WO2019150816A1 - Monitoring system, analysis device, and determination method - Google Patents

Monitoring system, analysis device, and determination method Download PDF

Info

Publication number
WO2019150816A1
WO2019150816A1 PCT/JP2018/046849 JP2018046849W WO2019150816A1 WO 2019150816 A1 WO2019150816 A1 WO 2019150816A1 JP 2018046849 W JP2018046849 W JP 2018046849W WO 2019150816 A1 WO2019150816 A1 WO 2019150816A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
power generation
abnormality
generation unit
period
Prior art date
Application number
PCT/JP2018/046849
Other languages
French (fr)
Japanese (ja)
Inventor
下口剛史
後藤勲
池上洋行
谷村晃太郎
近藤麻由
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to DE112018007003.4T priority Critical patent/DE112018007003T5/en
Priority to JP2019568934A priority patent/JP7056674B2/en
Publication of WO2019150816A1 publication Critical patent/WO2019150816A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge

Definitions

  • the present invention relates to a monitoring system, an analysis apparatus, and a determination method.
  • This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2018-16733 for which it applied on February 1, 2018, and takes in those the indications of all here.
  • Patent Document 1 JP 2012-205078 A discloses a monitoring system for photovoltaic power generation as follows. That is, the photovoltaic power generation monitoring system is a photovoltaic power generation monitoring system that monitors the power generation status of the solar cell panel for a photovoltaic power generation system that aggregates outputs from a plurality of solar cell panels and sends them to a power converter.
  • the management device determines the presence or absence of abnormality based on the difference in power generation amount at the same time for each solar cell panel, or the maximum value or integration of the power generation amount for a predetermined period for each solar cell panel The presence or absence of abnormality is determined based on the value.
  • the monitoring system of the present disclosure includes a monitoring device that measures an output of a power generation unit including a solar battery panel and determines an abnormality related to the power generation unit using a first reference from a measurement result over a first period.
  • the monitoring device transmits first data based on the measurement result, further receives the first data transmitted from the monitoring device, and based on the received first data, the first data Generating second data with coarser temporal granularity of the first data, and using the second reference from the second data over a second period longer than the first period, an abnormality related to the power generation unit is generated.
  • An analysis device for determining is provided.
  • the analysis device of the present disclosure includes a monitoring device that measures the output of the power generation unit including the solar battery panel and determines an abnormality related to the power generation unit using the first reference from the measurement result over the first period.
  • An analysis device in the monitoring system based on the communication processing unit that receives the first data based on the measurement result transmitted from the monitoring device, and the first data received by the communication processing unit Generating the second data with a coarser granularity of the first data, and using the second reference from the second data over a second period longer than the first period, the power generation unit And a determination unit for determining an abnormality related to.
  • the determination method of the present disclosure is a determination method in a monitoring system, which measures an output of a power generation unit including a solar battery panel, and uses the first reference based on a measurement result over a first period, to determine the power generation unit.
  • a first data based on the measurement result is received, and second data with coarse temporal granularity of the first data is received based on the received first data.
  • the determination method of the present disclosure includes a monitoring device that measures an output of a power generation unit including a solar battery panel and determines an abnormality related to the power generation unit using a first reference from a measurement result over a first period.
  • a determination method in an analysis device in a monitoring system the step of receiving first data based on the measurement result transmitted from the monitoring device, and the first data based on the received first data Second data having a coarser time granularity is generated, and an abnormality relating to the power generation unit is determined from the second data over a second period longer than the first period using a second reference. Steps.
  • One aspect of the present disclosure can be realized not only as a monitoring system including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of the monitoring system.
  • One aspect of the present disclosure can be realized not only as an analysis apparatus including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of the analysis apparatus.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of the solar cell unit according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of the configuration of the monitoring system according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing the configuration of the analysis device in the monitoring system according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of
  • FIG. 8 is a diagram illustrating an example of second data determined to be abnormal.
  • FIG. 9 is a diagram illustrating an example of third data determined to be abnormal.
  • FIG. 10 is a diagram showing another example of the configuration of the monitoring system according to the embodiment of the present invention.
  • FIG. 11 is a sequence diagram when the monitoring system according to the embodiment of the present invention determines and notifies an abnormality related to the power generation unit.
  • FIG. 12 is a flowchart defining an operation procedure when the monitoring apparatus according to the embodiment of the present invention determines an abnormality related to the power generation unit and notifies the analysis apparatus.
  • FIG. 13 is a flowchart that defines an operation procedure when the analysis apparatus according to the embodiment of the present invention determines an abnormality related to the power generation unit and notifies an external apparatus.
  • the present disclosure has been made to solve the above-described problem, and an object thereof is to provide a monitoring system, an analysis apparatus, and a determination method that can improve abnormality determination of a solar power generation system.
  • the monitoring system measures the output of the power generation unit including the solar battery panel, and determines an abnormality related to the power generation unit using the first reference from the measurement result over the first period.
  • a monitoring device that transmits the first data based on the measurement result, further receives the first data transmitted from the monitoring device, and receives the received first data.
  • An analysis device for determining an abnormality related to the power generation unit is provided.
  • the monitoring device can determine an abnormality in a measurement value over a relatively short period, and the analysis device can determine an abnormality in the measurement value over a relatively long period.
  • This makes it possible to determine abnormalities in multiple types of periods while suppressing the data capacity and processing load in the analysis device.
  • By checking it is possible to detect an abnormality in which a change can be confirmed.
  • a change in the measurement value in a short period that cannot be captured due to coarse data granularity can be detected by checking the measurement result over a short period.
  • abnormalities over different periods are determined in a distributed manner, and processing capacity, data storage amount, transmission bandwidth, and the like can be optimized between the monitoring device and the analysis device, and costs can be reduced. Therefore, the abnormality determination of the solar power generation system can be improved.
  • the analysis device generates the second data, and generates third data in which the temporal granularity of the second data is coarse based on the generated second data.
  • the abnormality regarding the said electric power generation part is further determined using the 3rd reference
  • the analysis apparatus performs a process of notifying the abnormality determined by itself
  • the monitoring apparatus performs a process of notifying the analysis apparatus of the abnormality determined by itself
  • the analysis apparatus includes: Then, a process of notifying the abnormality notified from the monitoring device is performed.
  • the configuration in which the analysis device collectively reports the abnormality related to the power generation unit to the outside of the photovoltaic power generation system eliminates the need for a configuration in which the monitoring device communicates with the outside, thereby reducing costs.
  • the type of abnormality determined using the first standard is different from the type of abnormality determined using the second standard.
  • the notification content of the abnormality determined using the first reference is different from the notification content of the abnormality determined using the second reference.
  • the analysis device measures the output of the power generation unit including the solar battery panel, and determines an abnormality related to the power generation unit using the first reference from the measurement result over the first period.
  • An analysis device in a monitoring system including a monitoring device that receives the first data based on the measurement result transmitted from the monitoring device, and the first received by the communication processing unit. Based on the first data, the second data having a coarser granularity in time is generated, and the second reference is obtained from the second data over a second period longer than the first period. And a determination unit that determines an abnormality related to the power generation unit.
  • the monitoring device can determine an abnormality in a measurement value over a relatively short period, and the analysis device can determine an abnormality in the measurement value over a relatively long period.
  • This makes it possible to determine abnormalities in multiple types of periods while suppressing the data capacity and processing load in the analysis device.
  • By checking it is possible to detect an abnormality in which a change can be confirmed.
  • a change in the measurement value in a short period that cannot be captured due to coarse data granularity can be detected by checking the measurement result over a short period.
  • abnormalities over different periods are determined in a distributed manner, and processing capacity, data storage amount, transmission bandwidth, and the like can be optimized between the monitoring device and the analysis device, and costs can be reduced. Therefore, the abnormality determination of the solar power generation system can be improved.
  • a determination method is a determination method in a monitoring system, which measures an output of a power generation unit including a solar battery panel, and determines a first reference from a measurement result over a first period. Using the step of determining an abnormality related to the power generation unit and receiving the first data based on the measurement result, the time granularity of the first data is coarsened based on the received first data Generating second data and determining an abnormality related to the power generation unit using a second reference from the second data over a second period longer than the first period.
  • the monitoring device can determine an abnormality in a measurement value over a relatively short period, and the analysis device can determine an abnormality in the measurement value over a relatively long period.
  • the monitoring device can determine an abnormality in a measurement value over a relatively short period
  • the analysis device can determine an abnormality in the measurement value over a relatively long period.
  • a determination method measures an output of a power generation unit including a solar cell panel, and determines an abnormality related to the power generation unit using a first reference from a measurement result over a first period.
  • a determination method in an analysis device in a monitoring system including a monitoring device that receives the first data based on the measurement result transmitted from the monitoring device, and based on the received first data Generating the second data with a coarser granularity of the first data, and using the second reference from the second data over a second period longer than the first period, the power generation unit And determining an abnormality related to.
  • the monitoring device can determine an abnormality in a measurement value over a relatively short period, and the analysis device can determine an abnormality in the measurement value over a relatively long period.
  • This makes it possible to determine abnormalities in multiple types of periods while suppressing the data capacity and processing load in the analysis device.
  • By checking it is possible to detect an abnormality in which a change can be confirmed.
  • a change in the measurement value in a short period that cannot be captured due to coarse data granularity can be detected by checking the measurement result over a short period.
  • abnormalities over different periods are determined in a distributed manner, and processing capacity, data storage amount, transmission bandwidth, and the like can be optimized between the monitoring device and the analysis device, and costs can be reduced. Therefore, the abnormality determination of the solar power generation system can be improved.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • solar power generation system 401 includes four PCS (Power Conditioning Subsystem) units 80 and cubicle 6.
  • the cubicle 6 includes a copper bar 73.
  • FIG. 1 representatively shows four PCS units 80, but a larger or smaller number of PCS units 80 may be provided.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
  • the PCS unit 80 includes four current collecting units 60 and a PCS (power conversion device) 8.
  • the PCS 8 includes a copper bar 7 and a power conversion unit 9.
  • FIG. 2 four current collecting units 60 are representatively shown, but a larger or smaller number of current collecting units 60 may be provided.
  • FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
  • the current collecting unit 60 includes four solar cell units 74 and a current collecting box 71.
  • the current collection box 71 has a copper bar 72.
  • FIG. 3 four solar cell units 74 are representatively shown, but a larger number or a smaller number of solar cell units 74 may be provided.
  • FIG. 4 is a diagram showing the configuration of the solar cell unit according to the embodiment of the present invention.
  • solar cell unit 74 includes four power generation units 78 and a junction box 76.
  • the power generation unit 78 has a solar cell panel.
  • the connection box 76 has a copper bar 77.
  • FIG. 4 representatively shows four power generation units 78, but a larger or smaller number of power generation units 78 may be provided.
  • the power generation unit 78 is a string in which four solar cell panels 79A, 79B, 79C, and 79D are connected in series.
  • each of the solar cell panels 79A, 79B, 79C, and 79D is also referred to as a solar cell panel 79.
  • FIG. 4 representatively shows four solar cell panels 79, but a larger or smaller number of solar cell panels 79 may be provided.
  • output lines and aggregated lines that is, power lines from the plurality of power generation units 78 are electrically connected to the cubicles 6, respectively.
  • the output line 1 of the power generation unit 78 has a first end connected to the power generation unit 78 and a second end connected to the copper bar 77.
  • Each output line 1 is aggregated into an aggregation line 5 via a copper bar 77.
  • the copper bar 77 is provided, for example, inside the connection box 76.
  • the power generation unit 78 When the power generation unit 78 receives sunlight, the power generation unit 78 converts the received solar energy into DC power, and outputs the converted DC power to the output line 1.
  • aggregation line 5 has a first end connected to copper bar 77 and a second end connected to copper bar 72 in corresponding solar cell unit 74. Each aggregation line 5 is aggregated into the aggregation line 2 via the copper bar 72.
  • the copper bar 72 is provided, for example, inside the current collection box 71.
  • the output lines 1 from the plurality of power generation units 78 are aggregated into the aggregation line 5, and the aggregation lines 5 are aggregated into the aggregation line 2. Then, each aggregation line 2 is aggregated to the aggregation line 4, and each aggregation line 4 is electrically connected to the cubicle 6.
  • each aggregation line 2 has a first end connected to the copper bar 72 in the corresponding current collecting unit 60 and a second end connected to the copper bar 7.
  • the internal line 3 has a first end connected to the copper bar 7 and a second end connected to the power conversion unit 9.
  • the power conversion unit 9 uses, for example, the DC power generated in each power generation unit 78 via the output line 1, the copper bar 77, the aggregation line 5, the copper bar 72, the aggregation line 2, the copper bar 7 and the internal line 3. Is received, the received DC power is converted into AC power and output to the aggregation line 4.
  • the aggregation line 4 has a first end connected to the power conversion unit 9 and a second end connected to the copper bar 73.
  • the method of measuring the output of the power generation unit 78 and collecting the measurement results on a server or the like to determine the abnormality accumulates sufficient transmission capacity for transmitting the measurement results and the measurement results.
  • a sufficient storage capacity such as a server to be used is required.
  • Abnormality detection involves collecting measurement results from multiple power plants, which increases the amount of data to be processed and takes time, and uses multiple detection logic, so servers and other devices have high processing capabilities. Desired.
  • the monitoring system according to the embodiment of the present invention solves such problems by the following configuration and operation.
  • FIG. 5 is a diagram showing an example of the configuration of the monitoring system according to the embodiment of the present invention.
  • the solar power generation system 401 includes a monitoring system 301.
  • the monitoring system 301 includes a plurality of monitoring devices 111 and an analysis device 151.
  • FIG. 5 representatively shows four monitoring devices 111 provided corresponding to one current collecting unit 60, but a larger or smaller number of monitoring devices 111 may be provided.
  • the monitoring system 301 includes one analysis device 151, but may include a plurality of analysis devices 151.
  • sensor information in the monitoring device 111 which is a slave is transmitted to the analysis device 151 regularly or irregularly.
  • the monitoring device 111 is provided in the current collecting unit 60, for example. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is electrically connected to the corresponding output line 1 and aggregation line 5, for example.
  • the monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 with a sensor. Moreover, the monitoring apparatus 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 with a sensor.
  • the analysis device 151 is provided in the vicinity of the PCS 8, for example. More specifically, the analysis device 151 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
  • the monitoring device 111 and the analysis device 151 perform transmission / reception of information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
  • PLC Power Line Communication
  • FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention.
  • the output line 1, the aggregation line 5 and the copper bar 77 are shown in more detail.
  • output line 1 includes a plus side output line 1p and a minus side output line 1n.
  • Aggregation line 5 includes a plus-side aggregation line 5p and a minus-side aggregation line 5n.
  • the copper bar 77 includes a plus side copper bar 77p and a minus side copper bar 77n.
  • the copper bar 72 in the current collection box 71 shown in FIG. 3 includes a plus-side copper bar 72p and a minus-side copper bar 72n corresponding to the plus-side aggregation line 5p and the minus-side aggregation line 5n, respectively.
  • the plus side output line 1p has a first end connected to the corresponding power generation unit 78 and a second end connected to the plus side copper bar 77p.
  • the negative side output line 1n has a first end connected to the corresponding power generation unit 78 and a second end connected to the negative side copper bar 77n.
  • the plus side aggregation line 5p has a first end connected to the plus side copper bar 77p and a second end connected to the plus side copper bar 72p in the current collection box 71.
  • the minus-side aggregate line 5n has a first end connected to the minus-side copper bar 77n and a second end connected to the minus-side copper bar 72n in the current collection box 71.
  • the monitoring device 111 includes a detection processing unit 11, four current sensors 16, a voltage sensor 17, and a communication unit 14. Note that the monitoring device 111 may further include a large number or a small number of current sensors 16 depending on the number of output lines 1.
  • the monitoring device 111 is provided in the vicinity of the power generation unit 78, for example. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. Note that the monitoring device 111 may be provided outside the connection box 76.
  • the monitoring device 111 is electrically connected to, for example, the plus-side aggregate line 5p and the minus-side aggregate line 5n via the plus-side power line 26p and the minus-side power line 26n, respectively.
  • each of the plus-side power line 26p and the minus-side power line 26n is also referred to as a power line 26.
  • the communication unit 14 in the monitoring device 111 can perform power line communication via the aggregation line with the analysis device 151 that collects the measurement results of the plurality of monitoring devices 111. More specifically, the communication unit 14 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the communication unit 14 performs power line communication with the analysis device 151 via the power line 26 and the aggregation lines 2 and 5.
  • the current sensor 16 measures the current of the output line 1. More specifically, the current sensor 16 is, for example, a Hall element type current probe. The current sensor 16 measures the current flowing through the corresponding negative output line 1n every 6 seconds using the power received from the power supply circuit (not shown) of the monitoring device 111, and sends a signal indicating the measured value to the detection processing unit 11. Output. The current sensor 16 may measure a current flowing through the plus side output line 1p.
  • the detection processing unit 11 calculates, for example, a measurement value for one minute, that is, an average value M of ten measurement values indicated by a signal received from the current sensor 16 as the first period, and outputs the average value M to the determination unit 12.
  • the determination unit 12 determines an abnormality related to the power generation unit 78 using the first reference from the measurement result over the first period.
  • the average value M is sharper than the average value M of the immediately preceding first period. To drop.
  • the determination unit 12 determines that such a rapid decrease in the average value M in a short period is abnormal using the first reference.
  • the first standard is, for example, whether or not the average value M has decreased by a predetermined value or more compared to the average value M calculated last time.
  • the determination unit 12 determines that the corresponding power generation unit 78 is abnormal when the average value M decreases by a predetermined value or more using the first reference, compared to the previously calculated average value M. (Hereinafter also referred to as first abnormality information) and the average value M are output to the communication unit 14.
  • the determination unit 12 determines that the power generation unit 78 is normal, the determination unit 12 outputs the average value M to the communication unit 14.
  • the communication unit 14 transmits the first data based on the measurement result of the output of the power generation unit 78, for example, the average value M, via the power line connected to itself and the analysis device 151.
  • the communication unit 14 creates and analyzes a packet in which the transmission source ID is its own monitoring device ID, the transmission destination ID is the ID of the analysis device 151, and the data portion is the average value M. Transmit to device 151.
  • the communication unit 14 transmits the first data and performs a process of notifying the analyzer 151 of the abnormality determined by the determination unit 12.
  • the communication unit 14 includes the first abnormality information in the data portion of the packet and transmits it to the analysis device 151.
  • the communication part 14 may transmit the packet which is a measured value which the data part shows from the current sensor 16 as 1st data.
  • the communication unit 14 may transmit, as the first data, a packet whose data portion is an average value of measurement values in a period having a length different from that of the first period.
  • the first period may be, for example, 6 seconds.
  • the determination unit 12 determines an abnormality related to the power generation unit 78 based on one measurement value indicated by the signal received from the current sensor 16. The determination unit 12 determines, for example, that the rapid decrease in the measured value is abnormal using the first reference.
  • the determination unit 12 may determine an abnormality related to the power generation unit 78 based on the maximum value of ten measurement values indicated by the signal received from the current sensor 16.
  • the determination unit 12 is not limited to the configuration for determining abnormality from the average value of the measurement values of the current sensor 16, and may be configured to determine the abnormality from the average value of the measurement values of the voltage sensor 17.
  • the voltage sensor 17 measures the voltage of the output line 1.
  • the voltage sensor 17 measures the voltage between the plus-side copper bar 77p and the minus-side copper bar 77n every 6 seconds, and outputs a signal indicating the measured value to the detection processing unit 11.
  • the detection processing unit 11 calculates, for example, a measurement value for one minute, that is, an average value M of ten measurement values indicated by a signal received from the voltage sensor 17 as the first period, and outputs the average value M to the determination unit 12.
  • the determination unit 12 calculates the generated power by multiplying the measurement value of the current sensor 16 and the measurement value of the voltage sensor 17 without being limited to the configuration for determining abnormality based on the measurement value of the current sensor 16.
  • a configuration may be used in which an abnormality is determined based on the generated power.
  • FIG. 7 is a diagram showing the configuration of the analysis device in the monitoring system according to the embodiment of the present invention.
  • the analysis device 151 includes a determination unit 81, a generation unit 82, a notification unit 83, a communication processing unit 84, and a storage unit 85.
  • the analysis device 151 receives the first data transmitted from the monitoring device 111. Then, the analysis device 151 accumulates the received first data.
  • the communication processing unit 84 can transmit and receive information via the aggregation lines 2 and 5. Specifically, for example, the communication processing unit 84 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, and receives first data from the plurality of monitoring devices 111.
  • the communication processing unit 84 When the communication processing unit 84 receives the first data from the monitoring device 111, the communication processing unit 84 stores the received first data in the storage unit 85.
  • the analysis device 151 performs a process of notifying the abnormality notified from the monitoring device 111.
  • the communication processing unit 84 outputs the first abnormality information to the notification unit 83 when the first abnormality information is included in the received first data.
  • the notification unit 83 transmits the first abnormality information received from the communication processing unit 84 to an external device such as a server via a network in a format such as e-mail.
  • the analysis device 151 generates second data with coarse temporal granularity of the first data based on the accumulated first data.
  • the generation unit 82 selects 10-minute intervals of data for a second period, for example, one day from each first data accumulated in the storage unit 85, and selects each selected first data Are generated and stored in the storage unit 85 and output to the determination unit 81.
  • the second period only needs to be longer than the first period, and is, for example, 10 minutes, 1 hour, or 1 week.
  • the generation unit 82 deletes the first data for one day corresponding to the generated second data from the storage unit 85.
  • the determination part 81 determines the abnormality regarding the electric power generation part 78 using the 2nd reference
  • FIG. 8 is a diagram illustrating an example of second data determined to be abnormal.
  • the horizontal axis indicates time, and the vertical axis indicates generated power.
  • the graph D1 shows the generated power of the power generation unit 78 on a certain day, and the graph D2 shows the generated power of the power generation unit 78 on the next day.
  • the power generation unit 78 when sufficient power generation is not possible due to glass damage on the surface of solar cell panel 79, shadows, weather, or the like, the power generation unit 78 generates power of the previous day as shown in graph D2. It is lower than
  • the determination unit 81 determines such a decrease in generated power as abnormal using the second reference.
  • the second standard is, for example, whether or not the generated power has decreased by a predetermined value or more compared to the previous day.
  • the determination unit 81 determines that the corresponding power generation unit 78 is abnormal when the generated power has decreased by a predetermined value or more compared to the previous day, and also indicates information indicating abnormality (hereinafter also referred to as second abnormality information). ) To the notification unit 83.
  • the second reference may be, for example, whether or not the generated power of one power generation unit 78 is lower than a predetermined value as compared with the generated power of another power generation unit 78.
  • the determination unit 81 determines that the corresponding power generation unit 78 is abnormal when the power generation power of a certain power generation unit 78 is lower than a predetermined value compared to the power generation power of other power generation units 78, and is abnormal. (Hereinafter also referred to as second abnormality information) is output to the notification unit 83.
  • the type of abnormality determined using the second standard is different from the type of abnormality determined using the first standard.
  • the notification unit 83 performs a process of notifying the second abnormality information received from the determination unit 81.
  • the abnormality notification content determined using the second criterion is different from the abnormality notification content determined using the first criterion.
  • the notification unit 83 transmits the second abnormality information received from the determination unit 81 to an external device such as a server via the network in the form of e-mail, for example.
  • an external device such as a server
  • the second abnormality information is notified at a level different from that of the first abnormality information.
  • the analysis device 151 generates the second data, generates the third data in which the temporal granularity of the second data is coarse based on the generated second data, and the second data An abnormality related to the power generation unit 78 is determined from the third data over the third period longer than the period using the third reference.
  • the generation unit 82 selects, from the second data accumulated in the storage unit 85, data indicating the maximum value of generated power in one day for the third period, for example, one year. Then, third data obtained by arranging the selected second data in time series is generated and stored in the storage unit 85 and is output to the determination unit 81.
  • the third period may be longer than the second period, for example, one day, one week, or one month.
  • the generation unit 82 deletes each second data for one year corresponding to the generated third data from the storage unit 85.
  • FIG. 9 is a diagram illustrating an example of third data determined to be abnormal.
  • the horizontal axis indicates time, and the vertical axis indicates generated power.
  • a graph Y1 shows ideal generated power generated by the power generation unit 78 in one year, and a graph Y2 shows power generated by the power generation unit 78 in a certain year.
  • the generated power of power generation unit 78 is, for example, aged deterioration of solar cell panel 79, increased resistance of wiring solder in solar cell panel 79, or moisture intrusion into solar cell panel 79. Etc., gradually decrease.
  • the determination unit 81 determines that the state in which the generated power gradually decreases as described above is abnormal using the third reference.
  • the third standard is, for example, whether or not the generated power has decreased by a predetermined value or more in a predetermined period.
  • the determination unit 81 determines that the corresponding power generation unit 78 is abnormal when the generated power is gradually decreased in the predetermined period, and information indicating that the power generation unit 78 is abnormal (hereinafter also referred to as third abnormality information). Output to the notification unit 83.
  • the notification unit 83 transmits the third abnormality information received from the determination unit 81 to an external device such as a server via a network in a format such as e-mail.
  • the type of abnormality determined using the third standard is different from the type of abnormality determined using the first standard and the second standard, respectively.
  • the notification unit 83 performs a process of notifying the third abnormality information received from the determination unit 81.
  • the abnormality notification content determined using the third criterion is different from the abnormality notification content determined using the first criterion and the second criterion, respectively.
  • the notification unit 83 transmits the third abnormality information received from the determination unit 81 to an external device such as a server via the network in a format such as e-mail. For example, when the degree of abnormality is distinguished by the level, the third abnormality information is notified at a level different from the first abnormality information and the second abnormality information.
  • the monitoring system 301 may be configured to include a plurality of monitoring devices 111, an analysis device 151, and a collection device 131.
  • FIG. 10 is a diagram showing another example of the configuration of the monitoring system according to the embodiment of the present invention.
  • monitoring system 301 representatively shows four monitoring devices 111 provided corresponding to one current collection unit 60, but a larger or smaller number of monitoring devices 111 may be provided.
  • the monitoring system 301 includes one collection device 131, a plurality of collection devices 131 may be included.
  • the collection device 131 is provided in the vicinity of the PCS 8, for example. More specifically, the collection device 131 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
  • the collection device 131 collects packets including the first data from the monitoring device 111 and the first abnormality information. More specifically, the monitoring device 111 transmits a packet including the first data and the first abnormality information to the collection device 131 by performing power line communication via the aggregation lines 2 and 5.
  • the collection device 131 transmits the packet received from the monitoring device 111 to the analysis device 151 via a network, for example.
  • the collection device 131 may be configured to accumulate the packets received from the monitoring device 111, for example, in a storage unit (not shown) and periodically transmit the packets to the analysis device 151.
  • the analysis device 151 receives first data included in a packet transmitted from one or a plurality of collection devices 131 via a network. Then, the analysis device 151 accumulates the received first data.
  • Each device in the monitoring system 301 includes a computer, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following sequence diagram or flowchart from a memory (not shown). .
  • Each of the programs of the plurality of apparatuses can be installed from the outside. The programs of the plurality of apparatuses are distributed while being stored in a recording medium.
  • FIG. 11 is a sequence diagram when the monitoring system according to the embodiment of the present invention determines and notifies an abnormality related to the power generation unit.
  • monitoring device 111 measures the output of power generation unit 78 including solar cell panel 79 (step S101).
  • the monitoring device 111 determines an abnormality related to the power generation unit 78 using the first reference from the measurement result over the first period (step S102).
  • the monitoring device 111 generates first data based on the measurement result of the output of the power generation unit 78 (step S103).
  • the monitoring device 111 transmits the first data to the analysis device 151.
  • the analysis apparatus 151 receives the 1st data from the monitoring apparatus 111 (step S104).
  • the monitoring device 111 determines that the power generation unit 78 is abnormal, the monitoring device 111 transmits the first abnormality information to the analysis device 151 (step S105).
  • the analysis device 151 accumulates the received first data in the storage unit 85 (step S106).
  • the analysis apparatus 151 when the analysis apparatus 151 receives the first abnormality information from the monitoring apparatus 111, the analysis apparatus 151 transmits the first abnormality information to the server (step S107).
  • step S101 the monitoring device 111 and the analysis device 151 repeat the operations from step S101 to step S107.
  • the analysis device 151 generates second data in which the temporal granularity of the first data is coarse based on the accumulated first data (step S108).
  • the analysis apparatus 151 determines an abnormality related to the power generation unit 78 using the second reference from the second data over the second period longer than the first period (step S109).
  • the analysis device 151 determines that the power generation unit 78 is abnormal, the analysis device 151 transmits second abnormality information to the server (step S110).
  • the analyzing apparatus 151 repeats the operations from step S108 to step S110.
  • the analysis device 151 generates third data in which the temporal granularity of the second data is coarse based on the accumulated second data (step S111).
  • the analysis device 151 determines an abnormality related to the power generation unit 78 using the third reference from the third data over the third period longer than the second period (step S112).
  • the analysis device 151 determines that the power generation unit 78 is abnormal, the analysis device 151 transmits third abnormality information to the server (step S113).
  • the analyzing apparatus 151 repeats the operations in steps S111 to S113.
  • step S104 and step S105 is not limited to the above, and the order may be changed.
  • step S106 and step S107 is not limited to the above, and the order may be changed.
  • FIG. 12 is a flowchart that defines an operation procedure when the monitoring apparatus according to the embodiment of the present invention determines an abnormality related to the power generation unit and notifies the analysis apparatus.
  • monitoring device 111 measures the output of power generation unit 78 including solar cell panel 79 (step S201).
  • the monitoring device 111 generates first data based on the measurement result of the output of the power generation unit 78 (step S202).
  • the monitoring device 111 determines an abnormality related to the power generation unit 78 using the first reference from the measurement result over the first period (step S203).
  • the monitoring device 111 determines that the power generation unit 78 is abnormal (YES in step S203)
  • the monitoring device 111 includes the first abnormality information in the packet (step S204).
  • the monitoring device 111 transmits a packet including the first data and the first abnormality information to the analysis device 151 (step S205).
  • the monitoring device 111 determines that the power generation unit 78 is normal (NO in step S203)
  • the monitoring device 111 transmits a packet including the first data to the analysis device 151 (step S205).
  • FIG. 13 is a flowchart defining an operation procedure when the analysis apparatus according to the embodiment of the present invention determines an abnormality related to the power generation unit and notifies an external apparatus.
  • the communication processing unit 84 in the analysis device 151 receives a packet including the first data from the monitoring device 111 (step S301).
  • the analysis device 151 accumulates the first data included in the received packet in the storage unit 85 (step S302).
  • the analysis apparatus 151 transmits the first abnormality information to the server (step S304).
  • the generation unit 82 in the analysis device 151 generates and stores second data with coarse temporal granularity of the first data based on the stored first data (step S305).
  • the analysis device 151 sets the second granularity of the first data based on the accumulated first data. Are generated and stored (step S305).
  • the analysis device 151 determines an abnormality related to the power generation unit 78 using the second reference from the second data over the second period longer than the first period (step S306).
  • step S306 when it is determined that the power generation unit 78 is abnormal (YES in step S306), the analysis device 151 transmits the second abnormality information to the server (step S307).
  • the analysis device 151 generates and accumulates third data in which the temporal granularity of the second data is coarse based on the accumulated second data (step S308).
  • the analysis device 151 determines an abnormality related to the power generation unit 78 using the third reference from the third data over the third period longer than the second period (step S309).
  • step S310 when the analysis device 151 determines that the power generation unit 78 is abnormal (YES in step S309), the analysis device 151 transmits the third abnormality information to the server (step S310).
  • the analysis device 151 waits until the next first data is received (step S301).
  • step S301 when determining that the power generation unit 78 is normal (NO in step S309), the analysis device 151 waits until a new packet is received (step S301).
  • the monitoring device 111 and the analysis device 151 are not limited to the configuration for determining whether or not the power generation unit 78 itself is abnormal. For example, the output of the power generation unit 78 is reduced due to the situation around the power generation unit 78. A configuration may be adopted in which a state such as being performed is determined as an abnormality relating to the power generation unit 78.
  • the type of abnormality and notification content determined using the first standard and the type of abnormality and notification content determined using the second standard
  • the present invention is not limited to this.
  • the type of abnormality and notification content determined using the first standard may be the same as the type of abnormality and notification content determined using the second standard.
  • the analysis device 151 is configured to generate and store the second data, and delete the first data.
  • the present invention is not limited to this. Absent.
  • the analysis device 151 may be configured not to delete the first data.
  • the analysis device 151 is configured to generate and store the third data, and delete the second data.
  • the present invention is not limited to this. Absent.
  • the analysis device 151 may be configured not to delete the second data.
  • the monitoring device 111 and the analysis device 151 are configured to determine that a current value greater than a predetermined value or a decrease in generated power is an abnormality related to the power generation unit 78.
  • the present invention is not limited to this.
  • the monitoring device 111 and the analysis device 151 may determine an abnormality related to the power generation unit 78 using a determination method suitable for the processing capability of each device, such as clustering determination by machine learning.
  • the analysis device 151 is configured to generate the third data in which the temporal granularity of the second data is coarse and determine an abnormality related to the power generation unit 78.
  • the present invention is not limited to this.
  • the analysis device 151 may be configured not to generate the third data.
  • the monitoring device 111 is configured to notify the analysis device 151 of the determined abnormality, but is not limited thereto.
  • the monitoring device 111 may be configured to transmit the determined abnormality to an external device such as a server via a network.
  • the analysis device 151 is configured to determine an abnormality related to the power generation unit from the data over the first to third periods, but is not limited thereto. .
  • the analysis device 151 is configured to determine an abnormality related to the power generation unit from data over a plurality of periods including the fourth period, or the fourth period, which is longer, and the length of the period is increased stepwise. May be.
  • the analysis device 151 is configured to store the received first data.
  • the analysis device 151 may be configured to generate the second data without accumulating the received first data.
  • the communication processing unit 84 in the analysis device 151 outputs the first data received from the monitoring device 111, for example, the average value M to the generation unit 82 without saving it in the storage unit 85.
  • the generation unit 82 holds the first data received from the communication processing unit 84 until new first data is received from the communication processing unit 84, for example.
  • the generation unit 82 when the generation unit 82 receives new first data from the communication processing unit 84, the generation unit 82 generates and creates intermediate data obtained by adding the held first data and the new first data.
  • the intermediate data is stored in the storage unit 85.
  • the generation unit 82 when the generation unit 82 receives new first data from the communication processing unit 84, the generation unit 82 acquires the intermediate data from the storage unit 85, and adds the first data to the acquired intermediate data.
  • the intermediate data is updated, and the updated intermediate data is stored in the storage unit 85.
  • the generation unit 82 generates the intermediate data SD1 for one day by performing the above processing on the first data for one day, that is, 1440 times, and divides the generated intermediate data SD1 by 1440.
  • the average value MD of the first data for one day is calculated.
  • the generation unit 82 outputs the calculated average value MD to the determination unit 81 as second data.
  • the second reference used by the determination unit 81 is, for example, whether or not the value indicated by the second data is less than a predetermined value.
  • the determination unit 81 determines that the corresponding power generation unit 78 is abnormal, and outputs second abnormality information to the notification unit 83.
  • the analysis device 151 is configured to store the generated second data, but is not limited thereto.
  • the analysis device 151 may be configured to generate the third data without accumulating the generated second data.
  • the generating unit 82 acquires each of the intermediate data SD1 from the storage unit 85, and averages the acquired intermediate data SD1 for one year. The value MY is calculated. Then, the generation unit 82 outputs the calculated average value MY to the determination unit 81 as third data.
  • the third reference used by the determination unit 81 is, for example, whether or not the value indicated by the third data is less than a predetermined value.
  • the determination unit 81 determines that the corresponding power generation unit 78 is abnormal, and outputs third abnormality information to the notification unit 83.
  • the generation unit 82 is not limited to the configuration in which the first data held, for example, the average value M and the new first data from the communication processing unit 84 are added to create intermediate data. Are compared with new first data from the communication processing unit 84, and the larger of the held first data and the new first data is stored in the storage unit 85 as intermediate data. It may be configured to.
  • the generation unit 82 receives the first first data in the second period from the communication processing unit 84, receives the received first data, and receives the next first data as the communication processing unit. Hold until 84.
  • the generation unit 82 compares the held first data with the next first data, Data is stored in the storage unit 85 as intermediate data.
  • the generation unit 82 compares the intermediate data in the storage unit 85 with the first data, and the first data is intermediate in the storage unit 85. If it is larger than the data, the first data is stored in the storage unit 85 as new intermediate data.
  • the generation unit 82 outputs the intermediate data SD2 obtained by performing the above processing on the first data for a second period, for example, one day, to the determination unit 81 as the second data.
  • the second reference used by the determination unit 81 is, for example, whether or not the value indicated by the second data is less than a predetermined value.
  • the determination unit 81 determines that the corresponding power generation unit 78 is abnormal and outputs the second abnormality information to the notification unit 83.
  • the generation unit 82 generates intermediate data SD2 for each second period (hereinafter, also referred to as an intermediate period) included in the third period, and the generated intermediate data SD2 is arranged in time series.
  • generates this data may be sufficient.
  • the generation unit 82 may be configured to store the larger one of the intermediate data SD2 in a certain intermediate period and the next intermediate data SD2 in the next intermediate period in the storage unit 85 as the intermediate data SY1.
  • the generation unit 82 stores the intermediate data SD2 in the first intermediate period in the storage unit 85 as the intermediate data SY1. Then, when generating the intermediate data SD2 in the next intermediate period, the generation unit 82 compares the intermediate data SY1 in the storage unit 85 with the intermediate data SD2, and the intermediate data SD2 is larger than the intermediate data SY1 in the storage unit 85. In this case, the intermediate data SD2 is stored in the storage unit 85 as new intermediate data SY1.
  • the generation unit 82 outputs the intermediate data SY1 obtained by performing the above processing on the intermediate data for the third period, for example, one year, to the determination unit 81 as the third data.
  • the third reference used by the determination unit 81 is, for example, whether or not the value indicated by the third data is less than a predetermined value.
  • the determination unit 81 determines that the corresponding power generation unit 78 is abnormal, and outputs the third abnormality information to the notification unit 83.
  • the predetermined value V2 is larger than the predetermined value V1, for example.
  • the monitoring device 111 measures the output of the power generation unit 78 including the solar cell panel 79, and uses the first reference from the measurement result over the first period to generate the power generation unit 78. Judge abnormalities related to.
  • the monitoring device 111 transmits first data based on the measurement result.
  • the analysis device 151 receives the first data transmitted from the monitoring device 111, generates second data with coarse temporal granularity of the first data based on the received first data, An abnormality relating to the power generation unit 78 is determined using the second reference from the second data over a second period longer than the first period.
  • the monitoring device 111 can determine a measurement value abnormality over a relatively short period of time, and the analysis device 151 can determine a measurement value abnormality over a relatively long period of time.
  • the analysis device 151 can determine a measurement value abnormality over a relatively long period of time.
  • the abnormality determination of the solar power generation system can be improved.
  • the analysis device 151 generates the second data, and based on the generated second data, the second data is coarsened with respect to time. 3 is generated, and the abnormality relating to the power generation unit 78 is further determined from the third data over the third period longer than the second period using the third reference.
  • the analysis device 151 performs a process of notifying the abnormality determined by itself.
  • the monitoring device 111 performs processing for notifying the analysis device 151 of the abnormality determined by itself.
  • the analysis device 151 performs a process of notifying the abnormality notified from the monitoring device 111.
  • the configuration in which the analysis device 151 collectively notifies the abnormality related to the power generation unit 78 to the outside of the photovoltaic power generation system eliminates the need for the configuration in which the monitoring device 111 communicates with the outside, thereby reducing the cost.
  • the type of abnormality determined using the first standard is different from the type of abnormality determined using the second standard.
  • the notification content of the abnormality determined using the first reference is different from the notification content of the abnormality determined using the second reference.
  • the communication processing unit 84 is based on the measurement result over the first period of the output of the power generation unit 78 including the solar battery panel 79 transmitted from the monitoring device 111. 1 data is received. Based on the first data received by the communication processing unit 84, the determination unit 81 generates second data with coarse temporal granularity of the first data, and the second data longer than the first period is generated. An abnormality relating to the power generation unit 78 is determined from the second data over the period using the second reference.
  • the monitoring device 111 can determine a measurement value abnormality over a relatively short period of time, and the analysis device 151 can determine a measurement value abnormality over a relatively long period of time.
  • the analysis device 151 can determine a measurement value abnormality over a relatively long period of time.
  • the analysis apparatus can improve the abnormality determination of the photovoltaic power generation system.
  • the output of the power generation unit including the solar cell panel is measured, and the power generation unit is related using the first reference from the measurement result over the first period.
  • Judge abnormalities Next, the first data based on the measurement result is received, and based on the received first data, the second data in which the temporal granularity of the first data is coarse is generated, and from the first period
  • An abnormality related to the power generation unit 78 is determined from the second data over the long second period using the second reference.
  • the monitoring device 111 can determine a measurement value abnormality over a relatively short period of time, and the analysis device 151 can determine a measurement value abnormality over a relatively long period of time.
  • the analysis device 151 can determine a measurement value abnormality over a relatively long period of time.
  • the abnormality determination of the solar power generation system can be improved.
  • the first based on the measurement result transmitted from the monitoring device 111 over the first period of the output of the power generation unit 78 including the solar cell panel 79.
  • Receive data Next, based on the received first data, second data with coarse temporal granularity of the first data is generated, and the second data over a second period longer than the first period is used as the second data.
  • the abnormality relating to the power generation unit 78 is determined using the criterion of 2.
  • the monitoring device 111 can determine a measurement value abnormality over a relatively short period of time, and the analysis device 151 can determine a measurement value abnormality over a relatively long period of time.
  • the analysis device 151 can determine a measurement value abnormality over a relatively long period of time.
  • the abnormality determination of the solar power generation system can be improved.
  • a monitoring device that measures the output of the power generation unit including the solar battery panel and determines an abnormality related to the power generation unit using the first reference from the measurement result over the first period, The monitoring device transmits first data based on the measurement result; further, Receiving the first data transmitted from the monitoring device, generating second data with coarse temporal granularity of the first data based on the received first data; An analysis device that determines an abnormality related to the power generation unit using a second reference from the second data over a second period longer than one period, wherein the power generation unit includes a plurality of solar cell panels connected in series A string, The monitoring system, wherein the output of the power generation unit is generated power, current, or voltage of the power generation unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

This monitoring system is provided with: a monitoring device which measures an output of a power generation unit including a solar panel, and determines, from the result of measurement in a first period and using a first reference, abnormality regarding the power generation unit, the monitoring device transmitting first data based on the measurement result; and an analysis device which receives the first data transmitted from the monitoring device, generates, on the basis of the received first data, second data in which the temporal granularity of the first data has been made coarser, and determines, from the second data in a second period longer than the first period and using a second reference, abnormality regarding the power generation unit.

Description

監視システム、解析装置および判定方法Monitoring system, analysis apparatus, and determination method
 本発明は、監視システム、解析装置および判定方法に関する。
 この出願は、2018年2月1日に出願された日本出願特願2018-16733号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
The present invention relates to a monitoring system, an analysis apparatus, and a determination method.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2018-16733 for which it applied on February 1, 2018, and takes in those the indications of all here.
 特開2012-205078号公報(特許文献1)には、以下のような太陽光発電用監視システムが開示されている。すなわち、太陽光発電用監視システムは、複数の太陽電池パネルからの出力を集約して電力変換装置に送り込む太陽光発電システムについて、前記太陽電池パネルの発電状況を監視する太陽光発電用監視システムであって、前記複数の太陽電池パネルからの出力電路が集約された場所に設けられ、各太陽電池パネルの発電量を計測する計測装置と、前記計測装置に接続され、前記計測装置による発電量の計測データを送信する機能を有する下位側通信装置と、前記下位側通信装置から送信される前記計測データを受信する機能を有する上位側通信装置と、前記上位側通信装置を介して前記太陽電池パネルごとの前記計測データを収集する機能を有する管理装置とを備える。前記管理装置は、前記各太陽電池パネルについての、同一時点における発電量の差に基づいて異常の有無を判定するか、または前記各太陽電池パネルについての、所定期間の発電量の最大値又は積算値に基づいて異常の有無を判定する。 JP 2012-205078 A (Patent Document 1) discloses a monitoring system for photovoltaic power generation as follows. That is, the photovoltaic power generation monitoring system is a photovoltaic power generation monitoring system that monitors the power generation status of the solar cell panel for a photovoltaic power generation system that aggregates outputs from a plurality of solar cell panels and sends them to a power converter. A measuring device for measuring the power generation amount of each solar cell panel provided in a place where the output electric circuits from the plurality of solar cell panels are aggregated, and connected to the measurement device, A lower communication device having a function of transmitting measurement data, an upper communication device having a function of receiving the measurement data transmitted from the lower communication device, and the solar cell panel via the upper communication device And a management device having a function of collecting the measurement data for each. The management device determines the presence or absence of abnormality based on the difference in power generation amount at the same time for each solar cell panel, or the maximum value or integration of the power generation amount for a predetermined period for each solar cell panel The presence or absence of abnormality is determined based on the value.
特開2012-205078号公報JP 2012-205078 A
 (1)本開示の監視システムは、太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定する監視装置を備え、前記監視装置は、前記計測結果に基づく第1のデータを送信し、さらに、前記監視装置から送信された前記第1のデータを受信し、受信した前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定する解析装置を備える。 (1) The monitoring system of the present disclosure includes a monitoring device that measures an output of a power generation unit including a solar battery panel and determines an abnormality related to the power generation unit using a first reference from a measurement result over a first period. The monitoring device transmits first data based on the measurement result, further receives the first data transmitted from the monitoring device, and based on the received first data, the first data Generating second data with coarser temporal granularity of the first data, and using the second reference from the second data over a second period longer than the first period, an abnormality related to the power generation unit is generated. An analysis device for determining is provided.
 (6)本開示の解析装置は、太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定する監視装置を備える監視システムにおける解析装置であって、前記監視装置から送信された、前記計測結果に基づく第1のデータを受信する通信処理部と、前記通信処理部によって受信された前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定する判定部とを備える。 (6) The analysis device of the present disclosure includes a monitoring device that measures the output of the power generation unit including the solar battery panel and determines an abnormality related to the power generation unit using the first reference from the measurement result over the first period. An analysis device in the monitoring system, based on the communication processing unit that receives the first data based on the measurement result transmitted from the monitoring device, and the first data received by the communication processing unit Generating the second data with a coarser granularity of the first data, and using the second reference from the second data over a second period longer than the first period, the power generation unit And a determination unit for determining an abnormality related to.
 (7)本開示の判定方法は、監視システムにおける判定方法であって、太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定するステップと、前記計測結果に基づく第1のデータを受信し、受信した前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定するステップとを含む。 (7) The determination method of the present disclosure is a determination method in a monitoring system, which measures an output of a power generation unit including a solar battery panel, and uses the first reference based on a measurement result over a first period, to determine the power generation unit. A first data based on the measurement result is received, and second data with coarse temporal granularity of the first data is received based on the received first data. Generating and determining an abnormality related to the power generation unit using a second reference from the second data over a second period longer than the first period.
 (8)本開示の判定方法は、太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定する監視装置を備える監視システムにおける解析装置における判定方法であって、前記監視装置から送信された、前記計測結果に基づく第1のデータを受信するステップと、受信した前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定するステップとを含む。 (8) The determination method of the present disclosure includes a monitoring device that measures an output of a power generation unit including a solar battery panel and determines an abnormality related to the power generation unit using a first reference from a measurement result over a first period. A determination method in an analysis device in a monitoring system, the step of receiving first data based on the measurement result transmitted from the monitoring device, and the first data based on the received first data Second data having a coarser time granularity is generated, and an abnormality relating to the power generation unit is determined from the second data over a second period longer than the first period using a second reference. Steps.
 本開示の一態様は、このような特徴的な処理部を備える監視システムとして実現され得るだけでなく、かかる特徴的な処理をコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、監視システムの一部または全部を実現する半導体集積回路として実現され得る。 One aspect of the present disclosure can be realized not only as a monitoring system including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of the monitoring system.
 本開示の一態様は、このような特徴的な処理部を備える解析装置として実現され得るだけでなく、かかる特徴的な処理をコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、解析装置の一部または全部を実現する半導体集積回路として実現され得る。 One aspect of the present disclosure can be realized not only as an analysis apparatus including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of the analysis apparatus.
図1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention. 図2は、本発明の実施の形態に係るPCSユニットの構成を示す図である。FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る集電ユニットの構成を示す図である。FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る太陽電池ユニットの構成を示す図である。FIG. 4 is a diagram showing a configuration of the solar cell unit according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る監視システムの構成の一例を示す図である。FIG. 5 is a diagram showing an example of the configuration of the monitoring system according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る監視システムにおける監視装置の構成を示す図である。FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る監視システムにおける解析装置の構成を示す図である。FIG. 7 is a diagram showing the configuration of the analysis device in the monitoring system according to the embodiment of the present invention. 図8は、異常と判定される第2のデータの一例を示す図である。FIG. 8 is a diagram illustrating an example of second data determined to be abnormal. 図9は、異常と判定される第3のデータの一例を示す図である。FIG. 9 is a diagram illustrating an example of third data determined to be abnormal. 図10は、本発明の実施の形態に係る監視システムの構成の他の例を示す図である。FIG. 10 is a diagram showing another example of the configuration of the monitoring system according to the embodiment of the present invention. 図11は、本発明の実施の形態に係る監視システムが発電部に関する異常を判定し、通知する際のシーケンス図である。FIG. 11 is a sequence diagram when the monitoring system according to the embodiment of the present invention determines and notifies an abnormality related to the power generation unit. 図12は、本発明の実施の形態に係る監視装置が発電部に関する異常を判定し、解析装置へ通知する際の動作手順を定めたフローチャートである。FIG. 12 is a flowchart defining an operation procedure when the monitoring apparatus according to the embodiment of the present invention determines an abnormality related to the power generation unit and notifies the analysis apparatus. 図13は、本発明の実施の形態に係る解析装置が発電部に関する異常を判定し、外部の装置に通知する際の動作手順を定めたフローチャートである。FIG. 13 is a flowchart that defines an operation procedure when the analysis apparatus according to the embodiment of the present invention determines an abnormality related to the power generation unit and notifies an external apparatus.
 近年、太陽光発電システムを監視して異常を判別するための技術が開発されている。 In recent years, techniques for monitoring solar power generation systems and determining abnormalities have been developed.
 [本開示が解決しようとする課題]
 このような特許文献1に記載の技術を超えて、太陽光発電システムの異常判定を向上させることが可能な技術が望まれる。
[Problems to be solved by the present disclosure]
A technique capable of improving the abnormality determination of the solar power generation system beyond the technique described in Patent Document 1 is desired.
 本開示は、上述の課題を解決するためになされたもので、その目的は、太陽光発電システムの異常判定を向上させることが可能な監視システム、解析装置および判定方法を提供することである。 The present disclosure has been made to solve the above-described problem, and an object thereof is to provide a monitoring system, an analysis apparatus, and a determination method that can improve abnormality determination of a solar power generation system.
 [本開示の効果]
 本開示によれば、太陽光発電システムの異常判定を向上させることができる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to improve abnormality determination of the solar power generation system.
 [本願発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of Present Invention]
First, the contents of the embodiment of the present invention will be listed and described.
 (1)本発明の実施の形態に係る監視システムは、太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定する監視装置を備え、前記監視装置は、前記計測結果に基づく第1のデータを送信し、さらに、前記監視装置から送信された前記第1のデータを受信し、受信した前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定する解析装置を備える。 (1) The monitoring system according to the embodiment of the present invention measures the output of the power generation unit including the solar battery panel, and determines an abnormality related to the power generation unit using the first reference from the measurement result over the first period. A monitoring device that transmits the first data based on the measurement result, further receives the first data transmitted from the monitoring device, and receives the received first data. Based on the second data with a coarser time granularity of the first data, and using a second criterion from the second data over a second period longer than the first period, An analysis device for determining an abnormality related to the power generation unit is provided.
 このような構成により、たとえば、監視装置は、比較的短期間にわたる計測値の異常を判定し、解析装置は、比較的長期間にわたる計測値の異常を判定することができる。これにより、解析装置におけるデータ容量および処理負荷を抑えながら、複数種類の期間での異常を判定することが可能になることにより、たとえば、短期間では計測値の変化がなく長期間にわたる計測結果を確認することにより変化が確認できるような異常を検知することできる。さらに、長期間わたる計測結果では、データの粒度が粗くなることにより捉えることができない短期間での計測値の変化も、短期間にわたる計測結果を確認することにより検知することができる。また、異なる期間にわたる異常が分散して判定され、監視装置および解析装置間において処理能力、データ蓄積量および伝送帯域等を適正化することができ、コストを抑えることができる。したがって、太陽光発電システムの異常判定を向上させることができる。 With such a configuration, for example, the monitoring device can determine an abnormality in a measurement value over a relatively short period, and the analysis device can determine an abnormality in the measurement value over a relatively long period. This makes it possible to determine abnormalities in multiple types of periods while suppressing the data capacity and processing load in the analysis device. By checking, it is possible to detect an abnormality in which a change can be confirmed. Further, in the measurement result over a long period, a change in the measurement value in a short period that cannot be captured due to coarse data granularity can be detected by checking the measurement result over a short period. In addition, abnormalities over different periods are determined in a distributed manner, and processing capacity, data storage amount, transmission bandwidth, and the like can be optimized between the monitoring device and the analysis device, and costs can be reduced. Therefore, the abnormality determination of the solar power generation system can be improved.
 (2)好ましくは、前記解析装置は、前記第2のデータを生成し、生成した前記第2のデータに基づいて、前記第2のデータの時間的な粒度を粗くした第3のデータを生成し、前記第2の期間より長い第3の期間にわたる前記第3のデータから第3の基準を用いて前記発電部に関する異常をさらに判定する。 (2) Preferably, the analysis device generates the second data, and generates third data in which the temporal granularity of the second data is coarse based on the generated second data. And the abnormality regarding the said electric power generation part is further determined using the 3rd reference | standard from the said 3rd data over the 3rd period longer than the said 2nd period.
 このような構成により、さらに長期間にわたる計測値の異常を判定することができ、より多様な異常判定を行うことができる。 With such a configuration, it is possible to determine the abnormality of the measured value over a longer period of time, and to perform more various abnormality determinations.
 (3)好ましくは、前記解析装置は、自己の判定した前記異常を通知する処理を行い、前記監視装置は、自己の判定した前記異常を前記解析装置に通知する処理を行い、前記解析装置は、前記監視装置から通知された前記異常を通知する処理を行う。 (3) Preferably, the analysis apparatus performs a process of notifying the abnormality determined by itself, the monitoring apparatus performs a process of notifying the analysis apparatus of the abnormality determined by itself, and the analysis apparatus includes: Then, a process of notifying the abnormality notified from the monitoring device is performed.
 このように、発電部に関する異常を解析装置がまとめて太陽光発電システムの外部に通知する構成により、監視装置が外部と通信する構成が不要となり、コストを低減することができる。 In this way, the configuration in which the analysis device collectively reports the abnormality related to the power generation unit to the outside of the photovoltaic power generation system eliminates the need for a configuration in which the monitoring device communicates with the outside, thereby reducing costs.
 (4)好ましくは、前記第1の基準を用いて判定される前記異常の種類と前記第2の基準を用いて判定される前記異常の種類とが異なる。 (4) Preferably, the type of abnormality determined using the first standard is different from the type of abnormality determined using the second standard.
 このような構成により、ダイオード解放故障および経年劣化等、太陽光発電におけるより多様な異常を判定することができる。 With such a configuration, it is possible to determine more various abnormalities in solar power generation such as diode release failure and aging degradation.
 (5)好ましくは、前記第1の基準を用いて判定される前記異常の通知内容と前記第2の基準を用いて判定される前記異常の通知内容とが異なる。 (5) Preferably, the notification content of the abnormality determined using the first reference is different from the notification content of the abnormality determined using the second reference.
 このような構成により、第1の基準を用いて判断された異常であるかまたは第2の基準を用いて判断された異常であるかを通知内容によって判断することができるため、たとえば、緊急度または重要度に応じた保守対応を行うことができる。 With such a configuration, it is possible to determine whether the abnormality is determined using the first criterion or the abnormality determined using the second criterion based on the notification content. Alternatively, maintenance can be performed according to the importance.
 (6)本発明の実施の形態に係る解析装置は、太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定する監視装置を備える監視システムにおける解析装置であって、前記監視装置から送信された、前記計測結果に基づく第1のデータを受信する通信処理部と、前記通信処理部によって受信された前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定する判定部とを備える。 (6) The analysis device according to the embodiment of the present invention measures the output of the power generation unit including the solar battery panel, and determines an abnormality related to the power generation unit using the first reference from the measurement result over the first period. An analysis device in a monitoring system including a monitoring device that receives the first data based on the measurement result transmitted from the monitoring device, and the first received by the communication processing unit. Based on the first data, the second data having a coarser granularity in time is generated, and the second reference is obtained from the second data over a second period longer than the first period. And a determination unit that determines an abnormality related to the power generation unit.
 このような構成により、たとえば、監視装置は、比較的短期間にわたる計測値の異常を判定し、解析装置は、比較的長期間にわたる計測値の異常を判定することができる。これにより、解析装置におけるデータ容量および処理負荷を抑えながら、複数種類の期間での異常を判定することが可能になることにより、たとえば、短期間では計測値の変化がなく長期間にわたる計測結果を確認することにより変化が確認できるような異常を検知することできる。さらに、長期間わたる計測結果では、データの粒度が粗くなることにより捉えることができない短期間での計測値の変化も、短期間にわたる計測結果を確認することにより検知することができる。また、異なる期間にわたる異常が分散して判定され、監視装置および解析装置間において処理能力、データ蓄積量および伝送帯域等を適正化することができ、コストを抑えることができる。したがって、太陽光発電システムの異常判定を向上させることができる。 With such a configuration, for example, the monitoring device can determine an abnormality in a measurement value over a relatively short period, and the analysis device can determine an abnormality in the measurement value over a relatively long period. This makes it possible to determine abnormalities in multiple types of periods while suppressing the data capacity and processing load in the analysis device. By checking, it is possible to detect an abnormality in which a change can be confirmed. Further, in the measurement result over a long period, a change in the measurement value in a short period that cannot be captured due to coarse data granularity can be detected by checking the measurement result over a short period. In addition, abnormalities over different periods are determined in a distributed manner, and processing capacity, data storage amount, transmission bandwidth, and the like can be optimized between the monitoring device and the analysis device, and costs can be reduced. Therefore, the abnormality determination of the solar power generation system can be improved.
 (7)本発明の実施の形態に係る判定方法は、監視システムにおける判定方法であって、太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定するステップと、前記計測結果に基づく第1のデータを受信し、受信した前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定するステップとを含む。 (7) A determination method according to an embodiment of the present invention is a determination method in a monitoring system, which measures an output of a power generation unit including a solar battery panel, and determines a first reference from a measurement result over a first period. Using the step of determining an abnormality related to the power generation unit and receiving the first data based on the measurement result, the time granularity of the first data is coarsened based on the received first data Generating second data and determining an abnormality related to the power generation unit using a second reference from the second data over a second period longer than the first period.
 このような構成により、たとえば、監視装置は、比較的短期間にわたる計測値の異常を判定し、解析装置は、比較的長期間にわたる計測値の異常を判定することができる。これにより、解析装置におけるデータ容量および処理負荷を抑えながら、複数種類の期間での異常を判定することができる。また、異なる期間にわたる異常が分散して判定され、監視装置および解析装置間において処理能力、データ蓄積量および伝送帯域等を適正化することができ、コストを抑えることができる。したがって、太陽光発電システムの異常判定を向上させることができる。 With such a configuration, for example, the monitoring device can determine an abnormality in a measurement value over a relatively short period, and the analysis device can determine an abnormality in the measurement value over a relatively long period. Thereby, it is possible to determine abnormality in a plurality of types of periods while suppressing the data capacity and processing load in the analysis apparatus. In addition, abnormalities over different periods are determined in a distributed manner, and processing capacity, data storage amount, transmission bandwidth, and the like can be optimized between the monitoring device and the analysis device, and costs can be reduced. Therefore, the abnormality determination of the solar power generation system can be improved.
 (8)本発明の実施の形態に係る判定方法は、太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定する監視装置を備える監視システムにおける解析装置における判定方法であって、前記監視装置から送信された、前記計測結果に基づく第1のデータを受信するステップと、受信した前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定するステップとを含む。 (8) A determination method according to an embodiment of the present invention measures an output of a power generation unit including a solar cell panel, and determines an abnormality related to the power generation unit using a first reference from a measurement result over a first period. A determination method in an analysis device in a monitoring system including a monitoring device that receives the first data based on the measurement result transmitted from the monitoring device, and based on the received first data Generating the second data with a coarser granularity of the first data, and using the second reference from the second data over a second period longer than the first period, the power generation unit And determining an abnormality related to.
 このような構成により、たとえば、監視装置は、比較的短期間にわたる計測値の異常を判定し、解析装置は、比較的長期間にわたる計測値の異常を判定することができる。これにより、解析装置におけるデータ容量および処理負荷を抑えながら、複数種類の期間での異常を判定することが可能になることにより、たとえば、短期間では計測値の変化がなく長期間にわたる計測結果を確認することにより変化が確認できるような異常を検知することできる。さらに、長期間わたる計測結果では、データの粒度が粗くなることにより捉えることができない短期間での計測値の変化も、短期間にわたる計測結果を確認することにより検知することができる。また、異なる期間にわたる異常が分散して判定され、監視装置および解析装置間において処理能力、データ蓄積量および伝送帯域等を適正化することができ、コストを抑えることができる。したがって、太陽光発電システムの異常判定を向上させることができる。 With such a configuration, for example, the monitoring device can determine an abnormality in a measurement value over a relatively short period, and the analysis device can determine an abnormality in the measurement value over a relatively long period. This makes it possible to determine abnormalities in multiple types of periods while suppressing the data capacity and processing load in the analysis device. By checking, it is possible to detect an abnormality in which a change can be confirmed. Further, in the measurement result over a long period, a change in the measurement value in a short period that cannot be captured due to coarse data granularity can be detected by checking the measurement result over a short period. In addition, abnormalities over different periods are determined in a distributed manner, and processing capacity, data storage amount, transmission bandwidth, and the like can be optimized between the monitoring device and the analysis device, and costs can be reduced. Therefore, the abnormality determination of the solar power generation system can be improved.
 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. Moreover, you may combine arbitrarily at least one part of embodiment described below.
 [太陽光発電システムの構成]
 図1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。
[Configuration of solar power generation system]
FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
 図1を参照して、太陽光発電システム401は、4つのPCS(Power Conditioning Subsystem)ユニット80と、キュービクル6とを備える。キュービクル6は、銅バー73を含む。 Referring to FIG. 1, solar power generation system 401 includes four PCS (Power Conditioning Subsystem) units 80 and cubicle 6. The cubicle 6 includes a copper bar 73.
 図1では、4つのPCSユニット80を代表的に示しているが、さらに多数または少数のPCSユニット80が設けられてもよい。 FIG. 1 representatively shows four PCS units 80, but a larger or smaller number of PCS units 80 may be provided.
 図2は、本発明の実施の形態に係るPCSユニットの構成を示す図である。 FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
 図2を参照して、PCSユニット80は、4つの集電ユニット60と、PCS(電力変換装置)8とを備える。PCS8は、銅バー7と、電力変換部9とを含む。 2, the PCS unit 80 includes four current collecting units 60 and a PCS (power conversion device) 8. The PCS 8 includes a copper bar 7 and a power conversion unit 9.
 図2では、4つの集電ユニット60を代表的に示しているが、さらに多数または少数の集電ユニット60が設けられてもよい。 In FIG. 2, four current collecting units 60 are representatively shown, but a larger or smaller number of current collecting units 60 may be provided.
 図3は、本発明の実施の形態に係る集電ユニットの構成を示す図である。 FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
 図3を参照して、集電ユニット60は、4つの太陽電池ユニット74と、集電箱71とを含む。集電箱71は、銅バー72を有する。 Referring to FIG. 3, the current collecting unit 60 includes four solar cell units 74 and a current collecting box 71. The current collection box 71 has a copper bar 72.
 図3では、4つの太陽電池ユニット74を代表的に示しているが、さらに多数または少数の太陽電池ユニット74が設けられてもよい。 In FIG. 3, four solar cell units 74 are representatively shown, but a larger number or a smaller number of solar cell units 74 may be provided.
 図4は、本発明の実施の形態に係る太陽電池ユニットの構成を示す図である。 FIG. 4 is a diagram showing the configuration of the solar cell unit according to the embodiment of the present invention.
 図4を参照して、太陽電池ユニット74は、4つの発電部78と、接続箱76とを含む。発電部78は、太陽電池パネルを有する。接続箱76は、銅バー77を有する。 Referring to FIG. 4, solar cell unit 74 includes four power generation units 78 and a junction box 76. The power generation unit 78 has a solar cell panel. The connection box 76 has a copper bar 77.
 図4では、4つの発電部78を代表的に示しているが、さらに多数または少数の発電部78が設けられてもよい。 FIG. 4 representatively shows four power generation units 78, but a larger or smaller number of power generation units 78 may be provided.
 発電部78は、この例では4つの太陽電池パネル79A,79B,79C,79Dが直列接続されたストリングである。以下、太陽電池パネル79A,79B,79C,79Dの各々を、太陽電池パネル79とも称する。 In this example, the power generation unit 78 is a string in which four solar cell panels 79A, 79B, 79C, and 79D are connected in series. Hereinafter, each of the solar cell panels 79A, 79B, 79C, and 79D is also referred to as a solar cell panel 79.
 図4では、4つの太陽電池パネル79を代表的に示しているが、さらに多数または少数の太陽電池パネル79が設けられてもよい。 FIG. 4 representatively shows four solar cell panels 79, but a larger or smaller number of solar cell panels 79 may be provided.
 太陽光発電システム401では、複数の発電部78からの出力ラインおよび集約ラインすなわち電力線がそれぞれキュービクル6に電気的に接続される。 In the solar power generation system 401, output lines and aggregated lines, that is, power lines from the plurality of power generation units 78 are electrically connected to the cubicles 6, respectively.
 より詳細には、発電部78の出力ライン1は、発電部78に接続された第1端と、銅バー77に接続された第2端とを有する。各出力ライン1は、銅バー77を介して集約ライン5に集約される。銅バー77は、たとえば接続箱76の内部に設けられている。 More specifically, the output line 1 of the power generation unit 78 has a first end connected to the power generation unit 78 and a second end connected to the copper bar 77. Each output line 1 is aggregated into an aggregation line 5 via a copper bar 77. The copper bar 77 is provided, for example, inside the connection box 76.
 発電部78は、太陽光を受けると、受けた太陽光のエネルギーを直流電力に変換し、変換した直流電力を出力ライン1へ出力する。 When the power generation unit 78 receives sunlight, the power generation unit 78 converts the received solar energy into DC power, and outputs the converted DC power to the output line 1.
 図3および図4を参照して、集約ライン5は、対応の太陽電池ユニット74における銅バー77に接続された第1端と、銅バー72に接続された第2端とを有する。各集約ライン5は、銅バー72を介して集約ライン2に集約される。銅バー72は、たとえば集電箱71の内部に設けられている。 3 and 4, aggregation line 5 has a first end connected to copper bar 77 and a second end connected to copper bar 72 in corresponding solar cell unit 74. Each aggregation line 5 is aggregated into the aggregation line 2 via the copper bar 72. The copper bar 72 is provided, for example, inside the current collection box 71.
 図1~図4を参照して、太陽光発電システム401では、上述のように複数の発電部78からの各出力ライン1が集約ライン5に集約され、各集約ライン5が集約ライン2に集約され、各集約ライン2が集約ライン4に集約され、各集約ライン4がキュービクル6に電気的に接続される。 With reference to FIGS. 1 to 4, in the photovoltaic power generation system 401, as described above, the output lines 1 from the plurality of power generation units 78 are aggregated into the aggregation line 5, and the aggregation lines 5 are aggregated into the aggregation line 2. Then, each aggregation line 2 is aggregated to the aggregation line 4, and each aggregation line 4 is electrically connected to the cubicle 6.
 より詳細には、各集約ライン2は、対応の集電ユニット60における銅バー72に接続された第1端と、銅バー7に接続された第2端とを有する。PCS8において、内部ライン3は、銅バー7に接続された第1端と、電力変換部9に接続された第2端とを有する。 More specifically, each aggregation line 2 has a first end connected to the copper bar 72 in the corresponding current collecting unit 60 and a second end connected to the copper bar 7. In the PCS 8, the internal line 3 has a first end connected to the copper bar 7 and a second end connected to the power conversion unit 9.
 PCS8において、電力変換部9は、たとえば、各発電部78において発電された直流電力を出力ライン1、銅バー77、集約ライン5、銅バー72、集約ライン2、銅バー7および内部ライン3経由で受けると、受けた直流電力を交流電力に変換して集約ライン4へ出力する。 In the PCS 8, the power conversion unit 9 uses, for example, the DC power generated in each power generation unit 78 via the output line 1, the copper bar 77, the aggregation line 5, the copper bar 72, the aggregation line 2, the copper bar 7 and the internal line 3. Is received, the received DC power is converted into AC power and output to the aggregation line 4.
 集約ライン4は、電力変換部9に接続された第1端と、銅バー73に接続された第2端とを有する。 The aggregation line 4 has a first end connected to the power conversion unit 9 and a second end connected to the copper bar 73.
 キュービクル6において、各PCS8における電力変換部9から各集約ライン4へ出力された交流電力は、銅バー73を介して系統へ出力される。 In the cubicle 6, AC power output from the power conversion unit 9 in each PCS 8 to each aggregation line 4 is output to the system via the copper bar 73.
 [課題]
 発電部78の異常を監視するために、発電部78の出力を計測してサーバ等に計測結果を集約して異常を判定する方法では、計測結果を伝送する十分な伝送容量および計測結果を蓄積するサーバ等の十分な記憶容量が必要となる。
[Task]
In order to monitor the abnormality of the power generation unit 78, the method of measuring the output of the power generation unit 78 and collecting the measurement results on a server or the like to determine the abnormality accumulates sufficient transmission capacity for transmitting the measurement results and the measurement results. A sufficient storage capacity such as a server to be used is required.
 異常の検出には、複数の発電所からの計測結果を集約するため、処理するデータ量が大きくなり、時間がかかり、また、複数の検出論理を使用するため、サーバ等は、高い処理能力が求められる。 Abnormality detection involves collecting measurement results from multiple power plants, which increases the amount of data to be processed and takes time, and uses multiple detection logic, so servers and other devices have high processing capabilities. Desired.
 そこで、本発明の実施の形態に係る監視システムでは、以下のような構成および動作により、このような課題を解決する。 Therefore, the monitoring system according to the embodiment of the present invention solves such problems by the following configuration and operation.
 [監視システム301の構成]
 図5は、本発明の実施の形態に係る監視システムの構成の一例を示す図である。
[Configuration of Monitoring System 301]
FIG. 5 is a diagram showing an example of the configuration of the monitoring system according to the embodiment of the present invention.
 図5を参照して、太陽光発電システム401は、監視システム301を備える。監視システム301は、複数の監視装置111と、解析装置151とを含む。 Referring to FIG. 5, the solar power generation system 401 includes a monitoring system 301. The monitoring system 301 includes a plurality of monitoring devices 111 and an analysis device 151.
 図5では、1つの集電ユニット60に対応して設けられた4つの監視装置111を代表的に示しているが、さらに多数または少数の監視装置111が設けられてもよい。また、監視システム301は、1つの解析装置151を備えているが、複数の解析装置151を備えてもよい。 FIG. 5 representatively shows four monitoring devices 111 provided corresponding to one current collecting unit 60, but a larger or smaller number of monitoring devices 111 may be provided. In addition, the monitoring system 301 includes one analysis device 151, but may include a plurality of analysis devices 151.
 監視システム301では、子機である監視装置111におけるセンサの情報が、解析装置151へ定期的または不定期に伝送される。 In the monitoring system 301, sensor information in the monitoring device 111 which is a slave is transmitted to the analysis device 151 regularly or irregularly.
 監視装置111は、たとえば集電ユニット60に設けられている。より詳細には、監視装置111は、4つの太陽電池ユニット74にそれぞれ対応して4つ設けられている。各監視装置111は、たとえば、対応の出力ライン1および集約ライン5に電気的に接続されている。 The monitoring device 111 is provided in the current collecting unit 60, for example. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is electrically connected to the corresponding output line 1 and aggregation line 5, for example.
 監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電流をセンサにより計測する。また、監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電圧をセンサにより計測する。 The monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 with a sensor. Moreover, the monitoring apparatus 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 with a sensor.
 解析装置151は、たとえばPCS8の近傍に設けられている。より詳細には、解析装置151は、PCS8に対応して設けられ、信号線46を介して銅バー7に電気的に接続されている。 The analysis device 151 is provided in the vicinity of the PCS 8, for example. More specifically, the analysis device 151 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
 監視装置111および解析装置151は、集約ライン2,5を介して電力線通信(PLC:Power Line Communication)を行うことにより情報の送受信を行う。 The monitoring device 111 and the analysis device 151 perform transmission / reception of information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
 [監視装置111の構成]
 図6は、本発明の実施の形態に係る監視システムにおける監視装置の構成を示す図である。図6では、出力ライン1、集約ライン5および銅バー77がより詳細に示されている。
[Configuration of Monitoring Device 111]
FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention. In FIG. 6, the output line 1, the aggregation line 5 and the copper bar 77 are shown in more detail.
 図6を参照して、出力ライン1は、プラス側出力ライン1pと、マイナス側出力ライン1nとを含む。集約ライン5は、プラス側集約ライン5pと、マイナス側集約ライン5nとを含む。銅バー77は、プラス側銅バー77pと、マイナス側銅バー77nとを含む。 Referring to FIG. 6, output line 1 includes a plus side output line 1p and a minus side output line 1n. Aggregation line 5 includes a plus-side aggregation line 5p and a minus-side aggregation line 5n. The copper bar 77 includes a plus side copper bar 77p and a minus side copper bar 77n.
 図示しないが、図3に示す集電箱71における銅バー72は、プラス側集約ライン5pおよびマイナス側集約ライン5nにそれぞれ対応して、プラス側銅バー72pおよびマイナス側銅バー72nを含む。 Although not shown, the copper bar 72 in the current collection box 71 shown in FIG. 3 includes a plus-side copper bar 72p and a minus-side copper bar 72n corresponding to the plus-side aggregation line 5p and the minus-side aggregation line 5n, respectively.
 プラス側出力ライン1pは、対応の発電部78に接続された第1端と、プラス側銅バー77pに接続された第2端とを有する。マイナス側出力ライン1nは、対応の発電部78に接続された第1端と、マイナス側銅バー77nに接続された第2端とを有する。 The plus side output line 1p has a first end connected to the corresponding power generation unit 78 and a second end connected to the plus side copper bar 77p. The negative side output line 1n has a first end connected to the corresponding power generation unit 78 and a second end connected to the negative side copper bar 77n.
 プラス側集約ライン5pは、プラス側銅バー77pに接続された第1端と、集電箱71におけるプラス側銅バー72pに接続された第2端とを有する。マイナス側集約ライン5nは、マイナス側銅バー77nに接続された第1端と、集電箱71におけるマイナス側銅バー72nに接続された第2端とを有する。 The plus side aggregation line 5p has a first end connected to the plus side copper bar 77p and a second end connected to the plus side copper bar 72p in the current collection box 71. The minus-side aggregate line 5n has a first end connected to the minus-side copper bar 77n and a second end connected to the minus-side copper bar 72n in the current collection box 71.
 監視装置111は、検出処理部11と、4つの電流センサ16と、電圧センサ17と、通信部14とを備える。なお、監視装置111は、出力ライン1の数に応じて、さらに多数または少数の電流センサ16を備えてもよい。 The monitoring device 111 includes a detection processing unit 11, four current sensors 16, a voltage sensor 17, and a communication unit 14. Note that the monitoring device 111 may further include a large number or a small number of current sensors 16 depending on the number of output lines 1.
 監視装置111は、たとえば、発電部78の近傍に設けられている。具体的には、監視装置111は、たとえば、計測対象の出力ライン1が接続された銅バー77が設けられた接続箱76の内部に設けられている。なお、監視装置111は、接続箱76の外部に設けられてもよい。 The monitoring device 111 is provided in the vicinity of the power generation unit 78, for example. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. Note that the monitoring device 111 may be provided outside the connection box 76.
 監視装置111は、たとえば、プラス側集約ライン5pおよびマイナス側集約ライン5nとそれぞれプラス側電源線26pおよびマイナス側電源線26nを介して電気的に接続されている。以下、プラス側電源線26pおよびマイナス側電源線26nの各々を、電源線26とも称する。 The monitoring device 111 is electrically connected to, for example, the plus-side aggregate line 5p and the minus-side aggregate line 5n via the plus-side power line 26p and the minus-side power line 26n, respectively. Hereinafter, each of the plus-side power line 26p and the minus-side power line 26n is also referred to as a power line 26.
 監視装置111における通信部14は、集約ラインを介した電力線通信を、複数の監視装置111の計測結果を収集する解析装置151と行うことが可能である。より詳細には、通信部14は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、通信部14は、電源線26および集約ライン2,5を介して解析装置151と電力線通信を行う。 The communication unit 14 in the monitoring device 111 can perform power line communication via the aggregation line with the analysis device 151 that collects the measurement results of the plurality of monitoring devices 111. More specifically, the communication unit 14 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the communication unit 14 performs power line communication with the analysis device 151 via the power line 26 and the aggregation lines 2 and 5.
 電流センサ16は、出力ライン1の電流を計測する。より詳細には、電流センサ16は、たとえば、ホール素子タイプの電流プローブである。電流センサ16は、監視装置111の図示しない電源回路から受けた電力を用いて、対応のマイナス側出力ライン1nを通して流れる電流を6秒ごとに計測し、計測値を示す信号を検出処理部11へ出力する。なお、電流センサ16は、プラス側出力ライン1pを通して流れる電流を計測してもよい。 The current sensor 16 measures the current of the output line 1. More specifically, the current sensor 16 is, for example, a Hall element type current probe. The current sensor 16 measures the current flowing through the corresponding negative output line 1n every 6 seconds using the power received from the power supply circuit (not shown) of the monitoring device 111, and sends a signal indicating the measured value to the detection processing unit 11. Output. The current sensor 16 may measure a current flowing through the plus side output line 1p.
 検出処理部11は、第1の期間として、たとえば1分間の計測値、すなわち電流センサ16から受けた信号の示す10回分の計測値の平均値Mを算出し、判定部12へ出力する。 The detection processing unit 11 calculates, for example, a measurement value for one minute, that is, an average value M of ten measurement values indicated by a signal received from the current sensor 16 as the first period, and outputs the average value M to the determination unit 12.
 判定部12は、第1の期間にわたる計測結果から第1の基準を用いて、発電部78に関する異常を判定する。 The determination unit 12 determines an abnormality related to the power generation unit 78 using the first reference from the measurement result over the first period.
 たとえば、太陽電池パネル79を接続する配線が断線したり、太陽電池パネル79の発熱により内部配線が断線したりする場合、平均値Mは、直前の第1の期間の平均値Mと比べて急激に低下する。 For example, when the wiring connecting the solar cell panel 79 is disconnected or the internal wiring is disconnected due to the heat generated by the solar cell panel 79, the average value M is sharper than the average value M of the immediately preceding first period. To drop.
 判定部12は、第1の基準を用いて、このような短期間における平均値Mの急激な低下を異常と判定する。 The determination unit 12 determines that such a rapid decrease in the average value M in a short period is abnormal using the first reference.
 第1の基準は、たとえば、平均値Mが前回算出した平均値Mと比べて所定値以上低下したか否かである。 The first standard is, for example, whether or not the average value M has decreased by a predetermined value or more compared to the average value M calculated last time.
 判定部12は、第1の基準を用いて、平均値Mが前回算出した平均値Mと比べて所定値以上低下した場合、対応の発電部78が異常であると判定し、異常である旨の情報(以下、第1異常情報とも称する。)および平均値Mを通信部14へ出力する。 The determination unit 12 determines that the corresponding power generation unit 78 is abnormal when the average value M decreases by a predetermined value or more using the first reference, compared to the previously calculated average value M. (Hereinafter also referred to as first abnormality information) and the average value M are output to the communication unit 14.
 また、判定部12は、発電部78が正常であると判定した場合、平均値Mを通信部14へ出力する。 Further, when the determination unit 12 determines that the power generation unit 78 is normal, the determination unit 12 outputs the average value M to the communication unit 14.
 通信部14は、発電部78の出力の計測結果に基づく第1のデータたとえば平均値Mを、自己および解析装置151に接続される電力線を介して送信する。 The communication unit 14 transmits the first data based on the measurement result of the output of the power generation unit 78, for example, the average value M, via the power line connected to itself and the analysis device 151.
 より詳細には、通信部14は、たとえば、送信元IDが自己の監視装置IDであり、送信先IDが解析装置151のIDであり、データ部分が平均値Mであるパケットを作成して解析装置151へ送信する。 More specifically, for example, the communication unit 14 creates and analyzes a packet in which the transmission source ID is its own monitoring device ID, the transmission destination ID is the ID of the analysis device 151, and the data portion is the average value M. Transmit to device 151.
 また、通信部14は、第1のデータを送信するとともに、判定部12が判定した異常を解析装置151に通知する処理を行う。 In addition, the communication unit 14 transmits the first data and performs a process of notifying the analyzer 151 of the abnormality determined by the determination unit 12.
 より詳細には、通信部14は、上記パケットのデータ部分に第1異常情報を含めて解析装置151へ送信する。 More specifically, the communication unit 14 includes the first abnormality information in the data portion of the packet and transmits it to the analysis device 151.
 なお、通信部14は、第1のデータとしてデータ部分が電流センサ16から受けた信号の示す計測値であるパケットを送信してもよい。または、通信部14は、第1のデータとしてデータ部分が第1の期間とは異なる長さの期間における計測値の平均値であるパケットを送信してもよい。 In addition, the communication part 14 may transmit the packet which is a measured value which the data part shows from the current sensor 16 as 1st data. Alternatively, the communication unit 14 may transmit, as the first data, a packet whose data portion is an average value of measurement values in a period having a length different from that of the first period.
 また、第1の期間は、たとえば6秒間であってもよい。この場合、判定部12は、電流センサ16から受けた信号の示す1つの計測値に基づいて、発電部78に関する異常を判定する。判定部12は、たとえば、第1の基準を用いて、当該計測値の急激な低下を異常と判定する。 Also, the first period may be, for example, 6 seconds. In this case, the determination unit 12 determines an abnormality related to the power generation unit 78 based on one measurement value indicated by the signal received from the current sensor 16. The determination unit 12 determines, for example, that the rapid decrease in the measured value is abnormal using the first reference.
 また、判定部12は、電流センサ16から受けた信号の示す10回分の計測値の最大値に基づいて、発電部78に関する異常を判定してもよい。 Further, the determination unit 12 may determine an abnormality related to the power generation unit 78 based on the maximum value of ten measurement values indicated by the signal received from the current sensor 16.
 また、判定部12は、電流センサ16の計測値の平均値から異常を判定する構成に限らず、電圧センサ17の計測値の平均値から異常を判定する構成であってもよい。 Further, the determination unit 12 is not limited to the configuration for determining abnormality from the average value of the measurement values of the current sensor 16, and may be configured to determine the abnormality from the average value of the measurement values of the voltage sensor 17.
 より詳細には、電圧センサ17は、出力ライン1の電圧を計測する。たとえば、電圧センサ17は、プラス側銅バー77pおよびマイナス側銅バー77n間の電圧を6秒ごとに計測し、計測値を示す信号を検出処理部11へ出力する。 More specifically, the voltage sensor 17 measures the voltage of the output line 1. For example, the voltage sensor 17 measures the voltage between the plus-side copper bar 77p and the minus-side copper bar 77n every 6 seconds, and outputs a signal indicating the measured value to the detection processing unit 11.
 検出処理部11は、第1の期間として、たとえば1分間の計測値、すなわち電圧センサ17から受けた信号の示す10回分の計測値の平均値Mを算出し、判定部12へ出力する。 The detection processing unit 11 calculates, for example, a measurement value for one minute, that is, an average value M of ten measurement values indicated by a signal received from the voltage sensor 17 as the first period, and outputs the average value M to the determination unit 12.
 また、判定部12は、電流センサ16の計測値に基づいて、異常を判定する構成に限らず、電流センサ16の計測値および電圧センサ17の計測値を乗じて発電電力を算出し、算出した発電電力に基づいて、異常を判定する構成であってもよい。 The determination unit 12 calculates the generated power by multiplying the measurement value of the current sensor 16 and the measurement value of the voltage sensor 17 without being limited to the configuration for determining abnormality based on the measurement value of the current sensor 16. A configuration may be used in which an abnormality is determined based on the generated power.
 [解析装置の構成および動作]
 図7は、本発明の実施の形態に係る監視システムにおける解析装置の構成を示す図である。
[Configuration and operation of analyzer]
FIG. 7 is a diagram showing the configuration of the analysis device in the monitoring system according to the embodiment of the present invention.
 図7を参照して、解析装置151は、判定部81と、生成部82と、通知部83と、通信処理部84と、記憶部85とを備える。 Referring to FIG. 7, the analysis device 151 includes a determination unit 81, a generation unit 82, a notification unit 83, a communication processing unit 84, and a storage unit 85.
 解析装置151は、監視装置111から送信された第1のデータを受信する。そして、解析装置151は、受信した第1のデータを蓄積する。 The analysis device 151 receives the first data transmitted from the monitoring device 111. Then, the analysis device 151 accumulates the received first data.
 より詳細には、再び図5を参照して、通信処理部84は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、通信処理部84は、たとえば、信号線46および集約ライン2,5を介して監視装置111と電力線通信を行い、第1のデータを複数の監視装置111から受信する。 More specifically, referring to FIG. 5 again, the communication processing unit 84 can transmit and receive information via the aggregation lines 2 and 5. Specifically, for example, the communication processing unit 84 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, and receives first data from the plurality of monitoring devices 111.
 通信処理部84は、監視装置111から第1のデータを受信すると、受信した第1のデータを記憶部85に保存する。 When the communication processing unit 84 receives the first data from the monitoring device 111, the communication processing unit 84 stores the received first data in the storage unit 85.
 また、解析装置151は、監視装置111から通知された異常を通知する処理を行う。 Also, the analysis device 151 performs a process of notifying the abnormality notified from the monitoring device 111.
 より詳細には、通信処理部84は、受信した第1のデータに第1異常情報が含まれる場合、第1異常情報を通知部83へ出力する。 More specifically, the communication processing unit 84 outputs the first abnormality information to the notification unit 83 when the first abnormality information is included in the received first data.
 通知部83は、通信処理部84から受けた第1異常情報を、たとえば、e-mail等の形式にしてネットワーク経由でサーバ等の外部の装置へ送信する。 The notification unit 83 transmits the first abnormality information received from the communication processing unit 84 to an external device such as a server via a network in a format such as e-mail.
 解析装置151は、蓄積した第1のデータに基づいて、第1のデータの時間的な粒度を粗くした第2のデータを生成する。 The analysis device 151 generates second data with coarse temporal granularity of the first data based on the accumulated first data.
 より詳細には、生成部82は、たとえば、記憶部85に蓄積された各第1のデータから、10分間隔のデータを第2の期間たとえば1日分選択し、選択した各第1のデータを時系列に並べた第2のデータを生成して記憶部85に保存するとともに、判定部81へ出力する。 More specifically, for example, the generation unit 82 selects 10-minute intervals of data for a second period, for example, one day from each first data accumulated in the storage unit 85, and selects each selected first data Are generated and stored in the storage unit 85 and output to the determination unit 81.
 なお、第2の期間は、第1の期間より長ければよく、たとえば、10分間、1時間または1週間である。 The second period only needs to be longer than the first period, and is, for example, 10 minutes, 1 hour, or 1 week.
 また、生成部82は、生成した第2のデータに対応する1日分の各第1のデータを記憶部85から削除する。 Further, the generation unit 82 deletes the first data for one day corresponding to the generated second data from the storage unit 85.
 判定部81は、第2の期間にわたる第2のデータから第2の基準を用いて発電部78に関する異常を判定する。 The determination part 81 determines the abnormality regarding the electric power generation part 78 using the 2nd reference | standard from the 2nd data over a 2nd period.
 図8は、異常と判定される第2のデータの一例を示す図である。図8において、横軸は時間を示し、縦軸は発電電力を示す。グラフD1は、ある1日の発電部78の発電電力を示し、グラフD2は、次の日の発電部78の発電電力を示す。 FIG. 8 is a diagram illustrating an example of second data determined to be abnormal. In FIG. 8, the horizontal axis indicates time, and the vertical axis indicates generated power. The graph D1 shows the generated power of the power generation unit 78 on a certain day, and the graph D2 shows the generated power of the power generation unit 78 on the next day.
 図8を参照して、たとえば、太陽電池パネル79の表面のガラス破損、影または天気等の影響により十分に発電できない場合、発電部78の発電電力は、グラフD2に示すように前日の発電電力と比べて低下する。 Referring to FIG. 8, for example, when sufficient power generation is not possible due to glass damage on the surface of solar cell panel 79, shadows, weather, or the like, the power generation unit 78 generates power of the previous day as shown in graph D2. It is lower than
 判定部81は、第2の基準を用いて、このような発電電力の低下を異常と判定する。 The determination unit 81 determines such a decrease in generated power as abnormal using the second reference.
 第2の基準は、たとえば、発電電力が前日と比べて所定値以上低下しているか否かである。 The second standard is, for example, whether or not the generated power has decreased by a predetermined value or more compared to the previous day.
 判定部81は、発電電力が前日と比べて所定値以上低下している場合、対応の発電部78を異常であると判定し、異常である旨の情報(以下、第2異常情報とも称する。)を通知部83へ出力する。 The determination unit 81 determines that the corresponding power generation unit 78 is abnormal when the generated power has decreased by a predetermined value or more compared to the previous day, and also indicates information indicating abnormality (hereinafter also referred to as second abnormality information). ) To the notification unit 83.
 また、第2の基準は、たとえば、ある発電部78の発電電力が他の発電部78の発電電力と比べて所定値以上低下しているか否かであってもよい。 Further, the second reference may be, for example, whether or not the generated power of one power generation unit 78 is lower than a predetermined value as compared with the generated power of another power generation unit 78.
 判定部81は、ある発電部78の発電電力が他の発電部78の発電電力と比べて所定値以上低下している場合、対応の発電部78を異常であると判定し、異常である旨の情報(以下、第2異常情報とも称する。)を通知部83へ出力する。 The determination unit 81 determines that the corresponding power generation unit 78 is abnormal when the power generation power of a certain power generation unit 78 is lower than a predetermined value compared to the power generation power of other power generation units 78, and is abnormal. (Hereinafter also referred to as second abnormality information) is output to the notification unit 83.
 このように、第2の基準を用いて判定される異常の種類は、第1の基準を用いて判定される異常の種類と異なる。 Thus, the type of abnormality determined using the second standard is different from the type of abnormality determined using the first standard.
 通知部83は、判定部81から受けた第2異常情報を通知する処理を行う。たとえば、第2の基準を用いて判定される異常の通知内容は、第1の基準を用いて判定される異常の通知内容と異なる。 The notification unit 83 performs a process of notifying the second abnormality information received from the determination unit 81. For example, the abnormality notification content determined using the second criterion is different from the abnormality notification content determined using the first criterion.
 より詳細には、通知部83は、判定部81から受けた第2異常情報を、たとえば、e-mail等の形式にしてネットワーク経由でサーバ等の外部の装置へ送信する。第2異常情報は、たとえば、異常の度合いがレベルにより区別される場合、第1異常情報と異なるレベルで通知される。 More specifically, the notification unit 83 transmits the second abnormality information received from the determination unit 81 to an external device such as a server via the network in the form of e-mail, for example. For example, when the degree of abnormality is distinguished by the level, the second abnormality information is notified at a level different from that of the first abnormality information.
 また、たとえば、解析装置151は、第2のデータを生成し、生成した第2のデータに基づいて、第2のデータの時間的な粒度を粗くした第3のデータを生成し、第2の期間より長い第3の期間にわたる第3のデータから第3の基準を用いて発電部78に関する異常を判定する。 Further, for example, the analysis device 151 generates the second data, generates the third data in which the temporal granularity of the second data is coarse based on the generated second data, and the second data An abnormality related to the power generation unit 78 is determined from the third data over the third period longer than the period using the third reference.
 より詳細には、生成部82は、たとえば、記憶部85に蓄積された各第2のデータから、1日のうちで発電電力が最大値を示すデータを第3の期間たとえば1年分選択し、選択した各第2のデータを時系列に並べた第3のデータを生成して記憶部85に保存するとともに、判定部81へ出力する。 More specifically, for example, the generation unit 82 selects, from the second data accumulated in the storage unit 85, data indicating the maximum value of generated power in one day for the third period, for example, one year. Then, third data obtained by arranging the selected second data in time series is generated and stored in the storage unit 85 and is output to the determination unit 81.
 なお、第3の期間は、第2の期間より長ければよく、たとえば、1日、1週間または1月である。 Note that the third period may be longer than the second period, for example, one day, one week, or one month.
 また、生成部82は、生成した第3のデータに対応する1年分の各第2のデータを記憶部85から削除する。 Further, the generation unit 82 deletes each second data for one year corresponding to the generated third data from the storage unit 85.
 図9は、異常と判定される第3のデータの一例を示す図である。図9において、横軸は時間を示し、縦軸は発電電力を示す。グラフY1は、1年間で発電部78の発電する理想的な発電電力を示し、グラフY2は、ある1年間の発電部78の発電電力を示す。 FIG. 9 is a diagram illustrating an example of third data determined to be abnormal. In FIG. 9, the horizontal axis indicates time, and the vertical axis indicates generated power. A graph Y1 shows ideal generated power generated by the power generation unit 78 in one year, and a graph Y2 shows power generated by the power generation unit 78 in a certain year.
 図9を参照して、発電部78の発電電力は、たとえば、太陽電池パネル79の経年劣化、太陽電池パネル79における配線の半田の高抵抗化、または太陽電池パネル79の内部への水分の侵入等により、徐々に低下する。 Referring to FIG. 9, the generated power of power generation unit 78 is, for example, aged deterioration of solar cell panel 79, increased resistance of wiring solder in solar cell panel 79, or moisture intrusion into solar cell panel 79. Etc., gradually decrease.
 判定部81は、第3の基準を用いて、このように発電電力が徐々に低下する状態を異常と判定する。 The determination unit 81 determines that the state in which the generated power gradually decreases as described above is abnormal using the third reference.
 第3の基準は、たとえば、発電電力が所定期間において所定値以上低下しているか否かである。 The third standard is, for example, whether or not the generated power has decreased by a predetermined value or more in a predetermined period.
 判定部81は、発電電力が所定期間において徐々に低下している場合、対応の発電部78を異常であると判定し、異常である旨の情報(以下、第3異常情報とも称する。)を通知部83へ出力する。 The determination unit 81 determines that the corresponding power generation unit 78 is abnormal when the generated power is gradually decreased in the predetermined period, and information indicating that the power generation unit 78 is abnormal (hereinafter also referred to as third abnormality information). Output to the notification unit 83.
 通知部83は、判定部81から受けた第3異常情報を、たとえば、e-mail等の形式にしてネットワーク経由でサーバ等の外部の装置へ送信する。 The notification unit 83 transmits the third abnormality information received from the determination unit 81 to an external device such as a server via a network in a format such as e-mail.
 このように、第3の基準を用いて判定される異常の種類は、第1の基準および第2の基準を用いてそれぞれ判定される異常の種類と異なる。 Thus, the type of abnormality determined using the third standard is different from the type of abnormality determined using the first standard and the second standard, respectively.
 通知部83は、判定部81から受けた第3異常情報を通知する処理を行う。たとえば、第3の基準を用いて判定される異常の通知内容は、第1の基準および第2の基準を用いてそれぞれ判定される異常の通知内容と異なる。 The notification unit 83 performs a process of notifying the third abnormality information received from the determination unit 81. For example, the abnormality notification content determined using the third criterion is different from the abnormality notification content determined using the first criterion and the second criterion, respectively.
 より詳細には、通知部83は、判定部81から受けた第3異常情報を、たとえば、e-mail等の形式にしてネットワーク経由でサーバ等の外部の装置へ送信する。第3異常情報は、たとえば、異常の度合いがレベルにより区別される場合、第1異常情報および第2異常情報と異なるレベルで通知される。 More specifically, the notification unit 83 transmits the third abnormality information received from the determination unit 81 to an external device such as a server via the network in a format such as e-mail. For example, when the degree of abnormality is distinguished by the level, the third abnormality information is notified at a level different from the first abnormality information and the second abnormality information.
 [変形例]
 監視システム301は、複数の監視装置111と、解析装置151と、収集装置131とを含む構成であってもよい。
[Modification]
The monitoring system 301 may be configured to include a plurality of monitoring devices 111, an analysis device 151, and a collection device 131.
 図10は、本発明の実施の形態に係る監視システムの構成の他の例を示す図である。 FIG. 10 is a diagram showing another example of the configuration of the monitoring system according to the embodiment of the present invention.
 図10では、1つの集電ユニット60に対応して設けられた4つの監視装置111を代表的に示しているが、さらに多数または少数の監視装置111が設けられてもよい。また、監視システム301は、1つの収集装置131を含んでいるが、複数の収集装置131が含まれてもよい。 10 representatively shows four monitoring devices 111 provided corresponding to one current collection unit 60, but a larger or smaller number of monitoring devices 111 may be provided. Moreover, although the monitoring system 301 includes one collection device 131, a plurality of collection devices 131 may be included.
 収集装置131は、たとえばPCS8の近傍に設けられている。より詳細には、収集装置131は、PCS8に対応して設けられ、信号線46を介して銅バー7に電気的に接続されている。 The collection device 131 is provided in the vicinity of the PCS 8, for example. More specifically, the collection device 131 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
 収集装置131は、監視装置111からの第1のデータおよび第1異常情報を含むパケットを収集する。より詳細には、監視装置111は、集約ライン2,5を介して電力線通信を行うことにより第1のデータおよび第1異常情報を含むパケットを収集装置131へ送信する。 The collection device 131 collects packets including the first data from the monitoring device 111 and the first abnormality information. More specifically, the monitoring device 111 transmits a packet including the first data and the first abnormality information to the collection device 131 by performing power line communication via the aggregation lines 2 and 5.
 収集装置131は、監視装置111から受信したパケットを、たとえばネットワークを介して解析装置151へ送信する。なお、収集装置131は、監視装置111から受信したパケットを、たとえば図示しない記憶部に蓄積し、定期的に解析装置151へ送信する構成であってもよい。 The collection device 131 transmits the packet received from the monitoring device 111 to the analysis device 151 via a network, for example. The collection device 131 may be configured to accumulate the packets received from the monitoring device 111, for example, in a storage unit (not shown) and periodically transmit the packets to the analysis device 151.
 解析装置151は、ネットワークを介して、1または複数の収集装置131から送信されたパケットに含まれる第1のデータを受信する。そして、解析装置151は、受信した第1のデータを蓄積する。 The analysis device 151 receives first data included in a packet transmitted from one or a plurality of collection devices 131 via a network. Then, the analysis device 151 accumulates the received first data.
 [動作の流れ]
 監視システム301における各装置は、コンピュータを備え、当該コンピュータにおけるCPU等の演算処理部は、以下のシーケンス図またはフローチャートの各ステップの一部または全部を含むプログラムを図示しないメモリからそれぞれ読み出して実行する。これら複数の装置のプログラムは、それぞれ、外部からインストールすることができる。これら複数の装置のプログラムは、それぞれ、記録媒体に格納された状態で流通する。
[Flow of operation]
Each device in the monitoring system 301 includes a computer, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following sequence diagram or flowchart from a memory (not shown). . Each of the programs of the plurality of apparatuses can be installed from the outside. The programs of the plurality of apparatuses are distributed while being stored in a recording medium.
 図11は、本発明の実施の形態に係る監視システムが発電部に関する異常を判定し、通知する際のシーケンス図である。 FIG. 11 is a sequence diagram when the monitoring system according to the embodiment of the present invention determines and notifies an abnormality related to the power generation unit.
 図11を参照して、まず、監視装置111は、太陽電池パネル79を含む発電部78の出力を計測する(ステップS101)。 Referring to FIG. 11, first, monitoring device 111 measures the output of power generation unit 78 including solar cell panel 79 (step S101).
 次に、監視装置111は、第1の期間にわたる計測結果から第1の基準を用いて発電部78に関する異常を判定する(ステップS102)。 Next, the monitoring device 111 determines an abnormality related to the power generation unit 78 using the first reference from the measurement result over the first period (step S102).
 次に、監視装置111は、発電部78の出力の計測結果に基づく第1のデータを生成する(ステップS103)。 Next, the monitoring device 111 generates first data based on the measurement result of the output of the power generation unit 78 (step S103).
 次に、監視装置111は、第1のデータを解析装置151へ送信する。そして、解析装置151は、監視装置111からの第1のデータを受信する(ステップS104)。 Next, the monitoring device 111 transmits the first data to the analysis device 151. And the analysis apparatus 151 receives the 1st data from the monitoring apparatus 111 (step S104).
 また、監視装置111は、発電部78を異常と判定した場合、第1異常情報を解析装置151へ送信する(ステップS105)。 Further, when the monitoring device 111 determines that the power generation unit 78 is abnormal, the monitoring device 111 transmits the first abnormality information to the analysis device 151 (step S105).
 次に、解析装置151は、受信した第1のデータを記憶部85に蓄積する(ステップS106)。 Next, the analysis device 151 accumulates the received first data in the storage unit 85 (step S106).
 また、解析装置151は、監視装置111から第1異常情報を受信した場合、第1異常情報をサーバへ送信する(ステップS107)。 Further, when the analysis apparatus 151 receives the first abnormality information from the monitoring apparatus 111, the analysis apparatus 151 transmits the first abnormality information to the server (step S107).
 同様に、監視装置111および解析装置151は、ステップS101~ステップS107の動作を繰り返す。 Similarly, the monitoring device 111 and the analysis device 151 repeat the operations from step S101 to step S107.
 次に、解析装置151は、蓄積した第1のデータに基づいて、第1のデータの時間的な粒度を粗くした第2のデータを生成する(ステップS108)。 Next, the analysis device 151 generates second data in which the temporal granularity of the first data is coarse based on the accumulated first data (step S108).
 次に、解析装置151は、第1の期間より長い第2の期間にわたる第2のデータから第2の基準を用いて発電部78に関する異常を判定する(ステップS109)。 Next, the analysis apparatus 151 determines an abnormality related to the power generation unit 78 using the second reference from the second data over the second period longer than the first period (step S109).
 次に、解析装置151は、発電部78を異常と判定した場合、第2異常情報をサーバへ送信する(ステップS110)。 Next, when the analysis device 151 determines that the power generation unit 78 is abnormal, the analysis device 151 transmits second abnormality information to the server (step S110).
 同様に、解析装置151は、ステップS108~ステップS110の動作を繰り返す。 Similarly, the analyzing apparatus 151 repeats the operations from step S108 to step S110.
 次に、解析装置151は、蓄積した第2のデータに基づいて、第2のデータの時間的な粒度を粗くした第3のデータを生成する(ステップS111)。 Next, the analysis device 151 generates third data in which the temporal granularity of the second data is coarse based on the accumulated second data (step S111).
 次に、解析装置151は、第2の期間より長い第3の期間にわたる第3のデータから第3の基準を用いて発電部78に関する異常を判定する(ステップS112)。 Next, the analysis device 151 determines an abnormality related to the power generation unit 78 using the third reference from the third data over the third period longer than the second period (step S112).
 次に、解析装置151は、発電部78を異常と判定した場合、第3異常情報をサーバへ送信する(ステップS113)。 Next, when the analysis device 151 determines that the power generation unit 78 is abnormal, the analysis device 151 transmits third abnormality information to the server (step S113).
 同様に、解析装置151は、ステップS111~ステップS113の動作を繰り返す。 Similarly, the analyzing apparatus 151 repeats the operations in steps S111 to S113.
 なお、ステップS104およびステップS105の順番は、上記に限らず、順番を入れ替えてもよい。 The order of step S104 and step S105 is not limited to the above, and the order may be changed.
 また、ステップS106およびステップS107の順番は、上記に限らず、順番を入れ替えてもよい。 Further, the order of step S106 and step S107 is not limited to the above, and the order may be changed.
 図12は、本発明の実施の形態に係る監視装置が発電部に関する異常を判定し、解析装置へ通知する際の動作手順を定めたフローチャートである。 FIG. 12 is a flowchart that defines an operation procedure when the monitoring apparatus according to the embodiment of the present invention determines an abnormality related to the power generation unit and notifies the analysis apparatus.
 図12を参照して、まず、監視装置111は、太陽電池パネル79を含む発電部78の出力を計測する(ステップS201)。 Referring to FIG. 12, first, monitoring device 111 measures the output of power generation unit 78 including solar cell panel 79 (step S201).
 次に、監視装置111は、発電部78の出力の計測結果に基づく第1のデータを生成する(ステップS202)。 Next, the monitoring device 111 generates first data based on the measurement result of the output of the power generation unit 78 (step S202).
 次に、監視装置111は、第1の期間にわたる計測結果から第1の基準を用いて発電部78に関する異常を判定する(ステップS203)。 Next, the monitoring device 111 determines an abnormality related to the power generation unit 78 using the first reference from the measurement result over the first period (step S203).
 監視装置111は、発電部78を異常と判定した場合(ステップS203でYES)、第1異常情報をパケットに含める(ステップS204)。 When the monitoring device 111 determines that the power generation unit 78 is abnormal (YES in step S203), the monitoring device 111 includes the first abnormality information in the packet (step S204).
 次に、監視装置111は、第1のデータおよび第1異常情報を含むパケットを解析装置151へ送信する(ステップS205)。 Next, the monitoring device 111 transmits a packet including the first data and the first abnormality information to the analysis device 151 (step S205).
 一方、監視装置111は、発電部78を正常と判定した場合(ステップS203でNO)、第1のデータを含むパケットを解析装置151へ送信する(ステップS205)。 On the other hand, when the monitoring device 111 determines that the power generation unit 78 is normal (NO in step S203), the monitoring device 111 transmits a packet including the first data to the analysis device 151 (step S205).
 図13は、本発明の実施の形態に係る解析装置が発電部に関する異常を判定し、外部の装置に通知する際の動作手順を定めたフローチャートである。 FIG. 13 is a flowchart defining an operation procedure when the analysis apparatus according to the embodiment of the present invention determines an abnormality related to the power generation unit and notifies an external apparatus.
 図13を参照して、まず、解析装置151における通信処理部84は、監視装置111から第1のデータを含むパケットを受信する(ステップS301)。 Referring to FIG. 13, first, the communication processing unit 84 in the analysis device 151 receives a packet including the first data from the monitoring device 111 (step S301).
 次に、解析装置151は、受信したパケットに含まれる第1のデータを記憶部85に蓄積する(ステップS302)。 Next, the analysis device 151 accumulates the first data included in the received packet in the storage unit 85 (step S302).
 次に、解析装置151は、受信したパケットに第1異常情報が存在する場合(ステップS303でYES)、第1異常情報をサーバへ送信する(ステップS304)。 Next, when the first abnormality information is present in the received packet (YES in step S303), the analysis apparatus 151 transmits the first abnormality information to the server (step S304).
 次に、解析装置151における生成部82は、蓄積した第1のデータに基づいて、第1のデータの時間的な粒度を粗くした第2のデータを生成して蓄積する(ステップS305)。 Next, the generation unit 82 in the analysis device 151 generates and stores second data with coarse temporal granularity of the first data based on the stored first data (step S305).
 一方、解析装置151は、受信したパケットに第1異常情報が存在しない場合(ステップS303でNO)、蓄積した第1のデータに基づいて、第1のデータの時間的な粒度を粗くした第2のデータを生成して蓄積する(ステップS305)。 On the other hand, when the first abnormality information does not exist in the received packet (NO in step S303), the analysis device 151 sets the second granularity of the first data based on the accumulated first data. Are generated and stored (step S305).
 次に、解析装置151は、第1の期間より長い第2の期間にわたる第2のデータから第2の基準を用いて発電部78に関する異常を判定する(ステップS306)。 Next, the analysis device 151 determines an abnormality related to the power generation unit 78 using the second reference from the second data over the second period longer than the first period (step S306).
 次に、解析装置151は、発電部78を異常と判定した場合(ステップS306でYES)、第2異常情報をサーバへ送信する(ステップS307)。 Next, when it is determined that the power generation unit 78 is abnormal (YES in step S306), the analysis device 151 transmits the second abnormality information to the server (step S307).
 次に、解析装置151は、蓄積した第2のデータに基づいて、第2のデータの時間的な粒度を粗くした第3のデータを生成して蓄積する(ステップS308)。 Next, the analysis device 151 generates and accumulates third data in which the temporal granularity of the second data is coarse based on the accumulated second data (step S308).
 次に、解析装置151は、第2の期間より長い第3の期間にわたる第3のデータから第3の基準を用いて発電部78に関する異常を判定する(ステップS309)。 Next, the analysis device 151 determines an abnormality related to the power generation unit 78 using the third reference from the third data over the third period longer than the second period (step S309).
 次に、解析装置151は、発電部78を異常と判定した場合(ステップS309でYES)、第3異常情報をサーバへ送信する(ステップS310)。 Next, when the analysis device 151 determines that the power generation unit 78 is abnormal (YES in step S309), the analysis device 151 transmits the third abnormality information to the server (step S310).
 次に、解析装置151は、次の第1のデータを受信するまで待機する(ステップS301)。 Next, the analysis device 151 waits until the next first data is received (step S301).
 一方、解析装置151は、発電部78を正常と判定した場合(ステップS309でNO)、新たなパケットを受信するまで待機する(ステップS301)。 On the other hand, when determining that the power generation unit 78 is normal (NO in step S309), the analysis device 151 waits until a new packet is received (step S301).
 なお、監視装置111および解析装置151は、発電部78自体が異常であるか否かを判定する構成に限らず、たとえば、発電部78の周囲の状況に起因して発電部78の出力が低下する等の状態を、発電部78に関する異常として判定する構成であってもよい。 The monitoring device 111 and the analysis device 151 are not limited to the configuration for determining whether or not the power generation unit 78 itself is abnormal. For example, the output of the power generation unit 78 is reduced due to the situation around the power generation unit 78. A configuration may be adopted in which a state such as being performed is determined as an abnormality relating to the power generation unit 78.
 なお、本発明の実施の形態に係る監視システムでは、第1の基準を用いて判定される異常の種類および通知内容と、第2の基準を用いて判定される異常の種類および通知内容とは、それぞれ異なる構成であるとしたが、これに限定するものではない。第1の基準を用いて判定される異常の種類および通知内容と、第2の基準を用いて判定される異常の種類および通知内容とは、それぞれ同一であってもよい。 In the monitoring system according to the embodiment of the present invention, the type of abnormality and notification content determined using the first standard, and the type of abnormality and notification content determined using the second standard However, the present invention is not limited to this. The type of abnormality and notification content determined using the first standard may be the same as the type of abnormality and notification content determined using the second standard.
 また、本発明の実施の形態に係る監視システムでは、解析装置151は、第2のデータを生成して保存し、第1のデータを削除する構成であるとしたが、これに限定するものではない。解析装置151は、第1のデータを削除しない構成であってもよい。 In the monitoring system according to the embodiment of the present invention, the analysis device 151 is configured to generate and store the second data, and delete the first data. However, the present invention is not limited to this. Absent. The analysis device 151 may be configured not to delete the first data.
 また、本発明の実施の形態に係る監視システムでは、解析装置151は、第3のデータを生成して保存し、第2のデータを削除する構成であるとしたが、これに限定するものではない。解析装置151は、第2のデータを削除しない構成であってもよい。 In the monitoring system according to the embodiment of the present invention, the analysis device 151 is configured to generate and store the third data, and delete the second data. However, the present invention is not limited to this. Absent. The analysis device 151 may be configured not to delete the second data.
 また、本発明の実施の形態に係る監視システムでは、監視装置111および解析装置151は、所定値以上の電流値または発電電力の低下を発電部78に関する異常と判定する構成であるとしたが、これに限定するものではない。監視装置111および解析装置151は、たとえば、機械学習によるクラスタリング判定等の、各装置の処理能力に合った判定方法を用いて発電部78に関する異常を判定してもよい。 In the monitoring system according to the embodiment of the present invention, the monitoring device 111 and the analysis device 151 are configured to determine that a current value greater than a predetermined value or a decrease in generated power is an abnormality related to the power generation unit 78. However, the present invention is not limited to this. For example, the monitoring device 111 and the analysis device 151 may determine an abnormality related to the power generation unit 78 using a determination method suitable for the processing capability of each device, such as clustering determination by machine learning.
 また、本発明の実施の形態に係る監視システムでは、解析装置151は、第2のデータの時間的な粒度を粗くした第3のデータを生成して発電部78に関する異常を判定する構成であるとしたが、これに限定するものではない。解析装置151は、第3のデータを生成しない構成であってもよい。 Further, in the monitoring system according to the embodiment of the present invention, the analysis device 151 is configured to generate the third data in which the temporal granularity of the second data is coarse and determine an abnormality related to the power generation unit 78. However, the present invention is not limited to this. The analysis device 151 may be configured not to generate the third data.
 また、本発明の実施の形態に係る監視システムでは、監視装置111は、判定した異常を解析装置151へ通知する構成であるとしたが、これに限定するものではない。監視装置111は、たとえば、判定した異常をネットワーク経由でサーバ等の外部の装置へ送信する構成であってもよい。 In the monitoring system according to the embodiment of the present invention, the monitoring device 111 is configured to notify the analysis device 151 of the determined abnormality, but is not limited thereto. For example, the monitoring device 111 may be configured to transmit the determined abnormality to an external device such as a server via a network.
 また、本発明の実施の形態に係る監視システムでは、解析装置151は、第1~第3の期間にわたるデータから発電部に関する異常を判定する構成であるとしたが、これに限定するものではない。解析装置151は、さらに長期間である第4の期間、または第4の期間を含み、かつ期間の長さが段階的に大きくなる複数の期間にわたるデータから発電部に関する異常を判定する構成であってもよい。 Further, in the monitoring system according to the embodiment of the present invention, the analysis device 151 is configured to determine an abnormality related to the power generation unit from the data over the first to third periods, but is not limited thereto. . The analysis device 151 is configured to determine an abnormality related to the power generation unit from data over a plurality of periods including the fourth period, or the fourth period, which is longer, and the length of the period is increased stepwise. May be.
 また、本発明の実施の形態に係る監視システムでは、解析装置151は、受信した第1のデータを蓄積する構成であるとしたが、これに限定するものではない。解析装置151は、受信した第1のデータを蓄積せずに第2のデータを生成する構成であってもよい。 In the monitoring system according to the embodiment of the present invention, the analysis device 151 is configured to store the received first data. However, the present invention is not limited to this. The analysis device 151 may be configured to generate the second data without accumulating the received first data.
 具体的には、解析装置151における通信処理部84は、監視装置111から受信した第1のデータたとえば平均値Mを記憶部85に保存せずに生成部82へ出力する。 Specifically, the communication processing unit 84 in the analysis device 151 outputs the first data received from the monitoring device 111, for example, the average value M to the generation unit 82 without saving it in the storage unit 85.
 生成部82は、たとえば、通信処理部84から受けた第1のデータを、新たな第1のデータを通信処理部84から受けるまで保持する。 The generation unit 82 holds the first data received from the communication processing unit 84 until new first data is received from the communication processing unit 84, for example.
 そして、生成部82は、たとえば、通信処理部84から新たな第1のデータを受けると、保持した第1のデータと、新たな第1のデータとを加算した中間データを作成し、作成した中間データを記憶部85に保存する。 Then, for example, when the generation unit 82 receives new first data from the communication processing unit 84, the generation unit 82 generates and creates intermediate data obtained by adding the held first data and the new first data. The intermediate data is stored in the storage unit 85.
 そして、生成部82は、たとえば、新たな第1のデータをさらに通信処理部84から受けると、記憶部85から中間データを取得し、取得した中間データに当該第1のデータを加算することにより中間データを更新し、更新後の中間データを記憶部85に保存する。 For example, when the generation unit 82 receives new first data from the communication processing unit 84, the generation unit 82 acquires the intermediate data from the storage unit 85, and adds the first data to the acquired intermediate data. The intermediate data is updated, and the updated intermediate data is stored in the storage unit 85.
 生成部82は、たとえば、1日分すなわち1440回分の第1のデータに対して上記処理を行うことにより1日分の中間データSD1を生成し、生成した中間データSD1を1440で除することにより1日分の第1のデータの平均値MDを算出する。そして、生成部82は、算出した平均値MDを第2のデータとして判定部81へ出力する。 For example, the generation unit 82 generates the intermediate data SD1 for one day by performing the above processing on the first data for one day, that is, 1440 times, and divides the generated intermediate data SD1 by 1440. The average value MD of the first data for one day is calculated. Then, the generation unit 82 outputs the calculated average value MD to the determination unit 81 as second data.
 この場合、判定部81が用いる第2の基準は、たとえば、第2のデータの示す値が所定値未満であるか否かである。 In this case, the second reference used by the determination unit 81 is, for example, whether or not the value indicated by the second data is less than a predetermined value.
 より詳細には、判定部81は、平均値MDが所定値未満である場合、対応の発電部78が異常であると判定し、第2異常情報を通知部83へ出力する。 More specifically, when the average value MD is less than the predetermined value, the determination unit 81 determines that the corresponding power generation unit 78 is abnormal, and outputs second abnormality information to the notification unit 83.
 また、本発明の実施の形態に係る監視システムでは、解析装置151は、生成した第2のデータを蓄積する構成であるとしたが、これに限定するものではない。解析装置151は、生成した第2のデータを蓄積せずに第3のデータを生成する構成であってもよい。 In the monitoring system according to the embodiment of the present invention, the analysis device 151 is configured to store the generated second data, but is not limited thereto. The analysis device 151 may be configured to generate the third data without accumulating the generated second data.
 具体的には、生成部82は、たとえば、1年分すなわち365回分の中間データSD1を生成すると、当該各中間データSD1を記憶部85から取得し、取得した1年分の中間データSD1の平均値MYを算出する。そして、生成部82は、算出した平均値MYを第3のデータとして判定部81へ出力する。 Specifically, for example, when generating the intermediate data SD1 for one year, that is, 365 times, the generating unit 82 acquires each of the intermediate data SD1 from the storage unit 85, and averages the acquired intermediate data SD1 for one year. The value MY is calculated. Then, the generation unit 82 outputs the calculated average value MY to the determination unit 81 as third data.
 この場合、判定部81が用いる第3の基準は、たとえば、第3のデータの示す値が所定値未満であるか否かである。 In this case, the third reference used by the determination unit 81 is, for example, whether or not the value indicated by the third data is less than a predetermined value.
 判定部81は、平均値MYが所定値未満である場合、対応の発電部78が異常であると判定し、第3異常情報を通知部83へ出力する。 When the average value MY is less than the predetermined value, the determination unit 81 determines that the corresponding power generation unit 78 is abnormal, and outputs third abnormality information to the notification unit 83.
 また、生成部82は、保持した第1のデータたとえば平均値Mと、通信処理部84からの新たな第1のデータとを加算して中間データを作成する構成に限らず、保持した第1のデータと、通信処理部84からの新たな第1のデータとを比較し、当該保持した第1のデータおよび当該新たな第1のデータのいずれか大きい方を中間データとして記憶部85に保存する構成であってもよい。 Further, the generation unit 82 is not limited to the configuration in which the first data held, for example, the average value M and the new first data from the communication processing unit 84 are added to create intermediate data. Are compared with new first data from the communication processing unit 84, and the larger of the held first data and the new first data is stored in the storage unit 85 as intermediate data. It may be configured to.
 より詳細には、生成部82は、たとえば、第2の期間における最初の第1のデータを通信処理部84から受けて、受けた第1のデータを、次の第1のデータを通信処理部84から受けるまで保持する。 More specifically, for example, the generation unit 82 receives the first first data in the second period from the communication processing unit 84, receives the received first data, and receives the next first data as the communication processing unit. Hold until 84.
 そして、生成部82は、たとえば、通信処理部84から次の第1のデータを受けると、保持した第1のデータと当該次の第1のデータとを比較し、より大きい方の第1のデータを中間データとして記憶部85に保存する。 For example, when the generation unit 82 receives the next first data from the communication processing unit 84, the generation unit 82 compares the held first data with the next first data, Data is stored in the storage unit 85 as intermediate data.
 生成部82は、さらに、通信処理部84から新たな第1のデータを受けると、記憶部85における中間データと当該第1のデータとを比較し、当該第1のデータが記憶部85における中間データより大きい場合、当該第1のデータを新たな中間データとして記憶部85に保存する。 Further, when the generation unit 82 receives new first data from the communication processing unit 84, the generation unit 82 compares the intermediate data in the storage unit 85 with the first data, and the first data is intermediate in the storage unit 85. If it is larger than the data, the first data is stored in the storage unit 85 as new intermediate data.
 そして、生成部82は、第2の期間たとえば1日分の第1のデータに対して上記処理を行った中間データSD2を第2のデータとして判定部81へ出力する。 Then, the generation unit 82 outputs the intermediate data SD2 obtained by performing the above processing on the first data for a second period, for example, one day, to the determination unit 81 as the second data.
 この場合、判定部81が用いる第2の基準は、たとえば、第2のデータの示す値が所定値未満であるか否かである。 In this case, the second reference used by the determination unit 81 is, for example, whether or not the value indicated by the second data is less than a predetermined value.
 より詳細には、判定部81は、中間データSD2が所定値V1未満である場合、対応の発電部78が異常であると判定し、第2異常情報を通知部83へ出力する。 More specifically, when the intermediate data SD2 is less than the predetermined value V1, the determination unit 81 determines that the corresponding power generation unit 78 is abnormal and outputs the second abnormality information to the notification unit 83.
 また、生成部82は、第3の期間に含まれる第2の期間(以下、中間期間とも称する。)ごとに中間データSD2を生成し、生成した各中間データSD2を時系列に並べた第3のデータを生成する構成であってもよい。 In addition, the generation unit 82 generates intermediate data SD2 for each second period (hereinafter, also referred to as an intermediate period) included in the third period, and the generated intermediate data SD2 is arranged in time series. The structure which produces | generates this data may be sufficient.
 また、生成部82は、ある中間期間における中間データSD2、および次の中間期間における次の中間データSD2の大きい方を中間データSY1として記憶部85に保存する構成であってもよい。 Further, the generation unit 82 may be configured to store the larger one of the intermediate data SD2 in a certain intermediate period and the next intermediate data SD2 in the next intermediate period in the storage unit 85 as the intermediate data SY1.
 より詳細には、生成部82は、たとえば、最初の中間期間における中間データSD2を、中間データSY1として記憶部85に保存する。そして、生成部82は、次の中間期間における中間データSD2を生成すると、記憶部85における中間データSY1と当該中間データSD2とを比較し、当該中間データSD2が記憶部85における中間データSY1より大きい場合、当該中間データSD2を新たな中間データSY1として記憶部85に保存する。 More specifically, for example, the generation unit 82 stores the intermediate data SD2 in the first intermediate period in the storage unit 85 as the intermediate data SY1. Then, when generating the intermediate data SD2 in the next intermediate period, the generation unit 82 compares the intermediate data SY1 in the storage unit 85 with the intermediate data SD2, and the intermediate data SD2 is larger than the intermediate data SY1 in the storage unit 85. In this case, the intermediate data SD2 is stored in the storage unit 85 as new intermediate data SY1.
 そして、生成部82は、第3の期間たとえば1年分の中間データに対して上記処理を行った中間データSY1を第3のデータとして判定部81へ出力する。 Then, the generation unit 82 outputs the intermediate data SY1 obtained by performing the above processing on the intermediate data for the third period, for example, one year, to the determination unit 81 as the third data.
 この場合、判定部81が用いる第3の基準は、たとえば、第3のデータの示す値が所定値未満であるか否かである。 In this case, the third reference used by the determination unit 81 is, for example, whether or not the value indicated by the third data is less than a predetermined value.
 より詳細には、判定部81は、中間データSY1が所定値V2未満である場合、対応の発電部78が異常であると判定し、第3異常情報を通知部83へ出力する。所定値V2は、たとえば所定値V1より大きい。 More specifically, when the intermediate data SY1 is less than the predetermined value V2, the determination unit 81 determines that the corresponding power generation unit 78 is abnormal, and outputs the third abnormality information to the notification unit 83. The predetermined value V2 is larger than the predetermined value V1, for example.
 ところで、特許文献1に記載の技術を超えて、太陽光発電システムの異常判定を向上させることが可能な技術が望まれる。 By the way, beyond the technique described in Patent Document 1, a technique capable of improving the abnormality determination of the photovoltaic power generation system is desired.
 本発明の実施の形態に係る監視システムでは、監視装置111は、太陽電池パネル79を含む発電部78の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて発電部78に関する異常を判定する。監視装置111は、計測結果に基づく第1のデータを送信する。解析装置151は、監視装置111から送信された第1のデータを受信し、受信した第1のデータに基づいて、第1のデータの時間的な粒度を粗くした第2のデータを生成し、第1の期間より長い第2の期間にわたる第2のデータから第2の基準を用いて発電部78に関する異常を判定する。 In the monitoring system according to the embodiment of the present invention, the monitoring device 111 measures the output of the power generation unit 78 including the solar cell panel 79, and uses the first reference from the measurement result over the first period to generate the power generation unit 78. Judge abnormalities related to. The monitoring device 111 transmits first data based on the measurement result. The analysis device 151 receives the first data transmitted from the monitoring device 111, generates second data with coarse temporal granularity of the first data based on the received first data, An abnormality relating to the power generation unit 78 is determined using the second reference from the second data over a second period longer than the first period.
 このような構成により、たとえば、監視装置111は、比較的短期間にわたる計測値の異常を判定し、解析装置151は、比較的長期間にわたる計測値の異常を判定することができる。これにより、解析装置151におけるデータ容量および処理負荷を抑えながら、複数種類の期間での異常を判定することが可能になることにより、たとえば、短期間では計測値の変化がなく長期間にわたる計測結果を確認することにより変化が確認できるような異常を検知することできる。さらに、長期間わたる計測結果では、データの粒度が粗くなることにより捉えることができない短期間での計測値の変化も、短期間にわたる計測結果を確認することにより検知することができる。また、異なる期間にわたる異常が分散して判定され、監視装置111および解析装置151間において処理能力、データ蓄積量および伝送帯域等を適正化することができ、コストを抑えることができる。 With such a configuration, for example, the monitoring device 111 can determine a measurement value abnormality over a relatively short period of time, and the analysis device 151 can determine a measurement value abnormality over a relatively long period of time. As a result, it becomes possible to determine abnormalities in a plurality of types of periods while suppressing the data capacity and processing load in the analysis device 151. For example, there is no change in measured values in a short period of time, and measurement results over a long period of time. By confirming, it is possible to detect an abnormality in which a change can be confirmed. Further, in the measurement result over a long period, a change in the measurement value in a short period that cannot be captured due to coarse data granularity can be detected by checking the measurement result over a short period. In addition, abnormalities over different periods are determined in a distributed manner, and the processing capacity, data accumulation amount, transmission band, and the like can be optimized between the monitoring device 111 and the analysis device 151, and costs can be reduced.
 したがって、本発明の実施の形態に係る監視システムでは、太陽光発電システムの異常判定を向上させることができる。 Therefore, in the monitoring system according to the embodiment of the present invention, the abnormality determination of the solar power generation system can be improved.
 また、本発明の実施の形態に係る監視システムでは、解析装置151は、第2のデータを生成し、生成した第2のデータに基づいて、第2のデータの時間的な粒度を粗くした第3のデータを生成し、第2の期間より長い第3の期間にわたる第3のデータから第3の基準を用いて発電部78に関する異常をさらに判定する。 In the monitoring system according to the embodiment of the present invention, the analysis device 151 generates the second data, and based on the generated second data, the second data is coarsened with respect to time. 3 is generated, and the abnormality relating to the power generation unit 78 is further determined from the third data over the third period longer than the second period using the third reference.
 このような構成により、さらに長期間にわたる計測値の異常を判定することができ、より多様な異常判定を行うことができる。 With such a configuration, it is possible to determine the abnormality of the measured value over a longer period of time, and to perform more various abnormality determinations.
 また、本発明の実施の形態に係る監視システムでは、解析装置151は、自己の判定した異常を通知する処理を行う。監視装置111は、自己の判定した異常を解析装置151に通知する処理を行う。解析装置151は、監視装置111から通知された異常を通知する処理を行う。 Moreover, in the monitoring system according to the embodiment of the present invention, the analysis device 151 performs a process of notifying the abnormality determined by itself. The monitoring device 111 performs processing for notifying the analysis device 151 of the abnormality determined by itself. The analysis device 151 performs a process of notifying the abnormality notified from the monitoring device 111.
 このように、発電部78に関する異常を解析装置151がまとめて太陽光発電システムの外部に通知する構成により、監視装置111が外部と通信する構成が不要となり、コストを低減することができる。 Thus, the configuration in which the analysis device 151 collectively notifies the abnormality related to the power generation unit 78 to the outside of the photovoltaic power generation system eliminates the need for the configuration in which the monitoring device 111 communicates with the outside, thereby reducing the cost.
 また、本発明の実施の形態に係る監視システムでは、第1の基準を用いて判定される異常の種類と第2の基準を用いて判定される異常の種類とが異なる。 Further, in the monitoring system according to the embodiment of the present invention, the type of abnormality determined using the first standard is different from the type of abnormality determined using the second standard.
 このような構成により、ダイオード解放故障および経年劣化等、太陽光発電におけるより多様な異常を判定することができる。 With such a configuration, it is possible to determine more various abnormalities in solar power generation such as diode release failure and aging degradation.
 また、本発明の実施の形態に係る監視システムでは、第1の基準を用いて判定される異常の通知内容と第2の基準を用いて判定される異常の通知内容とが異なる。 Further, in the monitoring system according to the embodiment of the present invention, the notification content of the abnormality determined using the first reference is different from the notification content of the abnormality determined using the second reference.
 このような構成により、第1の基準を用いて判断された異常であるかまたは第2の基準を用いて判断された異常であるかを通知内容によって判断することができるため、たとえば、緊急度または重要度に応じた保守対応を行うことができる。 With such a configuration, it is possible to determine whether the abnormality is determined using the first criterion or the abnormality determined using the second criterion based on the notification content. Alternatively, maintenance can be performed according to the importance.
 また、本発明の実施の形態に係る解析装置では、通信処理部84は、監視装置111から送信された、太陽電池パネル79を含む発電部78の出力の第1の期間にわたる計測結果に基づく第1のデータを受信する。判定部81は、通信処理部84によって受信された第1のデータに基づいて、第1のデータの時間的な粒度を粗くした第2のデータを生成し、第1の期間より長い第2の期間にわたる第2のデータから第2の基準を用いて発電部78に関する異常を判定する。 Further, in the analysis device according to the embodiment of the present invention, the communication processing unit 84 is based on the measurement result over the first period of the output of the power generation unit 78 including the solar battery panel 79 transmitted from the monitoring device 111. 1 data is received. Based on the first data received by the communication processing unit 84, the determination unit 81 generates second data with coarse temporal granularity of the first data, and the second data longer than the first period is generated. An abnormality relating to the power generation unit 78 is determined from the second data over the period using the second reference.
 このような構成により、たとえば、監視装置111は、比較的短期間にわたる計測値の異常を判定し、解析装置151は、比較的長期間にわたる計測値の異常を判定することができる。これにより、解析装置151におけるデータ容量および処理負荷を抑えながら、複数種類の期間での異常を判定することが可能になることにより、たとえば、短期間では計測値の変化がなく長期間にわたる計測結果を確認することにより変化が確認できるような異常を検知することできる。さらに、長期間わたる計測結果では、データの粒度が粗くなることにより捉えることができない短期間での計測値の変化も、短期間にわたる計測結果を確認することにより検知することができる。また、異なる期間にわたる異常が分散して判定され、監視装置111および解析装置151間において処理能力、データ蓄積量および伝送帯域等を適正化することができ、コストを抑えることができる。 With such a configuration, for example, the monitoring device 111 can determine a measurement value abnormality over a relatively short period of time, and the analysis device 151 can determine a measurement value abnormality over a relatively long period of time. As a result, it becomes possible to determine abnormalities in a plurality of types of periods while suppressing the data capacity and processing load in the analysis device 151. For example, there is no change in measured values in a short period of time, and measurement results over a long period of time. By confirming, it is possible to detect an abnormality in which a change can be confirmed. Further, in the measurement result over a long period, a change in the measurement value in a short period that cannot be captured due to coarse data granularity can be detected by checking the measurement result over a short period. In addition, abnormalities over different periods are determined in a distributed manner, and the processing capacity, data accumulation amount, transmission band, and the like can be optimized between the monitoring device 111 and the analysis device 151, and costs can be reduced.
 したがって、本発明の実施の形態に係る解析装置では、太陽光発電システムの異常判定を向上させることができる。 Therefore, the analysis apparatus according to the embodiment of the present invention can improve the abnormality determination of the photovoltaic power generation system.
 また、本発明の実施の形態に係る監視システムにおける判定方法では、まず、太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて発電部に関する異常を判定する。次に、計測結果に基づく第1のデータを受信し、受信した第1のデータに基づいて、第1のデータの時間的な粒度を粗くした第2のデータを生成し、第1の期間より長い第2の期間にわたる第2のデータから第2の基準を用いて発電部78に関する異常を判定する。 Moreover, in the determination method in the monitoring system according to the embodiment of the present invention, first, the output of the power generation unit including the solar cell panel is measured, and the power generation unit is related using the first reference from the measurement result over the first period. Judge abnormalities. Next, the first data based on the measurement result is received, and based on the received first data, the second data in which the temporal granularity of the first data is coarse is generated, and from the first period An abnormality related to the power generation unit 78 is determined from the second data over the long second period using the second reference.
 このような構成により、たとえば、監視装置111は、比較的短期間にわたる計測値の異常を判定し、解析装置151は、比較的長期間にわたる計測値の異常を判定することができる。これにより、解析装置151におけるデータ容量および処理負荷を抑えながら、複数種類の期間での異常を判定することができる。また、異なる期間にわたる異常が分散して判定され、監視装置111および解析装置151間において処理能力、データ蓄積量および伝送帯域等を適正化することができ、コストを抑えることができる。 With such a configuration, for example, the monitoring device 111 can determine a measurement value abnormality over a relatively short period of time, and the analysis device 151 can determine a measurement value abnormality over a relatively long period of time. Thereby, it is possible to determine abnormality in a plurality of types of periods while suppressing the data capacity and processing load in the analysis device 151. In addition, abnormalities over different periods are determined in a distributed manner, and the processing capacity, data accumulation amount, transmission band, and the like can be optimized between the monitoring device 111 and the analysis device 151, and costs can be reduced.
 したがって、本発明の実施の形態に係る判定方法では、太陽光発電システムの異常判定を向上させることができる。 Therefore, in the determination method according to the embodiment of the present invention, the abnormality determination of the solar power generation system can be improved.
 また、本発明の実施の形態に係る解析装置における判定方法では、まず、監視装置111から送信された、太陽電池パネル79を含む発電部78の出力の第1の期間にわたる計測結果に基づく第1のデータを受信する。次に、受信した第1のデータに基づいて、第1のデータの時間的な粒度を粗くした第2のデータを生成し、第1の期間より長い第2の期間にわたる第2のデータから第2の基準を用いて発電部78に関する異常を判定する。 In the determination method in the analysis device according to the embodiment of the present invention, first, the first based on the measurement result transmitted from the monitoring device 111 over the first period of the output of the power generation unit 78 including the solar cell panel 79. Receive data. Next, based on the received first data, second data with coarse temporal granularity of the first data is generated, and the second data over a second period longer than the first period is used as the second data. The abnormality relating to the power generation unit 78 is determined using the criterion of 2.
 このような構成により、たとえば、監視装置111は、比較的短期間にわたる計測値の異常を判定し、解析装置151は、比較的長期間にわたる計測値の異常を判定することができる。これにより、解析装置151におけるデータ容量および処理負荷を抑えながら、複数種類の期間での異常を判定することができる。また、異なる期間にわたる異常が分散して判定され、監視装置111および解析装置151間において処理能力、データ蓄積量および伝送帯域等を適正化することができ、コストを抑えることができる。 With such a configuration, for example, the monitoring device 111 can determine a measurement value abnormality over a relatively short period of time, and the analysis device 151 can determine a measurement value abnormality over a relatively long period of time. Thereby, it is possible to determine abnormality in a plurality of types of periods while suppressing the data capacity and processing load in the analysis device 151. In addition, abnormalities over different periods are determined in a distributed manner, and the processing capacity, data accumulation amount, transmission band, and the like can be optimized between the monitoring device 111 and the analysis device 151, and costs can be reduced.
 したがって、本発明の実施の形態に係る判定方法では、太陽光発電システムの異常判定を向上させることができる。 Therefore, in the determination method according to the embodiment of the present invention, the abnormality determination of the solar power generation system can be improved.
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the above embodiment is illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定する監視装置を備え、
 前記監視装置は、前記計測結果に基づく第1のデータを送信し、
 さらに、
 前記監視装置から送信された前記第1のデータを受信し、受信した前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定する解析装置を備え
 前記発電部は、複数の太陽電池パネルが直列接続されたストリングであり、
 前記発電部の出力は、前記発電部の発電電力、電流または電圧である、監視システム。
The above description includes the following features.
[Appendix 1]
A monitoring device that measures the output of the power generation unit including the solar battery panel and determines an abnormality related to the power generation unit using the first reference from the measurement result over the first period,
The monitoring device transmits first data based on the measurement result;
further,
Receiving the first data transmitted from the monitoring device, generating second data with coarse temporal granularity of the first data based on the received first data; An analysis device that determines an abnormality related to the power generation unit using a second reference from the second data over a second period longer than one period, wherein the power generation unit includes a plurality of solar cell panels connected in series A string,
The monitoring system, wherein the output of the power generation unit is generated power, current, or voltage of the power generation unit.
 1 出力ライン
 2,4,5 集約ライン
 3 内部ライン
 6 キュービクル
 7 銅バー
 8 PCS
 9 電力変換部
 11 検出処理部
 12,81 判定部
 14 通信部
 16 電流センサ
 17 電圧センサ
 26 電源線
 46 信号線
 60 集電ユニット
 71 集電箱
 72,73,77 銅バー
 74 太陽電池ユニット
 76 接続箱
 78 発電部
 79 太陽電池パネル
 80 PCSユニット
 82 生成部
 83 通知部
 84 通信処理部
 85 記憶部
 86 取得部
 111 監視装置
 131 収集装置
 151 解析装置
 301 監視システム
 401 太陽光発電システム
1 Output line 2, 4, 5 Aggregation line 3 Internal line 6 Cubicle 7 Copper bar 8 PCS
DESCRIPTION OF SYMBOLS 9 Power conversion part 11 Detection process part 12,81 Judgment part 14 Communication part 16 Current sensor 17 Voltage sensor 26 Power supply line 46 Signal line 60 Current collection unit 71 Current collection box 72,73,77 Copper bar 74 Solar cell unit 76 Connection box 78 power generation unit 79 solar panel 80 PCS unit 82 generation unit 83 notification unit 84 communication processing unit 85 storage unit 86 acquisition unit 111 monitoring device 131 collection device 151 analysis device 301 monitoring system 401 solar power generation system

Claims (8)

  1.  太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定する監視装置を備え、
     前記監視装置は、前記計測結果に基づく第1のデータを送信し、
     さらに、
     前記監視装置から送信された前記第1のデータを受信し、受信した前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定する解析装置を備える、監視システム。
    A monitoring device that measures the output of the power generation unit including the solar battery panel and determines an abnormality related to the power generation unit using the first reference from the measurement result over the first period,
    The monitoring device transmits first data based on the measurement result;
    further,
    Receiving the first data transmitted from the monitoring device, generating second data with coarse temporal granularity of the first data based on the received first data; A monitoring system comprising: an analysis device that determines an abnormality related to the power generation unit using a second reference from the second data over a second period longer than one period.
  2.  前記解析装置は、前記第2のデータを生成し、生成した前記第2のデータに基づいて、前記第2のデータの時間的な粒度を粗くした第3のデータを生成し、前記第2の期間より長い第3の期間にわたる前記第3のデータから第3の基準を用いて前記発電部に関する異常をさらに判定する、請求項1に記載の監視システム。 The analysis device generates the second data, generates third data with coarse temporal granularity of the second data based on the generated second data, and the second data The monitoring system according to claim 1, wherein an abnormality relating to the power generation unit is further determined using the third reference from the third data over a third period longer than the period.
  3.  前記解析装置は、自己の判定した前記異常を通知する処理を行い、
     前記監視装置は、自己の判定した前記異常を前記解析装置に通知する処理を行い、
     前記解析装置は、前記監視装置から通知された前記異常を通知する処理を行う、請求項1または請求項2に記載の監視システム。
    The analysis device performs a process of notifying the abnormality determined by itself,
    The monitoring device performs processing for notifying the analysis device of the abnormality determined by itself,
    The monitoring system according to claim 1, wherein the analysis device performs a process of notifying the abnormality notified from the monitoring device.
  4.  前記第1の基準を用いて判定される前記異常の種類と前記第2の基準を用いて判定される前記異常の種類とが異なる、請求項1から請求項3のいずれか1項に記載の監視システム。 4. The method according to claim 1, wherein the type of abnormality determined using the first criterion is different from the type of abnormality determined using the second criterion. 5. Monitoring system.
  5.  前記第1の基準を用いて判定される前記異常の通知内容と前記第2の基準を用いて判定される前記異常の通知内容とが異なる、請求項1から請求項3のいずれか1項に記載の監視システム。 The notification content of the abnormality determined using the first reference and the notification content of the abnormality determined using the second reference are different from any one of claims 1 to 3. The monitoring system described.
  6.  太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定する監視装置を備える監視システムにおける解析装置であって、
     前記監視装置から送信された、前記計測結果に基づく第1のデータを受信する通信処理部と、
     前記通信処理部によって受信された前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定する判定部とを備える、解析装置。
    An analysis device in a monitoring system comprising a monitoring device that measures an output of a power generation unit including a solar cell panel and determines an abnormality related to the power generation unit using a first reference from a measurement result over a first period,
    A communication processing unit for receiving first data based on the measurement result transmitted from the monitoring device;
    Based on the first data received by the communication processing unit, second data with coarse temporal granularity of the first data is generated, and a second period longer than the first period is generated. An analysis device comprising: a determination unit that determines an abnormality related to the power generation unit using a second reference from the second data.
  7.  監視システムにおける判定方法であって、
     太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定するステップと、
     前記計測結果に基づく第1のデータを受信し、受信した前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定するステップとを含む、判定方法。
    A determination method in a monitoring system,
    Measuring an output of the power generation unit including the solar battery panel, and determining an abnormality related to the power generation unit using a first reference from a measurement result over a first period;
    Receiving the first data based on the measurement result, generating second data with coarse temporal granularity of the first data based on the received first data, and the first period Determining an abnormality related to the power generation unit using a second reference from the second data over a longer second period.
  8.  太陽電池パネルを含む発電部の出力を計測し、第1の期間にわたる計測結果から第1の基準を用いて前記発電部に関する異常を判定する監視装置を備える監視システムにおける解析装置における判定方法であって、
     前記監視装置から送信された、前記計測結果に基づく第1のデータを受信するステップと、
     受信した前記第1のデータに基づいて、前記第1のデータの時間的な粒度を粗くした第2のデータを生成し、前記第1の期間より長い第2の期間にわたる前記第2のデータから第2の基準を用いて前記発電部に関する異常を判定するステップとを含む、判定方法。
     
     
    A determination method in an analysis device in a monitoring system that includes a monitoring device that measures an output of a power generation unit including a solar battery panel and determines an abnormality related to the power generation unit using a first reference from a measurement result over a first period. And
    Receiving first data based on the measurement result transmitted from the monitoring device;
    Based on the received first data, second data having a coarser granularity in time is generated, and the second data over a second period longer than the first period is generated. And determining an abnormality related to the power generation unit using a second reference.

PCT/JP2018/046849 2018-02-01 2018-12-19 Monitoring system, analysis device, and determination method WO2019150816A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018007003.4T DE112018007003T5 (en) 2018-02-01 2018-12-19 Observation system, analysis device and determination method
JP2019568934A JP7056674B2 (en) 2018-02-01 2018-12-19 Monitoring system, analysis device and judgment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-016733 2018-02-01
JP2018016733 2018-02-01

Publications (1)

Publication Number Publication Date
WO2019150816A1 true WO2019150816A1 (en) 2019-08-08

Family

ID=67478021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046849 WO2019150816A1 (en) 2018-02-01 2018-12-19 Monitoring system, analysis device, and determination method

Country Status (3)

Country Link
JP (1) JP7056674B2 (en)
DE (1) DE112018007003T5 (en)
WO (1) WO2019150816A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884334A (en) * 2020-07-01 2020-11-03 南京合纵电力设备有限公司 Monitoring method and system suitable for unattended low-voltage cabinet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205078A (en) * 2011-03-25 2012-10-22 Sumitomo Electric Ind Ltd Monitoring system for photovoltaic power generation
JP2013121208A (en) * 2011-12-06 2013-06-17 Hitachi Ltd Power system control system and power system control method
WO2013136850A1 (en) * 2012-03-13 2013-09-19 オムロン株式会社 Information processing apparatus, abnormality detecting method, program, and solar power generation system
JP2015226423A (en) * 2014-05-29 2015-12-14 住友電気工業株式会社 Abnormality determination device, abnormality determination method, and computer program
JP2016208683A (en) * 2015-04-23 2016-12-08 株式会社日立製作所 Diagnostic method of photovoltaic power generation system and monitoring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205078A (en) * 2011-03-25 2012-10-22 Sumitomo Electric Ind Ltd Monitoring system for photovoltaic power generation
JP2013121208A (en) * 2011-12-06 2013-06-17 Hitachi Ltd Power system control system and power system control method
WO2013136850A1 (en) * 2012-03-13 2013-09-19 オムロン株式会社 Information processing apparatus, abnormality detecting method, program, and solar power generation system
JP2015226423A (en) * 2014-05-29 2015-12-14 住友電気工業株式会社 Abnormality determination device, abnormality determination method, and computer program
JP2016208683A (en) * 2015-04-23 2016-12-08 株式会社日立製作所 Diagnostic method of photovoltaic power generation system and monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884334A (en) * 2020-07-01 2020-11-03 南京合纵电力设备有限公司 Monitoring method and system suitable for unattended low-voltage cabinet

Also Published As

Publication number Publication date
JPWO2019150816A1 (en) 2021-01-28
JP7056674B2 (en) 2022-04-19
DE112018007003T5 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP2015195694A (en) Abnormality detecting device
KR20080011979A (en) On-line monitoring system and method for solar cell module
JP2009021341A (en) Solar cell array failure diagnosis method
JP2008271693A (en) Solar photovoltaic power-generation system
KR102409193B1 (en) Solar power generating system having string status monitoring, abnormal vibration and leakage current detection functions
WO2015177613A1 (en) Monitoring apparatus, and monitoring system using same
US10091273B2 (en) Data collecting device for photovoltaic device
JP2018026909A (en) Power generation state determination device, monitoring device, power generation state determination method and determination program
WO2019150816A1 (en) Monitoring system, analysis device, and determination method
KR20180112495A (en) System for data management of photovoltaic module
WO2019187525A1 (en) Determination device, solar power system and determination method
WO2019150779A1 (en) Determination device, determination method, and determination program
WO2018066693A1 (en) Assessing device and monitoring device
WO2022009613A1 (en) Determination device, determination method, and determination program
JP7226338B2 (en) Monitoring device and judgment method
KR20180093543A (en) System for failure diagnosis of photovoltaic module
JP7173128B2 (en) GENERATING UNIT RELOCATION EQUIPMENT AND OPERATION PROCESSING METHOD
JP2013176224A (en) Power generation system with power generation unit creating electric power from renewable energy
TWI423457B (en) Solar panel conversion efficiency detection device and method thereof
KR101283649B1 (en) String Error Detection method for the String Box in PV Generation System
JP7196910B2 (en) Monitoring device and monitoring method
JP3196043U (en) Solar power monitoring device
JP2023009777A (en) Determination device and determination method
WO2019216014A1 (en) Monitoring system
CN202997694U (en) Photovoltaic sniffer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568934

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18904154

Country of ref document: EP

Kind code of ref document: A1