WO2019147026A1 - Composition for embryonic development, comprising melatonin, and method for improving efficiency of embryonic development using same - Google Patents

Composition for embryonic development, comprising melatonin, and method for improving efficiency of embryonic development using same Download PDF

Info

Publication number
WO2019147026A1
WO2019147026A1 PCT/KR2019/000989 KR2019000989W WO2019147026A1 WO 2019147026 A1 WO2019147026 A1 WO 2019147026A1 KR 2019000989 W KR2019000989 W KR 2019000989W WO 2019147026 A1 WO2019147026 A1 WO 2019147026A1
Authority
WO
WIPO (PCT)
Prior art keywords
embryo
lift
scnt
downward
melatonin
Prior art date
Application number
PCT/KR2019/000989
Other languages
French (fr)
Korean (ko)
Inventor
이동율
이아름
엄진희
이정은
Original Assignee
차의과학대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 차의과학대학교 산학협력단 filed Critical 차의과학대학교 산학협력단
Publication of WO2019147026A1 publication Critical patent/WO2019147026A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0604Whole embryos; Culture medium therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/0609Oocytes, oogonia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones

Definitions

  • Somatic cell nuclear transfer (SCNT) -based reprogramming and derivation of embryonic stem cells (ESCs) can produce patient-specific stem cells for regenerative medicine has been proposed.
  • ESCs embryonic stem cells
  • SCNT-ESC somatic cell nuclear transfer-embryonic stem cell
  • HLA human leukocyte antigen
  • PSCs pluripotent stem cells
  • oocyte vitrification vitrification technology has been used as a practical technique for widely used low-temperature preservation methods as well as human assisted reproductive technology.
  • IVF in vitro fertilization
  • This technique provides valuable opportunities to maintain the fertility of infertile women and to cure the risks of fertility due to fertile women and cancer treatment at risk of developing senescence-induced fertility.
  • the vitrification freezing of human hyperplastic oocytes can provide a continuous oocyte for research, such as SCNT, and its use can also reduce ethical concerns.
  • One aspect is to provide a composition for enhancing embryo development efficiency or embryo formation comprising melatonin.
  • Another aspect is to provide a method of increasing the efficiency of embryo development or increasing embryo formation, including culturing the oocyte in a medium containing melatonin.
  • compositions for increasing the formation of embryos including melatonin.
  • compositions for increasing the efficiency of embryo development including melatonin. That is, there is provided a composition for increasing the formation of embryos and / or increasing the efficiency of embryo development, including melatonin.
  • embryo formation means that the zygote becomes a plurality of cells through cell division, and these cells undergo cell division and differentiation to form an embryo or an embryo .
  • the term "increase in efficiency" means an increase in the development of the blastocyst of the oocyte or the development of the blastocyst.
  • the above-mentioned blastocysts can be divided into the inner cell mass to differentiate into the fetus and the trophectoderm that can differentiate into the placenta after the embryo is densified in the process of growing the embryos repeatedly. Means a fertilized egg in a state of being.
  • the increase in efficiency is due to an increase in the embryo development efficiency of the oocyte, an increase in the development of the embryo to the blastocyst stage compared with the oocyte cultured in the absence of the agent that reduces the H3K9me3 methylation, The increase in the production efficiency of blastocysts, the increase in the efficiency of obtaining blastocysts, or the rate of development of blastocysts.
  • the composition may contain melatonin at a concentration of from 0.1 [mu] M to 50 [mu] M in the basal medium.
  • Melatonin is a molecule related to the cycle of biological response, also known as N-acetyl-5-methoxy tryptamine. In mammals, melatonin modulates the cell cycle and exhibits strong resistance to oxidative stress and apoptosis. That is, the method according to one aspect of the present invention reduces the active oxygen and apoptosis of somatic cell nuclear transfer embryos by culturing oocytes in which somatic cells and nuclei are removed in a medium containing melatonin, There is an advantage that an improved blastocyst can be obtained.
  • somatic cell nuclear transfer embryos can improve the implantation rate of artificially fertilized embryos and promote embryonic stem cell induction.
  • melatonin is added at a concentration of 0.1 ⁇ M to 50 ⁇ M, 0.1 ⁇ M to 40 ⁇ M, 0.1 ⁇ M to 30 ⁇ M, 1 ⁇ M to 50 ⁇ M, 1 ⁇ M to 30 ⁇ M, 5 ⁇ M to 30 ⁇ M, mu M to 20 [mu] M, 10 [mu] M to 25 [mu] M or 5 [mu] M to 15 [mu] M.
  • the basal medium may be a basic medium used for culturing mammalian oocytes.
  • the basic medium differs depending on the species of the mammal, but may include any one or more selected from the group consisting of inorganic salts, carbon sources, amino acids, bovine serum albumin, and coadjuvants, and may include all conventional media known to those skilled in the art.
  • inorganic salts include NaCl, KCl, and NaHCO 3.
  • carbon source include glucose, sodium, pyruvate, and calcium lactate.
  • amino acids include essential amino acids such as glutamine, Other auxiliaries may be other trace elements and buffers.
  • the medium may be, for example, MEM (Minimal Essential Medium), DMEM (Dulbecco modified Eagle Medium), RPMI (Roswell Park Memorial Institute Medium), Keratinocyte Serum Free Medium (K-SFM), Iscove's Modified Dulbecco's Medium And DMEM / F12. ≪ / RTI >
  • the medium may also be supplemented with a mixture of neutral buffer (e.g., phosphate and / or high concentration bicarbonate) and protein nutrients (e.g., serum, such as FBS, fetal calf serum, horse serum, serum replacement, albumin, Amino acids and non-essential amino acids such as glutamine, L-glutamine).
  • neutral buffer e.g., phosphate and / or high concentration bicarbonate
  • protein nutrients e.g., serum, such as FBS, fetal calf serum, horse serum, serum replacement, albumin, Amino acids and non-essential amino acids such as
  • lipid fatty acid, cholesterol, HDL or LDL extract of serum
  • other components found in most types of storage medium of this kind (for example, transferrin, nucleoside or nucleotide, pyruvate,
  • glucose glucocorticoids such as hydrocortisone and / or a reducing agent such as? -Mercaptoethanol
  • the base medium may further include an antibiotic.
  • the melatonin may be included in the basic medium in a concentration of 0.1 ⁇ M to 50 ⁇ M, 0.1 ⁇ M to 40 ⁇ M, 0.1 ⁇ M to 30 ⁇ M, 1 ⁇ M to 50 ⁇ M, 1 ⁇ M to 30 ⁇ M, 5 ⁇ M to 30 ⁇ M or 5 ⁇ M to 25 ⁇ M .
  • concentration of melatonin contained in the basic medium is less than the above range, the active oxygen can not be effectively removed, and thus the efficiency of development of the blastocyst of the somatic cell nuclear transfer embryo is inhibited.
  • it exceeds the above range there is a problem that melatonin acts on somatic cell nuclear transfer embryos for a long time to prevent maturation of oocytes.
  • the composition may further comprise an agent that reduces H3K9me3 methylation.
  • the agent for decreasing methylation may be one that increases the expression of a member of the KDM4 family of histone demethylating enzymes.
  • the agent may be one that increases the expression or activity of KDM4A (JMJD2A), KDM4B (JMJD2B), KDM4C (JMJD2C), KDM4D (JMJD2D), or a combination thereof.
  • Amd1 , Fam46C , Oxt , Ppt2 , Ctss , Dffa , Eif3f, Hacl1 , Hspbp1 , Mob2 , Mrpl23 , Mrpl33 , Pmvk , Slc4a11 And Lt ; RTI ID 0.0 & gt ; Wbscr22 < / RTI > Also, Atp6v0c, Cd52 , Dapk2 , Ddit4l , Duoxa2 , Nfkbia , Ptgds , Rdh12 And Rnd3 may be decreased.
  • expression of one or more genes selected from the group consisting of Amd1 , Fam46C , Oxt , Ppt2 , Gulo, and Txnip may be increased.
  • Adh1, Car2, Gsta3, Gstm2 , Mb, Phlda2, S100a1, Akr1c13, Amd2, Clu, Hist1h3a, Hspb1, Il1rn, Nat8, Efemp1, Glipr1, Lgals4, Plac1, Snora15, Snora 21, Snora 34, Anxa1, Clec2f, Hrsp12 , and Plat may be decreased in expression of one or more genes.
  • the embryo may be an embryo formed through artificial fertilization in vitro or the embryo may be formed by implanting nuclei of somatic cells into an oocyte removed from the nucleus.
  • the embryo may be formed through artificial fertilization in vitro or the embryo may be formed by implanting the nuclei of somatic cells into the nucleus-free oocyte.
  • Another aspect provides a method of increasing the efficiency of embryo development or embryo formation, including culturing an oocyte in a medium containing melatonin.
  • the specific content of the medium containing melatonin is as described above.
  • the method may comprise contacting the oocyte with an agent that reduces H3K9me3 methylation.
  • agent that reduces H3K9me3 methylation.
  • the details of the agent for reducing H3K9me3 methylation are as described above.
  • the oocyte may be frozen and thawed.
  • the oocyte may be a somatic cell nuclear transfer embryo.
  • the method may include incubating the oocyte for 1 to 10 days in a medium containing melatonin. Specifically, it may be cultured for 1 to 10 days, for 1 to 8 days, for 1 to 7 days, for 2 to 8 days, for 2 to 6 days, or for 3 to 6 days. If the incubation period is less than the above range, there is a problem that the embryo is not enough to develop into a blastocyst. If the incubation period is over the range, it is difficult to obtain an improved blastocyst because the oocyte is over maturated.
  • the method may further comprise the step of developing the embryo obtained in the culturing step as an individual.
  • the subject may be a morula, a blastula and / or a gastrula.
  • Another aspect provides an embryo, blastocyst and / or embryonic stem cell produced by the method.
  • Another aspect provides a graft composition comprising the embryo and / or the blastocyst produced by the above method as an active ingredient.
  • a method of preparing an oocyte also provides a method for increasing the efficiency of somatic cell nuclear transfer (SCNT) comprising culturing the somatic cell nucleus and nucleus-free oocyte in a medium containing melatonin.
  • SCNT somatic cell nuclear transfer
  • the efficiency may be the success rate of the somatic cell nuclear transfer, or the embryo development rate of the cell generated by the somatic cell nuclear transfer.
  • the embryo development rate may be the development into the blastocyst through the 2-cell, 4-cell and 8-cell groups of the embryo.
  • the present inventors confirmed that injection of KDM4A mRNA prevents the developmental arrest at the time of zygotic gene activation (ZGA) of the oocyte inducing KDM4A overexpression, that is, the 2-cell cycle, and significantly improves somatic cell nuclear transfer embryo development Respectively.
  • ZGA zygotic gene activation
  • the utility of oocyte donors for somatic cell nuclear transfer is expanded and the production of nuclear-grafted ESCs for both therapeutic replication and nuclear-grafted embryonic stem cell (NT-ESC), especially therapeutic applications and research and disease modeling May be used in a method of enhancing somatic cell nuclear transfer.
  • the present invention is not intended for human reproductive cloning.
  • the method comprises the steps of removing the nuclei of oocytes, implanting the nuclei of one or more somatic cells (donor nuclei), activating the reconstructed nuclear transfer oocytes (embryo), and further culturing with a blastocyst As shown in FIG. Steps for such somatic cell nuclear transfer (SCNT) can be performed by a person skilled in the art according to a method disclosed in Nature 419, 583-587, 10 October 2002, etc., as appropriate.
  • the nuclear transplanted oocyte (embryo) is generated from injecting donor somatic cell-derived nuclei (for example, nuclear genetic material) into the nucleus-deficient recipient oocyte to form nuclear-grafted oocyte, To form a fused, nuclear-engrafted embryo.
  • donor somatic cell-derived nuclei for example, nuclear genetic material
  • the term "somatic cell” refers to a plant or animal cell that is not a germ cell or a germ cell precursor.
  • the somatic cells are selected from the group consisting of cumulus cells, epithelial cells, fibroblasts, neurons, keratinocytes, hematopoietic cells, melanocytes, cartilage cells, erythrocytes, macrophages, monocytes, muscle cells, B lymphocytes, T lymphocytes, embryonic stem cells, A cell, a fetal cell, and an adult cell.
  • somatic cell nuclear transfer or somatic cell nuclear transfer “refers to a technique of transplanting nuclei harvested from donor cells into donor cells that have been removed from the nucleus, .
  • the nucleus-free oocyte may be cumulus-oocyte complexes collected from the follicles of a subject, or may be obtained commercially.
  • the subject may be a mammal, including a human.
  • the mammal may include rats, pigs, sheep, dogs, cows, horses, chlorine, and the like.
  • SCNT-FOC somatic cell nuclear transfer embryo
  • FOC oocyte cytoplasm
  • SCNT-CROC cytoplasm of freezing / thawed (low temperature preserved / thawed) SCNT-CROC
  • Kdm4a mRNA was injected, and the development rate of blastocyst was about 17% lower in SCNT-CROC (Fig. 2C).
  • melatonin-treated SCNT-CROC shows a blastocyst development rate similar to that of SCNT-FOC, it can be used for nuclear transplantation without any additional freezing and thawing of the donor oocyte during the somatic cell cloning process, which can shorten the process of somatic cell nuclear transfer And the replication efficiency can be improved.
  • the method according to one embodiment may include a step of culturing the somatic cell nucleus and the nucleus-free oocyte in vitro to form a blastocyst.
  • the method according to one embodiment may comprise contacting the agent with H3K9me3 methylation reducing agent.
  • the method according to another embodiment may include injecting a formulation that reduces H3K9me3 methylation.
  • the agent that reduces H3K9me3 methylation may be one that increases the expression of members of the KDM4 family of histone demethylating enzymes.
  • the agent may be one that increases the expression or activity of, for example, KDM4A (JMJD2A), KDM4B (JMJD2B), KDM4C (JMJD2C), KDM4D (JMJD2D) or a combination thereof.
  • the contacting or implanting step may be performed on the nuclear transfer embryo after the nucleus of the somatic cell and the oocyte removed from the nucleus are fused.
  • the embryo may be an embryo before activation of a somatic cell nuclear transfer oocyte gene.
  • the embryo may be incubated for 5 hours post activation (5 hpa) or between 10 and 12 hpa (i. E., At the 1-cell stage), or at about 20 hpa Or between 20 and 28 hpa (i. E., 2-celled) with one or more histone demethylating enzyme KDM4 family.
  • the step of contacting or injecting may include contacting or donating one or more histone demethylase KDM4 families to a donor cell, e. G., A terminally differentiated somatic cell nucleus or cytoplasm, prior to injecting the donor cell nucleus into the nucleated oocyte. It can be injected.
  • the contact or infusion may be contact with the donor somatic cell for at least 1 hour, or more than 2 hours, and the contact may be from 1 day (24 hours) to 2 days prior to removal of the nucleus from the donor somatic cell Day, more than three days, or more than three days.
  • the developmental efficiency may be an increase in the percentage of development of a somatic cell nuclear transfer embryo developing into a 2-cell, 4-cell and 8-cell or blastocyst stage and may be an 8-cell or blastocyst stage of somatic cell nuclear transfer embryo Can increase the pre-implant development efficiency. That is, the agent for reducing the H3K9me3 methylation can overcome the 2-cell stopping phenomenon in the somatic cell nuclear transfer embryo and can maintain the continuous embryonic development.
  • the method of one embodiment may include incubating the nucleus of the somatic cell and the oocyte removed from the medium for 1 to 10 days in the medium containing the melatonin. Specifically, it may be cultured for 1 to 10 days, for 1 to 8 days, for 1 to 7 days, for 2 to 8 days, for 2 to 6 days, or for 3 to 6 days. If the incubation period is less than the above range, there is a problem that somatic cell nuclear transfer embryos are not enough to develop into blastocysts. If the incubation period is over the range, somatic cell nuclear transfer embryos are over-matured and qualitatively improved blastocysts There is a problem that it is difficult.
  • the method further comprises administering to the subject an effective amount of at least about 5%, at least about 10%, at least about 13%, at least about 15%, at least about 15% , Greater than about 30%, greater than about 50%, greater than 50 to 80%, or greater than 80%. That is, it is possible to increase the efficiency of the pre-implantation development of a somatic cell nuclear transfer embryo, or to increase the development of the embryo to the blastocyst stage or to increase the development of the embryo to the expanded blastocyst stage by about 5%, about 7% %, About 12 or more, or more than 12%.
  • the method is characterized in that the successful development into the blastocyst stage is more than 3-fold, 4-fold, 5-fold, 6-fold, or more than the somatic cell nuclear transfer performed in the absence of the agent that reduces H3K9me3 methylation. 7-fold, 8-fold, or 8-fold increase.
  • An increase in the somatic cell nuclear transfer efficiency means an increase or an increase in the production of blastocysts.
  • the increase in the production or the yield of the blastocyst is greater than or equal to about 110%, greater than about 120%, greater than about 130%, less than about 140%, or less than about 140%, compared to somatic cell nuclear transfer performed in the absence of agents that reduce H3K9me3 methylation. , More than about 150%, or more than about 150%.
  • the method according to one aspect of the present invention can prevent cell damage by reducing the active oxygen of somatic cell nuclear transfer cells by culturing somatic cell nuclear transfer cells in a medium containing melatonin, Can be improved.
  • the cell death of somatic cell nuclear transfer embryos frozen and melted by melatonin is reduced, which can improve blastocyst formation and production efficiency.
  • the implantation rate of the somatic cell nuclear transfer embryo is improved, it is possible to produce an endangered animal through in vitro fertilization. As the induction of embryonic stem cells is promoted, the embryonic stem cell line can be efficiently produced.
  • Another aspect provides a somatic cell nuclear transfer embryo made according to the method.
  • Another aspect provides a somatic cell nuclear transfer blastocyst prepared according to the method.
  • the embryo is genetically modified, and can be modified, for example, prior to somatic cell nuclear transfer (i. E., Prior to donor nuclei collection and fusion with the cytoplasm of the recipient oocyte) Lt; / RTI >
  • the embryo may comprise nuclear DNA derived from donor somatic cells, cytoplasm derived from recipient oocytes, and mitochondrial DNA derived from a third donor individual.
  • the embryo or blastocyst is characterized in that the expression of a gene associated with cell survival, tissue regeneration, antioxidant function, inflammation or apoptosis is upregulated or downregulated compared to a somatic cell nuclear transfer embryo or blastocyst performed in the absence of an agent that reduces H3K9me3 methylation Lt; / RTI >
  • the embryo may be one in which expression of a gene involved in cell survival and tissue regeneration is upregulated.
  • the gene may be Amd1 , Fam46C , Oxt, and / or Ppt2 .
  • the expression of genes involved in antioxidant function, inflammation or apoptosis may be upregulated.
  • the gene may be Ctss , Dffa , Eif3f , Hacl1 , Hspbp1 , Mob2 , Mrpl23 , Mrpl33 , Pmvk , Slc4a11 And / or Wbscr22 .
  • cell death or degeneration related genes such as Atp6v0c, Cd52 , Dapk2 , Ddit4l , Duoxa2 , Nfkbia , Ptgds , Rdh12 And / or the expression of Rnd3 is down-regulated.
  • the blastocyst may be up-regulated in expression of genes associated with cell survival or tissue regeneration, such as Amd1 , Fam46C , Oxt , and / or Ppt2 .
  • they are genetics related to antioxidant function, inflammation or apoptosis, for example, Gulo And / or the expression of Txnip is upregulated.
  • genes related to oxidative stress such as Adh1 , Car2 , Gsta3 , Gstm2 , Mb , Phlda2 , and / or S100a1 ;
  • the expression of apoptosis-related genes such as Akr1c13 , Amd2 , Clu , Hist1h3a , Hspb1 , Il1rn, and / or Nat8 may be down-regulated.
  • genes associated with cell and tumor proliferation such as Efempl , Gliprl , Lgals4 , Plac1 , Snora15 , Snora21, Snora34 , and / or Anxa1 ;
  • genes related to the immune response such as Clec2f , Hrsp12, and / or Plat may be downregulated.
  • embryonic stem cells prepared according to the above method.
  • the embryonic stem cells are obtained by separating the cells from the inner cell mass in a blastocyst prepared according to the method; And culturing the undifferentiated inner cell mass-derived cells.
  • the embryonic stem cells may be pluripotent stem cells or pluripotent stem cells.
  • Cells derived from somatic cell nuclear transfer embryos or blastocysts may be used in a test to determine whether the agent affects differentiation or cell proliferation. For example, the ability of the cells to differentiate or proliferate is evaluated from the presence or absence of the agent and can be used for screening to select agents that affect cells derived from somatic cell nuclear transfer embryos or blastocysts .
  • the test compound may be any compound of interest, including chemical compounds, small molecules, polypeptides or other biological agents (e. G., Antibodies or cytokines, etc.).
  • the step of evaluating the H3K9me3 methylation activity is to determine the degree of expression of a gene or protein that reduces H3K9me3 methylation, using techniques well known in the art such as RT-PCR or immunostaining .
  • the step of evaluating the H3K9me3 methylation activity may be performed together with the step of evaluating the somatic cell replication efficiency.
  • the candidate substance may be the H3K9me3 methylation It is possible to determine that it is a substance which decreases activity and further increases the efficiency of somatic cell replication by somatic cell nuclear transfer.
  • a method of preparing an oocyte Obtaining somatic-cell nuclear transfer (SCNT) cells by culturing oocytes in which the nuclei and nuclei of the somatic cells are removed in a medium containing melatonin; And a step of in vitro fertilization of the somatic cell nuclear transfer cells and the liquid semen of the somatic cell transplantation embryo.
  • SCNT somatic-cell nuclear transfer
  • the somatic cell nuclear transfer cell may be a somatic cell nuclear transfer embryo, specifically, a cell line of a 2-cell line, a 4-cell line and an 8-cell line, and may be a cell that has developed into the blastocyst stage and has reached the blastocyst stage.
  • the method according to one embodiment comprises in vitro fertilization of the somatic cell nuclear transfer cell and the liquid semen.
  • the semen may be a semen taken from the body of the subject.
  • the subject may be a mammal, including a human.
  • the mammal may include rats, pigs, sheep, dogs, cows, horses, chlorine, and the like.
  • the somatic cell nuclear transfer cell and the liquid semen may be in vitro fertilized in the in vitro fertilization medium composition for 1 to 7 days. At this time, when the IVF period is less than the above range, there is a problem that it can not be corrected, and when it exceeds the above range, the embryo is degraded.
  • the step may further comprise contacting or injecting with an agent that reduces H3K9me3 methylation.
  • an agent that reduces H3K9me3 methylation Specific details of the agent for reducing the methylation are as described above.
  • the methylation-decreasing agent may be added to somatic cell nuclear transfer embryos after the injection of semen, before the formation of nucleus (18 hours after semen injection), specifically injecting semen, It can be injected. Therefore, the somatic embryo-transferred embryo is successfully developed into a blastocyst through the 2-, 4-, and 8-cell stage without progression of the somatic cell nuclear transfer embryo (embryo), development defect, or loss of viability, Can be increased.
  • the present invention relates to a composition for embryo development comprising melatonin and a method for improving the embryo development rate using the same, wherein the cell is efficiently developed into a blastocyst without cell damage and / or developmental arrest, Can be used to produce somatic cell cloned embryos.
  • 1A is a photograph showing the results of observing demethylation of H3K9me3 by injecting Kdm4a mRNA into SCNT-FOC and SCNT-CROC groups.
  • FIG. 1B is a graph showing the results of observing demethylation of H3K9me3 by injecting Kdm4a mRNA into SCNT-FOC and SCNT-CROC groups.
  • FIG. 2A is a photograph showing changes in the number of cells and whole cells of SCNT-FOC and SCNT-CROC groups according to whether Kdm4a mRNA was injected.
  • FIG. 2B is a photograph showing the embryo development level of SCNT-FOC and SCNT-CROC groups according to whether Kdm4a mRNA was injected.
  • FIG. 2C is a graph showing the blastocyst quality ratio of SCNT-FOC and SCNT-CROC groups according to whether Kdm4a mRNA is injected.
  • FIG. 3A shows genes having different expression patterns in SCNT-FOC and SCNT-CROC group 2-cell embryos according to whether Kdm4a mRNA was injected.
  • FIG. 3B shows genes regulated (up / down) in SCNT-FOC and SCNT-CROC group 2-cell embryos according to the injection of Kdm4a mRNA.
  • FIG. 4A is a photograph showing the DNA fragmentation level in blastocysts of SCNT-CROC and SCNT-CROC + K groups with and without melatonin treatment by TUNEL staining.
  • FIG. 4B is a graph showing the number of TUNEL-positive cells in the blastocysts of SCNT-CROC and SCNT-CROC + K groups with and without melatonin treatment.
  • FIG. 5A is a photograph showing fluorescence staining (cell death, green, nucleus, blue staining) of a site where apoptosis has occurred in the SCNT-CROC + K group with or without melatonin treatment.
  • FIG. 5B is a graph showing the levels of reactive oxygen species in the supernatant of SCNT-CROC + K group with and without melatonin treatment.
  • 6A is a photograph visualizing the implantation of the SCNT-CROC + K group in the mouse uterus according to the presence or absence of the melatonin treatment.
  • FIG. 6B is a photograph showing a result of repeatedly experimenting whether or not the SCNT-CROC + K group is implanted in the mouse uterus according to the presence or absence of the melatonin treatment.
  • 6C is a graph showing the embryo transfer rate of the SCNT-CROC + K group according to the presence or absence of the melatonin treatment.
  • FIG. 7A is a result of microscopic examination of the mESC induction rate of SCNT-CROC + K group depending on whether or not the melatonin treatment is carried out.
  • FIG. 7B is a graph showing the mESC induction rate of the SCNT-CROC + K group according to the presence or absence of the melatonin treatment.
  • mice Female B6D2F1 mice (Orient-bio, Gyeonggi-do, Korea) were used at 8-10 weeks of age to collect recipient oocytes and SCNT donor oocytes. 8- to 10-week-old female ICR mice were used as surrogate mothers of embryo transfer. To induce pseudopragnancy, the mice were crossed with male mice of the same strain.
  • the protocol for animal use in this study was approved by the Committee on Animal Experimentation and Use (IACUC) (project number IACUC-170119) of the University of Science in Caracas, and all experiments were performed according to an approved protocol.
  • IACUC Committee on Animal Experimentation and Use
  • the dispersed cumulus cells were treated with hyaluronidase
  • the pellet was resuspended in M2 in a small volume of polyvinylpyrrolidone (PVP) 3% (v / v) and stored at 4 ° C until use.
  • PVP polyvinylpyrrolidone
  • Pre-equilibrated oocytes were equilibrated for 20 seconds in the same volume of HEPES medium supplemented with 15% ethylene glycol, 15% DMSO, and 0.5 M sucrose (Sigma-Aldrich). Equilibrated oocytes were loaded into electron microscopic copper grids (EM Grid, PELCO, Redding, Calif.) And slush nitrogen (SN2) was eluted using Vit-master (IMT, Ness Ziona, Israel) Lt; / RTI > The vitrified frozen oocytes were stored in the LN2 tank. For warming, the vitrified frozen oocytes were warmed in four steps.
  • the EM grid was sequentially transferred to 0.5, 0.25, 0.125, and 0 M sucrose at 37 < 0 > C at 2 min 30 sec intervals.
  • the oocytes were then washed three times with modified HTF (Millipore) medium and cultured in HTF medium until the start of the experiment.
  • modified HTF Micropore
  • Fresh or vitrified vitrification / warmed oocytes prepared in Example 2 were incubated at 37 ° C, and the oocytes were removed from the oocytes.
  • Fresh cumulus cells were used as nuclear donor oocytes.
  • the nuclei of fresh, vitrified, frozen / thawed cumulus cells were removed in M2 medium containing 5 ⁇ g / ml of cytochalasin B.
  • cumulus cells were injected into enucleated oocytes using a piezo-driven micromanipulator (Primetech LTD, Tsuchiura-shi, Japan) in M2 medium.
  • embryos regenerated with 10 mM SrCl 2 , 2 mM EGTA, and 5 ⁇ g / ml cytochalasin B in M16 (Millipore) medium were activated for 6 hours and then incubated at 37 ° C in a humidified atmosphere of 5% CO 2 Of KSOM.
  • the somatic cell oocyte group using fresh oocyte cytoplasm (FOC) was named as SCNT-FOC and the group using cytoplasm of vitrified / frozen (low temperature preserved / thawed) oocyte was named SCNT-CROC Respectively.
  • Full-length mouse Kdm4a / Jhdm3a cDNA was cloned into a pcDNA3.1 plasmid containing poly (A) 83 at the 3 'end of the cloning site using an In-Fusion Kit (Clonetech # 638909).
  • MRNA was synthesized from a template plasmid linearized by in vitro transcription using mMESSAGE mMACHINE T7 Ultra Kit (Life Technologies # AM1345). The synthesized mRNA was dissolved in nuclease-free water. The concentration of mRNA was measured using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies); Aliquots of mRNA were stored at -80 ° C until use.
  • Kdm4a mRNA encoding the H3K9me3 demethylase is known to improve oocyte development in somatic cell nuclear transfer mammals.
  • SCNT-CROC cloned oocytes
  • ⁇ 10 pl of water (control) or 2 / / ⁇ l Kdm4a mRNA was injected into the two groups of oocytes (SCNT-FOC group and SCNT-CROC group) prepared in Example 3 using a piezo-driven micromanipulator Respectively.
  • embryo development was confirmed by immunofluorescence. Specifically, the embryos cloned with phosphate-buffered saline (PBS) containing 0.1% polyvinyl alcohol (PVA) were washed and incubated with 4% w / v paraformaldehyde at room temperature. For 30 minutes.
  • PBS phosphate-buffered saline
  • PVA polyvinyl alcohol
  • the oocytes were washed with PBS / PVA and incubated overnight at 4 ° C in PBS containing 1% bovine serum albumin (BSA) and 0.1% Triton X-100. The oocytes were then washed three times in PBS-0.1% BSA and incubated for 2 hours with 1: 200 dilution of H3K9me3 antibody and purified mouse anti-OCT-3/4 (BD) at 1 and 2 cell steps. Cloned embryos were washed three times with PBS-0.1% BSA and incubated with 1: 200 dilution of goat anti-mouse antibody for 1 hour at room temperature. Thereafter, the cells were further washed three times with PBS-0.1% BSA.
  • BSA bovine serum albumin
  • Triton X-100 Triton X-100
  • DNA was visualized by staining oocytes with 4 ', 6-diamidino-2-phenylindole (DAPI).
  • DAPI 6-diamidino-2-phenylindole
  • the embryos were placed on glass slides with fluorescent mounting media and observed using a fluorescence microscope (Zeiss LSM 880, Zeiss, Jena, Germany).
  • SCNT-FOC Somatic cell nuclear transfer cloned oocyte using cytoplasm of fresh oocyte
  • SCNT-CROC Somatic cell nuclear transfer cloned oocyte using cytoplasm of freezing / thawed oocyte
  • K injection of lysine (K) -specific demethylating enzyme 4A (Kdm4a) mRNA
  • Figure 1 shows the results of demethylation of H3K9me3 by injecting Kdm4a mRNA into SCNT-FOC and SCNT-CROC groups.
  • Table 1 shows the effect of Kdm4a mRNA injection on the development of SCNT-FOC and SCNT-CROC groups to be. It was confirmed that demethylation of H3K9me3 was normally performed in the SCNT-FOC group and the SCNT-CROC group 1 cell group and the nucleus of the second cell group (Fig. 1A). As a result of quantifying the methylation level, it was confirmed that the level of H3K9me3 was significantly decreased when Kdm4a mRNA was injected into SCNT-FOC group and SCNT-CROC (FIG. 1B).
  • FIG. 2 shows changes in the number of cells and whole cells of SCNT-FOC and SCNT-CROC groups according to whether Kdm4a mRNA was injected.
  • the inner cell group means the number of cells capable of developing into embryonic stem cells in the future, and Type 1 indicates less than 10 intracellular cells and Type 2 indicates 10 or more intracellular cells.
  • embryo development defects in the SCNT-FOC group and the SCNT-CROC group were substantially overcome after the injection of the mRNA, but the embryo development and embryo development degree in the SCNT-CROC group were significantly Of the embryo development and development.
  • the number of cloned embryos having a high ratio of ICM number (more than 10 ICMs per blastocyst) in the SCNT-CROC + K group was significantly smaller than that in the SCNT-FOC + K group (p ⁇ 0.05) .
  • the injection of Kdm4a mRNA significantly improves the quality of blastocysts by significantly increasing the number of cell population.
  • the complementary DNA was amplified using the SMARTer ultra low input RNA cDNA preparation kit (Takara, 634890) according to the manufacturer's instructions. CDNA was fragmented into approximately 200 bp fragments using an M220 sonicator (Covaris). The fragmented cDNA was end-repaired and adapter-ligated.
  • the sequencing library was prepared using the ScriptSeq v2 kit (Illumina) according to the manufacturer's instructions. Single-end sequencing was performed on HiSeq2500 (Illumina) and mapped to the mm9 mouse genome using STAR (v2.5.2b, https://github.com/alexdobin/STAR).
  • Kdm4a (SCNT-CROC + K) was first injected into the SCNT-CROC group oocytes and then cultured in KSOM medium containing 10 ⁇ M of melatonin (Sigma) and KSOM medium not containing KMOM. Embryonic development of cloned oocytes was assessed for 5 days (120 hours) after activation. The melatonin concentration was selected through preliminary experiments using conventional fertilized mouse embryos at concentrations showing the highest quality and high blastocyst formation rates. The results for each group are shown in Table 2 below.
  • SCNT-FOC Somatic cell nuclear transfer cloned oocyte using cytoplasm of fresh oocyte
  • SCNT-CROC Somatic cell nuclear transfer cloned oocyte using cytoplasm of freezing / thawed oocyte
  • K injection of lysine (K) -specific demethylating enzyme 4A (Kdm4a) mRNA
  • the DNA fragmentation level in the blastocysts according to whether melatonin treatment was performed in the group of Example 5-1 was detected using TUNEL staining method ( in situ Cell Death Detection Kit, Roche, Indianapolis, Ind.). SCNT-derived blastocysts were washed three times in DPBS 0.1% PVA. The embryos were incubated in TUNEL reaction medium at 37 < 0 > C, dark for 1 hour. DNA stained with 1 [mu] g / ml Hoechst 33342 (Bis-benzimide, Sigma) was used for nuclear counter-staining. The embryonic signal was observed with a confocal microscope (Zeiss, LSM880).
  • Fluorescent pixel values of the embryos were measured within a certain region from the cytoplasmic region of another embryo. Before analysis of statistically significant differences between groups, background fluorescence values were excluded from the final values. Five to ten embryos were replicated three times in each replicate.
  • the treatment with melatonin significantly reduced the level of free radicals in the blastocyst.
  • the effect of treatment with melatonin on the quality of blastocysts through fluorescence staining (cell death, green, nuclear, and blue dyeing) of apoptotic parts was significantly reduced And the cell death rate was also significantly decreased (FIG. 5A).
  • the level of active oxygen in the supernatant was significantly lower in the SCNT-CROC group than in the SCNT-CROC + K group (Fig. 5B). That is, the treatment of melatonin improves the apoptosis pathway such as apoptosis, peroxisome and oxidative phosphorylation, so that a qualitatively improved blastocyst can be obtained.
  • transcripts of 2-cell embryos and blastocysts 50 embryos per embryo or blastocyst, twice
  • Table 3 the results are shown in Table 3 below.
  • Ctss , Dffa , Eif3f , Hacl1, Hspbp1 , Mob2 , Mrpl23 , Mrpl33 , Pmvk , Slc4a11 which are related to antioxidative function, inflammation and apoptosis And Wbscr22 was upgraded to a high level.
  • cell death and regression-related genes Atp6v0c , Cd52 , Dapk2, Ddit4l , Duoxa2 , Nfkbia , Ptgds , Rdh12 And Rnd3 ) were down-regulated in 2-cell embryos of SCNT-CROC + K + M).
  • genes associated with oxidative stress Adh1 , Car2 , Gsta3 , Gstm2 , Mb , Phlda2 , and S100a1
  • cell death and regression-related genes Akr1c13 , Amd2 , Clu , Hist1h3a , Hspb1 , Il1rn , and Nat8
  • SCNT-CROC + K + M cell death and regression-related genes
  • expression levels of cell and tumor proliferation related genes Efemp1 , Glipr1 , Lgals4 , Plac1 , Snora15 , Snora21 , Snora34 , and Anxa1
  • Clec2f , Hrsp12 , and Plat were down regulated in the melatonin-treated group (SCNT-CROC + K + M) (Table 4).
  • SCNT-CROC + K and SCNT-CROC + K + M group The reconstituted embryos cultured in the blastocyst stage under melatonin-treated or non-treated conditions (SCNT-CROC + K and SCNT-CROC + K + M group) were suspended in a 2.5 day pseudo- pregnant) female ICR mice. At this time, SCNT-CROC + K group and SCNT-CROC + K + M group were transplanted to the left and right uterus of the same mouse, respectively.
  • the embryo transfer rate in female mice was confirmed at 7.5 days after the sexual intercourse of the mice. After the mice were euthanized, the normal uterus was washed with saline and resected and the adhered fats were removed. The fat removed tissue was photographed to visualize the implantation (Fig. 6a, Fig. 6b).
  • transplantation rate was significantly increased in the melatonin-treated group (SCNT-CROC + K + M) compared with the melatonin untreated group (SCNT-CROC + K) (66.2% (51/77) vs. 42.9% 33/77), p ⁇ 0.05; Fig. 6c).
  • Example 7 Derivation of mouse embryonic stem cells from SCNT blastocysts
  • the hatched blastocysts obtained in two groups were injected into mitotic inactivated mouse embryonic fibroblasts of mouse embryonic stem cell (mESC) MEF) feeder cells.
  • the alkaline phosphatase activity was evaluated by histochemical staining. The colonies were fixed with 4% paraformaldehyde at room temperature for 1 min and washed twice with PBS.
  • the alkaline phosphatase substrate solution (10 ml FRV-alkaline solution, 10 ml naphthol AS-BI alkaline solution, alkaline phosphatase kit, Sigma-Aldrich) At room temperature for 30 minutes.
  • the alkaline phosphatase activity was detected by a colorimeter using an optical microscope (Fig. 7A).
  • the induction rate of mESC was significantly higher in the melatonin-treated group than in the untreated group (21.3% (10/47) vs. 5.6% (2/36), p ⁇ 0.05;

Abstract

The present invention relates to a composition for embryonic development, the composition comprising melatonin, and a method for improving the embryonic development rate using same. The composition prevents the stopping of the development of the 2-cell stage of an embryo, thereby increasing the efficiency of developing into a blastocyst, and thus a blastocyst that is excellent in quality or quantity may be acquired.

Description

멜라토닌을 포함하는, 배아 발달용 조성물 및 이를 이용하여 배아 발달의 효율을 향상시키는 방법A composition for embryo development comprising melatonin and a method for improving the efficiency of embryo development using the composition
멜라토닌을 포함하는, 배아 발달용 조성물 및 이를 이용하여 배아 발달의 효율을 향상시키는 방법에 관한 것이다.Melatonin, and a method for improving the efficiency of embryo development using the same.
체세포 핵 이식(somatic cell nuclear transfer, SCNT)-기반의 재프로그래밍(reprogramming) 및 배아줄기세포(embryonic stem cell, ESCs)의 유도(derivation)는 재생 의학을 위한 환자-특이적 줄기세포를 생산할 수 있다고 제안되어 왔다. 최근, 3개의 개별적인 연구 그룹이 여러 자원으로부터 양질의 인간 난모세포 및 섬유아세포를 사용하여 몇몇 체세포 핵 이식-배아줄기세포(SCNT-ESC) 계통을 성공적으로 유도하였다. 인간의 SCNT 배아의 발달 정지 중 많은 부분이 히스톤 메틸화의 조절에 의해 부분적으로 극복됨에 따라, 현재 세포 치료에 적용 가능한 기술이 되었다. 또한, 인간 백혈구 항원(human leukocyte antigen, HLA)-일치 동종 접합성 다능성 줄기세포(homozygous pluripotent stem cells, PSCs)의 확립은 SCNT-ESCs의 잠재적 효율성을 증가시킬 수 있으나, 연구 및 임상 적용을 위해 많은 수의 기증된 인간 난모세포를 필요로 한다. Somatic cell nuclear transfer (SCNT) -based reprogramming and derivation of embryonic stem cells (ESCs) can produce patient-specific stem cells for regenerative medicine Has been proposed. Recently, three individual study groups have successfully induced several somatic cell nuclear transfer-embryonic stem cell (SCNT-ESC) lines using high quality human oocytes and fibroblasts from various sources. As much of the developmental arrest of human SCNT embryos has been partially overcome by the modulation of histone methylation, it has become a technology applicable to current cell therapy. In addition, the establishment of human leukocyte antigen (HLA) -modified homozygous pluripotent stem cells (PSCs) may increase the potential efficiency of SCNT-ESCs, but many Lt; RTI ID = 0.0 > human oocytes. ≪ / RTI >
최근, 난모세포 유리화동결(vitrification) 기술은 인간 보조 생식 기술뿐만 아니라 널리 사용되는 저온 보존 방법의 실용적인 기술로 사용되고 있다. 실제로, 유리화동결(저온 냉동)된 난모세포에서 출생한 자손의 세포 발생 및 발달 정지(cell bolck)는 기존 체외수정(in vitro fertilization, IVF)과 비교하였을 때 증가하지 않았다고 보고되었다. 이 기술은 불임 여성의 임신 가능성을 유지하고, 노화 유발성 다산 감소 위험에 처한 가임기 여성 및 암 치료로 인한 생식력의 위험을 치료할 수 있는 귀중한 기회를 제공한다. 또한, 인간 초과 난모세포의 유리화동결은 SCNT와 같은 연구를 위한, 지속적인 난자를 제공할 수 있으며, 그 사용은 또한 윤리적인 우려를 감소시킬 수 있다. 그러나, 최근까지 저온 보존된 난모세포를 이용한 복제란의 생산 및 SCNT-ESC 계통의 유도는 이루어지지 않았다. 심지어 생존율이 90% 이상인 경우에도 유리화동결된 난모세포의 임상 결과는 인간의 생식 기술 프로그램의 신선한 난모세포 보다 낮았다. 이것은 세포 골격 손상, 스핀들 구조의 변화, 미세소관, 피질 과립 분포 및 난모세포의 경화에 기인한 것으로 생각된다. 또한, 저온 보존된 난모세포는 높은 수준의 지질 때문에 산화스트레스에 특히 약하며, 산화 및 환원 반응과 세포 내 항산화 시스템 사이의 균형에 영향을 주는 다량의 활성 산소를 생성한다.Recently, oocyte vitrification vitrification technology has been used as a practical technique for widely used low-temperature preservation methods as well as human assisted reproductive technology. In fact, it has been reported that cell growth and developmental cell breakdown of offspring born in vitrified (cold-frozen) oocytes did not increase when compared to in vitro fertilization (IVF). This technique provides valuable opportunities to maintain the fertility of infertile women and to cure the risks of fertility due to fertile women and cancer treatment at risk of developing senescence-induced fertility. In addition, the vitrification freezing of human hyperplastic oocytes can provide a continuous oocyte for research, such as SCNT, and its use can also reduce ethical concerns. However, until now, the production of clone using low temperature preserved oocytes and induction of SCNT-ESC system have not been achieved. Even with a survival rate of 90% or more, the clinical outcome of vitrified frozen oocytes was lower than that of fresh oocytes in human reproductive technology programs. This is thought to be due to cytoskeleton damage, changes in spindle structure, microtubule, distribution of cortical granules and hardening of oocytes. In addition, cryopreserved oocytes are particularly vulnerable to oxidative stress due to high levels of lipid and produce large amounts of free radicals that affect the balance between oxidation and reduction reactions and intracellular antioxidant systems.
일 양상은 멜라토닌을 포함하는, 배아 발달 효율 증가 또는 배아 형성용 조성물을 제공하는 것이다.One aspect is to provide a composition for enhancing embryo development efficiency or embryo formation comprising melatonin.
다른 양상은 난자를 멜라토닌이 포함된 배지에서 배양하는 단계를 포함하는 배아 발달의 효율을 증가 또는 배아 형성을 증가시키는 방법을 제공하는 것이다. Another aspect is to provide a method of increasing the efficiency of embryo development or increasing embryo formation, including culturing the oocyte in a medium containing melatonin.
일 양상은 멜라토닌을 포함하는, 배아의 형성을 증가시키기 위한 조성물을 제공한다. 또 다른 양상은 멜라토닌을 포함하는, 배아 발달의 효율을 증가시키기 위한 조성물을 제공한다. 즉, 멜라토닌을 포함하는, 배아의 형성의 증가 및/또는 배아 발달의 효율을 증가시키기 위한 조성물을 제공한다. One aspect provides compositions for increasing the formation of embryos, including melatonin. Yet another aspect provides a composition for increasing the efficiency of embryo development, including melatonin. That is, there is provided a composition for increasing the formation of embryos and / or increasing the efficiency of embryo development, including melatonin.
본 명세서에서 용어 "배아의 형성"은 접합체(zygote)가 세포분열을 통해 여러 개의 세포가 되고, 이 세포들이 세포분열과 분화를 거쳐 배아(embryo)를 형성하는 것 또는 배아로 발생하는 것을 의미한다. As used herein, the term "embryo formation" means that the zygote becomes a plurality of cells through cell division, and these cells undergo cell division and differentiation to form an embryo or an embryo .
본 명세서에서 용어 "효율의 증가"은 난자의 배반포 발달 또는 배반포 발달의 증가를 의미한다. 상기 배반포란 수정란이 난할을 거듭하여 자라는 과정에서 치밀화된 상실배 이후에 배반포강을 형성하여 태아로 분화할 내세포피(inner cell mass)와 태반으로 분화할 영양막세포(trophectoderm)로 구분이 될 정도로 발육된 상태의 수정란을 의미한다. 따라서, 상기 효율의 증가는 H3K9me3 메틸레이션을 감소시키는 제제의 부존재 하에서 배양한 난자와 비교하여 난자의 배아 발달 효율이 증가하는 것, 배아의 배반포 단계로의 발달이 증가하는 것, 배반포 단계로의 발생이 증가하는 것, 배반포의 생성 효율이 증가하는 것, 배반포의 수득 효율이 증가하는 것 또는 배반포의 발달 형성율이 증가하는 것을 의미한다.As used herein, the term "increase in efficiency" means an increase in the development of the blastocyst of the oocyte or the development of the blastocyst. The above-mentioned blastocysts can be divided into the inner cell mass to differentiate into the fetus and the trophectoderm that can differentiate into the placenta after the embryo is densified in the process of growing the embryos repeatedly. Means a fertilized egg in a state of being. Thus, the increase in efficiency is due to an increase in the embryo development efficiency of the oocyte, an increase in the development of the embryo to the blastocyst stage compared with the oocyte cultured in the absence of the agent that reduces the H3K9me3 methylation, The increase in the production efficiency of blastocysts, the increase in the efficiency of obtaining blastocysts, or the rate of development of blastocysts.
일 구체예에서, 상기 조성물은 기본 배지에 멜라토닌이 0.1 μM 내지 50 μM의 농도로 포함된 것일 수 있다. 멜라토닌은 생물학적인 반응의 주기와 관련된 분자로, N-아세틸-5-메톡시트립타민으로도 알려져 있다. 포유동물에서 멜라토닌은 세포주기를 조정하고 산화적 스트레스와 세포사멸에 강력한 저항성을 보인다. 즉, 일 양상에 따른 방법은 멜라토닌이 포함된 배지에서 체세포의 핵 및 핵이 제거된 난자를 배양함으로써, 상기 체세포 핵 이식 난자의 활성산소 및 세포사멸을 감소시키는 바, 세포 손상을 방지하여 질적으로 향상된 배반포를 수득할 수 있다는 이점이 있다. 또한, 체세포 핵 이식 난자로 인공 수정된 수정란의 착상률을 증진시키고, 배아줄기세포 유도를 증진시킬 수 있다. 구체적으로, 기본배지에 멜라토닌을 0.1 μM 내지 50 μM, 0.1 μM 내지 40 μM, 0.1 μM 내지 30 μM, 1 μM 내지 50 μM, 1 μM 내지 30 μM, 5μM 내지 30 μM, 5 μM 내지 25 μM, 5 μM 내지 20 μM, 10μM 내지 25 μM 또는 5 μM 내지 15 μM을 포함할 수 있다. 이때, 상기 기본배지에 포함되는 멜라토닌의 농도가 상기 범위 미만인 경우, 활성산소를 효과적으로 제거할 수 없으므로, 체세포 핵 이식 난자의 배반포 발달 효율을 저해하는 바, 좋은 품질의 난자를 수득할 수 없다는 문제점이 있으며, 상기 범위를 초과하는 경우, 체세포 핵 이식 난자에 멜라토닌이 오랜 시간 동안 작용하여 난자의 성숙을 방해하는 문제점이 있다. 구체적으로, 상기 기본 배지는 포유동물 난자의 배양에 사용되는 기본배지인 것일 수 있다. 상기 기본배지는 포유동물의 종에 따라 차이가 있으나, 무기염류, 탄소원, 아미노산, 소 혈청 알부민 및 보조인자로 이루어진 군에서 선택된 어느 하나 이상을 포함하며, 당업자에게 알려진 일반적인 배지를 모두 포함할 수 있다. 상기 무기염류로는, NaCl, KCl 및 NaHCO3 등을 사용할 수 있고, 탄소원으로는 글루코스, 나트륨, 피루베이트 및 젖산칼슘염 등을 사용할 수 있으며, 아미노산으로는 글루타민을 비롯한 필수 아미노산 및 비필수 아미노산, 보조인자로는 기타 미량 원소 및 완충액 등을 사용할 수 있다. 상기 배지는 예를 들어, MEM (Minimal Essential Medium), DMEM (Dulbecco modified Eagle Medium), RPMI (Roswell Park Memorial Institute Medium), K-SFM(Keratinocyte Serum Free Medium), IMDM(Iscove's Modified Dulbecco's Medium), F12 및 DMEM/F12로 구성된 군에서 선택되는 것일 수 있다. 또한, 배지는 등장액 중의 중성 완충제(예를 들면 인산염 및/또는 고농도 중탄산염) 및 단백질 영양분(예를 들면 혈청, 예를 들면 FBS, FCS (fetal calf serum), horse serum, 혈청 대체물, 알부민, 또는 필수 아미노산 및 비필수 아미노산, 예를 들면 글루타민, L-글루타민)을 함유할 수 있다. 나아가, 지질(지방산, 콜레스테롤, 혈청의 HDL 또는 LDL 추출물) 및 이 종류의 대부분의 보존액 배지에서 발견되는 기타 성분(예를 들면 트랜스페린, 뉴클레오시드 또는 뉴클레오티드, 피루빈산염, 임의의 이온화 형태 또는 염인 당원, 예를 들면 글루코스, 글루코코르티코이드, 예를 들면 히드로코르티존 및/또는 환원제, 예를 들면 β-메르캅토에탄올)을 함유할 수 있다. 또한, 상기 기본배지에는 항생제를 추가로 포함할 수 있다. 상기 멜라토닌은 상기 기본배지에 0.1 μM 내지 50 μM, 0.1 μM 내지 40 μM, 0.1 μM 내지 30 μM, 1 μM 내지 50 μM, 1 μM 내지 30 μM, 5μM 내지 30 μM 또는 5μM 내지 25 μM로 포함될 수 있다. 이때, 상기 기본배지에 포함되는 멜라토닌의 농도가 상기 범위 미만인 경우, 활성산소를 효과적으로 제거할 수 없으므로, 체세포 핵 이식 난자의 배반포 발달 효율을 저해하는 바, 좋은 품질의 난자를 수득할 수 없다는 문제점이 있으며, 상기 범위를 초과하는 경우, 멜라토닌이 체세포 핵 이식 난자에 오랜 시간 동안 작용하여 난자의 성숙을 방해하는 문제점이 있다.In one embodiment, the composition may contain melatonin at a concentration of from 0.1 [mu] M to 50 [mu] M in the basal medium. Melatonin is a molecule related to the cycle of biological response, also known as N-acetyl-5-methoxy tryptamine. In mammals, melatonin modulates the cell cycle and exhibits strong resistance to oxidative stress and apoptosis. That is, the method according to one aspect of the present invention reduces the active oxygen and apoptosis of somatic cell nuclear transfer embryos by culturing oocytes in which somatic cells and nuclei are removed in a medium containing melatonin, There is an advantage that an improved blastocyst can be obtained. In addition, somatic cell nuclear transfer embryos can improve the implantation rate of artificially fertilized embryos and promote embryonic stem cell induction. Specifically, in the basic medium, melatonin is added at a concentration of 0.1 μM to 50 μM, 0.1 μM to 40 μM, 0.1 μM to 30 μM, 1 μM to 50 μM, 1 μM to 30 μM, 5 μM to 30 μM, mu M to 20 [mu] M, 10 [mu] M to 25 [mu] M or 5 [mu] M to 15 [mu] M. At this time, when the concentration of melatonin contained in the basic medium is less than the above range, the active oxygen can not be effectively removed, and thus the efficiency of development of the blastocyst of the somatic cell nuclear transfer embryo is deteriorated. As a result, If it exceeds the above range, there is a problem that the melatonin acts on the somatic cell nuclear transfer embryo for a long time and hinders the maturation of the oocyte. Specifically, the basal medium may be a basic medium used for culturing mammalian oocytes. The basic medium differs depending on the species of the mammal, but may include any one or more selected from the group consisting of inorganic salts, carbon sources, amino acids, bovine serum albumin, and coadjuvants, and may include all conventional media known to those skilled in the art. Examples of the inorganic salts include NaCl, KCl, and NaHCO 3. Examples of the carbon source include glucose, sodium, pyruvate, and calcium lactate. Examples of the amino acids include essential amino acids such as glutamine, Other auxiliaries may be other trace elements and buffers. The medium may be, for example, MEM (Minimal Essential Medium), DMEM (Dulbecco modified Eagle Medium), RPMI (Roswell Park Memorial Institute Medium), Keratinocyte Serum Free Medium (K-SFM), Iscove's Modified Dulbecco's Medium And DMEM / F12. ≪ / RTI > The medium may also be supplemented with a mixture of neutral buffer (e.g., phosphate and / or high concentration bicarbonate) and protein nutrients (e.g., serum, such as FBS, fetal calf serum, horse serum, serum replacement, albumin, Amino acids and non-essential amino acids such as glutamine, L-glutamine). Furthermore, it is possible to use lipid (fatty acid, cholesterol, HDL or LDL extract of serum) and other components found in most types of storage medium of this kind (for example, transferrin, nucleoside or nucleotide, pyruvate, For example, glucose, glucocorticoids such as hydrocortisone and / or a reducing agent such as? -Mercaptoethanol). The base medium may further include an antibiotic. The melatonin may be included in the basic medium in a concentration of 0.1 μM to 50 μM, 0.1 μM to 40 μM, 0.1 μM to 30 μM, 1 μM to 50 μM, 1 μM to 30 μM, 5 μM to 30 μM or 5 μM to 25 μM . At this time, when the concentration of melatonin contained in the basic medium is less than the above range, the active oxygen can not be effectively removed, and thus the efficiency of development of the blastocyst of the somatic cell nuclear transfer embryo is inhibited. As a result, And if it exceeds the above range, there is a problem that melatonin acts on somatic cell nuclear transfer embryos for a long time to prevent maturation of oocytes.
다른 구체예에서, 상기 조성물은 H3K9me3 메틸레이션을 감소시키는 제제를 추가로 포함하는 것일 수 있다. 상기 메틸레이션을 감소시키는 제제는 히스톤 탈 메틸화효소의 KDM4 패밀리의 구성원의 발현을 증가시키는 제제인 것일 수 있다. 예를 들어, 상기 제제는 KDM4A(JMJD2A), KDM4B(JMJD2B), KDM4C(JMJD2C), KDM4D(JMJD2D) 또는 이의 조합의 발현 또는 활성을 증가시키는 것일 수 있다.In other embodiments, the composition may further comprise an agent that reduces H3K9me3 methylation. The agent for decreasing methylation may be one that increases the expression of a member of the KDM4 family of histone demethylating enzymes. For example, the agent may be one that increases the expression or activity of KDM4A (JMJD2A), KDM4B (JMJD2B), KDM4C (JMJD2C), KDM4D (JMJD2D), or a combination thereof.
상기 배아가 2-세포기 상태인 경우, Amd1, Fam46C, Oxt , Ppt2 , Ctss , Dffa , Eif3f, Hacl1 , Hspbp1 , Mob2 , Mrpl23 , Mrpl33 , Pmvk , Slc4a11 Wbscr22로 구성된 군에서 선택되는 어느 하나 이상의 유전자 발현이 증가되는 것일 수 있다. 또한, Atp6v0c, Cd52 , Dapk2 , Ddit4l , Duoxa2 , Nfkbia , Ptgds , Rdh12 Rnd3로 구성된 군에서 선택되는 어느 하나 이상의 유전자 발현이 감소되는 것일 수 있다. When the embryo is in the 2- celled state, Amd1 , Fam46C , Oxt , Ppt2 , Ctss , Dffa , Eif3f, Hacl1 , Hspbp1 , Mob2 , Mrpl23 , Mrpl33 , Pmvk , Slc4a11 And Lt ; RTI ID = 0.0 > Wbscr22 < / RTI > Also, Atp6v0c, Cd52 , Dapk2 , Ddit4l , Duoxa2 , Nfkbia , Ptgds , Rdh12 And Rnd3 may be decreased.
상기 배아가 배반포(blastocyst)로 발달한 경우, Amd1, Fam46C, Oxt , Ppt2 , Gulo Txnip로 구성된 군에서 선택되는 어느 하나 이상의 유전자 발현이 증가되는 것일 수 있다. 또한, Adh1, Car2, Gsta3, Gstm2, Mb, Phlda2 , S100a1 , Akr1c13, Amd2, Clu, Hist1h3a, Hspb1, Il1rn , Nat8 , Efemp1, Glipr1 , Lgals4, Plac1, Snora15, Snora 21, Snora 34, Anxa1 , Clec2f, Hrsp12 ,Plat로 구성된 군에서 선택되는 어느 하나 이상의 유전자 발현이 감소되는 것일 수 있다. 상기 배아는 체외에서 인공수정을 통하여 형성된 배아인 것일 수 있으며 또는 상기 배아는 핵이 제거된 난자에 체세포의 핵을 이식하여 형성된 것일 수 있다. 상기 배아는 체외에서 인공수정을 통하여 형성된 것이거나 또는 상기 배아는 핵이 제거된 난자에 체세포의 핵을 이식하여 형성된 것일 수 있다. When the embryo develops into a blastocyst , expression of one or more genes selected from the group consisting of Amd1 , Fam46C , Oxt , Ppt2 , Gulo, and Txnip may be increased. Also, Adh1, Car2, Gsta3, Gstm2 , Mb, Phlda2, S100a1, Akr1c13, Amd2, Clu, Hist1h3a, Hspb1, Il1rn, Nat8, Efemp1, Glipr1, Lgals4, Plac1, Snora15, Snora 21, Snora 34, Anxa1, Clec2f, Hrsp12 , and Plat may be decreased in expression of one or more genes. The embryo may be an embryo formed through artificial fertilization in vitro or the embryo may be formed by implanting nuclei of somatic cells into an oocyte removed from the nucleus. The embryo may be formed through artificial fertilization in vitro or the embryo may be formed by implanting the nuclei of somatic cells into the nucleus-free oocyte.
다른 양상은 멜라토닌이 포함된 배지에서 난자를 배양하는 단계를 포함하는, 배아 발달의 효율 또는 배아 형성을 증가시키는 방법을 제공한다. 상기 멜라토닌이 포함된 배지의 구체적인 내용은 전술한 바와 같다. Another aspect provides a method of increasing the efficiency of embryo development or embryo formation, including culturing an oocyte in a medium containing melatonin. The specific content of the medium containing melatonin is as described above.
일 구체예에서, 난자에 H3K9me3 메틸레이션(methylation)을 감소시키는 제제를 접촉시키는 단계를 포함하는 것일 수 있다. 상기 H3K9me3 메틸레이션(methylation)을 감소시키는 제제의 구체적인 내용은 전술한 바와 같다. 또한, 상기 난자는 냉동 후 융해된 것일 수 있다. 또한, 상기 난자는 체세포 핵 이식 난자인 것일 수 있다. In one embodiment, the method may comprise contacting the oocyte with an agent that reduces H3K9me3 methylation. The details of the agent for reducing H3K9me3 methylation are as described above. In addition, the oocyte may be frozen and thawed. In addition, the oocyte may be a somatic cell nuclear transfer embryo.
상기 방법은 멜라토닌이 포함된 배지에서 난자를 1 내지 10일 동안 배양하는 단계를 포함할 수 있다. 구체적으로, 1 내지 10일, 1 내지 8일, 1 내지 7일, 2 내지 8일, 2 내지 6일, 또는 3 내지 6일 동안 배양하는 것일 수 있다. 이때, 배양 기간이 상기 범위 미만인 경우, 배아가 배반포로 발달하기에 충분하지 못하다는 문제점이 있으며, 상기 범위를 초과하는 경우, 난자가 과도하게 성숙하여 질적으로 향상된 배반포의 수득이 어렵다는 문제점이 있다.The method may include incubating the oocyte for 1 to 10 days in a medium containing melatonin. Specifically, it may be cultured for 1 to 10 days, for 1 to 8 days, for 1 to 7 days, for 2 to 8 days, for 2 to 6 days, or for 3 to 6 days. If the incubation period is less than the above range, there is a problem that the embryo is not enough to develop into a blastocyst. If the incubation period is over the range, it is difficult to obtain an improved blastocyst because the oocyte is over maturated.
또한, 상기 방법은 상기 배양하는 단계에서 얻어진 배아를 개체로 발달시키는 단계를 추가로 포함할 수 있다. 상기 개체는 상실배(morula), 포배(blastula) 및/또는 낭배(gastrula)인 것일 수 있다. In addition, the method may further comprise the step of developing the embryo obtained in the culturing step as an individual. The subject may be a morula, a blastula and / or a gastrula.
다른 양상은 상기 방법에 의해 제조된 배아, 배반포 및/또는 배아줄기세포를 제공한다. 또 다른 양상은 상기 방법에 의해 제조된 배아 및/또는 배반포를 유효성분으로 포함하는 이식용 조성물을 제공한다.Another aspect provides an embryo, blastocyst and / or embryonic stem cell produced by the method. Another aspect provides a graft composition comprising the embryo and / or the blastocyst produced by the above method as an active ingredient.
다른 양상은 체세포의 핵 및 핵이 제거된 난자를 준비하는 단계; 및 상기 체세포의 핵 및 핵이 제거된 난자를 멜라토닌이 포함된 배지에서 배양하는 단계;를 포함하는 체세포 핵 이식(somatic-cell nuclear transfer: SCNT)의 효율을 증가시키는 방법을 제공한다. 상기 효율은 체세포 핵 이식의 성공률, 상기 체세포 핵 이식에 의해 생성된 세포의 배아 발달률인 것일 수 있다. 상기 배아 발달률은 배아의 2-세포기, 4-세포기 및 8-세포기를 거쳐 배반포로의 발달을 의미하는 것일 수 있다. In another aspect, there is provided a method of preparing an oocyte, The present invention also provides a method for increasing the efficiency of somatic cell nuclear transfer (SCNT) comprising culturing the somatic cell nucleus and nucleus-free oocyte in a medium containing melatonin. The efficiency may be the success rate of the somatic cell nuclear transfer, or the embryo development rate of the cell generated by the somatic cell nuclear transfer. The embryo development rate may be the development into the blastocyst through the 2-cell, 4-cell and 8-cell groups of the embryo.
본 발명자들은 KDM4A mRNA를 주입함으로써 KDM4A 과발현을 유도한 난자의 접합 유전자 활성화(zygotic gene activation: ZGA) 시점, 즉 2-세포기에서 발달 정지를 막고, 체세포 핵 이식 배아 발달을 유의하게 향상시키는 것을 확인하였다. 따라서, 체세포 핵 이식을 위한 난모세포 공여자의 유용성을 확장시키고, 치료적 복제 및 핵-이식 배아줄기세포(NT-ESC), 특히 치료 용도 및 연구와 질병 모델링 모두를 위한 핵-이식 ESC의 생산을 위해 체세포 핵 이식을 향상시키는 방법에서 사용될 수 있다. 본 발명은 인간의 생식 복제를 위해 의도한 것은 아니다.The present inventors confirmed that injection of KDM4A mRNA prevents the developmental arrest at the time of zygotic gene activation (ZGA) of the oocyte inducing KDM4A overexpression, that is, the 2-cell cycle, and significantly improves somatic cell nuclear transfer embryo development Respectively. Thus, the utility of oocyte donors for somatic cell nuclear transfer is expanded and the production of nuclear-grafted ESCs for both therapeutic replication and nuclear-grafted embryonic stem cell (NT-ESC), especially therapeutic applications and research and disease modeling May be used in a method of enhancing somatic cell nuclear transfer. The present invention is not intended for human reproductive cloning.
상기 방법은 난모세포의 핵을 제거하는 단계, 하나 또는 그 이상의 체세포의 핵(공여 핵)을 이식하는 단계, 재구축된 핵 이식 난모세포(배아)를 활성화하는 단계, 및 배반포로 추가적으로 배양하는 단계를 더 포함할 수 있다. 이러한 체세포 핵 이식(somatic-cell nuclear transfer: SCNT)을 위한 단계들은 문헌(Nature 419, 583-587, 10 October 2002) 등에 공개된 방법에 따라 통상의 기술자가 적절히 변형하여 수행할 수 있다. 상기 핵 이식된 난모세포(배아)는 공여자 체세포 유래 핵(예를 들어, 핵 유전 물질)을 핵이 제거된 수용 난모세포에 주입하는 것으로부터 생성되어 핵 이식된 난모세포를 형성하며, 이는 활성화 또는 융합되어 핵 이식된 배아를 형성하는 것일 수 있다. The method comprises the steps of removing the nuclei of oocytes, implanting the nuclei of one or more somatic cells (donor nuclei), activating the reconstructed nuclear transfer oocytes (embryo), and further culturing with a blastocyst As shown in FIG. Steps for such somatic cell nuclear transfer (SCNT) can be performed by a person skilled in the art according to a method disclosed in Nature 419, 583-587, 10 October 2002, etc., as appropriate. The nuclear transplanted oocyte (embryo) is generated from injecting donor somatic cell-derived nuclei (for example, nuclear genetic material) into the nucleus-deficient recipient oocyte to form nuclear-grafted oocyte, To form a fused, nuclear-engrafted embryo.
본 명세서에서 용어 "체세포"는 생식 세포 또는 생식 세포 전구체가 아닌 식물 또는 동물 세포를 의미한다. 상기 체세포는 난구세포, 상피세포, 섬유아세포, 신경세포, 각질형성세포, 조혈세포, 멜라닌세포, 연골세포, 적혈구, 대식세포, 단핵구, 근육세포, B 림프구, T 림프구, 배아줄기세포, 배아생식세포, 태아세포 및 성체세포로 구성된 군에서 선택되는 것일 수 있다. As used herein, the term "somatic cell" refers to a plant or animal cell that is not a germ cell or a germ cell precursor. The somatic cells are selected from the group consisting of cumulus cells, epithelial cells, fibroblasts, neurons, keratinocytes, hematopoietic cells, melanocytes, cartilage cells, erythrocytes, macrophages, monocytes, muscle cells, B lymphocytes, T lymphocytes, embryonic stem cells, A cell, a fetal cell, and an adult cell.
본 명세서 내 용어 "체세포 핵 이식" 또는 "체세포 핵 치환"은 공여 세포에서 채취한 핵을, 핵이 제거된 수여 세포에 이식하는 기술로서, 공여 세포와 유전적으로 동일한 세포를 발생시키는 기술을 의미한다. As used herein, the term " somatic cell nuclear transfer "or" somatic cell nuclear transfer "refers to a technique of transplanting nuclei harvested from donor cells into donor cells that have been removed from the nucleus, .
상기 핵이 제거된 난자는 개체의 난포로부터 채취한 난구세포-난모세포 복합체(cumulus-oocyte complexs)인 것일 수 있으며, 상업적으로 수득한 것일 수 있다. 상기 개체는 인간을 포함한 포유동물인 것일 수 있다. 예를 들어, 상기 포유동물은 쥐, 돼지, 양, 개, 소, 말, 염소 등을 포함할 수 있다. 일 실시예에서는 신선한 난모세포 세포질(oocyte cytoplasm, FOC)을 사용한 체세포 복제 난자(SCNT-FOC)와 유리화동결/해동된(저온보존/해동된) 난모세포의 세포질을 사용하여 체세포 핵 이식한 난자(SCNT-CROC)에 Kdm4a mRNA을 주입한 결과, SCNT-CROC에서 배반포 발달율이 약 17% 정도 낮은 것을 확인하였다(도 2c). 이후, 상기 SCNT-CROC 및 SCNT-FOC에 멜라토닌을 추가로 처리하여 배반포 발달률을 확인한 결과, 멜라토닌은 Kdm4a mRNA과는 별개로 SCNT-CROC의 배반포 발달률을 향상시켰으며 기존에 Kdm4a mRNA의 주입만으로는 극복되지 못했던 배반포 발달 효율이 약 16% 향상되어 SCNT-FOC과 유사한 배반포 발달률을 나타내는 것을 확인하였다(표 2). 따라서, 상기 핵이 제거된 난자는 동결되거나 및/또는 냉동보존된 후에 해동 또는 융해된 것일 수 있다. 상기 동결 방법으로는 완만동결법(slow-freezing) 또는 초급속동결법인 유리화동결법(vitrification)이 사용될 수 있다. 멜라토닌이 처리된 SCNT-CROC가 SCNT-FOC과 유사한 배반포 발달률을 나타냄으로써 체세포 복제 과정에서 공여 난자의 별도의 동결융해 처리 없이 곧바로 핵 이식에 사용될 수 있는바, 체세포 핵 이식의 과정을 단축할 수 있으며, 복제 효율을 향상시킬 수 있다. The nucleus-free oocyte may be cumulus-oocyte complexes collected from the follicles of a subject, or may be obtained commercially. The subject may be a mammal, including a human. For example, the mammal may include rats, pigs, sheep, dogs, cows, horses, chlorine, and the like. In one embodiment, a somatic cell nuclear transfer embryo (SCNT-FOC) using oocyte cytoplasm (FOC) and a cytoplasm of freezing / thawed (low temperature preserved / thawed) SCNT-CROC), Kdm4a mRNA was injected, and the development rate of blastocyst was about 17% lower in SCNT-CROC (Fig. 2C). Melatonin enhanced the blastocyst development rate of SCNT-CROC separately from Kdm4a mRNA, and melatonin improved the blastocyst development rate only by injection of Kdm4a mRNA The developmental efficiency of the uninvolved blastocyst was improved by about 16%, confirming the development rate of blastocyst similar to SCNT-FOC (Table 2). Thus, the oocyte removed from the nucleus may be frozen and / or thawed or melted after cryopreservation. As the above-mentioned freezing method, slow-freezing or vitrification which is a quick freezing method can be used. Since melatonin-treated SCNT-CROC shows a blastocyst development rate similar to that of SCNT-FOC, it can be used for nuclear transplantation without any additional freezing and thawing of the donor oocyte during the somatic cell cloning process, which can shorten the process of somatic cell nuclear transfer And the replication efficiency can be improved.
일 구체예에 따른 방법은 체세포의 핵 및 핵이 제거된 난자를 체외에서(in vitro) 배양하여 배반포를 형성하는 단계를 포함하는 것일 수 있다. The method according to one embodiment may include a step of culturing the somatic cell nucleus and the nucleus-free oocyte in vitro to form a blastocyst.
일 구체예에 따른 방법은 H3K9me3 메틸레이션(methylation)을 감소시키는 제제와 접촉시키는 단계를 포함하는 것일 수 있다. 다른 구체예에 따른 방법은 H3K9me3 메틸레이션(methylation)을 감소시키는 제제를 주입하는 단계를 포함하는 것일 수 있다. 상기 H3K9me3 메틸레이션을 감소시키는 제제는 히스톤 탈메틸화효소의 KDM4 패밀리의 구성원의 발현을 증가시키는 제제인 것일 수 있다. 상기 제제는 예를 들어, KDM4A(JMJD2A), KDM4B(JMJD2B), KDM4C(JMJD2C), KDM4D(JMJD2D) 또는 이의 조합의 발현 또는 활성을 증가시키는 것일 수 있다. 상기 접촉 또는 주입시키는 단계는 체세포의 핵 및 핵이 제거된 난자가 융합된 후, 핵 이식된 배아에 수행되는 것일 수 있다. 구체적으로, 상기 배아는 체세포 핵 이식 난모세포 유전자의 활성화가 시작되기 전의 배아인 것일 수 있다. 예를 들어, 상기 배아를 활성화 후 5시간(5 hours post activation, 5 hpa) 이 또는 10~12 hpa 사이에(즉, 1-세포기에), 또는 약 20 hpa(즉, 초기 2-세포기) 또는 20~28 hpa 사이에(즉, 2-세포기) 하나 이상의 히스톤 탈메틸화효소 KDM4 패밀리와 접촉시키는 것일 수 있다. The method according to one embodiment may comprise contacting the agent with H3K9me3 methylation reducing agent. The method according to another embodiment may include injecting a formulation that reduces H3K9me3 methylation. The agent that reduces H3K9me3 methylation may be one that increases the expression of members of the KDM4 family of histone demethylating enzymes. The agent may be one that increases the expression or activity of, for example, KDM4A (JMJD2A), KDM4B (JMJD2B), KDM4C (JMJD2C), KDM4D (JMJD2D) or a combination thereof. The contacting or implanting step may be performed on the nuclear transfer embryo after the nucleus of the somatic cell and the oocyte removed from the nucleus are fused. Specifically, the embryo may be an embryo before activation of a somatic cell nuclear transfer oocyte gene. For example, the embryo may be incubated for 5 hours post activation (5 hpa) or between 10 and 12 hpa (i. E., At the 1-cell stage), or at about 20 hpa Or between 20 and 28 hpa (i. E., 2-celled) with one or more histone demethylating enzyme KDM4 family.
또한, 상기 접촉 또는 주입시키는 단계는 공여자 세포의 핵을 핵이 제거된 난모세포로 주입하기 전에 공여자 세포, 예를 들어, 최종 분화된 체세포 핵 또는 세포질에 하나 이상의 히스톤 탈메틸화효소 KDM4 패밀리가 접촉 또는 주입되는 것일 수 있다. 상기 접촉 또는 주입은 공여자 체세포와 1시간 이상, 또는 2 시간 이상 동안 접촉하는 것일 수 있고, 상기 접촉은 공여자 체세포로부터 핵이 제거된 난모세포로의 핵 제거 이전에 1일(24시간) 이상, 2일 이상, 3일 이상, 도는 3일 초과로 수행되는 것일 수 있다. In addition, the step of contacting or injecting may include contacting or donating one or more histone demethylase KDM4 families to a donor cell, e. G., A terminally differentiated somatic cell nucleus or cytoplasm, prior to injecting the donor cell nucleus into the nucleated oocyte. It can be injected. The contact or infusion may be contact with the donor somatic cell for at least 1 hour, or more than 2 hours, and the contact may be from 1 day (24 hours) to 2 days prior to removal of the nucleus from the donor somatic cell Day, more than three days, or more than three days.
따라서, 상기 체세포의 핵 및 핵이 제거된 난자를 H3K9me3 메틸레이션을 감소시키는 제제와 접촉시킴으로써 체세포 핵 이식 배아에서 복제를 저해했던 히스톤메틸효소의 활성을 감소시고, 배아 발생 관련 유전자의 발현을 증진시키는 바, 배반포의 발생 및 발달 효율을 증진시킬 수 있다. 예를 들어, 상기 발달 효율은 2-세포, 4-세포 및 8-세포 또는 배반포 단계로 발달하는 체세포 핵 이식 배아의 발달%를 증가시키는 것일 수 있으며, 체세포 핵 이식 배아의 8-세포 또는 배반포 단계로의 이식 전 발달 효율을 증가시킬 수 있다. 즉, 상기 H3K9me3 메틸레이션을 감소시키는 제제는 체세포 핵 이식 배아에서 2-세포기 정지 현상을 극복하고 지속적인 배아 발달을 유지할 수 있다. Therefore, by contacting the somatic cell nucleus and nucleus-removed oocyte with an agent for reducing H3K9me3 methylation, the activity of the histone methylase which inhibited replication in the somatic cell nuclear transfer embryo is reduced, and the expression of the embryo-related gene is promoted Bar, and blastocyst development efficiency can be improved. For example, the developmental efficiency may be an increase in the percentage of development of a somatic cell nuclear transfer embryo developing into a 2-cell, 4-cell and 8-cell or blastocyst stage and may be an 8-cell or blastocyst stage of somatic cell nuclear transfer embryo Can increase the pre-implant development efficiency. That is, the agent for reducing the H3K9me3 methylation can overcome the 2-cell stopping phenomenon in the somatic cell nuclear transfer embryo and can maintain the continuous embryonic development.
일 구체예의 방법은 상기 멜라토닌이 포함된 배지에서 체세포의 핵 및 핵이 제거된 난자를 1 내지 10일 동안 배양하는 단계를 포함할 수 있다. 구체적으로, 1 내지 10일, 1 내지 8일, 1 내지 7일, 2 내지 8일, 2 내지 6일, 또는 3 내지 6일 동안 배양하는 것일 수 있다. 이때, 배양 기간이 상기 범위 미만인 경우, 체세포 핵 이식 난자가 배반포로 발달하기에 충분하지 못하다는 문제점이 있으며, 상기 범위를 초과하는 경우, 체세포 핵 이식 난자가 과도하게 성숙하여 질적으로 향상된 배반포의 수득이 어렵다는 문제점이 있다. The method of one embodiment may include incubating the nucleus of the somatic cell and the oocyte removed from the medium for 1 to 10 days in the medium containing the melatonin. Specifically, it may be cultured for 1 to 10 days, for 1 to 8 days, for 1 to 7 days, for 2 to 8 days, for 2 to 6 days, or for 3 to 6 days. If the incubation period is less than the above range, there is a problem that somatic cell nuclear transfer embryos are not enough to develop into blastocysts. If the incubation period is over the range, somatic cell nuclear transfer embryos are over-matured and qualitatively improved blastocysts There is a problem that it is difficult.
일 구체예에서 상기 방법은 H3K9me3 메틸레이션을 감소시키는 제제의 부재 하에서 수행된 체세포 핵 이식과 비교하여 핵 이식의 효율이 약 5% 이상, 약 10% 이상, 약 13% 이상, 약 15% 이상, 약 30% 이상, 약 50% 이상, 50 내지 80% 또는 80% 초과로 증가하는 것일 수 있다. 즉, 체세포 핵 이식 배아의 이식 전 발달의 효율을 증가시키거나, 또는 배아의 배반포 단계로의 발달을 증가시키거나 또는 배아의 확장된 배반포 단계로의 발달을 약 5%, 약 7%, 약 10%, 약 12 이상, 또는 12% 초과로 확장된 배반포 단계로 발달시키는 것일 수 있다. 또 다른 구체예에서, 상기 방법은 H3K9me3 메틸레이션을 감소시키는 제제의 부재 하에서 수행된 체세포 핵 이식과 비교하여 배반포 단계로의 성공적인 발달이 3배 이상, 4배 이상, 5배 이상, 6배 이상, 7배 이상, 8배 이상 또는 8배 초과로 증가되는 것일 수 있다. 상기 체세포 핵 이식 효율의 증가는 배반포의 생성 또는 수득의 증가를 의미한다. 상기 배반포의 생성 또는 수득의 증가는 H3K9me3 메틸레이션을 감소시키는 제제의 부재 하에서 수행된 체세포 핵 이식과 비교하여 배반포의 생성 또는 수득이 약 110% 이상, 약 120% 이상, 약 130% 이상, 약 140% 이상, 약 150% 이상 또는 약 150% 초과로 증가되는 것일 수 있다. In one embodiment, the method further comprises administering to the subject an effective amount of at least about 5%, at least about 10%, at least about 13%, at least about 15%, at least about 15% , Greater than about 30%, greater than about 50%, greater than 50 to 80%, or greater than 80%. That is, it is possible to increase the efficiency of the pre-implantation development of a somatic cell nuclear transfer embryo, or to increase the development of the embryo to the blastocyst stage or to increase the development of the embryo to the expanded blastocyst stage by about 5%, about 7% %, About 12 or more, or more than 12%. In another embodiment, the method is characterized in that the successful development into the blastocyst stage is more than 3-fold, 4-fold, 5-fold, 6-fold, or more than the somatic cell nuclear transfer performed in the absence of the agent that reduces H3K9me3 methylation. 7-fold, 8-fold, or 8-fold increase. An increase in the somatic cell nuclear transfer efficiency means an increase or an increase in the production of blastocysts. The increase in the production or the yield of the blastocyst is greater than or equal to about 110%, greater than about 120%, greater than about 130%, less than about 140%, or less than about 140%, compared to somatic cell nuclear transfer performed in the absence of agents that reduce H3K9me3 methylation. , More than about 150%, or more than about 150%.
상기한 바와 같이, 일 양상에 따른 방법은 체세포 핵 이식 세포를 멜라토닌이 포함된 배지에서 배양함으로써, 체세포 핵 이식 세포의 활성 산소를 감소시킴에 따라 세포 손상을 방지할 수 있는바, 난자의 품질을 향상시킬 수 있다. 또한, 멜라토닌에 의해 동결 및 융해된 체세포 핵 이식 난자의 세포사멸이 감소하는바, 배반포 형성 및 생산 효율성을 증진시킬 수 있다. 또한, 체세포 핵 이식 난자의 착상률이 향상됨에 따라 체외수정을 통한 멸종 위기의 동물을 생산할 수 있으며, 배아줄기세포 유도가 증진됨에 따라, 배아줄기세포주를 효율적으로 생산할 수 있다. As described above, the method according to one aspect of the present invention can prevent cell damage by reducing the active oxygen of somatic cell nuclear transfer cells by culturing somatic cell nuclear transfer cells in a medium containing melatonin, Can be improved. In addition, the cell death of somatic cell nuclear transfer embryos frozen and melted by melatonin is reduced, which can improve blastocyst formation and production efficiency. In addition, as the implantation rate of the somatic cell nuclear transfer embryo is improved, it is possible to produce an endangered animal through in vitro fertilization. As the induction of embryonic stem cells is promoted, the embryonic stem cell line can be efficiently produced.
다른 양상은 상기 방법에 따라 제조된 체세포 핵 이식 배아(embryo)를 제공한다. 또 다른 양상은 상기 방법에 따라 제조된 체세포 핵 이식 배반포(blastocyst)를 제공한다. 상기 배아는 유전적으로 변형된 것이며 예를 들어, 체세포 핵 이식 단계 이전에(즉, 공여자 핵을 수집하고 수용자 난모세포의 세포질과 융합하기 이전에) 공여자 핵의 유전 물질 내 하나 이상의 이식 유전자가 변형된 것일 수 있다. 일 구체예에서, 상기 배아는 공여자 체세포 유래 핵 DNA, 수용자 난모세포 유래 세포질 및 제3 공여자 개체 유래 미토콘드리아 DNA를 포함한 것일 수 있다. 상기 배아 또는 배반포는 H3K9me3 메틸레이션을 감소시키는 제제의 부재 하에서 수행된 체세포 핵 이식 배아 또는 배반포와 비교하여 세포 생존, 조직 재생, 항산화 기능, 염증 또는 세포사멸 등과 관련된 유전자의 발현이 상향 또는 하향 조절된 것일 수 있다. Another aspect provides a somatic cell nuclear transfer embryo made according to the method. Another aspect provides a somatic cell nuclear transfer blastocyst prepared according to the method. The embryo is genetically modified, and can be modified, for example, prior to somatic cell nuclear transfer (i. E., Prior to donor nuclei collection and fusion with the cytoplasm of the recipient oocyte) Lt; / RTI > In one embodiment, the embryo may comprise nuclear DNA derived from donor somatic cells, cytoplasm derived from recipient oocytes, and mitochondrial DNA derived from a third donor individual. The embryo or blastocyst is characterized in that the expression of a gene associated with cell survival, tissue regeneration, antioxidant function, inflammation or apoptosis is upregulated or downregulated compared to a somatic cell nuclear transfer embryo or blastocyst performed in the absence of an agent that reduces H3K9me3 methylation Lt; / RTI >
일 구체예에서, 상기 배아는 세포 생존 및 조직 재생에 관여하는 유전자의 발현이 상향 조절되는 것일 수 있다. 구체적으로, 상기 유전자는 Amd1, Fam46C, Oxt, 및/또는 Ppt2 인 것일 수 있다. 또한, 항산화 기능, 염증 또는 세포 사멸에 관여하는 유전자의 발현이 상향 조절되는 것일 수 있다. 구체적으로, 상기 유전자는 Ctss , Dffa , Eif3f , Hacl1 , Hspbp1 , Mob2 , Mrpl23 , Mrpl33 , Pmvk , Slc4a11 및/또는 Wbscr22인 것일 수 있다. 또한, 세포사 또는 퇴행 관련 유전자 예를 들어, Atp6v0c, Cd52 , Dapk2 , Ddit4l , Duoxa2 , Nfkbia , Ptgds , Rdh12 및/또는 Rnd3의 발현이 하향 조절되는 것일 수 있다. In one embodiment, the embryo may be one in which expression of a gene involved in cell survival and tissue regeneration is upregulated. Specifically, the gene may be Amd1 , Fam46C , Oxt, and / or Ppt2 . In addition, the expression of genes involved in antioxidant function, inflammation or apoptosis may be upregulated. Specifically, the gene may be Ctss , Dffa , Eif3f , Hacl1 , Hspbp1 , Mob2 , Mrpl23 , Mrpl33 , Pmvk , Slc4a11 And / or Wbscr22 . ≪ / RTI > Also, cell death or degeneration related genes such as Atp6v0c, Cd52 , Dapk2 , Ddit4l , Duoxa2 , Nfkbia , Ptgds , Rdh12 And / or the expression of Rnd3 is down-regulated.
다른 구체예에서, 상기 배반포는 세포 생존 또는 조직 재생과 관련된 유전자, 예를 들어, Amd1, Fam46C, Oxt , 및/또는 Ppt2의 발현이 상향 조절되는 것일 수 있다. 특히, 항산화 기능, 염증 또는 세포 사멸과 관련된 유전다, 예를 들어, Gulo 및/또는 Txnip의 발현이 상향 조절되는 것일 수 있다. 반면, 산화 스트레스와 관련된 유전자, 예를 들어, Adh1, Car2, Gsta3, Gstm2, Mb, Phlda2 , 및/또는 S100a1; 세포사 또는 퇴행-관련 유전자, 예를 들어, Akr1c13, Amd2, Clu, Hist1h3a, Hspb1, Il1rn, 및/또는 Nat8의 발현이 하향 조절되는 것일 수 있다. 또한, 세포 및 종양 증식과 관련된 유전자, 예를 들어, Efemp1, Glipr1 , Lgals4, Plac1, Snora15, Snora 21, Snora 34, 및/또는 Anxa1; 면역 반응과 관련된 유전자, 예를 들어, Clec2f, Hrsp12, 및/또는 Plat의 발현이 하향 조절되는 것일 수 있다. In other embodiments, the blastocyst may be up-regulated in expression of genes associated with cell survival or tissue regeneration, such as Amd1 , Fam46C , Oxt , and / or Ppt2 . In particular, they are genetics related to antioxidant function, inflammation or apoptosis, for example, Gulo And / or the expression of Txnip is upregulated. On the other hand, genes related to oxidative stress, such as Adh1 , Car2 , Gsta3 , Gstm2 , Mb , Phlda2 , and / or S100a1 ; The expression of apoptosis-related genes such as Akr1c13 , Amd2 , Clu , Hist1h3a , Hspb1 , Il1rn, and / or Nat8 may be down-regulated. Also, genes associated with cell and tumor proliferation, such as Efempl , Gliprl , Lgals4 , Plac1 , Snora15 , Snora21, Snora34 , and / or Anxa1 ; The expression of genes related to the immune response, such as Clec2f , Hrsp12, and / or Plat may be downregulated.
다른 양상은 상기 방법에 따라 제조된 체세포 핵 이식 배아줄기세포를 제공한다. 상기 배아줄기세포는 상기 방법에 따라 제조된 배반포에서 내부 세포 덩어리로부터 세포를 분리하는 단계; 및 미분화된 상기 내부 세포 덩어리 유래 세포를 배양함으로써 형성되는 것일 수 있다. 또한, 상기 배아줄기세포는 다능성줄기세포 또는 전능성줄기세포인 것일 수 있다. Another aspect provides somatic cell nuclear transfer embryonic stem cells prepared according to the above method. The embryonic stem cells are obtained by separating the cells from the inner cell mass in a blastocyst prepared according to the method; And culturing the undifferentiated inner cell mass-derived cells. In addition, the embryonic stem cells may be pluripotent stem cells or pluripotent stem cells.
다른 양상은 체세포의 핵 및 핵이 제거된 난자를 준비하는 단계; 상기 체세포의 핵 및 핵이 제거된 난자를 후보 물질과 함께 배양하는 단계; 및 상기 배양 후 발생한 체세포 핵 이식 세포의 H3K9me3 메틸레이션 활성을 평가하는 단계를 포함하는 체세포 복제 효율을 증가시키는 제제를 스크리닝하는 방법을 제공한다. In another aspect, there is provided a method of preparing an oocyte, Culturing the somatic cell nucleus and the oocyte from which the nucleus has been removed together with the candidate substance; And evaluating the H3K9me3 methylation activity of the somatic cell nuclear transferring cells generated after the culturing, the method comprising screening the agent for increasing somatic cell replication efficiency.
상기 체세포 핵 이식 배아 또는 배반포로부터 유도된 세포, 예를 들어 배아 줄기 세포 등은 제제가 분화 또는 세포 증식에 영향을 주는지 결정하기 위한 시험에 사용될 수 있다. 예를 들어, 상기 세포의 분화 또는 증식하는 능력이 제제의 존재 또는 부재로부터 평가되는 바, 상기 체세포 핵 이식 배아 또는 배반포로부터 유도된 세포에 영향을 주는 제제를 선택하기 위한 스크리닝을 하기 위해 사용할 수 있다. 시험 화합물은 화학적 화합물, 소분자, 폴리펩티드 또는 기타 생물학적 제제(예를 들어, 항체 또는 사이토카인 등)를 포함하는 관심있는 임의의 화합물인 것일 수 있다. Cells derived from somatic cell nuclear transfer embryos or blastocysts, such as embryonic stem cells, may be used in a test to determine whether the agent affects differentiation or cell proliferation. For example, the ability of the cells to differentiate or proliferate is evaluated from the presence or absence of the agent and can be used for screening to select agents that affect cells derived from somatic cell nuclear transfer embryos or blastocysts . The test compound may be any compound of interest, including chemical compounds, small molecules, polypeptides or other biological agents (e. G., Antibodies or cytokines, etc.).
일 구체예에 따른 방법에서, 상기 H3K9me3 메틸레이션 활성을 평가하는 단계는 H3K9me3 메틸레이션을 감소시키는 유전자 또는 단백질의 발현 정도를 확인하는 것으로서, RT-PCR 또는 면역 염색법 등 당해 분야에 잘 알려진 기술을 이용하여 수행할 수 있다. 또한, 상기 H3K9me3 메틸레이션 활성을 평가하는 단계는 상기 체세포 복제 효율을 평가하는 단계와 함께 수행될 수 있다. 상기 후보 물질을 첨가하기 전과 비교하여, 첨가 후 배양물 내의 체세포 핵 이식 난모세포, 2-세포기 세포, 4세포기 세포 또는 배반포 단계의 세포의 수가 변화한다면, 상기 후보 물질이 상기 H3K9me3 메틸레이션의 활성을 감소시키고, 나아가 체세포 핵 이식에 의한 체세포 복제 효율을 증가시키는 물질인 것으로 결정할 수 있다.In the method according to one embodiment, the step of evaluating the H3K9me3 methylation activity is to determine the degree of expression of a gene or protein that reduces H3K9me3 methylation, using techniques well known in the art such as RT-PCR or immunostaining . In addition, the step of evaluating the H3K9me3 methylation activity may be performed together with the step of evaluating the somatic cell replication efficiency. If the number of somatic cell nuclear transfer oocyte, 2-cell stage cell, 4-cell stage cell or blastocyst stage cell number in the culture after addition is changed as compared with before the addition of the candidate substance, the candidate substance may be the H3K9me3 methylation It is possible to determine that it is a substance which decreases activity and further increases the efficiency of somatic cell replication by somatic cell nuclear transfer.
다른 양상은 체세포의 핵 및 핵이 제거된 난자를 준비하는 단계; 상기 체세포의 핵 및 핵이 제거된 난자를 멜라토닌이 포함된 배지에서 배양하여 체세포 핵 이식(somatic-cell nuclear transfer: SCNT) 세포를 얻는 단계; 및 상기 체세포 핵 이식 세포와 액상 정액을 체외 수정하는 단계를 포함하는 체세포 이식 수정란을 제조하는 방법을 제공한다. 상기 체세포의 핵 및 핵이 제거된 난자를 멜라토닌이 포함된 배지에서 배양하는 방법의 구체적인 내용은 전술한 바와 같다. 상기 체세포 핵 이식 세포는 체세포 핵 이식 난자, 구체적으로 2-세포기, 4-세포기 및 8-세포기의 배아인 것일 수 있으며, 상기 배아가 발달하여 배반포 단계에 도달한 세포인 것일 수 있다. In another aspect, there is provided a method of preparing an oocyte, Obtaining somatic-cell nuclear transfer (SCNT) cells by culturing oocytes in which the nuclei and nuclei of the somatic cells are removed in a medium containing melatonin; And a step of in vitro fertilization of the somatic cell nuclear transfer cells and the liquid semen of the somatic cell transplantation embryo. The details of the method of culturing the oocyte in which the nucleus and nucleus of the somatic cell are removed in a medium containing melatonin are as described above. The somatic cell nuclear transfer cell may be a somatic cell nuclear transfer embryo, specifically, a cell line of a 2-cell line, a 4-cell line and an 8-cell line, and may be a cell that has developed into the blastocyst stage and has reached the blastocyst stage.
일 구체예에 따른 방법은 상기 체세포 핵 이식 세포와 액상 정액을 체외 수정하는 단계를 포함한다. 상기 정액은 개체의 정관에서 채취된 정액인 것일 수 있다. 상기 개체는 인간을 포함한 포유동물인 것일 수 있다. 예를 들어, 상기 포유동물은 쥐, 돼지, 양, 개, 소, 말, 염소 등을 포함할 수 있다. 상기 체세포 핵 이식 세포와 액상 정액을 체외수정용 배지 조성물에서 1 내지 7일 동안 체외 수정시키는 것일 수 있다. 이때, 체외 수정 기간이 상기 범위 미만인 경우, 수정이 안되는 문제점이 있으며, 상기 범위를 초과하는 경우 배아가 퇴화되는 문제점이 있다. 또한, 상기 단계에서, H3K9me3 메틸레이션을 감소시키는 제제와 접촉 또는 주입시키는 단계를 추가로 포함할 수 있다. 상기 메틸레이션을 감소시키는 제제에 대한 구체적인 내용은 전술한 바와 같다. 상기 메틸레이션을 감소시키는 제제는 체세포 핵 이식 세포에 정액을 주입한 이후, 전핵 형성 전(정액 주입 후 18시간 이내), 구체적으로 정액을 주입한 이후, 2-세포기 전에 체세포 이식 수정란에 접촉 또는 주입되는 것일 수 있다. 따라서, 상기 체세포 이식 수정란은 체세포 핵 이식 세포(배아)가 발달 정지 없이 효율적으로 진행하고 발달 결함 또는 생존력의 손실 없이 2-, 4- 및 8-세포기를 거쳐 배반포로 성공적으로 발달하는바 생산의 효율성을 증가시킬 수 있다.The method according to one embodiment comprises in vitro fertilization of the somatic cell nuclear transfer cell and the liquid semen. The semen may be a semen taken from the body of the subject. The subject may be a mammal, including a human. For example, the mammal may include rats, pigs, sheep, dogs, cows, horses, chlorine, and the like. The somatic cell nuclear transfer cell and the liquid semen may be in vitro fertilized in the in vitro fertilization medium composition for 1 to 7 days. At this time, when the IVF period is less than the above range, there is a problem that it can not be corrected, and when it exceeds the above range, the embryo is degraded. In addition, the step may further comprise contacting or injecting with an agent that reduces H3K9me3 methylation. Specific details of the agent for reducing the methylation are as described above. The methylation-decreasing agent may be added to somatic cell nuclear transfer embryos after the injection of semen, before the formation of nucleus (18 hours after semen injection), specifically injecting semen, It can be injected. Therefore, the somatic embryo-transferred embryo is successfully developed into a blastocyst through the 2-, 4-, and 8-cell stage without progression of the somatic cell nuclear transfer embryo (embryo), development defect, or loss of viability, Can be increased.
멜라토닌을 포함하는, 배아 발달용 조성물 및 이를 이용하여 배아 발달률을 향상시키는 방법에 관한 것으로, 상기 세포는 세포 손상 및/또는 발달 정지 없이 배반포로의 발달이 효율적으로 진행되는바, 체외수정 절차를 이용하여 체세포 복제 수정란을 생산할 수 있다.The present invention relates to a composition for embryo development comprising melatonin and a method for improving the embryo development rate using the same, wherein the cell is efficiently developed into a blastocyst without cell damage and / or developmental arrest, Can be used to produce somatic cell cloned embryos.
도 1a는 SCNT-FOC 및 SCNT-CROC 그룹에, Kdm4a mRNA를 주입하여 H3K9me3의 탈 메틸화를 관찰한 결과를 나타낸 사진이다.1A is a photograph showing the results of observing demethylation of H3K9me3 by injecting Kdm4a mRNA into SCNT-FOC and SCNT-CROC groups.
도 1b는 SCNT-FOC 및 SCNT-CROC 그룹에, Kdm4a mRNA를 주입하여 H3K9me3의 탈 메틸화를 관찰한 결과를 나타낸 그래프이다. FIG. 1B is a graph showing the results of observing demethylation of H3K9me3 by injecting Kdm4a mRNA into SCNT-FOC and SCNT-CROC groups.
도 2a는 Kdm4a mRNA를 주입 여부에 따른 SCNT-FOC 및 SCNT-CROC 그룹의 내세포와 전체세포 수의 변화를 확인한 사진이다.FIG. 2A is a photograph showing changes in the number of cells and whole cells of SCNT-FOC and SCNT-CROC groups according to whether Kdm4a mRNA was injected.
도 2b는 Kdm4a mRNA를 주입 여부에 따른 SCNT-FOC 및 SCNT-CROC 그룹의 배아 발달 정도를 확인한 사진이다. FIG. 2B is a photograph showing the embryo development level of SCNT-FOC and SCNT-CROC groups according to whether Kdm4a mRNA was injected.
도 2c는 Kdm4a mRNA를 주입 여부에 따른 SCNT-FOC 및 SCNT-CROC 그룹의 배반포 품질 비율을 나타낸 그래프이다. FIG. 2C is a graph showing the blastocyst quality ratio of SCNT-FOC and SCNT-CROC groups according to whether Kdm4a mRNA is injected.
도 3a는 Kdm4a mRNA를 주입 여부에 따른 SCNT-FOC 및 SCNT-CROC 그룹의 2-세포 배아에서 발현 양상이 다른 유전자를 나타낸 것이다.FIG. 3A shows genes having different expression patterns in SCNT-FOC and SCNT-CROC group 2-cell embryos according to whether Kdm4a mRNA was injected.
도 3b는 Kdm4a mRNA를 주입 여부에 따른 SCNT-FOC 및 SCNT-CROC 그룹의 2-세포 배아에서 발현이 조절(상향/하향)된 유전자를 나타낸 것이다.FIG. 3B shows genes regulated (up / down) in SCNT-FOC and SCNT-CROC group 2-cell embryos according to the injection of Kdm4a mRNA.
도 4a는 멜라토닌 처리 유무에 따른 SCNT-CROC 및 SCNT-CROC+K 그룹의 배반포에서 DNA 단편화 수준을 TUNEL 염색법으로 확인한 사진이다. FIG. 4A is a photograph showing the DNA fragmentation level in blastocysts of SCNT-CROC and SCNT-CROC + K groups with and without melatonin treatment by TUNEL staining.
도 4b는 멜라토닌 처리 유무에 따른 SCNT-CROC 및 SCNT-CROC+K 그룹의 배반포에서 TUNEL 양성 세포 수를 확인한 그래프이다. FIG. 4B is a graph showing the number of TUNEL-positive cells in the blastocysts of SCNT-CROC and SCNT-CROC + K groups with and without melatonin treatment.
도 5a는 멜라토닌 처리 유무에 따른 SCNT-CROC+K 그룹에서 세포사멸이 일어난 부분의 형광 염색(세포사멸; 녹색, 핵; 파란색으로 염색)을 확인한 사진이다. FIG. 5A is a photograph showing fluorescence staining (cell death, green, nucleus, blue staining) of a site where apoptosis has occurred in the SCNT-CROC + K group with or without melatonin treatment.
도 5b는 멜라토닌 처리 유무에 따른 SCNT-CROC+K 그룹의 상실배에서 활성산소 수준을 나타낸 그래프이다. FIG. 5B is a graph showing the levels of reactive oxygen species in the supernatant of SCNT-CROC + K group with and without melatonin treatment.
도 6a는 멜라토닌 처리 유무에 따른 SCNT-CROC+K 그룹의 마우스 자궁 내에 착상 여부를 시각화한 사진이다.6A is a photograph visualizing the implantation of the SCNT-CROC + K group in the mouse uterus according to the presence or absence of the melatonin treatment.
도 6b는 멜라토닌 처리 유무에 따른 SCNT-CROC+K 그룹의 마우스 자궁 내에 착상된 여부를 반복하여 실험한 결과를 시각화한 사진이다. FIG. 6B is a photograph showing a result of repeatedly experimenting whether or not the SCNT-CROC + K group is implanted in the mouse uterus according to the presence or absence of the melatonin treatment.
도 6c는 멜라토닌 처리 유무에 따른 SCNT-CROC+K 그룹의 배아 이식율을 확인한 그래프이다. 6C is a graph showing the embryo transfer rate of the SCNT-CROC + K group according to the presence or absence of the melatonin treatment.
도 7a는 멜라토닌의 처리 유무에 따른 SCNT-CROC+K 그룹의 mESC 유도율을 광학현미경으로 확인한 결과이다. FIG. 7A is a result of microscopic examination of the mESC induction rate of SCNT-CROC + K group depending on whether or not the melatonin treatment is carried out.
도 7b는 멜라토닌 처리 유무에 따른 SCNT-CROC+K 그룹의 mESC 유도율을 나타낸 그래프이다.FIG. 7B is a graph showing the mESC induction rate of the SCNT-CROC + K group according to the presence or absence of the melatonin treatment.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.
[준비예][Preparation example]
수용 난자(recipient oocyte) 및 SCNT 공여 난자(donor oocyte)를 수집하기 위해 8~10 주령의 암컷 B6D2F1 마우스(Orient-bio 社, 경기도, 한국)를 사용하였다. 8~10 주령의 암컷 ICR 마우스를 배아 이식의 대리모(poster mothers)로서 사용하였다. 유사생식(pseudopragnancy)을 유도하기 위하여, 상기 마우스를 동일한 개체(strain)의 수컷 마우스와 교배시켰다. 본 연구에서 동물 사용에 대한 프로토콜은 차의과학대학교의 동물실험 및 사용위원회 (IACUC) (프로젝트 번호 IACUC-170119)에 의해 승인되었으며, 모든 실험은 승인된 프로토콜에 따라 수행되었다. Female B6D2F1 mice (Orient-bio, Gyeonggi-do, Korea) were used at 8-10 weeks of age to collect recipient oocytes and SCNT donor oocytes. 8- to 10-week-old female ICR mice were used as surrogate mothers of embryo transfer. To induce pseudopragnancy, the mice were crossed with male mice of the same strain. The protocol for animal use in this study was approved by the Committee on Animal Experimentation and Use (IACUC) (project number IACUC-170119) of the University of Science in Caracas, and all experiments were performed according to an approved protocol.
[실시예][Example]
실시예 1. 난모세포의 수집Example 1. Collection of oocytes
상기 준비예의 마우스에 5 IU의 임신수컷혈청 생식선 자극호르몬(pregnant mare serum gonadotropin, PMSG; Sigma-Aldrich, St. Louis, MO)을 주사하였고, 48시간 후 5 IU의 인간 융모성 성선자극호르몬(chorionic gonadotropin, hCG; Sigma-Aldrich)을 주사하여 과배란을 유도하였다. 마우스에 hCG를 주사하고 14시간 후에 M2(Sigma-Aldrich) 배지에 난모세포를 수집하고, 0.1% 히알루로니다아제(hyaluronidase) (Sigma-Aldrich)를 함유하는 배지로 난구세포(cumulus cell)를 제거하였다(denuded). 이후, 실험을 위해 난구-프리(cumulus-free) 난모세포를 포타슘 심플렉스 최적화 배지(potassium simplex optimized medium (KSOM, Millipore, Darmstadt, Germany)에서 배양하였다. 분산된 난구세포를 히알루로니다아제로 처리하여 제거하고 M2 배지에서 세척하여 수집하였다. 이후, M2에서 폴리비닐피롤리돈(polyvinylpyrrolidone, PVP) 3%(v/v)의 소량에 펠렛을 재현탁하고 4℃에서 사용할 때까지 보관하였다. 5 IU of pregnant mare serum gonadotropin (PMSG; Sigma-Aldrich, St. Louis, Mo.) was injected into the mice of the preparation example and after 48 hours, 5 IU of human chorionic gonadotropin gonadotropin, hCG; Sigma-Aldrich) to induce superovulation. Oocytes were collected in M2 (Sigma-Aldrich) medium after 14 hours of hCG injection in mice and the cumulus cells were removed with a medium containing 0.1% hyaluronidase (Sigma-Aldrich) (Denuded). Cumulus-free oocytes were then cultured in potassium simplex optimized medium (KSOM, Millipore, Darmstadt, Germany) for the experiment. The dispersed cumulus cells were treated with hyaluronidase The pellet was resuspended in M2 in a small volume of polyvinylpyrrolidone (PVP) 3% (v / v) and stored at 4 ° C until use.
실시예 2. 난모세포 유리화동결(vitrification) 및 해동(warming)Example 2. Vitrification of oocytes Vitrification and warming
유리화동결 및 보온 용액의 준비를 위한 기본 배지로서 녹아웃 혈청 대체(Knockout Serum Replacement) (KSR, Gibco, Grand Island, NY) 20%(v/v) 및 HEPES (Sage, Malov, Denmark)가 있는 Quinn'의 어드벤티지 배지를 사용하였다. 에틸렌글리콜(EG, Sigma-Aldrich) 및 디메틸설폭시드(dimethylsulfoxide, DMSO, Sigma-Aldrich)의 조합인, 2개의 동결보호제(cryoprotectant agents)로 유리화동결 처리하였다. MII 난모세포를 7.5% 에틸렌글리콜 및 7.5% DMSO를 함유하는 HEPES 배지로 2분 30초 동안 사전-평형화(pre-equilibrated) 시켰다. 사전-평형화된 난모세포를 15% 에틸렌글리콜, 15% DMSO, 및 0.5M 수크로즈(Sigma-Aldrich)로 보충된 동일 부피의 HEPES 배지에서 20초 동안 평형화시켰다. 평형화된 난모세포를 전자 현미경 구리 격자(electron microscopic copper grids) (EM Grid, PELCO, Redding, CA)에 로딩하고 Vit-master (IMT, Ness Ziona, Israel)를 사용하여 슬러시 질소(slush nitrogen, SN2)에 동결 보존 하였다. 유리화동결된 난모세포를 LN2 탱크에 저장하였다. 보온을 위하여, 유리화동결된 난모세포를 4단계 방법으로 가온하였다. EM 그리드를 37℃에서 2분 30초 간격으로 0.5, 0.25, 0.125 및 0 M의 수크로즈에 순차적으로 옮겼다. 이후, 난모세포를 변형된 HTF (Millipore) 배지로 3회 세척하고 실험이 시작될 때까지 HTF 배지에서 배양하였다. Quinn 'with 20% (v / v) HEPES (Sage, Malov, Denmark) as knockout serum replacement (KSR, Gibco, Grand Island, NY) as the primary medium for vitrification and preparation of warming solution. Were used. Vitrified with two cryoprotectant agents, a combination of ethylene glycol (EG, Sigma-Aldrich) and dimethylsulfoxide (DMSO, Sigma-Aldrich). MII oocytes were pre-equilibrated for 2 minutes 30 seconds with HEPES medium containing 7.5% ethylene glycol and 7.5% DMSO. Pre-equilibrated oocytes were equilibrated for 20 seconds in the same volume of HEPES medium supplemented with 15% ethylene glycol, 15% DMSO, and 0.5 M sucrose (Sigma-Aldrich). Equilibrated oocytes were loaded into electron microscopic copper grids (EM Grid, PELCO, Redding, Calif.) And slush nitrogen (SN2) was eluted using Vit-master (IMT, Ness Ziona, Israel) Lt; / RTI > The vitrified frozen oocytes were stored in the LN2 tank. For warming, the vitrified frozen oocytes were warmed in four steps. The EM grid was sequentially transferred to 0.5, 0.25, 0.125, and 0 M sucrose at 37 < 0 > C at 2 min 30 sec intervals. The oocytes were then washed three times with modified HTF (Millipore) medium and cultured in HTF medium until the start of the experiment.
실시예 3. 체세포 핵 이식(somatic cell nuclear transfer, SCNT)Example 3: Somatic cell nuclear transfer (SCNT)
상기 실시예 2에서 준비한 신선한 또는 유리화동결/해동(vitrification/warmed)된 난모세포를 37℃에서 인큐베이션한 후, 난모세포의 난구를 제거하였다. 신선한 난구세포를 핵 공여 난자로서 사용하였다. 5㎍/㎖의 사이토칼라신 B(cytochalasin B)를 포함하는 M2 배지에서 신선하고 유리화동결/해동된 난구세포의 핵을 제거하였다. 핵 이식을 위하여, M2 배지에서 piezo-driven micromanipulator (Primetech LTD, Tsuchiura-shi, Japan)를 사용하여 난구 세포를 탈핵된 난모세포에 주입하였다. 이후, M16 (Millipore) 배지에서 10 mM SrCl2, 2 mM EGTA, 및 5 ㎍/㎖ 사이토칼라신 B로 재생된 배아(embryo)를 6시간 동안 활성화시킨 다음 37℃, 5% CO2의 가습 대기의 KSOM에서 배양하였다. 신선한 난모세포 세포질(oocyte cytoplasm, FOC)을 사용하는 체세포 복제 난자 그룹을 SCNT-FOC로 명명하고, 유리화동결/해동된(저온보존/해동된) 난모세포의 세포질을 사용한 그룹을 SCNT-CROC로 명명하였다. Fresh or vitrified vitrification / warmed oocytes prepared in Example 2 were incubated at 37 ° C, and the oocytes were removed from the oocytes. Fresh cumulus cells were used as nuclear donor oocytes. The nuclei of fresh, vitrified, frozen / thawed cumulus cells were removed in M2 medium containing 5 μg / ml of cytochalasin B. For nuclear transfer, cumulus cells were injected into enucleated oocytes using a piezo-driven micromanipulator (Primetech LTD, Tsuchiura-shi, Japan) in M2 medium. Subsequently, embryos regenerated with 10 mM SrCl 2 , 2 mM EGTA, and 5 μg / ml cytochalasin B in M16 (Millipore) medium were activated for 6 hours and then incubated at 37 ° C in a humidified atmosphere of 5% CO 2 Of KSOM. The somatic cell oocyte group using fresh oocyte cytoplasm (FOC) was named as SCNT-FOC and the group using cytoplasm of vitrified / frozen (low temperature preserved / thawed) oocyte was named SCNT-CROC Respectively.
실시예Example 4.  4. Kdm4aKdm4a mRNA의mRNA 주입에 따른 체세포 핵 이식 세포의 배아 발달 여부 및 전사 차이 확인 Embryo development and transcriptional differences of somatic cell nuclear transfer
4-1. 4-1. Kdm4aKdm4a mRNA의 준비 Preparation of mRNA
전장(full-length) 마우스 Kdm4a / Jhdm3a cDNA를 In-Fusion Kit (Clonetech # 638909)를 사용하여 클로닝 부위의 3'말단에 poly(A)83이 포함된 pcDNA3.1 플라스미드로 클로닝 하였다. 인 비트로(in vitro) 전사에 의해 선형화된 주형 플라스미드로부터 mMESSAGE mMACHINE T7 Ultra Kit (Life Technologies # AM1345)를 사용하여 mRNA를 합성하였다. 합성된 mRNA를 nuclease-free water에 용해시켰다. mRNA의 농도는 NanoDrop ND-1000 분광 광도계(NanoDrop Technologies)를 사용하여 측정하였다; mRNA의 분취량을 사용할 때까지 -80℃에서 보관하였다.Full-length mouse Kdm4a / Jhdm3a cDNA was cloned into a pcDNA3.1 plasmid containing poly (A) 83 at the 3 'end of the cloning site using an In-Fusion Kit (Clonetech # 638909). MRNA was synthesized from a template plasmid linearized by in vitro transcription using mMESSAGE mMACHINE T7 Ultra Kit (Life Technologies # AM1345). The synthesized mRNA was dissolved in nuclease-free water. The concentration of mRNA was measured using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies); Aliquots of mRNA were stored at -80 ° C until use.
4-2. 체세포 핵 이식 세포의 배아 발달 여부 확인4-2. Determination of somatic cell nuclear transfer embryo development
H3K9me3 탈메틸효소(demethylase)를 암호화하는 Kdm4a의 mRNA 주입은 체세포 핵 이식된 포유 동물의 난자 발달을 향상시키는 것으로 알려져 있다. 먼저, Kdm4a mRNA가 유리화동결/해동된 난모세포의 세포질을 이용하여 복제된 난자(SCNT-CROC)의 발달에 미치는 영향을 분석하기 위해, Kdm4a mRNA의 주입 여부에 관계없이 배아 발달 여부를 평가하였다. 다음으로, 상기 실시예 3에서 준비한 두 그룹의 복제 난자(SCNT-FOC 그룹 및 SCNT-CROC 그룹)에 piezo-driven micromanipulator를 사용하여 ~10 pl의 물(대조군) 또는 2㎍/㎕ Kdm4a mRNA를 주사하였다. 또한, 배아 발달 여부를 면역 형광법으로 확인하였다. 구체적으로, 0.1% 폴리비닐 알코올(polyvinyl alcohol, PVA)을 함유한 인산-완충 식염수(phosphate-buffered saline, PBS)로 클로닝한 배아를 세척한 후 실온에서 4% w/v 파라포름알데히드(paraformaldehyde)로 30분간 고정시켰다. 난모세포를 PBS/PVA로 세척한 후 4℃에서 1% 소혈청알부민(bovine serum albumin, BSA)과 0.1% Triton X-100을 함유한 PBS에서 밤새 배양하였다. 이후, 난모세포를 PBS-0.1% BSA에서 3회 세척하고 1 및 2 세포 단계에서 H3K9me3 항체의 1:200 희석액 및 정제된 마우스 항-OCT-3/4 (BD)를 2시간 동안 배양하였다. 클로닝한 배아를 PBS-0.1% BSA로 3회 세척하고 염소 항-마우스 항체의 1:200 희석액으로 실온에서 1시간 동안 배양하였다. 이후, PBS-0.1% BSA에서 3회 추가로 세척하였다. 4',6-디아미디노-2-페닐인돌(4′,6-diamidino-2-phenylindole, DAPI)로 난모세포를 염색하여 DNA를 시각화하였다. 배아를 형광성 장착 매질을 가진 유리 슬라이드 상에 올려놓고 형광 현미경(Zeiss LSM880, Zeiss, Jena, Germany)을 사용하여 관찰하였다. The injection of Kdm4a mRNA encoding the H3K9me3 demethylase is known to improve oocyte development in somatic cell nuclear transfer mammals. First, to evaluate the effect of Kdm4a mRNA on the development of cloned oocytes (SCNT-CROC) using freezing / thawing cytoplasm of freezing / thawing oocytes, embryonic development was evaluated regardless of whether Kdm4a mRNA was injected or not. Next, ~10 pl of water (control) or 2 / / ㎕ Kdm4a mRNA was injected into the two groups of oocytes (SCNT-FOC group and SCNT-CROC group) prepared in Example 3 using a piezo-driven micromanipulator Respectively. In addition, embryo development was confirmed by immunofluorescence. Specifically, the embryos cloned with phosphate-buffered saline (PBS) containing 0.1% polyvinyl alcohol (PVA) were washed and incubated with 4% w / v paraformaldehyde at room temperature. For 30 minutes. The oocytes were washed with PBS / PVA and incubated overnight at 4 ° C in PBS containing 1% bovine serum albumin (BSA) and 0.1% Triton X-100. The oocytes were then washed three times in PBS-0.1% BSA and incubated for 2 hours with 1: 200 dilution of H3K9me3 antibody and purified mouse anti-OCT-3/4 (BD) at 1 and 2 cell steps. Cloned embryos were washed three times with PBS-0.1% BSA and incubated with 1: 200 dilution of goat anti-mouse antibody for 1 hour at room temperature. Thereafter, the cells were further washed three times with PBS-0.1% BSA. DNA was visualized by staining oocytes with 4 ', 6-diamidino-2-phenylindole (DAPI). The embryos were placed on glass slides with fluorescent mounting media and observed using a fluorescence microscope (Zeiss LSM 880, Zeiss, Jena, Germany).
그룹group mRNA (μg/μl) mRNA (μg / μl) 핵이식 난모세포수 Nuclear transfer oocyte number 2-세포기 배아수 (%) ¶ Number of embryos in 2-cell stage (%) ¶ 4-세포기 배아수 (%) # Number of 4-cell embryos (%) # 2-세포기 블락 배아(2-cell block embryos) 수 (%±SEM) # Number of 2-cell block embryos (% ± SEM) # 배반포 수(%±SEM) # Number of blastocysts (% ± SEM) #
SCNT-FOCSCNT-FOC -- 112112 105 (94)105 (94) 70 (67)70 (67) 35 (33±2.9) a 35 (33 ± 2.9) a 27 (26±3.4) a 27 (26 +/- 3.4) a
SCNT-FOC+KSCNT-FOC + K 22 109109 103 (95)103 (95) 102 (99)102 (99) 1 (1±1) b 1 (1 + 1) b 85 (83±3.5) b 85 (83 ± 3.5) b
SCNT-CROCSCNT-CROC -- 139139 132 (95)132 (95) 93 (70)93 (70) 39 (30±1.8) a 39 (30 1.8) a 30 (23±3.1) a 30 (23 ± 3.1) a
SCNT-CROC+KSCNT-CROC + K 22 130130 125 (96)125 (96) 123 (98)123 (98) 2 (2±1.2) b 2 (2 + - 1.2) b 82 (66±2.4) c 82 (66 +/- 2.4) c
a,b,c: 동일한 열 내에서 다른 위첨자로서, 값의 유의미한 차이를 나타냄(P<0.05; n=5)a, b, c: Significant difference in value (P <0.05; n = 5) as another superset within the same column
SCNT-FOC: 신선한 난모세포의 세포질을 이용한 체세포 핵 이식 복제 난자SCNT-FOC: Somatic cell nuclear transfer cloned oocyte using cytoplasm of fresh oocyte
SCNT-CROC: 유리화동결/해동된 난모세포의 세포질을 이용한 체세포 핵 이식 복제 난자SCNT-CROC: Somatic cell nuclear transfer cloned oocyte using cytoplasm of freezing / thawed oocyte
K: 라이신(K)-특이적 탈메틸화효소 4A(Kdm4a) mRNA의 주입K: injection of lysine (K) -specific demethylating enzyme 4A (Kdm4a) mRNA
¶: SCNT 난모세포의 수에 기초¶: Based on the number of SCNT oocytes
#: 2-세포 배아의 수에 기초#: Based on the number of 2-cell embryos
도 1은 SCNT-FOC 및 SCNT-CROC 그룹에 Kdm4a mRNA를 주입하여 H3K9me3의 탈 메틸화를 관찰한 결과이고 표 1은 SCNT-FOC 및 SCNT-CROC 그룹의 발달에 Kdm4a mRNA의 주입이 미치는 영향을 나타낸 결과이다. SCNT-FOC 그룹 및 SCNT-CROC 그룹의 1 세포기와 2 세포기의 핵에서 H3K9me3의 탈 메틸화가 정상적으로 이루어지는 것을 확인할 수 있었다(도 1a). 상기 메틸화 수준을 수치화한 결과에서도 SCNT-FOC 그룹 및 SCNT-CROC에 Kdm4a mRNA를 주입한 경우, H3K9me3의 수준이 유의적으로 감소한 것을 확인할 수 있었다(도 1b). 또한, SCNT-FOC 그룹 및 SCNT-CROC 그룹에 Kdm4a mRNA를 주입할 경우, 두 그룹 모두의 배반포 효율이 유의적으로 증가한 것을 확인할 수 있었다. 즉, H3K9me3 활성의 하향 조절은 SCNT-FOC 그룹 및 SCNT-CROC 그룹의 배아의 배반포(blastocyst) 형성 속도를 모두 향상시키는 것을 확인할 수 있었다. 따라서, Kdm4a mRNA의 주입은 H3K9me3 활성을 억제하고 복제 난자에서 2-세포 블락(2-cell block)을 극복하는 것을 확인할 수 있다(표 1). Figure 1 shows the results of demethylation of H3K9me3 by injecting Kdm4a mRNA into SCNT-FOC and SCNT-CROC groups. Table 1 shows the effect of Kdm4a mRNA injection on the development of SCNT-FOC and SCNT-CROC groups to be. It was confirmed that demethylation of H3K9me3 was normally performed in the SCNT-FOC group and the SCNT-CROC group 1 cell group and the nucleus of the second cell group (Fig. 1A). As a result of quantifying the methylation level, it was confirmed that the level of H3K9me3 was significantly decreased when Kdm4a mRNA was injected into SCNT-FOC group and SCNT-CROC (FIG. 1B). In addition, when Kdm4a mRNA was injected into the SCNT-FOC group and the SCNT-CROC group, the blastocyst efficiency of both groups was significantly increased. In other words, it was confirmed that down-regulation of H3K9me3 activity improves both blastocyst formation rates of the embryos of SCNT-FOC group and SCNT-CROC group. Thus, the injection of Kdm4a mRNA inhibits H3K9me3 activity and overcomes the 2-cell block in the oocyte (Table 1).
도 2는 Kdm4a mRNA를 주입 여부에 따른 SCNT-FOC 및 SCNT-CROC 그룹의 내세포와 전체세포 수의 변화를 확인한 것이다. 이때, 내세포 집단이란 향후 배아줄기세포로 발생 가능한 세포 수를 의미하고, 타입 1은 내세포 10개 미만, 타입 2는 내세포 10개 이상을 나타낸다. FIG. 2 shows changes in the number of cells and whole cells of SCNT-FOC and SCNT-CROC groups according to whether Kdm4a mRNA was injected. At this time, the inner cell group means the number of cells capable of developing into embryonic stem cells in the future, and Type 1 indicates less than 10 intracellular cells and Type 2 indicates 10 or more intracellular cells.
도 2a 및 도 2b에 나타난 바와 같이, mRNA의 주입 후에 SCNT-FOC 그룹 및 SCNT-CROC 그룹에서의 배아 발달 결함은 거의 극복되었으나, SCNT-CROC 그룹에서의 배아 발생 및 배아 발달 정도는 SCNT-FOC 그룹에서의 배아 발달 및 발달 정도보다 유의적으로 낮았다. 특히 도 2c에 나타난 바와 같이, SCNT-CROC+ K 그룹에서의 ICM 수(배반포 당 10 ICMs 이상)의 비율이 높은 복제 배아 수는 SCNT-FOC + K 그룹에서보다 유의적으로 더 적었다(p<0.05). 즉, Kdm4a mRNA의 주입은 내세포 집단 수를 유의적으로 증가시킴으로써, 배반포 품질을 향상시킬 수 있다.As shown in FIGS. 2A and 2B, embryo development defects in the SCNT-FOC group and the SCNT-CROC group were substantially overcome after the injection of the mRNA, but the embryo development and embryo development degree in the SCNT-CROC group were significantly Of the embryo development and development. In particular, as shown in FIG. 2C, the number of cloned embryos having a high ratio of ICM number (more than 10 ICMs per blastocyst) in the SCNT-CROC + K group was significantly smaller than that in the SCNT-FOC + K group (p <0.05) . In other words, the injection of Kdm4a mRNA significantly improves the quality of blastocysts by significantly increasing the number of cell population.
4-3. 체세포 핵 이식 세포의 2-세포 배아(2-cell embryos) 전사 차이 확인4-3. Identification of transcription of 2-cell embryos in somatic cell nuclear transfer cells
SCNT-FOC 그룹 및 SCNT-CROC 그룹 사이의 가장 초기 배아의 전사 차이를 확인하기 위해, 난모세포 활성화와 Kdm4a mRNA 주입 24시간 후, 두 그룹의 풀(pooled) 2-세포 배아(샘플당 100 배아, 3회 반복)로 RNA 시퀀싱을 2회 수행하였다. 1회 차에서, SCNT-FOC+K 및 SCNT-CROC+K (시료당 100개의 배아, 3회 반복) 사이의 2 세포 배아에서 유전자 발현을 평가하였다. 2회 차에서, SCNT-CROC+K 및 SCNT-CROC+K+M (1회 시료 당 50개의 배반포, 2 회 반복) 사이의 배반포에서 유전자 발현을 평가하였다. 상보적인 DNA(cDNA)를 SMARTer 초저 입력 RNA cDNA 준비 키트(Ultra Low Input RNA cDNA preparation kit) (Takara, 634890)를 사용하여 제조사의 지시에 따라 증폭시켰다. M220 초음파분쇄기(sonicator) (Covaris)를 사용하여 cDNA를 약 200 bp 단편으로 단편화 하였다. 단편화된 cDNA를 말단-수정(end-repaired)하고 어댑터를 연결(adapter-ligated)하였다. 시퀀싱 라이브러리는 제조사의 지시에 따라 ScriptSeq v2 키트 (Illumina)를 사용하여 준비하였다. HiSeq2500 (Illumina)에서 단일-종단 시퀀싱을 수행하고, STAR (v2.5.2b, https://github.com/alexdobin/STAR)를 사용하여 mm9 마우스 게놈에 맵핑(mapping) 하였다. 이후, 기본 옵션을 사용하여 Cufflinks (v2.2.1)로 FPKM(fragments per kilobase per million read)를 계산하였다. 유전자는 fold change>3 및 FPKM>5에서 차별적으로 발현된 것으로 간주하였다. R (v3.3.2) 패키지를 사용하여 통계분석 및 산점도 생성(scatter plot generation)을 수행하였다. 대부분의 유전자의 발현은 두 그룹에서 모두 유사하였으며 소수의 유전자(159개)만이 다른 발현 양상을 나타냈다(도 3a). GO terms 및 KEGG 분석에서 세포사멸과 p53 신호 전달 경로를 포함한 몇 가지 경로가 현저하게 활성화되었음을 확인하였다. DEG가 GO terms-데이터베이스로 분석되었을 때, 1,730개의 세포사멸 관련 유전자 중 16개의 유전자(0.92%) 만이 SCNT-FOC 그룹 및 SCNT-CROC 그룹 사이에서 3배 이상의 차이를 보였다. SCNT-CROC 그룹에서 8개의 전-세포사멸 관련 유전자 (Cyt, Dapk2, Dffb, Gadd45g, Hint2, Mien1, P2rx7, Pmaip) (50%)와 3개의 항-세포사멸 유전자(Adrb2, Scin, Six1)는 SCNT-FOC 그룹과 비교하여 발현이 상향 조절됨을 확인할 수 있었다. 또한, 2개의 세포사멸 관련 유전자 (Ifng 및 Siah1a) (18.2%) 및 3개의 항-세포사멸 관련 유전자(Syce3, Tsc22d3 및 Vegfa) (27.2%)만이 하향 조절됨을 확인할 수 있었다(도 3b). To determine the transcriptional differences of the earliest embryo between SCNT-FOC and SCNT-CROC groups, two groups of pooled 2-cell embryos (100 embryos per sample, 24 h after embryo activation and Kdm4a mRNA injection, 3 &lt; / RTI > cycles). Gene expression was assessed in a 2-cell embryo between SCNT-FOC + K and SCNT-CROC + K (100 embryos per sample, 3 replicates). In the second round, gene expression was evaluated in blastocysts between SCNT-CROC + K and SCNT-CROC + K + M (50 blastocysts per sample, 2 replicates). The complementary DNA (cDNA) was amplified using the SMARTer ultra low input RNA cDNA preparation kit (Takara, 634890) according to the manufacturer's instructions. CDNA was fragmented into approximately 200 bp fragments using an M220 sonicator (Covaris). The fragmented cDNA was end-repaired and adapter-ligated. The sequencing library was prepared using the ScriptSeq v2 kit (Illumina) according to the manufacturer's instructions. Single-end sequencing was performed on HiSeq2500 (Illumina) and mapped to the mm9 mouse genome using STAR (v2.5.2b, https://github.com/alexdobin/STAR). We then calculated FPKM (fragments per kilobase per million read) with Cufflinks (v2.2.1) using the default option. The genes were considered to be differentially expressed in fold change> 3 and FPKM> 5. Statistical analysis and scatter plot generation were performed using the R (v3.3.2) package. Expression of most genes was similar in both groups and only a few genes (159) showed different expression patterns (Fig. 3a). In GO terms and KEGG analysis, several pathways including cell death and p53 signaling pathway were found to be significantly activated. When DEG was analyzed in the GO terms-database, only 16 genes (0.92%) among 1,730 apoptosis-related genes showed more than 3-fold difference between SCNT-FOC group and SCNT-CROC group. In the SCNT-CROC group, eight pro-apoptotic genes (Cyt, Dapk2, Dffb, Gadd45g, Hint2, Mien1, P2rx7 and Pmaip) and three anti-apoptotic genes (Adrb2, Scin, The expression was up-regulated compared to the SCNT-FOC group. In addition, it was confirmed that only two apoptosis-related genes (Ifng and Siah1a) (18.2%) and three anti-apoptotic genes (Syce3, Tsc22d3 and Vegfa) (27.2%) were down-regulated.
또한, SCNT-CROC 그룹에서 세포 주기 관련 유전자 1,449개 중 6개의 유전자(0.41%)만이 발현 수준에 차이를 나타냈으며 1개의 세포 정지 관련 유전자(Gadd45g)가 상향 조절됨을 확인할 수 있었다(도 3b). 반면, SCNT-FOC 그룹 및 SCNT-CROC 그룹에서 4,841개의 유전자 중 30개의 유전자 발현 관련 유전자(0.62%) 및 10,234개의 대사 과정 관련 유전자 중 61개의 유전자(0.60%)의 발현 양상이 서로 상이한 것을 확인할 수 있었다. 그러나, 상기 유전자 대부분은 유전자 발현이나 대사 과정에 부정적 기능을 하지는 않는 것을 알 수 있다(도 3b).In SCNT-CROC group, only 6 genes (0.41%) among 1,449 cell cycle-related genes showed different expression levels and one cell arrest related gene (Gadd45g) was upregulated (FIG. 3B). On the other hand, in SCNT-FOC group and SCNT-CROC group, 30 gene expression related genes (0.62%) among 4,841 genes and 61 genes (0.60%) among 10,234 metabolic pathway related genes were different from each other there was. However, most of the genes do not function negatively in gene expression or metabolism (FIG. 3B).
실시예 5. 멜라토닌 유무에 따른 체세포 복제 난자의 배아 발달 Example 5 Embryonic development of somatic cell cloned oocytes with and without melatonin
5-1. 멜라토닌 유무에 따른 체세포 핵 이식 세포의 배아 발달 확인5-1. Embryonic development of somatic cell nuclear transfer cells with or without melatonin
SCNT-CROC 그룹의 복제 난자에 Kdm4a (SCNT-CROC+K)를 먼저 주입한 다음 멜라토닌(Sigma) 10μM이 포함된 KSOM 배지 및 포함되지 않은 KSOM 배지에서 배양하였다. 복제 난자의 배아 발생을 활성화 후 5일(120 시간)동안 평가하였다. 상기 멜라토닌 농도는 최상의 품질과 높은 배반포 형성율을 보이는 농도로서 종래의 수(fertilized)된 마우스 배아를 사용하여 예비실험을 통해 선택하였다. 각 그룹에 대한 결과를 하기 표 2에 나타내었다. Kdm4a (SCNT-CROC + K) was first injected into the SCNT-CROC group oocytes and then cultured in KSOM medium containing 10 μM of melatonin (Sigma) and KSOM medium not containing KMOM. Embryonic development of cloned oocytes was assessed for 5 days (120 hours) after activation. The melatonin concentration was selected through preliminary experiments using conventional fertilized mouse embryos at concentrations showing the highest quality and high blastocyst formation rates. The results for each group are shown in Table 2 below.
그룹 group 멜라토닌 (μM) Melatonin (M) 핵이식 난모세포수Nuclear transfer oocyte number 2-세포기 배아수 (%) ¶ Number of embryos in 2-cell stage (%) ¶ 4-세포기 배아수 (%) # Number of 4-cell embryos (%) # 2-세포기 블락 배아(2-cell block embryos) 수 (%±SEM) # Number of 2-cell block embryos (% ± SEM) # 배반포 수(%±SEM) # Number of blastocysts (% ± SEM) #
SCNT-CROCSCNT-CROC -- 125125 112 (90)112 (90) 66 (59)66 (59) 46 (42±3.7)a 46 (42 ± 3.7) a 23 (20±1.5)a 23 (20 ± 1.5) a
SCNT-CROC +MSCNT-CROC + M 1010 125125 114 (91)114 (91) 81 (71)81 (71) 33 (31±3.7)a 33 (31 ± 3.7) a 44 (39±1.2)b 44 (39 ± 1.2) b
SCNT-CROC + KSCNT-CROC + K -- 138138 128 (98)128 (98) 124 (94)124 (94) 4 (3±1.5)a 4 (3 + 1.5) a 76 (59±3.3)a 76 (59 +/- 3.3) a
SCNT-CROC + K +M SCNT-CROC + K + M 1010 138138 123 (96)123 (96) 119 (96)119 (96) 4 (4±1.8)a 4 (4 + 1.8) a 91 (75±3.3)b 91 (75 ± 3.3) b
a,b,c: 동일한 열 내에서 다른 위첨자로서, 값의 유의미한 차이를 나타냄(P<0.05; n=5)a, b, c: Significant difference in value (P <0.05; n = 5) as another superset within the same column
SCNT-FOC: 신선한 난모세포의 세포질을 이용한 체세포 핵 이식 복제 난자SCNT-FOC: Somatic cell nuclear transfer cloned oocyte using cytoplasm of fresh oocyte
SCNT-CROC: 유리화동결/해동된 난모세포의 세포질을 이용한 체세포 핵 이식 복제 난자SCNT-CROC: Somatic cell nuclear transfer cloned oocyte using cytoplasm of freezing / thawed oocyte
M: 멜라토닌 처리M: Melatonin treatment
K: 라이신(K)-특이적 탈메틸화효소 4A(Kdm4a) mRNA의 주입K: injection of lysine (K) -specific demethylating enzyme 4A (Kdm4a) mRNA
¶: SCNT 난모세포의 수에 기초¶: Based on the number of SCNT oocytes
#: 2-세포 배아의 수에 기초#: Based on the number of 2-cell embryos
그 결과, 멜라토닌은 Kdm4a mRNA의 주입과 상관없이 SCNT-CROC 그룹의 배아 발달에 긍정적인 역할을 하였다(표 2). 즉, 멜라토닌의 처리는 Kdm4a mRNA 주입과는 별개로 SCNT-CROC 그룹의 배반포 발달률을 향상시키는 것을 알 수 있다. 또한, SCNT-CROC 그룹에 Kdm4a mRNA 주입만으로 극복되지 못했던, 배반포 발달 효율을 증가시켜 SCNT-FOC 그룹과 유사한 배반포 발달률을 나타내는 것을 확인할 수 있었다. As a result, melatonin played a positive role in the embryonic development of the SCNT-CROC group regardless of the injection of Kdm4a mRNA (Table 2). That is, treatment of melatonin improves the development rate of blastocysts of SCNT-CROC group separately from Kdm4a mRNA injection. In addition, it was confirmed that the development rate of blastocyst development similar to that of SCNT-FOC group was confirmed by increasing the efficiency of blastocyst development, which was not overcome by injection of Kdm4a mRNA into SCNT-CROC group.
5-2. 멜라토닌 처리에 따른 DNA 단편화 확인5-2. Confirmation of DNA Fragmentation by Melatonin Treatment
상기 실시예 5-1의 그룹에서 멜라토닌 처리 여부에 따른 배반포에서의 DNA 단편화 수준을 TUNEL 염색법(in situ Cell Death Detection Kit, Roche, Indianapolis, IN)을 사용하여 검출하였다. SCNT-유래 배반포를 DPBS 0.1% PVA에서 3회 세척하였다. 배아를 TUNEL 반응 배지에서 37℃, 어두운 조건에서 1시간 동안 인큐베이션 하였다. 1㎍/㎖ Hoechst 33342 (Bis-benzimide, Sigma)로 염색한 DNA를 핵 역-염색(nuclear counter-staining)을 위해 사용하였다. 배아의 신호를 공초점 현미경(confocal microscope) (Zeiss, LSM880)으로 관찰하였다. The DNA fragmentation level in the blastocysts according to whether melatonin treatment was performed in the group of Example 5-1 was detected using TUNEL staining method ( in situ Cell Death Detection Kit, Roche, Indianapolis, Ind.). SCNT-derived blastocysts were washed three times in DPBS 0.1% PVA. The embryos were incubated in TUNEL reaction medium at 37 &lt; 0 &gt; C, dark for 1 hour. DNA stained with 1 [mu] g / ml Hoechst 33342 (Bis-benzimide, Sigma) was used for nuclear counter-staining. The embryonic signal was observed with a confocal microscope (Zeiss, LSM880).
그 결과, 멜라토닌을 처리하면 SCNT-CROC 그룹의 배반포에서 TUNEL 양성 세포 수가 감소하는 것을 확인 할 수 있었다(도 4a). TUNEL 양성 배아의 전체 비율은 멜라토닌 비처리 그룹(SCNT-CROC 및 SCNT-CROC+K)에 비해 멜라토닌 처리 그룹(SCNT-CROC+K+M)에서 현저하게 감소하였다(7.8% vs. 54.3% 및 24.1%)(p<0.05; 도 4b). As a result, it was confirmed that the treatment of melatonin reduced the number of TUNEL-positive cells in the blastocyst of the SCNT-CROC group (Fig. 4A). The overall percentage of TUNEL-positive embryos was significantly reduced in the melatonin treated group (SCNT-CROC + K + M) (7.8% vs. 54.3% and 24.1%) compared to the melatonin untreated group (SCNT-CROC and SCNT-CROC + K) %) (p <0.05; Fig. 4b).
5-3. 멜라토닌 처리에 따른 배아의 활성산소 생성에 미치는 영향5-3. Effects of melatonin treatment on the production of free radicals in embryos
상기 실시예 5-1의 그룹에서 멜라토닌 처리 여부에 따른 배반포의 활성산소에 미치는 영향을 확인하였다. 구체적으로, SCNT-CROC+K 그룹에서, 상실배 또는 배반포 단계의 배아를 멜라토닌과 함께 또는 멜라토닌 없이 처리하고, 30분 동안 5 μM CellROX 산화스트레스 시약(Molecular Probes, Eugene, OR)을 함유하는 배양 배지에서 배양한 후, 0.1% 폴리비닐알코올(PVA)-D-PBS로 처리하였다. 배아를 형광 공초점 현미경(Zeiss, LSM880)으로 관찰하였다. ImageJ 소프트웨어를 사용하여 기록된 형광 강도를 분석하였다. 다른 배아의 세포질 영역으로부터 일정한 영역 내에서 배아의 형광 픽셀 값을 측정하였다. 그룹 간의 통계학적으로 유의한 차이를 분석하기 전에, 최종 값에서 배경 형광 값을 제외하였다. 각 복제물(replicate)에서 5~10개의 배아를 3회 복제하여 실험하였다.The effect of the melatonin treatment on the active oxygen of the blastocysts in the group of Example 5-1 was confirmed. Specifically, in the SCNT-CROC + K group, embryos at the blastocyst stage or blastocyst stage were treated with melatonin or without melatonin and cultured for 30 minutes in a culture medium containing 5 μM CellROX oxidative stress reagent (Molecular Probes, Eugene, OR) , And then treated with 0.1% polyvinyl alcohol (PVA) -D-PBS. Embryos were observed with a fluorescence confocal microscope (Zeiss, LSM880). The recorded fluorescence intensity was analyzed using ImageJ software. Fluorescent pixel values of the embryos were measured within a certain region from the cytoplasmic region of another embryo. Before analysis of statistically significant differences between groups, background fluorescence values were excluded from the final values. Five to ten embryos were replicated three times in each replicate.
그 결과, 멜라토닌의 처리는 상실배의 활성산소 수준을 유의적으로 감소시키는 것을 확인할 수 있었다. 또한, 세포사멸이 일어난 부분의 형광 염색(세포사멸; 녹색, 핵; 푸른색으로 염색)을 통하여 멜라토닌의 처리가 배반포의 질적 측면에 미치는 효과를 조사한 결과, 보라색으로 염색된 세포사멸 수가 현저히 감소한 것으로 보여, 세포사멸 비율도 유의적으로 감소한 것을 확인할 수 있었다(도 5a). 또한, 상실배에서의 활성산소 수준은 SCNT-CROC+K 그룹과 비교하여 SCNT-CROC 그룹에서 유의적으로 낮은 것을 확인할 수 있었다(도 5b). 즉, 멜라토닌의 처리는 세포사멸, 퍼옥시좀 및 산화적 인산화와 같은 세포사멸 경로를 개선하는 바, 질적으로 향상된 배반포를 수득할 수 있다.As a result, it was confirmed that the treatment with melatonin significantly reduced the level of free radicals in the blastocyst. In addition, the effect of treatment with melatonin on the quality of blastocysts through fluorescence staining (cell death, green, nuclear, and blue dyeing) of apoptotic parts was significantly reduced And the cell death rate was also significantly decreased (FIG. 5A). In addition, it was confirmed that the level of active oxygen in the supernatant was significantly lower in the SCNT-CROC group than in the SCNT-CROC + K group (Fig. 5B). That is, the treatment of melatonin improves the apoptosis pathway such as apoptosis, peroxisome and oxidative phosphorylation, so that a qualitatively improved blastocyst can be obtained.
5-4. 멜라토닌 처리에 따른 5-4. Melatonin treatment 배반포의Blastocyst 전사에 미치는 영향 확인 Identify the impact on the warrior
어떤 유전자가 멜라토닌에 의해 조절되는지를 확인하기 위해, 상기 실시예 5-1의 멜라토닌 처리 그룹과 비처리 그룹 모두에서 2-세포 배아 및 배반포(샘플당 50 배아 또는 배반포, 2회 반복)의 전사체를 분석하였고, 그 결과를 하기 표 3에 나타내었다. To confirm which genes were regulated by melatonin, transcripts of 2-cell embryos and blastocysts (50 embryos per embryo or blastocyst, twice) in both the melatonin treated and untreated groups of Example 5-1 And the results are shown in Table 3 below.
관련된 기능Related features 유전자 상징Gene symbol 유전자 IDGene ID 유전자 이름Gene name 조절control
세포 생존 및조직 재생Cell survival and tissue regeneration Deaf1Deaf1 NM_001282072.1 NM_001282072.1 DEAF1, transcription factorDEAF1, transcription factor 상항Standing
FxnFxn NM_008044.2NM_008044.2 frataxinfrataxin 상향lift
PpanPpan NM_145610.2NM_145610.2 peter pan homologpeter pan homolog 상향lift
Rab10osRab10os NR_015551.1NR_015551.1 RAB10, member RAS oncogene family, opposite strand RAB10, member RAS oncogene family, opposite strand 상향lift
Sprr2dSprr2d NM_011470.2NM_011470.2 small proline-rich protein 2Dsmall proline-rich protein 2D 상향lift
Stag3Stag3 NM_016964.2NM_016964.2 stromal antigen 3stromal antigen 3 상향lift
Tsen15Tsen15 NM_025677.3NM_025677.3 tRNA splicing endonuclease subunit 15tRNA splicing endonuclease subunit 15 상향lift
Zfp335Zfp335 NM_199027.2NM_199027.2 zinc finger protein 335zinc finger protein 335 상향lift
AdmAdm NM_009627.2NM_009627.2 adrenomedullinadrenomedullin 하향Downward
Zfp54Zfp54 NM_011760.2NM_011760.2 zinc finger protein 54zinc finger protein 54 하향Downward
Zscan4fZscan4f NM_001110316.2NM_001110316.2 zinc finger and SCAN domain containing 4Fzinc finger and SCAN domain containing 4F 하향Downward
항산화, 염증및 세포사멸Antioxidant, inflammation and cell death CtssCtss NM_001267695.2 NM_001267695.2 cathepsin Scathepsin S 상향lift
DffaDffa NM_001025296.2 NM_001025296.2 DNA fragmentation factor, alpha subunitDNA fragmentation factor, alpha subunit 상향lift
산화 스트레스Oxidative stress Eif3fEif3f NM_025344.2NM_025344.2 eukaryotic translation initiation factor 3, subunit Feukaryotic translation initiation factor 3, subunit F 상향lift
Hacl1Hacl1 NM_019975.3NM_019975.3 2-hydroxyacyl-CoA lyase 12-hydroxyacyl-CoA lyase 1 상향lift
Hspbp1Hspbp1 NM_001360629.1NM_001360629.1 HSPA (heat shock 70kDa) binding protein, cytoplasmic cochaperone 1HSPA (heat shock 70kDa) binding protein, cytoplasmic cochaperone 1 상향lift
Mob2Mob2 NM_001347560.1NM_001347560.1 MOB kinase activator 2 MOB kinase activator 2 상향lift
Mrpl23Mrpl23 NM_011288.1NM_011288.1 mitochondrial ribosomal protein L23mitochondrial ribosomal protein L23 상향lift
Mrpl33Mrpl33 NM_025796.3NM_025796.3 mitochondrial ribosomal protein L33mitochondrial ribosomal protein L33 상향lift
PmvkPmvk NM_001310640.1NM_001310640.1 phosphomevalonate kinasephosphomevalonate kinase 상향lift
Slc4a11Slc4a11 NM_001081162.1NM_001081162.1 solute carrier family 4, sodium bicarbonate transporter-like, member 11 solute carrier family 4, sodium bicarbonate transporter-like, member 11 상향lift
Wbscr22Wbscr22 NM_001202560.2NM_001202560.2 BUD23, rRNA methyltransferase and ribosome maturation factorBUD23, rRNA methyltransferase and ribosome maturation factor 상향lift
세포사/재생Cell death / regeneration CtsdCtsd NM_009983.3NM_009983.3 cathepsin Dcathepsin D 상향lift
Ifi27Ifi27 NM_001364173.1NM_001364173.1 interferon, alpha-inducible protein 27interferon, alpha-inducible protein 27 상향lift
Mettl13Mettl13 NM_144877.1NM_144877.1 methyltransferase like 13methyltransferase like 13 상향lift
Nck1Nck1 NM_001324530.1NM_001324530.1 non-catalytic region of tyrosine kinase adaptor protein 1non-catalytic region of tyrosine kinase adapter protein 1 상향lift
NmiNmi NM_001141948.1NM_001141948.1 N-myc (and STAT) interactorN-myc (and STAT) interactor 상향lift
Atp6v0cAtp6v0c NM_001361531.1NM_001361531.1 ATPase, H+ transporting, lysosomal V0 subunit CATPase, H + transporting, lysosomal V0 subunit C 하향Downward
Cd52Cd52 NM_013706.2NM_013706.2 CD52 antigenCD52 antigen 하향Downward
Dapk2Dapk2 NM_010019.3NM_010019.3 death-associated protein kinase 2death-associated protein kinase 2 하향Downward
Ddit4lDdit4l NM_030143.4NM_030143.4 DNA-damage-inducible transcript 4-like DNA-damage-inducible transcript 4-like 하향Downward
Duoxa2Duoxa2 NM_025777.2NM_025777.2 dual oxidase maturation factor 2dual oxidase maturation factor 2 하향Downward
NfkbiaNfkbia NM_010907.2 NM_010907.2 nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alphanuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha 하향Downward
PtgdsPtgds NM_008963.2NM_008963.2 prostaglandin D2 synthase (brain)prostaglandin D2 synthase (brain) 하향Downward
Rdh12Rdh12 NM_001313971.1NM_001313971.1 retinol dehydrogenase 12retinol dehydrogenase 12 하향Downward
Rnd3Rnd3 NM_028810.2NM_028810.2 Rho family GTPase 3Rho family GTPase 3 하향Downward
세포 및 종양 증식Cell and tumor proliferation AY074887AY074887 NM_145229.2NM_145229.2 cDNA sequence AY074887cDNA sequence AY074887 상향lift
Cdca2Cdca2 NM_001110162.1NM_001110162.1 cell division cycle associated 2cell division cycle associated 2 상향lift
Dnph1Dnph1 NM_207161.3NM_207161.3 2'-deoxynucleoside 5'-phosphate N-hydrolase 12'-deoxynucleoside 5'-phosphate N-hydrolase 1 상향lift
Eif3dEif3d NM_018749.2NM_018749.2 eukaryotic translation initiation factor 3, subunit Deukaryotic translation initiation factor 3, subunit D 상향lift
Eif3eEif3e NM_008388.2 NM_008388.2 eukaryotic translation initiation factor 3, subunit Eeukaryotic translation initiation factor 3, subunit E 상향lift
Gtf2h2Gtf2h2 NM_001360706.1NM_001360706.1 general transcription factor II H, polypeptide 2general transcription factor II H, polypeptide 2 상향lift
NeflNefl NM_010910.2NM_010910.2 neurofilament, light polypeptideneurofilament, light polypeptide 상향lift
RecqlRecql NM_001204906.1NM_001204906.1 RecQ protein-likeRecQ protein-like 상향lift
Snhg7Snhg7 NR_024068.2NR_024068.2 small nucleolar RNA host gene 7small nucleolar RNA host gene 7 상향lift
Ccne2Ccne2 NM_001037134.2NM_001037134.2 cyclin E2cyclin E2 하향Downward
Ly6aLy6a NM_001271416.1NM_001271416.1 lymphocyte antigen 6 complex, locus Alymphocyte antigen 6 complex, locus A 하향Downward
면역 반응Immune response Ccdc86Ccdc86 NM_023731.3NM_023731.3 coiled-coil domain containing 86coiled-coil domain containing 86 상향lift
Commd4Commd4 NM_025417.2NM_025417.2 COMM domain containing 4COMM domain containing 4 상향lift
Il17raIl17ra NM_008359.2NM_008359.2 interleukin 17 receptor Ainterleukin 17 receptor A 상향lift
Lat2Lat2 NM_020044.3NM_020044.3 linker for activation of T cells family, member 2 linker for activation of T cells family, member 2 상향lift
CstbCstb NM_007793.3NM_007793.3 cystatin Bcystatin B 하향Downward
QpctQpct NM_001316729.1NM_001316729.1 glutaminyl-peptide cyclotransferase (glutaminyl cyclase)glutaminyl-peptide cyclotransferase (glutaminyl cyclase) 하향Downward
기타Etc Arfgap2Arfgap2 NM_001166024.1NM_001166024.1 ADP-ribosylation factor GTPase activating protein 2ADP-ribosylation factor GTPase activating protein 2 상향lift
Bcdin3dBcdin3d NM_029236.2NM_029236.2 BCDIN3 domain containingBCDIN3 domain 상향lift
CenplCenpl NM_001127181.2NM_001127181.2 centromere protein Lcentromere protein L 상향lift
Cep63Cep63 NM_001081122.1NM_001081122.1 centrosomal protein 63centrosomal protein 63 상향lift
ClppClpp NM_017393.2NM_017393.2 caseinolytic mitochondrial matrix peptidase proteolytic subunitcaseinolytic mitochondrial matrix peptidase proteolytic subunit 상향lift
Cmtm7Cmtm7 NM_001252479.1NM_001252479.1 CKLF-like MARVEL transmembrane domain containing 7CKLF-like MARVEL transmembrane domain containing 7 상향lift
Cox17Cox17 NM_001017429.2NM_001017429.2 cytochrome c oxidase assembly protein 17, copper chaperonecytochrome c oxidase assembly protein 17, copper chaperone 상향lift
DbnlDbnl NM_001146308.1 NM_001146308.1 drebrin-like drebrin-like 상향lift
Defb22Defb22 NM_001002791.2NM_001002791.2 defensin beta 22defensin beta 22 상향lift
Dnaaf1Dnaaf1 NM_026648.4 NM_026648.4 dynein, axonemal assembly factor 1dynein, axonemal assembly factor 1 상향lift
Dph2Dph2 NM_026344.3NM_026344.3 DPH2 homolog DPH2 homolog 상향lift
Elmod3Elmod3 NM_001253692.1NM_001253692.1 ELMO/CED-12 domain containing 3ELMO / CED-12 domain containing 3 상향lift
Gtsf1lGtsf1l NM_026630.2NM_026630.2 gametocyte specific factor 1-likegametocyte specific factor 1-like 상향lift
Hint3Hint3 NM_025798.3NM_025798.3 histidine triad nucleotide binding protein 3histidine triad nucleotide binding protein 3 상향lift
Ltc4sLtc4s NM_001313968.1NM_001313968.1 leukotriene C4 synthaseleukotriene C4 synthase 상향lift
Ltn1Ltn1 NM_001081068.1NM_001081068.1 listerin E3 ubiquitin protein ligase 1listerine E3 ubiquitin protein ligase 1 상향lift
Mars2Mars2 NM_175439.3NM_175439.3 methionine-tRNA synthetase 2 (mitochondrial)methionine-tRNA synthetase 2 (mitochondrial) 상향lift
Meig1Meig1 NM_001355205.1NM_001355205.1 meiosis expressed gene 1meiosis expressed gene 1 상향lift
Mppe1Mppe1 NM_001357518.1NM_001357518.1 metallophosphoesterase 1metallophosphoesterase 1 상향lift
Mvb12aMbb12a NM_028617.2NM_028617.2 multivesicular body subunit 12Amultivesicular body subunit 12A 상향lift
MvdMvd NM_138656.2NM_138656.2 mevalonate (diphospho) decarboxylasemevalonate (diphospho) decarboxylase 상향lift
Ndufs7Ndufs7 NM_001364694.1NM_001364694.1 NADH:ubiquinone oxidoreductase core subunit S7NADH: ubiquinone oxidoreductase core subunit S7 상향lift
Nt5cNt5c NM_015807.1NM_015807.1 5',3'-nucleotidase, cytosolic5 ', 3'-nucleotidase, cytosolic 상향lift
Oxa1lOxa1l NM_026936.3NM_026936.3 oxidase assembly 1-likeoxidase assembly 1-like 상향lift
Pet100Pet100 NM_001195244.1NM_001195244.1 PET100 homologPET100 homolog 상향lift
Psmd13Psmd13 NM_011875.4NM_011875.4 proteasome (prosome, macropain) 26S subunit, non-ATPase, 13proteasome (prosome, macropain) 26S subunit, non-ATPase, 13 상향lift
Psmg3Psmg3 NM_001356963.1NM_001356963.1 proteasome (prosome, macropain) assembly chaperone 3proteasome (prosome, macropain) assembly chaperone 3 상향lift
Ptpn18Ptpn18 NM_011206.2NM_011206.2 protein tyrosine phosphatase, non-receptor type 18 protein tyrosine phosphatase, non-receptor type 18 상향lift
Pxmp4Pxmp4 NM_021534.3NM_021534.3 peroxisomal membrane protein 4peroxisomal membrane protein 4 상향lift
Slc35f5Slc35f5 NM_001356294.1NM_001356294.1 solute carrier family 35, member F5solute carrier family 35, member F5 상향lift
SlnSln NM_025540.2NM_025540.2 sarcolipinsarcolipin 상향lift
Srp68Srp68 NM_146032.3NM_146032.3 signal recognition particle 68signal recognition particle 68 상향lift
Surf2Surf2 NM_013678.2 NM_013678.2 surfeit gene 2surfeit gene 2 상향lift
Tagap1Tagap1 NM_147155.2NM_147155.2 T cell activation GTPase activating protein 1T cell activation GTPase activating protein 1 상향lift
Tbccd1Tbccd1 NM_001081368.2NM_001081368.2 TBCC domain containing 1TBCC domain containing 1 상향lift
Tead4Tead4 NM_001080979.1NM_001080979.1 TEA domain family member 4TEA domain family member 4 상향lift
Tmem126bTmem126b NM_026734.1NM_026734.1 transmembrane protein 126Btransmembrane protein 126B 상향lift
Tmem205Tmem205 NM_001253867.1NM_001253867.1 transmembrane protein 205transmembrane protein 205 상향lift
Tor1bTor1b NM_133673.3NM_133673.3 torsin family 1, member Btorsin family 1, member B 상향lift
Trmt61aTrmt61a NM_001099792.1NM_001099792.1 tRNA methyltransferase 61AtRNA methyltransferase 61A 상향lift
WrbWrb NM_207301.3NM_207301.3 tryptophan rich basic proteintryptophan rich basic protein 상향lift
Ythdf1Ythdf1 NM_173761.3NM_173761.3 YTH domain family 1YTH domain family 1 상향lift
Zfp42Zfp42 NM_009556.3NM_009556.3 zinc finger protein 42zinc finger protein 42 상향lift
Lhfpl1Lhfpl1 NM_178358.3 NM_178358.3 lipoma HMGIC fusion partner-like 1lipoma HMGIC fusion partner-like 1 하향Downward
Lin7bLin7b NM_011698.1NM_011698.1 lin-7 homolog B (C. elegans)lin-7 homolog B (C. elegans) 하향Downward
Mid1ip1Mid1ip1 NM_001166635.1NM_001166635.1 Mid1 interacting protein 1 (gastrulation specific G12-like (zebrafish))Midl interacting protein 1 (gastrulation specific G12-like (zebrafish)) 하향Downward
Smco2Smco2 NM_027059.1NM_027059.1 single-pass membrane protein with coiled-coil domains 2single-pass membrane protein with coiled-coil domains 2 하향Downward
Tmem263Tmem263 NM_001013028.2NM_001013028.2 transmembrane protein 263transmembrane protein 263 하향Downward
Tuba4aTuba4a NM_001313723.1NM_001313723.1 tubulin, alpha 4Atubulin, alpha 4A 하향Downward
Zscan4cZscan4c NM_001013765.2NM_001013765.2 zinc finger and SCAN domain containing 4C zinc finger and SCAN domain containing 4C 하향Downward
Zscan4dZscan4d NM_001100186.1NM_001100186.1 zinc finger and SCAN domain containing 4Dzinc finger and SCAN domain containing 4D 하향Downward
알려지지 않음Unknown 0610040B10Rik0610040B10Rik NR_027874.1NR_027874.1 RIKEN cDNA 0610040B10 geneRIKEN cDNA 0610040B10 gene 상향lift
1110007C09Rik1110007C09Rik NM_026738.2NM_026738.2 caspase recruitment domain family, member 19caspase recruitment domain family, member 19 상향lift
1190002F15Rik1190002F15Rik NR_037955.1NR_037955.1 lncRNA downstream of Cdkn1blncRNA downstream of Cdkn1b 상향lift
1700124L16Rik1700124L16Rik NR_105027.1NR_105027.1 RIKEN cDNA 1700124L16 geneRIKEN cDNA 1700124L16 gene 상향lift
1810063I02Rik1810063I02Rik NR_130986.1NR_130986.1 RIKEN cDNA 1810063I02 geneRIKEN cDNA 1810063I02 gene 상향lift
2010204K13Rik2010204K13Rik NR_027924.1NR_027924.1 RIKEN cDNA 2010204K13 geneRIKEN cDNA 2010204K13 gene 상향lift
2010320M18Rik2010320M18Rik NR_029440.1NR_029440.1 RIKEN cDNA 2010320M18 geneRIKEN cDNA 2010320M18 gene 상향lift
2900076A07Rik2900076A07Rik NR_045299.1NR_045299.1 RIKEN cDNA 2900076A07 geneRIKEN cDNA 2900076A07 gene 상향lift
4930444P10Rik4930444P10Rik NM_001243238.2NM_001243238.2 RIKEN cDNA 4930444P10 geneRIKEN cDNA 4930444P10 gene 상향lift
5830454E08Rik5830454E08Rik NR_073359.1NR_073359.1 RIKEN cDNA 5830454E08 geneRIKEN cDNA 5830454E08 gene 상향lift
Armc12Armc12 NM_026290.3NM_026290.3 armadillo repeat containing 12armadillo repeat containing 12 상향lift
C130036L24RikC130036L24Rik NR_015507.2NR_015507.2 RIKEN cDNA C130036L24 geneRIKEN cDNA C130036L24 gene 상향lift
Ccdc59Ccdc59 NM_025602.3NM_025602.3 coiled-coil domain containing 59coiled-coil domain containing 59 상향lift
Commd8Commd8 NM_001356611.1 NM_001356611.1 COMM domain containing 8COMM domain containing 8 상향lift
2010204K13Rik2010204K13Rik NR_027924.1NR_027924.1 RIKEN cDNA 2010204K13 geneRIKEN cDNA 2010204K13 gene 상향lift
Gm12238Gm12238 NR_028480.1NR_028480.1 predicted gene 12238predicted gene 12238 상향lift
Gm15008Gm15008 NR_045917.1NR_045917.1 predicted gene 15008predicted gene 15008 상향lift
Gm16023Gm16023 NR_040441.1NR_040441.1 predicted gene 16023predicted gene 16023 상향lift
H2-T9H2-T9 NM_010399.2 NM_010399.2 histocompatibility 2, T region locus 9histocompatibility 2, T region locus 9 상향lift
I730030J21RikI730030J21Rik NR_045781.1NR_045781.1 RIKEN cDNA I730030J21 geneRIKEN cDNA I730030J21 gene 상향lift
Kbtbd3Kbtbd3 NM_001164574.1NM_001164574.1 kelch repeat and BTB (POZ) domain containing 3kelch repeat and BTB (POZ) domain containing 3 상향lift
LOC100504703LOC100504703 NR_040660.1NR_040660.1 RIKEN cDNA A730063M14 geneRIKEN cDNA A730063M14 gene 상향lift
Mir8112Mir8112 NR_106192.1NR_106192.1 microRNA 8112microRNA 8112 상향lift
Mrpl52Mrpl52 NM_026851.2NM_026851.2 mitochondrial ribosomal protein L52mitochondrial ribosomal protein L52 상향lift
Ndufc1Ndufc1 NM_025523.1NM_025523.1 NADH:ubiquinone oxidoreductase subunit C1NADH: ubiquinone oxidoreductase subunit C1 상향lift
Olfr649Olfr649 NM_147055.1NM_147055.1 olfactory receptor 649olfactory receptor 649 상향lift
R3hcc1R3hcc1 NM_001146012.2NM_001146012.2 R3H domain and coiled-coil containing 1R3H domain and coiled-coil containing 1 상향lift
Snora33Snora33 NR_037680.1NR_037680.1 small nucleolar RNA, H/ACA box 33small nucleolar RNA, H / ACA box 33 상향lift
Snora70Snora70 NR_002899.1NR_002899.1 small nucleolar RNA, H/ACA box 70small nucleolar RNA, H / ACA box 70 상향lift
Snord15aSnord15a NR_002172.1NR_002172.1 small nucleolar RNA, C/D box 15Asmall nucleolar RNA, C / D box 15A 상향lift
Snord15bSnord15b NR_002173.1NR_002173.1 small nucleolar RNA, C/D box 14Bsmall nucleolar RNA, C / D box 14B 상향lift
Zfp868Zfp868 XM_011242291.2XM_011242291.2 zinc finger protein 868zinc finger protein 868 상향lift
1700061F12Rik1700061F12Rik NR_038180.1NR_038180.1 RIKEN cDNA 1700061F12 geneRIKEN cDNA 1700061F12 gene 하향Downward
2700069I18Rik2700069I18Rik NR_045905.2NR_045905.2 RIKEN cDNA 2700069I18 geneRIKEN cDNA 2700069I18 gene 하향Downward
4933430M04Rik4933430M04Rik NR_045857.2NR_045857.2 RIKEN cDNA 4933430M04 geneRIKEN cDNA 4933430M04 gene 하향Downward
BB287469BB287469 NM_001177573.1NM_001177573.1 expressed sequence BB287469expressed sequence BB287469 하향Downward
Eif3j1Eif3j1 NM_144545.4NM_144545.4 eukaryotic translation initiation factor 3, subunit J1eukaryotic translation initiation factor 3, subunit J1 하향Downward
Gm11487Gm11487 NM_001013393.1NM_001013393.1 predicted gene 11487predicted gene 11487 하향Downward
Gm13078Gm13078 NM_001085412.2 NM_001085412.2 predicted gene 13078predicted gene 13078 하향Downward
Gm13083Gm13083 NM_001126324.1NM_001126324.1 predicted gene 13083predicted gene 13083 하향Downward
Gm13152Gm13152 NM_001039209.2NM_001039209.2 zinc finger protein 982zinc finger protein 982 하향Downward
Gm13242Gm13242 NM_001103158.2NM_001103158.2 zinc finger protein 980zinc finger protein 980 하향Downward
Gm2016Gm2016 NM_001122662.1NM_001122662.1 predicted gene 2016predicted gene 2016 하향Downward
Gm2022Gm2022 NM_001177574.1NM_001177574.1 predicted pseudogene 2022predicted pseudogene 2022 하향Downward
Gm21319Gm21319 NM_001270722.1NM_001270722.1 predicted gene, 21319predicted gene, 21319 하향Downward
Gm4027Gm4027 NM_001177564.1NM_001177564.1 predicted gene 4027predicted gene 4027 하향Downward
Gm428Gm428 NM_001081644.1NM_001081644.1 predicted gene 428predicted gene 428 하향Downward
Gm5039Gm5039 NR_003647.2NR_003647.2 predicted gene 5039predicted gene 5039 하향Downward
Gm5662Gm5662 NM_001013824.3NM_001013824.3 predicted gene 5662predicted gene 5662 하향Downward
Gm5868Gm5868 NM_001024147.2NM_001024147.2 predicted gene 5868predicted gene 5868 하향Downward
Gm8300Gm8300 NM_001177565.1NM_001177565.1 predicted gene 8300predicted gene 8300 하향Downward
Gm8764Gm8764 NM_001270900.1NM_001270900.1 predicted gene 8764predicted gene 8764 하향Downward
Gm8994Gm8994 NM_001142734.1NM_001142734.1 predicted gene 8994predicted gene 8994 하향Downward
Mir6340Mir6340 NR_105758.1NR_105758.1 microRNA 6340microRNA 6340 하향Downward
Nudt22Nudt22 NM_026675.2NM_026675.2 nudix (nucleoside diphosphate linked moiety X)-type motif 22 nudix (nucleoside diphosphate linked moiety X) -type motif 22 하향Downward
Olfr1463Olfr1463 NM_001011840.1NM_001011840.1 olfactory receptor 1463olfactory receptor 1463 하향Downward
Olfr376Olfr376 NM_001172686.1NM_001172686.1 olfactory receptor 376olfactory receptor 376 하향Downward
Olfr450Olfr450 NM_146445.1NM_146445.1 olfactory receptor 450olfactory receptor 450 하향Downward
Olfr815Olfr815 NM_146670.1NM_146670.1 olfactory receptor 815olfactory receptor 815 하향Downward
Pramef6Pramef6 NM_001085414.2NM_001085414.2 PRAME family member 6PRAME family member 6 하향Downward
Rnase6Rnase6 NM_001360117.1NM_001360117.1 ribonuclease, RNase A family, 6ribonuclease, RNase A family, 6 하향Downward
Snora52Snora52 NR_034049.2NR_034049.2 small nucleolar RNA, H/ACA box 52small nucleolar RNA, H / ACA box 52 하향Downward
Snora64Snora64 NR_002897.1NR_002897.1 small nucleolar RNA, H/ACA box 64small nucleolar RNA, H / ACA box 64 하향Downward
Snora74aSnora74a NR_002905.3NR_002905.3 small nucleolar RNA, H/ACA box 74Asmall nucleolar RNA, H / ACA box 74A 하향Downward
Snord22Snord22 NR_004445.1NR_004445.1 small nucleolar RNA, C/D box 22small nucleolar RNA, C / D box 22 하향Downward
Tdpoz3Tdpoz3 NM_207271.2 NM_207271.2 TD and POZ domain containing 3TD and POZ domain containing 3 하향Downward
Tmem182Tmem182 NM_001081198.1NM_001081198.1 transmembrane protein 182transmembrane protein 182 하향Downward
Usp17laUsp17la NM_007887.2NM_007887.2 ubiquitin specific peptidase 17-like Aubiquitin specific peptidase 17-like A 하향Downward
Usp17lbUsp17lb NM_001358922.1NM_001358922.1 ubiquitin specific peptidase 17-like Bubiquitin specific peptidase 17-like B 하향Downward
Usp17ldUsp17ld NM_001001559.2NM_001001559.2 ubiquitin specific peptidase 17-like Dubiquitin specific peptidase 17-like D 하향Downward
Usp17leUsp17le NM_001256973.1NM_001256973.1 ubiquitin specific peptidase 17-like Eubiquitin specific peptidase 17-like E 하향Downward
Zscan4aZscan4a NR_033707.1NR_033707.1 zinc finger and SCAN domain containing 4Azinc finger and SCAN domain containing 4A 하향Downward
그 결과, 2-세포 배아의 경우, 175개의 유전자가 fold change>2 및 FPKM>5에서 차별적으로 발현되는 것으로 나타났다(표 3). 특히, 멜라토닌 비처리 그룹(SCNT-CROC+K)에 비해 멜라토닌 처리 그룹(SCNT-CROC+K+M)에서 111개의 유전자가 상향 조절 되었다. 특히, 세포 생존 및 조직 재생에 관여하는 Amd1, Fam46C, Oxt ,Ppt2가 멜라토닌 처리 그룹(SCNT-CROC+K+M)의 2-세포 배아에서 상향 조절되었다. 또한, 항산화 기능, 염증 및 세포사멸과 관련이 있는 Ctss , Dffa , Eif3f , Hacl1, Hspbp1 , Mob2 , Mrpl23 , Mrpl33 , Pmvk , Slc4a11 Wbscr22가 높은 수준으로 상향 조절되었다. 반면, 세포사(cell death) 및 퇴행-관련 유전자(Atp6v0c , Cd52 , Dapk2, Ddit4l , Duoxa2 , Nfkbia , Ptgds , Rdh12 Rnd3)의 발현은 SCNT-CROC+K+M)의 2-세포 배아에서 하향 조절되었다. As a result, 175 genes were differentially expressed in fold change> 2 and FPKM> 5 in 2-cell embryos (Table 3). Specifically, 111 genes were up-regulated in the melatonin-treated group (SCNT-CROC + K + M) compared to the melatonin-untreated group (SCNT-CROC + K). In particular, the Amd1, Fam46C, Oxt, and Ppt2 involved in cell survival and tissue was up-regulated at the 2-cell embryo of melatonin treatment group (SCNT-CROC + K + M ). Also, Ctss , Dffa , Eif3f , Hacl1, Hspbp1 , Mob2 , Mrpl23 , Mrpl33 , Pmvk , Slc4a11 which are related to antioxidative function, inflammation and apoptosis And Wbscr22 was upgraded to a high level. On the other hand, cell death and regression-related genes ( Atp6v0c , Cd52 , Dapk2, Ddit4l , Duoxa2 , Nfkbia , Ptgds , Rdh12 And Rnd3 ) were down-regulated in 2-cell embryos of SCNT-CROC + K + M).
배반포의 경우, 81개의 유전자가 fold change>2 및 FPKM>5에서 차별적으로 발현되는 것으로 나타났다(표 S2). 특히, 멜라토닌 비처리 그룹(SCNT-CROC+K)에 비해 멜라토닌 처리 그룹(SCNT-CROC+K+M)에서, 20개의 유전자가 상향 조절 되었다. 세포 생존 및 조직 재생과 관련이 있는 Amd1, Fam46C, Oxt , Ppt2은 멜라토닌 처리 그룹의 배반포에서 발현이 상향 조절되었다. 특히, 항산화 기능, 염증 및 세포사멸과 관련된 Gulo Txnip의 발현이 상항 조절되었다. 반면, 산화 스트레스와 관련이 있는 유전자(Adh1, Car2, Gsta3, Gstm2, Mb, Phlda2 ,S100a1) 및 세포사 및 퇴행-관련 유전자(Akr1c13, Amd2, Clu, Hist1h3a, Hspb1, Il1rn ,Nat8)는 멜라토닌 처리 그룹(SCNT-CROC+K+M)의 배반포에서 하향 조절되었다. 또한, 세포 및 종양 증식 관련 유전자(Efemp1, Glipr1 , Lgals4, Plac1, Snora15, Snora 21, Snora 34,Anxa1)의 발현 수준은 감소한 것으로 나타났다. 또한, 면역 반응과 관련된 일부 유전자(Clec2f, Hrsp12 ,Plat)는 멜라토닌 처리 그룹(SCNT-CROC+K+M)에서 하향 조절되는 것으로 나타났다(표 4).In blastocysts, 81 genes were differentially expressed in fold change> 2 and FPKM> 5 (Table S2). In particular, 20 genes were up-regulated in the melatonin-treated group (SCNT-CROC + K + M) compared to the melatonin-untreated group (SCNT-CROC + K). Amd1 , Fam46C , Oxt , and Ppt2 , which are associated with cell survival and tissue regeneration, were up-regulated in blastocysts of the melatonin-treated group. In particular, Gulo associated with antioxidant function, inflammation and apoptosis And Txnip were upregulated. On the other hand, genes associated with oxidative stress ( Adh1 , Car2 , Gsta3 , Gstm2 , Mb , Phlda2 , and S100a1 ) and cell death and regression-related genes ( Akr1c13 , Amd2 , Clu , Hist1h3a , Hspb1 , Il1rn , and Nat8 ) Treated group (SCNT-CROC + K + M). In addition, expression levels of cell and tumor proliferation related genes ( Efemp1 , Glipr1 , Lgals4 , Plac1 , Snora15 , Snora21 , Snora34 , and Anxa1 ) were decreased. In addition, some of the genes involved in the immune response ( Clec2f , Hrsp12 , and Plat ) were down regulated in the melatonin-treated group (SCNT-CROC + K + M) (Table 4).
관련된 기능Related features 유전자 상징Gene symbol 유전자 IDGene ID 유전자 이름Gene name 조절control
세포 생존 및조직 재생Cell survival and tissue regeneration Amd1Amd1 NM_009665.5NM_009665.5 S-adenosylmethionine decarboxylase 1S-adenosylmethionine decarboxylase 1 상향lift
Fam46CFam46C NM_001142952.1NM_001142952.1 family with sequence similarity 46, member Cfamily with sequence similarity 46, member C 상향lift
OxtOxt NM_011025.4NM_011025.4 oxytocinoksytocin 상향lift
Ppt2Ppt2 NM_001302393.1NM_001302393.1 palmitoyl-protein thioesterase 2palmitoyl-protein thioesterase 2 상향lift
항산화, 염증및 세포사멸Antioxidant, inflammation and cell death GuloGulo NM_178747.3NM_178747.3 gulonolactone (L-) oxidasegulonolactone (L-) oxidase 상향lift
TxnipTxnip NM_001009935.2NM_001009935.2 thioredoxin interacting protein티오르 디오 톡 인 하향Downward
산화 스트레스Oxidative stress Adh1Adh1 NM_007409.2NM_007409.2 alcohol dehydrogenase 1alcohol dehydrogenase 1 하향Downward
Car2Car2 NM_001357334.1NM_001357334.1 carbonic anhydrase 2carbonic anhydrase 2 하향Downward
Gsta3Gsta3 NM_001077353.2NM_001077353.2 glutathione S-transferase, alpha 3glutathione S-transferase, alpha 3 하향Downward
Gstm2Gstm2 NM_008183.3NM_008183.3 glutathione S-transferase, mu 2glutathione S-transferase, mu 2 하향Downward
MbMb NM_001164047.1NM_001164047.1 myoglobinmyoglobin 하향Downward
Phlda2Phlda2 NM_009434.2 NM_009434.2 pleckstrin homology like domain, family A, member 2pleckstrin homology like domain, family A, member 2 하향Downward
S100a1S100a1 NM_011309.3NM_011309.3 S100 calcium binding protein A1S100 calcium binding protein A1 하향Downward
세포사/재생Cell death / regeneration Akr1c13Akr1c13 NM_013778.2NM_013778.2 aldo-keto reductase family 1, member C13aldo-keto reductase family 1, member C13 하향Downward
Amd2Amd2 NM_007444.3NM_007444.3 S-adenosylmethionine decarboxylase 2S-adenosylmethionine decarboxylase 2 하향Downward
CluClu NM_013492.3NM_013492.3 clusterinclusterin 하향Downward
Hist1h3aHist1h3a NM_013550.5NM_013550.5 histone cluster 1, H3ahistone cluster 1, H3a 하향Downward
Hspb1Hspb1 NM_013560.2NM_013560.2 heat shock protein 1heat shock protein 1 하향Downward
Il1rnIl1rn NM_001039701.3NM_001039701.3 interleukin 1 receptor antagonistinterleukin 1 receptor antagonist 하향Downward
Nat8Nat8 NM_023455.3NM_023455.3 N-acetyltransferase 8 (GCN5-related)N-acetyltransferase 8 (GCN5-related) 하향Downward
세포 및 종양 증식Cell and tumor proliferation Efemp1Efemp1 NM_146015.2NM_146015.2 epidermal growth factor-containing fibulin-like extracellular metrix proteinepidermal growth factor-containing fibulin-like extracellular metrix protein 하향Downward
Glipr1Glipr1 NM_028608.3NM_028608.3 GLI pathogenesis-related 1 (glioma)GLI pathogenesis-related 1 (glioma) 하향Downward
Lgals4Lgals4 NM_010706.2 NM_010706.2 lectin, galactose binding, soluble 4lectin, galactose binding, soluble 4 하향Downward
Plac1Plac1 NM_019538.4NM_019538.4 placental specific protein 1placental specific protein 1 하향Downward
Snora15Snora15 NR_003681.1NR_003681.1 small nucleolar RNA, H/ACA box 15small nucleolar RNA, H / ACA box 15 하향Downward
Snora21Snora21 NR_028078.1NR_028078.1 small nucleolar RNA, H/ACA box 21small nucleolar RNA, H / ACA box 21 하향Downward
Snora34Snora34 NR_034051.1 NR_034051.1 small nucleolar RNA, H/ACA box 34small nucleolar RNA, H / ACA box 34 하향Downward
Anxa1Anxa1 NM_010730.2NM_010730.2 annexin A1annexin A1 하향Downward
면역 반응Immune response Clec2fClec2f NM_001277202.1NM_001277202.1 C-type lectin domain family 2, member fC-type lectin domain family 2, member f 하향Downward
Hrsp12Hrsp12 NM_008287.3NM_008287.3 reactive intermediate imine deaminase A homologreactive intermediate imine deaminase homolog 하향Downward
PlatPlat NM_008872.3NM_008872.3 plasminogen activator, tissueplasminogen activator, tissue 하향Downward
Snora75Snora75 NR_028478.1NR_028478.1 small nucleolar RNA, H/ACA box 75small nucleolar RNA, H / ACA box 75 상향 lift
기타Etc Car4Car4 NM_007607.2NM_007607.2 carbonic anhydrase 4carbonic anhydrase 4 하향 Downward
Hotairm1Hotairm1 NR_131181.1NR_131181.1 Hoxa transcript antisense RNA, myeloid-specific 1Hoxa transcript antisense RNA, myeloid-specific 1 하향 Downward
Mt4Mt4 NM_008631.2NM_008631.2 metallothionein 4metallothionein 4 하향 Downward
Rhox6Rhox6 NM_008955.1NM_008955.1 reproductive homeobox 6reproductive homeobox 6 하향 Downward
Rmnd1Rmnd1 NM_025343.5 NM_025343.5 required for meiotic nuclear division 1 homologrequired for meiotic nuclear division 1 homolog 하향 Downward
S100a13S100a13 NM_009113.4NM_009113.4 S100 calcium binding protein A13S100 calcium binding protein A13 하향 Downward
S100a16S100a16 NM_001356605.1NM_001356605.1 S100 calcium binding protein A16S100 calcium binding protein A16 하향 Downward
Serpinb6bSerpinb6b NM_011454.1NM_011454.1 serine (or cysteine) peptidase inhibitor, clade B, member 6bserine (or cysteine) peptidase inhibitor, clade B, member 6b 하향 Downward
Zscan4aZscan4a NR_033707.1NR_033707.1 zinc finger and SCAN domain containing 4Azinc finger and SCAN domain containing 4A 하향 Downward
Zscan4cZscan4c NM_001013765.2NM_001013765.2 zinc finger and SCAN domain containing 4Czinc finger and SCAN domain containing 4C 하향 Downward
Zscan4dZscan4d NM_001100186.1NM_001100186.1 zinc finger and SCAN domain containing 4Dzinc finger and SCAN domain containing 4D 하향 Downward
알려지지 않음Unknown Eif3j1Eif3j1 NM_144545.4NM_144545.4 eukaryotic translation initiation factor 3, subunit J1eukaryotic translation initiation factor 3, subunit J1 상향 lift
Gm19705Gm19705 NR_045324.1NR_045324.1 predicted gene, 19705predicted gene, 19705 상향 lift
Gm5512Gm5512 NR_002891.1NR_002891.1 predicted gene 5512predicted gene 5512 상향 lift
Lmo4Lmo4 NM_001161769.1NM_001161769.1 LIM domain only 4LIM domain only 4 상향 lift
Mir6340Mir6340 NR_105758.1NR_105758.1 microRNA 6340microRNA 6340 상향 lift
Mir6363Mir6363 NR_105782.1NR_105782.1 microRNA 6363microRNA 6363 상향 lift
Mir8094Mir8094 NR_106169.1NR_106169.1 microRNA 8094microRNA 8094 상향 lift
Pisd-ps3Pisd-ps3 NR_003518.2NR_003518.2 phosphatidylserine decarboxylase, pseudogene 3phosphatidylserine decarboxylase, pseudogene 3 상향 lift
Snora26Snora26 NR_031758.1NR_031758.1 small nucleolar RNA, H/ACA box 26small nucleolar RNA, H / ACA box 26 상향 lift
Snora28Snora28 NR_033168.1NR_033168.1 small nucleolar RNA, H/ACA box 28small nucleolar RNA, H / ACA box 28 상향 lift
Snora30Snora30 NR_034045.1NR_034045.1 small nucleolar RNA, H/ACA box 30small nucleolar RNA, H / ACA box 30 상향 lift
Snora31Snora31 NR_028481.1NR_028481.1 small nucleolar RNA, H/ACA box 31small nucleolar RNA, H / ACA box 31 상향 lift
Snora70Snora70 NR_002899.1NR_002899.1 small nucleolar RNA, H/ACA box 70small nucleolar RNA, H / ACA box 70 상향 lift
4930461G14Rik4930461G14Rik NR_040736.1NR_040736.1 RIKEN cDNA 4930461G14 geneRIKEN cDNA 4930461G14 gene 하향Downward
Ccdc160Ccdc160 NM_001034059.1NM_001034059.1 coiled-coil domain containing 160coiled-coil domain containing 160 하향Downward
Ctsll3Ctsll3 NM_027344.3NM_027344.3 cathepsin L-like 3cathepsin L-like 3 하향Downward
Eif3j2Eif3j2 NM_001256055.1NM_001256055.1 eukaryotic translation initiation factor 3, subunit J2eukaryotic translation initiation factor 3, subunit J2 하향Downward
Gm5547Gm5547 NR_045845.1 NR_045845.1 predicted gene 5547predicted gene 5547 하향Downward
Gm5662Gm5662 NM_001013824.3NM_001013824.3 predicted gene 5662predicted gene 5662 하향Downward
Gm7334Gm7334 NR_002700.1NR_002700.1 predicted gene 7334predicted gene 7334 하향Downward
Gm9992Gm9992 NM_001142539.1NM_001142539.1 predicted gene 9992predicted gene 9992 하향Downward
Hspb2Hspb2 NM_001164708.1NM_001164708.1 heat shock protein 2heat shock protein 2 하향Downward
Klra22Klra22 NM_053152.2NM_053152.2 killer cell lectin-like receptor subfamily A, member 22killer cell lectin-like receptor subfamily, member 22 하향Downward
LOC100504703LOC100504703 NR_040660.1NR_040660.1 RIKEN cDNA A730063M14 geneRIKEN cDNA A730063M14 gene 하향Downward
Mir1191Mir1191 NR_035422.1 NR_035422.1 microRNA 1191microRNA 1191 하향Downward
알려지지 않음Unknown Mir6236Mir6236 NR_105744.1NR_105744.1 microRNA 6236microRNA 6236 하향Downward
Mir6516Mir6516 NR_105853.1NR_105853.1 microRNA 6516microRNA 6516 하향Downward
Ms4a10Ms4a10 NM_023529.2 NM_023529.2 membrane-spanning 4-domains, subfamily A, member 10membrane-spanning 4-domains, subfamily, member 10 하향Downward
PinlypPinlyp NM_001037143.2NM_001037143.2 phospholipase A2 inhibitor and LY6/PLAUR domain containingphospholipase A2 inhibitor and LY6 / PLAUR domain 하향Downward
Pisd-ps1Pisd-ps1 NR_003517.1NR_003517.1 phosphatidylserine decarboxylase, pseudogene 1phosphatidylserine decarboxylase, pseudogene 1 하향Downward
Platr21Platr21 NR_045455.1NR_045455.1 pluripotency associated transcript 21pluripotency associated transcript 21 하향Downward
Pramef25Pramef25 NM_001126315.2NM_001126315.2 PRAME family member 25PRAME family member 25 하향Downward
Snora47Snora47 NR_034043.1NR_034043.1 small nucleolar RNA, H/ACA box 47small nucleolar RNA, H / ACA box 47 하향Downward
Snora64 Snora64 NR_002897.1NR_002897.1 small nucleolar RNA, H/ACA box 64small nucleolar RNA, H / ACA box 64 하향Downward
Snora81Snora81 NR_034048.1NR_034048.1 small nucleolar RNA, H/ACA box 81small nucleolar RNA, H / ACA box 81 하향Downward
Tmem40Tmem40 NM_001168256.1NM_001168256.1 transmembrane protein 40transmembrane protein 40 하향Downward
Usp17lbUsp17lb NM_201409.2NM_201409.2 ubiquitin specific peptidase 17-like Bubiquitin specific peptidase 17-like B 하향Downward
실시예Example 6. 배아 전이 및 착상  6. Embryonic transfer and implantation 모니터링monitoring
멜라토닌 처리 또는 비처리 조건(SCNT-CROC+K 및 SCNT-CROC+K+M 그룹) 하에서 배반포 단계로 배양된 재구성된 배아를 정관 수술을 받은 수컷 ICR 마우스와 교미된 2.5일 유사-임신(pseudo-pregnant) 암컷 ICR 마우스의 자궁에 이식하였다. 이때, SCNT-CROC+K 그룹 및 SCNT-CROC+K+M 그룹을 동일한 마우스의 자궁 왼쪽 및 오른쪽에 각각 이식하였다. 마우스의 성교 후 7.5일에 암컷 마우스에서의 배아 이식률을 확인하였다. 이후, 마우스를 안락사 시키고 정상 자궁을 식염수로 세척한 후 절제하고 부착된 지방을 제거하였다. 지방이 제거된 조직을 촬영하여 착상 여부를 시각화 하였다(도 6a 도 6b). The reconstituted embryos cultured in the blastocyst stage under melatonin-treated or non-treated conditions (SCNT-CROC + K and SCNT-CROC + K + M group) were suspended in a 2.5 day pseudo- pregnant) female ICR mice. At this time, SCNT-CROC + K group and SCNT-CROC + K + M group were transplanted to the left and right uterus of the same mouse, respectively. The embryo transfer rate in female mice was confirmed at 7.5 days after the sexual intercourse of the mice. After the mice were euthanized, the normal uterus was washed with saline and resected and the adhered fats were removed. The fat removed tissue was photographed to visualize the implantation (Fig. 6a, Fig. 6b).
그 결과, 멜라토닌 처리 그룹(SCNT-CROC+K+M)에서 이식율을 멜라토닌 비처리 그룹(SCNT-CROC+K)과 비교하여 유의하게 증가하였다(66.2% (51/77) vs. 42.9% (33/77), p<0.05; 도 6c).As a result, the transplantation rate was significantly increased in the melatonin-treated group (SCNT-CROC + K + M) compared with the melatonin untreated group (SCNT-CROC + K) (66.2% (51/77) vs. 42.9% 33/77), p < 0.05; Fig. 6c).
실시예 7. SCNT 배반포로부터 마우스 배아줄기세포 유도Example 7: Derivation of mouse embryonic stem cells from SCNT blastocysts
파생물(outgrowths)을 얻기 위해 두 그룹 (SCNT-CROC+K 및 SCNT-CROC+K+M)에서 수득한 부화된 배반포를 마우스 배아줄기세포(mESC) 배양 배지의 유사 분열 불활성화 마우스 배아 섬유아세포(MEF) 피더(feeder) 세포에 놓았다. 20% KRS, 0.1 mM β-메르캅토에탄올(β-mercaptoethanol), 1% 비필수아미노산, 100 units/㎖ 페니실린, 100㎍/㎖ 스트렙토마이신(Gibco /Invitrogen, Grand Island, NY) 및 1.5 x 103 units/mL 재조합 mLIF (Chemicon, Temecula, CA)가 포함된 DMWM/F12를 mES 세포 배양 배양배지로 사용하였다. 먼저 기계적으로 MEF 피더 세포로 파생물을 옮긴 다음, 트립신-EDTA를 사용하여 계대시켰다. 확립된 모든 mECS 계통을 모니터링하고 형태 및 알칼라인 포스파타제(alkaline phosphatase) 염색으로 특징 지었다. 알칼라인 포스파타아제 활성을 조직화학 염색으로 평가하였다. 콜로니를 실온에서 4% 파라포름알데히드로 1분간 고정하고 PBS로 2회 세척하였으며, 알칼라인 포스파타제 기질 용액 (10 ml FRV-alkaline solution, 10 ㎖ naphthol AS-BI alkaline solution; alkaline phosphatase kit, Sigma-Aldrich)으로 실온에서 30분 동안 처리하였다. 광학 현미경으로 알칼라인 포스파타제 활성을 비색계로 검출하였다(도 7a). To obtain outgrowths, the hatched blastocysts obtained in two groups (SCNT-CROC + K and SCNT-CROC + K + M) were injected into mitotic inactivated mouse embryonic fibroblasts of mouse embryonic stem cell (mESC) MEF) feeder cells. (Gibco / Invitrogen, Grand Island, NY) and 1.5 x 10 &lt; 3 &gt; cells per well were incubated with 20% KRS, 0.1 mM beta-mercaptoethanol, 1% nonessential amino acids, 100 units / ml penicillin, units / mL DMWM / F12 containing recombinant mLIF (Chemicon, Temecula, CA) was used as the culture medium for mES cell culture. First, the debris was mechanically transferred to the MEF feeder cells and then transferred using trypsin-EDTA. All established mECS lines were monitored and characterized by morphology and alkaline phosphatase staining. The alkaline phosphatase activity was evaluated by histochemical staining. The colonies were fixed with 4% paraformaldehyde at room temperature for 1 min and washed twice with PBS. The alkaline phosphatase substrate solution (10 ml FRV-alkaline solution, 10 ml naphthol AS-BI alkaline solution, alkaline phosphatase kit, Sigma-Aldrich) At room temperature for 30 minutes. The alkaline phosphatase activity was detected by a colorimeter using an optical microscope (Fig. 7A).
그 결과, 멜라토닌 처리 그룹은 비처리 그룹에 비해 mESC의 유도율이 유의적으로 높았다((21.3% (10/47) vs. 5.6% (2/36), p<0.05; 도 7b).As a result, the induction rate of mESC was significantly higher in the melatonin-treated group than in the untreated group (21.3% (10/47) vs. 5.6% (2/36), p <0.05;
실시예 8. 통계적 분석Example 8. Statistical analysis
모든 실험은 최소 3회 반복하였다. 결과는 평균 또는 평균±평균의 표준오차로 나타냈다. 배아 발달은 SAS 소프트웨어와 이식을 이용한 DUNCAN의 검정법에 의한 일원분산분석(ANOVA)에 의해 분석하였고, ESC 유도률(ESC-derivation rates)은 카이 제곱 검정법(Chi-square test)에 의해 분석하였으며, p<0.05는 통계적으로 유의한 것으로 간주하였다.All experiments were repeated at least 3 times. Results were expressed as mean or mean ± standard error of mean. Embryonic development was analyzed by one-way analysis of variance (ANOVA) by DUNCAN using SAS software and transplantation. ESC-derivation rates were analyzed by Chi-square test and p <0.05 was considered statistically significant.

Claims (21)

  1. 멜라토닌을 포함하는, 배아발달의 효율 또는 배아의 형성을 증가시키기 위한 조성물.A composition for increasing the efficiency of embryo development or the formation of an embryo, including melatonin.
  2. 청구항 1에 있어서, 상기 멜라토닌은 5 μM 내지 20 μM 의 농도로 포함된 것인 조성물.The composition of claim 1, wherein the melatonin is included at a concentration of between 5 μM and 20 μM.
  3. 청구항 1에 있어서, H3K9me3 메틸레이션(methylation)을 감소시키는 제제를 추가로 포함하는 것인 조성물. The composition of claim 1, further comprising an agent that reduces H3K9me3 methylation.
  4. 청구항 3에 있어서, H3K9me3 메틸레이션을 감소시키는 제제는 히스톤 탈메틸화효소의 KDM4 패밀리의 구성원의 발현을 증가시키는 제제인 조성물.4. The composition of claim 3 wherein the agent that reduces H3K9me3 methylation is an agent that increases the expression of a member of the KDM4 family of histone demethylating enzymes.
  5. 청구항 4에 있어서, 상기 제제는 KDM4A(JMJD2A), KDM4B(JMJD2B), KDM4C(JMJD2C), KDM4D(JMJD2D) 또는 이의 조합의 발현 또는 활성을 증가시키는 것인 조성물.5. The composition according to claim 4, wherein the agent increases the expression or activity of KDM4A (JMJD2A), KDM4B (JMJD2B), KDM4C (JMJD2C), KDM4D (JMJD2D) or a combination thereof.
  6. 청구항 1에 있어서, 상기 멜라토닌은 배아의 활성산소 및/또는 세포사멸을 감소시키는 것인 조성물.The composition according to claim 1, wherein the melatonin reduces active oxygen and / or apoptosis of the embryo.
  7. 청구항 1에 있어서, 상기 멜라토닌은 배아의 세포사멸을 감소시키는 것인 조성물. The composition according to claim 1, wherein the melatonin reduces the cell death of the embryo.
  8. 청구항 1에 있어서, 상기 배아 발달은 배아의 배반포로의 발달 또는 배반포의 형성인 것인 조성물. The composition of claim 1, wherein the embryo development is development of an embryo into a blastocyst or formation of a blastocyst.
  9. 청구항 1에 있어서, 상기 배아는 체외에서 인공수정을 통하여 형성된 것인 조성물. 2. The composition of claim 1, wherein the embryo is formed through in vitro fertilization.
  10. 청구항 1에 있어서, 상기 배아는 핵이 제거된 난자에 체세포의 핵을 이식하여 형성된 것인 조성물. The composition according to claim 1, wherein the embryo is formed by implanting nuclei of somatic cells in an oocyte removed from the nucleus.
  11. 멜라토닌이 포함된 배지에서 난자를 배양하는 단계를 포함하는, 배아 발달의 효율 또는 배아의 형성을 증가시키는 방법. A method of increasing the efficiency of embryonic development or the formation of an embryo, comprising culturing the embryo in a medium containing melatonin.
  12. 청구항 11에 있어서, 상기 난자에 H3K9me3 메틸레이션(methylation)을 감소시키는 제제를 접촉시키는 단계를 포함하는 것인 방법. 13. The method of claim 11, comprising contacting the oocyte with an agent that reduces H3K9me3 methylation.
  13. 청구항 11에 있어서, 상기 난자는 냉동 후 융해된 것인 방법. 12. The method according to claim 11, wherein the egg is frozen and then melted.
  14. 청구항 11에 있어서, 상기 배아가 2-세포기 상태인 경우, Amd1, Fam46C, Oxt, Ppt2 , Ctss , Dffa , Eif3f , Hacl1 , Hspbp1 , Mob2 , Mrpl23 , Mrpl33 , Pmvk , Slc4a11 Wbscr22로 구성된 군에서 선택되는 어느 하나 이상의 유전자 발현이 증가되는 것인 방법. 12. The method of claim 11, wherein when the embryo is in a 2- celled state, Amd1 , Fam46C , Oxt, Ppt2 , Ctss , Dffa , Eif3f , Hacl1 , Hspbp1 , Mob2 , Mrpl23 , Mrpl33 , Pmvk , Slc4a11 , Lt ; RTI ID = 0.0 &gt; Wbscr22 &lt; / RTI &gt;
  15. 청구항 11에 있어서, 상기 배아가 2-세포기 상태인 경우, Atp6v0c , Cd52 , Dapk2, Ddit4l , Duoxa2 , Nfkbia , Ptgds , Rdh12 Rnd3로 구성된 군에서 선택되는 어느 하나 이상의 유전자 발현이 감소되는 것인 방법. 12. The method of claim 11, wherein when the embryo is in a 2- celled state, Atp6v0c , Cd52 , Dapk2, Ddit4l , Duoxa2 , Nfkbia , Ptgds , Rdh12 And Rnd3 in the expression of at least one gene.
  16. 청구항 11에 있어서, 상기 배아가 배반포(blastocyst)로 발달한 경우, Amd1, Fam46C, Oxt , Ppt2 , Gulo Txnip로 구성된 군에서 선택되는 어느 하나 이상의 유전자 발현이 증가되는 것인 방법.12. The method of claim 11, wherein when the embryo develops into a blastocyst, Amd1 , Fam46C , Oxt , Ppt2 , Gulo And Txnip are increased.
  17. 청구항 11에 있어서, 상기 배아가 배반포로 발달한 경우, Adh1, Car2, Gsta3, Gstm2, Mb, Phlda2 , S100a1 , Akr1c13, Amd2, Clu, Hist1h3a, Hspb1, Il1rn , Nat8, Efemp1, Glipr1 , Lgals4, Plac1, Snora15, Snora 21, Snora 34, Anxa1 , Clec2f, Hrsp12 ,Plat로 구성된 군에서 선택되는 어느 하나 이상의 유전자 발현이 감소되는 것인 방법.12. The method of claim 11, wherein when the embryo develops into a blastocyst, it is selected from the group consisting of Adh1 , Car2 , Gsta3 , Gstm2 , Mb , Phlda2 , S100a1 , Akr1c13 , Amd2 , Clu , Hist1h3a , Hspb1 , Il1rn , Nat8, Efemp1 , Glipr1 , Lgals4 , Plac1 , the method of Snora15, Snora 21, Snora 34, Anxa1, Clec2f, Hrsp12, Plat and that any one or more genes selected from the group consisting of reduction.
  18. 청구항 11에 있어서, 배양하는 단계에서 얻어진 배아를 개체로 발달시키는 단계를 추가로 포함하는 것인 방법. 12. The method according to claim 11, further comprising developing the embryo obtained in the culturing step as an individual.
  19. 청구항 11의 방법에 의해 제조된 배아(embryo). An embryo produced by the method of claim 11.
  20. 청구항 11의 방법에 의해 제조된 배반포(blastocyst).A blastocyst produced by the method of claim 11.
  21. 청구항 11의 방법에 의해 제조된 배아줄기세포.12. An embryonic stem cell prepared by the method of claim 11.
PCT/KR2019/000989 2018-01-23 2019-01-23 Composition for embryonic development, comprising melatonin, and method for improving efficiency of embryonic development using same WO2019147026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0008249 2018-01-23
KR20180008249 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019147026A1 true WO2019147026A1 (en) 2019-08-01

Family

ID=67395533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000989 WO2019147026A1 (en) 2018-01-23 2019-01-23 Composition for embryonic development, comprising melatonin, and method for improving efficiency of embryonic development using same

Country Status (2)

Country Link
KR (2) KR20190089782A (en)
WO (1) WO2019147026A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111676188A (en) * 2020-07-13 2020-09-18 扬州大学 Optimization liquid for in vitro maturation of oocytes of aged mice
CN115250910A (en) * 2022-06-15 2022-11-01 沈阳农业大学 Method for promoting test tube balling of lily tissue culture seedling by melatonin and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102654800B1 (en) * 2023-11-24 2024-04-03 의료법인마리아의료재단 Composition of in vitro fertilization and in vitro culture medium for aged oocyte containing lipoic acid and resveratrol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170082859A (en) * 2016-01-07 2017-07-17 충북대학교 산학협력단 Method for preventing of oocyte aging and enhancing developmental rate utilizing melatonin
KR20170116152A (en) * 2015-02-17 2017-10-18 아레스 트레이딩 에스.아. A topical liquid composition comprising melatonin
KR20170120089A (en) * 2014-09-15 2017-10-30 칠드런'즈 메디컬 센터 코포레이션 Methods and compositions to increase somatic cell nuclear transfer (scnt) efficiency by removing histone h3-lysine trimethylation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3359167A4 (en) 2015-10-09 2019-11-13 Children's Medical Center Corporation Methods and compositions to increase human somatic cell nuclear transfer (scnt) efficiency by removing histone h3-lysine trimethylation, and derivation of human nt-esc

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170120089A (en) * 2014-09-15 2017-10-30 칠드런'즈 메디컬 센터 코포레이션 Methods and compositions to increase somatic cell nuclear transfer (scnt) efficiency by removing histone h3-lysine trimethylation
KR20170116152A (en) * 2015-02-17 2017-10-18 아레스 트레이딩 에스.아. A topical liquid composition comprising melatonin
KR20170082859A (en) * 2016-01-07 2017-07-17 충북대학교 산학협력단 Method for preventing of oocyte aging and enhancing developmental rate utilizing melatonin

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VOICULESCU, S. E. ET AL.: "Role of melatonin in embryo fetal development", J. MED. LIFE, vol. 7, no. 4, December 2014 (2014-12-01), pages 488 - 492, XP055628943 *
ZHANG, L. ET AL.: "Effects of melatonin administration on embryo implantation and offspring growth in mice under different schedules of photoperiodic exposure", REPROD. BIOI. ENDOCRINOL., vol. 15, no. 1, 2 October 2017 (2017-10-02), pages 1 - 9, XP055628940 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111676188A (en) * 2020-07-13 2020-09-18 扬州大学 Optimization liquid for in vitro maturation of oocytes of aged mice
CN115250910A (en) * 2022-06-15 2022-11-01 沈阳农业大学 Method for promoting test tube balling of lily tissue culture seedling by melatonin and application

Also Published As

Publication number Publication date
KR20190089782A (en) 2019-07-31
KR20200145804A (en) 2020-12-30
KR102306054B1 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
Chen et al. Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells
Peng et al. Nlrp2, a maternal effect gene required for early embryonic development in the mouse
Kaczynski et al. Prostaglandin F2α promotes angiogenesis and embryo–maternal interactions during implantation
KR101513731B1 (en) Parthenogenic activation of human oocytes for the production of human embryonic stem cells
Goel et al. Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia
KR102306054B1 (en) Composition and Method for enhancing developmental rate of embryos using melatonin
WO2017047799A1 (en) Culture method for differentiating primordial germ cells into functionally mature oocytes
Lee et al. Isolation of male germ stem cell-like cells from testicular tissue of non-obstructive azoospermic patients and differentiation into haploid male germ cells in vitro
Aslam et al. Short-term in-vitro culture and cryopreservation of spermatogenic cells used for human in-vitro conception.
WO2002094987A2 (en) In vitro production of haploid germ cells
Cai et al. The effects of human recombinant granulocyte-colony stimulating factor treatment during in vitro maturation of porcine oocyte on subsequent embryonic development
Cao et al. Live birth of chimeric monkey with high contribution from embryonic stem cells
US20210198697A1 (en) Methods for making and using modified oocytes
Grigor'eva et al. FGF4 independent derivation of trophoblast stem cells from the common vole
WO2019147025A1 (en) Composition for embryonic development, comprising rad51 activator, and method for improving embryonic development rate using same
Yuan et al. Primary culture of germ cells that portray stem cell characteristics and recipient preparation for autologous transplantation in the rhesus monkey
Mao et al. Characterization, isolation, and culture of spermatogonial stem cells in Macaca fascicularis
Cordero et al. Overexpression of DAZL, STRA8, and BOULE genes and treatment with BMP4 or retinoic acid modulate the expression of MSC overexpressing germ cell genes
Zhao et al. Generation of histocompatible androgenetic embryonic stem cells using spermatogenic cells
Tosti Oocyte Maturation and Fertilization-A Long History for a Short Event
WO2003099001A1 (en) Nuclear transfer nuclei from histone hypomethylated donor cells
Clark Paternal effects on pre-implantation embryo development in cattle
Saadeldin et al. Blastocysts derivation from somatic cell fusion with premature oocytes (prematuration somatic cell fusion)
WO2019066161A1 (en) Method for enhancing efficiency of reprogramming cloned embryos using cytoplasmic transplantation
Au et al. A novel marsupial pri-miRNA transcript has a putative role in gamete maintenance and defines a vertebrate miRNA cluster paralogous to the miR-15a/miR-16-1 cluster

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743396

Country of ref document: EP

Kind code of ref document: A1