WO2019151498A1 - Display member and display device - Google Patents

Display member and display device Download PDF

Info

Publication number
WO2019151498A1
WO2019151498A1 PCT/JP2019/003700 JP2019003700W WO2019151498A1 WO 2019151498 A1 WO2019151498 A1 WO 2019151498A1 JP 2019003700 W JP2019003700 W JP 2019003700W WO 2019151498 A1 WO2019151498 A1 WO 2019151498A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
fresnel
image
display device
display member
Prior art date
Application number
PCT/JP2019/003700
Other languages
French (fr)
Japanese (ja)
Inventor
野村英司
山田範秀
橋村淳司
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019569621A priority Critical patent/JPWO2019151498A1/en
Publication of WO2019151498A1 publication Critical patent/WO2019151498A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a display member used for projecting and displaying an image while having light transparency, and a display device for displaying an image by projection.
  • a light transmissive screen (or display member) is used for a display device such as a head-up display (hereinafter referred to as HUD) device.
  • This screen reflects display light from the optical unit or drawing unit of the display device and transmits light from the outside.
  • display light enters the screen from an oblique direction with the observer's head as the front. Therefore, the display light is required to be bent in a predetermined direction corresponding to the front surface so that the observer can recognize a projection image by the display light on the screen.
  • Some windshields include a combination of a line and a blank portion between an external glass plate and an internal glass plate, and have a pattern portion that reflects an incident image using the line (see Patent Document 1).
  • a PVB film is provided between the pattern portion and the internal glass plate.
  • the line of the pattern part reflects all or part of the display light of the HUD device, and the blank part is formed between the lines and transmits light.
  • the pattern portion is composed of a combination of discontinuous or continuous horizontal, vertical, or curved lines, a lattice line, or a combination of a circular, elliptical, polygonal, or fuzzy line. Such a configuration of the pattern portion solves the problem of the double image generated in the windshield.
  • Patent Document 1 does not disclose deflecting the direction of display light in a predetermined direction.
  • an optical device comprising an optical member comprising a Fresnel-shaped portion in which a plurality of grooves are formed on one surface in the thickness direction, and a half mirror layer formed on the surface of the Fresnel-shaped portion.
  • the plurality of grooves in the Fresnel-shaped portion have free curved surfaces on their surfaces.
  • channel and the angle of a reflective surface are changed.
  • the distance from the central portion of the Fresnel-shaped portion to each point on the circumference can be changed for each circumferential position of each groove.
  • the optical device of Patent Document 2 can have a free-form surface characteristic by continuously changing the angle of the reflecting surface of each groove according to the difference in the circumferential position along the groove. The three-dimensional distortion which exists in the etc. is suppressed.
  • the Fresnel shape of a free-form surface is described as described above, but when the groove pitch is constant in a specific direction, if the shape having a large curvature change is Fresneled, the groove ring The belt height increases. Therefore, when such an optical device is applied to a windshield, thickness becomes a problem. Furthermore, the light beam that passes through the vicinity of the step of the Fresnel structure is shielded, and a missing portion is generated in the virtual image, which may result in a virtual image with poor image quality.
  • the windshield includes first to third optical layers, the first optical layer and the second optical layer are in close contact with each other, and the first optical layer and the third optical layer are in contact with each other.
  • the first optical layer has a concave portion on the first main surface and a plurality of convex ridge portions provided around the concave portion, and has a convex portion on the second main surface facing the first main surface.
  • a plurality of protrusions provided around the protrusion.
  • the refractive index of the first optical layer is higher than the refractive index of the second optical layer and higher than the refractive index of the third optical layer.
  • the optical member of Patent Document 4 suppresses distortion of the external image that passes through the windshield while enlarging the display image.
  • Some windshields include an optical sheet having a main surface provided with a Fresnel lens, and an optical element in which the optical axis of the Fresnel lens is arranged at a position different from the center of the outer shape of the main surface.
  • a transparent plate such as a windshield that supports an optical element is disposed on the main surface side.
  • the optical members and optical elements of Patent Documents 4 and 5 have a Fresnel shape, but the Fresnel shape is axisymmetric in the region including the optical member and the optical element, has no free-form surface, and has an astigmatic difference. Can occur. Thereby, performance degradation of an observation image (projection image) arises.
  • the present invention has been made in view of the above-described background art, and an object thereof is to provide a display member that can reduce the size of a device that generates display light while ensuring a wide viewing angle and a wide eyebox.
  • Another object of the present invention is to provide a display device capable of projecting a virtual image while ensuring image display performance.
  • a display member reflecting one aspect of the present invention is provided on a display screen, and has a first Fresnel having a plurality of first grooves on one surface.
  • the first optical element and the second optical element are joined in a state where the first Fresnel shape part and the second Fresnel shape part are opposed to each other.
  • the display light from the image forming element is reflected while being deflected as reflected light by at least one of the first and second Fresnel-shaped portions, and light from the opposite side of the image forming element is reflected.
  • Transmit as transmitted light It makes the observable overlapping the reflected light and transmitted light, the first groove extending obliquely relative to the longitudinal direction orthogonal to the horizontal direction.
  • the substantially inverted shape also means that the shape of the second Fresnel shape portion is not completely the same as the shape of the first Fresnel shape portion inverted, and may include some errors. In this case, it is desirable that an adhesive or the like be interposed between the first and second Fresnel shaped portions.
  • a display device reflecting one aspect of the present invention includes a display image including the display member, a display screen provided with the display member, and a virtual image displayed over the display member. And a drawing unit for displaying an image corresponding to.
  • a display device reflecting one aspect of the present invention is a virtual image projection optical system that displays an image formed by an image forming element by projecting a virtual image through a display screen.
  • the virtual image projection optical system includes at least one Fresnel element, and includes a vibration mechanism that finely vibrates at least one member constituting the virtual image projection optical system.
  • FIGS. 1A and 1B are diagrams illustrating a display member and a display device incorporating the display member according to the first embodiment.
  • 2A is a longitudinal sectional view for explaining the configuration of the display member and the display device shown in FIG. 1A
  • FIG. 2B is a partial transverse sectional view of the display member.
  • 3A is a plan view of the display member of FIG. 2A as viewed from the first optical element side
  • FIG. 3B is a cross-sectional view taken along the line AA of FIG. 3A
  • FIG. 3C is the display member of FIG.
  • FIG. 4A is a diagram illustrating the groove structure of the display member and reflection on the reflection surface
  • FIG. 4B is a diagram illustrating a non-reflective region of the display member.
  • FIG. 11A is a front view of the Fresnel element in the virtual image projection optical system incorporated in the display device, and FIG. 11B is an enlarged cross-sectional view taken along the line A-A ′ of the Fresnel element in FIG. 11A.
  • FIG. 14A is an example of the fourth embodiment, and is a YZ cross-sectional view of an optical arrangement when a Fresnel element is used as a mirror
  • FIG. 14B is an XZ cross-sectional view of the optical arrangement of FIG. 14A
  • 15A is a comparative example of the fourth embodiment, and is a YZ sectional view of an optical arrangement when a mirror is used in the virtual image generating optical system
  • FIG. 15B is an XZ sectional view of the optical arrangement of FIG. 15A.
  • FIG. 17A is a plan view for explaining a Fresnel element in the virtual image projection optical system
  • FIG. 17B is an enlarged cross-sectional view of the Fresnel element in FIG.
  • FIG. 18A is a front view illustrating the display device according to the sixth embodiment from the vehicle inner side
  • FIG. 18B is a side cross-sectional view illustrating the display device. It is a figure explaining a Fresnel element among the display apparatuses of 7th Embodiment. It is an expanded side sectional view explaining the example of a concrete structure of the display apparatus of 8th Embodiment.
  • FIGS. 21A and 21B are a partially broken plan view and a partially broken side view for explaining the structure of the diffusion part incorporating the intermediate screen
  • FIG. 21C is a view for explaining the movement of the functional area accompanying the rotation of the intermediate screen. It is. It is a front view explaining the modification of a Fresnel element.
  • the display member 100 of the present embodiment is embedded in a light-transmitting plate member such as a windshield 8 or a windshield of a moving body such as an automobile. ing.
  • the display unit 130 that is a part of the windshield 8 functions as a display screen, and the display member 100 is incorporated in the display screen.
  • the windshield 8 is formed by bonding a first optical member 110 and a second optical member 120 made of glass.
  • the display member 100 is a film-like sheet-like member 90, and the sheet-like member 90 is sandwiched between the first optical member 110 and the second optical member 120 constituting the windshield 8. Part of it.
  • the display member 100 has an internal transmittance of 80% or more in the visible light wavelength region.
  • the display member 100 clearly projects a projection image (display light) from a drawing unit 210 of the display device 200 described later, and transmits light from the outside. That is, when the display member 100 is used for the display device 200 such as a HUD device, an observer (driver UN) or the like can observe an external background through the display member 100 and also can observe a projected image.
  • the display member 100 has a structure in which the first optical element 111 and the second optical element 112 are joined.
  • the display member 100 is provided with a first optical member 110 on a surface (specifically, a flat surface 111b) opposite to the bonding surface CR of the first optical element 111, and the bonding surface CR of the second optical element 112.
  • the second optical member 120 is provided on the opposite surface (specifically, the flat surface 112b).
  • the first and second optical elements 111 and 112 are curved according to the shape of the windshield 8 having a display screen. When the windshield 8 has a curved surface, the flat surfaces 111b and 112b also have a curved surface instead of a perfect plane.
  • the elemental reflecting surface constituting the display member 100 is premised on the change in angle due to this curvature.
  • the first optical element 111 of the display member 100 is disposed on the driver UN side as an observer, and has a first Fresnel-shaped portion 111a having a plurality of first grooves 1a on one surface.
  • the second optical element 112 has a second Fresnel-shaped portion 112a that is disposed on the opposite side of the driver UN facing the first optical element 111 and has a plurality of second grooves 2a on one surface. That is, the first and second grooves 1a and 2a are two-dimensionally arranged on the surfaces of the first and second optical elements 111 and 112 (see FIG. 3A).
  • the second Fresnel shape portion 112a has a shape that is substantially the reverse of the shape of the first Fresnel shape portion 111a.
  • the substantially inverted shape also means that the shape of the second Fresnel shape portion 112a is not completely the same as the shape obtained by inverting the shape of the first Fresnel shape portion 111a, and may include some errors. To do.
  • the 1st optical element 111 and the 2nd optical element 112 are joined by the joint surface CR in the state which made the 1st Fresnel shape part 111a and the 2nd Fresnel shape part 112a oppose. In this case, it is desirable that an adhesive or the like be interposed between the first and second Fresnel-shaped portions 111a and 112a.
  • the first optical element 111 and the second optical element 112 have substantially the same refractive index. In this case, distortion of the transmitted light that passes through the display member 100 can be prevented.
  • the surfaces opposite to the bonding surface CR are flat surfaces 111b and 112b, respectively.
  • the display member 100 causes display light HK from an image forming element 30 to be described later on the bonding surface CR of the first and second optical elements 111 and 112 by at least one of the first and second Fresnel shape portions 111a and 112a.
  • the deflection of the display light HK by the Fresnel-shaped portions 111a and 112a means that the display member 100 is not specularly reflected in the overall shape of the display member 100, that is, the incident angle and the reflection angle do not exactly match,
  • the reference axis is considered for the entire surface of the display member 100 or an approximate surface such as an aspheric surface approximated to the curved surfaces of the flat surfaces 111b and 112b
  • the optical axis as the fine shape of the Fresnel-shaped portions 111a and 112a is used as the reference axis.
  • the deflection of the display light HK by the Fresnel-shaped portions 111a and 112a is an angular difference in which the direction of the optical axis and the direction of the reference axis rotate around the X axis when observed in the YZ plane, for example.
  • the optical axis direction of the Fresnel-shaped portions 111a and 112a is at the center of the optical elements 111 and 112. What is necessary is just to be an approximate optical axis direction.
  • any one of the surfaces of the first and second Fresnel-shaped portions 111a and 112a is a mirror MR having desired reflection characteristics.
  • a large number of mirrors MR are gathered in the sheet-like member 90 to form a reflective surface 191 that extends in a planar shape along the windshield 8 as a whole.
  • the reflectivity of the mirror MR is, for example, 15% to 30%.
  • the mirror MR is made of metal, a multilayer film, or the like.
  • the shapes of the first and second Fresnel-shaped portions 111a and 112a are such that the inclination angle of the effective region of the mirror MR is a macroscopic incident angle ⁇ 1 to the sheet-like member 90 and a macroscopic exit angle ⁇ 2 from the sheet-like member 90.
  • the display light HK from the drawing unit 210 is deflected and directed to the eye box.
  • the mirror MR includes a first element MRa that contributes to reflection and a second element MRb that does not contribute to reflection. In order to realize a macroscopic exit angle ⁇ 2 with respect to the macroscopic incident angle ⁇ 1, one of the first elements Only MRa will be used.
  • the second element MRb can be subjected to an antireflection treatment.
  • the first groove 1a extends while being inclined with respect to the vertical direction orthogonal to the horizontal direction.
  • the first groove 1a has a first direction ⁇ corresponding to the horizontal direction and a second direction ⁇ corresponding to the vertical direction orthogonal to the first direction ⁇ in the display unit 130 that is the region having the display member 100.
  • Each is non-axisymmetric.
  • the horizontal direction is based on the installation surface of the vehicle body 2.
  • the vertical direction is not limited to the vertical direction, that is, the Y direction, but means a direction along a plane or curved surface in which the entire display member 100 extends.
  • the first direction ⁇ is a direction in which the surface of the first optical element 111 and the XZ plane intersect.
  • the second direction ⁇ is a direction in which the surface of the first optical element 111 and the YZ surface intersect.
  • the ⁇ Z direction is the forward direction of the vehicle body 2
  • the X direction is the lateral direction of the vehicle body 2.
  • the plurality of first grooves 1a have a composite annular zone shape along the surface of the first optical element 111, and are arranged non-concentrically.
  • the non-concentric circle means that the radius of curvature along the display portion 130 of the arc local portion constituting each annular zone of the first groove 1a is the same arc or the radius of curvature of another arc local portion in the annular zone. Does not match.
  • the composite ring zone shape is designed with reference to the maximum vertex of each first groove 1a.
  • the complex annular zone shape of the first groove 1a has an aspheric shape (including a toric surface) or a free-form surface shape characterized by asymmetry such as non-axisymmetric or eccentricity, and is free of Fresnel shape.
  • the degree can be increased and the optical magnification can be increased. Thereby, the visual field of the virtual image can be widened, and the display device 200 can be downsized.
  • the center of curvature along the composite ring-shaped display unit 130 is in a position that is obliquely shifted with respect to the center of the display unit 130 of the display member 100, and the display light HK can be obliquely deflected by the Fresnel-shaped unit 111a. I have to.
  • the center of the image forming element 30 to be described later is not disposed at a regular reflection position corresponding to, for example, the YZ plane passing through the center of the display unit 130 or in the vicinity of the center, and the curvature of the complex annular zone shape of the first groove 1a. It is arranged in a diagonally downward direction shifted to the center side. With such a configuration, the degree of freedom of arrangement of the image forming element 30 is increased, and for example, there is an advantage that the apparatus can be arranged without interference with a member below the display member 100 such as a handle. It can be said.
  • the heights h1 and h2 of the first groove 1a are constant in the cross section in the first direction ⁇ corresponding to the horizontal direction and the cross section in the second direction ⁇ corresponding to the horizontal direction.
  • the heights h1 and h2 of the first grooves mean the difference between the maximum vertex and the minimum vertex in each first groove 1a.
  • the horizontal direction or the vertical direction in the vehicle body 2 may be used as a reference, but the first direction ⁇ and the second direction ⁇ pass through the center of the image and are determined based on chief rays entering the eye box. Can do. Thereby, it becomes easy to make the thickness of the display member 100 substantially constant, and the incorporation into the windshield 8 provided with the display screen can be facilitated.
  • Each surface of the plurality of first grooves 1a has either an aspherical shape or a free curved surface shape.
  • the bonding surface CR in the display member 100 has a refractive power, so that it is easy to maintain the image quality and the light enters from the display device 200 in which the display member 100 is incorporated.
  • the luminous flux can be made relatively small. Thereby, the optical system of the display device 200 can be reduced, and the display device 200 can be downsized.
  • the curvature of the surface of the first groove 1a varies depending on the position in at least one of the first and second directions ⁇ and ⁇ . Thereby, even when the heights h1 and h2 of the first groove 1a are constant, the state can be ensured when the reflected light is deflected and reflected by the display member 100 in a predetermined direction.
  • the pitches p1 and p2 of the first groove 1a change according to the position in at least one of the first and second directions ⁇ and ⁇ . Thereby, even if the heights h1 and h2 of the first groove 1a are constant, the reflected light can be deflected and reflected in a predetermined direction on the display member 100.
  • the angle with respect to the direction perpendicular to the thickness direction of the surface of the first groove 1a also changes depending on the position in at least one of the first and second directions ⁇ and ⁇ .
  • the first Fresnel-shaped portion 111a has a structure in which the first groove 1a of the first Fresnel-shaped portion 111a is inclined with respect to the second direction ⁇ , which is the vertical direction orthogonal to the horizontal direction. So that the principal ray at the center of the incident light beam from the light beam and the principal ray at the center of the emitted light beam reflected by the reflecting surface 91 of the display member 100 and guided to the pupil HT of the driver UN pass in a predetermined direction or in a predetermined plane.
  • the first Fresnel-shaped portion 111a can correct or adjust the change in the reflection angle (that is, the emission angle ⁇ 2) with respect to the incident angle (that is, the incident angle ⁇ 1) of the display light HK on the display member 100.
  • a desired deflection can be realized.
  • the shape of the first Fresnel-shaped part 111a is based on the inclination of the first groove 1a with respect to the vertical direction, and corrects the light reflection angle and deflects the reflected light in a side sectional view in the first and second directions ⁇ and ⁇ . However, the astigmatic difference is set to be corrected.
  • the inclination angle with respect to the vertical direction of the first groove 1a is determined, and the extending direction of the first groove 1a is determined.
  • the incident angle to the reflecting surface 91 can be set in the entire range from 0 ° to 90 °, for example, depending on the structure of the first Fresnel-shaped portion 111a.
  • the heights h1 and h2, the pitches p1 and p2, and the curvature and the like of the first groove 1a are necessary for ensuring performance in combination with the optical system constituting the HUD device.
  • the value is determined from the structure.
  • the second Fresnel shape portion 112a has a shape that is substantially inverted from the first Fresnel shape portion 111a, and therefore description of dimensions and the like is omitted (the same applies hereinafter).
  • the angle formed by the first element MRa and the second element MRb of the mirror MR is a surface 100a corresponding to the incident surface of the display member 100 of the incident light beam (in this embodiment, ,
  • the direction (or angle, that is, incident angle ⁇ 1) with respect to the surface of the first optical member 110, the direction (or angle, that is, emission angle ⁇ 2) with respect to the surface 100a corresponding to the incident surface of the display member 100, and the display member. 100 is determined by the refractive index of the medium constituting 100.
  • the luminous flux from the light source placed at a certain distance with respect to the display member 100 is, for example, when the luminous flux is incident as diverging light, depending on the position of incidence on the incident surface of the display member 100.
  • the incident angle of the light beam at the position that is, the incident angle ⁇ 1 changes.
  • the display member 100 may generate a non-reflective area DA that does not contribute to the reflection because the display light L1 does not enter the first Fresnel-shaped portion 111a.
  • the first Fresnel-shaped portion 111a is preferably designed so that the non-reflection area DA is minimized. If the heights h1 and h2 of the first groove 1a and the pitches p1 and p2 are set to such an extent that diffraction does not become a problem, and the heights h1 and h2 of the first groove 1a are made as small as possible, the non-reflection area DA is reduced. Can do.
  • the display member 100 is manufactured by press molding, transfer molding using a photocurable resin, or the like.
  • the first and second optical elements 111 and 112 are made of a light-transmitting organic material or inorganic material.
  • the base material on the first Fresnel shape portion 111a side and the base material on the second Fresnel shape portion 112a side have substantially the same refraction. Have a rate.
  • substantially the same refractive index means having a refractive index difference of about 0 to 0.05.
  • the refractive indexes of the first and second optical elements 111 and 112 are based on the refractive index of the base material having the first groove 1a on which the display light L1 is reflected (that is, the first Fresnel-shaped portion 111a). It is desirable.
  • the display member 100 is incorporated in the display device 200.
  • the display device 200 is mounted in the vehicle body 2 as, for example, a head-up display (HUD) device, and includes a drawing unit 210 and a display member 100.
  • the display device 200 displays image information displayed on the image forming element 30 described later on a virtual image or projects a virtual image through the display member 100.
  • the display member 100 is installed integrally with the windshield (front window) 8.
  • the drawing unit 210 of the display device 200 is installed so as to be embedded in the dashboard 4 of the vehicle body 2, and displays the display light HK corresponding to an image including driving-related information, a danger signal, and the like on the display unit 130 of the display member 100. It injects towards.
  • the display unit 130 means a region having the display member 100 in the windshield 8.
  • the display unit 130 functions as a display screen, and is a part that displays an image from the image forming element 30 in the windshield 8.
  • the display unit 130 includes a first optical surface 11a provided on the observation side where the driver UN is present or the driver's seat 6 side, and a second optical surface 12a provided on the counter-observation side.
  • the reflectance of the display unit 130 is higher than the reflectance of the area around the display unit 130.
  • the display unit 130 can make an image easier to see than the periphery of the display unit 130.
  • the area of the display unit 130 and the surrounding area are determined by the viewing angle of the observer (driver UN) and the specifications of the eye box.
  • the display unit 130 reflects the display light HK from the drawing unit 210 toward the rear of the vehicle body 2.
  • the display light HK reflected by the display member 100 is guided to the eye box corresponding to the pupil HT of the driver UN and its peripheral position.
  • the driver UN can observe the display light HK reflected by the display member 100, that is, the display image IM as a virtual image in front of the vehicle body 2.
  • the driver UN can observe external light transmitted through the display member 100, that is, a real image such as a front scene.
  • the driver UN overlaps the external image behind the display unit 130, and displays a display image (virtual image) IM including operation-related information and the like formed by reflection of the display light HK on the display unit 130 of the display member 100. Can be observed.
  • the drawing unit 210 includes an image forming unit 40 including an image forming element 30, an enlarged projection optical system 50, and a housing 14.
  • FIG. 2A and the like illustrate the configuration of the display device 200, and the configuration of the display device 200 is appropriately changed depending on the specification, installation location, and the like.
  • the image forming unit 40 includes, in addition to the image forming element 30, a display driving circuit that causes the image forming element 30 to perform a display operation, and an LED that emits light for illuminating the image forming element 30.
  • a display driving circuit that causes the image forming element 30 to perform a display operation
  • an LED that emits light for illuminating the image forming element 30.
  • Other light sources, a uniformizing optical system for uniformizing light from such light sources, and the like are provided.
  • the image forming element 30 may be a reflective element such as a digital mirror device (DMD) or a reflective liquid crystal element (LCOS), or a transmissive element such as a liquid crystal display (for example, a liquid crystal display (LCD)).
  • DMD digital mirror device
  • LCOS reflective liquid crystal element
  • LCD liquid crystal display
  • the enlarged projection optical system 50 includes a first projection optical system 51 that forms an intermediate image corresponding to the image formed on the image forming element 30 and an image light corresponding to the intermediate image that is incident on the display member 100 to generate a virtual image. And a second projection optical system 52 for displaying.
  • the magnifying projection optical system 50 has the intermediate screen 16 at or near the position where the intermediate image is formed.
  • the intermediate screen 16 can be a movable member that moves in the direction of the optical axis AX.
  • the enlarged projection optical system 50 has a variable focus, and can change the projection distance of the display image (virtual image) IM.
  • the housing 14 has an opening 14a through which the display light HK passes, and a film-like or thin plate-like light transmission member 14b can be disposed in the opening 14a.
  • the display light HK reflected by the display member 100 is guided to the pupil HT of the driver UN.
  • the virtual image light beam KK obtained by extending the display light HK behind the display member 100 forms a display image (virtual image) IM at a predetermined position ahead of the driver's pupil HT.
  • the distance from the pupil HT to the display member 100 is about 0.5 to 1 m, for example, depending on the specifications of the vehicle body 2, and the distance from the display member 100 to the display image IM is about 1 m or more, for example.
  • the viewing angle is about ⁇ 10 ° to ⁇ 15 °.
  • the eye box is set so as to cover the position of the pupil HT of a standard driver UN, and is set to a size of, for example, 10 to 15 cm in width and 5 to 8 cm in length.
  • the first optical surface 11a (actually, the bonding surface CR) disposed on the pupil HT side of the display member 100 displays an image formed on the image forming element 30 via the enlarged projection optical system 50 with respect to the pupil HT.
  • the display image IM is displayed or projected with little distortion.
  • the first optical surface 11a can form a display image IM without distortion depending on the shape of the optical surface.
  • the antireflection film is not provided on the second optical surface 12a, or when some reflection remains in the antireflection film, the display light branched through the first optical surface 11a also in the second optical surface 12a. HK is partially reflected.
  • the display light reflected on the second optical surface 12a behind the branch after branching passes through the first optical surface 11a and enters the pupil HT, so that the display image IM To form a double image.
  • the secondary display light reflected by the second optical surface 12a travels from the same point on the display image IM in relation to the original display light HK, the virtual image and the secondary display by the display light HK are displayed. Formation of a double image can be avoided by overlapping with a virtual image by light.
  • the curvature or inclination angle of the second optical surface 12a and the thickness of the base material may be adjusted with reference to the first optical surface 11a.
  • the viewing angle and the eye box can be sufficiently ensured by deflecting the reflected light to be incident on the driver UN side on the joint surface CR in the display member 100. Further, the deflection can provide a degree of freedom in the arrangement of the display device 200 such as a HUD device. Further, the first groove 1a constituting the first Fresnel-shaped portion 111a extends at an angle with respect to the vertical direction (specifically, the second direction ⁇ ) orthogonal to the horizontal direction, so that the first groove 1a is orthogonal.
  • the display device 200 incorporating the display member 100 can be reduced in size, for example, the size of an optical member such as the second projection optical system 52, and the entire display device 200 can be downsized. Can be achieved.
  • the display member etc. which concern on 2nd Embodiment are demonstrated.
  • the display member of the second embodiment is a modification of the display member of the first embodiment, and items that are not particularly described are the same as those of the first embodiment.
  • the display member 100 is provided in a combiner 108 that is a member independent of the windshield 8. That is, the combiner 108 has a display screen function.
  • the arrangement of the display member 100 can be changed as appropriate.
  • the display member of the third embodiment is a modification of the display member of the first embodiment, and items that are not particularly described are the same as those of the first embodiment.
  • the windshield 8 is disposed so as to extend in a substantially vertical direction. Accordingly, the display member 100 or the display unit 130 provided in the windshield 8 is also arranged to extend in a substantially vertical direction. Since the display unit 130 includes desired Fresnel-shaped portions 111a and 112a, the display member 100 is displayed to the observer (driver UN), and a HUD device in a moving body in which a front window such as a truck or a bus is close to the ground. Even when the display device 200 such as the above is arranged on the windshield 8, the observer (driver UN) can sufficiently observe the image projected at the oblique incidence while observing the image of the outside world.
  • the transmitted image outside the vehicle is not distorted. That is, in the display member 100 in a substantially vertical state, for example, an image projected from obliquely below or obliquely above the display member 100 to the display member 100 by the Fresnel-shaped portions 111a and 112a of the display member 100.
  • the reflected image can be returned in a predetermined direction.
  • the sheet-like member 90 composed of the first and second optical elements 111 and 112 has a wedge shape whose thickness changes. You may have. In this case, it is possible to prevent a double image generated due to a deviation between the transmitted light transmitted through the display member 100 and the reflected light reflected by the display member 100.
  • the composite annular zone shape along the surface of the first optical element 111 of the first groove 1a is an example, and can be appropriately changed according to the specification.
  • the composite annular zone shape along the surface of the first optical element 111 of the first groove 1a is not limited to the shape inclined in an arc shape, but may be a shape inclined in a linear shape. Good.
  • the vertex connecting the first element MRa and the second element MRb of the mirror MR may have an R plane.
  • the R surface should just be provided in the vertex into which the display light L1 injects, ie, the Z side.
  • a sheet-like member 90 as the display member 100 may be attached to the windshield 8 as shown in FIG.
  • the sheet-like member 90 is affixed to the windshield 8 or the like via an adhesive or an adhesive layer.
  • the surface opposite to the bonding surface CR of the first optical element 111 and the bonding surface CR of the second optical element 112 are related to the optical system of the display device 200.
  • the example in which the display member 100 (or the sheet-like member 90) is manufactured by separately molding the first and second optical elements 111 and 112 and giving them is described.
  • the second optical element 112 is molded in a state where the first optical element 111 is inserted into the mold for the second optical element 112 to manufacture the display member 100 (or the sheet-like member 90). May be.
  • the drawing unit 210 and the like shown in FIG. 2A and the like are merely examples, and the configuration of the magnifying projection optical system 50 is changed as appropriate, or the image forming element 30 is changed to another type of image formation. It can be replaced with an element.
  • the enlarged projection optical system 50 can be changed to a fixed focus optical system.
  • a configuration in which the enlarged projection optical system 50 is omitted or a configuration in which the first projection optical system 51 is omitted may be employed.
  • the display member 20 is a half mirror also called a combiner, and is a concave mirror or a plane mirror having semi-transparency.
  • the display member 20 is erected on the dashboard 4 by supporting the lower end, and reflects the display light HK from the drawing unit 210 toward the rear of the vehicle body 2. That is, in the illustrated case, the display member 20 is an independent type installed separately from the windshield (wind shield) 8.
  • the display light HK reflected by the display member 20 that is a half mirror is guided to an eye box (not shown) corresponding to the pupil HT of the driver (driver) UN sitting in the driver's seat 6 and its peripheral position.
  • the driver UN can observe the display light HK reflected by the display member 20, that is, the display image IM as a virtual image in front of the vehicle body 2.
  • the driver UN can observe external light transmitted through the semi-transmissive display member 20, that is, a real image of a front scene, a car, and the like.
  • the driver UN superimposes the external image behind the display member 20 and displays a display image (virtual image) IM including driving-related information and a danger signal formed by reflection of the display light HK on the display member 20. Can be observed.
  • the display member 20 may correspond to the driver UN side optical surface of the windshield 8. Further, the display member 20 is not limited to a concave mirror or a plane mirror, and may be a curved surface such as an aspheric surface, may be a further curved surface, or may be a free curved surface having no symmetry.
  • the drawing unit 210 includes a main body optical system 13, a display control unit 18 that operates the main body optical system 13, and a housing 14 that houses the main body optical system 13 and the like.
  • the combination of the main body optical system 13 and the display member (combiner) 20 constitutes a virtual image projection optical system (or virtual image display optical system) 1030.
  • the coordinate axes XYZ have the origin at the center of the eye box corresponding to the position between the pupils HT of a general driver UN, but are displayed with the origin shifted for convenience.
  • the virtual image projection optical system 1030 includes at least one Fresnel element 1050. Further, the virtual image projection optical system 1030 includes a vibration mechanism 80 that finely vibrates at least one member constituting the virtual image projection optical system 1030. It should be noted that an appropriate member that complements the missing portion generated in the virtual image according to the configuration of the virtual image projection optical system 1030 is finely vibrated. In the present embodiment, an example in which the first mirror 17a constituting the second projection optical system 52 described later is a Fresnel element 1050 is given, and the Fresnel element 1050 is finely oscillated.
  • the main body optical system 13 includes an image forming element 30, a first projection optical system 51 capable of forming an intermediate image TI obtained by enlarging an image formed on the image forming element 30, and an image forming position of the intermediate image TI.
  • An intermediate screen 16 disposed downstream of the optical path and a second projection optical system 52 that converts the intermediate image TI into a virtual image are provided.
  • the image forming element 30 is also called a display device or a drawing device.
  • the virtual image projection distance is variable by the main body optical system 13 functioning as a virtual image projection optical system.
  • the first projection optical system 51, the intermediate screen 16, and the second projection optical system 52 are an enlarged projection optical system 50 that enlarges the image of the image forming element 30.
  • the enlarged projection optical system 50 can make the FOV of the virtual image wider in the display device 200 while securing the eye box.
  • the image forming element 30 is a display unit having a two-dimensional display surface 30a.
  • the image formed on the display surface 30a of the image forming element 30 is enlarged by the first projection optical system 51 in the main body optical system 13 to form the intermediate image TI, passes through the intermediate screen 16, and passes through the second projection optical system. 52 etc.
  • the image forming element 30 capable of two-dimensional display, the intermediate image TI or the display image (virtual image) IM can be switched at a relatively high speed.
  • a display driving circuit for causing the liquid crystal display panel to perform a display operation
  • An LED or other light source that emits light for illuminating the liquid crystal display panel, a uniformizing optical system that uniformizes light from the light source, and the like are provided.
  • the apparatus can be downsized. Further, since the light distribution angle of the LCD is wide, the FOV of the virtual image can be widened.
  • the image forming element 30 operates at a frame rate of, for example, 60 fps or more. This makes it easy to make it appear as if a plurality of display images IM are simultaneously displayed at different projection distances.
  • the image forming element 30 can change the luminance pattern in accordance with the region or pattern shielded by the Fresnel structure 1051 constituting the Fresnel element 1050 described later. That is, the brightness of the display unit of the image forming element 30 is partially changed.
  • the first projection optical system (imaging optical system) 51 is a fixed-focus lens system, and has a plurality of lens elements (not shown). The first projection optical system 51 is disposed closer to the image forming element 30 than the intermediate screen 16.
  • the F value of the first projection optical system 51 is 2.0 or more.
  • the first projection optical system 51 magnifies and projects an image formed on the display surface 30a of the image forming element 30 to an appropriate magnification, and the intermediate image TI (or the incident surface 19m) is positioned near the incident surface 19m of the intermediate screen 16.
  • the forced intermediate image TI ′ includes not only the intermediate image TI itself but also an image that is slightly out of focus by being displaced from the intermediate image TI.
  • the first projection optical system 51 has a stop 15a arranged closest to the intermediate screen 16 of the first projection optical system 51. As described above, by arranging the stop 15a, setting and adjustment of the F value on the intermediate screen 16 side of the first projection optical system 51 are relatively easy. Note that the aperture of the first projection optical system 51 may be disposed anywhere in the lens system.
  • the intermediate screen 16 is a member whose diffusion angle is controlled to a desired angle, and forms a forced intermediate image TI 'at an image formation position (that is, an image formation planned position of the intermediate image TI or its vicinity).
  • a forced intermediate image TI 'at an image formation position that is, an image formation planned position of the intermediate image TI or its vicinity.
  • the position of the forced intermediate image TI ′ can also be moved in the optical axis AX direction.
  • a diffusion plate, a diffusion screen, a microlens array, or the like can be used.
  • the eye box size can be enlarged by the intermediate screen 16.
  • the intermediate image TI is formed in a display area from the intermediate screen 16 to the front stage of the optical path.
  • the incident surface 19m of the intermediate screen 16 has a diffusion function.
  • a forced intermediate image TI ' is formed on the incident surface 19m, and light diffuses therefrom, so that a wide eye box can be secured.
  • the intermediate screen 16 moves within the depth of focus of the first projection optical system 51.
  • the intermediate screen 16 is driven by the arrangement changing device 62 and moves along the optical axis AX, for example, at a constant speed or a periodic movement. That is, the position of the intermediate screen 16 is variable.
  • the optical axis AX passes through the center of the image forming element 30, the center of the eye box, and the image point (virtual image) corresponding to the center of the image forming element 30 created by the display device 200. is there.
  • a display image IM as a virtual image formed behind the display member (combiner) 20 functioning as a display screen by the second projection optical system 52 by moving the intermediate screen 16 along the optical axis AX by the arrangement changing device 62.
  • the driver UN who is the observer can be lengthened or shortened.
  • the arrangement changing device 62 changes the configuration distance of the main body optical system 13 or the virtual image projection optical system 1030 to change the projection distance.
  • the position of the projected display image IM is changed back and forth, and the display content is made to correspond to the position, so that the display image IM is changed while changing the virtual image distance or the projection distance to the display image IM.
  • the display image IM as a series of projection images can be made three-dimensional.
  • the range of movement of the intermediate screen 16 along the optical axis AX corresponds to the image formation planned position of the intermediate image TI or the vicinity thereof, but is within the range of the focal depth of the first projection optical system 51 on the intermediate screen 16 side. Is desirable.
  • the forced intermediate image TI ′ and the imaging state of the display image IM as a virtual image can both be brought into a good state that is substantially in focus.
  • the amount of movement of the intermediate screen 16 in the optical axis AX direction is, for example, 20 mm or less. Thereby, the movement of the intermediate screen 16 can be performed efficiently, and the responsiveness of the intermediate screen 16 can be improved.
  • the moving speed of the intermediate screen 16 is preferably a speed at which the display image IM as a virtual image can be displayed as if it is displayed at a plurality of locations or a plurality of virtual image distances simultaneously.
  • the arrangement changing device 62 moves the intermediate screen 16 at a speed of, for example, 15 Hz or more. In this case, since the speed exceeds the perception of the observer (driver UN), the observer can recognize virtual images with different projection distances almost simultaneously.
  • the intermediate screen 16 is supported by the support member 62a.
  • the support member 62a is attached to the base 62b of the arrangement changing device 62 so as to be movable within a predetermined range along the optical axis AX direction.
  • the image displayed on the intermediate screen 16 at this time is a display that is a half mirror. It is displayed as a virtual image farthest behind the member (display screen or combiner) 20.
  • the image displayed on the intermediate screen 16 at this time is a half mirror. It is displayed as a virtual image closest to the back of a certain display member (combiner) 20.
  • the virtual image generation optical system (second projection optical system) 52 is an enlargement optical system that expands the intermediate image TI formed in the vicinity of the intermediate screen 16 in cooperation with the display member 20, and as a virtual image in front of the driver UN.
  • the display image IM is formed.
  • the second projection optical system 52 is disposed on the virtual image side with respect to the intermediate screen 16.
  • the second projection optical system 52 has a reflection optical system and is composed of at least one mirror.
  • the second projection optical system 52 includes two first and second mirrors 17a and 17b.
  • the first mirror 17a is a first reflector and is disposed on the image forming element 30 side in the preceding stage of the optical path, and has optical power.
  • the second mirror 17b is disposed on the display member (combiner) 20 side in the latter stage of the optical path and has optical power.
  • the first and second mirrors 17a and 17b can be convex surfaces, concave surfaces, or flat surfaces. In the case of curved surfaces, the first and second mirrors 17a and 17b are not limited to spherical surfaces but can be aspherical surfaces, free curved surfaces, or the like.
  • the first mirror 17a of the second projection optical system 52 is a Fresnel element (Fresnel mirror) 1050.
  • the Fresnel element 1050 has a Fresnel structure 1051 in which arc-shaped jagged projections are repeatedly formed in one direction at a predetermined pitch P1, and has a mirror coat layer on the surface of the Fresnel structure 1051.
  • the pitch P1 is constant here, it is not necessarily constant.
  • the Fresnel structure 1051 constituting the Fresnel element 1050 has a non-concentric pattern.
  • the surface 1051a of the Fresnel structure 1051 has a free-form surface.
  • the radius of curvature of the local arc portion does not coincide with each other in the same arc.
  • the optical magnification can be increased by increasing the degree of freedom of the shape of the Fresnel element 1050, the FOV of the virtual image can be widened, and the display device 200 can be made compact.
  • the vibration mechanism 80 vibrates the first mirror 17a which is the Fresnel element 1050.
  • the vibration mechanism 80 for example, a piezo element or the like is used.
  • the vibration direction CD of the fine vibration is set within an angle range of ⁇ 30 ° with respect to the direction perpendicular to the tangent L1 of the Fresnel structure 1051 at the center of the Fresnel element 1050.
  • the vibration direction CD based on the Fresnel pattern becomes one-dimensional, and the control of fine vibration can be simplified.
  • the stroke of fine vibration is shorter than the average pitch of the Fresnel structure 1051 constituting the Fresnel element 1050.
  • the average pitch of the Fresnel structure 1051 is 0.3 mm to 0.6 mm, which is about half of that.
  • the tangent line L1 is preferably based on an average of the tangent lines of each pattern of the Fresnel structure 1051.
  • the housing 14 has an opening 14a through which the display light HK passes, and a film or a thin plate-like light transmission member 14b can be disposed in the opening 14a.
  • FIG. 12 is a block diagram illustrating the mobile display system 300, and the mobile display system 300 includes the display device 200 as a part thereof.
  • the display device 200 has the structure shown in FIG. 10, and a description thereof is omitted here.
  • a moving body display system 300 shown in FIG. 12 is incorporated in an automobile or the like that is a moving body.
  • the mobile display system 300 includes a driver detection unit 71, an environment monitoring unit 72, and a main control device 1090 in addition to the display device 200.
  • the driver detection unit 71 is a part that detects the presence of the driver UN and the viewpoint position, and includes a driver seat camera 71a, a driver seat image processing unit 71b, and a driver seat image determination unit 71c.
  • the driver's seat camera 71a is installed in front of the driver's seat of the dashboard 4 in the vehicle body 2 (see FIG. 1B), and takes an image of the head of the driver UN and its surroundings.
  • the driver seat image processing unit 71b performs various types of image processing such as brightness correction on the image captured by the driver seat camera 71a to facilitate processing in the driver seat image determination unit 71c.
  • the driver seat image determination unit 71c detects the head and eyes of the driver UN by extracting or cutting out an object from the driver seat image that has passed through the driver seat image processing unit 71b, and the depth associated with the driver seat image.
  • the spatial position of the driver UN's eyes (and consequently the direction of the line of sight) is calculated along with the presence / absence of the driver's UN head in the vehicle body 2 from the information.
  • the environment monitoring unit 72 is a part for identifying a car, a bicycle, a pedestrian, and the like that are close to the front, and includes an external camera 72a, an external image processing unit 72b, and an external image determination unit 72c.
  • the external camera 72a is installed at appropriate locations inside and outside the vehicle body 2 and captures external images of the driver UN or the windshield 8 such as the front and sides.
  • the external image processing unit 72b performs various types of image processing such as brightness correction on the image captured by the external camera 72a to facilitate processing by the external image determination unit 72c.
  • the external image determination unit 72c extracts or cuts out an object from the external image that has passed through the external image processing unit 72b, thereby determining whether a target such as a car, a bicycle, or a pedestrian (for example, the object OB shown in FIG. 13) exists. While detecting, the spatial position of the target object in front of the vehicle body 2 is calculated from the depth information accompanying the external image.
  • the driver's seat camera 71a and the external camera 72a are not shown, but are, for example, compound eye type three-dimensional cameras. That is, both cameras 71a and 72a are obtained by arranging camera elements, each of which includes an imaging lens and a CMOS or other image sensor, in a matrix, and each has a drive circuit for the image sensor.
  • the plurality of camera elements constituting each of the cameras 71a and 72a are adapted to focus at different positions in the depth direction, for example, or to detect relative parallax, and are obtained from each camera element. By analyzing the state of the image (focus state, object position, etc.), the distance to each region or object in the image can be determined.
  • the depth direction of each part (area or object) in the captured screen is used. Distance information can be obtained.
  • distance information in the depth direction can be obtained for each part (region or object) in the captured screen by using a stereo camera in which two two-dimensional cameras are separately arranged in place of the compound-eye cameras 71a and 72a.
  • distance information in the depth direction can be obtained for each part in the captured screen by performing imaging while changing the focal length at high speed.
  • the display control unit 18 operates the virtual image projection optical system 1030 under the control of the main controller 1090 to display a three-dimensional display image IM in which the virtual image distance or the projection distance changes behind the display member 20.
  • the display control unit 18 generates a display image IM to be displayed on the virtual image projection optical system 1030 from display information including the display shape and display distance received from the environment monitoring unit 72 via the main control device 1090.
  • the display image IM is, for example, a display frame (see display frame HW shown in FIG. 13) located in the periphery with respect to the direction of the depth position with respect to an automobile, a bicycle, a pedestrian, or other object existing behind the display member 20. Can be a good sign.
  • the luminance pattern is changed according to the area shielded by the Fresnel structure 1051 constituting the Fresnel element 1050.
  • the change in the luminance pattern may correspond to one edge of the Fresnel structure 1051 or may correspond to an average of a plurality of edges.
  • the brightness of the display area of the image forming element 30 passing through the area where the pitch of the Fresnel element 1050 is narrow is made higher than the brightness of the display area of the image forming element 30 passing through the area where the pitch of the Fresnel element 1050 is wide. Yes. This makes it possible to display a display image (virtual image) IM that is easier to recognize.
  • the display control unit 18 receives a detection output related to the presence of the driver UN and the eye position from the driver detection unit 71 via the main control device 1090. Thereby, the projection of the display image IM by the virtual image projection optical system 1030 can be automatically started and stopped. Further, the display image IM can be projected only in the direction of the line of sight of the driver UN. Further, it is possible to perform projection with emphasis such as brightening or blinking only the display image IM in the direction of the line of sight of the driver UN.
  • the main controller 1090 has a role of harmonizing the operations of the display device 200, the environment monitoring unit 72, and the like, and the virtual image projection optical system 1030 corresponds to the spatial position of the object detected by the environment monitoring unit 72. Adjust the spatial arrangement of the display frame and other images projected by.
  • FIG. 13 is a perspective view illustrating a specific display state.
  • a detection area VF corresponding to the observation field is provided in front of the driver UN as an observer. It is assumed that objects OB1 and OB3 of a person such as a pedestrian and a moving object OB2 such as an automobile exist in the detection area VF, that is, in and around the road.
  • main controller 1090 causes display device 200 to project a three-dimensional display image (virtual image) IM, and displays display frames HW1, HW2, and HW3 as related information images for objects OB1, OB2, and OB3. Append.
  • the projection distance to the display images (projected images) IM1, IM2, IM3 for displaying the display frames HW1, HW2, HW3 is the driver This corresponds to the distance from the UN to each object OB1, OB2, OB3.
  • the projection distances of the display images IM1, IM2, and IM3 are discrete, and cannot be accurately matched to the actual distances to the objects OB1, OB2, and OB3.
  • the virtual image projection optical system 1030 includes at least one Fresnel element 1050, and the Fresnel element 1050 is finely oscillated to compensate for a missing portion generated in the display image (virtual image) IM. It is possible to display a display image (virtual image) IM with no missing part.
  • the FOV of the virtual image is wide and the display device 200 can be made compact while maintaining the eye box, and an image that can be easily recognized by the display device 200 can be visually recognized by the observer (driver UN).
  • the second projection optical system 52 of this embodiment is composed of a single first mirror 17a and a windshield.
  • the first mirror 17 a is a Fresnel element 1050.
  • the first mirror 17a is a flat mirror when viewed macroscopically, but a Fresnel structure 1051 is formed on a surface on the image forming element 30 side which is a reflection surface.
  • 15A and 15B show an optical arrangement in the case where only the first mirror 17a that is not the Fresnel element 1050 is provided in the second projection optical system 52 as a comparative example.
  • the first mirror 17a of the comparative example has a concave surface on the surface on the image forming element 30 side.
  • the display device 200 can be made smaller by using the first mirror 17a as the Fresnel element 1050.
  • the missing portion generated in the virtual image can be complemented by finely vibrating the first mirror 17a which is the Fresnel element 1050. It is possible to display a virtual image having no missing part as compared with the configuration.
  • the display device according to the fifth embodiment will be described below.
  • the display device according to the fifth embodiment is a modification of the display device according to the fourth embodiment, and items not particularly described are the same as those in the fourth embodiment.
  • the display member 20 is a Fresnel element 1050.
  • the Fresnel element 1050 can be finely vibrated using the vibration mechanism 80.
  • the display member 20 is a Fresnel element (Fresnel screen) 1050.
  • the Fresnel structure 1051 draws a concentric arc-shaped pattern.
  • the concentric pattern includes an off-axis type in which the center of the concentric circle is not included in the Fresnel element 1050. In this case, mold processing for producing the Fresnel element 1050 with the off-axis optical system becomes easy.
  • the Fresnel element 1050 is composed of two base materials 1053.
  • the Fresnel structure 1051 is provided on one surface of each base material 1053, and they face each other.
  • the Fresnel element 1050 has a half mirror coat layer 1052 on the Fresnel structure 1051.
  • the one base material 1053 which does not have the half mirror coat layer 1052 may be a flat surface.
  • the half mirror coat layer 1052 is sandwiched between a pair of base materials 1053 having substantially the same refractive index.
  • the base material 1053 including the Fresnel structure 1051 may be formed into a sheet shape and separately attached to the surface of the display member 20.
  • the Fresnel element 1050 has the same structure as the sheet-like member 90 (that is, the display member 100) shown in FIG. 2A and the like.
  • the two opposing base materials 1053 correspond to the optical elements 111 and 112
  • the half mirror coat layer 1052 corresponds to the mirror MR.
  • the Fresnel-shaped portion 190 is formed by the three-dimensional shape of the half mirror coat layer 1052. Although details are omitted, the three-dimensional shape of the Fresnel-shaped portion 190 or the half mirror coat layer 1052 is similar to the three-dimensional shape of the Fresnel-shaped portions 111a and 112a or the mirror MR with respect to the vertical direction orthogonal to the horizontal direction. It is inclined and extends.
  • the display device according to the sixth embodiment will be described below.
  • the display device according to the sixth embodiment is a modification of the display device according to the fourth embodiment, and items not particularly described are the same as those in the fourth embodiment.
  • the display member 20 is a Fresnel element 1050.
  • the combiner part 220 is affixed as the display member 20 inside the rectangular reflection region 8d provided in front of the driver's seat of the windshield 8 forming the front window without providing a combiner. .
  • the display member can be embedded in the windshield 8.
  • members other than the Fresnel element 1050 among the members constituting the virtual image projection optical system 1030 are finely vibrated using the vibration mechanism 80.
  • the image forming element 30, the lens constituting the first projection optical system 51, the mirror of the second projection optical system 52, and the like are finely vibrated.
  • the vibration direction of the lens, mirror, or the like is a direction corresponding to a predetermined direction within an angular range of ⁇ 30 ° with respect to a direction perpendicular to the tangent to the Fresnel structure 1051 at the center of the Fresnel element 1050, and is perpendicular to the optical axis AX, for example. It has become a direction.
  • the display device according to the seventh embodiment will be described below.
  • the display device according to the seventh embodiment is a modification of the display device according to the fourth embodiment, and items not particularly described are the same as those in the fourth embodiment.
  • the vibration directions CD and EF of the fine vibration of the Fresnel element 1050 are ⁇ 30 ° with respect to the direction perpendicular to the tangent L1 of the Fresnel structure 1051 at the center of the Fresnel element 1050.
  • the vibration directions CD and EF with the Fresnel pattern as a reference are two-dimensional, and a missing portion that can occur in a virtual image can be more accurately complemented. Vibrating in a two-dimensional vibration direction is particularly effective when the Fresnel structure 1051 has a pattern with a small radius of curvature.
  • a member other than the Fresnel element 1050 when a member other than the Fresnel element 1050 is vibrated finely, it can be vibrated in a two-dimensional direction.
  • the display device according to the eighth embodiment will be described below.
  • the display device according to the eighth embodiment is a modification of the display device according to the fourth embodiment, and items not specifically described are the same as those in the fourth embodiment.
  • the intermediate screen 16 constituting the virtual image projection optical system 1030 is provided in the diffusing unit 19.
  • the diffusing unit 19 is disposed at a projection position or an imaging position by the imaging optical system (first projection optical system) 51 (that is, at or near the imaging position of the intermediate image), and the rotating body 19a and the hollow frame body 19b. And is driven around the reference axis SX at a constant speed, for example.
  • FIG. 21A is a front view illustrating the diffusing portion 19, and FIG. 21B is a side cross-sectional view illustrating the diffusing portion 19.
  • the diffusing unit 19 includes a spiral rotating body 19a having an outline close to a disk as a whole, and a cylindrical hollow frame 19b that houses the rotating body 19a.
  • the rotating body 19a has a central portion 19c and an outer peripheral optical portion 19p.
  • One surface 19f formed on the outer peripheral optical portion 19p of the rotating body 19a is formed as a smooth surface or an optical surface, and the intermediate screen 16 is formed over the entire surface on the surface 19f.
  • the surface 19f of the rotating body 19a functions as the three-dimensional shape portion 116.
  • the intermediate screen 16 is a diffusion plate whose light distribution angle is controlled to a desired angle, and has a diffusion degree (a diffusion angle of a half-value intensity of the diffusion distribution) of, for example, 20 ° or more.
  • the intermediate screen 16 can be a sheet attached to the rotating body 19a, but may be a fine uneven pattern formed on the surface of the rotating body 19a.
  • the intermediate screen 16 may be formed so as to be embedded in the rotating body 19a.
  • the intermediate screen 16 forms an intermediate image TI by diffusing the incident display light HK (see FIG. 20).
  • the other surface 19s formed on the outer peripheral optical part 19p of the rotating body 19a is formed on a smooth surface or an optical surface.
  • the rotator 19a is a light-transmitting spiral member, and the pair of surfaces 19f and 19s is a spiral surface having the reference axis SX as a spiral axis.
  • the intermediate screen 16 formed on one surface 19f is also formed along a continuous spiral surface.
  • the rotating body 19a has substantially the same thickness t with respect to the reference axis SX or optical axis AX direction.
  • the intermediate screen 16 is formed in a range corresponding to one period of the spiral. In other words, the intermediate screen 16 is formed in a range corresponding to one spiral pitch. As a result, a stepped portion 19j is formed at one place along the periphery of the diffusing portion 19.
  • the rotating body 19a In the rotating body 19a, one place along the circumferential direction is a functional area FA through which the optical axis AX of the main body optical system 13 passes, and an intermediate image TI is formed by a portion of the intermediate screen 16 in the functional area FA.
  • the functional area FA moves at a constant speed on the rotating body 19a as the rotating body 19a rotates. That is, the display light (image light) HK is incident on the functional area FA that is a part of the rotating body 19a while rotating, so that the position of the functional area FA or the intermediate image TI reciprocates along the optical axis AX.
  • an intermediate image as a display is not necessarily formed, but the position where the intermediate image will be formed is also called the position of the intermediate image).
  • the functional area FA or the intermediate image TI of the intermediate screen 16 is stepped in the optical axis AX direction by one rotation of the rotating body 19a. It makes one round trip for a distance corresponding to.
  • the imaging optical system (first projection optical system) 51 has a predetermined focal depth that is equal to or greater than the moving range of the functional area FA so as not to be out of focus depending on the position of the intermediate screen 16 provided in the diffusing unit 19. .
  • the hollow frame body 19b has a cylindrical outer contour and includes a side surface portion 19e and a pair of end surface portions 19g and 19h.
  • the side surface portion 19e and the pair of end surface portions 19g and 19h are formed of the same material having optical transparency. However, the side surface portion 19e may not have light transmittance.
  • the main surfaces 63a and 63b of the one end surface portion 19g can be, for example, smooth surfaces or optical surfaces that are parallel to each other, but can also be free-form surfaces or aspheric surfaces.
  • the main surfaces 64a and 64b of the other end surface portion 19h can be, for example, smooth surfaces or optical surfaces that are parallel to each other, but can also be free-form surfaces or aspheric surfaces.
  • the rotating body 19a in the hollow frame body 19b is fixed to the hollow frame body 19b via a pair of central shaft portions 65, and the hollow frame body 19b and the rotating body 19a rotate integrally around the reference axis SX. To do.
  • the rotating body 19a provided with the intermediate screen 16 in the hollow frame body 19b it is possible to suppress dust and the like from adhering to the rotating body 19a, and to generate sound accompanying the rotation of the rotating body 19a. Therefore, it is easy to stabilize the rotation of the rotating body 19a at a high speed.
  • the intermediate screen 16 (or the three-dimensionally shaped portion 116) of the rotating body 19a is lighted by rotating the diffusion portion 19 around the reference axis SX at a constant speed by the rotation driving portion 162 that is a screen driving portion.
  • a position intersecting the axis AX (that is, the functional area FA) also moves in the direction of the optical axis AX. That is, for example, as shown in FIG. 21C, with the rotation of the rotating body 19a, the functional area FA on the intermediate screen 16 is sequentially shifted to the adjacent functional area FA ′ set at a position shifted at an equal angle, for example. , Move in the direction of the optical axis AX.
  • the position of the intermediate image TI can also be moved in the optical axis AX direction.
  • the projection distance or the virtual image distance to the display image IM can be increased by moving the position of the intermediate image TI to the image forming element 30 side. Further, the projection distance or virtual image distance to the display image IM can be reduced by moving the position of the intermediate image TI to the second projection optical system 52 side.
  • the virtual image generation optical system (second projection optical system) 52 may have an optical characteristic that corrects the curvature of the intermediate screen 16 in the functional area FA of the rotator 19a (that is, the curvature of field of the intermediate image TI).
  • the diffusion unit 19 rotates around the reference axis SX and the intermediate image TI corresponding to the functional area FA is displayed.
  • the position repeatedly moves periodically in the direction of the optical axis AX, and the distance between the display image IM as a virtual image formed behind the display member 20 by the second projection optical system 52 and the driver UN as an observer is increased, Or it can be shortened.
  • the display device 200 may be reversed upside down, and the display unit 130 or the display member 20 may be disposed above the windshield (front window) 8 or at the sun visor position. it can.
  • the display unit 130 or the display member 20 is disposed obliquely downward and forward of the drawing unit 210.
  • the display unit 130 or the display member 20 may be disposed at a position corresponding to a conventional mirror of an automobile.
  • the outline of the display unit 130 or the display member 20 is not limited to a rectangle but can be various shapes.
  • the enlarged projection optical system 50 shown in FIG. 2 or the like, or the main body optical system 13 shown in FIG. 10 or the like is merely an example, and these optical configurations can be appropriately changed.
  • an intermediate image as a preceding stage of the intermediate image TI can be additionally formed in the first projection optical system 51.
  • One or more mirrors having no optical power may be disposed in the optical path of the second projection optical system 52. In this case, it may be advantageous for downsizing the drawing unit 210 and the like by folding.
  • the display position of the display image (virtual image) IM is not limited to the three locations exemplified in the above embodiment, and can be set to an appropriate number.
  • the display of the display image IM can be set continuously or intermittently by changing the position. Further, the display position of the display image IM can be fixed without being changed.
  • the LCD is used as the image forming element 30, but other types of display panels such as an organic EL may be used.
  • the display device 200 can be reduced in weight.
  • the image forming element 30 may be a reflective element such as DMD or LCOS.
  • DMD digital versatile disk
  • LCOS liquid crystal display
  • the pattern of the Fresnel structure 1051 may be either a concentric pattern or a non-concentric pattern. Further, the pattern of the Fresnel structure 1051 can be changed as appropriate according to the configuration of the virtual image projection optical system 1030. Specifically, as shown in FIG. 22, the center of the arc-shaped pattern of the Fresnel structure 1051 can be shifted in the horizontal direction.
  • the first mirror 17a, the display member 20, and the like of the second projection optical system 52 are the Fresnel element 1050.
  • a part of the lens constituting the first projection optical system 51 is a Fresnel element. It may be 1050.
  • the Fresnel element 1050 is finely vibrated in a predetermined direction. Further, two or more Fresnel elements 1050 may be finely vibrated.
  • the second projection optical system 52 is provided with one or two mirrors, but may be provided with three or more mirrors.
  • the mirror coat layer may be omitted.
  • the optical surface of a general mirror or Fresnel element type mirror constituting the display member 20 or other virtual image projection optical system 1030 is, for example, a symmetric aspherical surface or free-form surface, but is not limited thereto. A free-form surface having no symmetry may be used.
  • the display member 20 is disposed inside the rectangular reflection area provided in front of the driver's seat of the windshield 8 forming the front window without providing the combiner.
  • a display screen may be formed by pasting.
  • the display member 20 can also be embedded in the windshield 8. In this case, the portion of the windshield 8 in which the display member 20 is embedded becomes a display screen.
  • the first projection optical system 51 is a fixed focus optical system, but may be a variable focus optical system.
  • the intermediate screen 16 may not be provided.
  • the position of the projected display image IM is changed by moving the entire intermediate screen 16 along the optical axis AX or rotating around the reference axis SX.
  • the position of the display image IM may be changed using another method such as sliding an intermediate screen having a partial region.
  • the display device 200 described above is not limited to a projection device mounted on an automobile or other moving body, but can be incorporated in a digital signage or the like, but can also be applied to other uses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Instrument Panels (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

Provided is a display member 100 to be disposed on a windshield 8, the display member 100 comprising a first optical element 111 and a second optical element 112, wherein a second Fresnel shape portion 112a has a shape obtained by substantially inverting the shape of a first Fresnel shape portion 111a, the first and second optical elements 111 and 112 are bonded so that the first and second Fresnel shape portions 111a and 112a are opposed to each other. On a bonding surface CR, display light HK from an image forming element 30 is polarized and reflected by at least one of the first and second Fresnel shape portions 111a and 112a as reflected light, and light from the opposite side of the image forming element 30 is transmitted as transmitted light, so that the reflected light and the transmitted light can be observed while being superposed on each other. A first groove 1a extends while being inclined with respect to a vertical direction orthogonal to a horizontal direction.

Description

表示部材及び表示装置Display member and display device
 本発明は、光透過性を有しつつ画像を投影表示させるために用いられる表示部材、及び、画像を投影によって表示する表示装置に関するものである。 The present invention relates to a display member used for projecting and displaying an image while having light transparency, and a display device for displaying an image by projection.
 ヘッドアップディスプレイ(以下、HUDとする)装置等の表示装置には、光透過型のスクリーン(又は表示部材)が用いられている。このスクリーンは、表示装置の光学ユニット又は描画ユニットからの表示光を反射し、かつ外界からの光を透過させるものである。HUD装置において、表示光は観察者の頭部を正面として斜め方向からスクリーンに入射する。そのため、表示光は、スクリーンにおいて観察者が表示光による投影画像を認識するように正面に相当する所定の方向に曲げられることが求められる。 A light transmissive screen (or display member) is used for a display device such as a head-up display (hereinafter referred to as HUD) device. This screen reflects display light from the optical unit or drawing unit of the display device and transmits light from the outside. In the HUD device, display light enters the screen from an oblique direction with the observer's head as the front. Therefore, the display light is required to be bent in a predetermined direction corresponding to the front surface so that the observer can recognize a projection image by the display light on the screen.
 ウィンドシールドにおいて、外部ガラス板と内部ガラス板との間に、ライン及び空白部の組み合わせからなり、入射される映像をラインを用いて反射するパターン部を有するものがある(特許文献1参照)。特許文献1のウィンドシールドでは、パターン部と内部ガラス板との間にPVBフィルムが設けられている。パターン部のラインはHUD装置の表示光全体又は一部を反射させ、空白部はラインとラインとの間に形成され光を透過させる。パターン部は、不連続又は連続的な水平、垂直、又は曲線ラインの組み合わせ、格子形ライン、又は円形、楕円形、多角形、又はファジー形ラインの組み合わせで構成されている。このようなパターン部の構成により、ウィンドシールドで発生する二重像の問題を解決している。 Some windshields include a combination of a line and a blank portion between an external glass plate and an internal glass plate, and have a pattern portion that reflects an incident image using the line (see Patent Document 1). In the windshield of Patent Document 1, a PVB film is provided between the pattern portion and the internal glass plate. The line of the pattern part reflects all or part of the display light of the HUD device, and the blank part is formed between the lines and transmits light. The pattern portion is composed of a combination of discontinuous or continuous horizontal, vertical, or curved lines, a lattice line, or a combination of a circular, elliptical, polygonal, or fuzzy line. Such a configuration of the pattern portion solves the problem of the double image generated in the windshield.
 しかしながら、特許文献1では、表示光の向きを所定方向に偏向することについては開示されていない。 However, Patent Document 1 does not disclose deflecting the direction of display light in a predetermined direction.
 また、ウィンドシールドにおいて、厚み方向の一方の面に複数の溝が形成されたフレネル形状部と、当該フレネル形状部の面上に形成されたハーフミラー層とを備える光学部材で構成される光学デバイスを有するものがある(特許文献2、3参照)。特に特許文献2の光学デバイスにおいて、フレネル形状部の複数の溝は、それぞれの表面に自由曲面を有している。また、各溝の深さや反射面の角度を変化させている。また、各溝の円周方向の位置毎に、フレネル形状部の中央部から円周上の各点までの距離も変化させることができる。特許文献2の光学デバイスは、溝に沿った円周方向の位置の違いに応じて各溝の反射面の角度を連続的に変化させることで、自由曲面特性を持たせることができ、光学系等に存在する3次元状の歪みを抑制している。 Further, in the windshield, an optical device comprising an optical member comprising a Fresnel-shaped portion in which a plurality of grooves are formed on one surface in the thickness direction, and a half mirror layer formed on the surface of the Fresnel-shaped portion. (See Patent Documents 2 and 3). In particular, in the optical device of Patent Document 2, the plurality of grooves in the Fresnel-shaped portion have free curved surfaces on their surfaces. Moreover, the depth of each groove | channel and the angle of a reflective surface are changed. In addition, the distance from the central portion of the Fresnel-shaped portion to each point on the circumference can be changed for each circumferential position of each groove. The optical device of Patent Document 2 can have a free-form surface characteristic by continuously changing the angle of the reflecting surface of each groove according to the difference in the circumferential position along the groove. The three-dimensional distortion which exists in the etc. is suppressed.
 しかしながら、特許文献2の光学デバイスでは、上述のように自由曲面のフレネル形状について記載されているが、溝のピッチが特定方向において一定の場合、曲率変化の大きい形状をフレネル化すると、溝の輪帯高さが高くなる。そのため、このような光学デバイスをウィンドシールドに適用すると、厚さが問題となる。さらに、フレネル構造部の段差付近を通過する光線は遮光され、虚像に欠落部が生じ、画像品質の悪い虚像となる可能性がある。 However, in the optical device of Patent Document 2, the Fresnel shape of a free-form surface is described as described above, but when the groove pitch is constant in a specific direction, if the shape having a large curvature change is Fresneled, the groove ring The belt height increases. Therefore, when such an optical device is applied to a windshield, thickness becomes a problem. Furthermore, the light beam that passes through the vicinity of the step of the Fresnel structure is shielded, and a missing portion is generated in the virtual image, which may result in a virtual image with poor image quality.
 また、ウィンドシールドにおいて、第1~第3の光学層を有し、第1の光学層と第2の光学層とが互いに密着し、かつ第1の光学層と第3の光学層とが互いに密着した光学部材を有するものがある(特許文献4参照)。第1の光学層は、第1の主面に凹部と当該凹部の周囲に設けられた複数の凸条部とを有し、第1の主面に対向する第2の主面に凸部と当該凸部の周囲に設けられた複数の凸条部とを有する。第1の光学層の屈折率は、第2の光学層の屈折率よりも高く、かつ第3の光学層の屈折率よりも高くなっている。特許文献4の光学部材は、表示像を拡大しつつ、ウィンドシールドを透過する外界像の歪みを抑制している。 Further, the windshield includes first to third optical layers, the first optical layer and the second optical layer are in close contact with each other, and the first optical layer and the third optical layer are in contact with each other. Some have an optical member in close contact (see Patent Document 4). The first optical layer has a concave portion on the first main surface and a plurality of convex ridge portions provided around the concave portion, and has a convex portion on the second main surface facing the first main surface. A plurality of protrusions provided around the protrusion. The refractive index of the first optical layer is higher than the refractive index of the second optical layer and higher than the refractive index of the third optical layer. The optical member of Patent Document 4 suppresses distortion of the external image that passes through the windshield while enlarging the display image.
 また、ウィンドシールドにおいて、フレネルレンズが設けられた主面を有する光学シートを備え、フレネルレンズの光軸が当該主面の外形の中心とは異なる位置に配置されている光学素子を有するものがある(特許文献5参照)。特許文献5において、主面側に光学素子を支持するウィンドシールド等の透明板が配置されている。 Some windshields include an optical sheet having a main surface provided with a Fresnel lens, and an optical element in which the optical axis of the Fresnel lens is arranged at a position different from the center of the outer shape of the main surface. (See Patent Document 5). In Patent Document 5, a transparent plate such as a windshield that supports an optical element is disposed on the main surface side.
 特許文献4及び5の光学部材や光学素子は、フレネル形状を有しているが、光学部材や光学素子を含む領域においてフレネル形状が軸対称であり自由曲面を有しておらず、非点隔差が生じうる。これにより、観察像(投影像)の性能劣化が生じる。 The optical members and optical elements of Patent Documents 4 and 5 have a Fresnel shape, but the Fresnel shape is axisymmetric in the region including the optical member and the optical element, has no free-form surface, and has an astigmatic difference. Can occur. Thereby, performance degradation of an observation image (projection image) arises.
特開2012-51780号公報JP 2012-51780 A 特開2016-180871号公報JP 2016-180871 A 特開2015-161732号公報Japanese Patent Laying-Open No. 2015-161732 特開2010-78860号公報JP 2010-78860 A 特開2011-191715号公報JP 2011-191715 A
 本発明は、上記背景技術に鑑みてなされたものであり、広い視野角や広いアイボックスを確保しつつ、表示光を生成する装置の小型化を図ることができる表示部材を提供することを目的とする。 The present invention has been made in view of the above-described background art, and an object thereof is to provide a display member that can reduce the size of a device that generates display light while ensuring a wide viewing angle and a wide eyebox. And
 また、本発明は、画像表示性能を確保して虚像を投影することができる表示装置を提供することを目的とする。 Another object of the present invention is to provide a display device capable of projecting a virtual image while ensuring image display performance.
 上記した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した表示部材は、表示スクリーンに設けられるものであって、一方の面に複数の第1溝を有する第1フレネル形状部を有する第1光学素子と、一方の面に複数の第2溝を有する第2フレネル形状部を有する第2光学素子と、を備え、第2フレネル形状部は、第1フレネル形状部の形状を略反転させた形状を有し、第1光学素子と第2光学素子とは、第1フレネル形状部と第2フレネル形状部とを対向させた状態で接合されており、第1及び第2光学素子の接合面において、像形成素子からの表示光を第1及び第2フレネル形状部の少なくともいずれか一方により反射光として偏向しつつ反射させるとともに、像形成素子と反対側からの光を透過光として透過させることにより、反射光と透過光とを重ねて観察可能にし、第1溝は、水平方向に直交する縦方向に対して傾斜して延びる。なお、略反転させた形状とは、第2フレネル形状部の形状が、第1フレネル形状部の形状を反転させた形状と完全に同じでなく、多少の誤差を含んでもよいことも意味する。この場合、第1及び第2フレネル形状部間には、接着剤等が介在することが望ましい。 In order to achieve at least one of the above objects, a display member reflecting one aspect of the present invention is provided on a display screen, and has a first Fresnel having a plurality of first grooves on one surface. A first optical element having a shape portion, and a second optical element having a second Fresnel shape portion having a plurality of second grooves on one surface, wherein the second Fresnel shape portion is a portion of the first Fresnel shape portion. The first optical element and the second optical element are joined in a state where the first Fresnel shape part and the second Fresnel shape part are opposed to each other. At the joint surface of the two optical elements, the display light from the image forming element is reflected while being deflected as reflected light by at least one of the first and second Fresnel-shaped portions, and light from the opposite side of the image forming element is reflected. Transmit as transmitted light It makes the observable overlapping the reflected light and transmitted light, the first groove extending obliquely relative to the longitudinal direction orthogonal to the horizontal direction. Note that the substantially inverted shape also means that the shape of the second Fresnel shape portion is not completely the same as the shape of the first Fresnel shape portion inverted, and may include some errors. In this case, it is desirable that an adhesive or the like be interposed between the first and second Fresnel shaped portions.
 また、上記した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した表示装置は、上述の表示部材と、表示部材を設けた表示スクリーンと、表示部材越しに表示する虚像に対応する画像を表示する描画ユニットと、を備える。 In order to achieve at least one of the above objects, a display device reflecting one aspect of the present invention includes a display image including the display member, a display screen provided with the display member, and a virtual image displayed over the display member. And a drawing unit for displaying an image corresponding to.
 また、上記した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した表示装置は、像形成素子によって形成された画像を表示スクリーン越しに虚像投影して表示させる虚像投影光学系を備えるものであって、虚像投影光学系は、少なくとも1つのフレネル素子を含み、虚像投影光学系を構成する部材の少なくとも1つを微細振動させる振動機構を備える。 In order to achieve at least one of the above objects, a display device reflecting one aspect of the present invention is a virtual image projection optical system that displays an image formed by an image forming element by projecting a virtual image through a display screen. The virtual image projection optical system includes at least one Fresnel element, and includes a vibration mechanism that finely vibrates at least one member constituting the virtual image projection optical system.
図1A及び1Bは、第1実施形態に係る表示部材及び表示部材を組み込んだ表示装置を説明する図である。1A and 1B are diagrams illustrating a display member and a display device incorporating the display member according to the first embodiment. 図2Aは、図1Aに示す表示部材及び表示装置の構成を説明する縦断面図であり、図2Bは、表示部材の部分横断面図である。2A is a longitudinal sectional view for explaining the configuration of the display member and the display device shown in FIG. 1A, and FIG. 2B is a partial transverse sectional view of the display member. 図3Aは、図2Aの表示部材を第1光学素子側から見た平面図であり、図3Bは、図3Aの表示部材のA-A断面図であり、図3Cは、図3Aの表示部材のB-B断面図である。3A is a plan view of the display member of FIG. 2A as viewed from the first optical element side, FIG. 3B is a cross-sectional view taken along the line AA of FIG. 3A, and FIG. 3C is the display member of FIG. FIG. 図4Aは、表示部材の溝の構造及び反射面における反射を説明する図であり、図4Bは、表示部材の無反射領域を説明する図である。FIG. 4A is a diagram illustrating the groove structure of the display member and reflection on the reflection surface, and FIG. 4B is a diagram illustrating a non-reflective region of the display member. 第2実施形態に係る表示部材等を説明する図である。It is a figure explaining the display member etc. which concern on 2nd Embodiment. 第3実施形態に係る表示部材等を説明する図である。It is a figure explaining the display member etc. which concern on 3rd Embodiment. 表示部材の変形例を説明する図である。It is a figure explaining the modification of a display member. 表示部材の別の変形例を説明する図である。It is a figure explaining another modification of a display member. 表示部材の別の変形例を説明する図である。It is a figure explaining another modification of a display member. 第4実施形態の表示装置の具体的な構成例を説明する拡大側方断面図である。It is an expanded side sectional view explaining the specific structural example of the display apparatus of 4th Embodiment. 図11Aは、表示装置に組み込まれた虚像投影光学系のうちフレネル素子の正面図であり、図11Bは、図11Aのフレネル素子のA-A’矢視拡大断面図である。11A is a front view of the Fresnel element in the virtual image projection optical system incorporated in the display device, and FIG. 11B is an enlarged cross-sectional view taken along the line A-A ′ of the Fresnel element in FIG. 11A. 表示装置を含む移動体用表示システムを説明するブロック図である。It is a block diagram explaining the display system for moving bodies containing a display apparatus. 具体的な表示状態を説明する斜視図である。It is a perspective view explaining the concrete display state. 図14Aは、第4実施形態の実施例であって、フレネル素子をミラーとして使用した場合の光学配置のYZ断面図であり、図14Bは、図14Aの光学配置のXZ断面図である。14A is an example of the fourth embodiment, and is a YZ cross-sectional view of an optical arrangement when a Fresnel element is used as a mirror, and FIG. 14B is an XZ cross-sectional view of the optical arrangement of FIG. 14A. 図15Aは、第4実施形態の比較例であって、虚像生成光学系においてミラーを使用した場合の光学配置のYZ断面図であり、図15Bは、図15Aの光学配置のXZ断面図である。15A is a comparative example of the fourth embodiment, and is a YZ sectional view of an optical arrangement when a mirror is used in the virtual image generating optical system, and FIG. 15B is an XZ sectional view of the optical arrangement of FIG. 15A. . 第5実施形態の表示装置の具体的な構成例を説明する拡大側方断面図である。It is an expansion side sectional view explaining the example of concrete composition of the display of a 5th embodiment. 図17Aは、虚像投影光学系のうちフレネル素子を説明する平面図であり、図17Bは、図17Aのフレネル素子のA-A’矢視拡大断面図である。FIG. 17A is a plan view for explaining a Fresnel element in the virtual image projection optical system, and FIG. 17B is an enlarged cross-sectional view of the Fresnel element in FIG. 図18Aは、第6実施形態の表示装置を説明する車内側からの正面図であり、図18Bは、表示装置を説明する側方断面図である。FIG. 18A is a front view illustrating the display device according to the sixth embodiment from the vehicle inner side, and FIG. 18B is a side cross-sectional view illustrating the display device. 第7実施形態の表示装置のうちフレネル素子を説明する図である。It is a figure explaining a Fresnel element among the display apparatuses of 7th Embodiment. 第8実施形態の表示装置の具体的な構成例を説明する拡大側方断面図である。It is an expanded side sectional view explaining the example of a concrete structure of the display apparatus of 8th Embodiment. 図21A及び21Bは、中間スクリーンを組み込んだ拡散部の構造を説明する一部破断平面図及び一部破断側面図であり、図21Cは、中間スクリーンの回転に伴う機能領域の移動を説明する図である。FIGS. 21A and 21B are a partially broken plan view and a partially broken side view for explaining the structure of the diffusion part incorporating the intermediate screen, and FIG. 21C is a view for explaining the movement of the functional area accompanying the rotation of the intermediate screen. It is. フレネル素子の変形例を説明する正面図である。It is a front view explaining the modification of a Fresnel element.
〔第1実施形態〕
 以下、図面を参照しつつ、本発明の実施形態にかかる表示部材及び表示装置について説明する。
[First Embodiment]
Hereinafter, a display member and a display device according to an embodiment of the present invention will be described with reference to the drawings.
 図1A、1B、2A、及び2Bに示すように、本実施形態の表示部材100は、自動車等の移動体のウィンドシールド8又はフロントガラス等の光透過性を有する板状部材の内部に埋め込まれている。本実施形態において、ウィンドシールド8の一部である表示部130は、表示スクリーンとして機能しており、表示部材100はこの表示スクリーンの内部に組み込まれている。ウィンドシールド8は、ガラス製の第1光学部材110と第2光学部材120とを貼りあわせて形成されている。表示部材100は、フィルム状のシート状部材90であり、このシート状部材90がウィンドシールド8を構成する第1光学部材110と第2光学部材120とに挟まれた状態となり、ウィンドシールド8の一部を構成している。 As shown in FIGS. 1A, 1B, 2A, and 2B, the display member 100 of the present embodiment is embedded in a light-transmitting plate member such as a windshield 8 or a windshield of a moving body such as an automobile. ing. In the present embodiment, the display unit 130 that is a part of the windshield 8 functions as a display screen, and the display member 100 is incorporated in the display screen. The windshield 8 is formed by bonding a first optical member 110 and a second optical member 120 made of glass. The display member 100 is a film-like sheet-like member 90, and the sheet-like member 90 is sandwiched between the first optical member 110 and the second optical member 120 constituting the windshield 8. Part of it.
 表示部材100は、可視光波長域で80%以上の内部透過率を有している。表示部材100は、後述する表示装置200の描画ユニット210からの投影像(表示光)を鮮明に映し出し、かつ外界からの光を透過させる。つまり、表示部材100をHUD装置等の表示装置200に用いる場合、観察者(ドライバーUN)等が表示部材100を介して外部の背景を観察するとともに、投影像も観察することができる。 The display member 100 has an internal transmittance of 80% or more in the visible light wavelength region. The display member 100 clearly projects a projection image (display light) from a drawing unit 210 of the display device 200 described later, and transmits light from the outside. That is, when the display member 100 is used for the display device 200 such as a HUD device, an observer (driver UN) or the like can observe an external background through the display member 100 and also can observe a projected image.
 表示部材100は、第1光学素子111と第2光学素子112とを接合した構造を有する。表示部材100には、第1光学素子111の接合面CRと反対側の面(具体的には、平坦面111b)に第1光学部材110が設けられ、第2光学素子112の接合面CRの反対側の面(具体的には、平坦面112b)に第2光学部材120が設けられる。これにより、表示部材100の全体形状をウィンドシールド8の形状に沿ったものとすることができ、表示部材100の取り扱いを容易にすることができる。また、表示部材100のメンテナンスを簡易化することができる。第1及び第2光学素子111,112は、表示スクリーンを備えるウィンドシールド8の形状に応じて湾曲している。なお、ウィンドシールド8が湾曲面を有する場合、平坦面111b,112bも完全な平面ではなく湾曲面を有することになる。表示部材100を構成する要素的な反射面は、この湾曲による角度変化を前提としたものとなっている。 The display member 100 has a structure in which the first optical element 111 and the second optical element 112 are joined. The display member 100 is provided with a first optical member 110 on a surface (specifically, a flat surface 111b) opposite to the bonding surface CR of the first optical element 111, and the bonding surface CR of the second optical element 112. The second optical member 120 is provided on the opposite surface (specifically, the flat surface 112b). Thereby, the whole shape of the display member 100 can be made to follow the shape of the windshield 8, and handling of the display member 100 can be made easy. Moreover, the maintenance of the display member 100 can be simplified. The first and second optical elements 111 and 112 are curved according to the shape of the windshield 8 having a display screen. When the windshield 8 has a curved surface, the flat surfaces 111b and 112b also have a curved surface instead of a perfect plane. The elemental reflecting surface constituting the display member 100 is premised on the change in angle due to this curvature.
 表示部材100のうち第1光学素子111は、観察者であるドライバーUN側に配置され、一方の面に複数の第1溝1aを有する第1フレネル形状部111aを有する。また、第2光学素子112は、第1光学素子111に対向してドライバーUNの反対側に配置され、一方の面に複数の第2溝2aを有する第2フレネル形状部112aを有する。つまり、第1及び第2溝1a,2aは、第1及び第2光学素子111,112の面上に、2次元的にそれぞれ配列されている(図3A参照)。第2フレネル形状部112aは、第1フレネル形状部111aの形状を略反転させた形状を有している。なお、略反転させた形状とは、第2フレネル形状部112aの形状が、第1フレネル形状部111aの形状を反転させた形状と完全に同じでなく、多少の誤差を含んでもよいことも意味する。第1光学素子111と第2光学素子112とは、第1フレネル形状部111aと第2フレネル形状部112aとを対向させた状態で接合面CRで接合されている。この場合、第1及び第2フレネル形状部111a,112a間には、接着剤等が介在することが望ましい。詳細は後述するが、接合面CRにおいて、第1光学素子111と、第2光学素子112とは、略同じ屈折率を有する。この場合、表示部材100を透過する透過光の歪みを防ぐことができる。第1及び第2光学素子111,112において、接合面CRと反対側の面はそれぞれ平坦面111b,112bとなっている。表示部材100は、第1及び第2光学素子111,112の接合面CRにおいて、後述する像形成素子30からの表示光HKを第1及び第2フレネル形状部111a,112aの少なくともいずれか一方により反射光として偏向しつつ反射させるとともに、像形成素子30と反対側からの光を透過光として透過させることにより、反射光と透過光とを重ねて観察可能にしている。ここで、フレネル形状部111a,112aによる表示光HKの偏向とは、表示部材100の全体形状で見て正反射的でないこと、つまり入射角と反射角とが正確に一致しないことを意味し、表示部材100の全体的又は平坦面111b,112bの曲面に近似させた非球面等の近似面について基準軸を考えた場合に、フレネル形状部111a,112aの微細形状としての光軸を基準軸と一致させずズレを生じさせることを意味する。具体的には、フレネル形状部111a,112aによる表示光HKの偏向とは、例えばYZ面内で観察した場合に、光軸の方向と基準軸の方向とがX軸のまわりに回転する角度差を有することを意味し、XZ面内で観察した場合に、光軸の方向と基準軸の方向とがY軸のまわりに回転する角度差を有することを意味する。フレネル形状部111a,112aが例えば自由曲面を分割して個々の分割領域間に段差を付与したものである場合、フレネル形状部111a,112aの光軸方向は、光学素子111,112の中心部における近似的光軸方向であるとすればよい。  The first optical element 111 of the display member 100 is disposed on the driver UN side as an observer, and has a first Fresnel-shaped portion 111a having a plurality of first grooves 1a on one surface. The second optical element 112 has a second Fresnel-shaped portion 112a that is disposed on the opposite side of the driver UN facing the first optical element 111 and has a plurality of second grooves 2a on one surface. That is, the first and second grooves 1a and 2a are two-dimensionally arranged on the surfaces of the first and second optical elements 111 and 112 (see FIG. 3A). The second Fresnel shape portion 112a has a shape that is substantially the reverse of the shape of the first Fresnel shape portion 111a. The substantially inverted shape also means that the shape of the second Fresnel shape portion 112a is not completely the same as the shape obtained by inverting the shape of the first Fresnel shape portion 111a, and may include some errors. To do. The 1st optical element 111 and the 2nd optical element 112 are joined by the joint surface CR in the state which made the 1st Fresnel shape part 111a and the 2nd Fresnel shape part 112a oppose. In this case, it is desirable that an adhesive or the like be interposed between the first and second Fresnel-shaped portions 111a and 112a. Although details will be described later, in the bonding surface CR, the first optical element 111 and the second optical element 112 have substantially the same refractive index. In this case, distortion of the transmitted light that passes through the display member 100 can be prevented. In the first and second optical elements 111 and 112, the surfaces opposite to the bonding surface CR are flat surfaces 111b and 112b, respectively. The display member 100 causes display light HK from an image forming element 30 to be described later on the bonding surface CR of the first and second optical elements 111 and 112 by at least one of the first and second Fresnel shape portions 111a and 112a. The reflected light is reflected while being deflected, and the light from the side opposite to the image forming element 30 is transmitted as transmitted light, so that the reflected light and the transmitted light can be superposed and observed. Here, the deflection of the display light HK by the Fresnel-shaped portions 111a and 112a means that the display member 100 is not specularly reflected in the overall shape of the display member 100, that is, the incident angle and the reflection angle do not exactly match, When the reference axis is considered for the entire surface of the display member 100 or an approximate surface such as an aspheric surface approximated to the curved surfaces of the flat surfaces 111b and 112b, the optical axis as the fine shape of the Fresnel-shaped portions 111a and 112a is used as the reference axis. This means that a mismatch occurs without matching. Specifically, the deflection of the display light HK by the Fresnel-shaped portions 111a and 112a is an angular difference in which the direction of the optical axis and the direction of the reference axis rotate around the X axis when observed in the YZ plane, for example. This means that when observed in the XZ plane, there is an angular difference in which the direction of the optical axis and the direction of the reference axis rotate about the Y axis. For example, when the Fresnel-shaped portions 111a and 112a are formed by dividing a free-form surface and providing a step between the respective divided regions, the optical axis direction of the Fresnel-shaped portions 111a and 112a is at the center of the optical elements 111 and 112. What is necessary is just to be an approximate optical axis direction.
 第1及び第2フレネル形状部111a,112aの表面のいずれか一方は、所望の反射特性を持つミラーMRとなっている。表示部材100において、シート状部材90内において多数のミラーMRが集まって、全体としてウィンドシールド8に沿って面状に延びる反射面191が形成される。ミラーMRの反射率は、例えば15%~30%となっている。ミラーMRは、金属や多層膜等で形成されている。第1及び第2フレネル形状部111a,112aの形状は、ミラーMRの有効領域の傾斜角がシート状部材90への巨視的な入射角θ1と、シート状部材90からの巨視的な射出角θ2とを達成できるように設定され、描画ユニット210からの表示光HKを偏向させてアイボックスに向ける。ミラーMRは、反射に寄与する第1要素MRaと反射に寄与しない第2要素MRbとからなり、巨視的な入射角θ1に対して巨視的な射出角θ2を実現するため、一方の第1要素MRaのみが使われることになる。なお、第2要素MRbには、反射防止処理を施すことができる。 Any one of the surfaces of the first and second Fresnel-shaped portions 111a and 112a is a mirror MR having desired reflection characteristics. In the display member 100, a large number of mirrors MR are gathered in the sheet-like member 90 to form a reflective surface 191 that extends in a planar shape along the windshield 8 as a whole. The reflectivity of the mirror MR is, for example, 15% to 30%. The mirror MR is made of metal, a multilayer film, or the like. The shapes of the first and second Fresnel-shaped portions 111a and 112a are such that the inclination angle of the effective region of the mirror MR is a macroscopic incident angle θ1 to the sheet-like member 90 and a macroscopic exit angle θ2 from the sheet-like member 90. The display light HK from the drawing unit 210 is deflected and directed to the eye box. The mirror MR includes a first element MRa that contributes to reflection and a second element MRb that does not contribute to reflection. In order to realize a macroscopic exit angle θ2 with respect to the macroscopic incident angle θ1, one of the first elements Only MRa will be used. The second element MRb can be subjected to an antireflection treatment.
 図3A~3Cに示すように、第1フレネル形状部111aにおいて、第1溝1aは、水平方向に直交する縦方向に対して傾斜して延びている。言い換えれば、第1溝1aは、表示部材100を有する領域である表示部130において、水平方向に対応する第1方向αと第1方向αに直交する縦方向に対応する第2方向βとに対してそれぞれ非軸対称となっている。ここで、表示部材100において、水平方向は、車体2の設置面を基準とする。縦方向は、鉛直方向つまりY方向とは限らず、表示部材100全体が延びる平面又は曲面に沿った方向を意味する。第1方向αは、第1光学素子111の面とXZ面とが交差する方向である。また、第2方向βは、第1光学素子111の面とYZ面とが交差する方向となる。ここで、-Z方向は、車体2の前進方向であり、X方向は、車体2の横方向である。 As shown in FIGS. 3A to 3C, in the first Fresnel-shaped portion 111a, the first groove 1a extends while being inclined with respect to the vertical direction orthogonal to the horizontal direction. In other words, the first groove 1a has a first direction α corresponding to the horizontal direction and a second direction β corresponding to the vertical direction orthogonal to the first direction α in the display unit 130 that is the region having the display member 100. Each is non-axisymmetric. Here, in the display member 100, the horizontal direction is based on the installation surface of the vehicle body 2. The vertical direction is not limited to the vertical direction, that is, the Y direction, but means a direction along a plane or curved surface in which the entire display member 100 extends. The first direction α is a direction in which the surface of the first optical element 111 and the XZ plane intersect. The second direction β is a direction in which the surface of the first optical element 111 and the YZ surface intersect. Here, the −Z direction is the forward direction of the vehicle body 2, and the X direction is the lateral direction of the vehicle body 2.
 複数の第1溝1aは、第1光学素子111の面に沿って複合輪帯形状を有し、非同心円状に配置されている。ここで、非同心円状とは、第1溝1aの各輪帯を構成する円弧局所部の表示部130に沿った曲率半径が、同一の円弧又は輪帯内の他の円弧局所部の曲率半径と一致しないことを意味する。複合輪帯形状は、各第1溝1aの最大頂点を基準として設計されている。この場合、第1溝1aの複合輪帯形状は、非軸対称又は偏芯といった非対称性を特徴とする非球面形状(トーリック面を含む)又は自由曲面形状を有することになり、フレネル形状の自由度が増え、光学倍率を高くすることができる。これにより、虚像の視野を広くすることができ、表示装置200の小型化を図ることができる。この複合輪帯形状の表示部130に沿った曲率の中心は表示部材100の表示部130の中央に対して斜め方向にずれた位置にあり、フレネル形状部111aによる表示光HKの斜め偏向を可能にしている。そのため、後述する像形成素子30の中心は、例えば表示部130の中心又は中心付近を通るYZ面内に対応する正反射的な位置に配置されず、第1溝1aの複合輪帯形状の曲率中心側にずらした斜め下方向に配置されている。このような構成とすることで、像形成素子30の配置自由度が増し、例えばハンドル等の表示部材100の下方にある部材との干渉がなく装置を配置できる等の利点が生じるので、望ましい構成と言える。 The plurality of first grooves 1a have a composite annular zone shape along the surface of the first optical element 111, and are arranged non-concentrically. Here, the non-concentric circle means that the radius of curvature along the display portion 130 of the arc local portion constituting each annular zone of the first groove 1a is the same arc or the radius of curvature of another arc local portion in the annular zone. Does not match. The composite ring zone shape is designed with reference to the maximum vertex of each first groove 1a. In this case, the complex annular zone shape of the first groove 1a has an aspheric shape (including a toric surface) or a free-form surface shape characterized by asymmetry such as non-axisymmetric or eccentricity, and is free of Fresnel shape. The degree can be increased and the optical magnification can be increased. Thereby, the visual field of the virtual image can be widened, and the display device 200 can be downsized. The center of curvature along the composite ring-shaped display unit 130 is in a position that is obliquely shifted with respect to the center of the display unit 130 of the display member 100, and the display light HK can be obliquely deflected by the Fresnel-shaped unit 111a. I have to. Therefore, the center of the image forming element 30 to be described later is not disposed at a regular reflection position corresponding to, for example, the YZ plane passing through the center of the display unit 130 or in the vicinity of the center, and the curvature of the complex annular zone shape of the first groove 1a. It is arranged in a diagonally downward direction shifted to the center side. With such a configuration, the degree of freedom of arrangement of the image forming element 30 is increased, and for example, there is an advantage that the apparatus can be arranged without interference with a member below the display member 100 such as a handle. It can be said.
 第1溝1aの高さh1,h2は、水平方向に対応する第1方向αの断面及び横方向に対応する第2方向βの断面において一定となっている。ここで、第1溝の高さh1,h2とは、各第1溝1aにおける最大頂点と最小頂点との差を意味する。また、この場合において、車体2における水平方向や縦方向を基準としてもよいが、第1方向α及び第2方向βは、画像の中心を通り、アイボックスに入る主光線に基づいて決定することができる。これにより、表示部材100の厚さを略一定にしやすくなり、表示スクリーンを備えるウィンドシールド8への組み込みを容易にすることができる。 The heights h1 and h2 of the first groove 1a are constant in the cross section in the first direction α corresponding to the horizontal direction and the cross section in the second direction β corresponding to the horizontal direction. Here, the heights h1 and h2 of the first grooves mean the difference between the maximum vertex and the minimum vertex in each first groove 1a. In this case, the horizontal direction or the vertical direction in the vehicle body 2 may be used as a reference, but the first direction α and the second direction β pass through the center of the image and are determined based on chief rays entering the eye box. Can do. Thereby, it becomes easy to make the thickness of the display member 100 substantially constant, and the incorporation into the windshield 8 provided with the display screen can be facilitated.
 複数の第1溝1aの各表面は、非球面形状及び自由曲面形状のいずれかを有している。これにより、解像度の高い虚像の表示が可能となるだけでなく、表示部材100内の接合面CRを屈折力を有するものとしても画質を維持しやすく、表示部材100を組み込む表示装置200から入射する光束を比較的小さくすることができる。これにより、表示装置200の光学系を小さくすることができ、表示装置200の小型化を図ることができる。第1溝1aの表面の曲率は、第1及び第2方向α,βの少なくともいずれかにおいて位置に応じて変化している。これにより、第1溝1aの高さh1,h2が一定でも、表示部材100において反射光を所定の方向に偏向して反射させた場合において状態を確保することができる。 Each surface of the plurality of first grooves 1a has either an aspherical shape or a free curved surface shape. As a result, not only a high-resolution virtual image can be displayed, but also the bonding surface CR in the display member 100 has a refractive power, so that it is easy to maintain the image quality and the light enters from the display device 200 in which the display member 100 is incorporated. The luminous flux can be made relatively small. Thereby, the optical system of the display device 200 can be reduced, and the display device 200 can be downsized. The curvature of the surface of the first groove 1a varies depending on the position in at least one of the first and second directions α and β. Thereby, even when the heights h1 and h2 of the first groove 1a are constant, the state can be ensured when the reflected light is deflected and reflected by the display member 100 in a predetermined direction.
 第1溝1aのピッチp1,p2は、第1及び第2方向α,βの少なくともいずれかにおいて位置に応じて変化することが望ましい。これにより、第1溝1aの高さh1,h2が一定でも、表示部材100において反射光を所定の方向に偏向して反射させることができる。 It is desirable that the pitches p1 and p2 of the first groove 1a change according to the position in at least one of the first and second directions α and β. Thereby, even if the heights h1 and h2 of the first groove 1a are constant, the reflected light can be deflected and reflected in a predetermined direction on the display member 100.
 また、第1溝1aの表面の厚み方向に垂直な方向に対する角度についても、第1及び第2方向α,βの少なくともいずれかにおいて位置に応じて変化することが望ましい。これにより、第1溝1aの高さh1,h2が一定でも、表示部材100において反射光を所定の方向に偏向して反射させることができる。 Also, it is desirable that the angle with respect to the direction perpendicular to the thickness direction of the surface of the first groove 1a also changes depending on the position in at least one of the first and second directions α and β. Thereby, even if the heights h1 and h2 of the first groove 1a are constant, the reflected light can be deflected and reflected in a predetermined direction on the display member 100.
 以上のように、第1フレネル形状部111aの第1溝1aを水平方向に直交する縦方向である第2方向βに対して傾斜する構造とすることにより、第1フレネル形状部111aは、光源からの入射光束の中心の主光線と、表示部材100の反射面91で反射されドライバーUNの瞳HTに導かれる出射光束の中心の主光線とが所定の方向又は所定の面内を通過するように設定されている。結果的に、第1フレネル形状部111aにより、表示部材100における表示光HKの入射角度(つまり、入射角θ1)に対する反射角度(つまり、射出角θ2)の角度変化を補正又は調整することができ、所望の偏向を実現することができる。第1フレネル形状部111aの形状は、第1溝1aの縦方向に対する傾きを前提として、第1及び第2方向α,βの側断面視において、光線反射角を補正して反射光を偏向しつつ、非点隔差も補正されるように設定されている。第1溝1aにおいて、第1方向α成分及び第2方向β成分の形状パラメーターを決定することで、第1溝1aの縦方向に対する傾斜角が決まり、第1溝1aの延びる方向が決まる。反射面91への入射角は、第1フレネル形状部111aの構造に応じて例えば0°~90°までの全ての範囲とすることができる。 As described above, the first Fresnel-shaped portion 111a has a structure in which the first groove 1a of the first Fresnel-shaped portion 111a is inclined with respect to the second direction β, which is the vertical direction orthogonal to the horizontal direction. So that the principal ray at the center of the incident light beam from the light beam and the principal ray at the center of the emitted light beam reflected by the reflecting surface 91 of the display member 100 and guided to the pupil HT of the driver UN pass in a predetermined direction or in a predetermined plane. Is set to As a result, the first Fresnel-shaped portion 111a can correct or adjust the change in the reflection angle (that is, the emission angle θ2) with respect to the incident angle (that is, the incident angle θ1) of the display light HK on the display member 100. A desired deflection can be realized. The shape of the first Fresnel-shaped part 111a is based on the inclination of the first groove 1a with respect to the vertical direction, and corrects the light reflection angle and deflects the reflected light in a side sectional view in the first and second directions α and β. However, the astigmatic difference is set to be corrected. By determining the shape parameters of the first direction α component and the second direction β component in the first groove 1a, the inclination angle with respect to the vertical direction of the first groove 1a is determined, and the extending direction of the first groove 1a is determined. The incident angle to the reflecting surface 91 can be set in the entire range from 0 ° to 90 °, for example, depending on the structure of the first Fresnel-shaped portion 111a.
 第1フレネル形状部111aにおいて、第1溝1aの高さh1,h2、ピッチp1,p2、及び曲率等の寸法は、HUD装置を構成する光学系との組合せで性能を確保するために必要な構造から決まる値である。なお、第2フレネル形状部112aは、第1フレネル形状部111aを略反転させた形状であるので、寸法等の説明を省略する(以降も同様)。 In the first Fresnel-shaped portion 111a, the heights h1 and h2, the pitches p1 and p2, and the curvature and the like of the first groove 1a are necessary for ensuring performance in combination with the optical system constituting the HUD device. The value is determined from the structure. Note that the second Fresnel shape portion 112a has a shape that is substantially inverted from the first Fresnel shape portion 111a, and therefore description of dimensions and the like is omitted (the same applies hereinafter).
 図4Aに示すように、ミラーMRの第1要素MRaと第2要素MRbとのなす角、すなわちフレネル面角度bは、入射光束の表示部材100の入射面に対応する面100a(本実施形態では、第1光学部材110の表面)に対する方向(又は角度、すなわち入射角θ1)、出射光束の表示部材100の入射面に対応する面100aに対する方向(又は角度、すなわち射出角θ2)、及び表示部材100を構成する媒質の屈折率等で決められる。表示部材100に対して、ある一定の距離を持った位置に置かれた光源からの光束は、例えば発散光として光束が入射する場合には、表示部材100の入射面に入射する位置によって、その位置の光線の入射角度(つまり、入射角θ1)が変化する。 As shown in FIG. 4A, the angle formed by the first element MRa and the second element MRb of the mirror MR, that is, the Fresnel surface angle b, is a surface 100a corresponding to the incident surface of the display member 100 of the incident light beam (in this embodiment, , The direction (or angle, that is, incident angle θ1) with respect to the surface of the first optical member 110, the direction (or angle, that is, emission angle θ2) with respect to the surface 100a corresponding to the incident surface of the display member 100, and the display member. 100 is determined by the refractive index of the medium constituting 100. The luminous flux from the light source placed at a certain distance with respect to the display member 100 is, for example, when the luminous flux is incident as diverging light, depending on the position of incidence on the incident surface of the display member 100. The incident angle of the light beam at the position (that is, the incident angle θ1) changes.
 図4Bに示すように、表示部材100には、第1フレネル形状部111aに表示光L1が入射せず、反射に寄与しない無反射領域DAが発生しうる。第1フレネル形状部111aは、この無反射領域DAが最小限となるように設計されることが好ましい。第1溝1aの高さh1,h2、及びピッチp1,p2を回折が問題にならない程度に設定し、第1溝1aの高さh1,h2をできるだけ小さくすれば無反射領域DAを小さくすることができる。 As shown in FIG. 4B, the display member 100 may generate a non-reflective area DA that does not contribute to the reflection because the display light L1 does not enter the first Fresnel-shaped portion 111a. The first Fresnel-shaped portion 111a is preferably designed so that the non-reflection area DA is minimized. If the heights h1 and h2 of the first groove 1a and the pitches p1 and p2 are set to such an extent that diffraction does not become a problem, and the heights h1 and h2 of the first groove 1a are made as small as possible, the non-reflection area DA is reduced. Can do.
 表示部材100は、プレス成形、光硬化性樹脂等を用いた転写成形等によって製造される。第1及び第2光学素子111,112は、光透過性を有する有機材料や無機材料等で形成されている。既に説明したように、第1及び第2光学素子111,112の接合面CRにおいて、第1フレネル形状部111a側の基材と、第2フレネル形状部112a側の基材とは、略同じ屈折率を有する。ここで、略同じ屈折率とは、0~0.05程度の屈折率差を有することを意味する。この場合、第1及び第2光学素子111,112の接合面CRで屈折等の問題が生じることを防ぐことができ、画像の歪み等の劣化を防ぐことができる。なお、第1及び第2光学素子111,112の屈折率については、表示光L1が反射する側の第1溝1a(つまり第1フレネル形状部111a)を有する基材の屈折率を基準とすることが望ましい。 The display member 100 is manufactured by press molding, transfer molding using a photocurable resin, or the like. The first and second optical elements 111 and 112 are made of a light-transmitting organic material or inorganic material. As already described, in the bonding surfaces CR of the first and second optical elements 111 and 112, the base material on the first Fresnel shape portion 111a side and the base material on the second Fresnel shape portion 112a side have substantially the same refraction. Have a rate. Here, substantially the same refractive index means having a refractive index difference of about 0 to 0.05. In this case, it is possible to prevent problems such as refraction at the joint surface CR of the first and second optical elements 111 and 112, and to prevent deterioration such as image distortion. The refractive indexes of the first and second optical elements 111 and 112 are based on the refractive index of the base material having the first groove 1a on which the display light L1 is reflected (that is, the first Fresnel-shaped portion 111a). It is desirable.
 以下、表示部材100の使用状態等について説明する。図1A、1B、及び2A等に示すように、表示部材100は、表示装置200に組み込まれる。この表示装置200は、例えばヘッドアップディスプレイ(HUD:Head-Up Display)装置として車体2内に搭載されるものであり、描画ユニット210と表示部材100とを備える。表示装置200は、後述する像形成素子30に表示される画像情報を、表示部材100越しに虚像表示又は虚像投影するものである。本実施形態では、表示部材100は、ウィンドシールド(フロントウィンドウ)8と一体で設置されるものとなっている。 Hereinafter, the usage state of the display member 100 will be described. As shown in FIGS. 1A, 1B, and 2A, the display member 100 is incorporated in the display device 200. The display device 200 is mounted in the vehicle body 2 as, for example, a head-up display (HUD) device, and includes a drawing unit 210 and a display member 100. The display device 200 displays image information displayed on the image forming element 30 described later on a virtual image or projects a virtual image through the display member 100. In the present embodiment, the display member 100 is installed integrally with the windshield (front window) 8.
 表示装置200のうち描画ユニット210は、車体2のダッシュボード4内に埋め込むように設置されており、運転関連情報や危険信号等を含む画像に対応する表示光HKを表示部材100の表示部130に向けて射出する。ここで、表示部130とは、ウィンドシールド8のうち表示部材100を有する領域を意味する。表示部130は、表示スクリーンとして機能し、ウィンドシールド8のうち像形成素子30からの画像を表示させる部分である。表示部130は、ドライバーUNのいる観察側又は運転席6側に設けた第1光学面11aと、反観察側に設けた第2光学面12aとを有する。表示部130の反射率は、表示部130の周囲の領域の反射率よりも高くなっている。この場合、表示部130において、表示部130の周囲よりも画像を見えやすくすることができる。表示部130の領域及びその周囲の領域は、観察者(ドライバーUN)の視野角とアイボックスの仕様とで決まる。表示部130は、描画ユニット210からの表示光HKを車体2の後方に向けて反射する。表示部材100(表示部130)で反射された表示光HKは、ドライバーUNの瞳HT及びその周辺位置に対応するアイボックスに導かれる。ドライバーUNは、表示部材100で反射された表示光HK、つまり車体2の前方にある虚像としての表示像IMを観察することができる。一方、ドライバーUNは、表示部材100を透過した外界光、つまり前方景色等の実像を観察することができる。結果的に、ドライバーUNは、表示部130の背後の外界像に重ねて、表示部材100の表示部130での表示光HKの反射によって形成される運転関連情報等を含む表示像(虚像)IMを観察することができる。 The drawing unit 210 of the display device 200 is installed so as to be embedded in the dashboard 4 of the vehicle body 2, and displays the display light HK corresponding to an image including driving-related information, a danger signal, and the like on the display unit 130 of the display member 100. It injects towards. Here, the display unit 130 means a region having the display member 100 in the windshield 8. The display unit 130 functions as a display screen, and is a part that displays an image from the image forming element 30 in the windshield 8. The display unit 130 includes a first optical surface 11a provided on the observation side where the driver UN is present or the driver's seat 6 side, and a second optical surface 12a provided on the counter-observation side. The reflectance of the display unit 130 is higher than the reflectance of the area around the display unit 130. In this case, the display unit 130 can make an image easier to see than the periphery of the display unit 130. The area of the display unit 130 and the surrounding area are determined by the viewing angle of the observer (driver UN) and the specifications of the eye box. The display unit 130 reflects the display light HK from the drawing unit 210 toward the rear of the vehicle body 2. The display light HK reflected by the display member 100 (display unit 130) is guided to the eye box corresponding to the pupil HT of the driver UN and its peripheral position. The driver UN can observe the display light HK reflected by the display member 100, that is, the display image IM as a virtual image in front of the vehicle body 2. On the other hand, the driver UN can observe external light transmitted through the display member 100, that is, a real image such as a front scene. As a result, the driver UN overlaps the external image behind the display unit 130, and displays a display image (virtual image) IM including operation-related information and the like formed by reflection of the display light HK on the display unit 130 of the display member 100. Can be observed.
 図2A及び2Bに示すように、描画ユニット210は、像形成素子30を備えた像形成部40と、拡大投射光学系50と、ハウジング14とを備える。なお、図2A等は、表示装置200の構成を例示したものであり、表示装置200の構成は、その仕様や設置箇所等によって適宜変更される。 2A and 2B, the drawing unit 210 includes an image forming unit 40 including an image forming element 30, an enlarged projection optical system 50, and a housing 14. Note that FIG. 2A and the like illustrate the configuration of the display device 200, and the configuration of the display device 200 is appropriately changed depending on the specification, installation location, and the like.
 像形成部40は、詳細な説明を省略するが、像形成素子30のほかに、像形成素子30に表示動作を行わせる表示駆動回路、像形成素子30を照明するための光を射出するLEDその他の光源、かかる光源からの光を均一化する均一化光学系等を備える。像形成素子30は、デジタルミラーデバイス(DMD)や反射型液晶素子(LCOS)等の反射型の素子でも、液晶等(例えば、液晶ディスプレイ(LCD)等)の透過型の素子でもよい。特に、像形成素子30にDMDを用いると、明るさを維持しつつ画像を高速で切り替えることができ、表示に有利である。 Although not described in detail, the image forming unit 40 includes, in addition to the image forming element 30, a display driving circuit that causes the image forming element 30 to perform a display operation, and an LED that emits light for illuminating the image forming element 30. Other light sources, a uniformizing optical system for uniformizing light from such light sources, and the like are provided. The image forming element 30 may be a reflective element such as a digital mirror device (DMD) or a reflective liquid crystal element (LCOS), or a transmissive element such as a liquid crystal display (for example, a liquid crystal display (LCD)). In particular, when a DMD is used for the image forming element 30, images can be switched at high speed while maintaining brightness, which is advantageous for display.
 拡大投射光学系50は、像形成素子30に形成された画像に対応する中間像を形成する第1投影光学系51と、中間像に対応する像光を表示部材100に入射させることによって虚像を表示する第2投影光学系52とを備える。拡大投射光学系50は、中間像が形成される位置又はその近傍に中間スクリーン16を有する。詳細な説明を表略するが、中間スクリーン16は、光軸AX方向に移動する可動型の部材とすることができる。この場合、拡大投射光学系50は、可変焦点となり、表示像(虚像)IMの投影距離を変化させることができる。 The enlarged projection optical system 50 includes a first projection optical system 51 that forms an intermediate image corresponding to the image formed on the image forming element 30 and an image light corresponding to the intermediate image that is incident on the display member 100 to generate a virtual image. And a second projection optical system 52 for displaying. The magnifying projection optical system 50 has the intermediate screen 16 at or near the position where the intermediate image is formed. Although detailed description is omitted, the intermediate screen 16 can be a movable member that moves in the direction of the optical axis AX. In this case, the enlarged projection optical system 50 has a variable focus, and can change the projection distance of the display image (virtual image) IM.
 ハウジング14は、表示光HKを通過させる開口14aを有し、この開口14aには、フィルム状又は薄板状の光透過部材14bを配置することができる。 The housing 14 has an opening 14a through which the display light HK passes, and a film-like or thin plate-like light transmission member 14b can be disposed in the opening 14a.
 図1Aに示すように、表示部材100で反射された表示光HKは、ドライバーUNの瞳HTに導かれる。ここで、表示光HKを表示部材100の背後に延長した虚像光線KKは、ドライバーの瞳HTに対して前方の所定位置に表示像(虚像)IMを形成する。なお、瞳HTから表示部材100までの距離は、車体2の仕様によるが例えば0.5~1m程度としており、表示部材100から表示像IMまでの距離は、例えば1m程度以上としている。また、視野角は、-10°~-15°程度としている。また、アイボックスは、標準的なドライバーUNの瞳HTの位置をカバーするように設定され、例えば横10~15cm、縦5~8cmと言ったサイズに設定される。 As shown in FIG. 1A, the display light HK reflected by the display member 100 is guided to the pupil HT of the driver UN. Here, the virtual image light beam KK obtained by extending the display light HK behind the display member 100 forms a display image (virtual image) IM at a predetermined position ahead of the driver's pupil HT. The distance from the pupil HT to the display member 100 is about 0.5 to 1 m, for example, depending on the specifications of the vehicle body 2, and the distance from the display member 100 to the display image IM is about 1 m or more, for example. The viewing angle is about −10 ° to −15 °. The eye box is set so as to cover the position of the pupil HT of a standard driver UN, and is set to a size of, for example, 10 to 15 cm in width and 5 to 8 cm in length.
 表示部材100の瞳HT側に配置されている第1光学面11a(実際には、接合面CR)は、拡大投射光学系50を介して像形成素子30に形成された画像を瞳HTに対して表示像IMとして少ない歪みで表示又は投影する。この際、第1光学面11aは、その光学面形状によって歪みのない表示像IMを形成することができる。なお、第2光学面12aに反射防止膜を設けない場合、又は反射防止膜で若干の反射が残る場合、第2光学面12aにおいても、第1光学面11aを通過して分岐された表示光HKを部分的に反射する。この場合、分岐後に背後の第2光学面12aでの反射された表示光(以下便宜上、副表示光と呼ぶ)は、第1光学面11aを通過して瞳HTに入射するので、表示像IMと重畳して2重像を形成する可能性がある。しかしながら、第2光学面12aで反射された副表示光が、元の表示光HKとの関連で表示像IM上の同一点から射出されるよう進行するならば、表示光HKによる虚像と副表示光による虚像とが重なって2重像の形成を回避できる。副表示光の進行方向を制御するため、第2光学面12aの曲率又は傾斜角や基材の厚さを第1光学面11aを基準として調整すればよい。 The first optical surface 11a (actually, the bonding surface CR) disposed on the pupil HT side of the display member 100 displays an image formed on the image forming element 30 via the enlarged projection optical system 50 with respect to the pupil HT. The display image IM is displayed or projected with little distortion. At this time, the first optical surface 11a can form a display image IM without distortion depending on the shape of the optical surface. In the case where the antireflection film is not provided on the second optical surface 12a, or when some reflection remains in the antireflection film, the display light branched through the first optical surface 11a also in the second optical surface 12a. HK is partially reflected. In this case, the display light reflected on the second optical surface 12a behind the branch after branching (hereinafter referred to as sub display light for convenience) passes through the first optical surface 11a and enters the pupil HT, so that the display image IM To form a double image. However, if the secondary display light reflected by the second optical surface 12a travels from the same point on the display image IM in relation to the original display light HK, the virtual image and the secondary display by the display light HK are displayed. Formation of a double image can be avoided by overlapping with a virtual image by light. In order to control the traveling direction of the sub display light, the curvature or inclination angle of the second optical surface 12a and the thickness of the base material may be adjusted with reference to the first optical surface 11a.
 以上説明した表示部材100では、表示部材100内の接合面CRにおいて、反射光を偏向させてドライバーUN側に入射させることにより、視野角やアイボックスを十分に確保することができる。また、偏向により、HUD装置等の表示装置200の配置に自由度を持たせることができる。また、第1フレネル形状部111aを構成する第1溝1aが水平方向に直交する縦方向(具体的には、第2方向β)に対して傾斜して延びることで、第1溝1aを直交する2方向においてそれぞれ非軸対称とすることができ、表示部材100を組み込む表示装置200の例えば第2投影光学系52等の光学部材のサイズを小さくすることができ、表示装置200全体の小型化を図ることができる。 In the display member 100 described above, the viewing angle and the eye box can be sufficiently ensured by deflecting the reflected light to be incident on the driver UN side on the joint surface CR in the display member 100. Further, the deflection can provide a degree of freedom in the arrangement of the display device 200 such as a HUD device. Further, the first groove 1a constituting the first Fresnel-shaped portion 111a extends at an angle with respect to the vertical direction (specifically, the second direction β) orthogonal to the horizontal direction, so that the first groove 1a is orthogonal. The display device 200 incorporating the display member 100 can be reduced in size, for example, the size of an optical member such as the second projection optical system 52, and the entire display device 200 can be downsized. Can be achieved.
〔第2実施形態〕
 以下、第2実施形態に係る表示部材等について説明する。なお、第2実施形態の表示部材等は第1実施形態の表示部材等を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Second Embodiment]
Hereinafter, the display member etc. which concern on 2nd Embodiment are demonstrated. The display member of the second embodiment is a modification of the display member of the first embodiment, and items that are not particularly described are the same as those of the first embodiment.
 図5に示すように、本実施形態において、表示部材100は、ウィンドシールド8とは独立した部材であるコンバイナー108内に設けられる。つまり、コンバイナー108が表示スクリーンの機能を有する。この場合、表示部材100の配置を適宜変更することができる。 As shown in FIG. 5, in the present embodiment, the display member 100 is provided in a combiner 108 that is a member independent of the windshield 8. That is, the combiner 108 has a display screen function. In this case, the arrangement of the display member 100 can be changed as appropriate.
〔第3実施形態〕
 以下、第3実施形態に係る表示部材等について説明する。なお、第3実施形態の表示部材等は第1実施形態の表示部材等を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Third Embodiment]
Hereinafter, the display member etc. which concern on 3rd Embodiment are demonstrated. The display member of the third embodiment is a modification of the display member of the first embodiment, and items that are not particularly described are the same as those of the first embodiment.
 図6に示すように、本実施形態において、ウィンドシールド8は、略鉛直方向に延びるように配置されている。これに伴い、ウィンドシールド8内に設けられた表示部材100又は表示部130も、略鉛直方向に延びるように配置されている。表示部130が所望のフレネル形状部111a,112aを有することにより、観察者(ドライバーUN)に対して表示部材100をトラックやバス等のフロントウィンドウが地面に対して垂直に近い移動体におけるHUD装置等の表示装置200をウィンドシールド8に配置しても、観察者(ドライバーUN)は外界の像を観察しつつ、斜入射で投影された画像を十分に観察することができる。その際に、HUD装置等の表示装置200で表示させる反射像の性能を確保しつつ、車外の透過像に歪みを生じさせない。つまり、略垂直に立っている状態の表示部材100において、表示部材100の持つフレネル形状部111a,112aにより、例えば表示部材100の斜め下方や斜め上方から投影された画像を表示部材100に対して所定の方向にその反射像を返すことができる。これにより、バスやトラック等のフロントウィンドウが略垂直に配置される移動体においても、フロントウィンドウを表示部材100としたウィンドシールドタイプの表示装置200が達成され、空間を有効に利用できる。 As shown in FIG. 6, in this embodiment, the windshield 8 is disposed so as to extend in a substantially vertical direction. Accordingly, the display member 100 or the display unit 130 provided in the windshield 8 is also arranged to extend in a substantially vertical direction. Since the display unit 130 includes desired Fresnel-shaped portions 111a and 112a, the display member 100 is displayed to the observer (driver UN), and a HUD device in a moving body in which a front window such as a truck or a bus is close to the ground. Even when the display device 200 such as the above is arranged on the windshield 8, the observer (driver UN) can sufficiently observe the image projected at the oblique incidence while observing the image of the outside world. At that time, while ensuring the performance of the reflected image displayed on the display device 200 such as a HUD device, the transmitted image outside the vehicle is not distorted. That is, in the display member 100 in a substantially vertical state, for example, an image projected from obliquely below or obliquely above the display member 100 to the display member 100 by the Fresnel-shaped portions 111a and 112a of the display member 100. The reflected image can be returned in a predetermined direction. Thereby, even in a moving body in which front windows such as buses and trucks are arranged substantially vertically, a windshield type display device 200 using the front window as a display member 100 is achieved, and space can be used effectively.
 上記第1~第3実施形態は単なる例示であり、例えば図7に示すように、第1及び第2光学素子111,112で構成されるシート状部材90は、厚さが変化する楔形状を有してもよい。この場合、表示部材100を透過する透過光と表示部材100で反射する反射光とのずれによって発生する二重像を防ぐことができる。 The first to third embodiments described above are merely examples. For example, as shown in FIG. 7, the sheet-like member 90 composed of the first and second optical elements 111 and 112 has a wedge shape whose thickness changes. You may have. In this case, it is possible to prevent a double image generated due to a deviation between the transmitted light transmitted through the display member 100 and the reflected light reflected by the display member 100.
 また、上記第1~第3実施形態において、第1溝1aの第1光学素子111の面に沿った複合輪帯形状は例示であり、仕様に応じて適宜変更することができる。例えば、図8に示すように、第1溝1aの第1光学素子111の面に沿った複合輪帯形状は、円弧状に傾斜する形状に限らず、直線状に傾斜する形状であってもよい。 In the first to third embodiments, the composite annular zone shape along the surface of the first optical element 111 of the first groove 1a is an example, and can be appropriately changed according to the specification. For example, as shown in FIG. 8, the composite annular zone shape along the surface of the first optical element 111 of the first groove 1a is not limited to the shape inclined in an arc shape, but may be a shape inclined in a linear shape. Good.
 また、上記第1~第3実施形態において、ミラーMRの第1要素MRaと第2要素MRbとを繋ぐ頂点がR面を有してもよい。これにより、表示光L1が頂点付近で散乱することを防ぐことができる。なお、表示光L1が入射する側つまりZ側の頂点にR面が設けられていればよい。 In the first to third embodiments, the vertex connecting the first element MRa and the second element MRb of the mirror MR may have an R plane. Thereby, it is possible to prevent the display light L1 from being scattered near the apex. In addition, the R surface should just be provided in the vertex into which the display light L1 injects, ie, the Z side.
 また、上記第1~第3実施形態において、図9に示すように、表示部材100としてのシート状部材90をウィンドシールド8に貼り付けてもよい。シート状部材90は、接着剤又は粘着剤層等を介してウィンドシールド8等に貼り付けられている。 In the first to third embodiments, a sheet-like member 90 as the display member 100 may be attached to the windshield 8 as shown in FIG. The sheet-like member 90 is affixed to the windshield 8 or the like via an adhesive or an adhesive layer.
 また、上記第1~第3実施形態において、表示装置200の光学系との関係で、第1光学素子111の接合面CRとは反対側の面と、第2光学素子112の接合面CRとは反対側の面とに曲率等のパワーを持たせる構成とすることもできる。 In the first to third embodiments, the surface opposite to the bonding surface CR of the first optical element 111 and the bonding surface CR of the second optical element 112 are related to the optical system of the display device 200. Can be configured to give power such as curvature to the opposite surface.
 上記第1~第3実施形態において、第1及び第2光学素子111,112を別々に成形した後に接合して表示部材100(又はシート状部材90)を製造する例を挙げたが、例えば第1光学素子111を成形した後に、第2光学素子112用の金型に第1光学素子111を挿入した状態で第2光学素子112を成形して表示部材100(又はシート状部材90)を製造してもよい。 In the first to third embodiments, the example in which the display member 100 (or the sheet-like member 90) is manufactured by separately molding the first and second optical elements 111 and 112 and giving them is described. After the first optical element 111 is molded, the second optical element 112 is molded in a state where the first optical element 111 is inserted into the mold for the second optical element 112 to manufacture the display member 100 (or the sheet-like member 90). May be.
 上記第1~第3実施形態において、図2A等に示す描画ユニット210等は、単なる例示であり、拡大投射光学系50の構成を適宜変更したり、像形成素子30を他の種類の像形成素子に置き換えたりすることができる。例えば、拡大投射光学系50を固定焦点の光学系に変更することができる。また、描画ユニット210において、例えば拡大投射光学系50を省略する構成や、第1投影光学系51を省略する構成とすることもできる。 In the first to third embodiments, the drawing unit 210 and the like shown in FIG. 2A and the like are merely examples, and the configuration of the magnifying projection optical system 50 is changed as appropriate, or the image forming element 30 is changed to another type of image formation. It can be replaced with an element. For example, the enlarged projection optical system 50 can be changed to a fixed focus optical system. In the drawing unit 210, for example, a configuration in which the enlarged projection optical system 50 is omitted or a configuration in which the first projection optical system 51 is omitted may be employed.
〔第4実施形態〕
 以下、図面を参照しつつ、本発明に係る表示装置の第4実施形態について説明する。
[Fourth Embodiment]
Hereinafter, a fourth embodiment of a display device according to the present invention will be described with reference to the drawings.
 図10に示すように、表示部材20は、コンバイナーとも呼ばれるハーフミラーであり、半透過性を有する凹面鏡又は平面鏡である。表示部材20は、下端の支持によってダッシュボード4上に立設され、描画ユニット210からの表示光HKを車体2の後方に向けて反射する。つまり、図示の場合、表示部材20は、フロントガラス(ウィンドシールド)8とは別体で設置される独立型のものとなっている。ハーフミラーである表示部材20で反射された表示光HKは、運転席6に座った運転者(ドライバー)UNの瞳HT及びその周辺位置に対応するアイボックス(不図示)に導かれる。運転者UNは、表示部材20で反射された表示光HK、つまり車体2の前方にある虚像としての表示像IMを観察することができる。一方、運転者UNは、半透過性を有する表示部材20を透過した外界光、つまり前方景色、自動車等の実像を観察することができる。結果的に、運転者UNは、表示部材20の背後の外界像に重ねて、表示部材20での表示光HKの反射によって形成される運転関連情報や危険信号等を含む表示像(虚像)IMを観察することができる。 As shown in FIG. 10, the display member 20 is a half mirror also called a combiner, and is a concave mirror or a plane mirror having semi-transparency. The display member 20 is erected on the dashboard 4 by supporting the lower end, and reflects the display light HK from the drawing unit 210 toward the rear of the vehicle body 2. That is, in the illustrated case, the display member 20 is an independent type installed separately from the windshield (wind shield) 8. The display light HK reflected by the display member 20 that is a half mirror is guided to an eye box (not shown) corresponding to the pupil HT of the driver (driver) UN sitting in the driver's seat 6 and its peripheral position. The driver UN can observe the display light HK reflected by the display member 20, that is, the display image IM as a virtual image in front of the vehicle body 2. On the other hand, the driver UN can observe external light transmitted through the semi-transmissive display member 20, that is, a real image of a front scene, a car, and the like. As a result, the driver UN superimposes the external image behind the display member 20 and displays a display image (virtual image) IM including driving-related information and a danger signal formed by reflection of the display light HK on the display member 20. Can be observed.
 以上において、表示部材20は、ウィインドシールド8の運転者UN側光学面に相当するものであってもよい。さらに、表示部材20は、凹面鏡又は平面鏡に限らず、非球面等の曲面であってもよく、曲面をさらに傾けたものでも、対称性をもたない自由曲面であってもよい。 In the above, the display member 20 may correspond to the driver UN side optical surface of the windshield 8. Further, the display member 20 is not limited to a concave mirror or a plane mirror, and may be a curved surface such as an aspheric surface, may be a further curved surface, or may be a free curved surface having no symmetry.
 描画ユニット210は、本体光学系13と、本体光学系13を動作させる表示制御部18と、本体光学系13等を収納するハウジング14とを備える。これらのうち本体光学系13と表示部材(コンバイナー)20とを組み合わせたものは、虚像投影光学系(又は虚像表示光学系)1030を構成する。なお、図10等において座標軸XYZは、一般的な運転者UNの瞳HT間の位置に対応するアイボックスの中心を原点とするが、便宜上原点をシフトさせた状態で表示されている。 The drawing unit 210 includes a main body optical system 13, a display control unit 18 that operates the main body optical system 13, and a housing 14 that houses the main body optical system 13 and the like. Among these, the combination of the main body optical system 13 and the display member (combiner) 20 constitutes a virtual image projection optical system (or virtual image display optical system) 1030. In FIG. 10 and the like, the coordinate axes XYZ have the origin at the center of the eye box corresponding to the position between the pupils HT of a general driver UN, but are displayed with the origin shifted for convenience.
 詳細は後述するが、虚像投影光学系1030は、少なくとも1つのフレネル素子1050を含んでいる。また、虚像投影光学系1030は、虚像投影光学系1030を構成する部材の少なくとも1つを微細振動させる振動機構80を備えている。なお、虚像投影光学系1030の構成に応じて虚像に発生していた欠落部を補完するような適切な部材を微細振動させる。本実施形態では、後述する第2投影光学系52を構成する第1ミラー17aをフレネル素子1050とする例を挙げ、当該フレネル素子1050を微細振動させる。 Although details will be described later, the virtual image projection optical system 1030 includes at least one Fresnel element 1050. Further, the virtual image projection optical system 1030 includes a vibration mechanism 80 that finely vibrates at least one member constituting the virtual image projection optical system 1030. It should be noted that an appropriate member that complements the missing portion generated in the virtual image according to the configuration of the virtual image projection optical system 1030 is finely vibrated. In the present embodiment, an example in which the first mirror 17a constituting the second projection optical system 52 described later is a Fresnel element 1050 is given, and the Fresnel element 1050 is finely oscillated.
 本体光学系13は、像形成素子30と、像形成素子30に形成された画像を拡大した中間像TIを形成可能な第1投影光学系51と、中間像TIの結像位置に近接して光路後段に配置される中間スクリーン16と、中間像TIを虚像に変換する第2投影光学系52とを備える。像形成素子30は、表示デバイス又は描画デバイスとも呼ぶ。詳細は後述するが、虚像投影光学系として機能する本体光学系13によって、虚像投影距離が可変となっている。第1投影光学系51、中間スクリーン16、及び第2投影光学系52は、像形成素子30の像を拡大する拡大投射光学系50となっている。拡大投射光学系50により、表示装置200において、アイボックスを確保しつつ、虚像のFOVをより広くすることができる。 The main body optical system 13 includes an image forming element 30, a first projection optical system 51 capable of forming an intermediate image TI obtained by enlarging an image formed on the image forming element 30, and an image forming position of the intermediate image TI. An intermediate screen 16 disposed downstream of the optical path and a second projection optical system 52 that converts the intermediate image TI into a virtual image are provided. The image forming element 30 is also called a display device or a drawing device. Although details will be described later, the virtual image projection distance is variable by the main body optical system 13 functioning as a virtual image projection optical system. The first projection optical system 51, the intermediate screen 16, and the second projection optical system 52 are an enlarged projection optical system 50 that enlarges the image of the image forming element 30. The enlarged projection optical system 50 can make the FOV of the virtual image wider in the display device 200 while securing the eye box.
 像形成素子30は、2次元的な表示面30aを有する表示部である。像形成素子30の表示面30aに形成された像は、本体光学系13のうち第1投影光学系51で拡大されて中間像TIを形成し、中間スクリーン16を通過し、第2投影光学系52等へ導かれる。この際、2次元表示が可能な像形成素子30を用いることで、中間像TI又は表示像(虚像)IMの切換えを比較的高速とできる。図示を省略しているが、像形成素子30に付随して、液晶表示パネル(又は液晶ディスプレイ(LCD))のような表示パネルのほかに、液晶表示パネルに表示動作を行わせる表示駆動回路、液晶表示パネルを照明するための光を射出するLEDその他の光源、かかる光源からの光を均一化する均一化光学系等が設けられている。表示パネルとして液晶ディスプレイを用いることにより、装置を小型化することができる。また、LCDの配光角は広いため、虚像のFOVを広くすることができる。なお、像形成素子30は、例えば60fps以上のフレームレートで動作する。これにより、異なる投影距離に複数の表示像IMが同時に表示されているように見せることが容易になる。 The image forming element 30 is a display unit having a two-dimensional display surface 30a. The image formed on the display surface 30a of the image forming element 30 is enlarged by the first projection optical system 51 in the main body optical system 13 to form the intermediate image TI, passes through the intermediate screen 16, and passes through the second projection optical system. 52 etc. At this time, by using the image forming element 30 capable of two-dimensional display, the intermediate image TI or the display image (virtual image) IM can be switched at a relatively high speed. Although not shown, in addition to a display panel such as a liquid crystal display panel (or a liquid crystal display (LCD)) attached to the image forming element 30, a display driving circuit for causing the liquid crystal display panel to perform a display operation, An LED or other light source that emits light for illuminating the liquid crystal display panel, a uniformizing optical system that uniformizes light from the light source, and the like are provided. By using a liquid crystal display as the display panel, the apparatus can be downsized. Further, since the light distribution angle of the LCD is wide, the FOV of the virtual image can be widened. Note that the image forming element 30 operates at a frame rate of, for example, 60 fps or more. This makes it easy to make it appear as if a plurality of display images IM are simultaneously displayed at different projection distances.
 像形成素子30は、後述するフレネル素子1050を構成するフレネル構造1051によって遮光される領域又はパターンに応じて、輝度パターンを変化させることができる。つまり、像形成素子30の表示部の明るさを部分的に変化させる。 The image forming element 30 can change the luminance pattern in accordance with the region or pattern shielded by the Fresnel structure 1051 constituting the Fresnel element 1050 described later. That is, the brightness of the display unit of the image forming element 30 is partially changed.
 第1投影光学系(結像光学系)51は、固定焦点のレンズ系であり、図示を省略するが、複数のレンズ要素を有する。第1投影光学系51は、中間スクリーン16より像形成素子30側に配置される。第1投影光学系51のF値は、2.0以上となっている。第1投影光学系51は、像形成素子30の表示面30aに形成された画像を適当な倍率に拡大投影し、中間スクリーン16の入射面19mに近接した位置に中間像TI(又は入射面19mの位置に強制中間像TI’)を形成する。ここで、強制中間像TI’は、中間像TIそのものの他、中間像TIから位置ずれして僅かにピントがボケたものも含む。なお、第1投影光学系51は、この第1投影光学系51の最も中間スクリーン16側に配置された絞り15aを有する。このように、絞り15aを配置することで、第1投影光学系51の中間スクリーン16側のF値の設定や調整が比較的容易になる。なお、第1投影光学系51の絞りはレンズ系のどこに配置されていてもよい。 The first projection optical system (imaging optical system) 51 is a fixed-focus lens system, and has a plurality of lens elements (not shown). The first projection optical system 51 is disposed closer to the image forming element 30 than the intermediate screen 16. The F value of the first projection optical system 51 is 2.0 or more. The first projection optical system 51 magnifies and projects an image formed on the display surface 30a of the image forming element 30 to an appropriate magnification, and the intermediate image TI (or the incident surface 19m) is positioned near the incident surface 19m of the intermediate screen 16. To form a forced intermediate image TI ′). Here, the forced intermediate image TI ′ includes not only the intermediate image TI itself but also an image that is slightly out of focus by being displaced from the intermediate image TI. The first projection optical system 51 has a stop 15a arranged closest to the intermediate screen 16 of the first projection optical system 51. As described above, by arranging the stop 15a, setting and adjustment of the F value on the intermediate screen 16 side of the first projection optical system 51 are relatively easy. Note that the aperture of the first projection optical system 51 may be disposed anywhere in the lens system.
 中間スクリーン16は、拡散角を所望の角度に制御した部材であり、結像位置(つまり中間像TIの結像予定位置又はその近傍)において強制中間像TI’を形成する。この結果、後述するように中間スクリーン16を光軸AX方向に移動させることにより、強制中間像TI’の位置も光軸AX方向に移動させることができる。中間スクリーン16には、例えば拡散板、拡散スクリーン、マイクロレンズアレイ等を用いることができる。中間スクリーン16によって、アイボックスサイズを拡大することができる。中間像TIは、中間スクリーン16から光路前段にかけての表示領域に結像される。中間スクリーン16の入射面19mは、拡散機能を有している。入射面19mに強制中間像TI’が形成され、ここから光が拡散するので、アイボックスを広く確保することができる。中間スクリーン16は、第1投影光学系51の焦点深度内で移動する。 The intermediate screen 16 is a member whose diffusion angle is controlled to a desired angle, and forms a forced intermediate image TI 'at an image formation position (that is, an image formation planned position of the intermediate image TI or its vicinity). As a result, by moving the intermediate screen 16 in the optical axis AX direction as will be described later, the position of the forced intermediate image TI ′ can also be moved in the optical axis AX direction. For the intermediate screen 16, for example, a diffusion plate, a diffusion screen, a microlens array, or the like can be used. The eye box size can be enlarged by the intermediate screen 16. The intermediate image TI is formed in a display area from the intermediate screen 16 to the front stage of the optical path. The incident surface 19m of the intermediate screen 16 has a diffusion function. A forced intermediate image TI 'is formed on the incident surface 19m, and light diffuses therefrom, so that a wide eye box can be secured. The intermediate screen 16 moves within the depth of focus of the first projection optical system 51.
 中間スクリーン16は、配置変更装置62に駆動されて例えば一定速度又は周期的な運動で光軸AXに沿って移動する。つまり、中間スクリーン16の位置は可変となっている。本例の場合、光軸AXとは、像形成素子30の中心と、アイボックスの中心と、表示装置200によって作られる像形成素子30の中心に対応する像点(虚像)とを通るものである。配置変更装置62によって中間スクリーン16を光軸AXに沿って移動させることで、第2投影光学系52によって表示スクリーンとして機能する表示部材(コンバイナー)20の背後に形成される虚像としての表示像IMと観察者である運転者UNとの距離を長く、又は短くすることができる。つまり、配置変更装置62は、本体光学系13又は虚像投影光学系1030の構成配置を変化させて投影距離を変化させる。このように、投影される表示像IMの位置を前後に変化させるとともに、表示内容をその位置に応じたものとすることで、表示像IMまでの虚像距離又は投影距離を変化させつつ表示像IMを変化させることになり、一連の投影像としての表示像IMを3次元的なものとすることができる。中間スクリーン16の光軸AXに沿った移動範囲は、中間像TIの結像予定位置又はその近傍に相当するものであるが、第1投影光学系51の中間スクリーン16側の焦点深度の範囲内とすることが望ましい。これにより、強制中間像TI’の状態と虚像としての表示像IMの結像状態とを、いずれも略ピントが合った良好な状態とすることができる。中間スクリーン16の光軸AX方向の移動量は、例えば20mm以下となっている。これにより、中間スクリーン16の移動を効率良く行うことができ、中間スクリーン16の応答性を向上させることができる。中間スクリーン16の移動速度は、虚像としての表示像IMが複数個所又は複数虚像距離に同時に表示されているかのように見せることができる速度であることが望ましい。配置変更装置62は、例えば15Hz以上の速度で中間スクリーン16を移動させる。この場合、観察者(運転者UN)の知覚を超える速さのため、観察者は投影距離の異なる虚像を略同時に認識することができる。 The intermediate screen 16 is driven by the arrangement changing device 62 and moves along the optical axis AX, for example, at a constant speed or a periodic movement. That is, the position of the intermediate screen 16 is variable. In the case of this example, the optical axis AX passes through the center of the image forming element 30, the center of the eye box, and the image point (virtual image) corresponding to the center of the image forming element 30 created by the display device 200. is there. A display image IM as a virtual image formed behind the display member (combiner) 20 functioning as a display screen by the second projection optical system 52 by moving the intermediate screen 16 along the optical axis AX by the arrangement changing device 62. And the driver UN who is the observer can be lengthened or shortened. In other words, the arrangement changing device 62 changes the configuration distance of the main body optical system 13 or the virtual image projection optical system 1030 to change the projection distance. In this way, the position of the projected display image IM is changed back and forth, and the display content is made to correspond to the position, so that the display image IM is changed while changing the virtual image distance or the projection distance to the display image IM. The display image IM as a series of projection images can be made three-dimensional. The range of movement of the intermediate screen 16 along the optical axis AX corresponds to the image formation planned position of the intermediate image TI or the vicinity thereof, but is within the range of the focal depth of the first projection optical system 51 on the intermediate screen 16 side. Is desirable. As a result, the forced intermediate image TI ′ and the imaging state of the display image IM as a virtual image can both be brought into a good state that is substantially in focus. The amount of movement of the intermediate screen 16 in the optical axis AX direction is, for example, 20 mm or less. Thereby, the movement of the intermediate screen 16 can be performed efficiently, and the responsiveness of the intermediate screen 16 can be improved. The moving speed of the intermediate screen 16 is preferably a speed at which the display image IM as a virtual image can be displayed as if it is displayed at a plurality of locations or a plurality of virtual image distances simultaneously. The arrangement changing device 62 moves the intermediate screen 16 at a speed of, for example, 15 Hz or more. In this case, since the speed exceeds the perception of the observer (driver UN), the observer can recognize virtual images with different projection distances almost simultaneously.
 中間スクリーン16は、支持部材62aに支持されている。支持部材62aは、配置変更装置62の台座62bに光軸AX方向に沿った所定の範囲内で移動可能に取り付けられている。中間スクリーン16が移動範囲の最も上流側(つまり、第1投影光学系51に最も近い側)に配置されたタイミングでは、この時点で中間スクリーン16に表示されている画像が、ハーフミラーである表示部材(表示スクリーン又はコンバイナー)20の背後の最も遠くに虚像として表示される。また、中間スクリーン16が移動範囲の最も下流側(つまり、第1投影光学系51から最も遠い側)に配置されたタイミングでは、この時点で中間スクリーン16に表示されている画像が、ハーフミラーである表示部材(コンバイナー)20の背後の最も近くに虚像として表示される。 The intermediate screen 16 is supported by the support member 62a. The support member 62a is attached to the base 62b of the arrangement changing device 62 so as to be movable within a predetermined range along the optical axis AX direction. At the timing when the intermediate screen 16 is arranged on the most upstream side of the movement range (that is, the side closest to the first projection optical system 51), the image displayed on the intermediate screen 16 at this time is a display that is a half mirror. It is displayed as a virtual image farthest behind the member (display screen or combiner) 20. Further, at the timing when the intermediate screen 16 is arranged on the most downstream side of the movement range (that is, the side farthest from the first projection optical system 51), the image displayed on the intermediate screen 16 at this time is a half mirror. It is displayed as a virtual image closest to the back of a certain display member (combiner) 20.
 虚像生成光学系(第2投影光学系)52は、中間スクリーン16付近に形成された中間像TIを表示部材20と協働して拡大する拡大光学系であり、運転者UNの前方に虚像としての表示像IMを形成する。第2投影光学系52は、中間スクリーン16より虚像側に配置される。第2投影光学系52は、反射光学系を有し、少なくとも1枚のミラーで構成されるが、図示の例では2枚の第1及び第2ミラー17a,17bを含む。ここで、第1ミラー17aは、第1の反射体であって、光路前段にある像形成素子30側に配置されており、光学的なパワーを有する。また、第2ミラー17bは、光路後段にある表示部材(コンバイナー)20側に配置されており、光学的なパワーを有する。第1及び第2ミラー17a,17bは、凸面、凹面、又は平面とでき、曲面の場合、球面に限らず、非球面、自由曲面等とすることができる。 The virtual image generation optical system (second projection optical system) 52 is an enlargement optical system that expands the intermediate image TI formed in the vicinity of the intermediate screen 16 in cooperation with the display member 20, and as a virtual image in front of the driver UN. The display image IM is formed. The second projection optical system 52 is disposed on the virtual image side with respect to the intermediate screen 16. The second projection optical system 52 has a reflection optical system and is composed of at least one mirror. In the illustrated example, the second projection optical system 52 includes two first and second mirrors 17a and 17b. Here, the first mirror 17a is a first reflector and is disposed on the image forming element 30 side in the preceding stage of the optical path, and has optical power. The second mirror 17b is disposed on the display member (combiner) 20 side in the latter stage of the optical path and has optical power. The first and second mirrors 17a and 17b can be convex surfaces, concave surfaces, or flat surfaces. In the case of curved surfaces, the first and second mirrors 17a and 17b are not limited to spherical surfaces but can be aspherical surfaces, free curved surfaces, or the like.
 図11A及び11Bに示すように、第2投影光学系52の第1ミラー17aは、フレネル素子(フレネルミラー)1050となっている。フレネル素子1050は、円弧状のぎざぎざの突起が所定のピッチP1で一方向に繰り返し形成されたフレネル構造1051を有し、フレネル構造1051の表面にミラーコート層を有している。ここでは、ピッチP1を一定としたが、必ずしも一定とは限らない。図11Aに示すように、フレネル素子1050を構成するフレネル構造1051は、非同心円型のパターンを有している。また、図11Bに示すように、フレネル構造1051の表面1051aは、自由曲面を有している。非同心円型では、円弧局所部の曲率半径が同一円弧内の各円弧局所部で一致しない。この場合、フレネル素子1050の形状自由度が増えたことで光学倍率を高くすることができ、虚像のFOVを広くすることができ、表示装置200をコンパクトにすることができる。 11A and 11B, the first mirror 17a of the second projection optical system 52 is a Fresnel element (Fresnel mirror) 1050. The Fresnel element 1050 has a Fresnel structure 1051 in which arc-shaped jagged projections are repeatedly formed in one direction at a predetermined pitch P1, and has a mirror coat layer on the surface of the Fresnel structure 1051. Although the pitch P1 is constant here, it is not necessarily constant. As shown in FIG. 11A, the Fresnel structure 1051 constituting the Fresnel element 1050 has a non-concentric pattern. Further, as shown in FIG. 11B, the surface 1051a of the Fresnel structure 1051 has a free-form surface. In the non-concentric circular shape, the radius of curvature of the local arc portion does not coincide with each other in the same arc. In this case, the optical magnification can be increased by increasing the degree of freedom of the shape of the Fresnel element 1050, the FOV of the virtual image can be widened, and the display device 200 can be made compact.
 本実施形態において、振動機構80は、フレネル素子1050である第1ミラー17aを振動させる。振動機構80としては、例えばピエゾ素子等を用いる。 In this embodiment, the vibration mechanism 80 vibrates the first mirror 17a which is the Fresnel element 1050. As the vibration mechanism 80, for example, a piezo element or the like is used.
 図11Aに示すように、微細振動の振動方向CDは、フレネル素子1050の中心におけるフレネル構造1051の接線L1に垂直な方向に対して±30°の角度範囲内に設定されている。この場合、フレネルパターンを基準とする振動方向CDは1次元的となり、微細振動の制御を簡易にすることができる。微細振動のストロークは、フレネル素子1050を構成するフレネル構造1051の平均ピッチよりも短くなっている。具体的には、例えばフレネル構造1051の平均ピッチを0.3mm~0.6mmとして、その半分程度である。なお、接線L1は、フレネル構造1051の各パターンの接線を平均化したものを基準とすることが好ましい。 As shown in FIG. 11A, the vibration direction CD of the fine vibration is set within an angle range of ± 30 ° with respect to the direction perpendicular to the tangent L1 of the Fresnel structure 1051 at the center of the Fresnel element 1050. In this case, the vibration direction CD based on the Fresnel pattern becomes one-dimensional, and the control of fine vibration can be simplified. The stroke of fine vibration is shorter than the average pitch of the Fresnel structure 1051 constituting the Fresnel element 1050. Specifically, for example, the average pitch of the Fresnel structure 1051 is 0.3 mm to 0.6 mm, which is about half of that. The tangent line L1 is preferably based on an average of the tangent lines of each pattern of the Fresnel structure 1051.
 図10に戻って、ハウジング14は、表示光HKを通過させる開口14aを有し、この開口14aには、フィルム又は薄板状の光透過部材14bを配置することができる。 Referring back to FIG. 10, the housing 14 has an opening 14a through which the display light HK passes, and a film or a thin plate-like light transmission member 14b can be disposed in the opening 14a.
 図12は、移動体用表示システム300を説明するブロック図であり、移動体用表示システム300は、その一部として表示装置200を含む。この表示装置200は、図10に示す構造を有するものであり、ここでは説明を省略する。図12に示す移動体用表示システム300は、移動体である自動車等に組み込まれるものである。 FIG. 12 is a block diagram illustrating the mobile display system 300, and the mobile display system 300 includes the display device 200 as a part thereof. The display device 200 has the structure shown in FIG. 10, and a description thereof is omitted here. A moving body display system 300 shown in FIG. 12 is incorporated in an automobile or the like that is a moving body.
 移動体用表示システム300は、表示装置200のほかに、運転者検出部71と、環境監視部72と、主制御装置1090とを備える。 The mobile display system 300 includes a driver detection unit 71, an environment monitoring unit 72, and a main control device 1090 in addition to the display device 200.
 運転者検出部71は、運転者UNの存在や視点位置を検出する部分であり、運転席用カメラ71aと、運転席用画像処理部71bと、運転席画像判断部71cとを備える。運転席用カメラ71aは、車体2内のダッシュボード4の運転席正面に設置されており(図1B参照)、運転者UNの頭部及びその周辺の画像を撮影する。運転席用画像処理部71bは、運転席用カメラ71aで撮影した画像に対して明るさ補正等の各種画像処理を行って運転席画像判断部71cでの処理を容易にする。運転席画像判断部71cは、運転席用画像処理部71bを経た運転席画像からオブジェクトの抽出又は切り出しを行うことによって運転者UNの頭部や目を検出するとともに、運転席画像に付随する奥行情報から車体2内における運転者UNの頭部の存否とともに運転者UNの目の空間的な位置(結果的に視線の方向)を算出する。 The driver detection unit 71 is a part that detects the presence of the driver UN and the viewpoint position, and includes a driver seat camera 71a, a driver seat image processing unit 71b, and a driver seat image determination unit 71c. The driver's seat camera 71a is installed in front of the driver's seat of the dashboard 4 in the vehicle body 2 (see FIG. 1B), and takes an image of the head of the driver UN and its surroundings. The driver seat image processing unit 71b performs various types of image processing such as brightness correction on the image captured by the driver seat camera 71a to facilitate processing in the driver seat image determination unit 71c. The driver seat image determination unit 71c detects the head and eyes of the driver UN by extracting or cutting out an object from the driver seat image that has passed through the driver seat image processing unit 71b, and the depth associated with the driver seat image. The spatial position of the driver UN's eyes (and consequently the direction of the line of sight) is calculated along with the presence / absence of the driver's UN head in the vehicle body 2 from the information.
 環境監視部72は、前方に近接する自動車、自転車、歩行者等を識別する部分であり、外部用カメラ72aと、外部用画像処理部72bと、外部画像判断部72cとを備える。外部用カメラ72aは、車体2内外の適所に設置されており、運転者UN又はウィインドシールド8の前方、側方等の外部画像を撮影する。外部用画像処理部72bは、外部用カメラ72aで撮影した画像に対して明るさ補正等の各種画像処理を行って外部画像判断部72cでの処理を容易にする。外部画像判断部72cは、外部用画像処理部72bを経た外部画像からオブジェクトの抽出又は切り出しを行うことによって自動車、自転車、歩行者等の対象物(例えば図13に示すオブジェクトOB参照)の存否を検出するとともに、外部画像に付随する奥行情報から車体2前方における対象物の空間的な位置を算出する。 The environment monitoring unit 72 is a part for identifying a car, a bicycle, a pedestrian, and the like that are close to the front, and includes an external camera 72a, an external image processing unit 72b, and an external image determination unit 72c. The external camera 72a is installed at appropriate locations inside and outside the vehicle body 2 and captures external images of the driver UN or the windshield 8 such as the front and sides. The external image processing unit 72b performs various types of image processing such as brightness correction on the image captured by the external camera 72a to facilitate processing by the external image determination unit 72c. The external image determination unit 72c extracts or cuts out an object from the external image that has passed through the external image processing unit 72b, thereby determining whether a target such as a car, a bicycle, or a pedestrian (for example, the object OB shown in FIG. 13) exists. While detecting, the spatial position of the target object in front of the vehicle body 2 is calculated from the depth information accompanying the external image.
 なお、運転席用カメラ71aや外部用カメラ72aは、図示を省略しているが、例えば複眼型の3次元カメラである。つまり、両カメラ71a,72aは、結像用のレンズと、CMOSその他の撮像素子とを一組とするカメラ素子をマトリックス状に配列したものであり、撮像素子用の駆動回路をそれぞれ有する。各カメラ71a,72aを構成する複数のカメラ素子は、例えば奥行方向の異なる位置にピントを合わせるようになっており、或いは相対的な視差を検出できるようになっており、各カメラ素子から得た画像の状態(フォーカス状態、オブジェクトの位置等)を解析することで、画像内の各領域又はオブジェクトまでの距離を判定できる。 The driver's seat camera 71a and the external camera 72a are not shown, but are, for example, compound eye type three-dimensional cameras. That is, both cameras 71a and 72a are obtained by arranging camera elements, each of which includes an imaging lens and a CMOS or other image sensor, in a matrix, and each has a drive circuit for the image sensor. The plurality of camera elements constituting each of the cameras 71a and 72a are adapted to focus at different positions in the depth direction, for example, or to detect relative parallax, and are obtained from each camera element. By analyzing the state of the image (focus state, object position, etc.), the distance to each region or object in the image can be determined.
 なお、上記のような複眼型のカメラ71a,72aに代えて、2次元カメラと赤外距離センサーとを組み合わせたものを用いても、撮影した画面内の各部(領域又はオブジェクト)に関して奥行方向の距離情報を得ることができる。また、複眼型のカメラ71a,72aに代えて、2つの2次元カメラを分離配置したステレオカメラによって、撮影した画面内の各部(領域又はオブジェクト)に関して奥行方向の距離情報を得ることができる。その他、単一の2次元カメラにおいて、焦点距離を高速で変化させながら撮像を行うことによっても、撮影した画面内の各部に関して奥行方向の距離情報を得ることができる。 Even if a combination of a two-dimensional camera and an infrared distance sensor is used instead of the compound- eye cameras 71a and 72a as described above, the depth direction of each part (area or object) in the captured screen is used. Distance information can be obtained. In addition, distance information in the depth direction can be obtained for each part (region or object) in the captured screen by using a stereo camera in which two two-dimensional cameras are separately arranged in place of the compound- eye cameras 71a and 72a. In addition, in a single two-dimensional camera, distance information in the depth direction can be obtained for each part in the captured screen by performing imaging while changing the focal length at high speed.
 表示制御部18は、主制御装置1090の制御下で虚像投影光学系1030を動作させて、表示部材20の背後に虚像距離又は投影距離が変化する3次元的な表示像IMを表示させる。表示制御部18は、主制御装置1090を介して環境監視部72から受信した表示形状や表示距離を含む表示情報から、虚像投影光学系1030に表示させる表示像IMを生成する。表示像IMは、例えば表示部材20の背後に存在する自動車、自転車、歩行者その他の対象物に対してその奥行き位置方向に関して周辺に位置する表示枠(図13に示す表示枠HW参照)のような標識とすることができる。 The display control unit 18 operates the virtual image projection optical system 1030 under the control of the main controller 1090 to display a three-dimensional display image IM in which the virtual image distance or the projection distance changes behind the display member 20. The display control unit 18 generates a display image IM to be displayed on the virtual image projection optical system 1030 from display information including the display shape and display distance received from the environment monitoring unit 72 via the main control device 1090. The display image IM is, for example, a display frame (see display frame HW shown in FIG. 13) located in the periphery with respect to the direction of the depth position with respect to an automobile, a bicycle, a pedestrian, or other object existing behind the display member 20. Can be a good sign.
 なお、表示像IMの表示に際して、虚像投影光学系1030の像形成素子30では、フレネル素子1050を構成するフレネル構造1051によって遮光される領域に応じて、輝度パターンを変化させている。輝度パターンの変化は、フレネル構造1051の1つのエッジに対応するものでも、複数のエッジを平均化したものに対応するものでもよい。像形成素子30の面内輝度を変えることで、虚像全体での輝度を合わせている。具体的には、フレネル素子1050のピッチが狭い領域を通る像形成素子30の表示領域の輝度は、フレネル素子1050のピッチが広い領域を通る像形成素子30の表示領域の輝度よりも高くしている。これにより、より認識しやすい表示像(虚像)IMを表示することができる。 In displaying the display image IM, in the image forming element 30 of the virtual image projection optical system 1030, the luminance pattern is changed according to the area shielded by the Fresnel structure 1051 constituting the Fresnel element 1050. The change in the luminance pattern may correspond to one edge of the Fresnel structure 1051 or may correspond to an average of a plurality of edges. By changing the in-plane luminance of the image forming element 30, the luminance of the entire virtual image is adjusted. Specifically, the brightness of the display area of the image forming element 30 passing through the area where the pitch of the Fresnel element 1050 is narrow is made higher than the brightness of the display area of the image forming element 30 passing through the area where the pitch of the Fresnel element 1050 is wide. Yes. This makes it possible to display a display image (virtual image) IM that is easier to recognize.
 表示制御部18は、主制御装置1090を介して運転者検出部71から運転者UNの存在や目の位置に関する検出出力を受け取る。これにより、虚像投影光学系1030による表示像IMの投影の自動的な開始や停止が可能になる。また、運転者UNの視線の方向のみに表示像IMの投影を行うこともできる。さらに、運転者UNの視線の方向の表示像IMのみを明るくする、点滅する等の強調を行った投影を行うこともできる。 The display control unit 18 receives a detection output related to the presence of the driver UN and the eye position from the driver detection unit 71 via the main control device 1090. Thereby, the projection of the display image IM by the virtual image projection optical system 1030 can be automatically started and stopped. Further, the display image IM can be projected only in the direction of the line of sight of the driver UN. Further, it is possible to perform projection with emphasis such as brightening or blinking only the display image IM in the direction of the line of sight of the driver UN.
 主制御装置1090は、表示装置200、環境監視部72等の動作を調和させる役割を有し、環境監視部72によって検出した対象物の空間的な位置に対応するように、虚像投影光学系1030によって投影される表示枠その他の像の空間的な配置を調整する。 The main controller 1090 has a role of harmonizing the operations of the display device 200, the environment monitoring unit 72, and the like, and the virtual image projection optical system 1030 corresponds to the spatial position of the object detected by the environment monitoring unit 72. Adjust the spatial arrangement of the display frame and other images projected by.
 図13は、具体的な表示状態を説明する斜視図である。観察者である運転者UNの前方は観察視野に相当する検出領域VFとなっている。検出領域VF内、つまり道路及びその周辺に、歩行者等である人のオブジェクトOB1,OB3や、自動車等である移動体のオブジェクトOB2が存在すると考える。この場合、主制御装置1090は、表示装置200によって3次元的な表示像(虚像)IMを投影させ、各オブジェクトOB1,OB2,OB3に対して関連情報像としての表示枠HW1,HW2,HW3を付加する。この際、運転者UNから各オブジェクトOB1,OB2,OB3までの距離が異なるので、表示枠HW1,HW2,HW3を表示させる表示像(投影像)IM1,IM2,IM3までの投影距離は、運転者UNから各オブジェクトOB1,OB2,OB3までの距離に相当するものとなっている。なお、表示像IM1,IM2,IM3の投影距離は、離散的であり、オブジェクトOB1,OB2,OB3までの現実の距離に対して正確に一致させることはできない。ただし、表示像IM1,IM2,IM3の投影距離と、オブジェクトOB1,OB2,OB3までの現実の距離との差が大きくなければ、運転者UNの視点が動いても視差が生じにくく、オブジェクトOB1,OB2,OB3と表示枠HW1,HW2,HW3との配置関係を略維持することができる。 FIG. 13 is a perspective view illustrating a specific display state. A detection area VF corresponding to the observation field is provided in front of the driver UN as an observer. It is assumed that objects OB1 and OB3 of a person such as a pedestrian and a moving object OB2 such as an automobile exist in the detection area VF, that is, in and around the road. In this case, main controller 1090 causes display device 200 to project a three-dimensional display image (virtual image) IM, and displays display frames HW1, HW2, and HW3 as related information images for objects OB1, OB2, and OB3. Append. At this time, since the distance from the driver UN to each object OB1, OB2, OB3 is different, the projection distance to the display images (projected images) IM1, IM2, IM3 for displaying the display frames HW1, HW2, HW3 is the driver This corresponds to the distance from the UN to each object OB1, OB2, OB3. Note that the projection distances of the display images IM1, IM2, and IM3 are discrete, and cannot be accurately matched to the actual distances to the objects OB1, OB2, and OB3. However, if the difference between the projected distances of the display images IM1, IM2, IM3 and the actual distance to the objects OB1, OB2, OB3 is not large, parallax hardly occurs even if the viewpoint of the driver UN moves, and the objects OB1, The positional relationship between OB2 and OB3 and the display frames HW1, HW2, and HW3 can be substantially maintained.
 以上で説明した表示装置では、虚像投影光学系1030に少なくとも1つのフレネル素子1050を含み、当該フレネル素子1050を微細振動させることで、表示像(虚像)IMに発生していた欠落部を補完することができ、欠落部のない表示像(虚像)IMを表示することができる。これにより、アイボックスを維持したまま、虚像のFOVが広く、コンパクトな表示装置200とでき、かつ当該表示装置200により認識しやすい像を観察者(運転者UN)に視認させることができる。 In the display device described above, the virtual image projection optical system 1030 includes at least one Fresnel element 1050, and the Fresnel element 1050 is finely oscillated to compensate for a missing portion generated in the display image (virtual image) IM. It is possible to display a display image (virtual image) IM with no missing part. Thus, the FOV of the virtual image is wide and the display device 200 can be made compact while maintaining the eye box, and an image that can be easily recognized by the display device 200 can be visually recognized by the observer (driver UN).
(実施例)
 以下、本実施形態の具体的な実施例について説明する。図14A及び14Bに示すように、本実施例の第2投影光学系52は1枚の第1ミラー17aとウィンドシールドで構成されている。本実施例において、第1ミラー17aがフレネル素子1050となっている。第1ミラー17aは、巨視的に見て平板状のミラーとなっているが、反射面である像形成素子30側の面上には、フレネル構造1051が形成されている。
(Example)
Hereinafter, specific examples of the present embodiment will be described. As shown in FIGS. 14A and 14B, the second projection optical system 52 of this embodiment is composed of a single first mirror 17a and a windshield. In the present embodiment, the first mirror 17 a is a Fresnel element 1050. The first mirror 17a is a flat mirror when viewed macroscopically, but a Fresnel structure 1051 is formed on a surface on the image forming element 30 side which is a reflection surface.
 図15A及び15Bにおいて、比較例として、第2投影光学系52にフレネル素子1050ではない第1ミラー17aのみを設けた場合の光学配置を示す。なお、比較例の第1ミラー17aは、像形成素子30側の面において凹面を有している。図14A、14B、図15A、及び15Bから分かるように、第1ミラー17aをフレネル素子1050としても、従来の光学配置と変わらないものとすることができる。ただし、実施例では、第1ミラー17aをフレネル素子1050とすることで、表示装置200をより小さくすることができる。図14A等に示す実施例の光学系を組み込んだ表示装置では、フレネル素子1050である第1ミラー17aを微動振動させることによって虚像に発生していた欠落部を補完することができ、比較例の構成よりも欠落部のない虚像を表示することができる。 15A and 15B show an optical arrangement in the case where only the first mirror 17a that is not the Fresnel element 1050 is provided in the second projection optical system 52 as a comparative example. The first mirror 17a of the comparative example has a concave surface on the surface on the image forming element 30 side. As can be seen from FIGS. 14A, 14B, 15A, and 15B, even if the first mirror 17a is the Fresnel element 1050, it can be the same as the conventional optical arrangement. However, in the embodiment, the display device 200 can be made smaller by using the first mirror 17a as the Fresnel element 1050. In the display device incorporating the optical system of the embodiment shown in FIG. 14A and the like, the missing portion generated in the virtual image can be complemented by finely vibrating the first mirror 17a which is the Fresnel element 1050. It is possible to display a virtual image having no missing part as compared with the configuration.
〔第5実施形態〕
 以下、第5実施形態に係る表示装置について説明する。なお、第5実施形態の表示装置は第4実施形態等の表示装置を変形したものであり、特に説明しない事項は第4実施形態等と同様である。
[Fifth Embodiment]
The display device according to the fifth embodiment will be described below. The display device according to the fifth embodiment is a modification of the display device according to the fourth embodiment, and items not particularly described are the same as those in the fourth embodiment.
 図16に示すように、本実施形態において、表示部材20がフレネル素子1050となっている。図16に示すように表示部材(表示スクリーン)20がコンバイナーである場合、フレネル素子1050を振動機構80を用いて微細振動させることができる。 As shown in FIG. 16, in the present embodiment, the display member 20 is a Fresnel element 1050. As shown in FIG. 16, when the display member (display screen) 20 is a combiner, the Fresnel element 1050 can be finely vibrated using the vibration mechanism 80.
 図17A及び17Bに示すように、表示部材20は、フレネル素子(フレネルスクリーン)1050となっている。図17Aにおいて、フレネル構造1051は、同心円型の円弧状のパターンを描く。同心円型のパターンでは、円弧局所部の曲率半径が同一円弧内の各円弧局所部で一致する。また、同心円型のパターンは、フレネル素子1050に同心円の中心が含まれない軸外しタイプも含んでいる。この場合、軸外し光学系ながらフレネル素子1050を作製する金型加工が容易になる。図17Bに示すように、フレネル素子1050は、2枚の基材1053で構成されている。フレネル構造1051は、各基材1053の一方の面に設けられており、それらが対向している。フレネル素子1050は、フレネル構造1051上にハーフミラーコート層1052を有している。ハーフミラーコート層1052と反対側の基材1053との間にはほぼ同一の屈折率を有する媒質があってもよい。その場合には、ハーフミラーコート層1052を有していない一方の基材1053は平面でもよい。結果的に、ハーフミラーコート層1052は、ほぼ同一の屈折率を有する一対の基材1053で挟まれている状態となっている。これにより、虚像を視認できるだけでなく、フレネル素子1050を透過した外界光、つまり前方景色、自動車等の実像を歪みのない透過像として視認できる。なお、フレネル構造1051を含む基材1053をシート状にして、別途、表示部材20の表面に貼り付けてもよい。 As shown in FIGS. 17A and 17B, the display member 20 is a Fresnel element (Fresnel screen) 1050. In FIG. 17A, the Fresnel structure 1051 draws a concentric arc-shaped pattern. In the concentric pattern, the radius of curvature of the arc local portion is the same in each arc local portion in the same arc. Further, the concentric pattern includes an off-axis type in which the center of the concentric circle is not included in the Fresnel element 1050. In this case, mold processing for producing the Fresnel element 1050 with the off-axis optical system becomes easy. As shown in FIG. 17B, the Fresnel element 1050 is composed of two base materials 1053. The Fresnel structure 1051 is provided on one surface of each base material 1053, and they face each other. The Fresnel element 1050 has a half mirror coat layer 1052 on the Fresnel structure 1051. There may be a medium having substantially the same refractive index between the half mirror coat layer 1052 and the base material 1053 on the opposite side. In that case, the one base material 1053 which does not have the half mirror coat layer 1052 may be a flat surface. As a result, the half mirror coat layer 1052 is sandwiched between a pair of base materials 1053 having substantially the same refractive index. Thereby, not only a virtual image can be visually recognized, but also external light transmitted through the Fresnel element 1050, that is, a real image of a front scene, an automobile, etc., can be visually recognized as a transmission image without distortion. Note that the base material 1053 including the Fresnel structure 1051 may be formed into a sheet shape and separately attached to the surface of the display member 20.
 フレネル素子1050は、図2A等に示すシート状部材90(つまり、表示部材100)と同様の構造を有する。フレネル素子1050のうち、対向する2つの基材1053は、光学素子111,112に相当し、ハーフミラーコート層1052は、ミラーMRに相当する。ハーフミラーコート層1052の立体的な形状によって、フレネル形状部190が形成されている。詳細は省略するが、フレネル形状部190又はハーフミラーコート層1052の立体的な形状は、フレネル形状部111a,112a又はミラーMRの立体的な形状と同様に、水平方向に直交する縦方向に対して傾斜して延びるものとなっている。 The Fresnel element 1050 has the same structure as the sheet-like member 90 (that is, the display member 100) shown in FIG. 2A and the like. Of the Fresnel element 1050, the two opposing base materials 1053 correspond to the optical elements 111 and 112, and the half mirror coat layer 1052 corresponds to the mirror MR. The Fresnel-shaped portion 190 is formed by the three-dimensional shape of the half mirror coat layer 1052. Although details are omitted, the three-dimensional shape of the Fresnel-shaped portion 190 or the half mirror coat layer 1052 is similar to the three-dimensional shape of the Fresnel-shaped portions 111a and 112a or the mirror MR with respect to the vertical direction orthogonal to the horizontal direction. It is inclined and extends.
〔第6実施形態〕
 以下、第6実施形態に係る表示装置について説明する。なお、第6実施形態の表示装置は第4実施形態等の表示装置を変形したものであり、特に説明しない事項は第4実施形態等と同様である。
[Sixth Embodiment]
The display device according to the sixth embodiment will be described below. The display device according to the sixth embodiment is a modification of the display device according to the fourth embodiment, and items not particularly described are the same as those in the fourth embodiment.
 図18A及び18Bに示すように、本実施形態において、表示部材20がフレネル素子1050となっている。本実施形態では、コンバイナーを設けずに、フロントウィンドウを形成するウィインドシールド8の運転席正面に設けた矩形の反射領域8dの内側に、表示部材20として、コンバイナー部分220が貼り付けられている。なお、表示部材は、ウィインドシールド8内に埋め込むこともできる。このように、表示部材20が車のウィインドシールド8上に設けられる場合、虚像投影光学系1030を構成する部材のうちフレネル素子1050以外の部材を振動機構80を用いて微細振動させる。具体的には、例えば、像形成素子30、第1投影光学系51を構成するレンズ、第2投影光学系52のミラー等を微動振動させる。レンズやミラー等の振動方向は、フレネル素子1050の中心におけるフレネル構造1051の接線に垂直な方向に対して±30°の角度範囲内の所定方向に対応する方向であり、例えば光軸AXに垂直な方向となっている。 18A and 18B, in this embodiment, the display member 20 is a Fresnel element 1050. In this embodiment, the combiner part 220 is affixed as the display member 20 inside the rectangular reflection region 8d provided in front of the driver's seat of the windshield 8 forming the front window without providing a combiner. . The display member can be embedded in the windshield 8. Thus, when the display member 20 is provided on the windshield 8 of the car, members other than the Fresnel element 1050 among the members constituting the virtual image projection optical system 1030 are finely vibrated using the vibration mechanism 80. Specifically, for example, the image forming element 30, the lens constituting the first projection optical system 51, the mirror of the second projection optical system 52, and the like are finely vibrated. The vibration direction of the lens, mirror, or the like is a direction corresponding to a predetermined direction within an angular range of ± 30 ° with respect to a direction perpendicular to the tangent to the Fresnel structure 1051 at the center of the Fresnel element 1050, and is perpendicular to the optical axis AX, for example. It has become a direction.
〔第7実施形態〕
 以下、第7実施形態に係る表示装置について説明する。なお、第7実施形態の表示装置は第4実施形態等の表示装置を変形したものであり、特に説明しない事項は第4実施形態等と同様である。
[Seventh Embodiment]
The display device according to the seventh embodiment will be described below. The display device according to the seventh embodiment is a modification of the display device according to the fourth embodiment, and items not particularly described are the same as those in the fourth embodiment.
 図19に示すように、本実施形態において、フレネル素子1050の微細振動の振動方向CD,EFは、フレネル素子1050の中心におけるフレネル構造1051の接線L1に垂直な方向に対して±30°の角度範囲内の所定方向、及び当該所定方向に対して垂直な方向である。この場合、フレネルパターンを基準とする振動方向CD,EFは2次元的となり、虚像に生じうる欠落部をより正確に補完することができる。2次元的な振動方向に振動させることは、フレネル構造1051の曲率半径が小さいパターンを有する場合に特に有効である。なお、第6実施形態のように、フレネル素子1050以外の部材を微細振動させる場合も同様に、2次元方向に振動させることができる。 As shown in FIG. 19, in this embodiment, the vibration directions CD and EF of the fine vibration of the Fresnel element 1050 are ± 30 ° with respect to the direction perpendicular to the tangent L1 of the Fresnel structure 1051 at the center of the Fresnel element 1050. A predetermined direction within the range, and a direction perpendicular to the predetermined direction. In this case, the vibration directions CD and EF with the Fresnel pattern as a reference are two-dimensional, and a missing portion that can occur in a virtual image can be more accurately complemented. Vibrating in a two-dimensional vibration direction is particularly effective when the Fresnel structure 1051 has a pattern with a small radius of curvature. Similarly to the sixth embodiment, when a member other than the Fresnel element 1050 is vibrated finely, it can be vibrated in a two-dimensional direction.
〔第8実施形態〕
 以下、第8実施形態に係る表示装置について説明する。なお、第8実施形態の表示装置は第4実施形態等の表示装置を変形したものであり、特に説明しない事項は第4実施形態等と同様である。
[Eighth Embodiment]
The display device according to the eighth embodiment will be described below. The display device according to the eighth embodiment is a modification of the display device according to the fourth embodiment, and items not specifically described are the same as those in the fourth embodiment.
 図20に示すように、本実施形態において、虚像投影光学系1030を構成する中間スクリーン16は、拡散部19に設けられている。拡散部19は、結像光学系(第1投影光学系)51による投影位置又は結像位置(つまり中間像の結像予定位置又はその近傍)に配置され、回転体19aと中空枠体19bとを有し、スクリーン駆動部である回転駆動部162に駆動されて例えば一定速度で基準軸SXの周りに回転する。 As shown in FIG. 20, in the present embodiment, the intermediate screen 16 constituting the virtual image projection optical system 1030 is provided in the diffusing unit 19. The diffusing unit 19 is disposed at a projection position or an imaging position by the imaging optical system (first projection optical system) 51 (that is, at or near the imaging position of the intermediate image), and the rotating body 19a and the hollow frame body 19b. And is driven around the reference axis SX at a constant speed, for example.
 図21Aは、拡散部19を説明する正面図であり、図21Bは、拡散部19を説明する側方断面図である。拡散部19は、全体として円板に近い輪郭を有する螺旋状の回転体19aと、回転体19aを収納する円筒状の中空枠体19bとを有する。 FIG. 21A is a front view illustrating the diffusing portion 19, and FIG. 21B is a side cross-sectional view illustrating the diffusing portion 19. The diffusing unit 19 includes a spiral rotating body 19a having an outline close to a disk as a whole, and a cylindrical hollow frame 19b that houses the rotating body 19a.
 回転体19aは、中央部19cと外周光学部19pとを有する。回転体19aの外周光学部19pに形成された一方の表面19fは、平滑面又は光学面に形成されており、表面19f上には、全域に亘って中間スクリーン16が形成されている。回転体19aの表面19fは、立体形状部116として機能する。中間スクリーン16は、配光角を所望の角度に制御した拡散板であり、拡散度(拡散分布の半値強度の拡散角)が例えば20°以上である。中間スクリーン16は、回転体19aに貼り付けられるシートとできるが、回転体19aの表面に形成された微細な凹凸パターンであってもよい。さらに、中間スクリーン16は、回転体19aの内部に埋め込むように形成されたものであってもよい。中間スクリーン16は、入射した表示光HKを拡散させることによって中間像TIを形成する(図20参照)。回転体19aの外周光学部19pに形成された他方の表面19sは、平滑面又は光学面に形成されている。回転体19aは、光透過性を有する螺旋状の部材であり、一対の表面19f,19sは、基準軸SXを螺旋軸とする螺旋面となっている。結果的に、一方の表面19f上に形成された中間スクリーン16も連続的な螺旋面に沿って形成されたものとなっている。回転体19aは、基準軸SX又は光軸AX方向に関して略等しい厚みtを有する。中間スクリーン16は、螺旋の一周期に対応する範囲に形成されている。つまり、中間スクリーン16は、螺旋の1ピッチ分の範囲に形成されている。この結果、拡散部19の周に沿った一箇所に段差部19jが形成されている。 The rotating body 19a has a central portion 19c and an outer peripheral optical portion 19p. One surface 19f formed on the outer peripheral optical portion 19p of the rotating body 19a is formed as a smooth surface or an optical surface, and the intermediate screen 16 is formed over the entire surface on the surface 19f. The surface 19f of the rotating body 19a functions as the three-dimensional shape portion 116. The intermediate screen 16 is a diffusion plate whose light distribution angle is controlled to a desired angle, and has a diffusion degree (a diffusion angle of a half-value intensity of the diffusion distribution) of, for example, 20 ° or more. The intermediate screen 16 can be a sheet attached to the rotating body 19a, but may be a fine uneven pattern formed on the surface of the rotating body 19a. Further, the intermediate screen 16 may be formed so as to be embedded in the rotating body 19a. The intermediate screen 16 forms an intermediate image TI by diffusing the incident display light HK (see FIG. 20). The other surface 19s formed on the outer peripheral optical part 19p of the rotating body 19a is formed on a smooth surface or an optical surface. The rotator 19a is a light-transmitting spiral member, and the pair of surfaces 19f and 19s is a spiral surface having the reference axis SX as a spiral axis. As a result, the intermediate screen 16 formed on one surface 19f is also formed along a continuous spiral surface. The rotating body 19a has substantially the same thickness t with respect to the reference axis SX or optical axis AX direction. The intermediate screen 16 is formed in a range corresponding to one period of the spiral. In other words, the intermediate screen 16 is formed in a range corresponding to one spiral pitch. As a result, a stepped portion 19j is formed at one place along the periphery of the diffusing portion 19.
 回転体19aにおいて、周方向に沿った一箇所は、本体光学系13の光軸AXが通る機能領域FAとなっており、機能領域FAにおける中間スクリーン16の部分によって中間像TIが形成される。この機能領域FAは、回転体19aの回転に伴って回転体19a上において一定速度で移動する。つまり、回転体19aを回転させつつその一部である機能領域FAに表示光(映像光)HKを入射させることで、機能領域FA又は中間像TIの位置が光軸AXに沿って往復移動する(像形成素子30の表示が動作していなければ、必ずしも表示としての中間像は形成されないが、中間像が形成されるであろう位置も中間像の位置と呼ぶ)。図示の例では、中間スクリーン16が螺旋の一周期に対応する範囲に形成されているので、回転体19aの1回転で中間スクリーン16の機能領域FA又は中間像TIは、光軸AX方向に段差に相当する距離だけ1往復することになる。 In the rotating body 19a, one place along the circumferential direction is a functional area FA through which the optical axis AX of the main body optical system 13 passes, and an intermediate image TI is formed by a portion of the intermediate screen 16 in the functional area FA. The functional area FA moves at a constant speed on the rotating body 19a as the rotating body 19a rotates. That is, the display light (image light) HK is incident on the functional area FA that is a part of the rotating body 19a while rotating, so that the position of the functional area FA or the intermediate image TI reciprocates along the optical axis AX. (If the display of the image forming element 30 is not operating, an intermediate image as a display is not necessarily formed, but the position where the intermediate image will be formed is also called the position of the intermediate image). In the illustrated example, since the intermediate screen 16 is formed in a range corresponding to one cycle of the spiral, the functional area FA or the intermediate image TI of the intermediate screen 16 is stepped in the optical axis AX direction by one rotation of the rotating body 19a. It makes one round trip for a distance corresponding to.
 なお、結像光学系(第1投影光学系)51は、拡散部19に設けた中間スクリーン16の位置によってピントぼけが生じないように、機能領域FAの移動範囲以上の所定の焦点深度を有する。 The imaging optical system (first projection optical system) 51 has a predetermined focal depth that is equal to or greater than the moving range of the functional area FA so as not to be out of focus depending on the position of the intermediate screen 16 provided in the diffusing unit 19. .
 中空枠体19bは、円柱状の外形輪郭を有し、側面部19eと一対の端面部19g,19hとで構成される。側面部19eと一対の端面部19g,19hとは、光透過性を有する同一の材料で形成されている。ただし、側面部19eは、光透過性を有していなくてもよい。一方の端面部19gの主面63a,63bは、例えば互いに平行な平滑面又は光学面とできるが、自由曲面形状や非球面形状とすることもできる。同様に、他方の端面部19hの主面64a,64bも、例えば互いに平行な平滑面又は光学面とできるが、自由曲面形状や非球面形状とすることもできる。中空枠体19b中の回転体19aは、一対の中心軸部65を介して中空枠体19bに固定されており、中空枠体19bと回転体19aとは基準軸SXの周りに一体的に回転する。このように、中間スクリーン16を設けた回転体19aを中空枠体19b中に配置することで、回転体19aに塵等が付着することを抑制でき、回転体19aの回転に伴う音の発生を抑制することができ、回転体19aの高速での回転を安定化させることが容易になる。なお、回転体19aは、その外周部分において中空枠体19bに固定してもよい。 The hollow frame body 19b has a cylindrical outer contour and includes a side surface portion 19e and a pair of end surface portions 19g and 19h. The side surface portion 19e and the pair of end surface portions 19g and 19h are formed of the same material having optical transparency. However, the side surface portion 19e may not have light transmittance. The main surfaces 63a and 63b of the one end surface portion 19g can be, for example, smooth surfaces or optical surfaces that are parallel to each other, but can also be free-form surfaces or aspheric surfaces. Similarly, the main surfaces 64a and 64b of the other end surface portion 19h can be, for example, smooth surfaces or optical surfaces that are parallel to each other, but can also be free-form surfaces or aspheric surfaces. The rotating body 19a in the hollow frame body 19b is fixed to the hollow frame body 19b via a pair of central shaft portions 65, and the hollow frame body 19b and the rotating body 19a rotate integrally around the reference axis SX. To do. In this way, by arranging the rotating body 19a provided with the intermediate screen 16 in the hollow frame body 19b, it is possible to suppress dust and the like from adhering to the rotating body 19a, and to generate sound accompanying the rotation of the rotating body 19a. Therefore, it is easy to stabilize the rotation of the rotating body 19a at a high speed. In addition, you may fix the rotary body 19a to the hollow frame 19b in the outer peripheral part.
 図20に戻って、スクリーン駆動部である回転駆動部162によって拡散部19を一定速度で基準軸SXの周りに回転させることで、回転体19aの中間スクリーン16(又は立体形状部116)が光軸AXと交差する位置(つまり機能領域FA)も光軸AX方向に移動する。つまり、例えば図21Cに示すように、回転体19aの回転に伴って、中間スクリーン16上の機能領域FAは、例えば等角度でずれた位置に設定された隣接する機能領域FA’に順次シフトし、光軸AX方向に移動する。このような機能領域FAの光軸AX方向への移動により、中間像TIの位置も光軸AX方向に移動させることができる。詳細は後述するが、例えば中間像TIの位置を像形成素子30側に移動させることにより、表示像IMまでの投影距離又は虚像距離を増加させることができる。また、中間像TIの位置を第2投影光学系52側に移動させることにより、表示像IMまでの投影距離又は虚像距離を減少させることができる。 Referring back to FIG. 20, the intermediate screen 16 (or the three-dimensionally shaped portion 116) of the rotating body 19a is lighted by rotating the diffusion portion 19 around the reference axis SX at a constant speed by the rotation driving portion 162 that is a screen driving portion. A position intersecting the axis AX (that is, the functional area FA) also moves in the direction of the optical axis AX. That is, for example, as shown in FIG. 21C, with the rotation of the rotating body 19a, the functional area FA on the intermediate screen 16 is sequentially shifted to the adjacent functional area FA ′ set at a position shifted at an equal angle, for example. , Move in the direction of the optical axis AX. By moving the functional area FA in the optical axis AX direction, the position of the intermediate image TI can also be moved in the optical axis AX direction. Although details will be described later, for example, the projection distance or the virtual image distance to the display image IM can be increased by moving the position of the intermediate image TI to the image forming element 30 side. Further, the projection distance or virtual image distance to the display image IM can be reduced by moving the position of the intermediate image TI to the second projection optical system 52 side.
 虚像生成光学系(第2投影光学系)52は、回転体19aの機能領域FAにおける中間スクリーン16の湾曲(つまり中間像TIの像面湾曲)を補正するような光学特性を有するものとできる。 The virtual image generation optical system (second projection optical system) 52 may have an optical characteristic that corrects the curvature of the intermediate screen 16 in the functional area FA of the rotator 19a (that is, the curvature of field of the intermediate image TI).
 図20に示す表示装置200において、表示制御部18の制御下で回転駆動部162を動作させることで、拡散部19が基準軸SXの周りに回転して機能領域FAに対応する中間像TIの位置が光軸AX方向に繰り返し周期的に移動し、第2投影光学系52によって表示部材20の背後に形成される虚像としての表示像IMと観察者である運転者UNとの距離を長く、又は短くすることができる。 In the display device 200 shown in FIG. 20, by operating the rotation driving unit 162 under the control of the display control unit 18, the diffusion unit 19 rotates around the reference axis SX and the intermediate image TI corresponding to the functional area FA is displayed. The position repeatedly moves periodically in the direction of the optical axis AX, and the distance between the display image IM as a virtual image formed behind the display member 20 by the second projection optical system 52 and the driver UN as an observer is increased, Or it can be shortened.
〔変形その他〕
 以上では実施形態に係る表示部材等について説明したが、本発明に係る表示部材等は、上記のものには限られない。
[Deformation and others]
Although the display member etc. which concern on embodiment were demonstrated above, the display member etc. which concern on this invention are not restricted to said thing.
 例えば、第1実施形態や第4実施形態において、表示装置200の配置を上下反転させて、ウィンドシールド(フロントウィンドウ)8の上部又はサンバイザー位置に表示部130又は表示部材20を配置することもできる。この場合、描画ユニット210の斜め下方前方に表示部130又は表示部材20が配置される。また、表示部130又は表示部材20は、自動車の従来のミラーに対応する位置に配置してもよい。 For example, in the first embodiment or the fourth embodiment, the display device 200 may be reversed upside down, and the display unit 130 or the display member 20 may be disposed above the windshield (front window) 8 or at the sun visor position. it can. In this case, the display unit 130 or the display member 20 is disposed obliquely downward and forward of the drawing unit 210. The display unit 130 or the display member 20 may be disposed at a position corresponding to a conventional mirror of an automobile.
 また、上記実施形態において、表示部130又は表示部材20の輪郭は、矩形に限らず、様々な形状とすることができる。 Further, in the above-described embodiment, the outline of the display unit 130 or the display member 20 is not limited to a rectangle but can be various shapes.
 図2等に示す拡大投射光学系50、又は図10等に示す本体光学系13は、単なる例示であり、これらの光学的構成については適宜変更することができる。例えば、第1投影光学系51中に中間像TIの前段としての中間像を追加で形成することができる。第2投影光学系52の光路中において、光学的なパワーを持たない1つ以上のミラーを配置してもよい。この場合、折り返しによる描画ユニット210等の小型化に有利になる場合もある。 The enlarged projection optical system 50 shown in FIG. 2 or the like, or the main body optical system 13 shown in FIG. 10 or the like is merely an example, and these optical configurations can be appropriately changed. For example, an intermediate image as a preceding stage of the intermediate image TI can be additionally formed in the first projection optical system 51. One or more mirrors having no optical power may be disposed in the optical path of the second projection optical system 52. In this case, it may be advantageous for downsizing the drawing unit 210 and the like by folding.
 上記第4実施形態等において、表示像(虚像)IMの表示位置は、上記実施例で例示した3か所に限らず、適当数に設定することができる。また、表示像IMの表示は、位置を変化させて連続的又は断続的に設定することもできる。また、表示像IMの表示位置を変化させないで固定させることもできる。 In the fourth embodiment and the like, the display position of the display image (virtual image) IM is not limited to the three locations exemplified in the above embodiment, and can be set to an appropriate number. The display of the display image IM can be set continuously or intermittently by changing the position. Further, the display position of the display image IM can be fixed without being changed.
 また、上記第4実施形態等において、像形成素子30として、LCDを用いたが、他の種類の表示パネル、例えば有機ELを用いてもよい。この場合、表示装置200を軽量化することができる。また、像形成素子30は、DMDやLCOS等の反射型の素子であってもよい。特に、像形成素子30としてDMDを用いると、明るさを維持しつつ画像を高速で切り替えることが容易になり、虚像距離又は投影距離を変化させる表示に有利である。また、像形成素子30は、DMDのような反射型の素子の代わりに、MEMSを利用した走査型の映像素子に置き換えることができる。 In the fourth embodiment and the like, the LCD is used as the image forming element 30, but other types of display panels such as an organic EL may be used. In this case, the display device 200 can be reduced in weight. The image forming element 30 may be a reflective element such as DMD or LCOS. In particular, when a DMD is used as the image forming element 30, it is easy to switch images at high speed while maintaining brightness, which is advantageous for display in which a virtual image distance or a projection distance is changed. Further, the image forming element 30 can be replaced with a scanning type image element using MEMS instead of a reflection type element such as DMD.
 また、上記第4実施形態等において、フレネル構造1051のパターンは、同心円型のパターン及び非同心円のパターンのいずれでもよい。また、フレネル構造1051のパターンは虚像投影光学系1030の構成に応じて適宜変更することができる。具体的には、図22に示すように、フレネル構造1051の円弧状のパターンの中心を横方向にずらしたものとすることができる。 In the fourth embodiment and the like, the pattern of the Fresnel structure 1051 may be either a concentric pattern or a non-concentric pattern. Further, the pattern of the Fresnel structure 1051 can be changed as appropriate according to the configuration of the virtual image projection optical system 1030. Specifically, as shown in FIG. 22, the center of the arc-shaped pattern of the Fresnel structure 1051 can be shifted in the horizontal direction.
 また、上記第4実施形態等において、第2投影光学系52の第1ミラー17aや表示部材20等をフレネル素子1050としたが、第1投影光学系51を構成するレンズの一部をフレネル素子1050としてもよい。この場合、フレネル素子1050を所定の方向に微細振動させる。また、2つ以上のフレネル素子1050を微細振動させてもよい。 In the fourth embodiment and the like, the first mirror 17a, the display member 20, and the like of the second projection optical system 52 are the Fresnel element 1050. However, a part of the lens constituting the first projection optical system 51 is a Fresnel element. It may be 1050. In this case, the Fresnel element 1050 is finely vibrated in a predetermined direction. Further, two or more Fresnel elements 1050 may be finely vibrated.
 また、上記第4実施形態等において、第2投影光学系52には、1枚又は2枚のミラーを設けたが、3枚以上のミラーを設けてもよい。また、上述のように、表示部材20、レンズ等をフレネル素子とする場合、ミラーコート層を省略してもよい。また、表示部材20その他の虚像投影光学系1030を構成する一般的なミラーやフレネル素子型のミラーの光学面は、例えば対称性がある非球面や自由曲面としているが、これに限るものではなく、対称性を持たない自由曲面でもよい。 In the fourth embodiment and the like, the second projection optical system 52 is provided with one or two mirrors, but may be provided with three or more mirrors. In addition, as described above, when the display member 20, the lens, or the like is a Fresnel element, the mirror coat layer may be omitted. Further, the optical surface of a general mirror or Fresnel element type mirror constituting the display member 20 or other virtual image projection optical system 1030 is, for example, a symmetric aspherical surface or free-form surface, but is not limited thereto. A free-form surface having no symmetry may be used.
 また、上記第4実施形態において、第6実施形態と同様に、コンバイナーを設けずに、フロントウィンドウを形成するウィインドシールド8の運転席正面に設けた矩形の反射領域の内側に表示部材20を貼り付けることによって表示スクリーンを形成してもよい。なお、表示部材20は、ウィインドシールド8内に埋め込むこともでき、この場合、ウィインドシールド8のうち表示部材20を埋め込んだ部分が表示スクリーンとなる。 Further, in the fourth embodiment, similarly to the sixth embodiment, the display member 20 is disposed inside the rectangular reflection area provided in front of the driver's seat of the windshield 8 forming the front window without providing the combiner. A display screen may be formed by pasting. The display member 20 can also be embedded in the windshield 8. In this case, the portion of the windshield 8 in which the display member 20 is embedded becomes a display screen.
 また、上記実施形態において、第1投影光学系51は、固定焦点光学系としたが、焦点可変光学系であってもよい。 In the above embodiment, the first projection optical system 51 is a fixed focus optical system, but may be a variable focus optical system.
 また、上記実施形態において、中間スクリーン16を設けない構成としてもよい。 In the above embodiment, the intermediate screen 16 may not be provided.
 上記実施形態では、中間スクリーン16全体を光軸AXに沿って移動させる又は基準軸SXまわりに回転させることで投影される表示像IMの位置を変化させたが、複数の厚みが異なる階段状の部分領域を有する中間スクリーンをスライドさせる等、他の手法を用いて表示像IMの位置を変化させてもよい。 In the above embodiment, the position of the projected display image IM is changed by moving the entire intermediate screen 16 along the optical axis AX or rotating around the reference axis SX. The position of the display image IM may be changed using another method such as sliding an intermediate screen having a partial region.
 以上で説明した表示装置200は、自動車やその他移動体に搭載される投影装置に限らず、デジタルサイネージ等に組み込むことができるが、これら以外の用途に適用することもできる。 The display device 200 described above is not limited to a projection device mounted on an automobile or other moving body, but can be incorporated in a digital signage or the like, but can also be applied to other uses.

Claims (31)

  1.  表示スクリーンに設けられる表示部材であって、
     一方の面に複数の第1溝を有する第1フレネル形状部を有する第1光学素子と、
     一方の面に複数の第2溝を有する第2フレネル形状部を有する第2光学素子と、
    を備え、
     前記第2フレネル形状部は、前記第1フレネル形状部の形状を略反転させた形状を有し、
     前記第1光学素子と前記第2光学素子とは、前記第1フレネル形状部と前記第2フレネル形状部とを対向させた状態で接合されており、
     前記第1及び第2光学素子の接合面において、像形成素子からの表示光を前記第1及び第2フレネル形状部の少なくともいずれか一方により反射光として偏向しつつ反射させるとともに、前記像形成素子と反対側からの光を透過光として透過させることにより、前記反射光と前記透過光とを重ねて観察可能にし、
     前記第1溝は、水平方向に直交する縦方向に対して傾斜して延びる、表示部材。
    A display member provided on the display screen,
    A first optical element having a first Fresnel-shaped portion having a plurality of first grooves on one surface;
    A second optical element having a second Fresnel-shaped portion having a plurality of second grooves on one surface;
    With
    The second Fresnel shape part has a shape that is substantially the reverse of the shape of the first Fresnel shape part,
    The first optical element and the second optical element are bonded in a state where the first Fresnel shape portion and the second Fresnel shape portion are opposed to each other,
    The display light from the image forming element is reflected and deflected as reflected light by at least one of the first and second Fresnel-shaped portions on the joint surface of the first and second optical elements, and the image forming element By allowing the light from the opposite side to be transmitted as transmitted light, the reflected light and the transmitted light can be overlapped and observed,
    The display member, wherein the first groove extends with an inclination with respect to a vertical direction perpendicular to the horizontal direction.
  2.  前記第1光学素子の前記接合面と反対側の面には前記表示スクリーンの少なくとも一部を構成する第1光学部材が設けられ、前記第2光学素子の前記接合面の反対側の面には前記表示スクリーンの少なくとも一部を構成する第2光学部材が設けられる、請求項1に記載の表示部材。 A first optical member constituting at least a part of the display screen is provided on a surface opposite to the bonding surface of the first optical element, and a surface opposite to the bonding surface of the second optical element is provided on the surface opposite to the bonding surface. The display member according to claim 1, wherein a second optical member constituting at least a part of the display screen is provided.
  3.  前記表示スクリーンは、ウィンドシールドの少なくとも一部である、請求項2に記載の表示部材。 The display member according to claim 2, wherein the display screen is at least a part of a windshield.
  4.  前記表示スクリーンは、コンバイナーである、請求項2に記載の表示部材。 The display member according to claim 2, wherein the display screen is a combiner.
  5.  前記第1溝の高さは、前記水平方向に対応する第1方向の断面と、前記第1方向に直交する前記縦方向に対応する第2方向の断面において一定である、請求項1~4のいずれか一項に記載の表示部材。 The height of the first groove is constant in a cross section in the first direction corresponding to the horizontal direction and a cross section in the second direction corresponding to the vertical direction orthogonal to the first direction. The display member according to any one of the above.
  6.  前記第1溝の表面は、非球面形状及び自由曲面形状のいずれかを有する、請求項1~5のいずれか一項に記載の表示部材。 The display member according to any one of claims 1 to 5, wherein a surface of the first groove has an aspherical shape or a free-form surface shape.
  7.  前記第1溝の表面の曲率は、前記水平方向に対応する第1方向と、前記第1方向に直交する前記縦方向に対応する第2方向の少なくともいずれかにおいて位置に応じて変化する、請求項6に記載の表示部材。 The curvature of the surface of the first groove varies depending on the position in at least one of a first direction corresponding to the horizontal direction and a second direction corresponding to the vertical direction orthogonal to the first direction. Item 7. The display member according to Item 6.
  8.  前記第1溝のピッチは、前記水平方向に対応する第1方向と、前記第1方向に直交する前記縦方向に対応する第2方向の少なくともいずれかにおいて位置に応じて変化する、請求項1~7のいずれか一項に記載の表示部材。 2. The pitch of the first grooves changes according to a position in at least one of a first direction corresponding to the horizontal direction and a second direction corresponding to the vertical direction orthogonal to the first direction. The display member according to any one of 1 to 7.
  9.  前記第1溝の表面の厚み方向に垂直な方向に対する角度は、前記水平方向に対応する第1方向と、前記第1方向に直交する前記縦方向に対応する第2方向の少なくともいずれかにおいて位置に応じて変化する、請求項1~8のいずれか一項に記載の表示部材。 The angle of the surface of the first groove with respect to the direction perpendicular to the thickness direction is at least one of a first direction corresponding to the horizontal direction and a second direction corresponding to the longitudinal direction orthogonal to the first direction. The display member according to any one of claims 1 to 8, which changes depending on
  10.  前記複数の第1溝は、前記第1光学素子の面に沿って複合輪帯形状を有し、非同心円状に配置される、請求項1~9のいずれか一項に記載の表示部材。 The display member according to any one of claims 1 to 9, wherein the plurality of first grooves have a composite annular shape along a surface of the first optical element and are arranged in a non-concentric shape.
  11.  前記第1及び第2光学素子は、前記表示スクリーンの全体形状に応じて湾曲する、請求項1~10のいずれか一項に記載の表示部材。 The display member according to any one of claims 1 to 10, wherein the first and second optical elements are curved according to an overall shape of the display screen.
  12.  前記第1及び第2光学素子で構成されるシート状部材を有し、
     前記シート状部材は厚さが変化する楔形状を有する、請求項1~11のいずれか一項に記載の表示部材。
    A sheet-like member composed of the first and second optical elements;
    The display member according to any one of claims 1 to 11, wherein the sheet-like member has a wedge shape whose thickness varies.
  13.  前記接合面において、第1光学素子と、前記第2光学素子とは、略同じ屈折率を有する、請求項1~12のいずれか一項に記載の表示部材。 The display member according to any one of claims 1 to 12, wherein the first optical element and the second optical element have substantially the same refractive index at the bonding surface.
  14.  請求項1~13のいずれか一項に記載の表示部材と、
     前記表示部材を設けた表示スクリーンと、
     前記表示部材越しに表示する虚像に対応する画像を表示する描画ユニットと、
    を備える、表示装置。
    A display member according to any one of claims 1 to 13,
    A display screen provided with the display member;
    A drawing unit for displaying an image corresponding to a virtual image to be displayed through the display member;
    A display device comprising:
  15.  像形成素子によって形成された画像を表示スクリーン越しに虚像投影して表示させる虚像投影光学系を備える表示装置であって、
     前記虚像投影光学系は、少なくとも1つのフレネル素子を含み、
     前記虚像投影光学系を構成する部材の少なくとも1つを微細振動させる振動機構を備える、表示装置。
    A display device comprising a virtual image projection optical system for projecting a virtual image through a display screen and displaying an image formed by an image forming element,
    The virtual image projection optical system includes at least one Fresnel element;
    A display device comprising a vibration mechanism that finely vibrates at least one member constituting the virtual image projection optical system.
  16.  前記虚像投影光学系は、前記像形成素子の像を拡大する拡大投射光学系を有する、請求項15に記載の表示装置。 The display device according to claim 15, wherein the virtual image projection optical system includes an enlargement projection optical system that enlarges an image of the image forming element.
  17.  前記拡大投射光学系は、中間像の形成位置の近傍に配置される中間スクリーンと、前記中間スクリーンより前記像形成素子側に配置される第1投影光学系と、前記中間スクリーンより虚像側に配置される第2投影光学系とを有する、請求項16に記載の表示装置。 The enlargement projection optical system is disposed near an intermediate image forming position, a first projection optical system disposed closer to the image forming element than the intermediate screen, and disposed closer to the virtual image than the intermediate screen. The display device according to claim 16, further comprising a second projection optical system.
  18.  前記像形成素子は、液晶表示パネルである、請求項15及び16のいずれか一項に記載の表示装置。 The display device according to any one of claims 15 and 16, wherein the image forming element is a liquid crystal display panel.
  19.  前記フレネル素子は、ミラー及びレンズの少なくともいずれかである、請求項15~18のいずれか一項に記載の表示装置。 The display device according to any one of claims 15 to 18, wherein the Fresnel element is at least one of a mirror and a lens.
  20.  前記フレネル素子は、前記表示スクリーンの少なくとも一部として設けられている、請求項15~18のいずれか一項に記載の表示装置。 The display device according to any one of claims 15 to 18, wherein the Fresnel element is provided as at least a part of the display screen.
  21.  前記フレネル素子は、フレネル構造上にハーフミラーコート層を有し、前記ハーフミラーコート層は、ほぼ同一の屈折率を有する一対の基材で挟まれている、請求項20に記載の表示装置。 The display device according to claim 20, wherein the Fresnel element has a half mirror coat layer on a Fresnel structure, and the half mirror coat layer is sandwiched between a pair of base materials having substantially the same refractive index.
  22.  前記微細振動のストロークは、前記フレネル素子を構成するフレネル構造の平均ピッチよりも短い、請求項15~21のいずれか一項に記載の表示装置。 The display device according to any one of claims 15 to 21, wherein a stroke of the fine vibration is shorter than an average pitch of a Fresnel structure constituting the Fresnel element.
  23.  前記微細振動の振動方向は、前記フレネル素子の中心におけるフレネル構造の接線垂直方向に対して±30°の角度範囲内に設定されている、請求項15~22のいずれか一項に記載の表示装置。 The display according to any one of claims 15 to 22, wherein the vibration direction of the fine vibration is set within an angle range of ± 30 ° with respect to a tangential perpendicular direction of the Fresnel structure at the center of the Fresnel element. apparatus.
  24.  前記微細振動の振動方向は、前記フレネル素子の中心におけるフレネル構造の接線垂直方向に対して±30°の角度範囲内の所定方向、及び前記所定方向に対して垂直な方向である、請求項15~22のいずれか一項に記載の表示装置。 16. The vibration direction of the fine vibration is a predetermined direction within an angle range of ± 30 ° with respect to a tangential vertical direction of the Fresnel structure at the center of the Fresnel element, and a direction perpendicular to the predetermined direction. The display device according to any one of items 1 to 22.
  25.  前記振動機構は、前記フレネル素子を微細振動させる、請求項15~19、22~24のいずれか一項に記載の表示装置。 The display device according to any one of claims 15 to 19, and 22 to 24, wherein the vibration mechanism finely vibrates the Fresnel element.
  26.  前記振動機構は、前記虚像投影光学系を構成する部材のうち前記フレネル素子以外の部材を微細振動させる、請求項15~24のいずれか一項に記載の表示装置。 The display device according to any one of claims 15 to 24, wherein the vibration mechanism finely vibrates a member other than the Fresnel element among members constituting the virtual image projection optical system.
  27.  前記フレネル素子を構成するフレネル構造は、同心円型のパターンを有する、請求項15~26のいずれか一項に記載の表示装置。 The display device according to any one of claims 15 to 26, wherein the Fresnel structure forming the Fresnel element has a concentric pattern.
  28.  前記フレネル素子を構成するフレネル構造は、非同心円型のパターンを有する、請求項15~26のいずれか一項に記載の表示装置。 The display device according to any one of claims 15 to 26, wherein the Fresnel structure constituting the Fresnel element has a non-concentric circular pattern.
  29.  前記フレネル素子を構成するフレネル構造の表面は、自由曲面を有する、請求項28に記載の表示装置。 The display device according to claim 28, wherein a surface of the Fresnel structure constituting the Fresnel element has a free-form surface.
  30.  前記フレネル素子を構成するフレネル構造によって遮光される領域に応じて、前記像形成素子の輝度パターンを変化させる、請求項15~29のいずれか一項に記載の表示装置。 The display device according to any one of claims 15 to 29, wherein a luminance pattern of the image forming element is changed according to a region shielded by a Fresnel structure constituting the Fresnel element.
  31.  前記フレネル素子は、表示スクリーンに設けられる表示部材であり、一方の面に複数の第1溝を有する第1フレネル形状部を有する第1光学素子と、一方の面に複数の第2溝を有する第2フレネル形状部を有する第2光学素子とを有し、
     前記第1溝は、水平方向に直交する縦方向に対して傾斜して延びる、請求項15~29のいずれか一項に記載の表示装置。
    The Fresnel element is a display member provided on a display screen, and has a first optical element having a first Fresnel-shaped portion having a plurality of first grooves on one surface and a plurality of second grooves on one surface. A second optical element having a second Fresnel-shaped portion,
    The display device according to any one of claims 15 to 29, wherein the first groove extends while being inclined with respect to a longitudinal direction orthogonal to the horizontal direction.
PCT/JP2019/003700 2018-02-01 2019-02-01 Display member and display device WO2019151498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019569621A JPWO2019151498A1 (en) 2018-02-01 2019-02-01 Display members and display devices

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018016403 2018-02-01
JP2018-016403 2018-02-01
JP2018-092615 2018-05-11
JP2018092615 2018-05-11
JP2018-176586 2018-09-20
JP2018176586 2018-09-20

Publications (1)

Publication Number Publication Date
WO2019151498A1 true WO2019151498A1 (en) 2019-08-08

Family

ID=67479038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003700 WO2019151498A1 (en) 2018-02-01 2019-02-01 Display member and display device

Country Status (2)

Country Link
JP (1) JPWO2019151498A1 (en)
WO (1) WO2019151498A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739669B2 (en) * 2016-12-13 2020-08-11 Saint-Gobain Glass France Transparent layered element comprising a display region
CN112485902A (en) * 2019-09-11 2021-03-12 深圳光峰科技股份有限公司 Optical film and optical imaging system
CN114280708A (en) * 2022-01-12 2022-04-05 京东方科技集团股份有限公司 Fresnel lens, optical module and virtual reality device
EP4067974A1 (en) * 2021-03-29 2022-10-05 Optinvent 2d-pupil expansion light guide assembly

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253183A (en) * 1990-03-01 1991-11-12 Hitachi Plant Eng & Constr Co Ltd Exhibition device
JP2007286346A (en) * 2006-04-17 2007-11-01 Seiko Epson Corp Screen, rear projector and image display device
JP2008083687A (en) * 2006-08-28 2008-04-10 Seiko Epson Corp Screen and projector
JP2008268883A (en) * 2007-03-29 2008-11-06 Denso Corp Head-up display apparatus
JP2011090076A (en) * 2009-10-21 2011-05-06 Panasonic Corp Image display device
JP2011191715A (en) * 2010-03-17 2011-09-29 Toshiba Corp Optical element, display device, display method, and moving body
JP2014029430A (en) * 2012-07-31 2014-02-13 Jvc Kenwood Corp Image display unit
WO2014041691A1 (en) * 2012-09-14 2014-03-20 パイオニア株式会社 Optical element and heads-up display
JP2015161732A (en) * 2014-02-26 2015-09-07 矢崎総業株式会社 Display light projection optical device
JP2017032784A (en) * 2015-07-31 2017-02-09 大日本印刷株式会社 Display device
JP2017156452A (en) * 2016-02-29 2017-09-07 大日本印刷株式会社 Reflective screen and image display device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253183A (en) * 1990-03-01 1991-11-12 Hitachi Plant Eng & Constr Co Ltd Exhibition device
JP2007286346A (en) * 2006-04-17 2007-11-01 Seiko Epson Corp Screen, rear projector and image display device
JP2008083687A (en) * 2006-08-28 2008-04-10 Seiko Epson Corp Screen and projector
JP2008268883A (en) * 2007-03-29 2008-11-06 Denso Corp Head-up display apparatus
JP2011090076A (en) * 2009-10-21 2011-05-06 Panasonic Corp Image display device
JP2011191715A (en) * 2010-03-17 2011-09-29 Toshiba Corp Optical element, display device, display method, and moving body
JP2014029430A (en) * 2012-07-31 2014-02-13 Jvc Kenwood Corp Image display unit
WO2014041691A1 (en) * 2012-09-14 2014-03-20 パイオニア株式会社 Optical element and heads-up display
JP2015161732A (en) * 2014-02-26 2015-09-07 矢崎総業株式会社 Display light projection optical device
JP2017032784A (en) * 2015-07-31 2017-02-09 大日本印刷株式会社 Display device
JP2017156452A (en) * 2016-02-29 2017-09-07 大日本印刷株式会社 Reflective screen and image display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739669B2 (en) * 2016-12-13 2020-08-11 Saint-Gobain Glass France Transparent layered element comprising a display region
CN112485902A (en) * 2019-09-11 2021-03-12 深圳光峰科技股份有限公司 Optical film and optical imaging system
EP4067974A1 (en) * 2021-03-29 2022-10-05 Optinvent 2d-pupil expansion light guide assembly
CN114280708A (en) * 2022-01-12 2022-04-05 京东方科技集团股份有限公司 Fresnel lens, optical module and virtual reality device

Also Published As

Publication number Publication date
JPWO2019151498A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2019151498A1 (en) Display member and display device
US10859826B2 (en) Head-up display device
WO2015102063A1 (en) Transmissive screen and image display device using same
JP6558017B2 (en) Head-up display
JP6601431B2 (en) Head-up display device
CN111213114A (en) Information display device and space sensing device thereof
JP2004126226A (en) Head-up display
WO2018066675A1 (en) Variable magnification projection optical system and image display device
WO2017061016A1 (en) Information display device
JP6579180B2 (en) Virtual image display device
JP6593461B2 (en) Virtual image display device
JP6593462B2 (en) Virtual image display device
JP2020064235A (en) Display device
JP6658410B2 (en) Head-up display device
JP6593464B2 (en) Virtual image display device
WO2018199245A1 (en) Virtual image display device, and display system for moving body
JP6593465B2 (en) Virtual image display device
JP2017227681A (en) Head-up display device
WO2019230138A1 (en) Head-up display device
JP2020073963A (en) Virtual image display device
JP2020148950A (en) Head-up display device
WO2019220767A1 (en) Virtual image projection optical system and display device
WO2019177113A1 (en) Virtual image display optical system and display device
WO2020184506A1 (en) Head-up display device
JP7049583B2 (en) Head-up display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569621

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747720

Country of ref document: EP

Kind code of ref document: A1