm、下配線層504の厚さを0.6mm、緩衝層505の厚さを1.2mm及び緩衝層505の材料を純アルミニウムに設定し、上配線層502及び下配線層504の材料として純アルミニウムと異方性材を用いた場合の発熱性素子508の最高温度をシミュレーションにより調べた。その結果を表3に示す。
<Simulation example 2>
The upper wiring layer 502 is set to 0.6 mm, the lower wiring layer 504 is set to 0.6 mm, the buffer layer 505 is set to 1.2 mm, and the buffer layer 505 is made of pure aluminum. The maximum temperature of the exothermic element 508 when pure aluminum and an anisotropic material are used as the material of 502 and the lower wiring layer 504 was examined by simulation. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から分かるように、発熱性素子508の最高温度が最も低いのは、上配線層502の材料が異方性材であって上配線層502の高熱伝導方向が短手方向Y及び厚さ方向Zであり且つ下配線層504の材料が異方性材であって下配線層504の高熱伝導方向が厚さ方向Z及び長手方向Xである場合であった。また、この場合の発熱性素子508の最高温度は76.87℃であった。 As can be seen from Table 3, the maximum temperature of the heat generating element 508 is the lowest because the material of the upper wiring layer 502 is an anisotropic material, and the high heat conduction direction of the upper wiring layer 502 is the short direction Y and the thickness direction Z. And the material of the lower wiring layer 504 is an anisotropic material, and the high heat conduction direction of the lower wiring layer 504 is the thickness direction Z and the longitudinal direction X. In this case, the maximum temperature of the heat generating element 508 was 76.87 ° C.
 この結果は、冷却装置501の平面視において上熱伝導部材511の高熱伝導方向と下熱伝導部材512の高熱伝導方向とが相異(交差)している場合の方が上熱伝導部材511の高熱伝導方向と下熱伝導部材512の高熱伝導方向とが一致(平行)している場合よりも冷却装置501の冷却性能が向上すること、及び、下熱伝導部材512の高熱伝導方向が厚さ方向Z及び長手方向Xである場合の方が上熱伝導部材511の高熱伝導方向が厚さ方向Z及び長手方向Xである場合よりも冷却装置501の冷却性能が向上することを示している。 As a result, in the plan view of the cooling device 501, the high heat conduction direction of the upper heat conduction member 511 and the high heat conduction direction of the lower heat conduction member 512 are different (crossed). The cooling performance of the cooling device 501 is improved as compared with the case where the high heat conduction direction and the high heat conduction direction of the lower heat conduction member 512 coincide (parallel), and the high heat conduction direction of the lower heat conduction member 512 is thicker. It is shown that the cooling performance of the cooling device 501 is improved in the direction Z and the longitudinal direction X than in the case where the high heat conduction direction of the upper heat conducting member 511 is the thickness direction Z and the longitudinal direction X.
 <シミュレーション例3>
 上配線層502の厚さを0.6mm、上配線層502の材料を純アルミニウム、下配線層504の厚さを0.6mm及び緩衝層505の厚さを1.2mmに設定し、下配線層504及び緩衝層505の材料として純アルミニウムと異方性材を用いた場合の発熱性素子508の最高温度をシミュレーションにより調べた。その結果を表4に示す。
<Simulation example 3>
The thickness of the upper wiring layer 502 is set to 0.6 mm, the material of the upper wiring layer 502 is set to pure aluminum, the thickness of the lower wiring layer 504 is set to 0.6 mm, and the thickness of the buffer layer 505 is set to 1.2 mm. The maximum temperature of the heat generating element 508 when pure aluminum and an anisotropic material are used as the material of the layer 504 and the buffer layer 505 was examined by simulation. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から分かるように、発熱性素子508の最高温度が最も低いのは、下配線層504の材料が異方性材であって下配線層504の高熱伝導方向が短手方向Y及び厚さ方向Zであり且つ緩衝層505の材料が異方性材であって緩衝層505の高熱伝導方向が厚さ方向Z及び長手方向Xである場合であった。また、この場合の発熱性素子508の最高温度は77.73℃であった。 As can be seen from Table 4, the maximum temperature of the heat generating element 508 is the lowest because the material of the lower wiring layer 504 is an anisotropic material, and the high heat conduction direction of the lower wiring layer 504 is the short direction Y and the thickness direction Z. And the material of the buffer layer 505 is an anisotropic material, and the high heat conduction direction of the buffer layer 505 is the thickness direction Z and the longitudinal direction X. In this case, the maximum temperature of the heat generating element 508 was 77.73 ° C.
 さらに、この最高温度77.73℃は上記シミュレーション例2の場合における最も低い発熱性素子508の最高温度76.87℃よりも高い。したがって、二つの熱伝導部材の材料としてそれぞれ異方性材を用いる場合において、当該二つの熱伝導部材の間に絶縁層503を配置する場合(即ちシミュレーション例2の場合)の方が当該二つの熱伝導部材の上側又は下側に絶縁層503を配置する場合(即ちシミュレーション例3の場合)よりも冷却装置501の冷却性能が向上すると推測される。 Furthermore, the maximum temperature of 77.73 ° C. is higher than the maximum temperature of 76.87 ° C. of the lowest exothermic element 508 in the case of the simulation example 2 described above. Therefore, in the case where anisotropic materials are used as the materials of the two heat conducting members, respectively, the case where the insulating layer 503 is disposed between the two heat conducting members (that is, in the case of the simulation example 2), the two heat conducting members. It is estimated that the cooling performance of the cooling device 501 is improved as compared with the case where the insulating layer 503 is disposed on the upper side or the lower side of the member (that is, in the case of the simulation example 3).
 <シミュレーション例4>
 上配線層502の厚さを0.6mm、下配線層504の厚さを0.6mm、下配線層504の材料を純アルミニウム及び緩衝層505の厚さを1.2mmに設定し、上配線層502及び緩衝層505の材料として純アルミニウムと異方性材を用いた場合の発熱性素子508の最高温度をシミュレーションにより調べた。その結果を表5に示す。
<Simulation example 4>
The thickness of the upper wiring layer 502 is set to 0.6 mm, the thickness of the lower wiring layer 504 is set to 0.6 mm, the material of the lower wiring layer 504 is set to pure aluminum, and the thickness of the buffer layer 505 is set to 1.2 mm. The maximum temperature of the heat generating element 508 when pure aluminum and an anisotropic material are used as the material of the layer 502 and the buffer layer 505 was examined by simulation. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から分かるように、発熱性素子508の最高温度が最も低いのは、上配線層502の材料が異方性材であって上配線層502の高熱伝導方向が短手方向Y及び厚さ方向Zであり且つ緩衝層505の材料が異方性材であって緩衝層505の高熱伝導方向が厚さ方向Z及び長手方向Xである場合であった。また、この場合の発熱性素子508の最高温度は76.30℃であった。 As can be seen from Table 5, the maximum temperature of the heat generating element 508 is the lowest because the material of the upper wiring layer 502 is an anisotropic material, and the high heat conduction direction of the upper wiring layer 502 is the short direction Y and the thickness direction Z. And the material of the buffer layer 505 is an anisotropic material, and the high heat conduction direction of the buffer layer 505 is the thickness direction Z and the longitudinal direction X. In this case, the maximum temperature of the heat generating element 508 was 76.30 ° C.
 さらに、この最高温度76.30℃は上記シミュレーション例2の場合における最も低い発熱性素子508の最高温度76.87℃よりも低い。したがって、厚い熱伝導部材の材料として異方性材を用いる場合(即ちシミュレーション例4の場合)の方が薄い熱伝導部材の材料として異方性材を用いる場合(即ちシミュレーション例2の場合)よりも冷却装置501の冷却性能が向上すると推測される。 Furthermore, this maximum temperature of 76.30 ° C. is lower than the maximum temperature of 76.87 ° C. of the lowest exothermic element 508 in the case of the simulation example 2 described above. Therefore, when the anisotropic material is used as the material of the thick heat conduction member (that is, in the case of the simulation example 4), the cooling device 501 is more than when the anisotropic material is used as the material of the thin heat conduction member (ie, in the case of the simulation example 2). It is estimated that the cooling performance is improved.
 本願は、2018年2月16日付で出願された日本国特許出願の特願2018-025867号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application is accompanied by the priority claim of Japanese Patent Application No. 2018-025867 filed on Feb. 16, 2018, the disclosure of which constitutes part of the present application as it is. .
 ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。 The terms and expressions used herein are for illustrative purposes and are not to be construed as limiting, but represent any equivalent of the features shown and described herein. It should be recognized that various modifications within the claimed scope of the present invention are permissible.
 本発明の図示実施形態を幾つかここに記載したが、本発明は、ここに記載した各種の好ましい実施形態に限定されるものではなく、この開示に基づいていわゆる当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨る特徴の組み合わせ)、改良及び/又は変更を有するありとあらゆる実施形態をも包含するものである。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施例に限定されるべきではなく、そのような実施例は非排他的であると解釈されるべきである。例えば、この開示において、「preferably」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」ということを意味するものである。 Although several illustrated embodiments of the present invention have been described herein, the present invention is not limited to the various preferred embodiments described herein, and is equivalent to what may be recognized by those skilled in the art based on this disclosure. Any and all embodiments having various elements, modifications, deletions, combinations (eg, combinations of features across the various embodiments), improvements and / or changes are encompassed. Claim limitations should be construed broadly based on the terms used in the claims, and should not be limited to the embodiments described herein or in the process of this application, as such The examples should be construed as non-exclusive. For example, in this disclosure, the term “preferably” is non-exclusive and means “preferably but not limited to”.
 本発明は、電子素子(例:半導体素子)等の発熱性素子を冷却する冷却装置に利用可能である。 The present invention can be used for a cooling device for cooling a heat-generating element such as an electronic element (eg, a semiconductor element).
1、101、201、301:冷却装置
2、102、202、302:上配線層
3、103、203、303:絶縁層
4、104、204、304:下配線層
5、105、205、305:緩衝層
6、106、206、306:冷却部材
307:上緩衝層
8、108、208、308:発熱性素子
11、111、211、311:上熱伝導部材
12、112、212、312:下熱伝導部材
1, 101, 201, 301: Cooling device 2, 102, 202, 302: Upper wiring layer 3, 103, 203, 303: Insulating layer 4, 104, 204, 304: Lower wiring layer 5, 105, 205, 305: Buffer layer 6, 106, 206, 306: Cooling member 307: Upper buffer layer 8, 108, 208, 308: Exothermic element 11, 111, 211, 311: Upper heat conductive member 12, 112, 212, 312: Lower heat Conductive member

Claims (6)

  1.  発熱性素子を冷却する冷却装置であって、
     互いに積層状に接合一体化された複数の冷却装置構成部材を備え、
     前記複数の構成部材として、絶縁層と、前記絶縁層の上側に配置される上熱伝導部材と、前記絶縁層の下側に配置される下熱伝導部材とを含み、
     前記上熱伝導部材は、厚さ方向の熱伝導率と平面に沿う第1方向の熱伝導率とが前記厚さ方向及び前記第1方向に垂直な第2方向の熱伝導率よりも高いものであり、
     前記下熱伝導部材は、厚さ方向の熱伝導率と平面に沿う第1方向の熱伝導率とが前記厚さ方向及び前記第1方向に垂直な第2方向の熱伝導率よりも高いものであり、
     前記上熱伝導部材と前記下熱伝導部材は、前記上熱伝導部材の前記第1方向と前記下熱伝導部材の前記第1方向とが平面視において交差するように配置されている、冷却装置。
    A cooling device for cooling the exothermic element,
    A plurality of cooling device components that are joined and integrated in a stacked manner,
    As the plurality of constituent members, including an insulating layer, an upper heat conductive member disposed on the upper side of the insulating layer, and a lower heat conductive member disposed on the lower side of the insulating layer,
    The upper heat conductive member has a heat conductivity in the thickness direction and a heat conductivity in the first direction along the plane higher than the heat conductivity in the second direction perpendicular to the thickness direction and the first direction. And
    The lower heat conductive member has a heat conductivity in the thickness direction and a heat conductivity in the first direction along the plane higher than the heat conductivity in the second direction perpendicular to the thickness direction and the first direction. And
    The cooling device, wherein the upper heat conducting member and the lower heat conducting member are arranged such that the first direction of the upper heat conducting member and the first direction of the lower heat conducting member intersect in plan view .
  2.  前記上熱伝導部材の厚さと前記下熱伝導部材の厚さが相異しており、
     前記上熱伝導部材と前記下熱伝導部材のうち少なくとも厚い方の熱伝導部材は長手方向及び短手方向を有するとともに、前記厚い方の熱伝導部材の前記第1方向が前記厚い方の熱伝導部材の前記長手方向に向いている請求項1記載の冷却装置。
    The thickness of the upper heat conductive member is different from the thickness of the lower heat conductive member,
    At least the thicker heat conducting member of the upper heat conducting member and the lower heat conducting member has a longitudinal direction and a short side direction, and the first direction of the thicker heat conducting member is the thicker heat conducting member. The cooling device according to claim 1, which faces the longitudinal direction of the member.
  3.  前記厚い方の熱伝導部材は前記下熱伝導部材である請求項2記載の冷却装置。 3. The cooling device according to claim 2, wherein the thicker heat conducting member is the lower heat conducting member.
  4.  前記下熱伝導部材は長手方向及び短手方向を有するとともに、前記下熱伝導部材の前記第1方向が前記下熱伝導部材の前記長手方向に向いている請求項1記載の冷却装置。 The cooling device according to claim 1, wherein the lower heat conductive member has a longitudinal direction and a short direction, and the first direction of the lower heat conductive member faces the longitudinal direction of the lower heat conductive member.
  5.  前記上熱伝導部材及び前記下熱伝導部材のうち少なくとも一つは、金属マトリックスと金属マトリックス中に分散した異方性粒子とを含む金属-異方性粒子複合材で形成されており、
     前記異方性粒子は鱗片状黒鉛粒子及び炭素繊維の両方を含んでいる請求項1~4のいずれかに記載の冷却装置。
    At least one of the upper heat conductive member and the lower heat conductive member is formed of a metal-anisotropic particle composite material including a metal matrix and anisotropic particles dispersed in the metal matrix,
    The cooling device according to any one of claims 1 to 4, wherein the anisotropic particles include both flaky graphite particles and carbon fibers.
  6.  前記複数の構成部材として、前記上熱伝導部材の上側に配置される上緩衝層を更に含み、
     前記上熱伝導部材の平面方向の線膨張係数のうち最小の線膨張係数よりも、前記上緩衝層における、前記上熱伝導部材の前記最小線膨張係数の方向と同じ方向の線膨張係数の方が小さい請求項1~5のいずれかに記載の冷却装置。
    The plurality of constituent members further includes an upper buffer layer disposed on the upper heat conducting member,
    The linear expansion coefficient in the same direction as the direction of the minimum linear expansion coefficient of the upper thermal conductive member in the upper buffer layer is smaller than the minimum linear expansion coefficient of the linear thermal expansion coefficient in the planar direction of the upper thermal conductive member. 6. The cooling device according to claim 1, wherein the cooling device is small.
PCT/JP2019/004174 2018-02-16 2019-02-06 Cooling device WO2019159776A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020500426A JP7201658B2 (en) 2018-02-16 2019-02-06 Cooling system
CN201980006502.6A CN111480228A (en) 2018-02-16 2019-02-06 Cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-025867 2018-02-16
JP2018025867 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019159776A1 true WO2019159776A1 (en) 2019-08-22

Family

ID=67619441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004174 WO2019159776A1 (en) 2018-02-16 2019-02-06 Cooling device

Country Status (3)

Country Link
JP (1) JP7201658B2 (en)
CN (1) CN111480228A (en)
WO (1) WO2019159776A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150358A (en) * 2020-03-17 2021-09-27 三菱電機株式会社 Implementation structure of power semiconductor module
KR102367549B1 (en) * 2021-12-14 2022-02-25 알에프머트리얼즈 주식회사 Heat sink having clad vertical mesh structure and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175378A (en) * 1991-12-26 1993-07-13 Hitachi Ltd Semiconductor device
JP2011258755A (en) * 2010-06-09 2011-12-22 Denso Corp Heat spreader and cooling device for heating element
JP2013243248A (en) * 2012-05-21 2013-12-05 Denso Corp Semiconductor device
WO2017130512A1 (en) * 2016-01-28 2017-08-03 三菱電機株式会社 Power module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037306A1 (en) * 2005-09-28 2007-04-05 Ngk Insulators, Ltd. Heat sink module and process for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175378A (en) * 1991-12-26 1993-07-13 Hitachi Ltd Semiconductor device
JP2011258755A (en) * 2010-06-09 2011-12-22 Denso Corp Heat spreader and cooling device for heating element
JP2013243248A (en) * 2012-05-21 2013-12-05 Denso Corp Semiconductor device
WO2017130512A1 (en) * 2016-01-28 2017-08-03 三菱電機株式会社 Power module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150358A (en) * 2020-03-17 2021-09-27 三菱電機株式会社 Implementation structure of power semiconductor module
KR102367549B1 (en) * 2021-12-14 2022-02-25 알에프머트리얼즈 주식회사 Heat sink having clad vertical mesh structure and manufacturing method thereof
WO2023113287A1 (en) * 2021-12-14 2023-06-22 알에프머트리얼즈 주식회사 Clad heat sink having vertical mesh structure and method for manufacturing same

Also Published As

Publication number Publication date
CN111480228A (en) 2020-07-31
JP7201658B2 (en) 2023-01-10
JPWO2019159776A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP6602362B2 (en) Composite material with high thermal conductivity / low thermal expansion coefficient
KR101605666B1 (en) Cooling apparatus and cooling apparatus-attached power module using same
US9222735B2 (en) Compliant multilayered thermally-conductive interface assemblies
US5224017A (en) Composite heat transfer device
JP6846879B2 (en) How to make a heat sink
US20100321897A1 (en) Compliant multilayered thermally-conductive interface assemblies
JP6423731B2 (en) Semiconductor module
WO2019159776A1 (en) Cooling device
JP6544983B2 (en) Cooling board
JP2004022973A (en) Ceramic circuit board and semiconductor module
WO2017115627A1 (en) Inverter
JP2019140311A (en) High heat dissipation lightweight heat sink
US11076478B2 (en) Electronic assemblies having embedded passive heat pipes and associated method
JP7182403B2 (en) Cooling system
JP7302446B2 (en) Heat dissipation device
JP2019096841A (en) Insulating substrate and heat dissipation device
CN111433908A (en) Semiconductor device with a plurality of semiconductor chips
JP2018006673A (en) Cooler and manufacturing method thereof
CN116321674A (en) Composite heat-conducting coating for coating printed circuit board
JP2017212254A (en) Semiconductor device
JP6647139B2 (en) Heat dissipation sheet and semiconductor device
JP2019041076A (en) Radiator fin and radiator
JP2020178031A (en) Heat dissipation device and manufacturing method thereof
CN115119382A (en) Circuit heat release element and circuit board with same
JP2021150358A (en) Implementation structure of power semiconductor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500426

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754643

Country of ref document: EP

Kind code of ref document: A1