WO2019156075A1 - In-wheel motor drive device, rotary electric motor, and production method for housing - Google Patents

In-wheel motor drive device, rotary electric motor, and production method for housing Download PDF

Info

Publication number
WO2019156075A1
WO2019156075A1 PCT/JP2019/004072 JP2019004072W WO2019156075A1 WO 2019156075 A1 WO2019156075 A1 WO 2019156075A1 JP 2019004072 W JP2019004072 W JP 2019004072W WO 2019156075 A1 WO2019156075 A1 WO 2019156075A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
stator
peripheral surface
drive device
motor drive
Prior art date
Application number
PCT/JP2019/004072
Other languages
French (fr)
Japanese (ja)
Inventor
優 黒田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019156075A1 publication Critical patent/WO2019156075A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an in-wheel motor drive device, a rotary motor, and a method for manufacturing a housing, and more particularly to a technique for reducing vibrations generated from a stator that is a component of the in-wheel motor drive device.
  • Rotational motors used in in-wheel motor drive devices are required to be small, light, high efficiency, high output, and low vibration (low noise).
  • the rotating motor is energized through a coil wound around the stator, and by switching energization to each phase, the rotational torque is generated by the interaction between the magnetic force generated from the coil and the magnetic force from the permanent magnet fixed to the rotor. Occur.
  • a suction force / repulsion force in the radial direction acts on the stator core, so that the stator is deformed in the radial direction at a cycle corresponding to the rotational speed of the rotor.
  • vibrations synchronized with the rotational speed of the rotor are generated on the outer peripheral surface of the stator.
  • the in-wheel motor drive device is mounted under the spring of the suspension device and attached to the vehicle body via a suspension arm or the like. Since the suspension device is designed to ensure rigidity, when vibration is generated in the in-wheel motor drive device due to deformation of the stator, this vibration is likely to be propagated to the vehicle body via the suspension device.
  • a rotary electric motor such as an in-wheel motor drive device
  • the following structure has been proposed as a method for suppressing vibration generated from a stator.
  • the stator is cantilevered in the axial direction with respect to the housing via an inner frame whose rigidity is smaller than that of the housing, and a gap over the entire circumference is provided between the outer peripheral surface of the stator and the inner peripheral surface of the housing. Therefore, the structure prevents the vibration caused by the stator from being transmitted to the housing (Patent Document 1).
  • the outer periphery of the stator core includes a ring for fixing the stator to the housing, and the ring has a bent portion that is elastically deformed when the stator is displaced, and the bent portion absorbs vibration of the stator.
  • Patent Document 3 A structure that can reduce vibration
  • a first portion including a housing having an opening for storing the stator, a gap between the inner peripheral surface of the opening of the housing and the stator core is relatively small, and an inner diameter of the opening is constant, and the stator core
  • a structure including a second portion that is aligned with the first portion in the axial direction and that has a relatively large gap between the inner peripheral surface of the opening and the stator core Patent Documents 3 and 4.
  • the stator is axially fastened to the housing via an inner frame whose rigidity is smaller than that of the housing, and a clearance is provided across the entire circumference between the outer peripheral surface of the stator and the inner peripheral surface of the housing.
  • a structure has been proposed in which vibrations caused by the stator are not transmitted to the housing.
  • the stator since the stator is cantilevered with respect to the housing, there is a concern about the occurrence of vibration due to the stator due to the vertical movement of the stator during traveling.
  • it describes about ensuring the coaxial of a stator and the bearing which supports a rotor, it is not described about the method of ensuring the coaxial of a stator and an inner frame.
  • the inner frame and the stator are bolted and the inner frame is bolted to the housing, there is a concern about an increase in the number of parts.
  • Patent Document 2 a structure in which a step portion is provided on the inner peripheral surface of the housing or the outer peripheral surface of the stator is proposed, but this structure is cantilevered with respect to the housing. There is concern about the occurrence of vibrations caused by the stator due to the vertical movement of the stator during traveling.
  • Patent Document 3 it has been proposed to suppress vibration by installing a ring provided with a bent portion that is elastically deformed between the stator core and the housing.
  • the shape of the bent portion is complicated and processing is difficult.
  • the first method is to fix the ring to the housing in a floating manner.
  • the second method is to make the center of the stator coincide with the center of rotation by bringing the ring into contact with the housing.
  • this fixing method it is considered that the stator is completely floating with respect to the housing. Therefore, it is difficult to completely prevent the vibration of the stator.
  • Patent Document 4 proposes a structure that reduces vibration transmission due to stator deformation by reducing the contact area between the stator core and the housing.
  • the stator is cantilevered. There is a concern that the stator fluctuates in the vertical direction during traveling.
  • the in-hole motor drive device of the present invention includes a rotary motor, a wheel bearing, and a speed reducer that decelerates the rotation of the rotary motor and transmits it to the rotating wheel of the wheel bearing
  • the rotary motor includes an annular stator, a housing in which the stator is fitted and fixed, a rotating shaft that is rotatably supported coaxially with the stator via a bearing in the housing, and the rotation A rotor that rotates integrally with the shaft,
  • a non-contact portion is provided in a fitting range between the outer peripheral surface of the stator and the inner peripheral surface of the housing,
  • a vehicle body mounting piece projects from the outer peripheral surface of the housing, and a part or all of the base end of the vehicle body mounting piece overlaps the radial projection region of the non-contact portion.
  • the non-contact portion has an axial groove shape provided at a plurality of locations in the circumferential direction on the inner peripheral surface of the housing, and the vehicle body mounting pieces are provided at a plurality of locations in the circumferential direction of the housing.
  • part or all of the circumferential direction at the base ends of the plurality of vehicle body mounting pieces may overlap with the radial projection regions of the different non-contact portions.
  • the non-contact part is a circumferential groove provided on the inner peripheral surface of the housing, and a part or all of the axial direction at the base end of the vehicle body attachment piece is a radial direction of the non-contact part. It may overlap the projection area.
  • the rotor rotates due to the interaction of magnetic force in a rotary electric motor, but at the same time, a radial attracting force / repulsive force acts on the stator, so that vibration due to deformation of the stator occurs.
  • a radial attracting force / repulsive force acts on the stator, so that vibration due to deformation of the stator occurs.
  • vibration propagated from the stator to the housing can be reduced.
  • the vibration propagation path from the stator to the vehicle body mounting piece becomes bent, and vibration is generated. Is attenuated and transmitted to the body mounting piece.
  • This configuration can be realized, for example, by providing an axial or circumferential groove serving as a non-contact portion on the inner peripheral surface of the housing, so that a simple configuration that does not use other components in addition to the components essential as a rotary motor It can be.
  • the outer peripheral surface of the stator and the inner peripheral surface of the housing are in contact with each other at the contact portion in the fitting range, and both axial sides of the non-contact portion of the contact portion
  • the stator may be supported at both ends by the housing by a portion located in the housing. When the stator is supported at both ends by the housing, it is possible to prevent the stator from fluctuating in the vertical direction and to generate a declination when the vehicle is traveling, and to suppress the vibration of the stator.
  • the ratio of the area of the non-contact portion to the area of the fitting range on the outer peripheral surface of the stator may be in a range of 50% to 90%.
  • the outer peripheral surface of the stator and the inner peripheral surface of the housing are in contact with each other at a contact portion in the fitting range, and the stator and the housing are fitted with a gap or
  • the shaft center of the stator and the shaft center of the rotating shaft may be made to coincide with each other by interference fitting. In this way, by making the axis of the stator coincide with the axis of the rotary shaft, vibrations generated from the stator can be suppressed.
  • the coaxiality between the axis of the inner peripheral surface of the housing and the axis of the rotary shaft may be 0.2 mm or less.
  • the vibration level caused by the stator can be suppressed.
  • the degree of concentricity is about this level, it is only necessary to perform general turning, and it is not necessary to perform precision machining, so that the number of processing steps for the housing can be reduced.
  • the rotary electric motor of the present invention includes an annular stator, a housing in which the stator is fitted and fixed, a rotating shaft that is rotatably supported coaxially with the stator via a bearing in the housing, A rotor that rotates integrally with the rotating shaft; A non-contact portion is provided in a fitting range between the outer peripheral surface of the stator and the inner peripheral surface of the housing, A vehicle body mounting piece projects from the outer peripheral surface of the housing, and a part or all of the base end of the vehicle body mounting piece overlaps the radial projection region of the non-contact portion.
  • the housing manufacturing method of the present invention includes a rotary motor, a wheel bearing, and a speed reducer that reduces the rotation of the rotary motor and transmits the reduced speed to the rotating wheel of the wheel bearing.
  • a stator a housing in which the stator is fitted and fixed, a rotating shaft that is rotatably supported by the housing coaxially with the stator via a bearing, and a rotor that rotates integrally with the rotating shaft
  • a manufacturing method of the housing in an in-wheel motor drive device comprising: An inner peripheral surface of a portion of the housing that accommodates the bearing, and an inner peripheral surface of the housing facing the outer peripheral surface of the stator by turning the material without changing the centering state. Is molded.
  • the stator shaft and the rotation shaft supported by the bearing can be as close to zero as possible.
  • the cogging torque due to the deviation between the stator axis and the rotor axis can be reduced.
  • FIG. 2 is a cross-sectional view of a rotary motor portion taken along line II-II in FIG. 1.
  • FIG. 3 is a cross-sectional view of a reduction gear portion taken along line III-III in FIG. 1.
  • FIG. 4 is a partially enlarged view of FIG. 3.
  • FIG. 8 is a cross-sectional view of a rotary electric motor portion taken along line VIII-VIII in FIG. 7. It is sectional drawing of the in-wheel motor drive device which concerns on 3rd Embodiment of this invention.
  • FIG. 10 is a cross-sectional view of a rotary motor portion taken along the line XX of FIG. 9.
  • FIG. 1 is a sectional view of an in-wheel motor drive apparatus IWM according to the first embodiment of the present invention.
  • the in-wheel motor drive device IWM is used as a device that rotationally drives drive wheels of a vehicle, for example.
  • the in-wheel motor drive device IWM includes a rotary electric motor 1 that generates a driving force, a speed reducer 2 that decelerates and transmits or outputs the rotation of the rotary electric motor 1, and an output from the speed reducer 2 that is not illustrated.
  • the wheel bearing 5 is provided.
  • the side closer to the outside in the vehicle width direction of the vehicle with the in-wheel motor drive device IWM provided in the vehicle is referred to as the outboard side
  • the side closer to the center in the vehicle width direction of the vehicle is referred to as the inboard side. Called the board side.
  • the rotary electric motor 1 includes a motor housing 8, an annular stator 9, a rotating shaft 6, and a rotor 10.
  • the rotary electric motor 1 includes an interior permanent magnet (Interior Permanent Magnet) in which a radial gap is provided between a stator 9 provided on the inner periphery of a motor housing 8 and a rotor 10 positioned radially inward of the stator 9.
  • the motor housing 8 is provided with bearings 11 and 12 which are spaced apart in the axial direction, and the rotating shaft 6 is rotatably supported by these bearings 11 and 12.
  • the rotor 10 is disposed integrally with the bearings 11 and 12.
  • the motor housing 8 includes a motor housing main body 8a having an inboard side opened, and an annular lid member 8b and a central lid member 8c for closing the inboard side opening of the motor housing main body 8a.
  • the inboard side bearing 11 is provided in the annular lid member 8b
  • the outboard side bearing 12 is provided in the motor housing body 8a.
  • the rotary shaft 6 is a shaft that transmits the driving force of the rotary electric motor 1 to the speed reducer 2.
  • a flange portion 6a extending radially outward is provided in the vicinity of the middle portion of the rotating shaft 6 in the axial direction, and the rotor fixing member 13 is provided on the flange portion 6a.
  • the rotor 10 is attached to the rotor fixing member 13. That is, the rotor 10 is provided so as to rotate integrally with the rotating shaft 6.
  • the rotor 10 includes, for example, a core portion (not shown) made of a soft magnetic material and a permanent magnet (not shown) built in the core portion. For example, a neodymium magnet is used as the permanent magnet.
  • the stator 9 includes, for example, a stator core 9a made of a soft magnetic material, and a stator coil 9b wound around the stator core 9a.
  • the stator core 9a has a ring shape with an outer peripheral surface having a circular cross section, and a plurality of teeth protruding inward on the inner peripheral surface are formed side by side in the circumferential direction.
  • the stator coil 9b is wound around the teeth of the stator core 9a.
  • the outer peripheral surface of the stator 9 is fitted to the inner peripheral surface of the motor housing 8 at a contact portion B described later. Further, the stator 9 is fastened and fixed to the motor housing 8 in the axial direction by a plurality of bolts 23. As shown in FIG. 2, which is a cross-sectional view taken along line II-II in FIG. 1, the plurality of bolts 23 are provided at regular intervals in the circumferential direction. 1 is a cross-sectional view taken along the line I-O-I in FIG.
  • the motor housing body 8a of the motor housing 8 is provided with an annular housing step 8aa facing the outer diameter side portion of the axial end surface of the stator core 9a.
  • a plurality of female screws 24 are formed in the housing step portion 8aa at regular intervals in the circumferential direction.
  • the stator 9 is fixed by bringing the axial end face of the stator core 9a on the outboard side into contact with the housing step 8aa and screwing it into the female screws 24 through the plurality of bolts 23 from the inboard side of the stator core 9a.
  • axial grooves 50 are provided on the inner peripheral surface of the motor housing 8 at a plurality of locations in the circumferential direction.
  • the axial groove 50 forms a non-contact portion A where the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 face each other in a non-contact manner.
  • the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 are in contact with each other at the contact portion B other than the non-contact portion A. ing.
  • the stator 9 and the motor housing 8 are fitted to each other at the contact portion B by a clearance fit or an interference fit.
  • the “fitting range” refers to the entire range of the inner peripheral surface of the motor housing 8 and the outer peripheral surface of the stator 9 that face each other by fitting (not only the contact portion B but also the non-contact portion A). Means).
  • the ratio of the area of the non-contact portion A to the area of the fitting range on the outer peripheral surface of the stator 9 is preferably in the range of 50% to 90%.
  • a plurality of vehicle body mounting pieces 51 protrude from a plurality of locations in the circumferential direction on the outer peripheral surface of the motor housing 8. These vehicle body attachment pieces 51 are used to attach the in-wheel motor drive device IWM to the vehicle body. Specifically, as shown in FIG. 5, the vehicle body attachment piece 51 is coupled to the knuckle arm 53 a of the suspension device 53 by the bolt 52 inserted into the bolt insertion hole 51 a (FIG. 2) of the vehicle body attachment piece 51.
  • the vehicle body attachment piece 51 has a part or all of the circumferential direction at the base end thereof overlapped with the radial projection region of the non-contact portion A formed by the axial groove 50.
  • the radial projection area is an area defined by the axial range L (FIG. 1) and the circumferential range ⁇ (FIG. 2) of the non-contact portion A.
  • the entire base end of the vehicle body attachment piece 51 overlaps the radial projection region of the non-contact portion A in both the axial direction and the circumferential direction.
  • the motor housing body 8a is preferably manufactured as follows. That is, the material to be the motor housing main body 8a is turned without changing the centering state, and the inner peripheral surface F1 facing the outer peripheral surface of the stator 9 in the motor housing main body 8a and the bearing 12 in the motor housing main body 8a.
  • the inner peripheral surface F2 of the part in which is accommodated is molded.
  • the coaxiality between the axis of the stator 9 and the axis of the rotating shaft 6 supported by the bearing 12 is made as close to zero as possible. Can do.
  • the coaxiality between the axis of the inner peripheral surface of the motor housing main body 8a and the axis of the rotary shaft 6 is preferably 0.2 mm or less. If the concentricity is about 0.2 mm, only a general turning process is required, and no precision machining is required. Therefore, the processing man-hour of the housing 8 can be reduced.
  • the rotating shaft 6 is located in the center of the rotary electric motor 1 and has an axial through hole 6b. Then, the inboard side end of the input shaft (hereinafter referred to as “reducer input shaft”) 3 of the speed reducer 2 is fitted with a spline (including serrations; the same applies hereinafter) to the outboard side end of the through hole 6b.
  • the rotary shaft 6 and the speed reducer input shaft 3 are connected on the same axis.
  • the rotary electric motor 1 is provided with a rotational speed detecting means 15 such as a resolver for detecting the rotational speed of the rotary shaft 6.
  • An output member 4 concentric with the speed reducer input shaft 3 is provided on the outboard side of the speed reducer input shaft 3.
  • the inboard side end of the output member 4 is a cup portion 4a, and a bearing 14a is fitted to the inner periphery of the cup portion 4a.
  • a cylindrical connecting member 26 is connected to the cup portion 4 a via an inner pin 22, and a bearing 14 b is fitted to the inner periphery of the connecting member 26.
  • the reduction gear input shaft 3 is rotatably supported by the bearings 14a and 14b.
  • the speed reducer 2 of this embodiment is a cycloid speed reducer.
  • the reducer 2 includes an outer pin housing Ih, a reducer input shaft 3, two curved plates 17, 18, a plurality of outer pins 19, an inner pin 22, a counterweight 21, and these And a reduction gear housing 7 for housing the motor.
  • Eccentric portions 15 and 16 are provided on the outer peripheral surface of the reduction gear input shaft 3. These eccentric portions 15 and 16 are provided with a 180 ° phase shift so that the centrifugal force due to the eccentric motion is canceled out from each other.
  • the speed reducer 2 has two curved plates 17 and 18 formed with wavy trochoidal curves with a smooth outer shape, respectively, via bearings 85.
  • the eccentric parts 15 and 16 of the speed reducer input shaft 3 are mounted.
  • a plurality of outer pins 19 for guiding the eccentric movements of the curved plates 17 and 18 on the outer peripheral side are provided on the outer pin housing Ih (FIG. 1) inside the reduction gear housing 7 and attached to the cup portion 4a (FIG. 1).
  • the plurality of inner pins 22 are engaged with a plurality of circular through holes 89 provided in the curved plates 17 and 18 in an inserted state.
  • needle roller bearings 92 and 93 are attached to each outer pin 19 and each inner pin 22.
  • Each outer pin 19 is supported at both ends by needle roller bearings 92 and is in rolling contact with the outer peripheral surface of each curved plate 17, 18.
  • Each inner pin 22 is in contact with the inner periphery of each through-hole 89 by the outer ring 93 a of the needle roller bearing 93.
  • Needle roller bearings 92 and 93 reduce the contact resistance between the curved plates 17 and 18 and the contact resistance between the inner pins 22 and the through holes 89, respectively.
  • the outer ring 92a of the needle roller bearing 92 is fitted and fixed to the outer pin housing Ih.
  • the eccentric motion of the curved plates 17 and 18 can be smoothly transmitted to the inner member 5a of the wheel bearing 5 as a rotational motion.
  • the curved plates 17 and 18 provided on the outer circumferences of the eccentric portions 15 and 16 of the speed reducer input shaft 3 rotating integrally with the rotary shaft 6 perform an eccentric motion.
  • the outer pin 19 is engaged so as to be in rolling contact with the outer peripheral surfaces of the curved plates 17 and 18 that are eccentrically moved.
  • the curved plates 17 and 18 are engaged with the inner pins 22 and the through holes 89 (FIG. 4), so that only the rotational movement of the curved plates 17 and 18 is rotationally moved to the output member 4 and the inner member 5a.
  • the rotation of the inner member 5a is decelerated with respect to the rotation of the rotating shaft 6.
  • the wheel bearing 5 is a double-row angular contact ball bearing in which a ball is incorporated between the inner member 5a and the outer member 5b.
  • the outer member 5b is bolted to the speed reducer housing 7 by a flange 5c.
  • the inner member 5 a is spline-fitted to the output member 4.
  • the rotational motion transmitted to the inner member 5a is transmitted to the wheel from a wheel mounting flange 5d provided on the outer peripheral surface of the inner member 5a on the outboard side.
  • This in-wheel motor drive device IWM has a lubricating oil supply mechanism Jk.
  • the lubricating oil supply mechanism Jk is an axial oil supply mechanism that supplies lubricating oil used for both the lubrication of the speed reducer 2 and the cooling of the rotary electric motor 1 from the inside of the rotating shaft 6.
  • the lubricating oil supply mechanism Jk includes a lubricating oil passage 29, a supply oil passage 30, an in-motor lubricating oil reservoir 31, a discharge oil passage 38, and a pump 28.
  • the lubricating oil passage 29 is an oil passage in the reduction gear housing 7 in the reduction gear 2.
  • the lubricating oil passage 29 includes a lubricating oil tank 29a.
  • the lubricating oil tank 29 a is provided at the lower portion of the reduction gear housing 7 and stores lubricating oil, and communicates with the in-motor lubricating oil storage portion 31 provided at the lower portion of the motor housing 8.
  • the supply oil passage 30 is an oil passage for supplying the lubricating oil from the lubricating oil tank 29 a to the rotary electric motor 1 and the speed reducer 2.
  • the pump 28 circulates the lubricating oil stored in the lubricating oil tank 29a from the suction port in the lubricating oil tank 29a to the supply oil passage 30.
  • the pump 28 is disposed on the same axis between the rotary electric motor 1 and the speed reducer 2.
  • the pump 28 includes, for example, an unillustrated inner rotor that rotates as the output member 4 rotates, an outer rotor that rotates following the rotation of the inner rotor, a pump chamber, a suction port, and a discharge port (both shown in the figure). (Not shown).
  • the outer rotor When the inner rotor is rotated by the rotation of the output member 4 driven by the rotary electric motor 1, the outer rotor is driven to rotate. At this time, the inner rotor and the outer rotor rotate about different rotation centers, so that the volume of the pump chamber changes continuously. As a result, the lubricating oil stored in the lubricating oil tank 29 a is pumped to the supply oil passage 30. A part of the lubricating oil cools the rotor 10 and the stator coil 9b, then moves downward by gravity, and is stored in the in-motor lubricating oil reservoir 31 and the lubricating oil tank 29a, respectively.
  • the non-contact portion A between the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 as in this configuration, vibration propagated from the stator 9 to the motor housing 8 can be reduced. . Further, by positioning the base end of the vehicle body mounting piece 51 so as to overlap the radial projection region of the non-contact portion A, the vibration propagation path from the stator 9 to the vehicle body mounting piece 51 is bent, and vibration is generated. It attenuates and is transmitted to the vehicle body mounting piece 51. For these reasons, it is difficult for vibration caused by deformation of the stator 9 to be transmitted to the vehicle body.
  • the ratio of the area of the non-contact portion A to the area of the fitting range of the outer peripheral surface of the stator 9 with the inner peripheral surface of the motor housing 8 is in the range of 50% or more and 90% or less. Good results are obtained for reduction and fixing of the stator 9. For example, when the ratio is 50% or less, there is little effect of reducing vibrations propagated from the stator 9 to the motor housing 8, and when the ratio is 90% or more, the stator 9 is fixed by the motor housing 8. It is insufficient.
  • FIG. 6 is an image diagram and conceptually shows the relationship between the rotational speed and the vibration value. The degree to which the vibration value becomes lower depends on various conditions such as the ratio of the area of the non-contact portion A.
  • the coaxiality between the axis of the stator 9 and the axis of the rotating shaft 6 supported by the bearing 12 can be made as close to zero as possible.
  • the coaxiality between the axis of the inner peripheral surface of the motor housing 8 and the axis of the rotary shaft 6 can be 0.2 mm or less.
  • FIG. 7 and 8 show a second embodiment of the present invention.
  • 7 is a cross-sectional view taken along line VII-O-VII in FIG. 8
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • a non-contact portion A between the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 is formed by a circumferential groove 55 provided on the inner peripheral surface of the motor housing 8.
  • the vehicle body mounting piece 51 provided on the outer peripheral surface of the motor housing 8 is arranged such that a part or all of the axial direction at the base end thereof overlaps the radial projection region of the non-contact portion A formed by the circumferential groove 55. Has been. In the case of this embodiment, the entire base end of the vehicle body attachment piece 51 overlaps the radial projection region of the non-contact portion A.
  • the contact portion between the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 includes an outboard side contact portion Ba and an inboard side contact portion Bb located on both sides in the axial direction of the non-contact portion A.
  • the ratio of the area of the non-contact portion A to the area of the fitting range of the outer peripheral surface of the stator 9 with the inner peripheral surface of the motor housing 8 is in the range of 50% to 90%. Is preferred. Other configurations are the same as those of the first embodiment.
  • the non-contact portion A is provided between the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8, so that the inner periphery of the motor housing 8 is provided. Vibration caused by the deformation of the surface stator 9 is not easily transmitted to the vehicle body. Moreover, since it can implement
  • the stator 9 is supported at both ends by the motor housing 8 by the outboard side contact portion Ba and the inboard side contact portion Bb located on both sides in the axial direction of the non-contact portion A. Therefore, it is possible to prevent the stator 9 from fluctuating in the vertical direction and the occurrence of a declination during traveling of the vehicle, and the effect that the vibration of the stator 9 can be suppressed is obtained.
  • FIG. 9 is a cross-sectional view taken along line IX-O-IX in FIG. 10
  • FIG. 10 is a cross-sectional view taken along line XX in FIG.
  • a non-contact portion A between the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 is provided in the inner peripheral surface of the motor housing 8 and is a rectangular recess as viewed from the radial direction. 56.
  • the vehicle body mounting piece 51 provided on the outer peripheral surface of the motor housing 8 is disposed so that a part or all of the axial direction at the base end thereof overlaps the radial projection region of the non-contact portion A composed of the rectangular recess 56. ing. In the case of this embodiment, the entire base end of the vehicle body attachment piece 51 overlaps the radial projection region of the non-contact portion A.
  • the ratio of the area of the non-contact portion A to the area of the fitting range between the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 is in the range of 50% to 90%. preferable.
  • Other configurations are the same as those of the first and second embodiments.
  • the stator 9 is connected to the motor housing by the outboard side contact portion Ba and the inboard side contact portion Bb located on both sides in the axial direction of the non-contact portion A. 8 is supported at both ends. Thereby, it is possible to prevent the stator 9 from fluctuating in the vertical direction and the occurrence of a declination during traveling of the vehicle, and the effect that the vibration of the stator 9 can be suppressed is obtained.
  • the plurality of vehicle body attachment pieces 51 are arranged symmetrically. However, as shown in FIGS. 11 and 12, the vehicle body attachment pieces 51 are arranged only on the left and right sides. In addition, even if the vehicle body mounting piece 51 has a configuration (not shown) in which the left and right vehicle body mounting pieces 51 are unevenly arranged, the same operational effects as those of the first to third embodiments can be obtained.
  • FIG. 11 is an example in which the non-contact portion A is formed of the axial groove 50
  • FIG. 12 is an example in which the non-contact portion A is formed of the circumferential groove 55.
  • the entire base end of the vehicle body mounting piece 51 overlaps the radial projection region of the non-contact portion A.
  • Only a part of the base end of 51 may overlap with the radial projection region of the non-contact portion A.
  • a part of the base ends of the upper two vehicle body attachment pieces 51 extends in the circumferential direction from the radial projection region of the non-contact portion A. It is off.
  • a part of the base end of the vehicle body attachment piece 51 is deviated from the radial projection region of the non-contact portion A in the axial direction.
  • the effect is inferior to the configurations of the first to third embodiments.
  • it is possible to make it difficult to transmit the vibration caused by the deformation of the stator 9 to the vehicle body.
  • FIG. 15 shows an in-wheel motor drive apparatus having a different form from the above embodiments.
  • the in-wheel motor drive device IWM also includes the rotary electric motor 1, the speed reducer 2, and the wheel bearing 5 as in the above embodiments, but the configuration of the speed reducer 2 is different from that in the above embodiments.
  • the rotary electric motor 1 and the wheel bearing 5 are basically the same as those in the above-described embodiments, and thus detailed description thereof is omitted.
  • the speed reducer 2 of the in-wheel motor drive device IWM includes an input gear shaft 32 having an input gear 32a, an intermediate gear shaft 33 having first and second intermediate gears 33a and 33b, and an output gear shaft having an output gear 34a.
  • 34 is a parallel shaft gear reducer.
  • the input gear shaft 32 is rotatably supported via rolling bearings 35 a and 35 b provided in the motor housing 8.
  • the intermediate gear shaft 33 is a stepped gear having a large-diameter first intermediate gear 33a meshing with the input gear 32a and a small-diameter second intermediate gear 33b meshing with the output gear 34a on the outer peripheral surface.
  • the intermediate gear shaft 33 is rotatably supported via rolling bearings 36 and 37 provided in the motor housing 8.
  • the output gear shaft 34 has a large-diameter output gear 34 a and is rotatably supported via rolling bearings 39 and 40 provided in the motor housing 8.
  • the input gear shaft 32 receives a driving force from the rotating shaft 6 of the rotary motor 1.
  • the first intermediate gear 33a meshes with the input gear 32a
  • the second intermediate gear 33b meshes with the output gear 34a.
  • a part of the output gear shaft 34 in the axial direction is pulled out from the motor housing 8 to the outboard side, and is splined to the rotating wheel of the wheel bearing 5 to transmit the driving force to the driving wheel (not shown).
  • axial grooves 50 are provided at a plurality of locations in the circumferential direction on the inner peripheral surface of the motor housing 8, and the axial grooves 50 allow the outer peripheral surface of the stator 9 and the motor housing 8 to be
  • the non-contact part A which the inner peripheral surface opposes by non-contact is comprised.
  • the entire base end of the vehicle body attachment piece 51 overlaps the radial projection region of the non-contact portion A.
  • the non-contact portion A is configured by the axial groove 50 as in the first embodiment, but the non-contact portion A is formed by the circumferential groove 55 as in the second embodiment. (Not shown), and the non-contact portion A may be constituted by a rectangular recess 56 when viewed from the radial direction (not shown), as in the third embodiment. In that case, the same effect as described above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

An in-wheel motor drive device (IWM) that comprises a rotary electric motor (1), a wheel bearing (5), and a decelerator (2). The rotary electric motor (1) has: an annular stator (9); a housing (8) into which the stator (9) is fitted and fixed; a rotary shaft (6) that is rotatably supported in the housing (8) by bearings (11, 12) so as to be coaxial with the stator (9); and a rotor (10) that rotates integrally with the rotary shaft (6). A no-contact section (A) is provided between an outer circumferential surface of the stator (9) and an inner circumferential surface of the housing (8). A vehicle body attachment piece (51) protrudes from an outer circumferential surface of the housing (8). All or part of a base end of the vehicle attachment piece (51) overlaps a radial-direction projection area for the no-contact section (A).

Description

インホイールモータ駆動装置、回転電動機、およびハウジングの製造方法In-wheel motor drive device, rotary electric motor, and housing manufacturing method 関連出願Related applications
 本出願は、2018年2月8日出願の特願2018-020635の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2018-020635 filed on Feb. 8, 2018, which is incorporated herein by reference in its entirety.
 この発明は、インホイールモータ駆動装置、回転電動機、およびハウジングの製造方法に関し、特にインホイールモータ駆動装置の構成部品であるステータから発生する振動を低減させる技術に関する。 The present invention relates to an in-wheel motor drive device, a rotary motor, and a method for manufacturing a housing, and more particularly to a technique for reducing vibrations generated from a stator that is a component of the in-wheel motor drive device.
 インホイールモータ駆動装置に用いられる回転電動機は、小型化、軽量化、高効率、高出力、低振動(低騒音)であることが求められている。回転電動機は、ステータに巻回されたコイルに通電され、各相への通電を切替えることにより、コイルから発生された磁力とロータに固定された永久磁石からの磁力との相互作用により回転トルクが発生する。その際、例えばステータコアには、径方向の吸引力・反発力が作用するため、ロータの回転速度に応じた周期でステータが径方向に変形する。その結果、ステータの外周面に、ロータの回転速度に同期した振動が発生する。 Rotational motors used in in-wheel motor drive devices are required to be small, light, high efficiency, high output, and low vibration (low noise). The rotating motor is energized through a coil wound around the stator, and by switching energization to each phase, the rotational torque is generated by the interaction between the magnetic force generated from the coil and the magnetic force from the permanent magnet fixed to the rotor. Occur. At that time, for example, a suction force / repulsion force in the radial direction acts on the stator core, so that the stator is deformed in the radial direction at a cycle corresponding to the rotational speed of the rotor. As a result, vibrations synchronized with the rotational speed of the rotor are generated on the outer peripheral surface of the stator.
 ところで、インホイールモータ駆動装置は、懸架装置のばね下に搭載され、サスペンションアーム等を介して車体に取り付けられる。懸架装置は剛性を確保した設計となっているため、インホイールモータ駆動装置に、前記ステータの変形に起因する振動が発生すると、この振動が懸架装置を介して車体に伝搬されやすい。 Incidentally, the in-wheel motor drive device is mounted under the spring of the suspension device and attached to the vehicle body via a suspension arm or the like. Since the suspension device is designed to ensure rigidity, when vibration is generated in the in-wheel motor drive device due to deformation of the stator, this vibration is likely to be propagated to the vehicle body via the suspension device.
 このようなステータの外周面に発生する振動を車体に伝え難くするには、ステータからハウジングへ伝わる振動を抑制することが求められる。また、ステータの軸心とロータの回転軸心とのずれによりコギングトルクが増大するため、前記ずれを可能な限りゼロにすることが求められる。 In order to make it difficult to transmit the vibration generated on the outer peripheral surface of the stator to the vehicle body, it is required to suppress the vibration transmitted from the stator to the housing. Further, since the cogging torque increases due to the deviation between the stator axis and the rotor rotation axis, it is required to make the deviation as zero as possible.
 インホイールモータ駆動装置等の回転電動機において、ステータから発生する振動を抑制する方法として、以下の構造が提案されている。
(1)剛性がハウジングよりも小さいインナーフレームを介して、ステータをハウジングに対して軸方向に片持ち固定し、ステータの外周面とハウジングの内周面との間に全周にわたる隙間を設けることにより、ステータ起因の振動をハウジングに伝えないようにした構造(特許文献1)。
In a rotary electric motor such as an in-wheel motor drive device, the following structure has been proposed as a method for suppressing vibration generated from a stator.
(1) The stator is cantilevered in the axial direction with respect to the housing via an inner frame whose rigidity is smaller than that of the housing, and a gap over the entire circumference is provided between the outer peripheral surface of the stator and the inner peripheral surface of the housing. Therefore, the structure prevents the vibration caused by the stator from being transmitted to the housing (Patent Document 1).
(2)ハウジングの内周面またはステータの外周面に設けられた段差部でハウジングとステータとが互いに固定され、前記段差部の一部に、ハウジングとステータとが非接触となる非接触部を設けることにより、ステータ起因の振動をハウジングに伝搬し難くした構造(特許文献2)。 (2) The housing and the stator are fixed to each other at a step portion provided on the inner peripheral surface of the housing or the outer peripheral surface of the stator, and a non-contact portion where the housing and the stator are not in contact with each other is formed in a part of the step portion. By providing the structure, it is difficult to propagate the vibration caused by the stator to the housing (Patent Document 2).
(3)ステータコアの外周部に、ステータをハウジングに固定するリングを備え、かつ、リングはステータが変位したときに弾性変形する曲折部を有し、前記曲折部がステータの振動を吸収することにより振動を低減させることができる構造(特許文献3)。 (3) The outer periphery of the stator core includes a ring for fixing the stator to the housing, and the ring has a bent portion that is elastically deformed when the stator is displaced, and the bent portion absorbs vibration of the stator. A structure that can reduce vibration (Patent Document 3).
(4)ステータを格納する開口部を有するハウジングを備え、ハウジングの開口部の内周面とステータコアとの隙間が相対的に小さく、かつ、開口部の内径が一定である第1部分と、ステータコアの軸方向に前記第1部分と並び、開口部の内周面とステータコアとの隙間が相対的大きい第2部分とを含む構造(特許文献3,4)。この構造により、ステータコアとハウジングとの接触面積を減らし、その結果、ステータから発生する振動を低減させる。 (4) A first portion including a housing having an opening for storing the stator, a gap between the inner peripheral surface of the opening of the housing and the stator core is relatively small, and an inner diameter of the opening is constant, and the stator core A structure including a second portion that is aligned with the first portion in the axial direction and that has a relatively large gap between the inner peripheral surface of the opening and the stator core (Patent Documents 3 and 4). With this structure, the contact area between the stator core and the housing is reduced, and as a result, vibrations generated from the stator are reduced.
国際公開第2014/125864号International Publication No. 2014/125864 特開2015-112001号公報JP2015-11001A 特開2010-124661号公報JP 2010-124661 A 特開2007-228725号公報JP 2007-228725 A
 特許文献1では、剛性がハウジングよりも小さいインナーフレームを介して、ステータを軸方向にハウジングと締結し、ステータの外周面とハウジングの内周面との間に全周にわたる隙間を設けることにより、ステータ起因の振動をハウジングに伝えないようにした構造が提案されている。
 しかし、この構造は、ステータがハウジングに対して片持ち支持されているため、走行中にステータが上下方向に変動することによる、ステータ起因の振動発生が懸念される。また、ステータと、ロータを支持する軸受との同軸を確保することについては記載されているが、ステータとインナーフレームとの同軸を確保する方法については記載されていない。さらに、インナーフレームとステータをボルト固定し、かつインナーフレームをハウジングにボルト固定するため、部品点数の増加が懸念される。
In Patent Document 1, the stator is axially fastened to the housing via an inner frame whose rigidity is smaller than that of the housing, and a clearance is provided across the entire circumference between the outer peripheral surface of the stator and the inner peripheral surface of the housing. A structure has been proposed in which vibrations caused by the stator are not transmitted to the housing.
However, in this structure, since the stator is cantilevered with respect to the housing, there is a concern about the occurrence of vibration due to the stator due to the vertical movement of the stator during traveling. Moreover, although it describes about ensuring the coaxial of a stator and the bearing which supports a rotor, it is not described about the method of ensuring the coaxial of a stator and an inner frame. Furthermore, since the inner frame and the stator are bolted and the inner frame is bolted to the housing, there is a concern about an increase in the number of parts.
 特許文献2では、ハウジングの内周面またはステータの外周面に段差部を設けた構造が提案されているが、この構造は、ステータがハウジングに対して片持ち支持されるため、前記同様に、走行中にステータが上下方向に変動することによる、ステータ起因の振動発生が懸念される。 In Patent Document 2, a structure in which a step portion is provided on the inner peripheral surface of the housing or the outer peripheral surface of the stator is proposed, but this structure is cantilevered with respect to the housing. There is concern about the occurrence of vibrations caused by the stator due to the vertical movement of the stator during traveling.
 特許文献3では、弾性変形する曲折部を設けたリングを、ステータコアとハウジング間に設置することにより振動を抑制することが提案されているが、曲折部の形状が複雑であり加工が困難である。また、ステータを固定したリングのハウジングへの固定方法は大きく分けて二つ提案されている。一つ目は、リングをハウジングに対してフローティング固定する方法であるが、この固定方法では、ステータとハウジングの同軸度を保証する手段については触れられていない。二つ目は、リングをハウジングと当接させることにより、ステータ中心と回転中心とを一致させる方法であるが、この固定方法では、ステータがハウジングに対して完全にフローティングされているとは考えられず、ステータの振動を完全に防止することは困難である。 In Patent Document 3, it has been proposed to suppress vibration by installing a ring provided with a bent portion that is elastically deformed between the stator core and the housing. However, the shape of the bent portion is complicated and processing is difficult. . There are two main methods of fixing the ring with the stator fixed to the housing. The first method is to fix the ring to the housing in a floating manner. However, in this fixing method, no means for guaranteeing the coaxiality of the stator and the housing is mentioned. The second method is to make the center of the stator coincide with the center of rotation by bringing the ring into contact with the housing. In this fixing method, it is considered that the stator is completely floating with respect to the housing. Therefore, it is difficult to completely prevent the vibration of the stator.
 特許文献4では、ステータコアとハウジングの接触面積を減らすことにより、ステータ変形による振動伝達を低減させる構造が提案されているが、特許文献1,2と同様に、ステータが片持ち支持されることにより、走行中にステータが上下方向に変動することが懸念される。 Patent Document 4 proposes a structure that reduces vibration transmission due to stator deformation by reducing the contact area between the stator core and the housing. However, as in Patent Documents 1 and 2, the stator is cantilevered. There is a concern that the stator fluctuates in the vertical direction during traveling.
 この発明の目的は、ステータの変形に起因する振動が車体に伝わり難いインホイールモータ駆動装置を提供することである。
 この発明の他の目的は、ステータの変形に起因する振動が車体に伝わり難く、インホイールモータ駆動装置に用いるのに適した回転電動機を提供することである。
 この発明のさらに他の目的は、ステータの軸心と回転軸の軸心とが一致するようにハウジングを加工することが可能なハウジングの製造方法を提供することである。
An object of the present invention is to provide an in-wheel motor drive device in which vibration caused by deformation of a stator is not easily transmitted to a vehicle body.
Another object of the present invention is to provide a rotary electric motor suitable for use in an in-wheel motor drive device, since vibration due to deformation of the stator is not easily transmitted to the vehicle body.
Still another object of the present invention is to provide a housing manufacturing method capable of processing the housing so that the axis of the stator and the axis of the rotating shaft coincide with each other.
 この発明のインホールモータ駆動装置は、回転電動機と、車輪用軸受と、前記回転電動機の回転を減速して前記車輪用軸受の回転輪に伝達する減速機とを備え、
 前記回転電動機は、環状のステータと、このステータが内部に嵌合しかつ固定されたハウジングと、前記ハウジングに軸受を介して前記ステータと同軸心に回転自在に支持された回転軸と、この回転軸と一体に回転するロータとを有し、
 前記ステータの外周面と前記ハウジングの内周面との嵌合範囲に非接触部が設けられ、
 前記ハウジングの外周面から車体取付片が突出し、この車体取付片の基端の一部または全部が前記非接触部の径方向投影領域に重なっている。
The in-hole motor drive device of the present invention includes a rotary motor, a wheel bearing, and a speed reducer that decelerates the rotation of the rotary motor and transmits it to the rotating wheel of the wheel bearing,
The rotary motor includes an annular stator, a housing in which the stator is fitted and fixed, a rotating shaft that is rotatably supported coaxially with the stator via a bearing in the housing, and the rotation A rotor that rotates integrally with the shaft,
A non-contact portion is provided in a fitting range between the outer peripheral surface of the stator and the inner peripheral surface of the housing,
A vehicle body mounting piece projects from the outer peripheral surface of the housing, and a part or all of the base end of the vehicle body mounting piece overlaps the radial projection region of the non-contact portion.
 例えば、前記非接触部が、前記ハウジングの内周面における円周方向の複数箇所に設けられた軸方向の溝状であり、前記車体取付片が前記ハウジングの円周方向の複数箇所に設けられ、これら複数の車体取付片の基端における円周方向の一部または全部が、それぞれ別の前記非接触部の径方向投影領域に重なっていてもよい。 For example, the non-contact portion has an axial groove shape provided at a plurality of locations in the circumferential direction on the inner peripheral surface of the housing, and the vehicle body mounting pieces are provided at a plurality of locations in the circumferential direction of the housing. In addition, part or all of the circumferential direction at the base ends of the plurality of vehicle body mounting pieces may overlap with the radial projection regions of the different non-contact portions.
 また、前記非接触部が、前記ハウジングの内周面に設けられた円周方向の溝状であり、前記車体取付片の基端における軸方向の一部または全部が前記非接触部の径方向投影領域に重なっていてもよい。 Further, the non-contact part is a circumferential groove provided on the inner peripheral surface of the housing, and a part or all of the axial direction at the base end of the vehicle body attachment piece is a radial direction of the non-contact part. It may overlap the projection area.
 インホールモータ駆動装置は、回転電動機において、磁力の相互作用によりロータが回転するが、同時にステータに径方向の吸引力・反発力が作用するため、ステータの変形に起因する振動が発生する。上記のように、ステータの外周面とハウジングの内周面との間に非接触部を設けたことにより、ステータからハウジングに伝搬される振動を少なくすることができる。さらに、非接触部の径方向投影領域に重なるように、車体取付片の基端の一部または全部を位置させたことにより、ステータから車体取付片までの振動伝搬経路が曲折したものとなり、振動が減衰して車体取付片に伝わる。これらのことから、ステータの変形に起因する振動が車体に伝わり難い。この構成は、例えばハウジングの内周面に非接触部となる軸方向または円周方向の溝を設けることで実現できるため、回転電動機として必須の部品以外に、他の部品を使用しない簡素な構成とすることができる。 In the in-hole motor drive device, the rotor rotates due to the interaction of magnetic force in a rotary electric motor, but at the same time, a radial attracting force / repulsive force acts on the stator, so that vibration due to deformation of the stator occurs. As described above, by providing the non-contact portion between the outer peripheral surface of the stator and the inner peripheral surface of the housing, vibration propagated from the stator to the housing can be reduced. Further, by positioning a part or all of the base end of the vehicle body mounting piece so as to overlap the radial projection area of the non-contact portion, the vibration propagation path from the stator to the vehicle body mounting piece becomes bent, and vibration is generated. Is attenuated and transmitted to the body mounting piece. For these reasons, it is difficult for vibration caused by deformation of the stator to be transmitted to the vehicle body. This configuration can be realized, for example, by providing an axial or circumferential groove serving as a non-contact portion on the inner peripheral surface of the housing, so that a simple configuration that does not use other components in addition to the components essential as a rotary motor It can be.
 この発明のインホイールモータ駆動装置において、前記ステータの外周面と前記ハウジングの内周面とが前記嵌合範囲における接触部で互いに接触し、この接触部のうちの前記非接触部の軸方向両側に位置する部分により、前記ステータが前記ハウジングに両持ち支持されていてもよい。ステータがハウジングに両持ち支持されていると、車両の走行時にステータが上下方向に変動することや偏角が発生することが防止され、ステータの振動を抑制することができる。 In the in-wheel motor drive device of this invention, the outer peripheral surface of the stator and the inner peripheral surface of the housing are in contact with each other at the contact portion in the fitting range, and both axial sides of the non-contact portion of the contact portion The stator may be supported at both ends by the housing by a portion located in the housing. When the stator is supported at both ends by the housing, it is possible to prevent the stator from fluctuating in the vertical direction and to generate a declination when the vehicle is traveling, and to suppress the vibration of the stator.
 この発明のインホイールモータ駆動装置において、前記ステータの外周面における前記嵌合範囲の面積に対して、前記非接触部の面積が占める比率が50%以上90%以下の範囲であってもよい。 In the in-wheel motor drive device of the present invention, the ratio of the area of the non-contact portion to the area of the fitting range on the outer peripheral surface of the stator may be in a range of 50% to 90%.
 この発明のインホイールモータ駆動装置において、前記ステータの外周面と前記ハウジングの内周面とが前記嵌合範囲における接触部で互いに接触し、前記ステータと前記ハウジングとが前記接触部において隙間嵌めまたは締まり嵌めで互いに嵌合することで、前記ステータの軸心と前記回転軸の軸心とを一致させてあってもよい。このようにステータの軸心と回転軸の軸心とを一致させることで、ステータから発生する振動を抑えることができる。 In the in-wheel motor drive device of the present invention, the outer peripheral surface of the stator and the inner peripheral surface of the housing are in contact with each other at a contact portion in the fitting range, and the stator and the housing are fitted with a gap or The shaft center of the stator and the shaft center of the rotating shaft may be made to coincide with each other by interference fitting. In this way, by making the axis of the stator coincide with the axis of the rotary shaft, vibrations generated from the stator can be suppressed.
 この発明のインホイールモータ駆動装置において、前記ハウジングの内周面の軸心と前記回転軸の軸心との同軸度が、0.2mm以下であってもよい。前記同軸度を0.2mm以下とすることで、ステータに起因する振動レベルを抑えることができる。また、この程度の同軸度であれば一般的な旋削加工だけでよく、精密加工を行わなくても済むので、ハウジングの加工工数を削減することができる。 In the in-wheel motor drive device of the present invention, the coaxiality between the axis of the inner peripheral surface of the housing and the axis of the rotary shaft may be 0.2 mm or less. By setting the coaxiality to 0.2 mm or less, the vibration level caused by the stator can be suppressed. Further, if the degree of concentricity is about this level, it is only necessary to perform general turning, and it is not necessary to perform precision machining, so that the number of processing steps for the housing can be reduced.
 この発明の回転電動機は、環状のステータと、このステータが内部に嵌合しかつ固定されたハウジングと、前記ハウジングに軸受を介して前記ステータと同軸心に回転自在に支持された回転軸と、この回転軸と一体に回転するロータとを有し、
 前記ステータの外周面と前記ハウジングの内周面との嵌合範囲に非接触部が設けられ、
 前記ハウジングの外周面から車体取付片が突出し、この車体取付片の基端の一部または全部が前記非接触部の径方向投影領域に重なる。
The rotary electric motor of the present invention includes an annular stator, a housing in which the stator is fitted and fixed, a rotating shaft that is rotatably supported coaxially with the stator via a bearing in the housing, A rotor that rotates integrally with the rotating shaft;
A non-contact portion is provided in a fitting range between the outer peripheral surface of the stator and the inner peripheral surface of the housing,
A vehicle body mounting piece projects from the outer peripheral surface of the housing, and a part or all of the base end of the vehicle body mounting piece overlaps the radial projection region of the non-contact portion.
 上記のように、ステータの外周面とハウジングの内周面との間に非接触部を設けたことにより、ステータからハウジングに伝搬される振動を少なくすることができる。さらに、非接触部の径方向投影領域に重なるように、車体取付片の基端の一部または全部を位置させたことにより、ハウジングに伝搬された振動が車体取付片に伝わるまでに減衰される。これらのことから、ステータの変形に起因する振動が車体に伝わり難い。よって、この回転電動機は、インホイールモータ駆動装置に用いるのに適する。 As described above, by providing a non-contact portion between the outer peripheral surface of the stator and the inner peripheral surface of the housing, vibration transmitted from the stator to the housing can be reduced. Further, by positioning a part or all of the base end of the vehicle body mounting piece so as to overlap the radial projection region of the non-contact portion, the vibration transmitted to the housing is attenuated until it is transmitted to the vehicle body mounting piece. . For these reasons, it is difficult for vibration caused by deformation of the stator to be transmitted to the vehicle body. Therefore, this rotary electric motor is suitable for use in an in-wheel motor drive device.
 この発明のハウジングの製造方法は、回転電動機と、車輪用軸受と、前記回転電動機の回転を減速して前記車輪用軸受の回転輪に伝達する減速機とを備え、前記回転電動機は、環状のステータと、このステータが内部に嵌合しかつ固定されたハウジングと、前記ハウジングに軸受を介して前記ステータと同軸心に回転自在に支持された回転軸と、この回転軸と一体に回転するロータとを有するインホイールモータ駆動装置における前記ハウジングの製造方法であって、
 前記ハウジングとなる素材を、芯出し状態を変更することなく旋削加工して、前記ハウジングにおける前記ステータの外周面と対向する内周面、および前記ハウジングにおける前記軸受が収容される部分の内周面を成形する。
The housing manufacturing method of the present invention includes a rotary motor, a wheel bearing, and a speed reducer that reduces the rotation of the rotary motor and transmits the reduced speed to the rotating wheel of the wheel bearing. A stator, a housing in which the stator is fitted and fixed, a rotating shaft that is rotatably supported by the housing coaxially with the stator via a bearing, and a rotor that rotates integrally with the rotating shaft A manufacturing method of the housing in an in-wheel motor drive device comprising:
An inner peripheral surface of a portion of the housing that accommodates the bearing, and an inner peripheral surface of the housing facing the outer peripheral surface of the stator by turning the material without changing the centering state. Is molded.
 このように、ハウジングにおけるステータの外周面と対向する内周面、およびハウジングにおける軸受が収容される部分の内周面を同軸加工することにより、ステータの軸心と、軸受によって支持される回転軸の軸心との同軸度を、可能な限りゼロに近づけることができる。それにより、ステータの軸心とロータの回転軸心とのずれによるコギングトルクを低減することができる。 Thus, by coaxially processing the inner peripheral surface of the housing that opposes the outer peripheral surface of the stator and the inner peripheral surface of the portion of the housing in which the bearing is accommodated, the stator shaft and the rotation shaft supported by the bearing Can be as close to zero as possible. Thereby, the cogging torque due to the deviation between the stator axis and the rotor axis can be reduced.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係るインホイールモータ駆動装置の断面図である。 図1のII-II線断面となる回転電動機部分の断面図である。 図1のIII-III線断面となる減速機部分の断面図である。 図3の部分拡大図である。 同インホイールモータ駆動装置を懸架装置に取り付けた状態を示す図である。 ロータの回転速度とハウジング振動値との関係を示すグラフである。 この発明の第2の実施形態に係るインホイールモータ駆動装置の断面図である。 図7のVIII-VIII線断面となる回転電動機部分の断面図である。 この発明の第3の実施形態に係るインホイールモータ駆動装置の断面図である。 図9のX-X線断面となる回転電動機部分の断面図である。 第1の実施形態の変形例であるインホイールモータ駆動装置の回転電動機部分の断面図である。 第2の実施形態の変形例であるインホイールモータ駆動装置の回転電動機部分の断面図である。 第1の実施形態の他の変形例であるインホイールモータ駆動装置の回転電動機部分の断面図である。 第2の実施形態の他の変形例であるインホイールモータ駆動装置の断面図である。 この発明の他の実施形態に係る回転電動機を備えたインホイールモータ駆動装置の断面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
It is sectional drawing of the in-wheel motor drive device which concerns on 1st Embodiment of this invention. FIG. 2 is a cross-sectional view of a rotary motor portion taken along line II-II in FIG. 1. FIG. 3 is a cross-sectional view of a reduction gear portion taken along line III-III in FIG. 1. FIG. 4 is a partially enlarged view of FIG. 3. It is a figure which shows the state which attached the same in-wheel motor drive device to the suspension apparatus. It is a graph which shows the relationship between the rotational speed of a rotor, and a housing vibration value. It is sectional drawing of the in-wheel motor drive device which concerns on 2nd Embodiment of this invention. FIG. 8 is a cross-sectional view of a rotary electric motor portion taken along line VIII-VIII in FIG. 7. It is sectional drawing of the in-wheel motor drive device which concerns on 3rd Embodiment of this invention. FIG. 10 is a cross-sectional view of a rotary motor portion taken along the line XX of FIG. 9. It is sectional drawing of the rotary electric motor part of the in-wheel motor drive device which is a modification of 1st Embodiment. It is sectional drawing of the rotary electric motor part of the in-wheel motor drive device which is a modification of 2nd Embodiment. It is sectional drawing of the rotary electric motor part of the in-wheel motor drive device which is another modification of 1st Embodiment. It is sectional drawing of the in-wheel motor drive device which is the other modification of 2nd Embodiment. It is sectional drawing of the in-wheel motor drive device provided with the rotary electric motor which concerns on other embodiment of this invention.
 この発明の実施形態を図面と共に説明する。
[第1の実施形態]
 図1はこの発明の第1の実施形態にかかるインホイールモータ駆動装置IWMの断面図である。このインホイールモータ駆動装置IWMは、例えば車両の駆動輪を回転駆動する装置として使用される。インホイールモータ駆動装置IWMは、駆動力を発生する回転電動機1と、この回転電動機1の回転を減速して伝達または出力する減速機2と、この減速機2からの出力を図示外の駆動輪に伝える車輪用軸受5とを備える。なお、この明細書において、インホイールモータ駆動装置IWMを車両に設けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の車幅方向中央寄りとなる側をインボード側と呼ぶ。
An embodiment of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a sectional view of an in-wheel motor drive apparatus IWM according to the first embodiment of the present invention. The in-wheel motor drive device IWM is used as a device that rotationally drives drive wheels of a vehicle, for example. The in-wheel motor drive device IWM includes a rotary electric motor 1 that generates a driving force, a speed reducer 2 that decelerates and transmits or outputs the rotation of the rotary electric motor 1, and an output from the speed reducer 2 that is not illustrated. The wheel bearing 5 is provided. In this specification, the side closer to the outside in the vehicle width direction of the vehicle with the in-wheel motor drive device IWM provided in the vehicle is referred to as the outboard side, and the side closer to the center in the vehicle width direction of the vehicle is referred to as the inboard side. Called the board side.
 <回転電動機1>
 回転電動機1は、モータハウジング8と、環状のステータ9と、回転軸6と、ロータ10とを備える。この回転電動機1は、モータハウジング8の内周に設けられたステータ9と、ステータ9の半径方向内方に位置するロータ10との間にラジアルギャップを設けた埋込み磁石型同期モータ(Interior Permanent Magnet Motor:略称;IPMモータ)である。モータハウジング8には、軸方向に離隔して軸受11,12が設けられ、これら軸受11,12に、回転軸6が回転自在に支持されている。ロータ10は、軸受11,12に一体に配置されている。
<Rotary motor 1>
The rotary electric motor 1 includes a motor housing 8, an annular stator 9, a rotating shaft 6, and a rotor 10. The rotary electric motor 1 includes an interior permanent magnet (Interior Permanent Magnet) in which a radial gap is provided between a stator 9 provided on the inner periphery of a motor housing 8 and a rotor 10 positioned radially inward of the stator 9. Motor: Abbreviation: IPM motor). The motor housing 8 is provided with bearings 11 and 12 which are spaced apart in the axial direction, and the rotating shaft 6 is rotatably supported by these bearings 11 and 12. The rotor 10 is disposed integrally with the bearings 11 and 12.
 なお、モータハウジング8は、インボード側が開口したモータハウジング本体8aと、このモータハウジング本体8aのインボード側開口を塞ぐ環状蓋部材8bおよび中央蓋部材8cとでなる。前記軸受11,12のうち、インボード側の軸受11は環状蓋部材8bに設けられ、アウトボード側の軸受12はモータハウジング本体8aに設けられている。 The motor housing 8 includes a motor housing main body 8a having an inboard side opened, and an annular lid member 8b and a central lid member 8c for closing the inboard side opening of the motor housing main body 8a. Of the bearings 11 and 12, the inboard side bearing 11 is provided in the annular lid member 8b, and the outboard side bearing 12 is provided in the motor housing body 8a.
 回転軸6は、回転電動機1の駆動力を減速機2に伝達する軸である。回転軸6の軸方向中間付近部に径方向外方に延びるフランジ部6aが設けられ、このフランジ部6aにロータ固定部材13が設けられている。ロータ固定部材13にロータ10が取付けられている。つまり、ロータ10は回転軸6と一体的に回転するように設けられている。ロータ10は、例えば、軟質磁性材料から成る図示外のコア部と、このコア部に内蔵される図示外の永久磁石とを有する。この永久磁石には、例えばネオジウム系磁石が用いられている。 The rotary shaft 6 is a shaft that transmits the driving force of the rotary electric motor 1 to the speed reducer 2. A flange portion 6a extending radially outward is provided in the vicinity of the middle portion of the rotating shaft 6 in the axial direction, and the rotor fixing member 13 is provided on the flange portion 6a. The rotor 10 is attached to the rotor fixing member 13. That is, the rotor 10 is provided so as to rotate integrally with the rotating shaft 6. The rotor 10 includes, for example, a core portion (not shown) made of a soft magnetic material and a permanent magnet (not shown) built in the core portion. For example, a neodymium magnet is used as the permanent magnet.
 ステータ9は、例えば、軟質磁性材料から成るステータコア9aと、このステータコア9aに巻かれたステータコイル9bとを有する。ステータコア9aは、外周面が断面円形とされたリング状で、その内周面に内径側に突出する複数のティースが円周方向に並んで形成されている。ステータコイル9bは、ステータコア9aの前記各ティースに巻回される。後述する接触部Bにおいて、モータハウジング8の内周面にステータ9の外周面が嵌合している。さらに、複数のボルト23によりモータハウジング8に対しステータ9が軸方向に締め付けて固定されている。図1のII-II線断面図である図2に示すように、複数のボルト23は、円周方向一定間隔おきに設けられている。なお、図1は図2のI-O-I線断面図である。 The stator 9 includes, for example, a stator core 9a made of a soft magnetic material, and a stator coil 9b wound around the stator core 9a. The stator core 9a has a ring shape with an outer peripheral surface having a circular cross section, and a plurality of teeth protruding inward on the inner peripheral surface are formed side by side in the circumferential direction. The stator coil 9b is wound around the teeth of the stator core 9a. The outer peripheral surface of the stator 9 is fitted to the inner peripheral surface of the motor housing 8 at a contact portion B described later. Further, the stator 9 is fastened and fixed to the motor housing 8 in the axial direction by a plurality of bolts 23. As shown in FIG. 2, which is a cross-sectional view taken along line II-II in FIG. 1, the plurality of bolts 23 are provided at regular intervals in the circumferential direction. 1 is a cross-sectional view taken along the line I-O-I in FIG.
 図1において、モータハウジング8のモータハウジング本体8aには、ステータコア9aの軸方向端面における外径側部分に対向する環状のハウジング段部8aaが設けられている。このハウジング段部8aaに、円周方向一定間隔おきに複数の雌ねじ24が形成されている。ハウジング段部8aaに、ステータコア9aのアウトボード側の軸方向端面を当接させ、ステータコア9aのインボード側から複数のボルト23を通して各雌ねじ24に螺合させることによりステータ9が固定されている。 In FIG. 1, the motor housing body 8a of the motor housing 8 is provided with an annular housing step 8aa facing the outer diameter side portion of the axial end surface of the stator core 9a. A plurality of female screws 24 are formed in the housing step portion 8aa at regular intervals in the circumferential direction. The stator 9 is fixed by bringing the axial end face of the stator core 9a on the outboard side into contact with the housing step 8aa and screwing it into the female screws 24 through the plurality of bolts 23 from the inboard side of the stator core 9a.
 図1、図2に示すように、モータハウジング8の内周面には、円周方向の複数箇所に軸方向溝50が設けられている。この軸方向溝50は、ステータ9の外周面とモータハウジング8の内周面とが非接触で対向する非接触部Aを構成している。ステータ9の外周面とハウジング8の内周面との嵌合範囲において、非接触部A以外の接触部Bでは、ステータ9の外周面とモータハウジング8の内周面とが接触状態で対向している。言い換えると、ステータ9とモータハウジング8とが、接触部Bにおいて、隙間嵌めまたは締まり嵌めで互いに嵌合している。なお、本明細書において、「嵌合範囲」とは、嵌合によって互いに対向するモータハウジング8の内周面およびステータ9の外周面の各全体範囲(接触部Bのみならず非接触部Aも含む)を意味する。ステータ9の外周面における前記嵌合範囲の面積に対して、非接触部Aの面積が占める比率が50%以上90%以下の範囲であるのが好ましい。 As shown in FIGS. 1 and 2, axial grooves 50 are provided on the inner peripheral surface of the motor housing 8 at a plurality of locations in the circumferential direction. The axial groove 50 forms a non-contact portion A where the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 face each other in a non-contact manner. In the fitting range between the outer peripheral surface of the stator 9 and the inner peripheral surface of the housing 8, the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 are in contact with each other at the contact portion B other than the non-contact portion A. ing. In other words, the stator 9 and the motor housing 8 are fitted to each other at the contact portion B by a clearance fit or an interference fit. In the present specification, the “fitting range” refers to the entire range of the inner peripheral surface of the motor housing 8 and the outer peripheral surface of the stator 9 that face each other by fitting (not only the contact portion B but also the non-contact portion A). Means). The ratio of the area of the non-contact portion A to the area of the fitting range on the outer peripheral surface of the stator 9 is preferably in the range of 50% to 90%.
 モータハウジング8の外周面の円周方向複数箇所から、複数の車体取付片51が突出している。これら車体取付片51は、インホイールモータ駆動装置IWMを車体に取り付けるために使用される。具体的には、図5に示すように、車体取付片51のボルト挿通孔51a(図2)に挿通したボルト52により、懸架装置53のナックルアーム53aに車体取付片51が結合される。 A plurality of vehicle body mounting pieces 51 protrude from a plurality of locations in the circumferential direction on the outer peripheral surface of the motor housing 8. These vehicle body attachment pieces 51 are used to attach the in-wheel motor drive device IWM to the vehicle body. Specifically, as shown in FIG. 5, the vehicle body attachment piece 51 is coupled to the knuckle arm 53 a of the suspension device 53 by the bolt 52 inserted into the bolt insertion hole 51 a (FIG. 2) of the vehicle body attachment piece 51.
 図1、図2に示すように、前記車体取付片51は、その基端おける円周方向の一部または全部が、軸方向溝50からなる非接触部Aの径方向投影領域に重なるように配置されている。径方向投影領域は、非接触部Aの軸方向範囲L(図1)および円周方向範囲φ(図2)で規定される領域である。この実施形態の場合、軸方向および円周方向のいずれについても、車体取付片51の基端の全部が、非接触部Aの径方向投影領域に重なっている。 As shown in FIGS. 1 and 2, the vehicle body attachment piece 51 has a part or all of the circumferential direction at the base end thereof overlapped with the radial projection region of the non-contact portion A formed by the axial groove 50. Has been placed. The radial projection area is an area defined by the axial range L (FIG. 1) and the circumferential range φ (FIG. 2) of the non-contact portion A. In the case of this embodiment, the entire base end of the vehicle body attachment piece 51 overlaps the radial projection region of the non-contact portion A in both the axial direction and the circumferential direction.
 モータハウジング本体8aは、以下のように製造するのが望ましい。すなわち、モータハウジング本体8aとなる素材を、芯出し状態を変更することなく旋削加工して、モータハウジング本体8aにおけるステータ9の外周面と対向する内周面F1、およびモータハウジング本体8aにおける軸受12が収容される部分の内周面F2を成形する。このように、両内周面F1,F2を同軸加工することにより、ステータ9の軸心と、軸受12によって支持される回転軸6の軸心との同軸度を、可能な限りゼロに近づけることができる。モータハウジング本体8aの内周面の軸心と回転軸6の軸心との同軸度は、0.2mm以下であるのが望ましい。同軸度が0.2mm程度であれば一般的な旋削加工だけでよく、精密加工を行わなくても済む。そのため、ハウジング8の加工工数を削減することができる。 The motor housing body 8a is preferably manufactured as follows. That is, the material to be the motor housing main body 8a is turned without changing the centering state, and the inner peripheral surface F1 facing the outer peripheral surface of the stator 9 in the motor housing main body 8a and the bearing 12 in the motor housing main body 8a. The inner peripheral surface F2 of the part in which is accommodated is molded. Thus, by coaxially processing both inner peripheral surfaces F1, F2, the coaxiality between the axis of the stator 9 and the axis of the rotating shaft 6 supported by the bearing 12 is made as close to zero as possible. Can do. The coaxiality between the axis of the inner peripheral surface of the motor housing main body 8a and the axis of the rotary shaft 6 is preferably 0.2 mm or less. If the concentricity is about 0.2 mm, only a general turning process is required, and no precision machining is required. Therefore, the processing man-hour of the housing 8 can be reduced.
 図1に示すように、回転軸6は、回転電動機1の中心部に位置し、軸方向の貫通孔6bを有する。そして、この貫通孔6bのアウトボード側端に減速機2の入力軸(以下、「減速機入力軸」とする。)3のインボード側端をスプライン(セレーションも含む。以下、同じ。)嵌合させて、回転軸6と減速機入力軸3とを同軸心上で連結してある。なお、この回転電動機1には、回転軸6の回転速度を検出するレゾルバ等の回転速度検出手段15が設けられている。 As shown in FIG. 1, the rotating shaft 6 is located in the center of the rotary electric motor 1 and has an axial through hole 6b. Then, the inboard side end of the input shaft (hereinafter referred to as “reducer input shaft”) 3 of the speed reducer 2 is fitted with a spline (including serrations; the same applies hereinafter) to the outboard side end of the through hole 6b. The rotary shaft 6 and the speed reducer input shaft 3 are connected on the same axis. The rotary electric motor 1 is provided with a rotational speed detecting means 15 such as a resolver for detecting the rotational speed of the rotary shaft 6.
 減速機入力軸3のアウトボード側には、減速機入力軸3と同心の出力部材4が設けられている。出力部材4のインボート側端はカップ部4aになっており、このカップ部4aの内周に軸受14aが嵌合している。また、前記カップ部4aに内ピン22を介して筒状の連結部材26が連結され、この連結部材26の内周に軸受14bが嵌合している。そして、これら軸受14a,14bにより、減速機入力軸3が回転自在に支持されている。 An output member 4 concentric with the speed reducer input shaft 3 is provided on the outboard side of the speed reducer input shaft 3. The inboard side end of the output member 4 is a cup portion 4a, and a bearing 14a is fitted to the inner periphery of the cup portion 4a. A cylindrical connecting member 26 is connected to the cup portion 4 a via an inner pin 22, and a bearing 14 b is fitted to the inner periphery of the connecting member 26. The reduction gear input shaft 3 is rotatably supported by the bearings 14a and 14b.
 <減速機2等について>
 この実施形態の減速機2は、サイクロイド減速機である。具体的には、減速機2は、外ピンハウジングIhと、減速機入力軸3と、2つの曲線板17,18と、複数の外ピン19と、内ピン22と、カウンタウェイト21と、これらを収容する減速機ハウジング7とを有する。
<About reducer 2 etc.>
The speed reducer 2 of this embodiment is a cycloid speed reducer. Specifically, the reducer 2 includes an outer pin housing Ih, a reducer input shaft 3, two curved plates 17, 18, a plurality of outer pins 19, an inner pin 22, a counterweight 21, and these And a reduction gear housing 7 for housing the motor.
 減速機入力軸3の外周面には、偏心部15,16が設けられる。これら偏心部15,16は、偏心運動による遠心力が互いに打ち消されるように180°位相をずらして設けられている。 Eccentric portions 15 and 16 are provided on the outer peripheral surface of the reduction gear input shaft 3. These eccentric portions 15 and 16 are provided with a 180 ° phase shift so that the centrifugal force due to the eccentric motion is canceled out from each other.
 図1のIII-III線断面図である図3に示すように、減速機2は、外形がなだらかな波状のトロコイド曲線で形成された2枚の曲線板17,18が、それぞれ軸受85を介して、減速機入力軸3の各偏心部15,16に装着してある。各曲線板17,18の偏心運動を外周側で案内する複数の外ピン19を、それぞれ減速機ハウジング7の内側の外ピンハウジングIh(図1)に設け、カップ部4a(図1)に取り付けた複数の内ピン22を、各曲線板17,18の内部に設けられた複数の円形の貫通孔89に挿入状態に係合させてある。 As shown in FIG. 3 which is a cross-sectional view taken along line III-III in FIG. 1, the speed reducer 2 has two curved plates 17 and 18 formed with wavy trochoidal curves with a smooth outer shape, respectively, via bearings 85. The eccentric parts 15 and 16 of the speed reducer input shaft 3 are mounted. A plurality of outer pins 19 for guiding the eccentric movements of the curved plates 17 and 18 on the outer peripheral side are provided on the outer pin housing Ih (FIG. 1) inside the reduction gear housing 7 and attached to the cup portion 4a (FIG. 1). The plurality of inner pins 22 are engaged with a plurality of circular through holes 89 provided in the curved plates 17 and 18 in an inserted state.
 図4に拡大して示すように、各外ピン19と各内ピン22には針状ころ軸受92,93が装着される。各外ピン19は、それぞれ針状ころ軸受92で両端支持されて各曲線板17,18の外周面と転接する。また各内ピン22は、針状ころ軸受93の外輪93aが、各貫通孔89の内周と転接する。針状ころ軸受92、93は、それぞれ各曲線板17,18の外周との接触抵抗、および各内ピン22と各貫通孔89の内周との接触抵抗を低減する。なお、針状ころ軸受92の外輪92aは外ピンハウジングIhに嵌合固定している。 4, needle roller bearings 92 and 93 are attached to each outer pin 19 and each inner pin 22. Each outer pin 19 is supported at both ends by needle roller bearings 92 and is in rolling contact with the outer peripheral surface of each curved plate 17, 18. Each inner pin 22 is in contact with the inner periphery of each through-hole 89 by the outer ring 93 a of the needle roller bearing 93. Needle roller bearings 92 and 93 reduce the contact resistance between the curved plates 17 and 18 and the contact resistance between the inner pins 22 and the through holes 89, respectively. The outer ring 92a of the needle roller bearing 92 is fitted and fixed to the outer pin housing Ih.
 よって、図1に示すように、各曲線板17,18の偏心運動をスムーズに車輪用軸受5の内方部材5aに回転運動として伝達し得る。回転軸6が回転すると、この回転軸6と一体回転する減速機入力軸3の偏心部15,16の外周に設けられた各曲線板17,18が偏心運動を行う。このとき外ピン19が偏心運動する各曲線板17,18の外周面と転がり接触するように係合する。これと共に、各曲線板17,18が、内ピン22と貫通孔89(図4)との係合によって、各曲線板17,18の自転運動のみが出力部材4および内方部材5aに回転運動として伝達される。回転軸6の回転に対して内方部材5aの回転は減速されたものとなる。 Therefore, as shown in FIG. 1, the eccentric motion of the curved plates 17 and 18 can be smoothly transmitted to the inner member 5a of the wheel bearing 5 as a rotational motion. When the rotary shaft 6 rotates, the curved plates 17 and 18 provided on the outer circumferences of the eccentric portions 15 and 16 of the speed reducer input shaft 3 rotating integrally with the rotary shaft 6 perform an eccentric motion. At this time, the outer pin 19 is engaged so as to be in rolling contact with the outer peripheral surfaces of the curved plates 17 and 18 that are eccentrically moved. At the same time, the curved plates 17 and 18 are engaged with the inner pins 22 and the through holes 89 (FIG. 4), so that only the rotational movement of the curved plates 17 and 18 is rotationally moved to the output member 4 and the inner member 5a. As transmitted. The rotation of the inner member 5a is decelerated with respect to the rotation of the rotating shaft 6.
 車輪用軸受5は内方部材5aと外方部材5bの間にボールを組み込んだ複列アンギュラ玉軸受である。外方部材5bはフランジ5cにより減速機ハウジング7にボルト固定されている。内方部材5aは、出力部材4にスプライン嵌合している。内方部材5aに伝達された回転運動は、内方部材5aにおけるアウトボード側の外周面に設けられた車輪取付フランジ5dから車輪に伝達される。 The wheel bearing 5 is a double-row angular contact ball bearing in which a ball is incorporated between the inner member 5a and the outer member 5b. The outer member 5b is bolted to the speed reducer housing 7 by a flange 5c. The inner member 5 a is spline-fitted to the output member 4. The rotational motion transmitted to the inner member 5a is transmitted to the wheel from a wheel mounting flange 5d provided on the outer peripheral surface of the inner member 5a on the outboard side.
 <潤滑油供給機構Jkについて>
 このインホイールモータ駆動装置IWMは、潤滑油供給機構Jkを有する。この潤滑油供給機構Jkは、減速機2の潤滑および回転電動機1の冷却の両方に用いられる潤滑油を、回転軸6の内部から供給する軸心給油機構である。この潤滑油供給機構Jkは、潤滑油路29と、供給油路30と、モータ内潤滑油貯留部31と、排出油路38と、ポンプ28とを有する。潤滑油路29は、減速機2における減速機ハウジング7内の油路である。この潤滑油路29は潤滑油タンク29aを含む。潤滑油タンク29aは、減速機ハウジング7の下部に設けられ潤滑油を貯留し、モータハウジング8の下部に設けられるモータ内潤滑油貯留部31に連通する。供給油路30は、潤滑油タンク29aから、回転電動機1および減速機2に潤滑油を供給する油路である。
<About Lubricating Oil Supply Mechanism Jk>
This in-wheel motor drive device IWM has a lubricating oil supply mechanism Jk. The lubricating oil supply mechanism Jk is an axial oil supply mechanism that supplies lubricating oil used for both the lubrication of the speed reducer 2 and the cooling of the rotary electric motor 1 from the inside of the rotating shaft 6. The lubricating oil supply mechanism Jk includes a lubricating oil passage 29, a supply oil passage 30, an in-motor lubricating oil reservoir 31, a discharge oil passage 38, and a pump 28. The lubricating oil passage 29 is an oil passage in the reduction gear housing 7 in the reduction gear 2. The lubricating oil passage 29 includes a lubricating oil tank 29a. The lubricating oil tank 29 a is provided at the lower portion of the reduction gear housing 7 and stores lubricating oil, and communicates with the in-motor lubricating oil storage portion 31 provided at the lower portion of the motor housing 8. The supply oil passage 30 is an oil passage for supplying the lubricating oil from the lubricating oil tank 29 a to the rotary electric motor 1 and the speed reducer 2.
 ポンプ28は、潤滑油タンク29aに貯留された潤滑油を、潤滑油タンク29a内の吸込口から供給油路30に循環させる。このポンプ28は、回転電動機1と減速機2との間に同一軸心上に配置される。ポンプ28は、例えば、出力部材4の回転により回転する図示外のインナーロータと、このインナーロータの回転に伴って従動回転するアウターロータと、ポンプ室と、吸入口と、吐出口(いずれも図示せず)とを有するサイクロイドポンプである。 The pump 28 circulates the lubricating oil stored in the lubricating oil tank 29a from the suction port in the lubricating oil tank 29a to the supply oil passage 30. The pump 28 is disposed on the same axis between the rotary electric motor 1 and the speed reducer 2. The pump 28 includes, for example, an unillustrated inner rotor that rotates as the output member 4 rotates, an outer rotor that rotates following the rotation of the inner rotor, a pump chamber, a suction port, and a discharge port (both shown in the figure). (Not shown).
 回転電動機1により駆動される出力部材4の回転により前記インナーロータが回転すると、前記アウターロータは従動回転する。このときインナーロータおよびアウターロータはそれぞれ異なる回転中心を中心として回転することで、前記ポンプ室の容積が連続的に変化する。これにより、潤滑油タンク29aに貯留された潤滑油は供給油路30に圧送される。潤滑油の一部は、ロータ10およびステータコイル9bを冷却した後、重力によって下方に移動しモータ内潤滑油貯留部31および潤滑油タンク29aにそれぞれ貯留される。 When the inner rotor is rotated by the rotation of the output member 4 driven by the rotary electric motor 1, the outer rotor is driven to rotate. At this time, the inner rotor and the outer rotor rotate about different rotation centers, so that the volume of the pump chamber changes continuously. As a result, the lubricating oil stored in the lubricating oil tank 29 a is pumped to the supply oil passage 30. A part of the lubricating oil cools the rotor 10 and the stator coil 9b, then moves downward by gravity, and is stored in the in-motor lubricating oil reservoir 31 and the lubricating oil tank 29a, respectively.
 <作用効果>
 インホールモータ駆動装置IWMは、回転電動機1において、磁力の相互作用によりロータ10が回転するが、同時にステータ9に径方向の吸引力・反発力が作用するため、ステータ9の変形に起因する振動が発生する。
<Effect>
In the in-hole motor drive device IWM, the rotor 10 rotates due to the interaction of magnetic force in the rotary electric motor 1, but at the same time, radial attracting force / repulsive force acts on the stator 9, and therefore vibration caused by deformation of the stator 9. Will occur.
 この構成のように、ステータ9の外周面とモータハウジング8の内周面との間に非接触部Aを設けたことにより、ステータ9からモータハウジング8に伝搬される振動を少なくすることができる。さらに、非接触部Aの径方向投影領域に重なるように、車体取付片51の基端を位置させたことにより、ステータ9から車体取付片51までの振動伝搬経路が曲折したものとなり、振動が減衰して車体取付片51に伝わる。これらのことから、ステータ9の変形に起因する振動が車体に伝わり難い。 By providing the non-contact portion A between the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 as in this configuration, vibration propagated from the stator 9 to the motor housing 8 can be reduced. . Further, by positioning the base end of the vehicle body mounting piece 51 so as to overlap the radial projection region of the non-contact portion A, the vibration propagation path from the stator 9 to the vehicle body mounting piece 51 is bent, and vibration is generated. It attenuates and is transmitted to the vehicle body mounting piece 51. For these reasons, it is difficult for vibration caused by deformation of the stator 9 to be transmitted to the vehicle body.
 この実施形態の場合、モータハウジング8の内周面に非接触部Aとなる軸方向溝50を設けることで実現できるため、回転電動機1として必須の部品以外に、他の部品を使用しない簡素な構成とすることができる。 In the case of this embodiment, since it can be realized by providing the axial groove 50 serving as the non-contact portion A on the inner peripheral surface of the motor housing 8, in addition to the essential components as the rotary motor 1, a simple configuration that does not use other components is used. It can be configured.
 ステータ9の外周面におけるモータハウジング8の内周面との嵌合範囲の面積に対して、非接触部Aの面積が占める比率が50%以上90%以下の範囲としたことにより、振動伝搬の低減およびステータ9の固定について好結果が得られる。例えば、前記比率が50%以下であると、ステータ9からモータハウジング8に伝搬される振動を少なくする効果が少なく、また前記比率が90%以上であると、モータハウジング8によるステータ9の固定が不十分である。 The ratio of the area of the non-contact portion A to the area of the fitting range of the outer peripheral surface of the stator 9 with the inner peripheral surface of the motor housing 8 is in the range of 50% or more and 90% or less. Good results are obtained for reduction and fixing of the stator 9. For example, when the ratio is 50% or less, there is little effect of reducing vibrations propagated from the stator 9 to the motor housing 8, and when the ratio is 90% or more, the stator 9 is fixed by the motor housing 8. It is insufficient.
 非接触部Aを有する構成と非接触部Aを有しない構成とを比較した場合、回転電動機1の回転速度(min-1)と車体に伝わる振動値(dB)との関係が、図6のようになることが予想される。すなわち、どのような回転速度でも、非接触部Aを有する構成の方が、非接触部Aを有しない構成よりも、振動値が低くなる。図6はイメージ図であって、回転速度と振動値の関係を概念的に示すにすぎない。振動値が低くなる程度は、非接触部Aの面積が占める比率等の諸条件によって異なる。 When the configuration having the non-contact portion A and the configuration not having the non-contact portion A are compared, the relationship between the rotational speed (min −1 ) of the rotary motor 1 and the vibration value (dB) transmitted to the vehicle body is shown in FIG. It is expected that That is, at any rotational speed, the configuration having the non-contact portion A has a lower vibration value than the configuration not having the non-contact portion A. FIG. 6 is an image diagram and conceptually shows the relationship between the rotational speed and the vibration value. The degree to which the vibration value becomes lower depends on various conditions such as the ratio of the area of the non-contact portion A.
 また、モータハウジング8を前述の方法で製造することにより、ステータ9の軸心と、軸受12によって支持される回転軸6の軸心との同軸度を、可能な限りゼロに近づけることができる。例えば、モータハウジング8の内周面の軸心と回転軸6の軸心との同軸度を、0.2mm以下とすることができる。それにより、ステータ9の軸心とロータ10の回転軸心とのずれによるコギングトルクを低減することができる。このことによっても、車体に伝わる振動を低減させることができる。 Further, by manufacturing the motor housing 8 by the above-described method, the coaxiality between the axis of the stator 9 and the axis of the rotating shaft 6 supported by the bearing 12 can be made as close to zero as possible. For example, the coaxiality between the axis of the inner peripheral surface of the motor housing 8 and the axis of the rotary shaft 6 can be 0.2 mm or less. Thereby, the cogging torque due to the deviation between the axis of the stator 9 and the rotation axis of the rotor 10 can be reduced. This also reduces the vibration transmitted to the vehicle body.
[第2の実施形態]
 図7、図8はこの発明の第2の実施形態を示す。図7は図8のVII-O-VII線断面図、図8は図7のVIII-VIII線断面図である。
[Second Embodiment]
7 and 8 show a second embodiment of the present invention. 7 is a cross-sectional view taken along line VII-O-VII in FIG. 8, and FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
 このインホイールモータ駆動装置IWMは、ステータ9の外周面とモータハウジング8の内周面との非接触部Aが、モータハウジング8の内周面に設けられた円周方向溝55からなる。モータハウジング8の外周面に設けられた車体取付片51は、その基端における軸方向の一部または全部が、円周方向溝55からなる非接触部Aの径方向投影領域に重なるように配置されている。この実施形態の場合、車体取付片51の基端の全部が、非接触部Aの径方向投影領域に重なっている。ステータ9の外周面とモータハウジング8の内周面の接触部は、非接触部Aの軸方向両側に位置するアウトボード側接触部Baおよびインボード側接触部Bbからなる。前記と同じ理由から、ステータ9の外周面におけるモータハウジング8の内周面との嵌合範囲の面積に対して、非接触部Aの面積が占める比率が50%以上90%以下の範囲であるのが好ましい。他の構成は、第1の実施形態と同じである。 In the in-wheel motor drive device IWM, a non-contact portion A between the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 is formed by a circumferential groove 55 provided on the inner peripheral surface of the motor housing 8. The vehicle body mounting piece 51 provided on the outer peripheral surface of the motor housing 8 is arranged such that a part or all of the axial direction at the base end thereof overlaps the radial projection region of the non-contact portion A formed by the circumferential groove 55. Has been. In the case of this embodiment, the entire base end of the vehicle body attachment piece 51 overlaps the radial projection region of the non-contact portion A. The contact portion between the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 includes an outboard side contact portion Ba and an inboard side contact portion Bb located on both sides in the axial direction of the non-contact portion A. For the same reason as described above, the ratio of the area of the non-contact portion A to the area of the fitting range of the outer peripheral surface of the stator 9 with the inner peripheral surface of the motor housing 8 is in the range of 50% to 90%. Is preferred. Other configurations are the same as those of the first embodiment.
 この実施形態の構成についても、第1の実施形態と同様に、ステータ9の外周面とモータハウジング8の内周面との間に非接触部Aを設けたことにより、モータハウジング8の内周面ステータ9の変形に起因する振動が車体に伝わり難い。また、モータハウジング8の内周面に非接触部Aとなる円周方向溝55を設けることで実現できるため、回転電動機1として必須の部品以外に、他の部品を使用しない簡素な構成とすることができる。 Also in the configuration of this embodiment, as in the first embodiment, the non-contact portion A is provided between the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8, so that the inner periphery of the motor housing 8 is provided. Vibration caused by the deformation of the surface stator 9 is not easily transmitted to the vehicle body. Moreover, since it can implement | achieve by providing the circumferential direction groove | channel 55 used as the non-contact part A in the internal peripheral surface of the motor housing 8, it is set as the simple structure which does not use other components other than an essential component as the rotary electric motor 1. FIG. be able to.
 加えて、この実施形態の場合、非接触部Aの軸方向両側に位置するアウトボード側接触部Baおよびインボード側接触部Bbにより、ステータ9がモータハウジング8に両持ち支持される。それにより、車両の走行時にステータ9が上下方向に変動することや偏角が発生することが防止され、ステータ9の振動を抑制することができるという効果が得られる。 In addition, in the case of this embodiment, the stator 9 is supported at both ends by the motor housing 8 by the outboard side contact portion Ba and the inboard side contact portion Bb located on both sides in the axial direction of the non-contact portion A. Thereby, it is possible to prevent the stator 9 from fluctuating in the vertical direction and the occurrence of a declination during traveling of the vehicle, and the effect that the vibration of the stator 9 can be suppressed is obtained.
[第3の実施形態]
 図9、図10はこの発明の第3の実施形態を示す。図9は図10のIX-O-IX線断面図、図10は図9のX-X線断面図である。
[Third Embodiment]
9 and 10 show a third embodiment of the present invention. 9 is a cross-sectional view taken along line IX-O-IX in FIG. 10, and FIG. 10 is a cross-sectional view taken along line XX in FIG.
 このインホイールモータ駆動装置IWMは、ステータ9の外周面とモータハウジング8の内周面との非接触部Aが、モータハウジング8の内周面に設けられた、径方向から見て矩形の凹部56からなる。モータハウジング8の外周面に設けられた車体取付片51は、その基端における軸方向の一部または全部が、矩形の凹部56からなる非接触部Aの径方向投影領域に重なるように配置されている。この実施形態の場合、車体取付片51の基端の全部が、非接触部Aの径方向投影領域に重なっている。前記同様に、ステータ9の外周面におけるモータハウジング8の内周面との嵌合範囲の面積に対して、非接触部Aの面積が占める比率が50%以上90%以下の範囲であるのが好ましい。他の構成は、第1、第2の実施形態と同じである。 In this in-wheel motor drive device IWM, a non-contact portion A between the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 is provided in the inner peripheral surface of the motor housing 8 and is a rectangular recess as viewed from the radial direction. 56. The vehicle body mounting piece 51 provided on the outer peripheral surface of the motor housing 8 is disposed so that a part or all of the axial direction at the base end thereof overlaps the radial projection region of the non-contact portion A composed of the rectangular recess 56. ing. In the case of this embodiment, the entire base end of the vehicle body attachment piece 51 overlaps the radial projection region of the non-contact portion A. Similarly, the ratio of the area of the non-contact portion A to the area of the fitting range between the outer peripheral surface of the stator 9 and the inner peripheral surface of the motor housing 8 is in the range of 50% to 90%. preferable. Other configurations are the same as those of the first and second embodiments.
 この実施形態の構成についても、第1、第2の実施形態と同様に、ステータ9の変形に起因する振動が車体に伝わり難い。また、モータハウジング8の内周面に非接触部Aとなる矩形の凹部56を設けることで実現できるため、回転電動機1として必須の部品以外に、他の部品を使用しない簡素な構成とすることができる。 Also in the configuration of this embodiment, the vibration due to the deformation of the stator 9 is difficult to be transmitted to the vehicle body as in the first and second embodiments. Moreover, since it can implement | achieve by providing the rectangular recessed part 56 used as the non-contact part A in the internal peripheral surface of the motor housing 8, it is set as the simple structure which does not use other components other than an essential component as the rotary electric motor 1. FIG. Can do.
 また、この第3の実施形態も、第2の実施形態と同様に、非接触部Aの軸方向両側に位置するアウトボード側接触部Baおよびインボード側接触部Bbにより、ステータ9がモータハウジング8に両持ち支持される。それにより、車両の走行時にステータ9が上下方向に変動することや偏角が発生することが防止され、ステータ9の振動を抑制することができるという効果が得られる。 Further, in the third embodiment, similarly to the second embodiment, the stator 9 is connected to the motor housing by the outboard side contact portion Ba and the inboard side contact portion Bb located on both sides in the axial direction of the non-contact portion A. 8 is supported at both ends. Thereby, it is possible to prevent the stator 9 from fluctuating in the vertical direction and the occurrence of a declination during traveling of the vehicle, and the effect that the vibration of the stator 9 can be suppressed is obtained.
[第1~第3の実施形態の変形例]
 第1~第3の各実施形態では、複数の車体取付片51が左右対称に配置されているが、図11、図12のように、車体取付片51が左右片側だけに配置されている構成や、車体取付片51が左右不均等に配置されている構成(図示せず)であっても、第1~第3の各実施形態と同様の作用効果が得られる。図11は非接触部Aが軸方向溝50からなる例であり、図12は非接触部Aが円周方向溝55からなる例である。
[Modifications of First to Third Embodiments]
In each of the first to third embodiments, the plurality of vehicle body attachment pieces 51 are arranged symmetrically. However, as shown in FIGS. 11 and 12, the vehicle body attachment pieces 51 are arranged only on the left and right sides. In addition, even if the vehicle body mounting piece 51 has a configuration (not shown) in which the left and right vehicle body mounting pieces 51 are unevenly arranged, the same operational effects as those of the first to third embodiments can be obtained. FIG. 11 is an example in which the non-contact portion A is formed of the axial groove 50, and FIG. 12 is an example in which the non-contact portion A is formed of the circumferential groove 55.
 また、第1~第3の各実施形態は、車体取付片51の基端の全部が非接触部Aの径方向投影領域に重なっているが、図13、図14のように、車体取付片51の基端の一部のみが非接触部Aの径方向投影領域に重なっている構成であってもよい。図13の例は、非接触部Aが軸方向溝50からなる構成において、上側の二つの車体取付片51の基端の一部が、非接触部Aの径方向投影領域から円周方向に外れている。図14の例は、非接触部Aが軸方向溝50からなる構成において、車体取付片51の基端の一部が、非接触部Aの径方向投影領域から軸方向に外れている。 In each of the first to third embodiments, the entire base end of the vehicle body mounting piece 51 overlaps the radial projection region of the non-contact portion A. However, as shown in FIGS. Only a part of the base end of 51 may overlap with the radial projection region of the non-contact portion A. In the example of FIG. 13, in the configuration in which the non-contact portion A includes the axial groove 50, a part of the base ends of the upper two vehicle body attachment pieces 51 extends in the circumferential direction from the radial projection region of the non-contact portion A. It is off. In the example of FIG. 14, in the configuration in which the non-contact portion A includes the axial groove 50, a part of the base end of the vehicle body attachment piece 51 is deviated from the radial projection region of the non-contact portion A in the axial direction.
 このように、車体取付片51の基端の一部のみが非接触部Aの径方向投影領域に重なっている場合でも、第1~第3の各実施形態の構成と比べて効果が劣るものの、ステータ9の変形に起因する振動を車体に伝え難くすることができる。 As described above, even when only a part of the base end of the vehicle body attachment piece 51 overlaps the radial projection region of the non-contact portion A, the effect is inferior to the configurations of the first to third embodiments. Thus, it is possible to make it difficult to transmit the vibration caused by the deformation of the stator 9 to the vehicle body.
[他の形式のインホイールモータ駆動装置]
 図15は、前記各実施形態とは形式が異なるインホイールモータ駆動装置を示す。このインホイールモータ駆動装置IWMも、前記各実施形態と同様に、回転電動機1、減速機2、および車輪用軸受5を備えるが、減速機2の構成が前記各実施形態のものと異なる。回転電動機1および車輪用軸受5は、前記各実施形態のものと基本的に同じ構成であるので、詳細な説明は省略する。
[Other types of in-wheel motor drives]
FIG. 15 shows an in-wheel motor drive apparatus having a different form from the above embodiments. The in-wheel motor drive device IWM also includes the rotary electric motor 1, the speed reducer 2, and the wheel bearing 5 as in the above embodiments, but the configuration of the speed reducer 2 is different from that in the above embodiments. The rotary electric motor 1 and the wheel bearing 5 are basically the same as those in the above-described embodiments, and thus detailed description thereof is omitted.
 <減速機等>
 このインホイールモータ駆動装置IWMの減速機2は、入力歯車32aを有する入力歯車軸32と、第1,第2中間歯車33a,33bを有する中間歯車軸33と、出力歯車34aを有する出力歯車軸34とを備える平行軸歯車減速機である。入力歯車軸32は、モータハウジング8に設けられた転がり軸受35a,35bを介して回転自在に支持されている。中間歯車軸33は、外周面に入力歯車32aに噛み合う大径の第1中間歯車33aと、出力歯車34aに噛み合う小径の第2中間歯車33bとを有する段付き歯車である。この中間歯車軸33は、モータハウジング8に設けられた転がり軸受36,37を介して回転自在に支持されている。出力歯車軸34は、大径の出力歯車34aを有し、モータハウジング8に設けられた転がり軸受39,40を介して回転自在に支持されている。
<Reduction gears, etc.>
The speed reducer 2 of the in-wheel motor drive device IWM includes an input gear shaft 32 having an input gear 32a, an intermediate gear shaft 33 having first and second intermediate gears 33a and 33b, and an output gear shaft having an output gear 34a. 34 is a parallel shaft gear reducer. The input gear shaft 32 is rotatably supported via rolling bearings 35 a and 35 b provided in the motor housing 8. The intermediate gear shaft 33 is a stepped gear having a large-diameter first intermediate gear 33a meshing with the input gear 32a and a small-diameter second intermediate gear 33b meshing with the output gear 34a on the outer peripheral surface. The intermediate gear shaft 33 is rotatably supported via rolling bearings 36 and 37 provided in the motor housing 8. The output gear shaft 34 has a large-diameter output gear 34 a and is rotatably supported via rolling bearings 39 and 40 provided in the motor housing 8.
 入力歯車軸32は、回転電動機1の回転軸6から駆動力が伝達される。第1中間歯車33aは入力歯車32aに噛み合い、第2中間歯車33bは出力歯車34aに噛み合う。出力歯車軸34は、軸方向の一部がモータハウジング8からアウトボード側に引き出されて、車輪用軸受5の回転輪にスプライン嵌合され、図示外の駆動輪に駆動力を伝達する。 The input gear shaft 32 receives a driving force from the rotating shaft 6 of the rotary motor 1. The first intermediate gear 33a meshes with the input gear 32a, and the second intermediate gear 33b meshes with the output gear 34a. A part of the output gear shaft 34 in the axial direction is pulled out from the motor housing 8 to the outboard side, and is splined to the rotating wheel of the wheel bearing 5 to transmit the driving force to the driving wheel (not shown).
 このインホイールモータ駆動装置IWMの場合、モータハウジング8の内周面における円周方向の複数箇所に軸方向溝50が設けられ、この軸方向溝50により、ステータ9の外周面とモータハウジング8の内周面とが非接触で対向する非接触部Aを構成している。この非接触部Aの径方向投影領域に、車体取付片51の基端の全部が重なっている。それにより、前記同様の理由から、ステータ9の変形に起因する振動が車体に伝わり難くなっている。また、回転電動機1として必須の部品以外に、他の部品を使用しない簡素な構成とすることができる。 In the case of this in-wheel motor drive device IWM, axial grooves 50 are provided at a plurality of locations in the circumferential direction on the inner peripheral surface of the motor housing 8, and the axial grooves 50 allow the outer peripheral surface of the stator 9 and the motor housing 8 to be The non-contact part A which the inner peripheral surface opposes by non-contact is comprised. The entire base end of the vehicle body attachment piece 51 overlaps the radial projection region of the non-contact portion A. Thereby, for the same reason as described above, vibration due to the deformation of the stator 9 is difficult to be transmitted to the vehicle body. Moreover, it can be set as the simple structure which does not use another component other than an essential component as the rotary electric motor 1. FIG.
 図15の例は、第1の実施形態と同様に、軸方向溝50により非接触部Aが構成されているが、第2の実施形態と同様に、円周方向溝55により非接触部Aを構成してもよく(図示せず)、また、第3の実施形態と同様に、径方向から見て矩形の凹部56により非接触部Aを構成してもよい(図示せず)。その場合も、前記同様の効果が得られる。 In the example of FIG. 15, the non-contact portion A is configured by the axial groove 50 as in the first embodiment, but the non-contact portion A is formed by the circumferential groove 55 as in the second embodiment. (Not shown), and the non-contact portion A may be constituted by a rectangular recess 56 when viewed from the radial direction (not shown), as in the third embodiment. In that case, the same effect as described above can be obtained.
 以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although the form for implementing this invention based on embodiment was demonstrated, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1…回転電動機
2…減速機
5…車輪用軸受
6…回転軸
8…モータハウジング(ハウジング)
9…ステータ
10…ロータ
11,12…軸受
50…軸方向溝
51…車体取付片
55…円周方向溝
56…凹部
A…非接触部
B…接触部
Ba…アウトボード側接触部
Bb…インボード側接触部
IWM…インホイールモータ駆動装置
DESCRIPTION OF SYMBOLS 1 ... Rotary motor 2 ... Reduction gear 5 ... Wheel bearing 6 ... Rotating shaft 8 ... Motor housing (housing)
DESCRIPTION OF SYMBOLS 9 ... Stator 10 ... Rotor 11, 12 ... Bearing 50 ... Axial groove 51 ... Car body mounting piece 55 ... Circumferential groove 56 ... Recess A ... Non-contact part B ... Contact part Ba ... Outboard side contact part Bb ... Inboard Side contact part IWM ... In-wheel motor drive device

Claims (9)

  1.  回転電動機と、
     車輪用軸受と、
     前記回転電動機の回転を減速して前記車輪用軸受の回転輪に伝達する減速機と、
    を備えたインホイールモータ駆動装置であって、
     前記回転電動機は、
      環状のステータと、
      前記ステータが内部に嵌合しかつ固定されたハウジングと、
      前記ハウジングに軸受を介して前記ステータと同軸心に回転自在に支持された回転軸と、
      前記回転軸と一体に回転するロータとを有し、
     前記ステータの外周面と前記ハウジングの内周面との嵌合範囲に非接触部が設けられ、
     前記ハウジングの外周面から車体取付片が突出し、この車体取付片の基端の一部または全部が前記非接触部の径方向投影領域に重なる、
     インホイールモータ駆動装置。
    A rotating motor,
    Wheel bearings;
    A decelerator that decelerates the rotation of the rotating motor and transmits the decelerated rotation to the wheel of the wheel bearing;
    An in-wheel motor drive device comprising:
    The rotary motor is
    An annular stator;
    A housing in which the stator is fitted and fixed;
    A rotating shaft rotatably supported coaxially with the stator via a bearing in the housing;
    A rotor that rotates integrally with the rotating shaft;
    A non-contact portion is provided in a fitting range between the outer peripheral surface of the stator and the inner peripheral surface of the housing,
    A vehicle body mounting piece protrudes from the outer peripheral surface of the housing, and a part or all of the base end of the vehicle body mounting piece overlaps the radial projection region of the non-contact portion.
    In-wheel motor drive device.
  2.  請求項1に記載のインホイールモータ駆動装置において、前記非接触部が、前記ハウジングの内周面における円周方向の複数箇所に設けられた軸方向の溝状であり、前記車体取付片が前記ハウジングの円周方向の複数箇所に設けられ、これら複数の車体取付片の基端における円周方向の一部または全部が、それぞれ別の前記非接触部の径方向投影領域に重なるインホイールモータ駆動装置。 2. The in-wheel motor drive device according to claim 1, wherein the non-contact portion is an axial groove provided at a plurality of locations in a circumferential direction on the inner peripheral surface of the housing, and the vehicle body mounting piece is In-wheel motor drive provided at a plurality of locations in the circumferential direction of the housing, and a part or all of the circumferential direction at the base ends of the plurality of vehicle body mounting pieces overlaps the radial projection regions of the different non-contact portions, respectively. apparatus.
  3.  請求項1に記載のインホイールモータ駆動装置において、前記非接触部が、前記ハウジングの内周面に設けられた円周方向の溝状であり、前記車体取付片の基端における軸方向の一部または全部が前記非接触部の径方向投影領域に重なるインホイールモータ駆動装置。 2. The in-wheel motor drive device according to claim 1, wherein the non-contact portion is a circumferential groove provided on an inner peripheral surface of the housing, and the axial one at the base end of the vehicle body attachment piece. An in-wheel motor drive device in which a part or the whole overlaps the radial projection region of the non-contact part.
  4.  請求項1ないし請求項3のいずれか1項に記載のインホイールモータ駆動装置において、前記ステータの外周面と前記ハウジングの内周面とが前記嵌合範囲における接触部で互いに接触し、この接触部のうちの前記非接触部の軸方向両側に位置する部分により、前記ステータが前記ハウジングに両持ち支持されているインホイールモータ駆動装置。 The in-wheel motor drive device according to any one of claims 1 to 3, wherein an outer peripheral surface of the stator and an inner peripheral surface of the housing are in contact with each other at a contact portion in the fitting range. An in-wheel motor drive device in which the stator is supported at both ends by the housing by portions located on both axial sides of the non-contact portion of the portion.
  5.  請求項1ないし請求項4のいずれか1項に記載のインホイールモータ駆動装置において、前記ステータの外周面における前記嵌合範囲の面積に対して、前記非接触部の面積が占める比率が50%以上90%以下の範囲であるインホイールモータ駆動装置。 5. The in-wheel motor drive device according to claim 1, wherein the ratio of the area of the non-contact portion to the area of the fitting range on the outer peripheral surface of the stator is 50%. An in-wheel motor drive device that is in the range of 90% or less.
  6.  請求項1ないし請求項5のいずれか1項に記載のインホイールモータ駆動装置において、前記ステータの外周面と前記ハウジングの内周面とが前記嵌合範囲における接触部で互いに接触し、前記ステータと前記ハウジングとが前記接触部において隙間嵌めまたは締まり嵌めで互いに嵌合することで、前記ステータの軸心と前記回転軸の軸心とを一致させてあるインホイールモータ駆動装置。 6. The in-wheel motor drive device according to claim 1, wherein an outer peripheral surface of the stator and an inner peripheral surface of the housing are in contact with each other at a contact portion in the fitting range, An in-wheel motor drive device in which the shaft center of the stator and the shaft center of the rotary shaft are made to coincide with each other by fitting the housing and the housing to each other by a clearance fit or an interference fit at the contact portion.
  7.  請求項1ないし請求項6のいずれか1項に記載のインホイールモータ駆動装置において、前記ハウジングの内周面の軸心と前記回転軸の軸心との同軸度が、0.2mm以下であるインホイールモータ駆動装置。 The in-wheel motor drive device according to any one of claims 1 to 6, wherein the coaxiality between the axis of the inner peripheral surface of the housing and the axis of the rotary shaft is 0.2 mm or less. In-wheel motor drive device.
  8.  環状のステータと、
     前記ステータが内部に嵌合しかつ固定されたハウジングと、
     前記ハウジングに軸受を介して前記ステータと同軸心に回転自在に支持された回転軸と、
     前記回転軸と一体に回転するロータとを有し、
     前記ステータの外周面と前記ハウジングの内周面との嵌合範囲に非接触部が設けられ、
     前記ハウジングの外周面から車体取付片が突出し、この車体取付片の基端の一部または全部が前記非接触部の径方向投影領域に重なる回転電動機。
    An annular stator;
    A housing in which the stator is fitted and fixed;
    A rotating shaft rotatably supported coaxially with the stator via a bearing in the housing;
    A rotor that rotates integrally with the rotating shaft;
    A non-contact portion is provided in a fitting range between the outer peripheral surface of the stator and the inner peripheral surface of the housing,
    A rotary motor in which a vehicle body mounting piece projects from the outer peripheral surface of the housing, and a part or all of a base end of the vehicle body mounting piece overlaps a radial projection region of the non-contact portion.
  9.  回転電動機と、車輪用軸受と、前記回転電動機の回転を減速して前記車輪用軸受の回転輪に伝達する減速機とを備え、前記回転電動機は、環状のステータと、このステータが内部に嵌合しかつ固定されたハウジングと、前記ハウジングに軸受を介して前記ステータと同軸心に回転自在に支持された回転軸と、この回転軸と一体に回転するロータとを有するインホイールモータ駆動装置における前記ハウジングの製造方法であって、
     前記ハウジングとなる素材を、芯出し状態を変更することなく旋削加工して、前記ハウジングにおける前記ステータの外周面と対向する内周面、および前記ハウジングにおける前記軸受が収容される部分の内周面を成形するハウジングの製造方法。
    A rotary motor; a wheel bearing; and a speed reducer that decelerates the rotation of the rotary motor and transmits the reduced speed to the rotating wheel of the wheel bearing. The rotary motor includes an annular stator and the stator is fitted therein. An in-wheel motor drive device comprising: a combined and fixed housing; a rotating shaft rotatably supported coaxially with the stator via a bearing in the housing; and a rotor rotating integrally with the rotating shaft A method for manufacturing the housing, comprising:
    An inner peripheral surface of a portion of the housing that accommodates the bearing, and an inner peripheral surface of the housing facing the outer peripheral surface of the stator by turning the material without changing the centering state. Manufacturing method of housing for molding
PCT/JP2019/004072 2018-02-08 2019-02-05 In-wheel motor drive device, rotary electric motor, and production method for housing WO2019156075A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-020635 2018-02-08
JP2018020635A JP2019140756A (en) 2018-02-08 2018-02-08 In-wheel motor drive device, rotary motor, and method for manufacturing housing

Publications (1)

Publication Number Publication Date
WO2019156075A1 true WO2019156075A1 (en) 2019-08-15

Family

ID=67548960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004072 WO2019156075A1 (en) 2018-02-08 2019-02-05 In-wheel motor drive device, rotary electric motor, and production method for housing

Country Status (2)

Country Link
JP (1) JP2019140756A (en)
WO (1) WO2019156075A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4109719A4 (en) * 2020-02-20 2023-04-12 NISSAN MOTOR Co., Ltd. Dynamo-electric machine and vehicle-mounting structure for dynamo-electric machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228725A (en) * 2006-02-23 2007-09-06 Toyota Motor Corp Stator fixing structure and electric motor vehicle
JP2008044439A (en) * 2006-08-11 2008-02-28 Toyota Motor Corp Motor and in-wheel motor structure using same
JP2010124661A (en) * 2008-11-21 2010-06-03 Toyota Motor Corp Rotary electric machine
JP2014061880A (en) * 2009-12-09 2014-04-10 Kanzaki Kokyukoki Mfg Co Ltd Electric axle unit
WO2014125864A1 (en) * 2013-02-12 2014-08-21 日産自動車株式会社 Rotating electrical machine
JP2015112001A (en) * 2013-11-08 2015-06-18 Ntn株式会社 In-wheel motor drive device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095184A (en) * 2007-10-11 2009-04-30 Asmo Co Ltd Dynamo-electric machine
KR20140078819A (en) * 2012-12-18 2014-06-26 엘지이노텍 주식회사 Motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228725A (en) * 2006-02-23 2007-09-06 Toyota Motor Corp Stator fixing structure and electric motor vehicle
JP2008044439A (en) * 2006-08-11 2008-02-28 Toyota Motor Corp Motor and in-wheel motor structure using same
JP2010124661A (en) * 2008-11-21 2010-06-03 Toyota Motor Corp Rotary electric machine
JP2014061880A (en) * 2009-12-09 2014-04-10 Kanzaki Kokyukoki Mfg Co Ltd Electric axle unit
WO2014125864A1 (en) * 2013-02-12 2014-08-21 日産自動車株式会社 Rotating electrical machine
JP2015112001A (en) * 2013-11-08 2015-06-18 Ntn株式会社 In-wheel motor drive device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4109719A4 (en) * 2020-02-20 2023-04-12 NISSAN MOTOR Co., Ltd. Dynamo-electric machine and vehicle-mounting structure for dynamo-electric machine

Also Published As

Publication number Publication date
JP2019140756A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
US9914349B2 (en) In-wheel motor drive device
US20130052058A1 (en) Electric pump unit
US11014455B2 (en) Vehicle drive device
JP5709373B2 (en) In-wheel motor drive device
US20170197502A1 (en) In-wheel motor drive device
US20140031160A1 (en) Drive device for electric vehicle
WO2010001698A1 (en) Cycloid reduction gear, in-wheel motor drive device, and motor drive device for vehicle
US20170197503A1 (en) In-wheel motor drive device
JP5685113B2 (en) Electric vehicle drive
US9735648B2 (en) Drive device for electric vehicle
JP2017052335A (en) Vehicular transmission apparatus
JP2018038099A (en) Electric motor
JP2015048872A (en) Wheel drive unit
US10112480B2 (en) In-wheel motor unit
WO2019156075A1 (en) In-wheel motor drive device, rotary electric motor, and production method for housing
JP2018207700A (en) Rotary motor and in-wheel motor driving device having the same
JP2015093492A (en) In-wheel motor driving device
WO2016039258A1 (en) In-wheel motor drive device
JP7192974B2 (en) Rotating electric machine
JP2017127150A (en) Fixing structure of stator in motor
WO2016017351A1 (en) Cycloidal speed reducer and in-wheel motor drive device provided with same
JP2016056926A (en) Wheel driving device
JP6672969B2 (en) Apparatus for preventing corrosion of bearings in motors for vehicles
JP2016038086A (en) Wheel driving device
JP2017089786A (en) In-wheel motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751919

Country of ref document: EP

Kind code of ref document: A1