WO2019146027A1 - Electron beam device, device production method, and photoelectric element unit - Google Patents

Electron beam device, device production method, and photoelectric element unit Download PDF

Info

Publication number
WO2019146027A1
WO2019146027A1 PCT/JP2018/002192 JP2018002192W WO2019146027A1 WO 2019146027 A1 WO2019146027 A1 WO 2019146027A1 JP 2018002192 W JP2018002192 W JP 2018002192W WO 2019146027 A1 WO2019146027 A1 WO 2019146027A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
photoelectric
chamber
unit
beam apparatus
Prior art date
Application number
PCT/JP2018/002192
Other languages
French (fr)
Japanese (ja)
Inventor
真路 佐藤
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2018/002192 priority Critical patent/WO2019146027A1/en
Publication of WO2019146027A1 publication Critical patent/WO2019146027A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to an electron beam apparatus, a device manufacturing method, and a photoelectric device unit, and in particular, an electron beam apparatus using a photoelectric device having a photoelectric conversion layer generating electrons by light irradiation, and a device manufacturing using the electron beam device.
  • the present invention relates to a method and a photoelectric device unit used in an electron beam apparatus.
  • complementary lithography has been proposed in which an immersion exposure technique using an ArF light source and a charged particle beam exposure technique (for example, an electron beam exposure technique) are used complementarily.
  • a simple line and space pattern (hereinafter, appropriately abbreviated as an L / S pattern) is formed by utilizing double patterning or the like in immersion exposure using an ArF light source.
  • line patterns are cut or vias are formed through exposure using an electron beam.
  • an electron beam exposure apparatus provided with a multi-beam optical system that turns on and off a beam using a plurality of blanking apertures can be used (see, for example, Patent Document 1).
  • Patent Document 1 an electron beam exposure apparatus provided with a multi-beam optical system that turns on and off a beam using a plurality of blanking apertures.
  • an electron beam apparatus using a photoelectric device having a photoelectric conversion layer that generates electrons by light irradiation, wherein the photoelectric device and electrons generated from the photoelectric device are accelerated.
  • a holder capable of holding a photoelectric device unit having an extraction electrode is provided, and a first chamber capable of evacuating the inside and electrons generated from the photoelectric device are irradiated as an electron beam to a target through the first chamber.
  • An electron beam apparatus is provided.
  • a device manufacturing method including a lithography step, wherein the lithography step includes forming a line and space pattern on a target, and the first aspect and the second aspect.
  • a device manufacturing method including: cutting a line pattern constituting the line and space pattern using an electron beam apparatus according to any of the above.
  • a photoelectric element unit for use in an electron beam apparatus for irradiating an electron beam to a target, comprising a base member on which a photoelectric conversion layer for generating electrons by light irradiation is formed.
  • a photoelectric device unit including a photoelectric device, and a lead-out electrode connected to the base member for accelerating electrons generated from the photoelectric conversion layer.
  • a photoelectric element unit for use in an electron beam apparatus for irradiating an electron beam to a target, comprising a base member on which a photoelectric conversion layer for generating electrons by light irradiation is formed.
  • a photoelectric device unit including a photoelectric device, and a lead-out electrode connected to the base member for accelerating electrons generated from a photoelectric conversion layer formed on the base member.
  • FIG. 1 schematically shows a configuration of an exposure apparatus according to a first embodiment. It is a figure which shows the structure of the electron beam optical system seen from + X direction. It is a figure which expands and shows the photoelectric element unit shown by FIG.
  • FIG. 4A is a partially omitted longitudinal sectional view showing the photoelectric device
  • FIG. 4B is a plan view partially showing the photoelectric device. It is a figure which shows the structure for producing an electrical potential difference between a photoelectric layer and an extraction electrode. It is a figure for demonstrating correction
  • FIG. 8A is a perspective view showing a light diffraction type light valve
  • FIG. 8B is a side view showing the light diffraction type light valve.
  • It is a top view which shows a pattern generator. It is a figure for demonstrating the whole structure of the optical system with which the exposure apparatus of FIG. 1 is provided.
  • FIG. 12A is a diagram for explaining the configuration of a portion related to the deposition of the photoelectric layer and a diagram for explaining the flow of the deposition operation of the photoelectric layer (part 1)
  • FIG. 12C is a drawing for explaining the flow of the deposition operation of the photoelectric layer
  • FIG. 12C is a drawing for explaining the flow of the deposition operation of the photoelectric layer; It is a block diagram which shows the input-output relationship of the main control apparatus which mainly comprises the control system of exposure apparatus.
  • FIG. 7 is a diagram (part 1) for explaining the flow of the recovery operation of the photoelectric device unit;
  • FIG. 17 is a second diagram illustrating the flow of the recovery operation of the photoelectric device unit;
  • FIG. 17 is a third diagram illustrating the flow of the recovery operation of the photoelectric device unit;
  • FIG. 17 is a fourth diagram illustrating the flow of the recovery operation of the photoelectric device unit; It is a figure showing roughly the composition of the exposure device concerning a 2nd embodiment.
  • FIG. 23 (A) is an explanatory view showing a method not using an aperture
  • FIG. 23 (B) is an explanatory view showing a method using an aperture.
  • FIG. 24A to FIG. 24D are views showing various configuration examples of the aperture integrated photoelectric device.
  • 25 (A) and 25 (B) are diagrams (part 1 and part 2) for describing the configuration of a sensor used for positioning of the photoelectric device unit with respect to the holder and the method of using the sensor. It is a figure for describing one embodiment of a device manufacturing method.
  • FIG. 1 schematically shows the structure of an exposure apparatus 100 according to the first embodiment. Since the exposure apparatus 100 is provided with a plurality of electron beam optical systems as described later, hereinafter, the Z axis is parallel to the optical axis of the electron beam optical system and the exposure will be described later in a plane perpendicular to the Z axis
  • the scanning direction in which the wafer W is moved is taken as the Y-axis direction, the direction orthogonal to the Z-axis and Y-axis as the X-axis direction, and the rotational (tilting) directions about the X-axis, Y-axis and Z-axis as ⁇ x, ⁇ y respectively.
  • the description will be made as the and ⁇ z directions.
  • the exposure apparatus 100 includes a stage chamber 10 installed on a pedestal 101 a which is a part of a body frame installed on the floor surface of a clean room, and a stage system 14 disposed in an exposure chamber 12 inside the stage chamber 10. And an optical system 18 disposed above the stage system 14, and a transport system 42 and the like.
  • the optical system 18 comprises an electron beam optical unit 18A and an optical unit 18B disposed thereon.
  • the stage chamber 10 may be installed on the floor surface.
  • the electron beam optical unit 18A includes a housing 19 as a main frame in which a first chamber 34 is formed.
  • the first chamber 34 can be evacuated to a high vacuum state by a vacuum pump (not shown) (see the white arrow in FIG. 1), and becomes a first vacuum chamber after the evacuation is completed.
  • the first chamber 34 in the high vacuum state is referred to as a first vacuum chamber 34.
  • a case 45 in which a second chamber 72 is formed inside is disposed adjacent to the case 19.
  • the second chamber 72 is evacuated independently of the first chamber 34 or together with the first chamber 34 by a vacuum pump (not shown) until the inside of the second chamber 72 is in the same high vacuum state as the first vacuum chamber 34. It is possible.
  • the second chamber 72 may be in a vacuum state higher than the first chamber 34.
  • the second chamber 72 in the high vacuum state is referred to as a second vacuum chamber 72.
  • the transport system 42 is provided in the housing 45. The specific configurations of the optical system 18 and the transport system 42 will be described later.
  • the lower surface of the peripheral portion of the housing 19 faces the upper surface of the upper wall 10a of the stage chamber 10, and the lower surface of the housing 19 and the upper surface of the upper wall 10b of the stage chamber 10 It is connected (sealed) by a surrounding metal bellows 16.
  • the housing 19 is suspended and supported at three points from a top frame (not shown) which is a part of the above-mentioned body frame via a plurality of, for example, three suspension support mechanisms (not shown) having a vibration isolation function. ing. Vibrations such as floor vibrations transmitted from the outside to the body frame are sufficiently absorbed or isolated either by the suspension support mechanism in the direction parallel to the optical axis of the electron beam optical system 70 or in the direction perpendicular to the optical axis. Ru.
  • a non-contact type positioning device 23 (not shown in FIG. 1, see FIG. 13) is provided.
  • the positioning device 23 can be configured to include a six-axis acceleration sensor and a six-axis actuator, as disclosed in, for example, WO 2007/077920.
  • the positioning device 23 is controlled by the main controller 110 (see FIG. 13).
  • the relative positions of the housing 19 (electron beam optical unit 18A) with respect to the body frame in the X axis direction, Y axis direction, Z axis direction, and the relative rotation angles around the X axis, Y axis and Z axis are constant.
  • State predetermined state
  • the positioning device 23 may not be provided.
  • the stage system 14 is supported by a weight plate 22 supported on the bottom wall 10a of the stage chamber 10 shown in FIG.
  • Wafer stage WST movable in the axial direction and Y-axis direction by a predetermined stroke, for example, 50 mm, and finely movable in the remaining four degrees of freedom (Z-axis, ⁇ x, ⁇ y, and ⁇ z directions), and wafer stage WST
  • Stage drive system 26 (only a part of which is shown in FIG. 1, see FIG. 13) for moving the position
  • a position measurement system 28 (not shown in FIG. 1) which measures positional information in the direction of 6 degrees of freedom of wafer stage WST. 13) and.
  • Wafer stage WST adsorbs and holds wafer W via an electrostatic chuck (not shown) provided on the upper surface thereof.
  • Wafer stage WST has a frame-shaped member with an XZ cross section, in which mover 30a of motor 30 having a yoke and a magnet (all not shown) is integrally fixed.
  • a stator 30b of a motor 30 formed of a coil unit extending in the Y-axis direction is inserted into the inside (hollow part) of the mover 30a.
  • the stator 30 b is connected to the X-stage 31 moving in the X-axis direction on the surface plate 22 at both ends in the longitudinal direction (Y-axis direction). As shown in FIG.
  • the X stage 31 has a pair of support portions with the X axis direction as the longitudinal direction and separated by a predetermined distance in the Y axis direction, and the upper surface of the pair of support portions Both ends of the direction are fixed.
  • the X stage 31 is integrated with the wafer stage WST by an X stage drive system 32 (not shown in FIG. 1, refer to FIG. 13) constituted by a uniaxial drive mechanism that does not cause magnetic flux leakage, for example, a feed screw mechanism using a ball screw. Is moved with a predetermined stroke in the X-axis direction.
  • the X stage drive system 32 may be configured by a uniaxial drive mechanism provided with an ultrasonic motor as a drive source. In any case, the influence of the magnetic field fluctuation due to the magnetic flux leakage on the positioning of the electron beam is negligible.
  • the motor 30 can move the mover 30a relative to the stator 30b in the Y-axis direction by a predetermined stroke, for example, 50 mm, and can finely move the mover 30a in the X-axis direction, the Z-axis direction, the ⁇ x direction, the ⁇ y direction, and the ⁇ z direction Closed magnetic field type and moving magnet type motor.
  • a wafer stage drive system that moves wafer stage WST in the direction of six degrees of freedom by motor 30 is configured.
  • the wafer stage drive system will be referred to as wafer stage drive system 30 using the same reference numerals as motor 30.
  • the weight cancellation device 24 includes a metal bellows type air spring (hereinafter abbreviated as air spring) 24a whose upper end is connected to the lower surface of the wafer stage WST, and a base slider 24b connected to the lower end of the air spring 24a. have.
  • the base slider 24b is provided with a bearing (not shown) for spouting the air inside the air spring 24a to the upper surface of the platen 22, and the bearing surface of the pressurized air ejected from the bearing and the upper surface of the platen 22.
  • the weight cancellation device 24, the wafer stage WST (including the mover 30a), and the own weight of the wafer W are supported by the static pressure (pressure in the gap) between them.
  • compressed air is supplied to the air spring 24 a through a pipe (not shown) connected to the wafer stage WST.
  • the base slider 24b is supported in a non-contact manner on the surface plate 22 via a kind of differential pumping type of static air bearing, and the air ejected from the bearing portion toward the surface plate 22 is exposed to the surrounding (exposure chamber 12) are prevented from leaking out.
  • a pair of pillars are provided sandwiching air spring 24a in the Y-axis direction, and a plate spring provided at the lower end of the pillar is connected to air spring 24a.
  • the electron beam optical unit 18A includes the aforementioned housing 19 in which a first vacuum chamber 34 is formed.
  • the first vacuum chamber 34 includes a first plate 36 constituting an upper wall (ceiling wall) of the housing 19, a second plate (hereinafter referred to as a base plate) 38 constituting a bottom wall of the housing 19, and a first vacuum chamber 34. It is divided by a side wall portion 40 or the like connecting the lower surface of the plate 36 and the upper surface of the base plate 38.
  • a plurality of through holes 36a extending in the Z-axis direction are formed at predetermined intervals in the two-dimensional directions of the XY, here 45 in an arrangement corresponding to the arrangement of the 45 electron beam optical systems 70 described above. .
  • the holding member 52 is disposed with almost no gap.
  • each of the plurality of holding members 52 holds a partition member 81 made of a light transmitting member such as quartz glass which functions as a vacuum partition.
  • the partition member 81 is suitably described also as the vacuum partition 81.
  • FIG. The partition member 81 may be held by the first plate 36 without using the holding member 52. Further, the material of the light transmitting member constituting the partition member 81 is not limited to quartz glass, and any material having transparency to the wavelength of light used in the optical unit 18B may be used.
  • a holder 88 in which an opening (notch) 88a is formed is disposed under each of the plurality of holding members 52.
  • the holder 88 is fixed to the inner wall surface of the through hole 36 a of the first plate 36.
  • the holder 88 is a member to which a photoelectric device unit 50 described later is loaded, and holds the loaded photoelectric device unit 50.
  • the holder 88 is fixed to the inner wall surface of the through hole 36 a, but the holder 88 may be provided on the lower surface of the first plate 36.
  • the photoelectric element 54 provided in the photoelectric element unit 50 may not be held in the through hole 36a, and may be held below the through hole 36a, for example.
  • FIG. 3 corresponds to a longitudinal sectional view of the photoelectric device unit 50 sectioned at the center position in the depth direction (X-axis direction).
  • the photoelectric device unit 50 includes a photoelectric device 54 having a base member 53 on which a layer (alkali photoelectric conversion layer (alkali photoelectric layer)) 60 of an alkali photoelectric film (photoelectric conversion film) generating electrons by irradiation of light is formed; And an extraction electrode 55 connected to the base member 53 for accelerating electrons generated from the alkaline photoelectric layer 60.
  • a layer alkali photoelectric conversion layer (alkali photoelectric layer)
  • an alkali photoelectric film photoelectric conversion film
  • the base member 53 is made of, for example, a base material 56 (also called reticle blanks) made of quartz glass and its base material 56.
  • a light shielding film (aperture film) 58 made of, for example, vapor-deposited chromium is provided on the surface (lower surface) on the light emission side.
  • the base 56 may be called a light transmitting member or a transparent member.
  • a large number of apertures 58 a are formed in the light shielding film 58.
  • the extraction electrode 55 is fixed to one surface (the lower surface in FIG. 3) of the base material 56, whereby the photoelectric device 54 and the extraction electrode 55 are integrated to constitute the photoelectric device unit 50.
  • the material of the substrate 56 is not limited to quartz glass, and may be, for example, a material having transparency to the wavelength of light used in the optical unit 18B, such as sapphire.
  • the extraction electrode 55 may be fixed to the side surface of the base 56. Further, the extraction electrode 55 may be fixed to a member (non-light transmitting member or non-transparent member) connected to the lower surface or the side surface of the base material 56.
  • the alkaline photoelectric layer 60 is formed by vapor deposition on the surface on the light emission side on which the light shielding film (aperture film) 58 of the base member 53 is formed (the lower surface in FIG. 4A and FIG. 3). Although only a part of the photoelectric element 54 is shown in FIG. 4A, in practice, a large number of apertures 58a are formed in the light shielding film 58 in a predetermined positional relationship (see FIG. 4A). 4 (B)).
  • the number of apertures 58a may be the same as the number of multi beams described later, or may be larger than the number of multi beams.
  • the alkaline photoelectric layer 60 is also disposed inside the aperture 58a, and the base 56 and the alkaline photoelectric layer 60 are in contact at the aperture 58a.
  • the base member 53 (the base 56, the light shielding film 58) and the alkali photoelectric layer 60 are integrally formed, and at least a part of the photoelectric element 54 is formed.
  • the alkali photoelectric layer 60 is a multi-alkali photocathode using two or more types of alkali metals.
  • the multialkali photocathode is a photocathode characterized by high durability, capable of generating electrons with green light having a wavelength of 500 nm band, and high quantum efficiency QE of the photoelectric effect of about 10%.
  • a material having a high conversion efficiency of 10 [mA / W] is used.
  • the electron emission surface of the alkaline photoelectric layer 60 is the lower surface in FIG. 4A, that is, the surface on the opposite side to the upper surface of the base material 56.
  • the extraction electrode 55 is disposed substantially in parallel on one surface (lower surface in FIG. 3) of the base member 53 (base 56) at a predetermined interval in a direction (vertical direction) perpendicular to the one surface.
  • a sheet of electrode plates 59A, 59B is included.
  • the electrode plates 59A, 59B are formed in a ring shape, but may be formed in a polygonal loop shape.
  • through holes are formed at four places forming respective vertices of a virtual square having two sides extending respectively in the X-axis direction and the Y-axis direction in plan view, and inside each through hole Support members 57 extending in the vertical direction are respectively inserted.
  • each of the four support members 57 is fixed to one surface of the base material 56, and the other end (lower end) is fixed to the upper surface of the lower electrode plate 59B.
  • Mounted parallel to the The electrode plate 59A is attached to the four support members 57 so as to be parallel to the base 56 and the electrode plate 59B.
  • the support of the electrode plates 59A and 59B is not limited to the above-described structure.
  • the extraction electrode 55 may be equipped with one or three or more electrode plates.
  • a light shielding film 58 and an alkaline photoelectric layer (hereinafter abbreviated as a photoelectric layer) 60 are laminated and formed on part of the lower surface of the base material 56.
  • the base 56 is a square plate member whose one side is longer than the outer diameter of the electrode plates 59A, 59B.
  • the base 56 may not be square, and may be, for example, a circular plate member having a diameter larger than the outer diameter of the electrode plate.
  • three spheres or hemispheres (balls in the present embodiment) 92 for example, each position (the same circumscribed tangent) of three vertices of a substantially equilateral triangle in plan view One each (a total of three, but in FIG. 5, one ball located at the back of the paper surface is not shown) is provided at each position on the circle.
  • three triangular pyramid grooves 56a (but one triangular pyramid groove located on the back side of the drawing sheet in FIG. 5 is not shown in the positional relationship corresponding to the three balls 92). ) Is formed.
  • Three balls 92 can be engaged with the three triangular pyramid grooves 56a, and the three triangular pyramid grooves 56a, together with the three balls 92, constitute a kinematic mount (also referred to as a kinematic coupling).
  • the photoelectric device unit 50 When the photoelectric device unit 50 is loaded on the holder 88, the photoelectric device unit 50 is moved to a position where the three triangular pyramid grooves 56a substantially face the three balls 92 above the holder 88, The element unit 50 is lowered. As a result, each of the three balls 92 individually engages with the three triangular pyramid grooves 56a, and the photoelectric device unit 50 is attached to the holder 88. At the time of this attachment, the three balls 92 engage with the corresponding triangular pyramid grooves 56a in almost the same state at all times.
  • the photoelectric device unit 50 can be easily removed (removed) from the holder 88 simply by moving the photoelectric device unit 50 upward and releasing the engagement between the ball 92 and the triangular pyramid groove 56a. That is, in the present embodiment, a kinematic mount is constituted by a set of three balls 92 and a triangular pyramid groove 56a, and the attachment state of the photoelectric element unit 50 to the holder 88 is almost always the same by this kinematic mount. It is possible to set (set a fixed positional relationship between the photoelectric element 54 and the holder 88).
  • a movable triangular pyramid groove member may be provided instead of forming three triangular pyramid grooves in the lower surface of the base 56. In this case, when the photoelectric device unit 50 is moved to a position where the photoelectric device 54 faces above the holder 88 when the photoelectric device unit 50 is mounted on the holder 88, the position of the photoelectric device 54 with respect to the holder 88 is desired.
  • the fixed positional relationship between the photoelectric element 54 and the holder 88 can be obtained only by attaching the photoelectric element unit 50 to the holder 88 via the kinematic mount (a set of three balls 14 and a triangular pyramid groove member). It can be set with good reproducibility.
  • the holder 88 When the photoelectric conversion unit 55 is attached to the holder 88 or the photoelectric conversion unit 55 is removed from the holder 88, the holder 88 is movable (vertically movable) in the Z-axis direction with respect to the first plate 36. The holder 88 may be moved in the Z-axis direction.
  • the first wiring 62A has one end connected to the photoelectric layer 60 and the other end slightly exposed from the lower end surface of the base 56, and the electrode plate 59A. , 59B, and a second wiring 62B and a third wiring 62C are provided, the other ends of which are slightly exposed from the lower end surface of the base material 56.
  • the electrical connection part (unit side contact) of the photoelectric device unit 50 is configured by the exposed part from the base 56 of the other end of each of the first, second and third wires 62A, 62B and 62C.
  • the electrical connection portion includes a first connection portion (first contact) electrically connected to the photoelectric layer 60, and a second connection portion (second contact) electrically connected to the electrode plate 59A of the lead-out electrode 55. And a third connection portion (third contact point) electrically connected to the electrode plate 59B of the lead-out electrode 55.
  • the holder 88 has a U-shape in a side view corresponding to the first, second and third wires 62A, 62B and 62C (first, second and third contacts).
  • One end (lower end in FIG. 5) of the three electrical contacts 66A, 66B, 66C is a voltage source 64 1 64 2 63 3 (FIG. 5) via fourth, fifth and sixth wires 62D, 62E, 62F respectively.
  • Each applied voltage is individually connected to V 1 , V 2 , and V 3 ).
  • the photoelectric conversion device 54 (photoelectric conversion device unit 50) is supported by the holder 88 via the kinematic mount in a state where the predetermined positional relationship between the photoelectric conversion device 54 and the holder 88 is set as described above.
  • the first connection (first contact), the second connection (second contact) and the third connection (third contact) of the photoelectric device unit 50. ) are connected to each other, and a voltage V 1 is applied to the photoelectric layer 60 and a voltage V 2 is applied to the electrode plate 59A so that a potential difference is generated such that electrons emitted from the photoelectric layer 60 are accelerated toward the electron optical system 70.
  • the voltage V 3 to the electrode plate 59B is adapted to be applied respectively.
  • the voltage V 1 can be 58 keV
  • the voltage V 2 can be 59 keV
  • the voltage V 3 can be 61 keV.
  • the voltage V 1 can be ⁇ 60 keV
  • the voltage V 2 can be ⁇ 59 keV
  • the voltage V 3 can be ⁇ 58 keV.
  • a first wiring portion connected to the first connection portion (first contact point) including the electric contact 66A and the fourth wiring 62D is configured, and an electric contact 66B and a fifth wiring 62E are included.
  • a second wiring portion connected to the second connection portion (second contact), and includes the electrical contact 66C and the sixth wiring 62F, and is connected to the third connection portion (third contact) 3 Wiring part is configured.
  • the first connection portion and the first wiring portion are connected, the second connection portion and the second wiring portion are connected, and the third connection portion and the third wiring portion are connected, whereby the holder 88 is connected to the holder 88.
  • a potential difference is generated between the held photoelectric conversion layer and the extraction electrode 55 (electrode plates 59A, 59B).
  • an electric wiring portion electrically connected to the electric connection portion of the photoelectric device unit 50 held by the holder 88 is configured including the first wiring portion, the second wiring portion, and the third wiring portion. Note that one of the electrode plates 59A and 59B, one of the second connection portion and the third connection portion, and one of the second wiring portion and the third wiring portion do not necessarily have to be provided.
  • FIG. 2 is a view showing the electron beam optical system 70 and components inside the casing 19 individually corresponding to the electron beam optical system.
  • the opening 38a is opened and closed by a valve 39 as can be seen from FIGS. 1 and 2.
  • the openings 38a (valves 39) of 45 can be simultaneously opened and closed by the operation member 41 capable of reciprocating in the Y-axis direction shown in FIG.
  • the movement of the operation member 41 is performed by, for example, a pneumatic (or electromagnetic) first drive unit 46 under the main controller 110 (see FIG. 13).
  • the vacuum degree of the exposure chamber 12 inside the stage chamber 10 is measured by a vacuum gauge (pressure gauge for measuring a vacuum) 37, and the measurement value of the vacuum gauge 37 is supplied to the main controller 110 (see FIG. 13). .
  • valve 39 for opening and closing the opening 38a of 45 is normally open, when it is detected that the degree of vacuum in the exposure chamber 12 is abnormal based on the measurement value from the vacuum gauge 37, etc.
  • the main control unit 110 controls the first drive unit 46 to move the operation member 41 in the -Y direction in order to protect the photoelectric layer 60 of the photoelectric element 54 present inside the first vacuum chamber 34.
  • the 45 valves 39 can be closed simultaneously.
  • the electron beam optical system 70 On the lower surface of the base plate 38, as shown in FIG. 1, 45 electron beam optical systems 70 whose optical axes AXe are positioned on the central axes of 45 holding members 52 are fixed in a suspended state .
  • the support of the electron beam optical system 70 is not limited to this.
  • the electron beam optical system 70 of 45 may be supported by a support member different from the base plate 38 and the support member may be supported by the housing 19 .
  • the electron beam optical system 70 has an objective lens consisting of a lens barrel 104 and a pair of electromagnetic lenses 70a and 70b held by the lens barrel 104, and an electrostatic multipole 70c.
  • the objective lens of the electron beam optical system 70 and the electrostatic multipole 70 c irradiate a plurality of light beams LB to the photoelectric element 54 to emit electrons (plurality of electron beams EB) by photoelectric conversion by the photoelectric layer 60. It is located on the beam path.
  • the lens barrel 104 may be called a housing 104.
  • the pair of electromagnetic lenses 70a and 70b are disposed in the vicinity of the upper end and the lower end in the lens barrel 104, respectively, and they are separated in the vertical direction.
  • An electrostatic multipole 70c is disposed between the pair of electromagnetic lenses 70a and 70b.
  • the electrostatic multipole 70c is disposed in the beam waist portion on the beam path of the electron beam EB focused by the objective lens. For this reason, the plurality of beams EB passing through the electrostatic multipole 70c may repel each other by the coulomb force acting between them, and the magnification may change.
  • An electrostatic multipole 70 c having a second electrostatic lens 70 c 2 is provided inside the electron beam optical system 70.
  • each of the first electrostatic lens 70c 1 and the second electrostatic lens 70c 2 is, irradiation position control of the XY magnification correction and the electron beam (and the irradiation position shift correction) may be performed.
  • the electrostatic lens 70c 1 may be allowed to the axial direction of the magnification adjustment different from the X-axis direction and the Y-axis direction. Further, it may be omitted first electrostatic lens 70c 1 and one of the second electrostatic lens 70c 2, an electrostatic multipole 70c may also have additional electrostatic lenses.
  • the second electrostatic lens 70c 2 corrects the irradiation position displacement of the beam due to various vibrations and the like (the projection position shift of the cut pattern to be described later) at once.
  • the second electrostatic lens 70c 2 is deflection control of the electron beam for performing the following control for the wafer W of the electron beam during exposure, i.e., it is also used for the irradiation position control of the electron beam.
  • the electrostatic multipole 70c is replaced with a static light capable of controlling the electron beam deflection.
  • An electrostatic deflection lens consisting of an electrostatic lens may be used.
  • the reduction magnification of the electron beam optical system 70 is, for example, 1/50 in design without performing magnification correction.
  • Other scaling factors such as 1/30 and 1/20 may be used.
  • the lens barrel 104 has a plurality of openings.
  • the inside of the lens barrel 104 is in communication with the exposure chamber 12 inside the stage chamber 10 shown in FIG.
  • the exposure chamber 12 is a vacuum chamber having a lower degree of vacuum (higher pressure) than the first vacuum chamber 34.
  • the inside of the lens barrel 104 is, for example, a first portion of a central portion through which the electron beam passes through the first vacuum chamber 34 by a partition member 107 made of, for example, a stainless steel piping member.
  • a space 71a and a second space 71b surrounding the first space 71a and in which the electromagnetic lenses 70a and 70b are accommodated are separated.
  • the second space 71 b communicates with the exposure chamber 12.
  • the electrostatic multipole 70c needs to be disposed in the high vacuum space, and therefore, is disposed in the first space 71a.
  • the first space 71 a can also be called a path of the electron beam EB of the electron beam optical system 70.
  • the passage of the electron beam EB of the electron beam optical system 70 is from the first vacuum chamber 34 in which the photoelectric element 54 (photoelectric element unit 50) is disposed with the valve 39 open. It is a passage through which the electron beam EB passes.
  • the first space 71a will also be appropriately referred to as a passage 71a of the electron beam EB.
  • the interior of the chamber 71a is fluidly separated or separated so that no gas flow occurs between the first vacuum chamber 34 and the passage 71a of the electron beam EB.
  • the degree of vacuum in the first vacuum chamber 34 and the degree of vacuum in the passage 71 a of the electron beam EB from the first vacuum chamber 34 to the exposure chamber 12 may be different.
  • the first vacuum chamber 34 and the above-mentioned electron beam passage 71a may be substantially one vacuum chamber without providing a valve or the like.
  • the lens barrel 104 has a highly airtight structure, the inside of which is surrounded by the first space at the center (the path of the electron beam EB of the electron beam optical system 70) and the periphery of the first space, and the electromagnetic lens is housed inside
  • the second space may be separated into a second space in which 70a and 70b are stored, and the second space may be opened to a space outside the stage chamber 10, for example.
  • the paths of the electron beams EB of each of the at least two electron beam optical systems 70 can also be referred to as a first path, a second path, etc , And the inside of the at least two passages 71a can be evacuated independently of the first vacuum chamber 34 by a vacuum pump.
  • the exit 104a of the electron beam is formed at the exit end of the partition member 107 (the exit end of the lens barrel 104), and the backscattered electron detecting device 106 is formed below the exit 104a.
  • the backscattered electron detector 106 sandwiches the optical axis AXe of the electron beam optical system 70 (coincident with the central axis of the holding member 52 and the optical axis AXp of the projection system described later (see FIG. 7)) on both sides in the Y axis direction.
  • a pair of backscattered electron detectors 106y 1 and 106y 2 are provided.
  • a pair of backscattered electron detectors 106 x 1 and 106 x 2 are provided on both sides of the optical axis AXe in the X axis direction.
  • Each of the two pairs of backscattered electron detection devices 106 is formed of, for example, a semiconductor detector, and detects and detects a reflected component generated from a detection target mark such as an alignment mark or a reference mark on a wafer.
  • a detection signal corresponding to the reflected electrons is sent to the signal processing unit 108 (see FIG. 13).
  • the signal processing unit 108 amplifies the detection signals of the plurality of backscattered electron detection units 106 by an amplifier (not shown) and then performs signal processing, and sends the processing result to the main control unit 110 (see FIG. 13).
  • the backscattered electron detection device 106 may or may not be provided only on a part (at least one) of the 45 electron beam optical systems 70.
  • the optical axis AXe of the electron beam optical system 70 should be drawn between the photoelectric element 54 and the wafer W, but in FIG. There is.
  • the backscattered electron detectors 106 x1 , 106 x2 , 106 y1 , and 106 y2 are attached to the lens barrel 104, for example.
  • a cooling plate having openings individually facing the outlets 104a of the plurality of lens barrels 104 is provided, and the backscattered electron detectors 106 x 1 , 106 x 2 , 106 y 1 , 106 y 2 are provided in the openings of the cooling plate. It may be arranged. In this case, the backscattered electron detector may be attached to the cooling plate.
  • the top surface of the base plate 38 in the first chamber 34 is accelerated toward the electron beam optical system 70 by the lead-out electrode 55 provided in the photoelectric element unit 50 held by the holder 88.
  • Another extraction electrode 112 is provided to further accelerate the electrons.
  • the extraction electrode 112 has, for example, a plurality of ring-shaped (three in the present embodiment) electrode plates arranged at a predetermined interval in the Z-axis direction.
  • the extraction electrodes 112 are provided 45 corresponding to the 45 electron beam optical systems 70 individually (see FIG. 1). In FIG. 1 and the like, the extraction electrode 112 and the like are shown in a simplified manner.
  • the extraction electrode 112 is disposed below the holding position of the photoelectric element 54. Note that the extraction electrode 112 may be supported by the first plate 36. Further, the extraction electrode 112 may not be provided.
  • the optical unit 18 B includes 45 light irradiation devices (also referred to as light optical systems) 80 provided corresponding to the 45 electron beam optical systems 70 (photoelectric elements 54). Is equipped. At least one light beam from each light emitting device 80 is applied to the photoelectric layer 60 via the corresponding aperture 58a of the photoelectric element 54.
  • the number of light irradiation devices 80 and the number of photoelectric elements 54 (photoelectric element units 50) may not be equal. Therefore, the light irradiation device 80 may not necessarily correspond to the electron beam optical system 70 individually. For example, the number of light irradiation devices 80 may be larger than the number of photoelectric elements 54 (photoelectric element units 50).
  • FIG. 7 shows the light emitting device 80 of FIG. 1 together with the photoelectric device unit 50 held by the corresponding holder 88.
  • the light irradiation device 80 includes an illumination system 82, an optical device (hereinafter referred to as a pattern generator) 84 that generates a plurality of light beams (patterned light) with light from the illumination system 82, and a plurality of patterns from the pattern generator 84.
  • a projection system also referred to as a projection optical system
  • 86 for irradiating the photoelectric conversion element 54 with the light beam of (1) through the vacuum dividing wall 81.
  • the pattern generator 84 may be referred to as a spatial light modulator that spatially modulates and emits at least one of the amplitude, phase, and polarization state of light traveling in a predetermined direction. It can also be said that the pattern generator 84 can generate an optical pattern consisting of, for example, light and dark patterns.
  • the illumination system 82 forms a light source 82a that generates illumination light (laser light) LB, and the illumination light LB into one or more beams having a rectangular cross section elongated in the X-axis direction.
  • a reflecting optical system such as a prism or a mirror having a reflecting surface 98a disposed between the forming optical system 82b and the forming optical system 82b and the pattern generator 84 for deflecting the light from the forming optical system 82b toward the pattern generator 84 And an element 98.
  • the light source 82 a, the shaping optical system 82 b, and the reflection optical element 98 are held by a lens barrel 83.
  • the lens barrel 83 may be called a housing 83.
  • a laser diode that continuously oscillates a visible light or a wavelength near the visible light for example, a laser beam having a wavelength of 405 nm is used.
  • a laser diode that intermittently emits (oscillates) laser light may be used as the light source 82a.
  • a combination of a laser diode and a switching element such as an AO deflector or an AOM (acousto-optic modulator) may be used in place of the light source 82a to intermittently emit laser light.
  • the illumination system 82 may not include the light source 82a, and the light source may be provided outside the apparatus. In this case, illumination light from a light source outside the apparatus may be guided to the illumination system 82 using a light transmission member such as an optical fiber.
  • the shaping optical system 82b includes a plurality of optical elements sequentially disposed on the light path of a laser beam (hereinafter, appropriately abbreviated as a beam) LB from the light source 82a.
  • the plurality of optical elements can include, for example, a diffractive optical element (also referred to as DOE), a lens (for example, a condenser lens), a mirror, and the like.
  • the shaping optical system 82b includes, for example, a diffractive optical element located at the incident end
  • the beam LB is on the emission surface side of the diffractive optical element
  • In-plane intensity of the laser beam LB so as to have a large light intensity distribution in a plurality of rectangular regions (in the present embodiment, elongated slits) long in the X-axis direction aligned at predetermined intervals in the Y-axis direction on a predetermined surface. Transform the distribution.
  • the diffractive optical element generates a plurality of rectangular beams (slit-like beams) LB having a plurality of rectangular cross sections elongated in the X-axis direction aligned at predetermined intervals in the Y-axis direction by incidence of the beam LB from the light source 82a. .
  • a number of slit beams LB according to the configuration of the pattern generator 84 are generated.
  • the element for converting the in-plane intensity distribution of the laser beam LB is not limited to the diffractive optical element, and may be a refractive optical element or a reflective optical element, or may be a spatial light modulator.
  • the light beam incident on the reflective optical element 98 may not be a beam having a rectangular cross section (slit shape).
  • the light beam is emitted below the final lens 96 located at the end of the shaping optical system 82b (light emission side)
  • a reflective optical element 98 for bending the optical path is disposed.
  • the final lens 96 condenses a plurality of cross-sectional rectangular (slit-like) beams LB generated by the diffractive optical element in the Y-axis direction, and irradiates the reflective surface 98 a of the reflective optical element 98.
  • a condensing lens such as a cylindrical lens long in the X-axis direction can be used.
  • a reflective optical member such as a focusing mirror or a diffractive optical element may be used.
  • the reflecting surface 98a is not limited to a flat surface, and may have a shape having a curvature. If the reflecting surface 98a has a curvature (having a finite focal length), it can also have the function of a condenser lens.
  • the reflective optical element 98 may be movable (the position, the inclination, the attitude, and the like can be changed) with respect to the optical axis AXi of the illumination system 82.
  • the reflecting surface 98a is disposed at a predetermined angle ⁇ ( ⁇ is, for example, +10 degrees) inclined with respect to the XY plane, and reflects the plurality of irradiated slit-like beams in the upper left direction in FIG.
  • the shaping optical system 82 b and the reflective optical element 98 constitute an illumination optical system.
  • the reflective optical element 98 is held at the lower end portion of the above-mentioned lens barrel 83 via a holding member.
  • the pattern generator 84 is disposed on the reflected light path of the plurality of slit-like beams reflected by the reflecting surface 98a.
  • the pattern generator 84 is disposed at a predetermined angle ⁇ with respect to the XY plane, and the circuit board 102 whose both ends in the longitudinal direction are exposed to the outside of the lens barrel 83 through the opening (not shown) of the lens barrel 83 It is disposed on the Z-side surface.
  • the circuit board 102 is formed with an opening which is a passage of the beam LB irradiated from the shaping optical system 82b to the reflection surface 98a.
  • a heat sink (not shown) for heat dissipation may be disposed opposite to the + Z side of the circuit board 102.
  • the heat sink is connected to the circuit board 102 via a plurality of connection members (not shown).
  • the heat sink may be fixed to the lens barrel 83 in a state in which the surface (the surface on the + Z side) opposite to the surface facing the circuit board is in contact with the lens barrel 83.
  • a Peltier element may be used as the connection member.
  • the pattern generator 84 and the circuit board 102 can be cooled by the heat radiation through the heat sink.
  • symbol 103 shows wiring.
  • the pattern generator 84 may be disposed at the position where the reflective optical element 98 is disposed, and the reflective optical element 98 may be disposed at the position where the pattern generator 84 is disposed.
  • a pattern generator 84 is disposed on the upper surface of the substrate 102, and a plurality of light beams generated from the pattern generator by irradiation of illumination light are reflected by the reflective optical element 98 disposed on the + Z side of the substrate 102 to The light beam may be led to the projection system 86 through the aperture of.
  • the pattern generator 84 is configured by a light diffraction type light valve (GLV (registered trademark)) which is a kind of programmable spatial light modulator.
  • the light diffraction type light valve is a minute structure of silicon nitride film called “ribbon” on a silicon substrate (chip) 84 a (hereinafter referred to as “ribbon” and “ribbon”). It is a spatial light modulator in which a scale of several thousand is used to form a reference 84b.
  • the driving principle of GLV is as follows.
  • the GLV By electrically controlling the deflection of the ribbon 84b, the GLV functions as a programmable diffraction grating, and has high resolution, high speed (responsiveness 250 kHz to 1 MHz), high accuracy, dimming, modulation, and laser light Enable switching. GLVs are classified as micro-electro-mechanical systems (MEMS).
  • the ribbon 84 b is made of an amorphous silicon nitride film (Si 3 N 4 ) which is a kind of high temperature ceramic having strong characteristics in hardness, durability, and chemical stability. Each ribbon has a width of 2 to 4 ⁇ m and a length of 100 to 300 ⁇ m.
  • the ribbon 84b is covered with an aluminum thin film, and has the function of both a reflector and an electrode.
  • the ribbon is stretched across the common electrode 84c, and when a control voltage is supplied to the ribbon 84b from a driver (not shown in FIGS. 8A and 8B), the ribbon is bent toward the substrate 84a by static electricity. .
  • the control voltage is lost, the ribbon 84b returns to its original state due to the high tension inherent to the silicon nitride film. That is, the ribbon 84b is a kind of movable reflective element.
  • GLV GLV
  • an active ribbon whose position changes due to the application of voltage
  • a type where a bias ribbon falling to the ground and whose position is invariable alternates and a type in which all are active ribbons.
  • the latter type is used in the form.
  • the pattern generator 84 made of GLV is attached to the surface on the ⁇ Z side of the circuit board 102.
  • the circuit board 102 is provided with a CMOS driver (not shown) for supplying a control voltage to the ribbon 84 b.
  • a pattern generator 84 including a CMOS driver is referred to.
  • the pattern generator 84 used in the present embodiment has, as shown in FIG. 9, an XY plane in which a ribbon row 85 having, for example, 6000 ribbons 84b has its longitudinal direction (direction in which the ribbons 84b are aligned) as the X-axis direction.
  • a ribbon row 85 having, for example, 6000 ribbons 84b has its longitudinal direction (direction in which the ribbons 84b are aligned) as the X-axis direction.
  • 12 rows are formed on the silicon substrate at predetermined intervals in a direction forming a predetermined angle ⁇ (hereinafter referred to as the ⁇ -axis direction for convenience).
  • the ribbons 84b of each ribbon row 85 are stretched on the common electrode.
  • each ribbon 84 b is driven for switching (on / off) of the laser light by application and cancellation of application of a constant level voltage.
  • the GLV can adjust the diffracted light intensity according to the applied voltage
  • the applied voltage is finely adjusted when the intensity of at least a part of the plurality of beams from the pattern generator 84 needs to be adjusted.
  • a plurality of light beams having different intensities can be generated from pattern generator 84.
  • twelve slit-like beams are generated by the diffractive optical element in the illumination system 82, and the twelve beams form a plurality of optical elements (including the final lens 96) constituting the forming optical system 82b,
  • a slit-like beam LB long in the X-axis direction is irradiated to the center of each ribbon row 85 via the reflection surface 98 a of the reflection optical element 98.
  • the irradiation area of the beam LB to each ribbon 84b is a square area.
  • the irradiation area of the beam LB to each ribbon 84b may not be a square area. It may be a rectangular region long in the X axis direction or long in the ⁇ axis direction.
  • the irradiation area (illumination area of the illumination system 82) of the 12 beams on the light receiving surface of the pattern generator 84 has a length in the X axis direction of S mm and a length in the ⁇ axis direction of T mm. It can be said that it is a rectangular area.
  • 72000 apertures 58 a are formed in the light shielding film 58 of the photoelectric element 54 so that the 72000 beams generated by the pattern generator 84 can be individually irradiated.
  • the number of apertures 58a need not be the same as the number of beams that can be irradiated by, for example, the pattern generator 84.
  • a photoelectric element 54 includes apertures 58a to which 72000 beams (laser beams) correspond.
  • the number of movable reflective elements (ribbons 84b) included in the pattern generator 84 may be different from the number of apertures 58a.
  • the size of each of the plurality of apertures 58a on the photoelectric element 54 may be smaller than the size of the cross section of the corresponding beam.
  • the number of movable reflective elements (ribbons 84 b) included in the pattern generator 84 may be different from the number of beams generated by the pattern generator 84.
  • a plurality of (two) movable reflective elements (ribbons) 1 The switching of a book beam may be performed. Further, the number of pattern generators 84 and the number of photoelectric elements 54 may not be equal.
  • the plurality of beams generated by the pattern generator 84 are incident on the lower projection system 86, ie, the first lens 94 located at the incident end of the projection system 86, as shown in FIG.
  • the projection system 86 has a plurality of lenses sequentially disposed on the light path of the light beam from the pattern generator 84, as shown in FIG.
  • the plurality of lenses of the projection system 86 are held by a lens barrel 86a.
  • the projection magnification of the projection system 86 is, for example, about 1 ⁇ 4.
  • the aperture 58a is assumed to be rectangular, but may be square, or may be another shape such as a polygon or an ellipse.
  • the projection system is not limited to the refractive optical system, and may be a reflective optical system or a catadioptric optical system.
  • the projection magnification of the projection system 86 is not limited to 1 ⁇ 4 reduction magnification, and may be, for example, 1 ⁇ 5 or 1/10 reduction magnification, or equal magnification or enlargement magnification.
  • the projection system 86 projects (or irradiates) the light from the pattern generator 84 onto the photoelectric element 54 through the vacuum barrier 81 to form at least one of a plurality of, for example, 72000 apertures 58a.
  • the light beam that has passed through is irradiated onto the photoelectric layer 60. That is, the light beam from the movable reflective element turned on from the pattern generator 84 is irradiated to the photoelectric layer 60 through the corresponding aperture 58a, and from the movable reflective element turned off, the corresponding aperture 58a and photoelectric Layer 60 is not illuminated.
  • the aperture 58a is assumed to be a rectangle long in the X-axis direction unless otherwise specified. However, the aperture 58a may be a rectangle or square long in the Y-axis direction, or other polygons, ellipses, etc. It may be a shape.
  • the projection system 86 may be provided with an optical characteristic adjustment device capable of adjusting the optical characteristic of the projection system 86.
  • the optical property adjusting apparatus can change at least the projection magnification (magnification) in the X-axis direction by moving some of the optical elements constituting the projection system 86, for example, a lens in this embodiment.
  • the optical characteristic adjustment device for example, a device that changes the air pressure in the hermetic space formed between the plurality of lenses constituting the projection system 86 may be used.
  • a device for deforming an optical member constituting the projection system 86 or a device for giving a heat distribution to an optical member constituting the projection system 86 may be used.
  • all of the 45 light irradiation devices 80 are provided with an optical characteristic adjustment device.
  • the optical characteristic adjustment device 45 is controlled by the control unit 11 based on the instruction of the main control device 110 (see FIG. 13). Note that the optical characteristic adjustment device may be provided to only a part (one or two or more) of the plurality of light irradiation devices 80.
  • an intensity modulation element capable of changing the intensity of at least one of the plurality of beams generated by the pattern generator 84 and irradiated to the photoelectric layer 60 may be provided inside the projection system 86.
  • the changing of the intensities of the plurality of beams applied to the photoelectric layer 60 includes nulling the intensity of some of the plurality of beams.
  • the projection system 86 may include a phase modulation element capable of changing the phase of at least one of the plurality of beams irradiated to the photoelectric layer 60, or may include a polarization modulation element capable of changing the polarization state. good.
  • the optical axis of the shaping optical system 82 b of the illumination system 82 (coincident with the optical axis of the final lens 96 which is the final optical element) AXi and the optical axis AXp of the projection system 86 are both parallel to the Z axis, but the optical axis AXi and the optical axis AXp may be nonparallel. In other words, the optical axis AXi and the optical axis AXp may intersect at a predetermined angle.
  • the optical axis AXi of the optical system (illumination optical system including the forming optical system 82b) of the illumination system 82 and the optical axis of the projection system 86 (final optical element) All are in parallel with the Z-axis, but are offset (offset from each other) by a predetermined distance in the Y-axis direction.
  • the illumination system 82 irradiates the pattern generator with light (beam) having a rectangular cross section long in the X-axis direction, so the offset amount in the Y-axis direction can be reduced.
  • the lens barrel 86a of the projection system 86 provided in each of the 45 light irradiation devices 80 is held by the supporting member 17 in a positional relationship corresponding to the electron beam optical system 70 of 45, as shown in FIG. More specifically, the support member 17 is formed with through holes 17 a extending in the Z-axis direction of 45 in an arrangement corresponding to the openings 36 a of the 45 of the first plate 36. A lens barrel 86a of a projection system 86 is disposed in each of the 45 through holes 17a.
  • the supporting member 17 is provided with hemispherical projections 21a at three places (only two of which are shown in FIG.
  • a triangular pyramid groove member 21b having a triangular pyramidal concave portion (groove portion) with which the three convex portions 21a respectively engage is provided.
  • the projection system 86 of the support members 17 and 45 is always in a fixed positional relationship with the housing 19 by the three convex portions 21 a and the three triangular pyramid groove members 21 b with which the three convex portions 21 a are engaged.
  • a kinematic coupling is configured which allows for mounting.
  • casing 19 is not restricted to the above-mentioned kinematic coupling.
  • the lens barrel 83 of the illumination system 82 provided in each of the 45 light irradiation devices 80 has a minute drive mechanism 13 provided at its lower end (see FIG. 7; It is held by the supporting member 15 in a positional relationship corresponding to the lens barrel 86a of 45 via the connector. More specifically, in the supporting member 15, 45 through holes 15a are formed in a positional relationship corresponding to 45 through holes 17a, and a minute drive provided at the lower end of the lens barrel 83 inside each through hole 15a. The mechanism 13 is inserted and fixed to the support member 15. Although each of the 45 micro drive mechanisms 13 is shown in a simplified manner in FIG.
  • the corresponding lens barrel 83 can be moved in three degrees of freedom with respect to the support member 15 in the X axis, Y axis, and ⁇ z directions.
  • the micro drive mechanism 13 may move the lens barrel 83 in the two degrees of freedom direction (X-axis direction and Y-axis direction), or may move the lens barrel 83 in five degrees of freedom or six degrees of freedom. It may be Further, the arrangement of the minute drive mechanism 13 is not limited to the lower end portion of the lens barrel 83.
  • the support member 15 is supported by the support member 17 and the housing 19 so as not to be heavy.
  • the support member 15 has a plurality of, for example, three suspension supports provided with an anti-vibration function from an upper frame (not shown) of the body frame independently of the housing 19 on which the support member 17 is mounted. It is suspended and supported at three points via a mechanism.
  • the space in which the light irradiation device 80 of the optical unit 18B is disposed is an atmospheric pressure space or a space slightly positive pressure than the atmospheric pressure.
  • the XY plane of the support member 17 (45 projection systems 86 (lens barrel 86a)) and the support members 15 (illumination system 82 and pattern generator 84 (lens barrel 83) of 45).
  • a relative position measurement system 29 capable of measuring relative position information of the inside is provided (see FIG. 13).
  • the relative position measurement system 29 is constituted by a pair of two-dimensional encoder systems 29a and 29b shown in FIGS.
  • a pair of scale members 33a and 33b are fixed in the vicinity of both end portions in the Y-axis direction and face each of the scale members 33a and 33b.
  • the heads 35 a and 35 b are fixed to the lower surface of the support member 15.
  • reflection type two-dimensional diffraction gratings having a pitch of, for example, 1 ⁇ m are formed, each having a periodic direction in two directions intersecting in the XY plane, for example, an X-axis direction and a Y-axis direction.
  • the head 35a forms a two-dimensional encoder 29a that measures positional information of the support member 17 and the electron beam optical unit 18A in the X-axis direction and the Y-axis direction based on the detection center of the head 35a using the scale 33a.
  • the head 35b is a two-dimensional encoder that measures positional information of the support member 17 and the electron beam optical unit 18A in the X-axis direction and the Y-axis direction based on the detection center of the head 35b using the scale member 33b. Configure 29b.
  • the position information measured by the pair of two-dimensional encoders 29a and 29b is supplied to the main controller 110, and the main controller 110 supports the support member based on the position information measured by the pair of two-dimensional encoders 29a and 29b. 15, relative positions of the support member 17 and the electron beam optical unit 18A in the X axis direction, Y axis direction and ⁇ z direction, that is, the illumination system portion of the optical unit 18B, the projection system portion of the optical unit 18B and the electron beam optical unit
  • the relative position in the direction of 3 degrees of freedom (X, Y, ⁇ z) with 18A is determined.
  • relative position measurement capable of measuring relative position information in the XY plane of the illumination system portion of the optical unit 18B, the projection system portion of the optical unit 18B, and the electron beam optical unit 18A by the pair of two-dimensional encoders 29a and 29b.
  • a system 29 (see FIG. 13) is configured.
  • the encoder system of the relative position measurement system 29 may not be a two-dimensional encoder system.
  • the scale member of the encoder system may be disposed on the support member 15, and the head may be disposed on the support member 17.
  • the relative position measurement system 29 is not limited to the encoder system, and another measurement system such as an interferometer system may be used.
  • the position of the illumination system portion of the optical unit 18B in the XY plane with respect to the projection system portion (and the electron beam optical unit 18A) of the optical unit 18B is maintained in a predetermined state or set to a desired position,
  • a drive system 25 (not shown in FIGS. 1 and 10, see FIG. 13) provided with a 3-axis actuator is provided.
  • Main controller 110 controls drive system 25 based on relative position information acquired by relative position measurement system 29.
  • the X-axis direction and Y-axis position of the illumination system portion of the optical unit 18B with respect to the projection system portion (and the electron beam optical unit 18A) of the optical unit 18B and the rotation angle around the Z axis are constant. It is maintained at (predetermined state) or adjusted to a desired state.
  • the length S mm in the X-axis direction and the ⁇ -axis direction on the light receiving surface of the pattern generator 84 during exposure is irradiated inside a rectangular area of length T mm, and the light from the pattern generator 84 is irradiated to the photoelectric element 54 by the projection system 86 having a reduction ratio of 1 ⁇ 4 by this irradiation, and the light is generated by the irradiation.
  • An electron beam is irradiated to a rectangular area (exposure field) on the image plane (wafer surface aligned with the image plane) through an electron beam optical system 70 having a reduction ratio of 1/50.
  • the exposure apparatus 100 of the present embodiment is configured to include the light irradiation device 80 (projection system 86), the corresponding photoelectric device 54, and the corresponding electron beam optical system 70.
  • the multi-beam optical system 200 (see FIG. 13) of a straight cylinder type with a magnification of 1/200 is provided 45 in the above-described matrix arrangement in the XY plane. Therefore, the optical system of the exposure apparatus 100 of the present embodiment is a multi-column electron beam optical system having 45 reduction optical systems with a reduction ratio of 1/200.
  • FIG. 13 of the multi-beam optical system 200 i of 45 only one multi-beam optical system 200 is representatively illustrated.
  • the exposure apparatus 100 a wafer with a diameter of 300 mm is to be exposed, and the 45 electron beam optical systems 70 are disposed to face the wafer, so the arrangement interval of the optical axes AXe of the electron beam optical system 70 is an example. It is 43 mm.
  • the exposure area handled by one electron beam optical system 70 is a rectangular area of 43 mm ⁇ 43 mm at maximum, so as described above, the movement stroke of wafer stage WST in the X-axis direction and Y-axis direction is 50 mm is enough.
  • the number of electron beam optical systems 70 is not limited to 45, and can be determined based on the diameter of the wafer, the stroke of the wafer stage WST, and the like.
  • an opening is provided in the wall of the boundary between the first chamber (first vacuum chamber) 34 and the second chamber (second vacuum chamber) 72. Is formed, and this opening can be opened and closed by the gate valve 43. That is, the first vacuum chamber 34 and the second vacuum chamber 72 can communicate with each other by opening the gate valve 43.
  • the gate valve 43 is opened and closed by moving the operation member 44 shown in FIG. 1 (and FIG. 10) up and down. In FIG. 10, the second vacuum chamber 72 is not shown.
  • the vertical movement of the operation member 44 is performed by the main control device 110 via, for example, a pneumatic (or electromagnetic) second drive unit 49 (see FIG. 13).
  • the gate valve 43 may be opened or closed. It is good. However, when the gate valve 43 is normally opened, the second vacuum chamber 72 is opened to the atmosphere through an open / close door (not shown), such as at the time of maintenance of the arm 42a described later inside the second vacuum chamber 72. If necessary, in order to protect the photoelectric layer 60 of the photoelectric element 54 present inside the first vacuum chamber 34, the main control device 110 controls the second drive unit 49 to lower the operation member 44. The gate valve 43 is closed by driving.
  • a plurality of, for example, three, of the above-described transfer systems 42 formed of, for example, vacuum compatible horizontal articulated robots are attached to a housing 45 in which the second vacuum chamber 72 is formed.
  • the robot arm (arm portion) 42 a of each transfer system 42 can be entirely accommodated in the second vacuum chamber 72 in a contracted state.
  • the drive unit 42 b that moves the arm unit 42 a of the transfer system 42 is disposed on the top of the housing 45.
  • the drive portion 42 b and the arm portion 42 a are connected by a drive shaft 42 c extending in the Z-axis direction capable of vertical movement and rotation.
  • the drive shaft 42 c connects the drive portion 42 b and the arm portion 42 a via an opening formed in the ceiling portion of the housing 45.
  • a seal member seals between the drive shaft 42 c and the opening of the housing 45.
  • each of the three transfer systems 42 transfers a transfer target such as the photoelectric device unit 50 between the closest holder 88 and the second chamber 72 among the plurality of holders 88.
  • one of the transport systems 42 is responsible for transport for the holders 88 that are at equal distances from the plurality of transport systems 42.
  • the housing 45 and the transport system 42 are suspended and supported from the upper frame (not shown) of the body frame together with the housing 19 by a plurality of, for example, three suspension support mechanisms for suspending and supporting the housing 19.
  • FIG. 12A shows a cross-sectional view taken along line AA of FIG. 1 which is partially omitted.
  • FIG. 12A is a view showing the vicinity of the end portion on the ⁇ X side by omitting the portion on the + X side in the cross-sectional view taken along the line AA of FIG.
  • the ceiling of the second vacuum chamber 72 is provided with a unit holding member 188 consisting of a pair of L-shaped members arranged symmetrically, and the unit holding member 188 is A semi-finished unit 50A which is a semi-finished product of the photoelectric device unit 50 is held.
  • the semi-finished unit 50A refers to a photoelectric element unit before vapor deposition of the photoelectric layer, that is, a unit in which the base member 53 before vapor deposition of the photoelectric layer 60 and the extraction electrode 55 are integrated.
  • the base member 53 of the semifinished unit 50A shown in FIGS. 12A and 12B includes the base 56 and the light shielding film 58 having a large number of apertures 58a formed on the light emitting surface of the base 56. Although formed, the photoelectric layer is not formed on the lower surface of the base member 53 (the surface of the light shielding film 58).
  • a heating device (referred to as an evaporation source or a deposition device) used to deposit an alkaline photoelectric layer on the base member 53 (base 56 and the light shielding film 58) of the semifinished unit 50A. Can also be provided).
  • the heating device is used to heat the alkali metal generator so as to generate alkali metal vapor, that is, to initiate the oxidation-reduction reaction of the alkali metal generator as a deposition material (which may also be called a deposition source). .
  • the heating device will be described later.
  • an alkali metal generator containing an oxidizing agent composed of tungstate (or chromate) selected according to the photoelectric layer to be manufactured and a reducing agent can be used.
  • a reducing agent for example, Sb (antimony), K (potassium), NA (sodium), Si (silicon), Zr (zirconium), Al (aluminum) or the like is used.
  • Such alkali metal generators are disclosed in detail, for example, in WO 2004/066337.
  • the shape of the alkali metal generating agent is not particularly limited, and may be formed into pellets of a predetermined shape, or may be a powder before being formed into pellets or a powder obtained by once forming into pellets and then crushed. good. In the present embodiment, it is assumed that a powdery alkali metal generator before powder forming into a pellet or a powder once formed into a pellet and then pulverized is used.
  • the oxidation-reduction reaction is performed in an atmosphere in which the alkali metal generator is adjusted to a predetermined degree of vacuum.
  • the alkali metal generator is adjusted to a predetermined degree of vacuum.
  • heating to a predetermined temperature is 10 ⁇ 6 to 10 ⁇ 1 Pa, preferably 10 ⁇ 6 to 10 ⁇ 3 Pa, as expressed by the partial pressure of the residual gas in the atmosphere. It means an atmosphere that is.
  • the heating device for generating the alkali metal vapor is not particularly limited as long as it has a configuration capable of heating the alkali metal generating agent in the above atmosphere.
  • a heating device 160 (see FIG. 13) configured to heat the alkali metal generator by high frequency heating is provided from the viewpoint of heating the alkali metal generator easily and uniformly.
  • the heating device 160 is controlled by the main controller 110. An exemplary configuration of the heating device 160 will be further described later.
  • an alkali metal generating agent 300 as a vapor deposition material (vapor deposition source) is placed.
  • the bottom wall of the housing 45 is provided with a movable wall 162 made of metal surrounding the arrangement area of the alkali metal generating agent 300.
  • the movable wall 162 is formed of a cylindrical member having a circular or rectangular shape in a plan view, and can move up and down between a first position shown in FIG. 12 (B) and a second position shown in FIG. 12 (A).
  • the deposition material is prevented from adhering to a place other than the surface on one side of the base member 53 to be deposited during deposition.
  • the movable wall 162 is moved up and down by a drive mechanism 164 (not shown in FIGS. 12B and 12A, see FIG. 13).
  • the drive mechanism 164 is controlled by the main controller 110.
  • the movable wall 162 incorporates a high frequency coil (not shown), and a high frequency power supply (not shown) for supplying a high frequency current is connected to the high frequency coil.
  • 13 includes a high frequency coil built in the movable wall 162 and a high frequency power supply connected to the high frequency coil, and is not shown in the heating device 160 (FIG. 12A, FIG. 12B, etc.) See) is configured.
  • the high frequency coil is substantially closest to the mounting area of the alkali metal generating agent 300 which is a vapor deposition material.
  • a fixed high frequency coil which does not move up and down may be disposed on the inner peripheral side of the movable wall 162 without providing the high frequency coil on the movable wall 162. In this case, the movable wall 162 may not be provided.
  • a carrier capable of storing a plurality (or one) of the photoelectric device unit 50 and the semi-finished unit 50A is provided.
  • FIG. 13 is a block diagram showing the input / output relationship of main controller 110 that mainly configures the control system of exposure apparatus 100.
  • Main controller 110 centrally controls components of exposure apparatus 100 including a microcomputer and the like shown in FIG.
  • the light irradiation device 80 connected to the control unit 11 includes a light source (laser diode) 82 a and a diffraction in addition to the optical characteristic adjustment device controlled by the control unit 11 based on an instruction from the main control device 110 Including optical elements and the like.
  • the electron beam optical system 70 connected to the control unit 11 is a pair of electromagnetic lenses 70 a and 70 b and electrostatic multipoles 70 c controlled by the control unit 11 based on an instruction from the main control device 110 (first The electrostatic lens 70 c 1 and the second electrostatic lens 70 c 2 ) are included.
  • reference numeral 500 denotes an exposure unit configured to include the above-described multi-beam optical system 200, the control unit 11, the backscattered electron detection device 106, and the signal processing device 108. In the exposure apparatus 100, an exposure unit 500 is provided.
  • the semi-finished unit 50A is held by the unit holding member 188 and the movable wall 162 is in the second position. I assume. At this time, the atmosphere inside each of the second vacuum chamber 72 and the first vacuum chamber 34 is maintained at the above-mentioned predetermined atmosphere.
  • the drive mechanism 164 is controlled by the main control unit 110, and the movable wall 162 is raised and driven to the first position shown in FIG. 12 (B).
  • main controller 110 starts heating of alkali metal generating agent 300 using heating device 160.
  • the oxidation-reduction reaction of the alkali metal generator 300 starts to progress, and as shown in FIG. 12C, alkali metal vapor is generated and the base of the semi-finished unit 50A held by the unit holding member 188 It starts to adhere to one surface of the member 53, that is, one surface (lower surface) of the substrate 56 on which the light shielding film 58 is formed.
  • Main controller 110 maintains the heating state of alkali metal generating agent 300 using heating device 160 for a predetermined time from the start of heating, and stops the heating after a predetermined time has elapsed. Thereby, the deposition of the photoelectric layer 60 with respect to the semi-finished unit 50A is completed, and the semi-finished unit 50A becomes a finished product, ie, the photoelectric element unit 50.
  • recovery of the photoelectric element unit 50 to be replaced held by the holder 88 in the first vacuum chamber 34 is from the start to the end of the heating of the alkali metal generating agent 300 described above. Is done as follows.
  • the second control unit 49 is controlled by the main control unit 110, the operation member 44 is driven upward, and the gate valve 43 is opened (see FIG. 15). .
  • the transport system 42 is controlled by the main controller 110, and as shown in FIG. 15, the hand portion 42d provided in the arm portion 42a is positioned below the photoelectric device unit 50 to be collected.
  • the photoelectric device unit 50 to be collected is, for example, a photoelectric device unit having a deteriorated photoelectric layer.
  • the hand unit 42 d (arm unit 42 a) is slightly raised and driven, so that the photoelectric device unit 50 is lifted by the hand unit 42 d and separated from the holder 88.
  • FIG. 16 shows the state immediately after unloading.
  • the arm portion 42a is driven to contract, whereby, as shown in FIG. 17, for example, the used photoelectric device unit 50 with the deteriorated photoelectric layer is recovered in the second vacuum chamber 72.
  • the collected used photoelectric element unit 50 is returned to the empty storage rack of the carrier by the arm part 42a.
  • the main control device 110 controls the drive mechanism 164 to lower the movable wall 162 to the second position.
  • the arm portion 42 a (robot arm) of the transfer system 42 can be inserted below the photoelectric device unit 50 (finished product) held by the unit holding member 188.
  • the transport system 42 is controlled by the main controller 110, and the photoelectric device unit 50 is carried out of the unit holding member 188 using the arm unit 42a (hand unit 42d).
  • the carried out photoelectric element unit 50 is loaded on the holder 88 according to the opposite procedure to the above-mentioned collection of the photoelectric element unit to be replaced, while being held by the hand portion 42d of the transport system 42.
  • a new semi-finished unit 50A to be deposited of the next photoelectric layer is taken out of the carrier and loaded on the unit holding member 188.
  • the semi-completed unit 50A loaded to the unit holding member 188 stands by until a condition requiring replacement of the photoelectric element unit occurs.
  • the deposition of the photoelectric layer for the semi-finished unit 50A, the recovery of the used photoelectric device unit 50 with the deteriorated photoelectric layer, and the loading of the completed photoelectric device unit 50 (finished product) onto the holder 88 Although described as a series of processes, it is not necessary to necessarily perform the exchange operation of the photoelectric element unit and the deposition operation of the photoelectric layer to the semi-finished unit in a series of operations.
  • a photoelectric element unit in which the deposition of the photoelectric layer is completed independently is always prepared in a plurality of carriers, and the photoelectric element unit in which the photoelectric layer is deteriorated and the photoelectric element prepared in the carrier is prepared immediately when the necessity for replacement of the photoelectric element occurs. It is good also as exchange with a unit.
  • the gate valve 43 can be closed, and the deposition operation of the photoelectric layer can be performed in parallel with the irradiation of the wafer W with the electron beam from at least one of the 45 electron beam optics 70.
  • the replacement of the photoelectric element unit and the deposition of the photoelectric layer are performed separately, that is, the deposition of the photoelectric layer on the semi-finished unit is performed without considering the replacement of the photoelectric element unit. It becomes possible.
  • main control device 110 can generate halftones using the pattern generator 84 itself. Therefore, main controller 110 corresponds to the in-plane illuminance distribution on the electron emission surface of photoelectric layer 60 by adjusting the intensity of each light beam irradiated to photoelectric layer 60 at the time of exposure described later. It is possible to adjust the illuminance distribution in the exposure field on the wafer surface, that is, to control the dose.
  • the intensities of the plurality of electron beams generated from the electron emission surface of the photoelectric layer 60 by photoelectric conversion is performed so that the amount of current
  • the adjustment of the beam intensity may be performed in the illumination system 82, may be performed by the pattern generator 84, or may be performed in the projection system 86.
  • the beam intensity (the illuminance of the electron beam, the beam current amount) of at least a part of the plurality of electron beams generated from the electron emission surface of the photoelectric layer 60 by photoelectric conversion may be different from the other electron beam intensities.
  • the intensity of a plurality of light beams irradiated to the photoelectric layer 60 may be adjusted.
  • the exposure apparatus 100 is used, for example, in complementary lithography.
  • a wafer on which a line and space pattern (L / S pattern) is formed is subjected to exposure by using double patterning or the like in immersion exposure using an ArF light source, and the line pattern is cut. It is used to form a cut pattern.
  • the exposure apparatus 100 it is possible to form a cut pattern corresponding to each of 72000 apertures 58a formed in the light shielding film 58 of the photoelectric element 54.
  • the flow of processing on a wafer in the present embodiment is as follows.
  • the wafer W before exposure to which the electron beam resist has been applied is placed on the wafer stage WST in the stage chamber 10 and is attracted by the electrostatic chuck.
  • Electrons from each electron beam optical system 70 for at least one alignment mark formed on a scribe line (street line) corresponding to each of, for example, 45 shot areas formed on wafer W on wafer stage WST The beam is irradiated, and the backscattered electrons from at least one alignment mark are detected by at least one of backscattered electron detectors 106 x 1 , 106 x 2 , 106 y 1 , 106 y 2 , and all-point alignment measurement of wafer W is performed. based on the results of the all points alignment measurement, the plurality of shot areas on the wafer W 1, exposure using a 45 exposure unit 500 (multi-beam optical system 200) is started.
  • the irradiation timing (on / off) of each beam is controlled while scanning the wafer W (wafer stage WST) in the Y-axis direction.
  • alignment marks formed corresponding to a part of the shot areas of the wafer W may be detected without performing the all-point alignment measurement, and 45 shot areas may be exposed based on the detection result.
  • the number of exposure units 500 and the number of shot areas are the same, but may be different. For example, the number of exposure units 500 may be smaller than the number of shot areas.
  • the alignment mark may be detected outside the stage chamber 10. In this case, it is not necessary to detect the alignment mark in the stage chamber 10.
  • the exposure using the ribbon row A is started on a continuous 6000-pixel region of a certain row (referred to as a K-th row) aligned in the X-axis direction on the wafer.
  • a K-th row a continuous 6000-pixel region of a certain row aligned in the X-axis direction on the wafer.
  • the beam reflected by the ribbon row A is at the home position.
  • the exposure to the same 6000 pixel region is continued while deflecting the beam in the + Y direction (or -Y direction) by making the scan of the wafer W in the + Y direction (or -Y direction) from the start of exposure follow.
  • wafer stage WST advances at a velocity V [nm / s], for example Ta x V [nm].
  • V [nm / s] for example Ta x V [nm].
  • Ta ⁇ V 96 [nm].
  • the beam is returned to the home position while the wafer stage WST scans at 24 nm in the + Y direction at a velocity V. At this time, the beam is turned off so that the resist on the wafer is not actually exposed.
  • the continuous 6000 pixel area on the (K + 12) th row has the same position as the 6000 pixel area on the Kth row at the start of exposure. It is in.
  • the continuous (6000 K) pixel region on the (K + 12) th row is exposed while deflecting the beam to the wafer stage WST.
  • the exposure apparatus 100 is used for complementary lithography and is used for forming a cut pattern for an L / S pattern formed on the wafer W, for example, with the X-axis direction as the periodic direction.
  • a beam reflected by an arbitrary ribbon 84b can be turned on to form a cut pattern.
  • 72000 beams may or may not be simultaneously turned on.
  • main scanning drive 110 controls stage drive system 26 based on the measurement values of position measurement system 28 during scanning exposure to wafer W based on the above-described exposure sequence.
  • the light irradiation device 80 and the electron beam optical system 70 are controlled via the control unit 11 of each exposure unit 500. At this time, based on an instruction from the main control unit 110, the control unit 11 performs the above-described dose control as necessary.
  • the exposure apparatus 100 can hold the photoelectric element unit 50 in which the photoelectric element 54 and the extraction electrode 55 for accelerating the electron beam EB generated from the photoelectric element 54 are integrated.
  • a plurality of holders 88 are provided, and a first chamber (first vacuum chamber) 34 capable of evacuating the inside, and an electron beam EB generated from the photoelectric element 54 are targets through vacuum spaces inside the first vacuum chamber 34
  • a transport system 42 capable of transporting the photoelectric device unit 50 between each of the first and second vacuum chambers 72 and 88.
  • the photoelectric element 54 provided in the photoelectric element unit 50 has a base member 53 on one surface of which the photoelectric layer 60 is formed by vapor deposition.
  • the base member 53 has a base (also called a blank) 56 made of a transparent member, and a light shielding film 58 having a plurality of apertures 58 a formed on one surface (surface on the light emission side) of the base 56.
  • a unit holding member 188 capable of holding any of the later photoelectric element units 50 (finished products) is provided.
  • the alkali metal generating agent 300 which is a deposition source (deposition material) of the photoelectric layer deposited on the semifinished unit 50A held by the unit holding member 188, is heated.
  • the heating device (evaporation source) 160 for evaporating and evaporating is disposed, and the photoelectric layer 60 is deposited on one surface of the base member 53 of the semifinished unit 50A inside the second vacuum chamber 72 to complete the photoelectric element as a finished product
  • the unit can be manufactured. That is, the second vacuum chamber 72 doubles as a deposition chamber. However, a dedicated deposition chamber provided with a unit holding member 188 and a heating device 160 may be provided separately from the second vacuum chamber 72. In this case, the photoelectric element unit 50 may be transported from the unit holding member 188 in the deposition chamber to the holder 88 in the first vacuum chamber 34 via the second vacuum chamber 72. It may be provided next to the vacuum chamber 34, and a gate valve may be provided between the two chambers.
  • the transport system 42 can transport the photoelectric device unit 50 between the unit holding member 188 and the holder 88. Therefore, in the exposure apparatus 100, the transport system 42 unloads the used photoelectric device unit 50 with the deteriorated photoelectric layer from the holder 88 and carries it into the second vacuum chamber 72, and the second vacuum It is possible to unload the photoelectric device unit 50, which is a finished product of the deposition of the photoelectric layer 60 on the base member 53 inside the chamber 72, from the unit holding member 188 and load it onto the holder 88. In particular, immediately before arrival of replacement time of the photoelectric device unit 50 held by the unit holding member 188, the photoelectric layer 60 is vapor-deposited on the base member 53 in the second vacuum chamber 72 to complete the completed photoelectric device unit 50. When replacing the photoelectric conversion unit with the deteriorated photoelectric conversion unit 50, the life of the photoelectric conversion unit of the photoelectric conversion unit 50 used after the replacement can be longest.
  • the exposure apparatus 100 includes the exposure unit 500 configured to include the multi-beam optical system 200, the control unit 11, the backscattered electron detection device 106, and the signal processing device 108. (See Figure 13).
  • the multi-beam optical system 200 includes a light irradiation device 80 and an electron beam optical system 70.
  • the electron beam optical system 70 of the exposure apparatus 100 irradiates the wafer W with electrons emitted from the photoelectric element 54 as the plurality of electron beams by irradiating the photoelectric element 54 with a plurality of light beams. Therefore, according to the exposure apparatus 100, since there is no blanking aperture, the source of generation of complex distortion due to charge-up and magnetization is fundamentally eliminated, and generation of waste electrons (reflected electrons) not contributing to the exposure of the target is suppressed. It is possible to eliminate long-term instability factors.
  • main controller 110 performs scanning (movement) of wafer stage WST holding wafer W in the Y-axis direction via stage drive system 26. Control.
  • the main control unit 110 passes n (for example, 72000) apertures 58 a of the photoelectric element 54 for each of the m (for example, 45) multi-beam optical systems 200 of the exposure unit 500.
  • the irradiation state (on state and off state) of the n beams is changed for each aperture 58a, and the intensity of the light beam is adjusted for each beam using the pattern generator 84.
  • the first electrostatic lens 70c 1 of the electrostatic multipole 70c caused by changes in the total current amount, reduction in the X-axis direction and the Y-axis direction due to the Coulomb effect magnification (changes in) Correct, fast, and individually.
  • the second electrostatic lens 70c 2 correction (light pixels of the optical pattern, i.e. the projection position deviation of the cut pattern to be described later) irradiation position shift of the beam caused by various vibrations or the like in a batch Do.
  • a desired line of a fine L / S pattern having an X-axis direction as a periodic direction which is formed in advance in, for example, 45 shot areas on the wafer by double patterning using an ArF immersion exposure apparatus, for example. It becomes possible to form a cut pattern at a desired position on the top, and high precision and high throughput exposure is possible.
  • the plurality of apertures 58 a in each multi-beam optical system 200 is turned on, in other words, regardless of the combination of the beams turned on, for example, 45 shot areas on the wafer. It is possible to form a cut pattern at a desired position on a desired line of a fine L / S pattern in which the periodic direction is the X axis direction formed in advance.
  • the present invention is not limited to this, and instead of or in addition to the deposition of the photoelectric layer 60 for the semi-finished unit 50A, the deposition of the photoelectric layer may be performed on the used photoelectric element unit 50 in the deposition chamber. That is, in the deposition chamber, both of the deposition of the photoelectric layer 60 for the semi-finished unit 50A and the deposition of the photoelectric layer for the used photoelectric device unit 50 may be performed, but only one of them may be performed. Note that the operation of depositing the photoelectric layer on the used photoelectric device unit 50 may be referred to as repair of the photoelectric layer or recovery of the photoelectric layer.
  • the used photoelectric element unit 50 is transported by the transport system 42 from the holder 88 onto the unit holding member 188 in the deposition chamber (that is, recovered), and is held by the unit holding member 188. Deposition is performed.
  • the deposition for the used photoelectric element unit is not only the photoelectric element unit in which the photoelectric layer is deteriorated and becomes unusable but also the photoelectric layer is not deteriorated to the extent that it can not be used, but there is a history of use or used You may implement with respect to the photoelectric element unit which became. Note that a peeling chamber which can peel off a used photoelectric layer may be further provided.
  • deposition (overcoating) of the photoelectric layer on the collected photoelectric device unit 50 may be performed without peeling off the used photoelectric layer, or photoelectric conversion may be performed after peeling of the used photoelectric layer. It is also possible to deposit a layer.
  • the pattern generator 84 is exemplified by GLV.
  • the pattern generator 84 may be a reflective liquid crystal display device or a digital micromirror device (Digital It may be configured using a reflective spatial light modulator having a plurality of movable reflective elements such as Micromirror Device) and PLV (Planer Light Valve).
  • FIG. 18 schematically shows the arrangement of an exposure apparatus 1000 according to the second embodiment.
  • the same reference numerals are used for constituent parts that are the same as or equivalent to those of the first embodiment described above, and the description thereof will be omitted.
  • An exposure apparatus 1000 according to the second embodiment is different from the exposure apparatus 100 according to the first embodiment in that an optical system 118 is used instead of the optical system 18 described above.
  • the configuration and the like of the other parts are the same as in the exposure apparatus 100. The following description will focus on the differences.
  • the optical system 118 includes an electron beam optical unit 18A suspended and supported from an upper frame (not shown) of the body frame by a suspension support mechanism (not shown), and a first vacuum forming a part of the electron beam optical unit 18A. And an optical unit 117 mounted on a housing 19 partitioning the chamber 34.
  • the optical unit 117 is a light irradiation of 45 held by the holding member 120 in an arrangement corresponding to the arrangement of the holding member 120 fixed on the housing 19 and the 45 electron beam optical systems 70 provided in the electron beam optical unit 18A. And an apparatus 180.
  • through holes 120a extending in the Z-axis direction of 45 are formed in an arrangement corresponding to the arrangement of the 45 electron beam optical systems 70, and the light irradiation devices 180 are arranged in the respective through holes 120a.
  • the light irradiation device 180 includes a light emitting device 184 and a microlens array 184 c which is a type of optical element provided on the light emitting side of the light emitting device 184 as shown in FIG.
  • a light emitting device mainly composed of a self light emitting contrast device array is used as the light emitting device 184. Therefore, in the following, the self light emitting contrast device using the same reference numerals as the light emitting device 184 Also referred to as array 184.
  • a light emitting device 184 ie, a self light emitting contrast device array 184, is a programmable patterning device built in a semiconductor substrate and arranged in a one or two dimensional array form and having a plurality of individually controllable light emitting parts is there.
  • the self-luminous contrast device array 184 is formed by laminating a plurality of compound semiconductor constituent material layers on a substrate, and then selectively removing each compound semiconductor constituent material layer by wet etching to form each light emitting element (light emitting portion)
  • the semiconductor layer is formed into a mesa structure, or the light emitting elements are separated.
  • the light emitting device 184 includes, for example, a pn junction of a semiconductor with a double hetero junction (structure), and the light emitting portion 184 a and the plurality of light emitting portions 184 a arranged individually in an XY two-dimensional array on the semiconductor substrate. And a plurality of CMOS drive circuits 184b to be driven.
  • CMOS drive circuit 184b since a micro LED, which is a type of self-luminous contrast device, is used as the plurality of light emitting portions 184a, hereinafter, the micro LED 184a is described using the same reference numeral as the light emitting portion. .
  • the CMOS drive circuit 184b is simplified and shown as a mere transistor.
  • reference numeral 185 schematically shows interconnections connected to a plurality of CMOS drive circuits 184b.
  • the light emitting device 184 can individually control the intensity of the light beam LB from each of the plurality of micro LEDs 184a by controlling the voltage applied thereto, and the intensity is controlled to zero, that is, the light beam LB Light emission stop. For this reason, the light emitting device 84 can generate an optical pattern composed of, for example, a bright and dark pattern.
  • a light emission part not only micro LED but another radiation emission diode, for example, a light emitting diode, an organic LED, a polymer LED, a laser diode, etc. can also be used.
  • the light emitting portion is not limited to the radiation emitting diode, but may be another self-emitting contrast device such as a vertical cavity surface emitting laser (VCSEL) or a vertical external cavity surface emitting laser (VECSEL).
  • VCSEL vertical cavity surface emitting laser
  • VECSEL vertical external cavity surface emitting laser
  • These self-luminous contrast devices emit light beams in a direction perpendicular to the semiconductor substrate, ie, in a direction perpendicular to the surface of the substrate 56 of the photoelectric element 54, and therefore, as a light emitting unit 184a in FIG. It is possible to use these self-luminous contrast devices instead of micro LEDs.
  • the microlens array 184c is provided corresponding to each of a plurality of light emitting units, in this case, the micro LEDs 184a, which is a type of self-luminous contrast device, and crosses one another in the XY plane corresponding to the arrangement of the plurality of micro LEDs 184a. And a plurality of microlenses (optical members, optical elements) 186 arranged and integrated in a two-dimensional array in two directions (for example, the X-axis direction and the Y-axis direction). Each of the plurality of microlenses 186 of the microlens array 184c condenses the light beam LB, which is divergent light generated by the corresponding micro LED 84a, and converts it into parallel light.
  • the micro LEDs 184a which is a type of self-luminous contrast device
  • the light irradiation device 180 is disposed above the vacuum barrier 81 via a predetermined clearance (gap), and below the vacuum barrier 81 via a predetermined clearance (gap).
  • a photoelectric element 54 which constitutes a part is disposed.
  • the exposure apparatus 1000 according to the second embodiment is the same as the exposure apparatus 100 according to the first embodiment described above except for the optical unit 117.
  • the photoelectric device unit 50 having the photoelectric device 54 may be supported at a predetermined position inside the housing 19 by the holder 88, but the holder 88 is configured to be movable with respect to the housing 19, and not shown. With the vacuum compatible actuator, the holder 88 and the photoelectric device unit 50 may be movable in the XY plane. In the latter case, each micro LED 184a of the light irradiation device 180 may correspond to the aperture 58a of the photoelectric element 54, but the invention is not limited thereto.
  • the number of micro LEDs 184a and the number of apertures 58a are not limited thereto. It may be different. That is, more apertures 58a may be formed in the light shielding film 58 than the micro LEDs 184a, or a smaller number of apertures 58a may be formed in the light shielding film 58 than the micro LEDs 184a.
  • the light shielding film 58 of the photoelectric element 54 may be formed with a smaller number of rows of apertures 58a than the number of rows of the micro LEDs 184a.
  • at least one row of the row of micro LEDs 184a may be a backup LED row.
  • the light shielding film 58 of the photoelectric element 54 may be formed with a row of apertures 58 a in a number greater than the number of rows of the micro LEDs 84 a.
  • at least one row of the rows of the apertures 58a may be a row of apertures for backup.
  • the exposure apparatus 1000 includes a light irradiation apparatus 180 in place of the light irradiation apparatus 80.
  • the multi-beam optical system 200 is provided by the light irradiation apparatus 180 and the electron beam optical system 70.
  • the exposure apparatus 1000 according to the second embodiment described above can obtain the same effects as those of the exposure apparatus 100 according to the first embodiment described above.
  • the size of the apparatus can be reduced because the size of the apparatus can be significantly reduced.
  • the light irradiation device 180 includes the self-emission contrast device array (light emitting element) 184 and the microlens array 184 c provided on the light emission surface side thereof.
  • the light irradiation device 180 may not necessarily have an optical member such as the microlens array 184 c.
  • each light irradiation device 180 is disposed on the opposite side to the photoelectric element 54 (photoelectric element unit 50) via the vacuum dividing wall 81 of the first vacuum chamber 34 .
  • the light emitting device 184 may form a part of the vacuum barrier 81.
  • the light irradiation device 180 may not have the microlens array 184c.
  • the light emitting device is configured by the light emitting device 184, but at least a part of the light emitting device 184 may form a part of the vacuum dividing wall 81,
  • the size of the holder 88 in the height direction may be adjusted so that the base material 56 of the above becomes closer.
  • the light irradiation device 180 includes, as a light emitting device, a self light emitting contrast device array having a plurality of light emitting units that emit light in a direction perpendicular to the semiconductor substrate, such as a radiation emitting diode, VCSEL or VECSEL.
  • a light emitting device can be configured using a self-luminous contrast device array having a plurality of light emitting units emitting light parallel to the semiconductor substrate as a light emitting device.
  • a plurality of photonic crystal lasers (hereinafter, appropriately referred to as photonic lasers) having a double hetero structure which is fabricated on a semiconductor substrate and arranged in an XY two-dimensional array as a light emitting unit, and a plurality of photonics
  • a self light emitting contrast device array (light emitting device) having a plurality of CMOS drive circuits for individually driving lasers can be used.
  • a photonic laser is an edge-emitting laser that emits a light beam in a direction parallel to the plane of the substrate inside a semiconductor substrate, so for use in a self-luminous contrast device array, the light beam is extracted out of plane There is a need.
  • the timing of the end of heating is determined based on the elapsed time from the start of heating of the alkali metal generating agent 300 which is the vapor deposition material, but the present invention is not limited to this.
  • the heating completion timing may be determined while monitoring the progress of deposition.
  • the second vacuum chamber 72 in which at least a part of the transfer system 42 is provided doubles as an evaporation chamber.
  • a deposition chamber may be provided separately from the second vacuum chamber 72.
  • the carrier system 42 via the second vacuum chamber 72, between the deposition chamber and the first vacuum chamber 34, or between the deposition chamber and the carrier in the second vacuum chamber 72, the carrier Between the first vacuum chamber 34 and the first vacuum chamber 34 and the carrier, transportation of a new photoelectric device unit 50 or a used photoelectric device unit 50 is performed.
  • FIG. 21 shows a housing 145 for partitioning the deposition chamber 172 according to the present modification and the internal configuration thereof.
  • a recess 145a of a predetermined depth is formed in the ceiling portion of the housing 145, and an opening 145b having, for example, a circular or square plan view is formed on the inner bottom surface of the recess 145a.
  • a holding member 147 that holds the light source unit 146A and the vacuum dividing wall 146B side by side in the vertical direction is inserted into the recess 145a substantially without a gap.
  • the holding member 147 surrounds the whole of the side surfaces of the light source part 146A and the vacuum bulkhead 146B.
  • the vacuum bulkhead 146B is made of a light transmitting member such as quartz glass.
  • the above-mentioned unit holding member 188 is provided on the ceiling portion of the housing 145, and the unit holding member 188 holds the semi-finished unit 50A.
  • the light source unit 146A has, for example, a laser diode as a light source. Therefore, when the laser beam LB is emitted from the light source, the laser beam LB passes through the vacuum partition wall 146B and then passes through the opening 145b to pass through the opening 53b of the base member 53 of the semifinished unit 50A 58). At this time, as shown in FIG. 21, when the photoelectric layer is formed at least inside the aperture 58a formed in the light shielding film 58, electrons are generated by photoelectric conversion of the photoelectric layer, and the electrons are extracted as an extraction electrode It is accelerated at 55 to form an electron beam EB, which travels downward.
  • a laser diode as a light source. Therefore, when the laser beam LB is emitted from the light source, the laser beam LB passes through the vacuum partition wall 146B and then passes through the opening 145b to pass through the opening 53b of the base member 53 of the semifinished unit 50A 58). At this time, as shown in FIG. 21, when the photoelectric
  • a Faraday cup 143 for current measurement is embedded in the bottom wall portion of the housing 145 directly below the opening 145 b.
  • a movable wall 162 which doubles as a part of the heating device 160 described above is provided.
  • an alkali metal generating agent 300 which is a vapor deposition material is placed in a predetermined region inside the movable wall 162 on the top surface of the bottom wall.
  • a powdery alkali metal generator 300 is placed in a ring shape as viewed from above.
  • the Faraday cup 143 covers the inner cup-shaped collecting electrode 151 having the opening 151 a formed on the upper surface, and covers the periphery of the collecting electrode 151. And an outer secondary electron suppression electrode 153 in which a hole 153a is opened, and an insulator 155 is filled between the collection electrode 151 and the secondary electron suppression electrode 153.
  • the secondary electron suppression electrode 153 is for preventing secondary electrons from escaping.
  • the secondary electron suppression electrode 153 is connected to the ground, and an ammeter 157 is connected to the collection electrode 151.
  • N I / e
  • I is the observed current value (amps) and e is the elementary charge (about 1.60 ⁇ 10 ⁇ 19 C). If the measured current value is 1 nanoampere (10 -9 A), about 6 billion ions would be incident on the Faraday cup 143 per second. Because the relationship between the number of charged particles and the current value is direct (as determined by the above equation), the Faraday cup enables accurate measurement.
  • the alkali metal generating agent 300 when the alkali metal generating agent 300 is heated to generate alkali metal vapor and vapor deposition of the photoelectric layer on the semi-finished unit 50A, main control is performed.
  • the device 110 continues to monitor the measurement result of the ammeter 157, and the heating (deposition) is stopped when the measurement result matches the target current value.
  • the photoelectric layer 60 having desired photoelectric conversion efficiency can be formed on one surface of the base member 53 of the semi-finished unit 50A.
  • the housing 145 may be provided instead of the housing 45 described above, or may be provided separately from the housing 45.
  • the transport system 42 (or a transport system similar to the transport system 42) is provided in the case 145 as described above, and in the latter, the transport system 42 (or a transport system similar to the transport system 42)
  • the photoelectric element unit 50 or the semifinished unit 50A is loaded to the unit holding member 188 inside 172, and the photoelectric element unit 50 can be unloaded from the unit holding member 188.
  • the housing 45 and the housing 145 may be configured to be able to be opened and closed via a gate valve.
  • the heating device 160 for vapor deposition and the Faraday cup 143 may be provided in different places (for example, separate chambers). Also in this case, a light source unit or the like may be disposed above the Faraday cup 143.
  • the aperture may not be used.
  • the first embodiment will be described.
  • a light pattern image formed by a pattern generator is projected on a photoelectric element and further converted into an electronic image by the photoelectric element.
  • the image may be reduced and formed on the wafer surface.
  • a photoelectric element in which a photoelectric layer is vapor-deposited on the light emission surface of the base is used as the photoelectric element, and the photoelectric element and the lead-out electrode 55 constitute a photoelectric element unit.
  • the aperture and the photoelectric layer may be integrally formed as in the embodiment described above, or may be disposed to face each other via a predetermined clearance (a gap, a gap).
  • a predetermined clearance a gap, a gap.
  • the drive mechanism which moves only the aperture member in the XY plane, the drive mechanism which moves only the photoelectric element (photoelectric element unit) in the XY plane, the aperture member and the photoelectric element One of the drive mechanisms may be provided to move the element unit integrally in the XY plane. In the case of the former two, the lifetime of the photoelectric layer 60 can be extended.
  • spatial light modulators such as transmissive liquid crystal elements may be used to form a plurality of apertures.
  • a self-luminous contrast device array (light emitting device) is used instead of the pattern generator, but also in this case, even if light is irradiated to the photoelectric layer 60 through the aperture 58 Alternatively, the light emitting device may emit a light beam from the light emitting device without using an aperture.
  • the photoelectric element unit in the case of using a photoelectric element unit having a so-called aperture-integrated photoelectric element in which an aperture such as the photoelectric element 54 is integrally provided with the photoelectric layer, the photoelectric element unit is integrated with the holder 88 It is also possible to provide an actuator movable in the XY plane.
  • the aperture integrated photoelectric element that can be used to form the photoelectric element unit together with the lead-out electrode 55 is not limited to the type shown in FIG. 24A, for example, as shown in FIG. 24B.
  • a photoelectric device 54a of a type in which the space in the aperture 58a is filled with the light transmission film 144 can be used.
  • the base member 53a is configured to include the base material 56, the light shielding film 58, and the light transmitting film 144.
  • a part of the base 56 may be filled in the space in the aperture 58a.
  • another film through which light can pass may be formed between the light shielding film 58 and the photoelectric layer 60.
  • a light shielding film 58 having an aperture 58a is formed on the upper surface (light incident surface) of the substrate 56 by vapor deposition of chromium, and the lower surface (light emitting surface) of the substrate 56
  • the space in the aperture 58a is filled with the light transmission film 144 in the photoelectric device 54b of FIG.
  • the photoelectric device 54 b uses the base member 53 upside down from the photoelectric device 54, and the photoelectric layer 60 is formed on the surface of the base member 56 opposite to the light shielding film 58 of the base member 53.
  • the photoelectric device 54c uses the base member 53a upside down from the photoelectric device 54a, and the photoelectric layer 60 is formed on the surface of the base 56 of the base member 53a opposite to the light shielding film 58.
  • the base 56 is not only a light transmitting member such as quartz glass but also a light transmitting member and a light transmitting film (single layer or multilayer ) May be configured.
  • the transport system 42 at least a part of which is accommodated in the second vacuum chamber 72 is between the holder 88 provided in the first vacuum chamber 34 and the second vacuum chamber 72.
  • the transport object of the transport system 42 is not limited to this.
  • the transfer system 42 may transfer the photoelectric device 54 between the holder 88 and the second vacuum chamber 72 instead of the photoelectric device unit. In this case, it is necessary to dispose the extraction electrode 55 below the holder 88, for example, by suspending and supporting the extraction electrode 55 from the holder 88.
  • the member that is to be the photoelectric element 54 after the photoelectric layer 60 is formed by vapor deposition is the substrate 56 itself made of a light transmitting member or the light shielding film 58 is formed on one surface before the photoelectric layer 60 is formed.
  • the base materials 56 i.e., the base members 53 described above
  • the transfer system 42 is configured to transfer the first vacuum chamber 34 and the second vacuum chamber 72 as transfer objects. It can be transported between.
  • the formation (deposition) of the photoelectric layer 60 for the semi-completed unit 50A is performed in the second vacuum chamber 72 (or the deposition chamber). It is also possible to perform formation (deposition) of the photoelectric layer 60 for the semifinished unit 50A held by the holder 88.
  • the heater / coil for high frequency heating
  • the transport system 42 sets the heating device as the transport object between the first vacuum chamber 34 and the second vacuum chamber 72. It is also possible to configure to be transportable.
  • the Faraday cup or other deposition monitor it is also possible to configure the Faraday cup or other deposition monitor so that the transport system 42 can transport the first vacuum chamber 34 and the second vacuum chamber 72 as a transport target.
  • the transfer system 42 is configured to be able to transfer between the first vacuum chamber 34 and the second vacuum chamber 72 with the getter agent (water getter agent) that adsorbs at least water as the object to be transferred. good.
  • the object to be transported can include a sensor used for positioning the photoelectric device unit 50 (or the photoelectric device 54) with respect to the holder 88.
  • a sensor including a detector for detecting a light beam passing through a through hole formed at a predetermined position of the holder 88 when the photoelectric element unit is held in a predetermined positional relationship on the holder 88 is used.
  • a sensor including a detector for detecting a light beam passing through a through hole formed at a predetermined position of the holder 88 when the photoelectric element unit is held in a predetermined positional relationship on the holder 88 is used.
  • recesses 88a having a predetermined depth are formed at a plurality of locations, for example, three locations, of the holder 88, and the through holes 88b are formed on the inner bottom surface of each recess 88a.
  • an opening pattern AP is formed of chromium or the like at a position facing the respective concave portions 88 a of the lower surface of the
  • each opening pattern AP engages with the corresponding recess 88a. While the paths of a plurality of (here, three) light beams as shown by the arrows are formed at the same time, while the centers of the aperture patterns AP substantially coincide with the corresponding through holes 88b.
  • paths of three light beams are not simultaneously formed. Therefore, as shown in FIG.
  • the vacuum dividing wall 81 may be formed of a transparent member, and a plurality of light sources 90 may be disposed on the vacuum dividing wall 81.
  • the present invention is not limited to this.
  • at least one photodetector 89 may be transported by the transport system 42 in order to verify that the optoelectronic device unit 50 is positioned at the desired position.
  • a positioning pin or the like may be provided on the holder 88 in order to realize accurate positioning when the photoelectric device unit 50 is loaded on the holder 88.
  • Each of the plurality of opening patterns AP shown in FIGS. 25A and 25B may be covered with a photoelectric layer.
  • a photoelectric layer In such a case, when the photoelectric device unit 50 is held on the holder 88 in a predetermined (predetermined) positional relationship, electrons generated by photoelectric conversion by the photoelectric layer covering the respective opening patterns AP are transmitted through the through holes 88 b. Since the light is emitted downward, a detector (e.g., a Faraday cup) for detecting the electrons is used to confirm the positioning state at the time of loading or after loading of the photoelectric element unit 50 instead of the above-described detector 89. , And may be transported by the transport system 42.
  • a detector e.g., a Faraday cup
  • the above-described sensor used for positioning the photoelectric device unit 50 with respect to the holder 88 is a holder by forming the above-mentioned opening pattern AP (or the opening pattern AP covered with the photoelectric layer) on the base 56 of the photoelectric device 54. It can also be used to position the photoelectric element 54 relative to 88.
  • the optical system included in the exposure apparatuses 100 and 1000 has been described as a multi-column type including a plurality of multi-beam optical systems.
  • the present invention is not limited thereto. It may be a multi-beam optical system.
  • the wafer W alone is transported onto the wafer stage WST, and the electron beam is transmitted from the electron beam optical system 70 of the multibeam optical system to the wafer W while moving the wafer stage WST in the scanning direction.
  • the exposure apparatus that performs exposure by performing irradiation has been described, the present invention is not limited to this, and a type of exposure apparatus in which the wafer W is integrated with a table (holder) that can be transported integrally with the wafer called shuttle is also replaced on the stage.
  • the above embodiments (except for the wafer stage WST) can be applied.
  • it is applicable to the apparatus of the single column type which irradiates a single beam to a target.
  • a reference mark may be used to confirm that the electron beam emitted from the electron beam optical system 70 is irradiated at a desired position.
  • the electron beam is irradiated so that the reference mark is irradiated, and the reflected electron is detected by the irradiation to detect the positional relationship between the reference mark and the irradiation position of the electron beam, whereby the electron beam is at the desired position It can be checked whether or not it has been irradiated.
  • the reference mark may be provided on the reference wafer held by wafer stage WST, or may be provided on wafer stage WST. The wafer may be exposed to confirm that the electron beam emitted from the electron beam optical system 70 is irradiated at a desired position.
  • position measurement system 28 for measuring the position information of wafer stage WST may also be capable of measuring the position information in the direction of three degrees of freedom in the XY plane.
  • the entire optical system 18, 118 is supported by being suspended from the body frame by the suspension support mechanism.
  • the present invention is not limited thereto. At least a part of the optical system 18, 118 is It may be supported above the floor F via a floor-standing type support member (not shown).
  • the exposure technology constituting the complementary lithography is not limited to the combination of the liquid immersion exposure technology using an ArF light source and the charged particle beam exposure technology, and, for example, the line and space pattern can be other ArF light source, KrF, etc. It may be formed by a dry exposure technique using a light source.
  • the exposure apparatuses 100 and 1000 according to each of the above embodiments form a fine pattern on a glass substrate to form a mask. It can be suitably applied when manufacturing.
  • electronic devices such as semiconductor devices are subjected to functional device / functional performance design steps, wafer fabrication steps from silicon materials, and actual circuits on wafers by lithography techniques etc. Are manufactured through a wafer processing step of forming a semiconductor device, a device assembly step (including a dicing step, a bonding step, and a package step), an inspection step, and the like.
  • the wafer processing step is a lithography step (a step of applying a resist (sensitive material) on the wafer, an electron beam exposure apparatus according to the embodiment described above, and exposure of the wafer by the exposure method thereof (a pattern according to designed pattern data)
  • a step of drawing), a step of developing the exposed wafer), an etching step of etching away the exposed member of the portion other than the portion where the resist remains, a resist for removing the unnecessary resist after the etching is completed Include removal steps and the like.
  • the wafer processing step may further include pre-process processing (oxidation step, CVD step, electrode formation step, ion implantation step, etc.) prior to the lithography step, in which case the lithography step corresponds to that of each of the above embodiments.
  • a device pattern is formed on the wafer, so that micro devices with high integration can be manufactured with high productivity (high yield).
  • the above-described complementary lithography is performed, and at that time, the above-described exposure method is performed using the electron beam exposure apparatus 100 or 1000 of each embodiment. It becomes possible to manufacture highly integrated microdevices.
  • an exposure apparatus using an electron beam has been described.
  • the present invention is not limited to the exposure apparatus, and at least one of predetermined processing and predetermined processing on a target using an electron beam such as welding and three-dimensional modeling.
  • the electron beam apparatus according to the above-described embodiment can be applied to an apparatus to be used or an inspection apparatus using an electron beam.
  • the photoelectric layer 60 is formed of an alkaline photoelectric conversion film.
  • the photoelectric layer is not limited to the alkaline photoelectric conversion film.
  • the photoelectric device may be configured using a photoelectric conversion film of a type.
  • shapes such as a member, an opening, and a hole, may be demonstrated using circular, a rectangle, etc., it is needless to say that it is not restricted to these shapes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

This electron beam device (100) comprises: a first chamber (34) the interior of which can be evacuated and which is provided with a holder 88 capable of holding a photoelectric element having a photoelectric conversion layer that generates electrons on being irradiated by light and a photoelectric element unit (50) having an extraction electrode for accelerating the electrons generated by the photoelectric element; electron beam optics (70) that cause the electrons generated from the photoelectric element to be irradiated as an electron beam through the first chamber onto a target W; a second chamber (72) the interior of which can be evacuated and which is capable of communicating with the first chamber; and a transport system (42) capable of transporting the photoelectric element unit between the holder and the second chamber.

Description

電子ビーム装置及びデバイス製造方法、並びに光電素子ユニットElectron beam apparatus, device manufacturing method, and photoelectric element unit
 本発明は、電子ビーム装置及びデバイス製造方法、並びに光電素子ユニットに係り、特に、光の照射により電子を発生する光電変換層を有する光電素子を用いる電子ビーム装置、及び電子ビーム装置を用いるデバイス製造方法、並びに電子ビーム装置で用いられる光電素子ユニットに関する。 The present invention relates to an electron beam apparatus, a device manufacturing method, and a photoelectric device unit, and in particular, an electron beam apparatus using a photoelectric device having a photoelectric conversion layer generating electrons by light irradiation, and a device manufacturing using the electron beam device. The present invention relates to a method and a photoelectric device unit used in an electron beam apparatus.
 近年、例えばArF光源を用いた液浸露光技術と、荷電粒子ビーム露光技術(例えば電子ビーム露光技術)とを相補的に利用するコンプリメンタリ・リソグラフィが、提案されている。コンプリメンタリ・リソグラフィでは、例えばArF光源を用いた液浸露光においてダブルパターニングなどを利用することで、単純なラインアンドスペースパターン(以下、適宜、L/Sパターンと略記する)を形成する。次いで、電子ビームを用いた露光を通じて、ラインパターンの切断、あるいはビアの形成を行う。 In recent years, for example, complementary lithography has been proposed in which an immersion exposure technique using an ArF light source and a charged particle beam exposure technique (for example, an electron beam exposure technique) are used complementarily. In complementary lithography, for example, a simple line and space pattern (hereinafter, appropriately abbreviated as an L / S pattern) is formed by utilizing double patterning or the like in immersion exposure using an ArF light source. Next, line patterns are cut or vias are formed through exposure using an electron beam.
 コンプリメンタリ・リソグラフィでは、例えば複数のブランキング・アパーチャを用いてビームのオン・オフを行うマルチビーム光学系を備えた電子ビーム露光装置を用いることができる(例えば、特許文献1参照)。しかしながら、露光装置に限らず、電子ビーム装置では、光電素子を用いる場合改善すべき点が存在する。 In complementary lithography, for example, an electron beam exposure apparatus provided with a multi-beam optical system that turns on and off a beam using a plurality of blanking apertures can be used (see, for example, Patent Document 1). However, there is a point to be improved in the case of using a photoelectric element not only in the exposure apparatus but also in the electron beam apparatus.
米国特許出願公開第2015/0200074号明細書US Patent Application Publication No. 2015/0200074
 本発明の第1の態様によれば、光の照射により電子を発生する光電変換層を有する光電素子を用いる電子ビーム装置であって、前記光電素子と該光電素子から発生される電子を加速する引き出し電極とを有する光電素子ユニットを保持可能なホルダが設けられ、内部を真空引き可能な第1室と、前記光電素子から発生する電子を、前記第1室を介して電子ビームとしてターゲットに照射する電子光学系と、前記第1室と連通可能で、内部を真空引き可能な第2室と、前記ホルダと前記第2室との間で前記光電素子ユニットを搬送可能な搬送系と、を備える電子ビーム装置が、提供される。 According to a first aspect of the present invention, there is provided an electron beam apparatus using a photoelectric device having a photoelectric conversion layer that generates electrons by light irradiation, wherein the photoelectric device and electrons generated from the photoelectric device are accelerated. A holder capable of holding a photoelectric device unit having an extraction electrode is provided, and a first chamber capable of evacuating the inside and electrons generated from the photoelectric device are irradiated as an electron beam to a target through the first chamber. An electron optical system, a second chamber capable of communicating with the first chamber and capable of evacuating the inside, and a transport system capable of transporting the photoelectric element unit between the holder and the second chamber; An electron beam apparatus is provided.
 本発明の第2の態様によれば、光の照射により電子ビームを発生する光電変換層を有する光電素子を用いる電子ビーム装置であって、前記光電素子を保持するホルダが設けられ、内部を真空引き可能な第1室と、前記光電素子から発生する電子を、前記第1室を介して電子ビームとして、ターゲットに照射する電子光学系と、前記第1室と連通可能で、内部を真空引き可能な第2室と、前記第1室と前記第2室との間で搬送対象物を搬送可能な搬送系と、を備える電子ビーム装置が、提供される。 According to a second aspect of the present invention, there is provided an electron beam apparatus using a photoelectric device having a photoelectric conversion layer that generates an electron beam by light irradiation, wherein a holder for holding the photoelectric device is provided, and the inside is vacuumed. It is possible to communicate with the first chamber capable of drawing, the electron optical system which irradiates the target with the electron generated from the photoelectric element as the electron beam through the first chamber, and the first chamber, and the inside is evacuated. An electron beam apparatus is provided, which comprises a possible second chamber and a transport system capable of transporting an object to be transported between the first chamber and the second chamber.
 本発明の第3の態様によれば、リソグラフィ工程を含むデバイス製造方法であって、前記リソグラフィ工程は、ターゲット上にラインアンドスペースパターンを形成することと、第1の態様及び第2の態様のいずれかに係る電子ビーム装置を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと、を含むデバイス製造方法が、提供される。 According to a third aspect of the present invention, there is provided a device manufacturing method including a lithography step, wherein the lithography step includes forming a line and space pattern on a target, and the first aspect and the second aspect. There is provided a device manufacturing method including: cutting a line pattern constituting the line and space pattern using an electron beam apparatus according to any of the above.
 本発明の第4の態様によれば、ターゲットに電子ビームを照射する電子ビーム装置で用いられる光電素子ユニットであって、光の照射により電子を発生する光電変換層が形成されたベース部材を有する光電素子と、前記ベース部材に接続され、前記光電変換層から発生する電子を加速するための引き出し電極と、を備えた光電素子ユニットが、提供される。 According to a fourth aspect of the present invention, there is provided a photoelectric element unit for use in an electron beam apparatus for irradiating an electron beam to a target, comprising a base member on which a photoelectric conversion layer for generating electrons by light irradiation is formed. There is provided a photoelectric device unit including a photoelectric device, and a lead-out electrode connected to the base member for accelerating electrons generated from the photoelectric conversion layer.
 本発明の第5の態様によれば、ターゲットに電子ビームを照射する電子ビーム装置で用いられる光電素子ユニットであって、光の照射により電子を発生する光電変換層が形成されるベース部材を有する光電素子と、前記ベース部材に接続され、前記ベース部材に形成される光電変換層から発生する電子を加速するための引き出し電極と、を備えた光電素子ユニットが、提供される。 According to a fifth aspect of the present invention, there is provided a photoelectric element unit for use in an electron beam apparatus for irradiating an electron beam to a target, comprising a base member on which a photoelectric conversion layer for generating electrons by light irradiation is formed. There is provided a photoelectric device unit including a photoelectric device, and a lead-out electrode connected to the base member for accelerating electrons generated from a photoelectric conversion layer formed on the base member.
第1の実施形態に係る露光装置の構成を概略的に示す図である。FIG. 1 schematically shows a configuration of an exposure apparatus according to a first embodiment. +X方向から見た電子ビーム光学系の構成を示す図である。It is a figure which shows the structure of the electron beam optical system seen from + X direction. 図2に示される光電素子ユニットを拡大して示す図である。It is a figure which expands and shows the photoelectric element unit shown by FIG. 図4(A)は光電素子を示す一部省略した縦断面図、図4(B)は光電素子を示す一部省略した平面図である。FIG. 4A is a partially omitted longitudinal sectional view showing the photoelectric device, and FIG. 4B is a plan view partially showing the photoelectric device. 光電層と引き出し電極との間に電位差を生じさせるための構成を示す図である。It is a figure which shows the structure for producing an electrical potential difference between a photoelectric layer and an extraction electrode. 第1静電レンズによるX軸方向及びY軸方向に関する縮小倍率の補正について説明するための図である。It is a figure for demonstrating correction | amendment of the reduction ratio regarding the X-axis direction and Y-axis direction by a 1st electrostatic lens. 図1の露光装置が備える光照射装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the light irradiation apparatus with which the exposure apparatus of FIG. 1 is provided. 図8(A)は、光回折型ライトバルブを示す斜視図、図8(B)は、光回折型ライトバルブを示す側面図である。FIG. 8A is a perspective view showing a light diffraction type light valve, and FIG. 8B is a side view showing the light diffraction type light valve. パターンジェネレータを示す平面図である。It is a top view which shows a pattern generator. 図1の露光装置が備える光学システムの全体構成を説明するための図である。It is a figure for demonstrating the whole structure of the optical system with which the exposure apparatus of FIG. 1 is provided. パターンジェネレータの受光面上でのレーザビームの照射領域と、光電素子の面上でのレーザビームの照射領域と、像面(ウエハ面)上での電子ビームの照射領域(露光領域)との対応関係を示す図である。Correspondence between the irradiation area of the laser beam on the light receiving surface of the pattern generator, the irradiation area of the laser beam on the surface of the photoelectric element, and the irradiation area (exposure area) of the electron beam on the image surface (wafer surface) It is a figure which shows a relation. 図12(A)は、光電層の蒸着に関連する部分の構成を説明するための図かつ光電層の蒸着動作の流れを説明するための図(その1)であり、図12(B)は、光電層の蒸着動作の流れを説明するための図(その2)であり、図12(C)は、光電層の蒸着動作の流れを説明するための図(その3)である。FIG. 12A is a diagram for explaining the configuration of a portion related to the deposition of the photoelectric layer and a diagram for explaining the flow of the deposition operation of the photoelectric layer (part 1), and FIG. FIG. 12C is a drawing for explaining the flow of the deposition operation of the photoelectric layer, and FIG. 12C is a drawing for explaining the flow of the deposition operation of the photoelectric layer; 露光装置の制御系を主として構成する主制御装置の入出力関係を示すブロック図である。It is a block diagram which shows the input-output relationship of the main control apparatus which mainly comprises the control system of exposure apparatus. 光電素子ユニットの回収動作の流れを説明するための図(その1)である。FIG. 7 is a diagram (part 1) for explaining the flow of the recovery operation of the photoelectric device unit; 光電素子ユニットの回収動作の流れを説明するための図(その2)である。FIG. 17 is a second diagram illustrating the flow of the recovery operation of the photoelectric device unit; 光電素子ユニットの回収動作の流れを説明するための図(その3)である。FIG. 17 is a third diagram illustrating the flow of the recovery operation of the photoelectric device unit; 光電素子ユニットの回収動作の流れを説明するための図(その4)である。FIG. 17 is a fourth diagram illustrating the flow of the recovery operation of the photoelectric device unit; 第2の実施形態に係る露光装置の構成を概略的に示す図である。It is a figure showing roughly the composition of the exposure device concerning a 2nd embodiment. 第17の露光装置が備える1つの光照射装置を、真空隔壁及び光電素子とともに示す一部省略した断面図である。It is the cross-sectional view which partially omitted one light irradiation apparatus with which the 17th exposure apparatus is equipped with a vacuum partition and a photoelectric element. 光照射装置の発光素子部分が、真空隔壁の一部を構成する例について説明するための図である。It is a figure for demonstrating the example in which the light emitting element part of light irradiation apparatus comprises a part of vacuum partition. 変形例に係る蒸着室を区画する筐体の構成を示す図である。It is a figure which shows the structure of the housing which divides the vapor deposition chamber which concerns on a modification. 図21のファラデーカップの構成の一例を示す図である。It is a figure which shows an example of a structure of the Faraday cup of FIG. 図23(A)は、アパーチャを使用しない方式を示す説明図、図23(B)は、アパーチャを使用する方式を示す説明図である。FIG. 23 (A) is an explanatory view showing a method not using an aperture, and FIG. 23 (B) is an explanatory view showing a method using an aperture. 図24(A)~図24(D)は、アパーチャ一体型光電素子の種々の構成例を示す図である。FIG. 24A to FIG. 24D are views showing various configuration examples of the aperture integrated photoelectric device. 図25(A)及び図25(B)は、ホルダに対する光電素子ユニットの位置決めに用いるセンサの構成及びその使用方法を説明するための図(その1、その2)である。25 (A) and 25 (B) are diagrams (part 1 and part 2) for describing the configuration of a sensor used for positioning of the photoelectric device unit with respect to the holder and the method of using the sensor. デバイス製造方法の一実施形態を説明するための図である。It is a figure for describing one embodiment of a device manufacturing method.
《第1の実施形態》
 以下、第1の実施形態について、図1~図17に基づいて説明する。図1には、第1の実施形態に係る露光装置100の構成が概略的に示されている。露光装置100は、後述するように複数の電子ビーム光学系を備えているので、以下、電子ビーム光学系の光軸に平行にZ軸を取り、Z軸に垂直な平面内で後述する露光時にウエハWが移動される走査方向をY軸方向とし、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸及びZ軸回りの回転(傾斜)方向を、それぞれθx、θy及びθz方向として、説明を行う。
First Embodiment
The first embodiment will be described below based on FIGS. 1 to 17. FIG. 1 schematically shows the structure of an exposure apparatus 100 according to the first embodiment. Since the exposure apparatus 100 is provided with a plurality of electron beam optical systems as described later, hereinafter, the Z axis is parallel to the optical axis of the electron beam optical system and the exposure will be described later in a plane perpendicular to the Z axis The scanning direction in which the wafer W is moved is taken as the Y-axis direction, the direction orthogonal to the Z-axis and Y-axis as the X-axis direction, and the rotational (tilting) directions about the X-axis, Y-axis and Z-axis as θx, θy respectively. The description will be made as the and θz directions.
 露光装置100は、クリーンルームの床面上に設置されたボディフレームの一部である台座101a上に設置されたステージチャンバ10と、ステージチャンバ10の内部の露光室12内に配置されたステージシステム14と、ステージシステム14の上方に配置された光学システム18と、搬送システム42等と、を備えている。光学システム18は、電子ビーム光学ユニット18Aと、その上に配置された光学ユニット18Bとを備えている。なお、ステージチャンバ10が床面上に設置されても良い。 The exposure apparatus 100 includes a stage chamber 10 installed on a pedestal 101 a which is a part of a body frame installed on the floor surface of a clean room, and a stage system 14 disposed in an exposure chamber 12 inside the stage chamber 10. And an optical system 18 disposed above the stage system 14, and a transport system 42 and the like. The optical system 18 comprises an electron beam optical unit 18A and an optical unit 18B disposed thereon. The stage chamber 10 may be installed on the floor surface.
 電子ビーム光学ユニット18Aは、内部に第1室34が形成されたメインフレームとしての筐体19を備えている。第1室34は高真空状態となるまで不図示の真空ポンプによって内部を真空引きが可能であり(図1における白抜き矢印参照)、真空引き完了後第1の真空室となる。以下では、この高真空状態にある第1室34を、第1の真空室34と称する。筐体19に隣接して第2室72が内部に形成された筐体45が配置されている。第2室72は、その内部を第1の真空室34と同レベルの高真空状態となるまで、不図示の真空ポンプによって第1室34と独立して、あるいは第1室34とともに真空引きが可能である。なお、第2室72は、第1室34よりも高い真空状態であっても良い。以下では、この高真空状態にある第2室72を、第2の真空室72と称する。搬送システム42は、筐体45に設けられている。なお、光学システム18及び搬送システム42の具体的構成等については、さらに後述する。 The electron beam optical unit 18A includes a housing 19 as a main frame in which a first chamber 34 is formed. The first chamber 34 can be evacuated to a high vacuum state by a vacuum pump (not shown) (see the white arrow in FIG. 1), and becomes a first vacuum chamber after the evacuation is completed. Hereinafter, the first chamber 34 in the high vacuum state is referred to as a first vacuum chamber 34. A case 45 in which a second chamber 72 is formed inside is disposed adjacent to the case 19. The second chamber 72 is evacuated independently of the first chamber 34 or together with the first chamber 34 by a vacuum pump (not shown) until the inside of the second chamber 72 is in the same high vacuum state as the first vacuum chamber 34. It is possible. The second chamber 72 may be in a vacuum state higher than the first chamber 34. Hereinafter, the second chamber 72 in the high vacuum state is referred to as a second vacuum chamber 72. The transport system 42 is provided in the housing 45. The specific configurations of the optical system 18 and the transport system 42 will be described later.
 ステージチャンバ10は、図1では、Y軸方向の一側(-Y側)の端部の図示が省略されているが、不図示の真空ポンプによってその内部を真空引き可能な真空チャンバである。この場合、真空ポンプとして、工場の用力としての真空供給用のポンプを用いても良い。ステージチャンバ10は、台座101a上に配置されたXY平面に平行な底壁10aと、底壁10aの上方に所定距離隔てて配置された上壁(天井壁)10bと、底壁10a上で上壁10bを下方から支持するとともに、底壁10a及び上壁10bとともに露光室12を区画する周壁10cとを備えている。上壁10bには、開口10dが形成されている。開口10d内に複数の電子ビーム光学系70が、配置されている。本実施形態に係る露光装置100は、45の電子ビーム光学系70を備えている。 The stage chamber 10 is a vacuum chamber whose inside can be evacuated by a vacuum pump (not shown) although the end of one side (−Y side) in the Y-axis direction is not shown in FIG. In this case, as a vacuum pump, a pump for vacuum supply may be used as a factory power. The stage chamber 10 has a bottom wall 10a parallel to the XY plane disposed on the pedestal 101a, a top wall (ceiling wall) 10b disposed at a predetermined distance above the bottom wall 10a, and a top on the bottom wall 10a. The wall 10b is supported from below, and a peripheral wall 10c that defines the exposure chamber 12 together with the bottom wall 10a and the upper wall 10b is provided. An opening 10d is formed in the upper wall 10b. A plurality of electron beam optical systems 70 are disposed in the opening 10d. The exposure apparatus 100 according to the present embodiment includes 45 electron beam optical systems 70.
 筐体19の周縁部の下面は、ステージチャンバ10の上壁10aの上面と対向しており、筐体19の下面とステージチャンバ10の上壁10bの上面との間は、開口10dの周囲を取り囲む金属製のベローズ16によって接続されている(シールされている)。筐体19は、前述のボディフレームの一部である上部フレーム(不図示)から防振機能を備えた複数、例えば3つの吊り下げ支持機構(図示省略)を介して3点で吊り下げ支持されている。外部からボディフレームに伝達された床振動などの振動は、吊り下げ支持機構によって電子ビーム光学系70の光軸に平行な方向及び光軸に垂直な方向のいずれにおいても十分に吸収ないしは除振される。しかしながら、筐体19(電子ビーム光学ユニット18A)とボディフレームとの相対位置が比較的低い周波数で変化する可能性がある。そこで、筐体19(電子ビーム光学ユニット18A)とボディフレームとの相対位置を所定の状態に維持するために、非接触方式の位置決め装置23(図1では不図示、図13参照)が設けられている。この位置決め装置23は、例えば国際公開第2007/077920号などに開示されるように、6軸の加速度センサと、6軸のアクチュエータとを含んで構成することができる。位置決め装置23は、主制御装置110によって制御される(図13参照)。これにより、ボディフレームに対する筐体19(電子ビーム光学ユニット18A)のX軸方向、Y軸方向、Z軸方向の相対位置、及びX軸、Y軸、Z軸の回りの相対回転角は、一定の状態(所定の状態)に維持される。なお、位置決め装置23を設けなくても良い。 The lower surface of the peripheral portion of the housing 19 faces the upper surface of the upper wall 10a of the stage chamber 10, and the lower surface of the housing 19 and the upper surface of the upper wall 10b of the stage chamber 10 It is connected (sealed) by a surrounding metal bellows 16. The housing 19 is suspended and supported at three points from a top frame (not shown) which is a part of the above-mentioned body frame via a plurality of, for example, three suspension support mechanisms (not shown) having a vibration isolation function. ing. Vibrations such as floor vibrations transmitted from the outside to the body frame are sufficiently absorbed or isolated either by the suspension support mechanism in the direction parallel to the optical axis of the electron beam optical system 70 or in the direction perpendicular to the optical axis. Ru. However, the relative position between the housing 19 (electron beam optical unit 18A) and the body frame may change at a relatively low frequency. Therefore, in order to maintain the relative position between the housing 19 (electron beam optical unit 18A) and the body frame in a predetermined state, a non-contact type positioning device 23 (not shown in FIG. 1, see FIG. 13) is provided. ing. The positioning device 23 can be configured to include a six-axis acceleration sensor and a six-axis actuator, as disclosed in, for example, WO 2007/077920. The positioning device 23 is controlled by the main controller 110 (see FIG. 13). Thus, the relative positions of the housing 19 (electron beam optical unit 18A) with respect to the body frame in the X axis direction, Y axis direction, Z axis direction, and the relative rotation angles around the X axis, Y axis and Z axis are constant. State (predetermined state) is maintained. The positioning device 23 may not be provided.
 ステージシステム14は、図1に示されるステージチャンバ10の底壁10a上に複数の防振部材20を介して支持された定盤22と、定盤22上で重量キャンセル装置24に支持され、X軸方向及びY軸方向にそれぞれ所定のストローク、例えば50mmで移動可能であるとともに、残りの4自由度方向(Z軸、θx、θy及びθz方向)に微動可能なウエハステージWSTと、ウエハステージWSTを移動するステージ駆動系26(図1ではそのうちの一部のみ図示、図13参照)と、ウエハステージWSTの6自由度方向の位置情報を計測する位置計測系28(図1では不図示、図13参照)と、を備えている。ウエハステージWSTは、その上面に設けられた不図示の静電チャックを介してウエハWを吸着し、保持している。 The stage system 14 is supported by a weight plate 22 supported on the bottom wall 10a of the stage chamber 10 shown in FIG. Wafer stage WST movable in the axial direction and Y-axis direction by a predetermined stroke, for example, 50 mm, and finely movable in the remaining four degrees of freedom (Z-axis, θx, θy, and θz directions), and wafer stage WST Stage drive system 26 (only a part of which is shown in FIG. 1, see FIG. 13) for moving the position, and a position measurement system 28 (not shown in FIG. 1) which measures positional information in the direction of 6 degrees of freedom of wafer stage WST. 13) and. Wafer stage WST adsorbs and holds wafer W via an electrostatic chuck (not shown) provided on the upper surface thereof.
 ウエハステージWSTは、XZ断面枠状の部材を有し、その内部にヨークと磁石(いずれも不図示)とを有するモータ30の可動子30aが一体的に固定されている。可動子30aの内部(中空部)にY軸方向に延びるコイルユニットから成るモータ30の固定子30bが挿入されている。固定子30bは、その長手方向(Y軸方向)の両端が、定盤22上でX軸方向に移動するXステージ31に接続されている。Xステージ31は、図1に示されるように、X軸方向を長手方向とし、Y軸方向に所定距離離れた一対の支持部を有し、この一対の支持部の上面に固定子30bの長手方向の両端部が固定されている。Xステージ31は、磁束漏れが生じない一軸駆動機構、例えばボールねじを用いた送りねじ機構によって構成されるXステージ駆動系32(図1では不図示、図13参照)によって、ウエハステージWSTと一体でX軸方向に所定ストロークで移動される。なお、Xステージ駆動系32を、駆動源として超音波モータを備えた一軸駆動機構によって構成しても良い。いずれにしても、磁束漏れに起因する磁場変動が電子ビームの位置決めに与える影響は無視できるレベルである。 Wafer stage WST has a frame-shaped member with an XZ cross section, in which mover 30a of motor 30 having a yoke and a magnet (all not shown) is integrally fixed. A stator 30b of a motor 30 formed of a coil unit extending in the Y-axis direction is inserted into the inside (hollow part) of the mover 30a. The stator 30 b is connected to the X-stage 31 moving in the X-axis direction on the surface plate 22 at both ends in the longitudinal direction (Y-axis direction). As shown in FIG. 1, the X stage 31 has a pair of support portions with the X axis direction as the longitudinal direction and separated by a predetermined distance in the Y axis direction, and the upper surface of the pair of support portions Both ends of the direction are fixed. The X stage 31 is integrated with the wafer stage WST by an X stage drive system 32 (not shown in FIG. 1, refer to FIG. 13) constituted by a uniaxial drive mechanism that does not cause magnetic flux leakage, for example, a feed screw mechanism using a ball screw. Is moved with a predetermined stroke in the X-axis direction. The X stage drive system 32 may be configured by a uniaxial drive mechanism provided with an ultrasonic motor as a drive source. In any case, the influence of the magnetic field fluctuation due to the magnetic flux leakage on the positioning of the electron beam is negligible.
 モータ30は、可動子30aを固定子30bに対して、Y軸方向に所定ストローク、例えば50mmで移動可能で、かつX軸方向、Z軸方向、θx方向、θy方向及びθz方向に微小移動可能な閉磁界型かつムービングマグネット型のモータである。本実施形態では、モータ30によってウエハステージWSTを6自由度方向に移動するウエハステージ駆動系が構成されている。以下、ウエハステージ駆動系をモータ30と同一の符号を用いて、ウエハステージ駆動系30と表記する。 The motor 30 can move the mover 30a relative to the stator 30b in the Y-axis direction by a predetermined stroke, for example, 50 mm, and can finely move the mover 30a in the X-axis direction, the Z-axis direction, the θx direction, the θy direction, and the θz direction Closed magnetic field type and moving magnet type motor. In the present embodiment, a wafer stage drive system that moves wafer stage WST in the direction of six degrees of freedom by motor 30 is configured. Hereinafter, the wafer stage drive system will be referred to as wafer stage drive system 30 using the same reference numerals as motor 30.
 Xステージ駆動系32とウエハステージ駆動系30とによって、ウエハステージWSTをX軸方向及びY軸方向にそれぞれ所定のストローク、例えば50mmで移動するとともに、残りの4自由度方向(Z軸、θx、θy及びθz方向)に微小移動する前述のステージ駆動系26が構成されている。Xステージ駆動系32及びウエハステージ駆動系30は、主制御装置110によって制御される(図13参照)。 The X stage drive system 32 and the wafer stage drive system 30 move the wafer stage WST in the X axis direction and the Y axis direction with a predetermined stroke, for example, 50 mm, and the remaining four degrees of freedom (Z axis, θx, The above-mentioned stage drive system 26 is configured to move slightly in the θy and θz directions). The X stage drive system 32 and the wafer stage drive system 30 are controlled by the main controller 110 (see FIG. 13).
 重量キャンセル装置24は、ウエハステージWSTの下面に上端が接続された金属製のベローズ型空気ばね(以下、空気ばねと略記する)24aと、空気ばね24aの下端に接続されたベーススライダ24bと、を有している。ベーススライダ24bには、空気ばね24a内部の空気を、定盤22の上面に噴き出す軸受部(不図示)が設けられ、軸受部から噴出される加圧空気の軸受面と定盤22上面との間の静圧(隙間内圧力)により、重量キャンセル装置24、ウエハステージWST(可動子30aを含む)及びウエハWの自重が支持されている。なお、空気ばね24aには、ウエハステージWSTに接続された不図示の配管を介して圧縮空気が供給されている。ベーススライダ24bは、一種の差動排気型の空気静圧軸受を介して定盤22上に非接触で支持され、軸受部から定盤22に向かって噴出された空気が、周囲に(露光室12内に)漏れ出すことが防止されている。なお、実際には、ウエハステージWSTの底面には、空気ばね24aをY軸方向に挟んで一対のピラーが設けられ、ピラーの下端に設けられた板ばねが空気ばね24aに接続されている。 The weight cancellation device 24 includes a metal bellows type air spring (hereinafter abbreviated as air spring) 24a whose upper end is connected to the lower surface of the wafer stage WST, and a base slider 24b connected to the lower end of the air spring 24a. have. The base slider 24b is provided with a bearing (not shown) for spouting the air inside the air spring 24a to the upper surface of the platen 22, and the bearing surface of the pressurized air ejected from the bearing and the upper surface of the platen 22. The weight cancellation device 24, the wafer stage WST (including the mover 30a), and the own weight of the wafer W are supported by the static pressure (pressure in the gap) between them. Note that compressed air is supplied to the air spring 24 a through a pipe (not shown) connected to the wafer stage WST. The base slider 24b is supported in a non-contact manner on the surface plate 22 via a kind of differential pumping type of static air bearing, and the air ejected from the bearing portion toward the surface plate 22 is exposed to the surrounding (exposure chamber 12) are prevented from leaking out. Actually, on the bottom surface of wafer stage WST, a pair of pillars are provided sandwiching air spring 24a in the Y-axis direction, and a plate spring provided at the lower end of the pillar is connected to air spring 24a.
 電子ビーム光学ユニット18Aは、図1に示されるように、内部に第1の真空室34が形成された前述の筐体19を備えている。第1の真空室34は、筐体19の上壁(天井壁)を構成する第1プレート36、筐体19の底壁を構成する第2プレート(以下、ベースプレートと呼ぶ)38、及び第1プレート36の下面とベースプレート38の上面とを接続する側壁部40等によって区画されている。 As shown in FIG. 1, the electron beam optical unit 18A includes the aforementioned housing 19 in which a first vacuum chamber 34 is formed. The first vacuum chamber 34 includes a first plate 36 constituting an upper wall (ceiling wall) of the housing 19, a second plate (hereinafter referred to as a base plate) 38 constituting a bottom wall of the housing 19, and a first vacuum chamber 34. It is divided by a side wall portion 40 or the like connecting the lower surface of the plate 36 and the upper surface of the base plate 38.
 第1プレート36には、Z軸方向に延びる貫通孔36aがXY2次元方向に所定間隔で複数、ここでは前述の45の電子ビーム光学系70の配置に対応する配置で、45個形成されている。これら45個の貫通孔36aのそれぞれには、例えば45の電子ビーム光学系70の1つと共に図2に拡大して示されるように、保持部材52がほぼ隙間がない状態で配置されている。 In the first plate 36, a plurality of through holes 36a extending in the Z-axis direction are formed at predetermined intervals in the two-dimensional directions of the XY, here 45 in an arrangement corresponding to the arrangement of the 45 electron beam optical systems 70 described above. . In each of the 45 through holes 36a, as is shown enlarged in FIG. 2 together with one of the 45 electron beam optical systems 70, for example, the holding member 52 is disposed with almost no gap.
 複数の保持部材52のそれぞれは、図2に示されるように、真空隔壁として機能する石英ガラスなどの光透過部材から成る隔壁部材81を保持している。以下では、隔壁部材81を、適宜、真空隔壁81とも表記する。なお、保持部材52を使わずに、第1プレート36で隔壁部材81を保持しても良い。また、隔壁部材81を構成する光透過部材の材料は石英ガラスには限定されず、光学ユニット18Bで用いられる光の波長に対して透過性を持つ材料であれば良い。複数の保持部材52それぞれの下方には、開口(切り欠き)88a(図2及び図5参照)が形成されたホルダ88が、配置されている。ホルダ88は、第1プレート36の貫通孔36aの内壁面に固定されている。ホルダ88は、後述する光電素子ユニット50がロードされる部材であり、ロードされた光電素子ユニット50を保持する。本実施形態では、ホルダ88は、貫通孔36aの内壁面に固定されているが、第1プレート36の下面にホルダ88を設けても良い。また、光電素子ユニット50が備える光電素子54は、貫通孔36a内に保持されていなくても良く、例えば貫通孔36aの下方に保持されていても良い。 As shown in FIG. 2, each of the plurality of holding members 52 holds a partition member 81 made of a light transmitting member such as quartz glass which functions as a vacuum partition. Below, the partition member 81 is suitably described also as the vacuum partition 81. FIG. The partition member 81 may be held by the first plate 36 without using the holding member 52. Further, the material of the light transmitting member constituting the partition member 81 is not limited to quartz glass, and any material having transparency to the wavelength of light used in the optical unit 18B may be used. Under each of the plurality of holding members 52, a holder 88 in which an opening (notch) 88a (see FIGS. 2 and 5) is formed is disposed. The holder 88 is fixed to the inner wall surface of the through hole 36 a of the first plate 36. The holder 88 is a member to which a photoelectric device unit 50 described later is loaded, and holds the loaded photoelectric device unit 50. In the present embodiment, the holder 88 is fixed to the inner wall surface of the through hole 36 a, but the holder 88 may be provided on the lower surface of the first plate 36. Further, the photoelectric element 54 provided in the photoelectric element unit 50 may not be held in the through hole 36a, and may be held below the through hole 36a, for example.
 図3には、図2に示される光電素子ユニット50が、拡大して示されている。図3は、奥行方向(X軸方向)の中央の位置で断面した光電素子ユニット50の縦断面図に相当する。光電素子ユニット50は、光の照射により電子を発生するアルカリ光電膜(光電変換膜)の層(アルカリ光電変換層(アルカリ光電層))60が形成されたベース部材53を有する光電素子54と、ベース部材53に接続され、アルカリ光電層60から発生する電子を加速するための引き出し電極55と、を備える。ベース部材53は、光電素子54の一部を示す、図4(A)の縦断面図に示されるように、例えば石英ガラスから成る基材(レチクルブランクスとも呼ばれる)56と、その基材56の光射出側の面(下面)に例えば蒸着されたクロムなどから成る遮光膜(アパーチャ膜)58とを有している。なお、基材56は、光透過部材、あるいは透明部材と呼んでも良い。遮光膜58には、多数のアパーチャ58aが形成されている。引き出し電極55は、基材56の一面(図3における下面)に固定され、これにより光電素子54と引き出し電極55とが一体化されて光電素子ユニット50が構成されている。なお、基材56の材料は、石英ガラスには限定されず、例えば、サファイア等の光学ユニット18Bで用いられる光の波長に対して透過性を持つ材料であれば良い。また、引き出し電極55は、基材56の側面に固定されても良い。また、基材56の下面あるいは側面に接続された部材(非光透過部材、あるいは非透明部材)に引き出し電極55を固定しても良い。 In FIG. 3, the photoelectric device unit 50 shown in FIG. 2 is shown in an enlarged manner. FIG. 3 corresponds to a longitudinal sectional view of the photoelectric device unit 50 sectioned at the center position in the depth direction (X-axis direction). The photoelectric device unit 50 includes a photoelectric device 54 having a base member 53 on which a layer (alkali photoelectric conversion layer (alkali photoelectric layer)) 60 of an alkali photoelectric film (photoelectric conversion film) generating electrons by irradiation of light is formed; And an extraction electrode 55 connected to the base member 53 for accelerating electrons generated from the alkaline photoelectric layer 60. As shown in the longitudinal sectional view of FIG. 4A showing the part of the photoelectric device 54, the base member 53 is made of, for example, a base material 56 (also called reticle blanks) made of quartz glass and its base material 56. A light shielding film (aperture film) 58 made of, for example, vapor-deposited chromium is provided on the surface (lower surface) on the light emission side. The base 56 may be called a light transmitting member or a transparent member. A large number of apertures 58 a are formed in the light shielding film 58. The extraction electrode 55 is fixed to one surface (the lower surface in FIG. 3) of the base material 56, whereby the photoelectric device 54 and the extraction electrode 55 are integrated to constitute the photoelectric device unit 50. The material of the substrate 56 is not limited to quartz glass, and may be, for example, a material having transparency to the wavelength of light used in the optical unit 18B, such as sapphire. Further, the extraction electrode 55 may be fixed to the side surface of the base 56. Further, the extraction electrode 55 may be fixed to a member (non-light transmitting member or non-transparent member) connected to the lower surface or the side surface of the base material 56.
 アルカリ光電層60は、ベース部材53の遮光膜(アパーチャ膜)58が形成された光射出側の面(図4(A)及び図3における下面)に、蒸着により形成されている。なお、図4(A)には、光電素子54の一部のみが示されているが、実際には、遮光膜58には、所定の位置関係で多数のアパーチャ58aが形成されている(図4(B)参照)。アパーチャ58aの数は、後述するマルチビームの数と同一であっても良いし、マルチビームの数より多くても良い。アルカリ光電層60は、アパーチャ58aの内部にも配置され、アパーチャ58aにおいて基材56とアルカリ光電層60が接触している。本実施形態では、ベース部材53(基材56、遮光膜58)及びアルカリ光電層60が一体的に形成され、光電素子54の少なくとも一部を形成している。 The alkaline photoelectric layer 60 is formed by vapor deposition on the surface on the light emission side on which the light shielding film (aperture film) 58 of the base member 53 is formed (the lower surface in FIG. 4A and FIG. 3). Although only a part of the photoelectric element 54 is shown in FIG. 4A, in practice, a large number of apertures 58a are formed in the light shielding film 58 in a predetermined positional relationship (see FIG. 4A). 4 (B)). The number of apertures 58a may be the same as the number of multi beams described later, or may be larger than the number of multi beams. The alkaline photoelectric layer 60 is also disposed inside the aperture 58a, and the base 56 and the alkaline photoelectric layer 60 are in contact at the aperture 58a. In the present embodiment, the base member 53 (the base 56, the light shielding film 58) and the alkali photoelectric layer 60 are integrally formed, and at least a part of the photoelectric element 54 is formed.
 アルカリ光電層60は、2種類以上のアルカリ金属を用いたマルチアルカリフォトカソードである。マルチアルカリフォトカソードは、耐久性が高く、波長が500nm帯の緑色光で電子発生が可能で、光電効果の量子効率QEが10%程度と高いとされるのが特長のフォトカソードである。本実施形態では、アルカリ光電層60は、レーザ光による光電効果によって電子ビームを生成する一種の電子銃として用いられるので、変換効率が10[mA/W]の高効率のものが用いられている。なお、光電素子54では、アルカリ光電層60の電子放出面は、図4(A)における下面、すなわち基材56の上面とは反対側の面である。 The alkali photoelectric layer 60 is a multi-alkali photocathode using two or more types of alkali metals. The multialkali photocathode is a photocathode characterized by high durability, capable of generating electrons with green light having a wavelength of 500 nm band, and high quantum efficiency QE of the photoelectric effect of about 10%. In the present embodiment, since the alkali photoelectric layer 60 is used as a kind of electron gun that generates an electron beam by the photoelectric effect of laser light, a material having a high conversion efficiency of 10 [mA / W] is used. . In the photoelectric element 54, the electron emission surface of the alkaline photoelectric layer 60 is the lower surface in FIG. 4A, that is, the surface on the opposite side to the upper surface of the base material 56.
 図3に戻り、引き出し電極55は、ベース部材53(基材56)の一面(図3における下面)側にその一面に垂直な方向(上下方向)に所定間隔隔ててほぼ平行に配置された2枚の電極板59A、59Bを含む。電極板59A、59Bは、リング状に形成されているが、多角形のループ状に形成されていても良い。上側の電極板59Aには、平面視でX軸方向とY軸方向とにそれぞれ伸びる各2辺を有する仮想の正方形の各頂点を成す4箇所に貫通孔が形成され、各貫通孔の内部に上下方向に伸びる支持部材57がそれぞれ挿入されている。4本の支持部材57それぞれの一端(上端)は基材56の一面に固定され、他端(下端)は下側の電極板59Bの上面に固定され、これによって、電極板59Bが基材54に対して平行に取付けられている。電極板59Aは、基材56及び電極板59Bに対して平行となるように、4本の支持部材57に取付けられている。なお、電極版59A、59Bの支持は、上述の構造に限られない。また、引き出し電極55は、1つ、または3つ以上の電極板を備えていても良い。 Returning to FIG. 3, the extraction electrode 55 is disposed substantially in parallel on one surface (lower surface in FIG. 3) of the base member 53 (base 56) at a predetermined interval in a direction (vertical direction) perpendicular to the one surface. A sheet of electrode plates 59A, 59B is included. The electrode plates 59A, 59B are formed in a ring shape, but may be formed in a polygonal loop shape. In the upper electrode plate 59A, through holes are formed at four places forming respective vertices of a virtual square having two sides extending respectively in the X-axis direction and the Y-axis direction in plan view, and inside each through hole Support members 57 extending in the vertical direction are respectively inserted. One end (upper end) of each of the four support members 57 is fixed to one surface of the base material 56, and the other end (lower end) is fixed to the upper surface of the lower electrode plate 59B. Mounted parallel to the The electrode plate 59A is attached to the four support members 57 so as to be parallel to the base 56 and the electrode plate 59B. The support of the electrode plates 59A and 59B is not limited to the above-described structure. Moreover, the extraction electrode 55 may be equipped with one or three or more electrode plates.
 図3からわかるように、ベース部材53では、基材56の下面の一部に遮光膜58及びアルカリ光電層(以下、光電層と略記する)60が積層形成されている。また、基材56は、電極板59A、59Bの外径より一辺の長さが長い正方形の板部材から成る。なお、基材56は、正方形でなくてもよく、例えば、電極板の外径より直径が大きい円形の板部材であっても良い。 As can be seen from FIG. 3, in the base member 53, a light shielding film 58 and an alkaline photoelectric layer (hereinafter abbreviated as a photoelectric layer) 60 are laminated and formed on part of the lower surface of the base material 56. The base 56 is a square plate member whose one side is longer than the outer diameter of the electrode plates 59A, 59B. The base 56 may not be square, and may be, for example, a circular plate member having a diameter larger than the outer diameter of the electrode plate.
 ここで、光電層60で生じる電子を、電子ビーム光学系70に向かって(ターゲットであるウエハに向かって)加速するため、光電層60と引き出し電極55との間に電位差を生じさせるための構成の一例を説明する。図5には、ホルダ88とホルダ88に保持された光電素子ユニット50とが示されている。 Here, in order to accelerate the electrons generated in the photoelectric layer 60 toward the electron beam optical system 70 (toward the wafer serving as a target), a configuration for generating a potential difference between the photoelectric layer 60 and the extraction electrode 55 An example will be described. A holder 88 and the photoelectric device unit 50 held by the holder 88 are shown in FIG.
 ホルダ88の上面には、図5に示されるように、3つの球体又は半球体(本実施形態ではボール)92が、例えば、平面視でほぼ正三角形の3つの頂点の各位置(同一の外接円上の位置)に各1つ(合計3つ、ただし、図5では、そのうち紙面奥側に位置する1つのボールは不図示)設けられている。また、光電素子54の基材56の下面には、3つのボール92に対応する位置関係で3つの三角錐溝56a(ただし、図5では紙面奥側に位置する1つの三角錐溝は不図示)が形成されている。この3つの三角錐溝56aには、3つのボール92が係合可能であり、3つの三角錐溝56aは、3つのボール92とともにキネマティックマウント(キネマティックカップリングとも呼ばれる)を構成する。 On the upper surface of the holder 88, as shown in FIG. 5, three spheres or hemispheres (balls in the present embodiment) 92, for example, each position (the same circumscribed tangent) of three vertices of a substantially equilateral triangle in plan view One each (a total of three, but in FIG. 5, one ball located at the back of the paper surface is not shown) is provided at each position on the circle. Further, on the lower surface of the base member 56 of the photoelectric element 54, three triangular pyramid grooves 56a (but one triangular pyramid groove located on the back side of the drawing sheet in FIG. 5 is not shown in the positional relationship corresponding to the three balls 92). ) Is formed. Three balls 92 can be engaged with the three triangular pyramid grooves 56a, and the three triangular pyramid grooves 56a, together with the three balls 92, constitute a kinematic mount (also referred to as a kinematic coupling).
 光電素子ユニット50を、ホルダ88にロードする際には、ホルダ88の上方で3つの三角錐溝56aが3つのボール92にそれぞれほぼ対向する位置に、光電素子ユニット50を移動させた後、光電素子ユニット50を降下させる。これにより、3つのボール92のそれぞれが、3つの三角錐溝56aに個別に係合し、光電素子ユニット50がホルダ88に装着される。この装着時に、3つのボール92が対応する三角錐溝56aに、常にほぼ同じ状態で係合する。一方、光電素子ユニット50を上方に移動させて、ボール92と三角錐溝56aとの係合を解除するだけで、光電素子ユニット50をホルダ88から簡単に取り外す(離脱させる)ことができる。すなわち、本実施形態では3組のボール92と三角錐溝56aとの組によって、キネマティックマウントが構成され、このキネマティックマウントによって、光電素子ユニット50のホルダ88に対する取り付け状態を常にほぼ同一状態に設定する(光電素子54とホルダ88との一定の位置関係を設定する)ことができる。 When the photoelectric device unit 50 is loaded on the holder 88, the photoelectric device unit 50 is moved to a position where the three triangular pyramid grooves 56a substantially face the three balls 92 above the holder 88, The element unit 50 is lowered. As a result, each of the three balls 92 individually engages with the three triangular pyramid grooves 56a, and the photoelectric device unit 50 is attached to the holder 88. At the time of this attachment, the three balls 92 engage with the corresponding triangular pyramid grooves 56a in almost the same state at all times. On the other hand, the photoelectric device unit 50 can be easily removed (removed) from the holder 88 simply by moving the photoelectric device unit 50 upward and releasing the engagement between the ball 92 and the triangular pyramid groove 56a. That is, in the present embodiment, a kinematic mount is constituted by a set of three balls 92 and a triangular pyramid groove 56a, and the attachment state of the photoelectric element unit 50 to the holder 88 is almost always the same by this kinematic mount. It is possible to set (set a fixed positional relationship between the photoelectric element 54 and the holder 88).
 なお、基材56の下面に3つの三角錐溝を形成する代わりに、基材56の下面に、板バネ等で支持され、3つのボール92が配置される上述の外接円の半径方向にのみ移動が可能な三角錐溝部材を設けても良い。この場合、光電素子ユニット50のホルダ88に対する装着に際して、ホルダ88の上方に光電素子54が対向する位置に光電素子ユニット50を移動させた際に、光電素子54のホルダ88に対する位置が所望の位置からずれていたとしても、三角錐溝部材がボール92に係合する際にボール92から外力を受けて三角錐溝部材が前述の如く半径方向に移動する結果、3つのボール92が対応する三角錐溝部材に、常に同じ状態で係合する。したがって、光電素子ユニット50をキネマティックマウント(3組のボール14と三角錐溝部材との組)を介してホルダ88に装着するだけで、光電素子54とホルダ88との一定の位置関係を、再現性良く設定することができる。なお、ホルダ88を、第1プレート36に対してZ軸方向に移動可能(上下動可能)として、ホルダ88に光電素子ユニット55を取り付けるときに、あるいはホルダ88から光電素子ユニット55を取り外すときに、ホルダ88をZ軸方向に移動しても良い。 It should be noted that instead of forming three triangular pyramid grooves in the lower surface of the base 56, only the radial direction of the above-mentioned circumscribed circle supported by a plate spring or the like on the lower surface of the base 56 and in which the three balls 92 are arranged A movable triangular pyramid groove member may be provided. In this case, when the photoelectric device unit 50 is moved to a position where the photoelectric device 54 faces above the holder 88 when the photoelectric device unit 50 is mounted on the holder 88, the position of the photoelectric device 54 with respect to the holder 88 is desired. Even if it deviates from the above, when the triangular pyramid groove member engages with the ball 92, an external force is received from the ball 92 and the triangular pyramid groove member moves in the radial direction as described above. It engages with the conical groove member always in the same state. Therefore, the fixed positional relationship between the photoelectric element 54 and the holder 88 can be obtained only by attaching the photoelectric element unit 50 to the holder 88 via the kinematic mount (a set of three balls 14 and a triangular pyramid groove member). It can be set with good reproducibility. When the photoelectric conversion unit 55 is attached to the holder 88 or the photoelectric conversion unit 55 is removed from the holder 88, the holder 88 is movable (vertically movable) in the Z-axis direction with respect to the first plate 36. The holder 88 may be moved in the Z-axis direction.
 光電素子54の基材56には、図5に示されるように、光電層60に一端が接続され、他端が基材56の下端面から僅かに露出した第1配線62Aと、電極板59A、59Bにそれぞれの一端が接続され、それぞれの他端が基材56の下端面から僅かに露出した第2配線62B、第3配線62Cが設けられている。第1、第2及び第3配線62A、62B、及び62Cそれぞれの他端の基材56からの露出部によって、光電素子ユニット50の電気接続部(ユニット側接点)が構成されている。電気接続部は、光電層60に電気的に接続されている第1接続部(第1接点)と、引き出し電極55の電極板59Aに電気的に接続されている第2接続部(第2接点)と、引き出し電極55の電極板59Bに電気的に接続されている第3接続部(第3接点)と、を有する。 As shown in FIG. 5, the first wiring 62A has one end connected to the photoelectric layer 60 and the other end slightly exposed from the lower end surface of the base 56, and the electrode plate 59A. , 59B, and a second wiring 62B and a third wiring 62C are provided, the other ends of which are slightly exposed from the lower end surface of the base material 56. The electrical connection part (unit side contact) of the photoelectric device unit 50 is configured by the exposed part from the base 56 of the other end of each of the first, second and third wires 62A, 62B and 62C. The electrical connection portion includes a first connection portion (first contact) electrically connected to the photoelectric layer 60, and a second connection portion (second contact) electrically connected to the electrode plate 59A of the lead-out electrode 55. And a third connection portion (third contact point) electrically connected to the electrode plate 59B of the lead-out electrode 55.
 一方、ホルダ88には、図5に示されるように、第1、第2及び第3配線62A、62B、62C(第1、第2及び第3接点)に対応して、側面視U字状の板バネから成る3つの電気接点(ホルダ側電気接点)66A、66B、66Cが設けられている。3つの電気接点66A、66B、66Cの一端(図5における下端)は、第4、第5及び第6配線62D、62E、62Fをそれぞれ介して電圧源64、64、63(図5では、それぞれの印加電圧をV、V、Vと表記)に個別に接続されている。 On the other hand, as shown in FIG. 5, the holder 88 has a U-shape in a side view corresponding to the first, second and third wires 62A, 62B and 62C (first, second and third contacts). There are provided three electrical contacts (holder side electrical contacts) 66A, 66B, 66C consisting of a leaf spring. One end (lower end in FIG. 5) of the three electrical contacts 66A, 66B, 66C is a voltage source 64 1 64 2 63 3 (FIG. 5) via fourth, fifth and sixth wires 62D, 62E, 62F respectively. , Each applied voltage is individually connected to V 1 , V 2 , and V 3 ).
 本実施形態では、上述したように光電素子54とホルダ88との一定の位置関係が設定された状態で、キネマティックマウントを介して光電素子54(光電素子ユニット50)をホルダ88に支持させることで、3つの電気接点66A、66B、66Cそれぞれの他端に、光電素子ユニット50の第1接続部(第1接点)、第2接続部(第2接点)及び第3接続部(第3接点)がそれぞれ接続され、光電層60から放出された電子が、電子光学系70に向かって加速される電位差が生じるように、光電層60に電圧Vが、電極板59Aに電圧Vが、電極板59Bに電圧Vが、それぞれ印加されるようになっている。例えば、電圧Vを58keV、電圧V、を59keV、電圧Vを61keVとすることができる。あるいは、例えば、電圧Vを-60keV、電圧V、を-59keV、電圧Vを-58keVとすることができる。 In the present embodiment, the photoelectric conversion device 54 (photoelectric conversion device unit 50) is supported by the holder 88 via the kinematic mount in a state where the predetermined positional relationship between the photoelectric conversion device 54 and the holder 88 is set as described above. At the other end of each of the three electrical contacts 66A, 66B, 66C, the first connection (first contact), the second connection (second contact) and the third connection (third contact) of the photoelectric device unit 50. ) Are connected to each other, and a voltage V 1 is applied to the photoelectric layer 60 and a voltage V 2 is applied to the electrode plate 59A so that a potential difference is generated such that electrons emitted from the photoelectric layer 60 are accelerated toward the electron optical system 70. voltage V 3 to the electrode plate 59B is adapted to be applied respectively. For example, the voltage V 1 can be 58 keV, the voltage V 2 can be 59 keV, and the voltage V 3 can be 61 keV. Alternatively, for example, the voltage V 1 can be −60 keV, the voltage V 2 can be −59 keV, and the voltage V 3 can be −58 keV.
 本実施形態では、電気接点66Aと第4配線62Dとを含んで、第1接続部(第1接点)に接続される第1配線部が構成され、電気接点66Bと第5配線62Eとを含んで、第2接続部(第2接点)に接続される第2配線部が構成され、電気接点66Cと第6配線62Fとを含んで、第3接続部(第3接点)に接続される第3配線部が構成されている。そして、第1接続部と第1配線部が接続され、第2接続部と第2配線部とが接続され、さらに第3接続部と第3配線部とが接続されることにより、ホルダ88に保持された前記光電変換層と前記引き出し電極55(電極板59A、59B)との間に電位差を生じさせるようになっている。また、第1配線部、第2配線部及び第3配線部を含んで、ホルダ88に保持された光電素子ユニット50の電気接続部と電気的に接続される電気配線部が構成されている。なお、電極板59A、59Bの一方、及び第2接続部及び第3接続部の一方、並びに第2配線部及び第3配線部の一方は、必ずしも設ける必要はない。 In the present embodiment, a first wiring portion connected to the first connection portion (first contact point) including the electric contact 66A and the fourth wiring 62D is configured, and an electric contact 66B and a fifth wiring 62E are included. A second wiring portion connected to the second connection portion (second contact), and includes the electrical contact 66C and the sixth wiring 62F, and is connected to the third connection portion (third contact) 3 Wiring part is configured. The first connection portion and the first wiring portion are connected, the second connection portion and the second wiring portion are connected, and the third connection portion and the third wiring portion are connected, whereby the holder 88 is connected to the holder 88. A potential difference is generated between the held photoelectric conversion layer and the extraction electrode 55 ( electrode plates 59A, 59B). In addition, an electric wiring portion electrically connected to the electric connection portion of the photoelectric device unit 50 held by the holder 88 is configured including the first wiring portion, the second wiring portion, and the third wiring portion. Note that one of the electrode plates 59A and 59B, one of the second connection portion and the third connection portion, and one of the second wiring portion and the third wiring portion do not necessarily have to be provided.
 電子ビーム光学ユニット18Aの説明に戻る。ベースプレート38には、例えば図2にそのうちの1つが代表的に示されるように、電子ビーム光学系70の光軸AXe上にその中心がほぼ位置する複数の(本実施形態では45)の開口38aが形成されている。図2は、電子ビーム光学系70及び、該電子ビーム光学系に個別に対応する筐体19内部の構成部分を示す図である。開口38aは、図1及び図2からわかるように、バルブ39によって開閉されるようになっている。本実施形態では、45の開口38a(バルブ39)は、図1に示されるY軸方向に往復移動が可能な操作部材41によって、同時に開閉可能である。操作部材41の移動は、主制御装置110の配下にある例えば空圧式(あるいは電磁式)の第1の駆動部46によって行われる(図13参照)。ステージチャンバ10内部の露光室12の真空度は、真空計(真空を計測する圧力計)37によって計測され、真空計37の計測値は、主制御装置110に供給されている(図13参照)。 The description returns to the electron beam optical unit 18A. In the base plate 38, for example, one of them is typically shown in FIG. 2, a plurality (45 in this embodiment) of openings 38a whose centers are substantially positioned on the optical axis AXe of the electron beam optical system 70. Is formed. FIG. 2 is a view showing the electron beam optical system 70 and components inside the casing 19 individually corresponding to the electron beam optical system. The opening 38a is opened and closed by a valve 39 as can be seen from FIGS. 1 and 2. In the present embodiment, the openings 38a (valves 39) of 45 can be simultaneously opened and closed by the operation member 41 capable of reciprocating in the Y-axis direction shown in FIG. The movement of the operation member 41 is performed by, for example, a pneumatic (or electromagnetic) first drive unit 46 under the main controller 110 (see FIG. 13). The vacuum degree of the exposure chamber 12 inside the stage chamber 10 is measured by a vacuum gauge (pressure gauge for measuring a vacuum) 37, and the measurement value of the vacuum gauge 37 is supplied to the main controller 110 (see FIG. 13). .
 なお、通常、45の開口38aを開閉するバルブ39は、開放されているが、真空計37からの計測値に基づき、露光室12内の真空度が異常であることを、検知したときなどに、第1の真空室34の内部に存在する光電素子54の光電層60を保護するため、主制御装置110は、第1の駆動部46を制御し、操作部材41を-Y方向に移動することで45のバルブ39を同時に閉じることができる。 Although the valve 39 for opening and closing the opening 38a of 45 is normally open, when it is detected that the degree of vacuum in the exposure chamber 12 is abnormal based on the measurement value from the vacuum gauge 37, etc. The main control unit 110 controls the first drive unit 46 to move the operation member 41 in the -Y direction in order to protect the photoelectric layer 60 of the photoelectric element 54 present inside the first vacuum chamber 34. Thus, the 45 valves 39 can be closed simultaneously.
 本実施形態では、45の電子ビーム光学系70それぞれの光軸AXe上には、ホルダ88に保持された光電素子ユニット50の光電素子54の遮光膜58に形成された多数のアパーチャ58aの配置領域の中心がほぼ一致している。 In the present embodiment, on the optical axis AXe of each of the 45 electron beam optical systems 70, the arrangement region of the large number of apertures 58a formed in the light shielding film 58 of the photoelectric element 54 of the photoelectric element unit 50 held by the holder 88. The centers of
 ベースプレート38の下面には、図1に示されるように、45個の保持部材52それぞれの中心軸上にその光軸AXeが位置する45の電子ビーム光学系70が吊り下げ状態で固定されている。なお、電子ビーム光学系70の支持はこれに限定されず、例えば45の電子ビーム光学系70をベースプレート38とは異なる支持部材で支持し、その支持部材を、筐体19で支持しても良い。 On the lower surface of the base plate 38, as shown in FIG. 1, 45 electron beam optical systems 70 whose optical axes AXe are positioned on the central axes of 45 holding members 52 are fixed in a suspended state . The support of the electron beam optical system 70 is not limited to this. For example, the electron beam optical system 70 of 45 may be supported by a support member different from the base plate 38 and the support member may be supported by the housing 19 .
 電子ビーム光学系70は、図2に示されるように、鏡筒104と鏡筒104に保持された一対の電磁レンズ70a、70bから成る対物レンズと、静電マルチポール70cとを有する。電子ビーム光学系70の対物レンズと、静電マルチポール70cは、複数の光ビームLBを光電素子54に照射することによって光電層60による光電変換によって放出される電子(複数の電子ビームEB)のビーム路上に配置されている。なお、鏡筒104を、ハウジング104と呼んでも良い。 As shown in FIG. 2, the electron beam optical system 70 has an objective lens consisting of a lens barrel 104 and a pair of electromagnetic lenses 70a and 70b held by the lens barrel 104, and an electrostatic multipole 70c. The objective lens of the electron beam optical system 70 and the electrostatic multipole 70 c irradiate a plurality of light beams LB to the photoelectric element 54 to emit electrons (plurality of electron beams EB) by photoelectric conversion by the photoelectric layer 60. It is located on the beam path. The lens barrel 104 may be called a housing 104.
 一対の電磁レンズ70a、70bは、それぞれ鏡筒104内の上端部近傍及び下端部近傍に配置され、上下方向に関して両者は離れている。この一対の電磁レンズ70a、70b相互間に静電マルチポール70cが配置されている。静電マルチポール70cは、対物レンズによって絞られる電子ビームEBのビーム路上のビームウェスト部分に配置されている。このため、静電マルチポール70cを通過する複数のビームEBは、相互間に働くクーロン力によって互いに反発し、倍率が変化することがある。 The pair of electromagnetic lenses 70a and 70b are disposed in the vicinity of the upper end and the lower end in the lens barrel 104, respectively, and they are separated in the vertical direction. An electrostatic multipole 70c is disposed between the pair of electromagnetic lenses 70a and 70b. The electrostatic multipole 70c is disposed in the beam waist portion on the beam path of the electron beam EB focused by the objective lens. For this reason, the plurality of beams EB passing through the electrostatic multipole 70c may repel each other by the coulomb force acting between them, and the magnification may change.
 そこで、本実施形態では、XY倍率補正用の第1静電レンズ70cと、ビームの照射位置制御(及び照射位置ずれ補正)、すなわち光学パターンの投影位置調整(及び投影位置ずれ補正)用の第2静電レンズ70cとを有する静電マルチポール70cが電子ビーム光学系70の内部に設けられている。第1静電レンズ70cは、例えば図6に模式的に示されるように、X軸方向及びY軸方向に関する縮小倍率を、高速で、かつ個別に補正する。なお、第1静電レンズ70cと第2静電レンズ70cのそれぞれが、XY倍率補正と電子ビームの照射位置制御(及び照射位置ずれ補正)を行っても良い。また、静電レンズ70cがX軸方向とY軸方向と異なる軸方向の倍率調整をできるようにしても良い。また、第1静電レンズ70cと第2静電レンズ70cのいずれか一方を設けなくても良いし、静電マルチポール70cが、追加の静電レンズを有していても良い。 Therefore, in this embodiment, a first electrostatic lens 70c 1 for XY magnification correction, the irradiation position control of the beam (and the irradiation position shift correction), i.e. the projection position adjustment of the optical pattern (and the projection position shift correction) for An electrostatic multipole 70 c having a second electrostatic lens 70 c 2 is provided inside the electron beam optical system 70. The first electrostatic lens 70c 1, for example as schematically shown in FIG. 6, the reduction magnification in the X-axis direction and the Y-axis direction, fast, and individually corrected. Incidentally, each of the first electrostatic lens 70c 1 and the second electrostatic lens 70c 2 is, irradiation position control of the XY magnification correction and the electron beam (and the irradiation position shift correction) may be performed. Moreover, the electrostatic lens 70c 1 may be allowed to the axial direction of the magnification adjustment different from the X-axis direction and the Y-axis direction. Further, it may be omitted first electrostatic lens 70c 1 and one of the second electrostatic lens 70c 2, an electrostatic multipole 70c may also have additional electrostatic lenses.
 また、第2静電レンズ70cは、各種振動等に起因するビームの照射位置ずれ(後述するカットパターンの投影位置ずれ)を一括で補正する。第2静電レンズ70cは、露光の際に電子ビームのウエハWに対する追従制御を行う際の電子ビームの偏向制御、すなわち電子ビームの照射位置制御にも用いられる。なお、縮小倍率の補正を、電子ビーム光学系70以外の部分、例えば後述する投影系などを用いて行う場合などには、静電マルチポール70cに代えて、電子ビームの偏向制御が可能な静電レンズから成る静電偏向レンズを用いても良い。 The second electrostatic lens 70c 2 corrects the irradiation position displacement of the beam due to various vibrations and the like (the projection position shift of the cut pattern to be described later) at once. The second electrostatic lens 70c 2 is deflection control of the electron beam for performing the following control for the wafer W of the electron beam during exposure, i.e., it is also used for the irradiation position control of the electron beam. When correction of the reduction ratio is performed using a portion other than the electron beam optical system 70, for example, a projection system to be described later, the electrostatic multipole 70c is replaced with a static light capable of controlling the electron beam deflection. An electrostatic deflection lens consisting of an electrostatic lens may be used.
 電子ビーム光学系70の縮小倍率は、倍率補正を行わない状態で、設計上例えば1/50である。1/30、1/20など、その他の倍率でも良い。 The reduction magnification of the electron beam optical system 70 is, for example, 1/50 in design without performing magnification correction. Other scaling factors such as 1/30 and 1/20 may be used.
 鏡筒104は、複数の開口部を有している。鏡筒104の内部は、図1に示されるステージチャンバ10の内部の露光室12と連通している。露光室12は、第1の真空室34に比べて、真空度が低い(圧力が高い)真空室となっている。 The lens barrel 104 has a plurality of openings. The inside of the lens barrel 104 is in communication with the exposure chamber 12 inside the stage chamber 10 shown in FIG. The exposure chamber 12 is a vacuum chamber having a lower degree of vacuum (higher pressure) than the first vacuum chamber 34.
 また、鏡筒104の内部は、図2に示されるように、例えばステンレス製の配管部材などから成る仕切り部材107により、第1の真空室34を介して電子ビームが通過する中心部の第1空間71aと、第1空間71aの周囲を取り囲み、内部に電磁レンズ70a、70bが収納される第2空間71bとに分離されている。第2空間71bが、露光室12に連通している。なお、静電マルチポール70cは、高真空空間に配置する必要があるので、第1空間71a内に配置されている。 Further, as shown in FIG. 2, the inside of the lens barrel 104 is, for example, a first portion of a central portion through which the electron beam passes through the first vacuum chamber 34 by a partition member 107 made of, for example, a stainless steel piping member. A space 71a and a second space 71b surrounding the first space 71a and in which the electromagnetic lenses 70a and 70b are accommodated are separated. The second space 71 b communicates with the exposure chamber 12. The electrostatic multipole 70c needs to be disposed in the high vacuum space, and therefore, is disposed in the first space 71a.
 本実施形態では、45の電子ビーム光学系70の全てでそれぞれの鏡筒104の内部を上記の第1空間71aと第2空間71bとに分離する構成が採用されている。第1空間71aは、電子ビーム光学系70の電子ビームEBの通路と呼ぶこともできる。ここで、電子ビーム光学系70の電子ビームEBの通路は、バルブ39が開放されている状態で、光電素子54(光電素子ユニット50)がその内部に配置された第1の真空室34からの電子ビームEBが通過する通路である。以下では、第1空間71aを、適宜、電子ビームEBの通路71aとも表記する。 In the present embodiment, a configuration is adopted in which the inside of each lens barrel 104 is divided into the first space 71 a and the second space 71 b in all of the 45 electron beam optical systems 70. The first space 71 a can also be called a path of the electron beam EB of the electron beam optical system 70. Here, the passage of the electron beam EB of the electron beam optical system 70 is from the first vacuum chamber 34 in which the photoelectric element 54 (photoelectric element unit 50) is disposed with the valve 39 open. It is a passage through which the electron beam EB passes. Hereinafter, the first space 71a will also be appropriately referred to as a passage 71a of the electron beam EB.
 本実施形態においては、45のバルブ39を閉じることで、第1の真空室34内部と第1の真空室34から露光室12に到る45の電子ビーム光学系70それぞれの電子ビームEBの通路71a内部とが、流体的に分離され、あるいは第1の真空室34と電子ビームEBの通路71aとの間で気体の流れが生じないように分離される。なお、第1の真空室34内部の真空度と第1の真空室34から露光室12に到る電子ビームEBの通路71a内部の真空度とを異ならせも良い。また、バルブなどを設けずに、第1の真空室34と上記の電子ビームの通路71aとが実質的に1つの真空室となるようにしても良い。 In the present embodiment, the passage of the electron beam EB of each of the 45 electron beam optical systems 70 from the inside of the first vacuum chamber 34 and the first vacuum chamber 34 to the exposure chamber 12 by closing the valve 39 of 45. The interior of the chamber 71a is fluidly separated or separated so that no gas flow occurs between the first vacuum chamber 34 and the passage 71a of the electron beam EB. The degree of vacuum in the first vacuum chamber 34 and the degree of vacuum in the passage 71 a of the electron beam EB from the first vacuum chamber 34 to the exposure chamber 12 may be different. Further, the first vacuum chamber 34 and the above-mentioned electron beam passage 71a may be substantially one vacuum chamber without providing a valve or the like.
 また、鏡筒104を気密性の高い構造とし、その内部を、中心部の第1空間(電子ビーム光学系70の電子ビームEBの通路)と、第1空間の周囲を取り囲み、内部に電磁レンズ70a、70bが収納される第2空間とに分離し、第2空間を例えばステージチャンバ10外部の空間に開放することとしても良い。 The lens barrel 104 has a highly airtight structure, the inside of which is surrounded by the first space at the center (the path of the electron beam EB of the electron beam optical system 70) and the periphery of the first space, and the electromagnetic lens is housed inside The second space may be separated into a second space in which 70a and 70b are stored, and the second space may be opened to a space outside the stage chamber 10, for example.
 なお、45の電子ビーム光学系70のうち、少なくとも2つの電子ビーム光学系70それぞれの電子ビームEBの通路(第1通路、第2通路、……と呼ぶこともできる)を、配管又は管路により相互に接続し、真空ポンプにより、第1の真空室34とは独立してその少なくとも2つの通路71a内を真空引きできるようにしても良い。 Of the 45 electron beam optical systems 70, the paths of the electron beams EB of each of the at least two electron beam optical systems 70 (can also be referred to as a first path, a second path,...) , And the inside of the at least two passages 71a can be evacuated independently of the first vacuum chamber 34 by a vacuum pump.
 仕切部材107の射出端(鏡筒104の射出端)には、図2に示されるように、電子ビームの出口104aが形成されており、この出口104a部分の下方には、反射電子検出装置106が配置されている。反射電子検出装置106は、電子ビーム光学系70の光軸AXe(前述の保持部材52の中心軸及び後述する投影系の光軸AXp(図7参照)に一致)を挟みY軸方向の両側に、一対の反射電子検出装置106y、106yが設けられている。また、図2では不図示であるが、光軸AXeを挟みX軸方向の両側に、一対の反射電子検出装置106x、106x(図13参照)が設けられている。 As shown in FIG. 2, the exit 104a of the electron beam is formed at the exit end of the partition member 107 (the exit end of the lens barrel 104), and the backscattered electron detecting device 106 is formed below the exit 104a. Is arranged. The backscattered electron detector 106 sandwiches the optical axis AXe of the electron beam optical system 70 (coincident with the central axis of the holding member 52 and the optical axis AXp of the projection system described later (see FIG. 7)) on both sides in the Y axis direction. A pair of backscattered electron detectors 106y 1 and 106y 2 are provided. Although not shown in FIG. 2, a pair of backscattered electron detectors 106 x 1 and 106 x 2 (see FIG. 13) are provided on both sides of the optical axis AXe in the X axis direction.
 上記2対の反射電子検出装置106のそれぞれは、例えば半導体検出器によって構成され、ウエハ上のアライメントマーク、あるいは基準マーク等の検出対象マークから発生する反射成分、ここでは反射電子を検出し、検出した反射電子に対応する検出信号を信号処理装置108に送る(図13参照)。信号処理装置108は、複数の反射電子検出装置106の検出信号を不図示のアンプにより増幅した後に信号処理を行い、その処理結果を主制御装置110に送る(図13参照)。なお、反射電子検出装置106は、45個の電子ビーム光学系70の一部(少なくとも1つ)に設けるだけでも良いし、設けなくても良い。なお、電子ビーム光学系70の光軸AXeは、光電素子54とウエハWとの間に描画すべきであるが、図2では、図示の便宜上から真空隔壁81の上方まで延長して図示されている。 Each of the two pairs of backscattered electron detection devices 106 is formed of, for example, a semiconductor detector, and detects and detects a reflected component generated from a detection target mark such as an alignment mark or a reference mark on a wafer. A detection signal corresponding to the reflected electrons is sent to the signal processing unit 108 (see FIG. 13). The signal processing unit 108 amplifies the detection signals of the plurality of backscattered electron detection units 106 by an amplifier (not shown) and then performs signal processing, and sends the processing result to the main control unit 110 (see FIG. 13). The backscattered electron detection device 106 may or may not be provided only on a part (at least one) of the 45 electron beam optical systems 70. The optical axis AXe of the electron beam optical system 70 should be drawn between the photoelectric element 54 and the wafer W, but in FIG. There is.
 反射電子検出装置106x1、106x2、106y1、106y2は、例えば鏡筒104に取付けられている。なお、複数の鏡筒104の出口104a部分に個別に対向して開口が形成されたクーリングプレートを設け、該クーリングプレートの開口内に反射電子検出装置106x1、106x2、106y1、106y2を配置しても良い。この場合には、反射電子検出装置をクーリングプレートに取付けても良い。 The backscattered electron detectors 106 x1 , 106 x2 , 106 y1 , and 106 y2 are attached to the lens barrel 104, for example. A cooling plate having openings individually facing the outlets 104a of the plurality of lens barrels 104 is provided, and the backscattered electron detectors 106 x 1 , 106 x 2 , 106 y 1 , 106 y 2 are provided in the openings of the cooling plate. It may be arranged. In this case, the backscattered electron detector may be attached to the cooling plate.
 また、図2に示されるように、第1室34内のベースプレート38の上面には、ホルダ88に保持された光電素子ユニット50が備える引き出し電極55で電子ビーム光学系70に向かって加速された電子を、さらに加速するための別の引き出し電極112が設けられている。引き出し電極112は、Z軸方向に所定間隔配置された、例えばリング状の複数(本実施形態では3枚)の電極板を有する。引き出し電極112は、45の電子ビーム光学系70に個別に対応して45設けられている(図1参照)。なお、図1などでは、引き出し電極112などは、簡略化して示されている。引き出し電極112は、光電素子54の保持位置の下方に配置されている。なお、引き出し電極112は、第1プレート36で支持しても良い。また、引き出し電極112を設けなくても良い。 Further, as shown in FIG. 2, the top surface of the base plate 38 in the first chamber 34 is accelerated toward the electron beam optical system 70 by the lead-out electrode 55 provided in the photoelectric element unit 50 held by the holder 88. Another extraction electrode 112 is provided to further accelerate the electrons. The extraction electrode 112 has, for example, a plurality of ring-shaped (three in the present embodiment) electrode plates arranged at a predetermined interval in the Z-axis direction. The extraction electrodes 112 are provided 45 corresponding to the 45 electron beam optical systems 70 individually (see FIG. 1). In FIG. 1 and the like, the extraction electrode 112 and the like are shown in a simplified manner. The extraction electrode 112 is disposed below the holding position of the photoelectric element 54. Note that the extraction electrode 112 may be supported by the first plate 36. Further, the extraction electrode 112 may not be provided.
 光学ユニット18Bは、図1に示されるように、45の電子ビーム光学系70(光電素子54)のそれぞれに対応して設けられた45の光照射装置(光光学系と呼ぶこともできる)80を備えている。各光照射装置80からの少なくとも1つの光ビームが対応する光電素子54のアパーチャ58aを介して光電層60に照射される。なお、光照射装置80の数と光電素子54(光電素子ユニット50)の数とは等しくなくても良い。したがって、光照射装置80は、電子ビーム光学系70に必ずしも個別に対応していなくても良い。例えば光照射装置80の数が光電素子54(光電素子ユニット50)の数よりも多くても良い。 As shown in FIG. 1, the optical unit 18 B includes 45 light irradiation devices (also referred to as light optical systems) 80 provided corresponding to the 45 electron beam optical systems 70 (photoelectric elements 54). Is equipped. At least one light beam from each light emitting device 80 is applied to the photoelectric layer 60 via the corresponding aperture 58a of the photoelectric element 54. The number of light irradiation devices 80 and the number of photoelectric elements 54 (photoelectric element units 50) may not be equal. Therefore, the light irradiation device 80 may not necessarily correspond to the electron beam optical system 70 individually. For example, the number of light irradiation devices 80 may be larger than the number of photoelectric elements 54 (photoelectric element units 50).
 図7には、図1の光照射装置80が、対応するホルダ88に保持された光電素子ユニット50とともに示されている。光照射装置80は、照明系82と、照明系82からの光で複数の光ビーム(パターニングされた光)を発生させる光学デバイス(以下、パターンジェネレータと呼ぶ)84と、パターンジェネレータ84からの複数の光ビームを、真空隔壁81を介して光電素子54に照射する投影系(投影光学系とも呼ばれる)86と、を有する。 FIG. 7 shows the light emitting device 80 of FIG. 1 together with the photoelectric device unit 50 held by the corresponding holder 88. The light irradiation device 80 includes an illumination system 82, an optical device (hereinafter referred to as a pattern generator) 84 that generates a plurality of light beams (patterned light) with light from the illumination system 82, and a plurality of patterns from the pattern generator 84. And a projection system (also referred to as a projection optical system) 86 for irradiating the photoelectric conversion element 54 with the light beam of (1) through the vacuum dividing wall 81.
 パターンジェネレータ84は、所定方向へ進行する光の振幅、位相及び偏光の状態の少なくとも1つを空間的に変調して射出する空間光変調器と称しても良い。パターンジェネレータ84は、例えば明暗パターンからなる光学パターンを発生することができるとも言える。 The pattern generator 84 may be referred to as a spatial light modulator that spatially modulates and emits at least one of the amplitude, phase, and polarization state of light traveling in a predetermined direction. It can also be said that the pattern generator 84 can generate an optical pattern consisting of, for example, light and dark patterns.
 図7に示されるように、照明系82は、照明光(レーザ光)LBを発生する光源82aと、その照明光LBを、1又は2以上のX軸方向に長い断面矩形状のビームに成形する成形光学系82bと、成形光学系82bとパターンジェネレータ84との間に配置され、成形光学系82bからの光をパターンジェネレータ84に向けて偏向する反射面98aを有するプリズム又はミラー等の反射光学素子98と、を有する。光源82a、成形光学系82b及び反射光学素子98は、鏡筒83に保持されている。なお、鏡筒83をハウジング83と呼んでも良い。 As shown in FIG. 7, the illumination system 82 forms a light source 82a that generates illumination light (laser light) LB, and the illumination light LB into one or more beams having a rectangular cross section elongated in the X-axis direction. And a reflecting optical system such as a prism or a mirror having a reflecting surface 98a disposed between the forming optical system 82b and the forming optical system 82b and the pattern generator 84 for deflecting the light from the forming optical system 82b toward the pattern generator 84 And an element 98. The light source 82 a, the shaping optical system 82 b, and the reflection optical element 98 are held by a lens barrel 83. The lens barrel 83 may be called a housing 83.
 光源82aとしては、可視光又は可視光近傍の波長、例えば波長405nmのレーザ光を連続発振するレーザダイオードが用いられている。光源82aとして、レーザ光を間欠的に発光(発振)するレーザダイオードを用いても良い。あるいは、レーザダイオードと、AO偏向器又はAOM(音響光学変調素子)などのスイッチング素子との組合せを、光源82aに代えて用い、レーザ光を間欠的に発光させることとしても良い。なお、照明系82は、光源82aを備えてなくても良く、装置の外部に光源を設けても良い。この場合、装置外部の光源からの照明光を光ファイバ等の光伝送部材を用いて照明系82に導けば良い。 As the light source 82a, a laser diode that continuously oscillates a visible light or a wavelength near the visible light, for example, a laser beam having a wavelength of 405 nm is used. A laser diode that intermittently emits (oscillates) laser light may be used as the light source 82a. Alternatively, a combination of a laser diode and a switching element such as an AO deflector or an AOM (acousto-optic modulator) may be used in place of the light source 82a to intermittently emit laser light. The illumination system 82 may not include the light source 82a, and the light source may be provided outside the apparatus. In this case, illumination light from a light source outside the apparatus may be guided to the illumination system 82 using a light transmission member such as an optical fiber.
 成形光学系82bは、光源82aからのレーザビーム(以下、適宜、ビームと略記する)LBの光路上に順次配置された複数の光学素子を含む。複数の光学素子としては、例えば回折光学素子(DOEとも呼ばれる)、レンズ(例えば集光レンズ)、ミラー等を含むことができる。 The shaping optical system 82b includes a plurality of optical elements sequentially disposed on the light path of a laser beam (hereinafter, appropriately abbreviated as a beam) LB from the light source 82a. The plurality of optical elements can include, for example, a diffractive optical element (also referred to as DOE), a lens (for example, a condenser lens), a mirror, and the like.
 成形光学系82bが、例えば入射端部に位置する回折光学素子を含む場合、その回折光学素子は、光源82aからのレーザビームLBが入射すると、そのビームLBが、回折光学素子の射出面側の所定面において、Y軸方向に所定間隔で並ぶX軸方向に長い複数の矩形状(本実施形態では細長いスリット状)の領域で光強度が大きい分布を持つように、レーザビームLBの面内強度分布を変換する。本実施形態では、回折光学素子は、光源82aからのビームLBの入射により、Y軸方向に所定間隔で並ぶX軸方向に長い複数の断面矩形状のビーム(スリット状のビーム)LBを生成する。本実施形態では、パターンジェネレータ84の構成に合わせた数のスリット状のビームLBを生成する。なお、レーザビームLBの面内強度分布を変換する素子としては、回折光学素子には限定されず、屈折光学素子や反射光学素子であっても良く、空間光変調器であっても良い。なお、反射光学素子98に入射する光ビームは、断面矩形状(スリット状)のビームでなくて良い。 When the shaping optical system 82b includes, for example, a diffractive optical element located at the incident end, when the laser beam LB from the light source 82a is incident on the diffractive optical element, the beam LB is on the emission surface side of the diffractive optical element In-plane intensity of the laser beam LB so as to have a large light intensity distribution in a plurality of rectangular regions (in the present embodiment, elongated slits) long in the X-axis direction aligned at predetermined intervals in the Y-axis direction on a predetermined surface. Transform the distribution. In the present embodiment, the diffractive optical element generates a plurality of rectangular beams (slit-like beams) LB having a plurality of rectangular cross sections elongated in the X-axis direction aligned at predetermined intervals in the Y-axis direction by incidence of the beam LB from the light source 82a. . In the present embodiment, a number of slit beams LB according to the configuration of the pattern generator 84 are generated. The element for converting the in-plane intensity distribution of the laser beam LB is not limited to the diffractive optical element, and may be a refractive optical element or a reflective optical element, or may be a spatial light modulator. The light beam incident on the reflective optical element 98 may not be a beam having a rectangular cross section (slit shape).
 本実施形態では、後述するように、パターンジェネレータ84として、反射型の空間光変調器が用いられているため、成形光学系82bの終端部に位置する最終レンズ96の下方(光射出側)には、光路折り曲げ用の反射光学素子98が配置されている。最終レンズ96は、回折光学素子で生成された複数の断面矩形状(スリット状)のビームLBをY軸方向に関して集光し、反射光学素子98の反射面98aに照射する。最終レンズ96としては、例えばX軸方向に長いシリンドリカルレンズなどの集光レンズを用いることができる。集光レンズの代わりに、集光ミラー等の反射光学部材や回折光学素子を用いても良い。また、反射面98aは、平面に限定されず、曲率を持った形状であっても良い。反射面98aが曲率を有する(有限の焦点距離を有する)場合、集光レンズの機能も持たせることができる。また、反射光学素子98は、照明系82の光軸AXiに対して可動(位置、傾き、姿勢などが変更可能)であっても良い。 In the present embodiment, as described later, since a reflective spatial light modulator is used as the pattern generator 84, the light beam is emitted below the final lens 96 located at the end of the shaping optical system 82b (light emission side) A reflective optical element 98 for bending the optical path is disposed. The final lens 96 condenses a plurality of cross-sectional rectangular (slit-like) beams LB generated by the diffractive optical element in the Y-axis direction, and irradiates the reflective surface 98 a of the reflective optical element 98. As the final lens 96, for example, a condensing lens such as a cylindrical lens long in the X-axis direction can be used. Instead of the focusing lens, a reflective optical member such as a focusing mirror or a diffractive optical element may be used. Further, the reflecting surface 98a is not limited to a flat surface, and may have a shape having a curvature. If the reflecting surface 98a has a curvature (having a finite focal length), it can also have the function of a condenser lens. In addition, the reflective optical element 98 may be movable (the position, the inclination, the attitude, and the like can be changed) with respect to the optical axis AXi of the illumination system 82.
 反射面98aは、XY平面に対して所定角度α(αは例えば+10度)傾斜して配置され、照射された複数のスリット状のビームを図7における左斜め上方向に反射する。本実施形態では、成形光学系82bと反射光学素子98とによって照明光学系が構成されている。反射光学素子98は、図7に示されるように、前述の鏡筒83の下端部に保持部材を介して保持されている。 The reflecting surface 98a is disposed at a predetermined angle α (α is, for example, +10 degrees) inclined with respect to the XY plane, and reflects the plurality of irradiated slit-like beams in the upper left direction in FIG. In the present embodiment, the shaping optical system 82 b and the reflective optical element 98 constitute an illumination optical system. As shown in FIG. 7, the reflective optical element 98 is held at the lower end portion of the above-mentioned lens barrel 83 via a holding member.
 パターンジェネレータ84は、反射面98aによって反射された複数のスリット状のビームの反射光路上に配置されている。パターンジェネレータ84は、XY平面に対して所定角度α傾斜して配置され、鏡筒83の開口(図示省略)を介して長手方向の両端部が鏡筒83の外部に露出した回路基板102の-Z側の面に配置されている。回路基板102には、成形光学系82bから反射面98aに照射されるビームLBの通路となる開口が形成されている。なお、回路基板102の+Z側に、放熱用のヒートシンク(不図示)を対向して配置しても良い。ヒートシンクは複数の接続部材(不図示)を介して回路基板102に接続されている。ヒートシンクは、回路基板に対向する面とは反対側の面(+Z側の面)が鏡筒83に接触状態で固定しても良い。ここで、接続部材として、ペルチェ素子を用いても良い。いずれにしてもヒートシンクを介した放熱によりパターンジェネレータ84及び回路基板102を冷却することができる。なお、符号103は、配線を示す。 The pattern generator 84 is disposed on the reflected light path of the plurality of slit-like beams reflected by the reflecting surface 98a. The pattern generator 84 is disposed at a predetermined angle α with respect to the XY plane, and the circuit board 102 whose both ends in the longitudinal direction are exposed to the outside of the lens barrel 83 through the opening (not shown) of the lens barrel 83 It is disposed on the Z-side surface. The circuit board 102 is formed with an opening which is a passage of the beam LB irradiated from the shaping optical system 82b to the reflection surface 98a. A heat sink (not shown) for heat dissipation may be disposed opposite to the + Z side of the circuit board 102. The heat sink is connected to the circuit board 102 via a plurality of connection members (not shown). The heat sink may be fixed to the lens barrel 83 in a state in which the surface (the surface on the + Z side) opposite to the surface facing the circuit board is in contact with the lens barrel 83. Here, a Peltier element may be used as the connection member. In any case, the pattern generator 84 and the circuit board 102 can be cooled by the heat radiation through the heat sink. In addition, the code | symbol 103 shows wiring.
 なお、反射光学素子98が配置されている位置にパターンジェネレータ84を配置し、パターンジェネレータ84が配置されている位置に反射光学素子98を配置しても良い。あるいは、基板102の上面にパターンジェネレータ84を配置し、照明光の照射によりパターンジェネレータから発生した複数の光ビームを、基板102の+Z側に配置された反射光学素子98で反射して、基板102の開口を介して投影系86に導いても良い。 The pattern generator 84 may be disposed at the position where the reflective optical element 98 is disposed, and the reflective optical element 98 may be disposed at the position where the pattern generator 84 is disposed. Alternatively, a pattern generator 84 is disposed on the upper surface of the substrate 102, and a plurality of light beams generated from the pattern generator by irradiation of illumination light are reflected by the reflective optical element 98 disposed on the + Z side of the substrate 102 to The light beam may be led to the projection system 86 through the aperture of.
 本実施形態では、パターンジェネレータ84は、プログラマブルな空間光変調器の一種である光回折型ライトバルブ(GLV(登録商標))によって構成されている。光回折型ライトバルブは、図8(A)及び図8(B)に示されるように、シリコン基板(チップ)84a上に「リボン」と呼ばれるシリコン窒化膜の微細な構造体(以下、リボンと称する)84bを数千個の規模で形成した空間光変調器である。 In the present embodiment, the pattern generator 84 is configured by a light diffraction type light valve (GLV (registered trademark)) which is a kind of programmable spatial light modulator. As shown in FIGS. 8A and 8B, the light diffraction type light valve is a minute structure of silicon nitride film called “ribbon” on a silicon substrate (chip) 84 a (hereinafter referred to as “ribbon” and “ribbon”). It is a spatial light modulator in which a scale of several thousand is used to form a reference 84b.
 GLVの駆動原理は、次のとおりである。 The driving principle of GLV is as follows.
 リボン84bのたわみを電気的に制御することにより、GLVはプログラム可能な回折格子として機能し、高解像度、ハイスピード(応答性250kHz~1MHz)、高い正確さで、調光、変調、レーザ光のスイッチングを可能にする。GLVは微小電気機械システム(MEMS)に分類される。リボン84bは、硬度、耐久性、化学安定性において強固な特性を持つ高温セラミックの一種である、非晶質シリコン窒化膜(Si)から作られている。各リボンの幅は2~4μmで、長さは100~300μmである。リボン84bはアルミ薄膜で覆われており、反射板と電極の両方の機能を合わせ持つ。リボンは、共通電極84cを跨いで張られており、ドライバ(図8(A)及び図8(B)では不図示)から制御電圧がリボン84bに供給されると、静電気により基板84a方向にたわむ。制御電圧が無くなると、リボン84bは、シリコン窒化膜固有の高い張力により元の状態に戻る。すなわち、リボン84bは、可動反射素子の一種である。 By electrically controlling the deflection of the ribbon 84b, the GLV functions as a programmable diffraction grating, and has high resolution, high speed (responsiveness 250 kHz to 1 MHz), high accuracy, dimming, modulation, and laser light Enable switching. GLVs are classified as micro-electro-mechanical systems (MEMS). The ribbon 84 b is made of an amorphous silicon nitride film (Si 3 N 4 ) which is a kind of high temperature ceramic having strong characteristics in hardness, durability, and chemical stability. Each ribbon has a width of 2 to 4 μm and a length of 100 to 300 μm. The ribbon 84b is covered with an aluminum thin film, and has the function of both a reflector and an electrode. The ribbon is stretched across the common electrode 84c, and when a control voltage is supplied to the ribbon 84b from a driver (not shown in FIGS. 8A and 8B), the ribbon is bent toward the substrate 84a by static electricity. . When the control voltage is lost, the ribbon 84b returns to its original state due to the high tension inherent to the silicon nitride film. That is, the ribbon 84b is a kind of movable reflective element.
 GLVには、電圧の印加により位置が変化するアクティブリボンと、グランドに落ちていて位置が不変のバイアスリボンとが交互に並んだタイプと、全てがアクティブリボンであるタイプとがあるが、本実施形態では後者のタイプが用いられている。 There are two types of GLV: an active ribbon whose position changes due to the application of voltage, and a type where a bias ribbon falling to the ground and whose position is invariable alternates, and a type in which all are active ribbons. The latter type is used in the form.
 本実施形態では、リボン84bが-Z側に位置し、シリコン基板84aが+Z側に位置する状態で、回路基板102の-Z側の面にGLVから成るパターンジェネレータ84が取付けられている。回路基板102には、リボン84bに制御電圧を供給するためのCMOSドライバ(不図示)が設けられている。以下の説明では、便宜上、CMOSドライバを含んでパターンジェネレータ84と呼ぶ。 In this embodiment, with the ribbon 84 b positioned on the −Z side and the silicon substrate 84 a positioned on the + Z side, the pattern generator 84 made of GLV is attached to the surface on the −Z side of the circuit board 102. The circuit board 102 is provided with a CMOS driver (not shown) for supplying a control voltage to the ribbon 84 b. In the following description, for convenience, a pattern generator 84 including a CMOS driver is referred to.
 本実施形態で用いられるパターンジェネレータ84は、図9に示されるように、リボン84bを、例えば6000個有するリボン列85が、その長手方向(リボン84bの並ぶ方向)をX軸方向として、XY平面に対して所定角度αを成す方向(以下、便宜上α軸方向と称する)に所定の間隔で例えば12列、シリコン基板上に形成されている。各リボン列85のリボン84bは、共通電極の上に張られている。本実施形態では、一定レベルの電圧の印加と印加の解除とにより、レーザ光のスイッチング(オン・オフ)のために、各リボン84bは、駆動される。ただし、GLVは、印加電圧に応じて回折光強度の調節が可能なので、パターンジェネレータ84からの複数のビームの少なくとも一部の強度の調整が必要な場合などには、印加電圧が微調整される。例えば、各リボンに同じ強度の光が入射した場合に、異なる強度を持つ複数の光ビームをパターンジェネレータ84から発生することができる。 The pattern generator 84 used in the present embodiment has, as shown in FIG. 9, an XY plane in which a ribbon row 85 having, for example, 6000 ribbons 84b has its longitudinal direction (direction in which the ribbons 84b are aligned) as the X-axis direction. For example, 12 rows are formed on the silicon substrate at predetermined intervals in a direction forming a predetermined angle α (hereinafter referred to as the α-axis direction for convenience). The ribbons 84b of each ribbon row 85 are stretched on the common electrode. In the present embodiment, each ribbon 84 b is driven for switching (on / off) of the laser light by application and cancellation of application of a constant level voltage. However, since the GLV can adjust the diffracted light intensity according to the applied voltage, the applied voltage is finely adjusted when the intensity of at least a part of the plurality of beams from the pattern generator 84 needs to be adjusted. . For example, when light of the same intensity is incident on each ribbon, a plurality of light beams having different intensities can be generated from pattern generator 84.
 本実施形態では、照明系82内の回折光学素子でスリット状のビームが12本生成され、この12本のビームが、成形光学系82bを構成する複数の光学素子(最終レンズ96を含む)、及び反射光学素子98の反射面98aを介して、各リボン列85の中央にX軸方向に長いスリット状のビームLBが照射される。本実施形態においては、各リボン84bに対するビームLBの照射領域は、正方形領域となる。なお、各リボン84bに対するビームLBの照射領域は、正方形領域でなくても良い。X軸方向に長い、あるいはα軸方向に長い矩形領域であっても良い。本実施形態においては、12本のビームのパターンジェネレータ84の受光面上での照射領域(照明系82の照射領域)は、X軸方向の長さがSmm、α軸方向の長さがTmmの矩形の領域とも言える。 In the present embodiment, twelve slit-like beams are generated by the diffractive optical element in the illumination system 82, and the twelve beams form a plurality of optical elements (including the final lens 96) constituting the forming optical system 82b, A slit-like beam LB long in the X-axis direction is irradiated to the center of each ribbon row 85 via the reflection surface 98 a of the reflection optical element 98. In the present embodiment, the irradiation area of the beam LB to each ribbon 84b is a square area. The irradiation area of the beam LB to each ribbon 84b may not be a square area. It may be a rectangular region long in the X axis direction or long in the α axis direction. In the present embodiment, the irradiation area (illumination area of the illumination system 82) of the 12 beams on the light receiving surface of the pattern generator 84 has a length in the X axis direction of S mm and a length in the α axis direction of T mm. It can be said that it is a rectangular area.
 各リボン84bは独立制御可能となっているので、パターンジェネレータ84で発生される断面正方形のビームの本数は、6000×12=72000本であり、72000本のビームのスイッチング(オン・オフ)が可能である。本実施形態では、パターンジェネレータ84で発生される72000本のビームを、個別に照射可能となるように、光電素子54の遮光膜58には、72000個のアパーチャ58aが形成されている。なお、アパーチャ58aの数は、例えばパターンジェネレータ84が照射可能なビームの数と同じでなくても良く、72000本のビーム(レーザビーム)のそれぞれが対応するアパーチャ58aを含む光電素子54(遮光膜58)上の領域に照射されれば良い。パターンジェネレータ84が有する可動反射素子(リボン84b)の数と、アパーチャ58aの数とは異なっていても良い。光電素子54上の複数のアパーチャ58aそれぞれのサイズが、対応するビームの断面のサイズより小さければ良い。なお、パターンジェネレータ84が有する可動反射素子(リボン84b)の数と、パターンジェネレータ84で発生するビームの本数とは異なっていても良い。例えば、電圧の印加により位置が変化するアクティブリボンと、グランドに落ちていて位置が不変のバイアスリボンとが交互に並んだタイプを用いて、複数(2つ)の可動反射素子(リボン)によって1本のビームのスイッチングを行っても良い。また、パターンジェネレータ84の数と光電素子54の数とは等しくなくても良い。 Since each ribbon 84b can be independently controlled, the number of square cross-sectional beams generated by the pattern generator 84 is 6000 × 12 = 72000, and switching (on / off) of 72000 beams is possible. It is. In the present embodiment, 72000 apertures 58 a are formed in the light shielding film 58 of the photoelectric element 54 so that the 72000 beams generated by the pattern generator 84 can be individually irradiated. The number of apertures 58a need not be the same as the number of beams that can be irradiated by, for example, the pattern generator 84. A photoelectric element 54 (light shielding film) includes apertures 58a to which 72000 beams (laser beams) correspond. 58) It may be irradiated to the upper area. The number of movable reflective elements (ribbons 84b) included in the pattern generator 84 may be different from the number of apertures 58a. The size of each of the plurality of apertures 58a on the photoelectric element 54 may be smaller than the size of the cross section of the corresponding beam. The number of movable reflective elements (ribbons 84 b) included in the pattern generator 84 may be different from the number of beams generated by the pattern generator 84. For example, by using a type in which an active ribbon whose position is changed by application of a voltage and a bias ribbon which is dropped to the ground and whose position is invariable are alternately arranged, a plurality of (two) movable reflective elements (ribbons) 1 The switching of a book beam may be performed. Further, the number of pattern generators 84 and the number of photoelectric elements 54 may not be equal.
 パターンジェネレータ84で発生される複数のビームは、図7に示されるように、下方に位置する投影系86、すなわち投影系86の入射端に位置する第1レンズ94に入射する。 The plurality of beams generated by the pattern generator 84 are incident on the lower projection system 86, ie, the first lens 94 located at the incident end of the projection system 86, as shown in FIG.
 投影系86は、図7に示されるように、パターンジェネレータ84からの光ビームの光路上に順次配置された複数のレンズを有する。投影系86の複数のレンズは、鏡筒86aに保持されている。投影系86の投影倍率は、例えば約1/4である。以下では、アパーチャ58aは、矩形であるものとするが、正方形であっても良いし、多角形、楕円など、他の形状であっても良い。また、投影系は、屈折型光学系には限定されず、反射型光学系や反射屈折型光学系であっても良い。また、投影系86の投影倍率は1/4の縮小倍率には限定されず、例えば1/5や1/10の縮小倍率、また等倍や拡大倍率であっても良い。 The projection system 86 has a plurality of lenses sequentially disposed on the light path of the light beam from the pattern generator 84, as shown in FIG. The plurality of lenses of the projection system 86 are held by a lens barrel 86a. The projection magnification of the projection system 86 is, for example, about 1⁄4. In the following, the aperture 58a is assumed to be rectangular, but may be square, or may be another shape such as a polygon or an ellipse. Further, the projection system is not limited to the refractive optical system, and may be a reflective optical system or a catadioptric optical system. Further, the projection magnification of the projection system 86 is not limited to 1⁄4 reduction magnification, and may be, for example, 1⁄5 or 1/10 reduction magnification, or equal magnification or enlargement magnification.
 本実施形態においては、投影系86は、パターンジェネレータ84からの光を、真空隔壁81を介して光電素子54に投射(又は照射)することで、複数、例えば72000個のアパーチャ58aの少なくとも1つを通過した光ビームが光電層60に照射される。すなわち、パターンジェネレータ84からのオンとされた可動反射素子からの光ビームは、対応するアパーチャ58aを介して光電層60に照射され、オフとされた可動反射素子からは、対応するアパーチャ58a及び光電層60へ光ビームが照射されない。なお、以下では、特に断らない限り、アパーチャ58aは、X軸方向に長い矩形であるものとするが、Y軸方向に長い矩形あるいは正方形であっても良いし、多角形、楕円など、他の形状であっても良い。 In the present embodiment, the projection system 86 projects (or irradiates) the light from the pattern generator 84 onto the photoelectric element 54 through the vacuum barrier 81 to form at least one of a plurality of, for example, 72000 apertures 58a. The light beam that has passed through is irradiated onto the photoelectric layer 60. That is, the light beam from the movable reflective element turned on from the pattern generator 84 is irradiated to the photoelectric layer 60 through the corresponding aperture 58a, and from the movable reflective element turned off, the corresponding aperture 58a and photoelectric Layer 60 is not illuminated. In the following description, the aperture 58a is assumed to be a rectangle long in the X-axis direction unless otherwise specified. However, the aperture 58a may be a rectangle or square long in the Y-axis direction, or other polygons, ellipses, etc. It may be a shape.
 投影系86に、投影系86の光学特性を調整可能な光学特性調整装置を設けても良い。光学特性調整装置は、本実施形態では投影系86を構成する一部の光学素子、例えばレンズを、動かすことで、少なくともX軸方向の投影倍率(倍率)の変更が可能である。光学特性調整装置として、例えば投影系86を構成する複数のレンズ間に形成される気密空間の気圧を変更する装置を使っても良い。また、光学特性調整装置として、投影系86を構成する光学部材を変形させる装置、あるいは投影系86を構成する光学部材に熱分布を与える装置を使っても良い。本実施形態では、45の光照射装置80の全てに光学特性調整装置が設けられている。45の光学特性調整装置は主制御装置110の指示に基づき、制御部11によって制御される(図13参照)。なお、複数の光照射装置80のうちの一部(1つ、又は2以上)にのみ光学特性調整装置を設けても良い。 The projection system 86 may be provided with an optical characteristic adjustment device capable of adjusting the optical characteristic of the projection system 86. The optical property adjusting apparatus can change at least the projection magnification (magnification) in the X-axis direction by moving some of the optical elements constituting the projection system 86, for example, a lens in this embodiment. As the optical characteristic adjustment device, for example, a device that changes the air pressure in the hermetic space formed between the plurality of lenses constituting the projection system 86 may be used. Further, as the optical property adjusting device, a device for deforming an optical member constituting the projection system 86 or a device for giving a heat distribution to an optical member constituting the projection system 86 may be used. In the present embodiment, all of the 45 light irradiation devices 80 are provided with an optical characteristic adjustment device. The optical characteristic adjustment device 45 is controlled by the control unit 11 based on the instruction of the main control device 110 (see FIG. 13). Note that the optical characteristic adjustment device may be provided to only a part (one or two or more) of the plurality of light irradiation devices 80.
 なお、投影系86の内部にパターンジェネレータ84で発生され、光電層60に照射される複数のビームの少なくとも1つの強度を変更可能な強度変調素子を設けても良い。光電層60に照射される複数のビームの強度の変更は、複数のビームのうちの一部のビームの強度を零にすることを含む。また、投影系86が光電層60に照射される複数のビームの少なくとも1つの位相を変更可能な位相変調素子を備えていても良いし、偏光状態を変更可能な偏光変調素子を備えていても良い。 Note that an intensity modulation element capable of changing the intensity of at least one of the plurality of beams generated by the pattern generator 84 and irradiated to the photoelectric layer 60 may be provided inside the projection system 86. The changing of the intensities of the plurality of beams applied to the photoelectric layer 60 includes nulling the intensity of some of the plurality of beams. In addition, the projection system 86 may include a phase modulation element capable of changing the phase of at least one of the plurality of beams irradiated to the photoelectric layer 60, or may include a polarization modulation element capable of changing the polarization state. good.
 図7から明らかなように、本実施形態では、照明系82が有する成形光学系82bの光軸(最終光学素子である最終レンズ96の光軸と一致)AXiと投影系86の光軸AXpとは、いずれもZ軸に平行であるが、光軸AXiと光軸AXpとが非平行であっても良い。言い換えると、光軸AXiと光軸AXpとが所定の角度をなして交差しても良い。 As apparent from FIG. 7, in the present embodiment, the optical axis of the shaping optical system 82 b of the illumination system 82 (coincident with the optical axis of the final lens 96 which is the final optical element) AXi and the optical axis AXp of the projection system 86 Are both parallel to the Z axis, but the optical axis AXi and the optical axis AXp may be nonparallel. In other words, the optical axis AXi and the optical axis AXp may intersect at a predetermined angle.
 なお、図7などから明らかなように、本実施形態では、照明系82が有する光学系(成形光学系82bを含む照明光学系)の光軸AXiと投影系86の光軸(最終光学素子であるレンズ86bの光軸と一致)AXpとは、いずれもZ軸に平行であるが、Y軸方向に所定距離ずれている(オフセットしている)。本実施形態において照明系82は、X軸方向に長い断面矩形状の光(ビーム)をパターンジェネレータに照射するようにしているので、Y軸方向のオフセット量を小さくできる。これによりパターンジェネレータに入射する光の入射角を垂直に近づけることが可能となり、投影系86の入射側の開口数を大きくしなくてもパターンジェネレータからの光ビームを効率良く、投影系86に入射させることができる。しがたって、複数の電子ビーム光学系を用いる場合にも、照明系及び投影系を効率良く配置することができる。 As is clear from FIG. 7 etc., in the present embodiment, the optical axis AXi of the optical system (illumination optical system including the forming optical system 82b) of the illumination system 82 and the optical axis of the projection system 86 (final optical element) All are in parallel with the Z-axis, but are offset (offset from each other) by a predetermined distance in the Y-axis direction. In this embodiment, the illumination system 82 irradiates the pattern generator with light (beam) having a rectangular cross section long in the X-axis direction, so the offset amount in the Y-axis direction can be reduced. This makes it possible to make the incident angle of light incident on the pattern generator close to vertical, and the light beam from the pattern generator is efficiently incident on the projection system 86 without increasing the numerical aperture on the incident side of the projection system 86 It can be done. Therefore, even when using a plurality of electron beam optical systems, the illumination system and the projection system can be arranged efficiently.
 説明が前後したが、ここで、光照射装置80を構成する各部の支持構造について、説明する。 Although the description has been repeated, the support structure of each part constituting the light irradiation device 80 will be described here.
 45の光照射装置80がそれぞれ備える投影系86の鏡筒86aは、図10に示されるように、支持部材17に45の電子ビーム光学系70に対応する位置関係で保持されている。詳述すると、支持部材17には、第1プレート36の45の開口36aと対応する配置で45のZ軸方向に延びる貫通孔17aが形成されている。45の貫通孔17aそれぞれの内部には、投影系86の鏡筒86aが配置されている。支持部材17には、その下端面の外周部の3箇所(図10ではそのうちの2箇所のみ図示)に半球状の凸部21aが設けられ、筐体19(第1プレート36)の上面には、3つの凸部21aがそれぞれ係合する三角錐状の凹部(溝部)を有する三角錐溝部材21bが設けられている。3つの凸部21aと、これら3つの凸部21aが係合する3つの三角錐溝部材21bとによって、支持部材17及び45の投影系86を、筐体19に対して常に一定の位置関係で載置することを可能とする、キネマティックカップリングが構成されている。なお、筐体19上に支持部材17を載置する構成は、上述のキネマティックカップリングに限られない。 The lens barrel 86a of the projection system 86 provided in each of the 45 light irradiation devices 80 is held by the supporting member 17 in a positional relationship corresponding to the electron beam optical system 70 of 45, as shown in FIG. More specifically, the support member 17 is formed with through holes 17 a extending in the Z-axis direction of 45 in an arrangement corresponding to the openings 36 a of the 45 of the first plate 36. A lens barrel 86a of a projection system 86 is disposed in each of the 45 through holes 17a. The supporting member 17 is provided with hemispherical projections 21a at three places (only two of which are shown in FIG. 10) on the outer peripheral part of the lower end face, and the upper face of the housing 19 (first plate 36) A triangular pyramid groove member 21b having a triangular pyramidal concave portion (groove portion) with which the three convex portions 21a respectively engage is provided. The projection system 86 of the support members 17 and 45 is always in a fixed positional relationship with the housing 19 by the three convex portions 21 a and the three triangular pyramid groove members 21 b with which the three convex portions 21 a are engaged. A kinematic coupling is configured which allows for mounting. In addition, the structure which mounts the supporting member 17 on the housing | casing 19 is not restricted to the above-mentioned kinematic coupling.
 一方、45の光照射装置80がそれぞれ備える照明系82の鏡筒83は、図10に示されるように、その下端部に設けられた微小駆動機構13(図7参照、単に駆動機構と呼んでも良い)を介して、支持部材15に45の鏡筒86aに対応する位置関係で保持されている。詳述すると、支持部材15には、45の貫通孔17aに対応する位置関係で、45の貫通孔15aが形成され、各貫通孔15aの内部に鏡筒83の下端部に設けられた微小駆動機構13が挿入され、支持部材15に固定されている。45の微小駆動機構13のそれぞれは、図10等では簡略化して示されているが、1例として、駆動方向がXY平面内において互いに60度で交差する3つの1軸駆動アクチュエータ、例えばPZT駆動方式の1軸アクチュエータ(変位センサ内蔵)を含んで構成される。微小駆動機構13によると、支持部材15に対して、対応する鏡筒83を、X軸、Y軸及びθzの3自由度方向に移動可能である。なお、微小駆動機構13は、鏡筒83を、2自由度方向(X軸方向、及びY軸方向)に移動可能であっても良いし、5自由度方向、あるいは6自由度方向に移動可能であっても良い。また微小駆動機構13の配置も鏡筒83の下端部に限られない。支持部材15は、支持部材17及び筐体19に重量がかからないように支持されている。具体的には、支持部材15は、支持部材17が載置された筐体19とは独立に、ボディフレームの上部フレーム(不図示)から防振機能を備えた複数、例えば3つの吊り下げ支持機構を介して3点で吊り下げ支持されている。このように、支持部材15と筐体19とを分離して支持することにより、支持部材15と筐体19の一方で振動が発生したとしても、その振動が他方へ伝達することが抑制される。なお、光学ユニット18Bの45の光照射装置80が配置される空間は、大気圧空間もしくは、大気圧よりも僅かに陽圧の空間である。 On the other hand, as shown in FIG. 10, the lens barrel 83 of the illumination system 82 provided in each of the 45 light irradiation devices 80 has a minute drive mechanism 13 provided at its lower end (see FIG. 7; It is held by the supporting member 15 in a positional relationship corresponding to the lens barrel 86a of 45 via the connector. More specifically, in the supporting member 15, 45 through holes 15a are formed in a positional relationship corresponding to 45 through holes 17a, and a minute drive provided at the lower end of the lens barrel 83 inside each through hole 15a. The mechanism 13 is inserted and fixed to the support member 15. Although each of the 45 micro drive mechanisms 13 is shown in a simplified manner in FIG. 10 and the like, as an example, three single-axis drive actuators whose drive directions cross each other at 60 degrees in the XY plane, for example, PZT drive Is configured to include a single-axis actuator (with built-in displacement sensor). According to the micro drive mechanism 13, the corresponding lens barrel 83 can be moved in three degrees of freedom with respect to the support member 15 in the X axis, Y axis, and θz directions. The micro drive mechanism 13 may move the lens barrel 83 in the two degrees of freedom direction (X-axis direction and Y-axis direction), or may move the lens barrel 83 in five degrees of freedom or six degrees of freedom. It may be Further, the arrangement of the minute drive mechanism 13 is not limited to the lower end portion of the lens barrel 83. The support member 15 is supported by the support member 17 and the housing 19 so as not to be heavy. Specifically, the support member 15 has a plurality of, for example, three suspension supports provided with an anti-vibration function from an upper frame (not shown) of the body frame independently of the housing 19 on which the support member 17 is mounted. It is suspended and supported at three points via a mechanism. Thus, by separating and supporting the support member 15 and the housing 19, even if vibration occurs in one of the support member 15 and the housing 19, transmission of the vibration to the other is suppressed. . The space in which the light irradiation device 80 of the optical unit 18B is disposed is an atmospheric pressure space or a space slightly positive pressure than the atmospheric pressure.
 本実施形態に係る露光装置100では、支持部材17(45個の投影系86(鏡筒86a))と支持部材15(45の照明系82及びパターンジェネレータ84(鏡筒83))とのXY平面内の相対位置情報を計測可能な相対位置計測システム29が設けられている(図13参照)。相対位置計測システム29は、図1及び図10に示される一対の2次元エンコーダシステム29a、29bによって構成されている。 In the exposure apparatus 100 according to the present embodiment, the XY plane of the support member 17 (45 projection systems 86 (lens barrel 86a)) and the support members 15 (illumination system 82 and pattern generator 84 (lens barrel 83) of 45). A relative position measurement system 29 capable of measuring relative position information of the inside is provided (see FIG. 13). The relative position measurement system 29 is constituted by a pair of two- dimensional encoder systems 29a and 29b shown in FIGS.
 これをさらに詳述すると、図10に示されるように、支持部材17上面には、一対のスケール部材33a、33bがY軸方向の両端部近傍に固定され、スケール部材33a、33bのそれぞれに対向して支持部材15の下面には、ヘッド35a、35bが固定されている。スケール部材33a、33bには、XY平面内で互いに交差する2方向、例えばX軸方向及びY軸方向を周期方向とする例えばピッチが1μmの反射型の2次元回折格子がそれぞれ形成されている。ヘッド35aは、スケール33aを用いて、ヘッド35aの検出中心を基準とする、支持部材17及び電子ビーム光学ユニット18AのX軸方向及びY軸方向の位置情報を計測する2次元エンコーダ29aを構成する。同様に、ヘッド35bは、スケール部材33bを用いて、ヘッド35bの検出中心を基準とする、支持部材17及び電子ビーム光学ユニット18AのX軸方向及びY軸方向の位置情報を計測する2次元エンコーダ29bを構成する。一対の2次元エンコーダ29a、29bにより計測される位置情報は、主制御装置110に供給され、主制御装置110は、一対の2次元エンコーダ29a、29bにより計測される位置情報に基づいて、支持部材15と、支持部材17及び電子ビーム光学ユニット18AとのX軸方向、Y軸方向及びθz方向の相対位置、すなわち光学ユニット18Bの照明系部分と、光学ユニット18Bの投影系部分及び電子ビーム光学ユニット18Aとの3自由度方向(X、Y、θz)の相対位置を求める。すなわち、一対の2次元エンコーダ29a、29bによって、光学ユニット18Bの照明系部分と、光学ユニット18Bの投影系部分及び電子ビーム光学ユニット18AとのXY平面内の相対位置情報を計測可能な相対位置計測システム29(図13参照)が構成されている。なお、相対位置計測システム29のエンコーダシステムは、2次元エンコーダシステムでなくても良い。また、支持部材15にエンコーダシステムのスケール部材を配置し、支持部材17にヘッドを配置しても良い。相対位置計測システム29は、エンコーダシステムに限られず、干渉計システムなど他の計測システムを用いても良い。 More specifically, as shown in FIG. 10, on the upper surface of the support member 17, a pair of scale members 33a and 33b are fixed in the vicinity of both end portions in the Y-axis direction and face each of the scale members 33a and 33b. The heads 35 a and 35 b are fixed to the lower surface of the support member 15. In the scale members 33a and 33b, reflection type two-dimensional diffraction gratings having a pitch of, for example, 1 μm are formed, each having a periodic direction in two directions intersecting in the XY plane, for example, an X-axis direction and a Y-axis direction. The head 35a forms a two-dimensional encoder 29a that measures positional information of the support member 17 and the electron beam optical unit 18A in the X-axis direction and the Y-axis direction based on the detection center of the head 35a using the scale 33a. . Similarly, the head 35b is a two-dimensional encoder that measures positional information of the support member 17 and the electron beam optical unit 18A in the X-axis direction and the Y-axis direction based on the detection center of the head 35b using the scale member 33b. Configure 29b. The position information measured by the pair of two- dimensional encoders 29a and 29b is supplied to the main controller 110, and the main controller 110 supports the support member based on the position information measured by the pair of two-dimensional encoders 29a and 29b. 15, relative positions of the support member 17 and the electron beam optical unit 18A in the X axis direction, Y axis direction and θz direction, that is, the illumination system portion of the optical unit 18B, the projection system portion of the optical unit 18B and the electron beam optical unit The relative position in the direction of 3 degrees of freedom (X, Y, θz) with 18A is determined. That is, relative position measurement capable of measuring relative position information in the XY plane of the illumination system portion of the optical unit 18B, the projection system portion of the optical unit 18B, and the electron beam optical unit 18A by the pair of two- dimensional encoders 29a and 29b. A system 29 (see FIG. 13) is configured. The encoder system of the relative position measurement system 29 may not be a two-dimensional encoder system. Alternatively, the scale member of the encoder system may be disposed on the support member 15, and the head may be disposed on the support member 17. The relative position measurement system 29 is not limited to the encoder system, and another measurement system such as an interferometer system may be used.
 光学ユニット18Bの照明系部分の、光学ユニット18Bの投影系部分(及び電子ビーム光学ユニット18A)に対するXY平面内の位置を、所定の状態に維持する、あるいは所望の位置に設定するため、すなわち位置調整を行うために、3軸のアクチュエータを備えた駆動システム25(図1及び図10等では不図示、図13参照)が設けられている。主制御装置110は、相対位置計測システム29により取得された相対位置情報に基づいて、駆動システム25を制御する。これにより、光学ユニット18Bの投影系部分(及び電子ビーム光学ユニット18A)に対する光学ユニット18Bの照明系部分のX軸方向及びY軸方向の位置、並びにZ軸の回りの回転角は、一定の状態(所定の状態)に維持される、あるいは、所望の状態に調整される。 The position of the illumination system portion of the optical unit 18B in the XY plane with respect to the projection system portion (and the electron beam optical unit 18A) of the optical unit 18B is maintained in a predetermined state or set to a desired position, In order to make the adjustment, a drive system 25 (not shown in FIGS. 1 and 10, see FIG. 13) provided with a 3-axis actuator is provided. Main controller 110 controls drive system 25 based on relative position information acquired by relative position measurement system 29. Thereby, the X-axis direction and Y-axis position of the illumination system portion of the optical unit 18B with respect to the projection system portion (and the electron beam optical unit 18A) of the optical unit 18B and the rotation angle around the Z axis are constant. It is maintained at (predetermined state) or adjusted to a desired state.
 これまでの説明から明らかなように、本実施形態に係る露光装置100では、図11に示されるように、露光時に、パターンジェネレータ84の受光面上でX軸方向の長さSmm、α軸方向の長さTmmの矩形の領域の内部にビームが照射され、この照射によりパターンジェネレータ84からの光が縮小倍率1/4を有する投影系86によって光電素子54に照射され、さらにこの照射によって生成される電子ビームが縮小倍率1/50を有する電子ビーム光学系70を介して、像面(像面に位置合わせされるウエハ面)上の矩形の領域(露光フィールド)に照射される。すなわち、本実施形態の露光装置100は、光照射装置80(投影系86)と、これに対応する光電素子54と、これらに対応する電子ビーム光学系70と、を含んで構成された、縮小倍率1/200の直筒型のマルチビーム光学システム200(図13参照)を、XY平面内で前述したマトリクス状の配置で45有している。したがって、本実施形態の露光装置100の光学系は、縮小倍率1/200の縮小光学系を45有するマルチカラム電子ビーム光学系である。なお、図13には、45のマルチビーム光学システム200のうち、1つのマルチビーム光学システム200のみが、代表的に図示されている。 As is clear from the above description, in the exposure apparatus 100 according to this embodiment, as shown in FIG. 11, the length S mm in the X-axis direction and the α-axis direction on the light receiving surface of the pattern generator 84 during exposure. The beam is irradiated inside a rectangular area of length T mm, and the light from the pattern generator 84 is irradiated to the photoelectric element 54 by the projection system 86 having a reduction ratio of 1⁄4 by this irradiation, and the light is generated by the irradiation. An electron beam is irradiated to a rectangular area (exposure field) on the image plane (wafer surface aligned with the image plane) through an electron beam optical system 70 having a reduction ratio of 1/50. That is, the exposure apparatus 100 of the present embodiment is configured to include the light irradiation device 80 (projection system 86), the corresponding photoelectric device 54, and the corresponding electron beam optical system 70. The multi-beam optical system 200 (see FIG. 13) of a straight cylinder type with a magnification of 1/200 is provided 45 in the above-described matrix arrangement in the XY plane. Therefore, the optical system of the exposure apparatus 100 of the present embodiment is a multi-column electron beam optical system having 45 reduction optical systems with a reduction ratio of 1/200. Incidentally, in FIG. 13, of the multi-beam optical system 200 i of 45, only one multi-beam optical system 200 is representatively illustrated.
 また、露光装置100では、直径300ミリのウエハを露光対象とし、ウエハに対向して45本の電子ビーム光学系70を配置するため、電子ビーム光学系70の光軸AXeの配置間隔を一例として43mmとしている。このようにすれば、1つの電子ビーム光学系70が受け持つ露光エリアは、最大で43mm×43mmの矩形領域となるため、前述したようにウエハステージWSTのX軸方向及びY軸方向の移動ストロークが50mmもあれば十分である。なお、電子ビーム光学系70の数は、45本に限られず、ウエハの直径、ウエハステージWSTのストローク、などに基づいて決めることができる。 Further, in the exposure apparatus 100, a wafer with a diameter of 300 mm is to be exposed, and the 45 electron beam optical systems 70 are disposed to face the wafer, so the arrangement interval of the optical axes AXe of the electron beam optical system 70 is an example. It is 43 mm. In this way, the exposure area handled by one electron beam optical system 70 is a rectangular area of 43 mm × 43 mm at maximum, so as described above, the movement stroke of wafer stage WST in the X-axis direction and Y-axis direction is 50 mm is enough. The number of electron beam optical systems 70 is not limited to 45, and can be determined based on the diameter of the wafer, the stroke of the wafer stage WST, and the like.
 本実施形態に係る露光装置100では、図1に示されるように、第1室(第1の真空室)34と第2室(第2の真空室)72の境界部分の壁には、開口が形成され、この開口はゲートバルブ43によって開閉可能である。すなわち、第1の真空室34と第2の真空室72とはゲートバルブ43を開放することで連通可能である。ゲートバルブ43は、図1(及び図10)に示される操作部材44を上下動させることで開閉される。なお、図10では、第2の真空室72は、図示が省略されている。操作部材44の上下動は、例えば空圧式(あるいは電磁式)の第2の駆動部49を介して、主制御装置110によって行われる(図13参照)。なお、通常、第1の真空室34と、第2の真空室72とは同一の真空度に設定しても特に支障がないため、ゲートバルブ43は、開放されていても良いし、閉じられていて良い。ただし、ゲートバルブ43が通常開放されている場合、第2の真空室72内部の後述するアーム部42aのメンテナンス時など、不図示の開閉ドアを介して第2の真空室72を大気に開放する必要がある場合に、第1の真空室34の内部に存在する光電素子54の光電層60を保護するため、主制御装置110は、第2の駆動部49を制御し、操作部材44を下降駆動することでゲートバルブ43を閉じる。 In the exposure apparatus 100 according to the present embodiment, as shown in FIG. 1, an opening is provided in the wall of the boundary between the first chamber (first vacuum chamber) 34 and the second chamber (second vacuum chamber) 72. Is formed, and this opening can be opened and closed by the gate valve 43. That is, the first vacuum chamber 34 and the second vacuum chamber 72 can communicate with each other by opening the gate valve 43. The gate valve 43 is opened and closed by moving the operation member 44 shown in FIG. 1 (and FIG. 10) up and down. In FIG. 10, the second vacuum chamber 72 is not shown. The vertical movement of the operation member 44 is performed by the main control device 110 via, for example, a pneumatic (or electromagnetic) second drive unit 49 (see FIG. 13). In addition, since the first vacuum chamber 34 and the second vacuum chamber 72 are normally set at the same degree of vacuum without any problem, the gate valve 43 may be opened or closed. It is good. However, when the gate valve 43 is normally opened, the second vacuum chamber 72 is opened to the atmosphere through an open / close door (not shown), such as at the time of maintenance of the arm 42a described later inside the second vacuum chamber 72. If necessary, in order to protect the photoelectric layer 60 of the photoelectric element 54 present inside the first vacuum chamber 34, the main control device 110 controls the second drive unit 49 to lower the operation member 44. The gate valve 43 is closed by driving.
 第2の真空室72が内部に形成された筐体45には、例えば真空対応の水平多関節型のロボットから成る前述の搬送システム42が、複数台、例えば3台取付けられている。それぞれの搬送システム42のロボットアーム(アーム部)42aは、収縮状態で、第2の真空室72内にその全体を収納可能である。搬送システム42のアーム部42aを移動する駆動部42bは、筐体45の上部に配置されている。駆動部42bとアーム部42aとは、上下動及び回転が可能なZ軸方向に延びる駆動軸42cによって接続されている。駆動軸42cは、筐体45の天井部に形成された開口部を介して駆動部42bとアーム部42aとを接続している。駆動軸42cと筐体45の開口部との間は、シール部材によってシールされている。なお、3台の搬送システム42のそれぞれは、複数のホルダ88のうち、最も近いホルダ88と第2室72との間で、光電素子ユニット50などの搬送対象物を搬送を行う。3台の搬送システム42のうち、複数の搬送システム42から同等の距離にあるホルダ88に対しては、いずれかの搬送システム42が、搬送を受け持つ。 A plurality of, for example, three, of the above-described transfer systems 42 formed of, for example, vacuum compatible horizontal articulated robots are attached to a housing 45 in which the second vacuum chamber 72 is formed. The robot arm (arm portion) 42 a of each transfer system 42 can be entirely accommodated in the second vacuum chamber 72 in a contracted state. The drive unit 42 b that moves the arm unit 42 a of the transfer system 42 is disposed on the top of the housing 45. The drive portion 42 b and the arm portion 42 a are connected by a drive shaft 42 c extending in the Z-axis direction capable of vertical movement and rotation. The drive shaft 42 c connects the drive portion 42 b and the arm portion 42 a via an opening formed in the ceiling portion of the housing 45. A seal member seals between the drive shaft 42 c and the opening of the housing 45. Note that each of the three transfer systems 42 transfers a transfer target such as the photoelectric device unit 50 between the closest holder 88 and the second chamber 72 among the plurality of holders 88. Of the three transport systems 42, one of the transport systems 42 is responsible for transport for the holders 88 that are at equal distances from the plurality of transport systems 42.
 筐体45及び搬送システム42は、筐体19を吊り下げ支持する複数、例えば3つの吊り下げ支持機構によって、筐体19とともにボディフレームの上部フレーム(不図示)から吊り下げ支持されている。 The housing 45 and the transport system 42 are suspended and supported from the upper frame (not shown) of the body frame together with the housing 19 by a plurality of, for example, three suspension support mechanisms for suspending and supporting the housing 19.
 図12(A)には、一部省略した図1のA-A線断面図が示されている。図12(A)は、図1のA-A線断面図のうち、+X側の部分を省略して-X側の端部近傍のみを示す図である。図12(A)に示されるように、第2の真空室72の天井部には対称に配置された一対のL字状部材から成るユニット保持部材188が設けられ、ユニット保持部材188に、前述した光電素子ユニット50の半製品である半完成ユニット50Aが保持されている。ここで、半完成ユニット50Aとは、光電層の蒸着前の光電素子ユニット、すなわち光電層60の蒸着前のベース部材53と、引き出し電極55とが一体化されたもの指す。図12(A)及び図12(B)に示される半完成ユニット50Aのベース部材53は、基材56と基材56の光射出面に形成された多数のアパーチャ58aを有する遮光膜58とによって形成されているが、ベース部材53の下面(遮光膜58の表面)には、光電層は形成されていない。 FIG. 12A shows a cross-sectional view taken along line AA of FIG. 1 which is partially omitted. FIG. 12A is a view showing the vicinity of the end portion on the −X side by omitting the portion on the + X side in the cross-sectional view taken along the line AA of FIG. As shown in FIG. 12A, the ceiling of the second vacuum chamber 72 is provided with a unit holding member 188 consisting of a pair of L-shaped members arranged symmetrically, and the unit holding member 188 is A semi-finished unit 50A which is a semi-finished product of the photoelectric device unit 50 is held. Here, the semi-finished unit 50A refers to a photoelectric element unit before vapor deposition of the photoelectric layer, that is, a unit in which the base member 53 before vapor deposition of the photoelectric layer 60 and the extraction electrode 55 are integrated. The base member 53 of the semifinished unit 50A shown in FIGS. 12A and 12B includes the base 56 and the light shielding film 58 having a large number of apertures 58a formed on the light emitting surface of the base 56. Although formed, the photoelectric layer is not formed on the lower surface of the base member 53 (the surface of the light shielding film 58).
 また、ユニット保持部材188の下方には、半完成ユニット50Aのベース部材53(基材56及び遮光膜58)上にアルカリ光電層を蒸着するために用いられる加熱装置(蒸発源又は蒸着装置と呼ぶこともできる)が設けられている。加熱装置は、アルカリ金属の蒸気を発生させるため、すなわち蒸着材料(蒸着源と呼ぶこともできる)としてのアルカリ金属発生剤の酸化還元反応を開始させるためアルカリ金属発生剤を加熱するのに用いられる。加熱装置については、後述する。 Further, under the unit holding member 188, a heating device (referred to as an evaporation source or a deposition device) used to deposit an alkaline photoelectric layer on the base member 53 (base 56 and the light shielding film 58) of the semifinished unit 50A. Can also be provided). The heating device is used to heat the alkali metal generator so as to generate alkali metal vapor, that is, to initiate the oxidation-reduction reaction of the alkali metal generator as a deposition material (which may also be called a deposition source). . The heating device will be described later.
 アルカリ金属発生剤としては、製造される光電層に合わせて選択されたタングステン酸塩(又はクロム酸塩)から成る酸化剤と、還元剤とを含むアルカリ金属発生剤を用いることができる。還元剤としては、例えば、Sb(アンチモン)、K(カリウム)、NA(ナトリウム)、Si(ケイ素)、Zr(ジルコニウム)、Al(アルミニウム)等が用いられる。かかるアルカリ金属発生剤については、例えば国際公開第2004/066337号に詳細に開示されている。アルカリ金属発生剤の形状は特に問わず、所定形状のペレットに成形されたものであっても良いし、ペレットに成形する前の粉末あるいは一旦ペレットに成形してから粉砕した粉末などであっても良い。本実施形態では、ペレットに成形する前の粉末又は一旦ペレットに成形してから粉砕した粉末状のアルカリ金属発生剤が用いられるものとする。 As the alkali metal generator, an alkali metal generator containing an oxidizing agent composed of tungstate (or chromate) selected according to the photoelectric layer to be manufactured and a reducing agent can be used. As the reducing agent, for example, Sb (antimony), K (potassium), NA (sodium), Si (silicon), Zr (zirconium), Al (aluminum) or the like is used. Such alkali metal generators are disclosed in detail, for example, in WO 2004/066337. The shape of the alkali metal generating agent is not particularly limited, and may be formed into pellets of a predetermined shape, or may be a powder before being formed into pellets or a powder obtained by once forming into pellets and then crushed. good. In the present embodiment, it is assumed that a powdery alkali metal generator before powder forming into a pellet or a powder once formed into a pellet and then pulverized is used.
 アルカリ光電層の蒸着に用いられるアルカリ金属を発生させるため、アルカリ金属発生剤の酸化還元反応を開始させる方法としては、アルカリ金属発生剤を所定の真空度に調節された雰囲気中で、酸化還元反応が進行し始める所定の温度にまで加熱する方法が挙げられる。ここで、「所定の真空度に調節された雰囲気」とは、雰囲気中の残留気体の分圧で表現した場合には10-6~10-1Pa、好ましくは10-6~10-3Paである雰囲気を意味する。 As a method of initiating the oxidation-reduction reaction of an alkali metal generator to generate the alkali metal used for vapor deposition of the alkali photoelectric layer, the oxidation-reduction reaction is performed in an atmosphere in which the alkali metal generator is adjusted to a predetermined degree of vacuum. There is a method of heating to a predetermined temperature at which Here, “atmosphere adjusted to a predetermined degree of vacuum” is 10 −6 to 10 −1 Pa, preferably 10 −6 to 10 −3 Pa, as expressed by the partial pressure of the residual gas in the atmosphere. It means an atmosphere that is.
 アルカリ金属の蒸気を発生させるための加熱装置(蒸発源、蒸発装置)としては、上記雰囲気中においてアルカリ金属発生剤を加熱できる構成を有していれば特に限定されない。例えば、高周波加熱方式又は抵抗加熱方式に基づく構成を有していても良い。本実施形態では、アルカリ金属発生剤を容易にかつ均一に加熱する観点から、高周波加熱によりアルカリ金属発生剤を加熱する構成の加熱装置160(図13参照)が設けられている。加熱装置160は、主制御装置110によって制御される。加熱装置160の構成例については、さらに後述する。 The heating device (evaporation source, evaporation device) for generating the alkali metal vapor is not particularly limited as long as it has a configuration capable of heating the alkali metal generating agent in the above atmosphere. For example, you may have a structure based on a high frequency heating system or a resistance heating system. In the present embodiment, a heating device 160 (see FIG. 13) configured to heat the alkali metal generator by high frequency heating is provided from the viewpoint of heating the alkali metal generator easily and uniformly. The heating device 160 is controlled by the main controller 110. An exemplary configuration of the heating device 160 will be further described later.
 図12(A)において、筐体45の底壁上の所定の載置領域には、蒸着材料(蒸着源)としてのアルカリ金属発生剤300が置かれている。筐体45の底壁には、アルカリ金属発生剤300の配置領域を取り囲む金属製の可動壁162が設けられている。可動壁162は、平面視円形又は矩形の筒状部材から成り、図12(B)に示される第1位置と図12(A)に示される第2位置との間で上下動可能である。可動壁162は、第1位置にあるとき、蒸着の際に、蒸着材料が蒸着対象のベース部材53の一側の面以外の場所に付着するのを抑制する。可動壁162は、駆動機構164(図12(B)及び図12(A)では不図示、図13参照)によって上下動される。駆動機構164は、主制御装置110によって制御される。 In FIG. 12A, on a predetermined mounting area on the bottom wall of the housing 45, an alkali metal generating agent 300 as a vapor deposition material (vapor deposition source) is placed. The bottom wall of the housing 45 is provided with a movable wall 162 made of metal surrounding the arrangement area of the alkali metal generating agent 300. The movable wall 162 is formed of a cylindrical member having a circular or rectangular shape in a plan view, and can move up and down between a first position shown in FIG. 12 (B) and a second position shown in FIG. 12 (A). When the movable wall 162 is at the first position, the deposition material is prevented from adhering to a place other than the surface on one side of the base member 53 to be deposited during deposition. The movable wall 162 is moved up and down by a drive mechanism 164 (not shown in FIGS. 12B and 12A, see FIG. 13). The drive mechanism 164 is controlled by the main controller 110.
 本実施形態では、可動壁162には、不図示の高周波コイルが内蔵されており、該高周波コイルには、高周波電流を供給する高周波電源(不図示)が接続されている。可動壁162に内蔵された高周波コイルと、高周波コイルに接続された高周波電源とを含んで、高周波加熱方式の加熱装置160(図12(A)、図12(B)等では不図示、図13参照)が構成されている。高周波コイルは、可動壁162が第1位置にあるとき、蒸着材料であるアルカリ金属発生剤300の載置領域に実質的に最も接近するようになっている。なお、可動壁162に高周波コイルを設けずに、可動壁162の内周側に上下動しない固定の高周波コイルを配置しても良い。この場合、可動壁162を設けなくても良い。 In the present embodiment, the movable wall 162 incorporates a high frequency coil (not shown), and a high frequency power supply (not shown) for supplying a high frequency current is connected to the high frequency coil. 13 includes a high frequency coil built in the movable wall 162 and a high frequency power supply connected to the high frequency coil, and is not shown in the heating device 160 (FIG. 12A, FIG. 12B, etc.) See) is configured. When the movable wall 162 is at the first position, the high frequency coil is substantially closest to the mounting area of the alkali metal generating agent 300 which is a vapor deposition material. A fixed high frequency coil which does not move up and down may be disposed on the inner peripheral side of the movable wall 162 without providing the high frequency coil on the movable wall 162. In this case, the movable wall 162 may not be provided.
 第2の真空室72内には、不図示ではあるが、光電素子ユニット50及び半完成ユニット50Aを複数(又は1つ)複数収納可能なキャリアが設けられている。 Although not shown, in the second vacuum chamber 72, a carrier capable of storing a plurality (or one) of the photoelectric device unit 50 and the semi-finished unit 50A is provided.
 図13には、露光装置100の制御系を主として構成する主制御装置110の入出力関係がブロック図にて示されている。主制御装置110は、マイクロコンピュータ等を含み、図13に示される各部を含む露光装置100の構成各部を統括的に制御する。図13において、制御部11に接続されている光照射装置80は、主制御装置110からの指示に基づき、制御部11によって制御される光学特性調整装置の他、光源(レーザダイオード)82a、回折光学素子などを含む。また、制御部11に接続されている電子ビーム光学系70は、主制御装置110からの指示に基づき、制御部11によって制御される一対の電磁レンズ70a、70b及び静電マルチポール70c(第1静電レンズ70c及び第2静電レンズ70c)を含む。また、図13において、符号500は、前述したマルチビーム光学システム200と、制御部11と、反射電子検出装置106と、信号処理装置108と、を含んで構成される露光ユニットを示す。露光装置100では、露光ユニット500が45設けられている。 FIG. 13 is a block diagram showing the input / output relationship of main controller 110 that mainly configures the control system of exposure apparatus 100. Main controller 110 centrally controls components of exposure apparatus 100 including a microcomputer and the like shown in FIG. In FIG. 13, the light irradiation device 80 connected to the control unit 11 includes a light source (laser diode) 82 a and a diffraction in addition to the optical characteristic adjustment device controlled by the control unit 11 based on an instruction from the main control device 110 Including optical elements and the like. Further, the electron beam optical system 70 connected to the control unit 11 is a pair of electromagnetic lenses 70 a and 70 b and electrostatic multipoles 70 c controlled by the control unit 11 based on an instruction from the main control device 110 (first The electrostatic lens 70 c 1 and the second electrostatic lens 70 c 2 ) are included. Further, in FIG. 13, reference numeral 500 denotes an exposure unit configured to include the above-described multi-beam optical system 200, the control unit 11, the backscattered electron detection device 106, and the signal processing device 108. In the exposure apparatus 100, an exposure unit 500 is provided.
 ここで、第1の真空室34内で行われる45のホルダ88に保持されたいずれかの光電素子ユニット50の交換、及び第2の真空室72内で行われるユニット保持部材188に保持された半完成ユニット50Aに対する光電層の蒸着を含む、一連の処理の流れについて説明する。 Here, replacement of any photoelectric element unit 50 held by the holder 88 of 45 performed in the first vacuum chamber 34 and a unit holding member 188 performed in the second vacuum chamber 72 are held. A series of process flows will be described including the deposition of the photoelectric layer for the semi-finished unit 50A.
 前提として、図12(A)に示されるように、第2の真空室72内では、ユニット保持部材188によって半完成ユニット50Aが保持されているとともに、可動壁162は、第2位置にあるものとする。また、このとき第2の真空室72及び第1の真空室34それぞれの内部の雰囲気は、前述の所定の雰囲気に維持されているものとする。 As a premise, as shown in FIG. 12A, in the second vacuum chamber 72, the semi-finished unit 50A is held by the unit holding member 188 and the movable wall 162 is in the second position. I assume. At this time, the atmosphere inside each of the second vacuum chamber 72 and the first vacuum chamber 34 is maintained at the above-mentioned predetermined atmosphere.
 この状態で、主制御装置110によって、駆動機構164が制御され、可動壁162が図12(B)に示される第1位置まで上昇駆動される。次いで、主制御装置110によって、加熱装置160を用いたアルカリ金属発生剤300の加熱が開始される。これにより、アルカリ金属発生剤300の酸化還元反応が進行し始め、図12(C)に示されるように、アルカリ金属の蒸気が発生し、ユニット保持部材188に保持された半完成ユニット50Aのベース部材53の一面、すなわち遮光膜58が形成された基材56の一面(下面)に付着し始める。主制御装置110は、加熱開始から所定時間加熱装置160を用いたアルカリ金属発生剤300の加熱状態を維持し、所定時間の経過後に、加熱を停止する。これにより、半完成ユニット50Aに対する光電層60の蒸着が終了して、その半完成ユニット50Aが完成品、すなわち光電素子ユニット50となる。 In this state, the drive mechanism 164 is controlled by the main control unit 110, and the movable wall 162 is raised and driven to the first position shown in FIG. 12 (B). Next, main controller 110 starts heating of alkali metal generating agent 300 using heating device 160. Thereby, the oxidation-reduction reaction of the alkali metal generator 300 starts to progress, and as shown in FIG. 12C, alkali metal vapor is generated and the base of the semi-finished unit 50A held by the unit holding member 188 It starts to adhere to one surface of the member 53, that is, one surface (lower surface) of the substrate 56 on which the light shielding film 58 is formed. Main controller 110 maintains the heating state of alkali metal generating agent 300 using heating device 160 for a predetermined time from the start of heating, and stops the heating after a predetermined time has elapsed. Thereby, the deposition of the photoelectric layer 60 with respect to the semi-finished unit 50A is completed, and the semi-finished unit 50A becomes a finished product, ie, the photoelectric element unit 50.
 ここで、例えば上述のアルカリ金属発生剤300の加熱が開始されてから終了するまでの間に、第1の真空室34内のホルダ88に保持されている交換対象の光電素子ユニット50の回収が、次のようにして行われる。 Here, for example, recovery of the photoelectric element unit 50 to be replaced held by the holder 88 in the first vacuum chamber 34 is from the start to the end of the heating of the alkali metal generating agent 300 described above. Is done as follows.
 まず、図14中の白抜き矢印で示されるように、主制御装置110によって第2の駆動部49が制御され、操作部材44が上方に駆動されてゲートバルブ43が開かれる(図15参照)。次に、主制御装置110によって搬送システム42が制御され、図15に示されるように、アーム部42aが備えるハンド部42dが回収対象の光電素子ユニット50の下方に位置づけられる。ここで、回収対象の光電素子ユニット50とは、例えば劣化した光電層を有する光電素子ユニットである。次いで、ハンド部42d(アーム部42a)が僅かに上昇駆動されることで、光電素子ユニット50がハンド部42dによって持ち上げられホルダ88から離間する。 First, as indicated by the white arrow in FIG. 14, the second control unit 49 is controlled by the main control unit 110, the operation member 44 is driven upward, and the gate valve 43 is opened (see FIG. 15). . Next, the transport system 42 is controlled by the main controller 110, and as shown in FIG. 15, the hand portion 42d provided in the arm portion 42a is positioned below the photoelectric device unit 50 to be collected. Here, the photoelectric device unit 50 to be collected is, for example, a photoelectric device unit having a deteriorated photoelectric layer. Next, the hand unit 42 d (arm unit 42 a) is slightly raised and driven, so that the photoelectric device unit 50 is lifted by the hand unit 42 d and separated from the holder 88.
 この状態でハンド部42d(アーム部42a)が旋回及び水平駆動、並びに下降駆動されることで、ハンド部42dに保持された光電素子ユニット50が、ホルダ88からアンロードされる。図16は、アンロード直後の状態を示す。 In this state, when the hand unit 42 d (arm unit 42 a) is driven to rotate and horizontally move and descend, the photoelectric device unit 50 held by the hand unit 42 d is unloaded from the holder 88. FIG. 16 shows the state immediately after unloading.
 次いで、アーム部42aが収縮駆動されることで、図17に示されるように、例えば光電層が劣化した使用済みの光電素子ユニット50が第2の真空室72内に回収される。回収された使用済みの光電素子ユニット50は、アーム部42aによってキャリアの空いている収納棚に戻される。 Then, the arm portion 42a is driven to contract, whereby, as shown in FIG. 17, for example, the used photoelectric device unit 50 with the deteriorated photoelectric layer is recovered in the second vacuum chamber 72. The collected used photoelectric element unit 50 is returned to the empty storage rack of the carrier by the arm part 42a.
 しかる後、上述の光電層60の蒸着が終了すると、主制御装置110によって、駆動機構164が制御され、可動壁162が第2位置まで下降駆動される。これにより、搬送システム42のアーム部42a(ロボットアーム)を、ユニット保持部材188に保持された光電素子ユニット50(完成品)の下方に挿入可能な状態となる。そして、主制御装置110によって搬送システム42が制御され、アーム部42a(ハンド部42d)を用いて光電素子ユニット50が、ユニット保持部材188から搬出される。搬出された光電素子ユニット50は、搬送システム42のハンド部42dに保持された状態で、前述の交換対象の光電素子ユニットの回収時とは反対の手順に従ってホルダ88にロードされる。 After that, when the deposition of the photoelectric layer 60 described above is completed, the main control device 110 controls the drive mechanism 164 to lower the movable wall 162 to the second position. As a result, the arm portion 42 a (robot arm) of the transfer system 42 can be inserted below the photoelectric device unit 50 (finished product) held by the unit holding member 188. Then, the transport system 42 is controlled by the main controller 110, and the photoelectric device unit 50 is carried out of the unit holding member 188 using the arm unit 42a (hand unit 42d). The carried out photoelectric element unit 50 is loaded on the holder 88 according to the opposite procedure to the above-mentioned collection of the photoelectric element unit to be replaced, while being held by the hand portion 42d of the transport system 42.
 光電素子ユニット50のホルダ88へのロードが終了とすると、アーム部42aが第2の真空室72内へ戻され、ゲートバルブ43が閉じられる。これにより、図14と同様の状態となる。 When loading of the photoelectric device unit 50 into the holder 88 is completed, the arm portion 42a is returned into the second vacuum chamber 72, and the gate valve 43 is closed. As a result, the same state as in FIG. 14 is obtained.
 次いで、次の光電層の蒸着対象となる新たな半完成ユニット50Aがキャリアから取り出され、ユニット保持部材188にロードされる。このユニット保持部材188にロードされた半完成ユニット50Aは、光電素子ユニットの交換が必要な状態が生じるまで、待機することとなる。 Then, a new semi-finished unit 50A to be deposited of the next photoelectric layer is taken out of the carrier and loaded on the unit holding member 188. The semi-completed unit 50A loaded to the unit holding member 188 stands by until a condition requiring replacement of the photoelectric element unit occurs.
 なお、上では、半完成ユニット50Aに対する光電層の蒸着、光電層が劣化した使用済みの光電素子ユニット50の回収、及び蒸着が終了した光電素子ユニット50(完成品)のホルダ88へのロードを一連の処理として説明したが、光電素子ユニットの交換動作と、半完成ユニットに対する光電層の蒸着動作と、を必ずしも一連の動作で行う必要はない。すなわち、光電層の蒸着が終了した光電素子ユニット50を、不図示のキャリア内に複数収納した状態で、光電層の劣化を阻止できる環境を維持できるのであれば、光電素子ユニットの交換動作とは無関係に光電層の蒸着が終了した光電素子ユニットを常時複数キャリア内に準備し、光電素子の交換の必要性が生じたら直ちに光電層が劣化した光電素子ユニットとキャリア内に準備している光電素子ユニットとの交換を実行することとしても良い。たとえば、ゲートバルブ43が閉じられ、45の電子ビーム光学系70の少なくとも1つからの電子ビームのウエハWへの照射と並行して、光電層の蒸着動作を実行することができる。このようにする場合には、光電素子ユニットの交換と、光電層の蒸着と、を別々に行うこと、すなわち、光電素子ユニットの交換を考慮することなく、半完成ユニットに対する光電層の蒸着を行うことが可能になる。 Above, the deposition of the photoelectric layer for the semi-finished unit 50A, the recovery of the used photoelectric device unit 50 with the deteriorated photoelectric layer, and the loading of the completed photoelectric device unit 50 (finished product) onto the holder 88 Although described as a series of processes, it is not necessary to necessarily perform the exchange operation of the photoelectric element unit and the deposition operation of the photoelectric layer to the semi-finished unit in a series of operations. That is, if an environment capable of preventing deterioration of the photoelectric layer can be maintained in a state where a plurality of photoelectric device units 50 for which the deposition of the photoelectric layer has been completed are accommodated in a carrier (not shown) A photoelectric element unit in which the deposition of the photoelectric layer is completed independently is always prepared in a plurality of carriers, and the photoelectric element unit in which the photoelectric layer is deteriorated and the photoelectric element prepared in the carrier is prepared immediately when the necessity for replacement of the photoelectric element occurs. It is good also as exchange with a unit. For example, the gate valve 43 can be closed, and the deposition operation of the photoelectric layer can be performed in parallel with the irradiation of the wafer W with the electron beam from at least one of the 45 electron beam optics 70. In such a case, the replacement of the photoelectric element unit and the deposition of the photoelectric layer are performed separately, that is, the deposition of the photoelectric layer on the semi-finished unit is performed without considering the replacement of the photoelectric element unit. It becomes possible.
 本実施形態に係る露光装置100では、パターンジェネレータ84がGLVによって構成されているので、主制御装置110は、パターンジェネレータ84自体を用いて中間調を発生することができる。したがって、主制御装置110は、後述する露光時に、光電層60に照射されるそれぞれの光ビームの強度調整により、光電層60の電子放出面上での面内の照度分布、及びこれに対応するウエハ面上での露光フィールド内の照度分布の調整、すなわちドーズ制御を行うことが可能である。 In the exposure apparatus 100 according to the present embodiment, since the pattern generator 84 is configured by GLV, the main control device 110 can generate halftones using the pattern generator 84 itself. Therefore, main controller 110 corresponds to the in-plane illuminance distribution on the electron emission surface of photoelectric layer 60 by adjusting the intensity of each light beam irradiated to photoelectric layer 60 at the time of exposure described later. It is possible to adjust the illuminance distribution in the exposure field on the wafer surface, that is, to control the dose.
 なお、光電層60の電子放出面上での面内の照度分布の調整の前提として、光電変換によって光電層60の電子放出面から生成される複数の電子ビームの強度(電子ビームの照度、ビーム電流量)がほぼ同一となるように、パターンジェネレータ84で発生され光電層60に照射される複数のビームの強度の調整が行われる。このビームの強度の調整は、照明系82内で行なっても良いし、パターンジェネレータ84で行なっても良いし、投影系86内で行なっても良い。ただし、光電変換によって光電層60の電子放出面から生成される複数の電子ビームのうちの少なくとも一部のビーム強度(電子ビームの照度、ビーム電流量)を他の電子ビーム強度と異ならせるように、光電層60に照射される複数の光ビームの強度の調整を行なっても良い。 Note that, as a premise of adjustment of the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60, the intensities of the plurality of electron beams generated from the electron emission surface of the photoelectric layer 60 by photoelectric conversion (illuminance of the electron beam, beams Adjustment of the intensities of the plurality of beams generated by the pattern generator 84 and irradiated to the photoelectric layer 60 is performed so that the amount of current) becomes substantially the same. The adjustment of the beam intensity may be performed in the illumination system 82, may be performed by the pattern generator 84, or may be performed in the projection system 86. However, the beam intensity (the illuminance of the electron beam, the beam current amount) of at least a part of the plurality of electron beams generated from the electron emission surface of the photoelectric layer 60 by photoelectric conversion may be different from the other electron beam intensities. The intensity of a plurality of light beams irradiated to the photoelectric layer 60 may be adjusted.
 ところで、本実施形態に係る露光装置100は、例えばコンプリメンタリ・リソグラフィに用いられる。この場合、例えばArF光源を用いた液浸露光においてダブルパターニングなどを利用することでラインアンドスペースパターン(L/Sパターン)が形成されたウエハを露光対象とし、そのラインパターンの切断を行うためのカットパターンの形成に用いられる。露光装置100では、光電素子54の遮光膜58に形成された72000個のアパーチャ58aのそれぞれに対応するカットパターンを形成することが可能である。 The exposure apparatus 100 according to the present embodiment is used, for example, in complementary lithography. In this case, for example, a wafer on which a line and space pattern (L / S pattern) is formed is subjected to exposure by using double patterning or the like in immersion exposure using an ArF light source, and the line pattern is cut. It is used to form a cut pattern. In the exposure apparatus 100, it is possible to form a cut pattern corresponding to each of 72000 apertures 58a formed in the light shielding film 58 of the photoelectric element 54.
 本実施形態における、ウエハに対する処理の流れは、次の通りである。 The flow of processing on a wafer in the present embodiment is as follows.
 まず、電子線レジストが塗布された露光前のウエハWが、ステージチャンバ10内で、ウエハステージWST上に載置され、静電チャックによって吸着される。 First, the wafer W before exposure to which the electron beam resist has been applied is placed on the wafer stage WST in the stage chamber 10 and is attracted by the electrostatic chuck.
 ウエハステージWST上のウエハWに形成された例えば45のショット領域のそれぞれに対応してスクライブライン(ストリートライン)に形成された少なくとも各1つのアライメントマークに対して、各電子ビーム光学系70から電子ビームを照射し、少なくとも各1つのアライメントマークからの反射電子が反射電子検出装置106x1、106x2、106y1、106y2の少なくとも1つで検出され、ウエハWの全点アライメント計測が行われ、この全点アライメント計測の結果に基づいて、ウエハW上の複数のショット領域に対し、45の露光ユニット500(マルチビーム光学システム200)を用いた露光が開始される。例えばコンプリメンタリ・リソグラフィの場合、ウエハW上に形成されたX軸方向を周期方向とするL/Sパターンに対するカットパターンを各マルチビーム光学システム200から射出される多数のビーム(電子ビーム)を用いて形成する際に、ウエハW(ウエハステージWST)をY軸方向に走査しつつ、各ビームの照射タイミング(オン・オフ)を制御する。なお、全点アライメント計測を行わずに、ウエハWの一部のショット領域に対応して形成されたアライメントマークの検出を行い、その結果に基づいて45のショット領域の露光を実行しても良い。また、本実施形態においては、露光ユニット500の数とショット領域の数が同じであるが、異なっていても良い。例えば、露光ユニット500の数が、ショット領域の数よりも少なくても良い。なお、ステージチャンバ10の外でアライメントマークの検出を行っても良い。この場合、ステージチャンバ10内でのアライメントマークの検出をしなくても良い。 Electrons from each electron beam optical system 70 for at least one alignment mark formed on a scribe line (street line) corresponding to each of, for example, 45 shot areas formed on wafer W on wafer stage WST The beam is irradiated, and the backscattered electrons from at least one alignment mark are detected by at least one of backscattered electron detectors 106 x 1 , 106 x 2 , 106 y 1 , 106 y 2 , and all-point alignment measurement of wafer W is performed. based on the results of the all points alignment measurement, the plurality of shot areas on the wafer W 1, exposure using a 45 exposure unit 500 (multi-beam optical system 200) is started. For example, in the case of complementary lithography, using a plurality of beams (electron beams) emitted from each multi-beam optical system 200, cut patterns for L / S patterns formed on the wafer W and having the X-axis direction as the periodic direction. At the time of formation, the irradiation timing (on / off) of each beam is controlled while scanning the wafer W (wafer stage WST) in the Y-axis direction. Alternatively, alignment marks formed corresponding to a part of the shot areas of the wafer W may be detected without performing the all-point alignment measurement, and 45 shot areas may be exposed based on the detection result. . Further, in the present embodiment, the number of exposure units 500 and the number of shot areas are the same, but may be different. For example, the number of exposure units 500 may be smaller than the number of shot areas. The alignment mark may be detected outside the stage chamber 10. In this case, it is not necessary to detect the alignment mark in the stage chamber 10.
 ここで、パターンジェネレータ84を用いた露光シーケンスについて、説明を行う。ここでは、ウエハ上のある領域内に互いに隣接してXY2次元配置された多数の10nm角(アパーチャ58aを介したビームの照射領域と一致するものとする)の画素領域を仮想的に設定し、その全ての画素を露光する場合について説明する。また、ここでは、リボン列として、A、B、C、……、K、Lの12のリボン列があるものとする。 Here, an exposure sequence using the pattern generator 84 will be described. Here, pixel regions of a large number of 10 nm squares (which are assumed to coincide with the irradiation region of the beam passing through the aperture 58a) which are arranged in an XY two-dimensional manner adjacent to each other in a certain region on the wafer are virtually set, The case of exposing all the pixels will be described. Here, it is assumed that there are 12 ribbon rows of A, B, C,..., K, L as ribbon rows.
 リボン列Aに着目して説明すると、ウエハ上にX軸方向に並ぶある行(第K行とする)の連続した6000画素領域に対してリボン列Aを用いた露光が開始される。この露光開始の時点では、リボン列Aで反射されるビームは、ホームポジションにあるものとする。そして、露光開始からウエハWの+Y方向(又は-Y方向)のスキャンに追従させてビームを+Y方向(又は-Y方向)に偏向しながら同一の6000画素領域に対する露光を続行する。そして、例えば時間Ta[s]でその6000画素領域の露光が完了したとすると、その間にウエハステージWSTは、速度V[nm/s]で、例えばTa×V[nm]進む。ここで、便宜上、Ta×V=96[nm]とする。 Focusing on the ribbon row A, the exposure using the ribbon row A is started on a continuous 6000-pixel region of a certain row (referred to as a K-th row) aligned in the X-axis direction on the wafer. At the start of this exposure, it is assumed that the beam reflected by the ribbon row A is at the home position. Then, the exposure to the same 6000 pixel region is continued while deflecting the beam in the + Y direction (or -Y direction) by making the scan of the wafer W in the + Y direction (or -Y direction) from the start of exposure follow. Then, if, for example, the exposure of the 6000 pixel region is completed at time Ta [s], wafer stage WST advances at a velocity V [nm / s], for example Ta x V [nm]. Here, for the sake of convenience, Ta × V = 96 [nm].
 続いて、ウエハステージWSTが速度Vで+Y方向に24nmスキャンしている間に、ビームをホームポジションに戻す。このとき、実際にウエハ上のレジストが感光されないようにビームをオフにする。 Subsequently, the beam is returned to the home position while the wafer stage WST scans at 24 nm in the + Y direction at a velocity V. At this time, the beam is turned off so that the resist on the wafer is not actually exposed.
 このとき、上記の露光開始時点からウエハステージWSTは+Y方向に120nm進んでいるので、第(K+12)行目の連続した6000画素領域が、露光開始時点における第K行の6000画素領域と同じ位置にある。 At this time, since wafer stage WST advances 120 nm in the + Y direction from the start of the above exposure, the continuous 6000 pixel area on the (K + 12) th row has the same position as the 6000 pixel area on the Kth row at the start of exposure. It is in.
 そこで、同様にして、第(K+12)行目の連続した6000画素領域を、ウエハステージWSTにビームを偏向追従させながら露光する。 Therefore, in the same manner, the continuous (6000 K) pixel region on the (K + 12) th row is exposed while deflecting the beam to the wafer stage WST.
 実際には、第K行の6000画素領域の露光と並行して、第(K+1)行~第(K+11)行それぞれの6000画素は、リボン列B、C、……、K、Lによって露光される。 Actually, in parallel with the exposure of the 6000 pixel area in the Kth row, 6000 pixels in each of the (K + 1) th row to the (K + 11) th row are exposed by the ribbon columns B, C,. Ru.
 このようにして、ウエハ上のX軸方向の長さ60μmの幅の領域については、ウエハステージWSTをY軸方向にスキャンさせながらの露光(スキャン露光)が可能であり、ウエハステージWSTを60μmX軸方向にステッピングして同様のスキャン露光を行えば、そのX軸方向に隣接する長さ60μmの幅の領域の露光が可能である。したがって、上記のスキャン露光とウエハステージのX軸方向のステッピングとを交互に繰り返すことで、ウエハ上の1つのショット領域の露光を、1つの露光ユニット500により行うことができる。また、実際には、45の露光ユニット500を用いて並行してウエハ上の互いに異なるショット領域を露光することができるので、ウエハ全面の露光が可能である。 In this manner, exposure (scan exposure) while scanning wafer stage WST in the Y-axis direction is possible for a region having a length of 60 μm on the wafer in the X-axis direction, and wafer stage WST has a 60 μm X-axis If the same scan exposure is performed by stepping in the direction, it is possible to expose a 60 μm wide area adjacent in the X-axis direction. Therefore, exposure of one shot area on the wafer can be performed by one exposure unit 500 by alternately repeating the above-described scan exposure and stepping in the X-axis direction of the wafer stage. In addition, since 45 different exposure areas on the wafer can be exposed in parallel using the 45 exposure units 500, the entire surface of the wafer can be exposed.
 なお、露光装置100は、コンプリメンタリ・リソグラフィに用いられ、ウエハW上に形成された例えばX軸方向を周期方向とするL/Sパターンに対するカットパターンの形成に用いられるので、パターンジェネレータ84で72000のリボン84bのうち、任意のリボン84bで反射するビームをオンにしてカットパターンを形成することができる。この場合に、72000本のビームが同時にオン状態とされても良いし、されなくても良い。 The exposure apparatus 100 is used for complementary lithography and is used for forming a cut pattern for an L / S pattern formed on the wafer W, for example, with the X-axis direction as the periodic direction. Of the ribbons 84b, a beam reflected by an arbitrary ribbon 84b can be turned on to form a cut pattern. In this case, 72000 beams may or may not be simultaneously turned on.
 本実施形態に係る露光装置100では、上述した露光シーケンスに基づく、ウエハWに対する走査露光中に、主制御装置110によって位置計測系28の計測値に基づいて、ステージ駆動系26が制御されるとともに、各露光ユニット500の制御部11を介して光照射装置80及び電子ビーム光学系70が制御される。この際、主制御装置110の指示に基づき、制御部11によって、前述したドーズ制御が必要に応じて行われる。 In exposure apparatus 100 according to the present embodiment, main scanning drive 110 controls stage drive system 26 based on the measurement values of position measurement system 28 during scanning exposure to wafer W based on the above-described exposure sequence. The light irradiation device 80 and the electron beam optical system 70 are controlled via the control unit 11 of each exposure unit 500. At this time, based on an instruction from the main control unit 110, the control unit 11 performs the above-described dose control as necessary.
 以上説明したように、本実施形態に係る露光装置100は、光電素子54と光電素子54から発生される電子ビームEBを加速する引き出し電極55とが一体化された光電素子ユニット50を保持可能なホルダ88が複数設けられ、内部を真空引き可能な第1室(第1の真空室)34と、光電素子54から発生する電子ビームEBを第1の真空室34内部の真空空間を介してターゲットであるウエハWに照射する複数の電子ビーム光学系70と、第1の真空室34と連通する第2の真空室72と、第2の真空室内72に少なくとも一部が収納され、複数のホルダ88のそれぞれと第2の真空室72との間で光電素子ユニット50を搬送可能な搬送システム42と、を備えている。このため、交換用の光電素子ユニットを第2の真空室72内に一時的に保管して置くことで、例えばいずれかのホルダ88に保持された光電素子ユニット50の光電層が劣化した場合などに、搬送システム42を用いてその光電層が劣化した光電素子ユニットと、交換用の光電素子ユニットとを速やかに交換することが可能になる。これにより、いずれかの光電素子の光電層60が劣化した場合であっても、露光装置100のダウンタイムを極力短縮することができる。 As described above, the exposure apparatus 100 according to the present embodiment can hold the photoelectric element unit 50 in which the photoelectric element 54 and the extraction electrode 55 for accelerating the electron beam EB generated from the photoelectric element 54 are integrated. A plurality of holders 88 are provided, and a first chamber (first vacuum chamber) 34 capable of evacuating the inside, and an electron beam EB generated from the photoelectric element 54 are targets through vacuum spaces inside the first vacuum chamber 34 A plurality of electron beam optical systems 70 for irradiating the wafer W, a second vacuum chamber 72 communicating with the first vacuum chamber 34, and at least a part of the second vacuum chamber 72; And a transport system 42 capable of transporting the photoelectric device unit 50 between each of the first and second vacuum chambers 72 and 88. Therefore, for example, when the photoelectric layer of the photoelectric element unit 50 held by any one of the holders 88 is deteriorated by temporarily storing and placing the photoelectric element unit for replacement in the second vacuum chamber 72, etc. In addition, it is possible to quickly replace the photoelectric element unit whose photoelectric layer has deteriorated using the transport system 42 with the photoelectric element unit for replacement. Thereby, even when the photoelectric layer 60 of any of the photoelectric elements is deteriorated, the down time of the exposure apparatus 100 can be shortened as much as possible.
 なお、光電素子ユニット50が備える光電素子54は、一面に光電層60が蒸着により形成されたベース部材53を有する。ベース部材53は、透明部材から成る基材(ブランクスとも呼ばれる)56と、基材56の一面(光射出側の面)に形成された複数のアパーチャ58aを有する遮光膜58とを有する。 The photoelectric element 54 provided in the photoelectric element unit 50 has a base member 53 on one surface of which the photoelectric layer 60 is formed by vapor deposition. The base member 53 has a base (also called a blank) 56 made of a transparent member, and a light shielding film 58 having a plurality of apertures 58 a formed on one surface (surface on the light emission side) of the base 56.
 また、第2の真空室72には、光電層の蒸着前のベース部材53と引き出し電極55とが一体化された光電素子ユニット50の半製品である半完成ユニット50A、及び光電層60の蒸着後の光電素子ユニット50(完成品)のいずれも保持可能なユニット保持部材188が設けられている。また、第2の真空室72の内部には、該ユニット保持部材188に保持された半完成ユニット50Aに対して蒸着される光電層の蒸着源(蒸着材料)であるアルカリ金属発生剤300を加熱して蒸発させる加熱装置(蒸発源)160が配置され、第2の真空室72の内部で半完成ユニット50Aが有するベース部材53の一面に光電層60を蒸着して、完成品である光電素子ユニットを製造することができる。すなわち、第2の真空室72は、蒸着室を兼ねている。ただし、第2の真空室72とは別にユニット保持部材188及び加熱装置160が設けられた専用の蒸着室を設けても良い。この場合、蒸着室内のユニット保持部材188から第2の真空室72を経由して第1の真空室34内のホルダ88へ光電素子ユニット50を搬送することとしても良いし、蒸着室を第1の真空室34の隣に設け、両室間にゲートバルブを設けても良い。 In the second vacuum chamber 72, a semi-finished unit 50A as a semi-finished product of the photoelectric device unit 50 in which the base member 53 before the deposition of the photoelectric layer and the extraction electrode 55 are integrated, and the deposition of the photoelectric layer 60 A unit holding member 188 capable of holding any of the later photoelectric element units 50 (finished products) is provided. In the second vacuum chamber 72, the alkali metal generating agent 300, which is a deposition source (deposition material) of the photoelectric layer deposited on the semifinished unit 50A held by the unit holding member 188, is heated. The heating device (evaporation source) 160 for evaporating and evaporating is disposed, and the photoelectric layer 60 is deposited on one surface of the base member 53 of the semifinished unit 50A inside the second vacuum chamber 72 to complete the photoelectric element as a finished product The unit can be manufactured. That is, the second vacuum chamber 72 doubles as a deposition chamber. However, a dedicated deposition chamber provided with a unit holding member 188 and a heating device 160 may be provided separately from the second vacuum chamber 72. In this case, the photoelectric element unit 50 may be transported from the unit holding member 188 in the deposition chamber to the holder 88 in the first vacuum chamber 34 via the second vacuum chamber 72. It may be provided next to the vacuum chamber 34, and a gate valve may be provided between the two chambers.
 搬送システム42は、ユニット保持部材188とホルダ88との間で光電素子ユニット50を搬送可能である。したがって、露光装置100では、搬送システム42によって、光電層が劣化した使用済みの光電素子ユニット50をホルダ88からアンロードして第2の真空室72の内部に搬入するするとともに、第2の真空室72の内部でベース部材53に対する光電層60の蒸着が行われた完成品である光電素子ユニット50を、ユニット保持部材188からアンロードしてホルダ88上にロードすることが可能である。特に、ユニット保持部材188に保持された光電素子ユニット50の交換時期の到来の直前に、第2の真空室72内でベース部材53に対する光電層60の蒸着を行い、完成した光電素子ユニット50を、光電層が劣化した光電素子ユニット50と交換する場合には、交換後に使用される光電素子ユニット50の光電層の寿命を最も長くすることができる。 The transport system 42 can transport the photoelectric device unit 50 between the unit holding member 188 and the holder 88. Therefore, in the exposure apparatus 100, the transport system 42 unloads the used photoelectric device unit 50 with the deteriorated photoelectric layer from the holder 88 and carries it into the second vacuum chamber 72, and the second vacuum It is possible to unload the photoelectric device unit 50, which is a finished product of the deposition of the photoelectric layer 60 on the base member 53 inside the chamber 72, from the unit holding member 188 and load it onto the holder 88. In particular, immediately before arrival of replacement time of the photoelectric device unit 50 held by the unit holding member 188, the photoelectric layer 60 is vapor-deposited on the base member 53 in the second vacuum chamber 72 to complete the completed photoelectric device unit 50. When replacing the photoelectric conversion unit with the deteriorated photoelectric conversion unit 50, the life of the photoelectric conversion unit of the photoelectric conversion unit 50 used after the replacement can be longest.
 また、本実施形態に係る露光装置100は、マルチビーム光学システム200と、制御部11と、反射電子検出装置106と、信号処理装置108と、を含んで構成される露光ユニット500を45備えている(図13参照)。マルチビーム光学システム200は、光照射装置80と、電子ビーム光学系70とを含む。 In addition, the exposure apparatus 100 according to the present embodiment includes the exposure unit 500 configured to include the multi-beam optical system 200, the control unit 11, the backscattered electron detection device 106, and the signal processing device 108. (See Figure 13). The multi-beam optical system 200 includes a light irradiation device 80 and an electron beam optical system 70.
 また、露光装置100の電子ビーム光学系70は、複数の光ビームを光電素子54に照射することによって光電素子54から放出される電子を複数の電子ビームとしてウエハWに照射する。したがって、露光装置100によると、ブランキング・アパーチャが無いため、チャージアップや磁化による複雑なディストーションの発生源が根本的になくなるとともに、ターゲットの露光に寄与しない無駄電子(反射電子)の発生を抑えることでき、長期的な不安定要素を排除することが可能になる。 Further, the electron beam optical system 70 of the exposure apparatus 100 irradiates the wafer W with electrons emitted from the photoelectric element 54 as the plurality of electron beams by irradiating the photoelectric element 54 with a plurality of light beams. Therefore, according to the exposure apparatus 100, since there is no blanking aperture, the source of generation of complex distortion due to charge-up and magnetization is fundamentally eliminated, and generation of waste electrons (reflected electrons) not contributing to the exposure of the target is suppressed. It is possible to eliminate long-term instability factors.
 また、本実施形態に係る露光装置100によると、実際のウエハの露光時には、主制御装置110は、ウエハWを保持するウエハステージWSTのY軸方向の走査(移動)をステージ駆動系26を介して制御する。これと並行して、主制御装置110は、露光ユニット500のm個(例えば45個)のマルチビーム光学システム200のそれぞれについて、光電素子54のn個(例えば72000個)のアパーチャ58aをそれぞれ通過したn本のビームの照射状態(オン状態とオフ状態)をアパーチャ58aごとにそれぞれ変化させるとともに、パターンジェネレータ84を用いてビーム毎に光ビームの強度調整を行う。 Further, according to the exposure apparatus 100 according to the present embodiment, at the time of actual wafer exposure, main controller 110 performs scanning (movement) of wafer stage WST holding wafer W in the Y-axis direction via stage drive system 26. Control. In parallel with this, the main control unit 110 passes n (for example, 72000) apertures 58 a of the photoelectric element 54 for each of the m (for example, 45) multi-beam optical systems 200 of the exposure unit 500. The irradiation state (on state and off state) of the n beams is changed for each aperture 58a, and the intensity of the light beam is adjusted for each beam using the pattern generator 84.
 また、露光装置100では、静電マルチポール70cの第1静電レンズ70cにより、総電流量の変化によって生じる、クーロン効果に起因するX軸方向及びY軸方向に関する縮小倍率(の変化)を、高速で、かつ個別に補正する。また、露光装置100では、第2静電レンズ70cにより、各種振動等に起因するビームの照射位置ずれ(光学パターンのうちの明画素、すなわち後述するカットパターンの投影位置ずれ)を一括で補正する。 Further, in exposure apparatus 100, the first electrostatic lens 70c 1 of the electrostatic multipole 70c, caused by changes in the total current amount, reduction in the X-axis direction and the Y-axis direction due to the Coulomb effect magnification (changes in) Correct, fast, and individually. Further, in exposure apparatus 100, the second electrostatic lens 70c 2, correction (light pixels of the optical pattern, i.e. the projection position deviation of the cut pattern to be described later) irradiation position shift of the beam caused by various vibrations or the like in a batch Do.
 これにより、例えばArF液浸露光装置を用いたダブルパターニングなどによりウエハ上の例えば45個のショット領域のそれぞれに予め形成されたX軸方向を周期方向とする微細なL/Sパターンの所望のライン上の所望の位置にカットパターンを形成することが可能になり、高精度かつ高スループットな露光が可能になる。 Thereby, for example, a desired line of a fine L / S pattern having an X-axis direction as a periodic direction which is formed in advance in, for example, 45 shot areas on the wafer by double patterning using an ArF immersion exposure apparatus, for example. It becomes possible to form a cut pattern at a desired position on the top, and high precision and high throughput exposure is possible.
 したがって、本実施形態に係る露光装置100を用いて、前述したコンプリメンタリ・リソグラフィを行い、L/Sパターンを構成するラインパターンの切断を行う場合に、各マルチビーム光学システム200で、複数のアパーチャ58aのうち、いずれのアパーチャ58aを通過するビームがオン状態となる場合であっても、換言すればオン状態となるビームの組み合わせの如何を問わず、ウエハ上の例えば45個のショット領域のそれぞれに予め形成されたX軸方向を周期方向とする微細なL/Sパターンのうちの所望のライン上の所望の位置にカットパターンを形成することが可能になる。 Therefore, when performing the above-described complementary lithography to cut the line pattern constituting the L / S pattern using the exposure apparatus 100 according to the present embodiment, the plurality of apertures 58 a in each multi-beam optical system 200. In any one of the aperture 58a, the beam is turned on, in other words, regardless of the combination of the beams turned on, for example, 45 shot areas on the wafer. It is possible to form a cut pattern at a desired position on a desired line of a fine L / S pattern in which the periodic direction is the X axis direction formed in advance.
 なお、上記実施形態では、第2の真空室72又は別に設けられる蒸着室(以下、適宜、両者を纏めて蒸着室と称する)において、半完成ユニット50Aに対する光電層60の蒸着を行う場合について説明したが、これに限らず、半完成ユニット50Aに対する光電層60の蒸着に代えて、あるいは加えて、使用済みの光電素子ユニット50に光電層の蒸着を蒸着室で行っても良い。すなわち、蒸着室においては、半完成ユニット50Aに対する光電層60の蒸着及び使用済みの光電素子ユニット50に対する光電層の蒸着の両方を行っても良いが、一方のみを行うこととしても良い。なお、使用済みの光電素子ユニット50に光電層の蒸着を行う動作を、光電層のリペア、あるいは光電層の回復と呼んでも良い。 In the above embodiment, the case where the photoelectric layer 60 is deposited on the semi-completed unit 50A in the second vacuum chamber 72 or a separate deposition chamber (hereinafter, both are collectively referred to as a deposition chamber) will be described. However, the present invention is not limited to this, and instead of or in addition to the deposition of the photoelectric layer 60 for the semi-finished unit 50A, the deposition of the photoelectric layer may be performed on the used photoelectric element unit 50 in the deposition chamber. That is, in the deposition chamber, both of the deposition of the photoelectric layer 60 for the semi-finished unit 50A and the deposition of the photoelectric layer for the used photoelectric device unit 50 may be performed, but only one of them may be performed. Note that the operation of depositing the photoelectric layer on the used photoelectric device unit 50 may be referred to as repair of the photoelectric layer or recovery of the photoelectric layer.
 使用済みの光電素子ユニット50は、搬送システム42によりホルダ88上から蒸着室内のユニット保持部材188に搬送された(すなわち、回収された)後に、ユニット保持部材188に保持された状態で光電層の蒸着が行われる。使用済みの光電素子ユニットに対する蒸着は、光電層が劣化して使用不能になった光電素子ユニットのみでなく、使用不能となる程度まで光電層は劣化していないが、使用履歴がある、あるいは中古となった光電素子ユニットに対して実施しても良い。なお、使用済みの光電層の剥離を行うことができる剥離室をさらに設けることとしても良い。かかる場合には、使用済みの光電層の剥離を行うことなく、回収された光電素子ユニット50に対する光電層の蒸着(重ね塗り)を行うこととしても良いし、使用済みの光電層の剥離後に光電層の蒸着を行うこととしても良い。 The used photoelectric element unit 50 is transported by the transport system 42 from the holder 88 onto the unit holding member 188 in the deposition chamber (that is, recovered), and is held by the unit holding member 188. Deposition is performed. The deposition for the used photoelectric element unit is not only the photoelectric element unit in which the photoelectric layer is deteriorated and becomes unusable but also the photoelectric layer is not deteriorated to the extent that it can not be used, but there is a history of use or used You may implement with respect to the photoelectric element unit which became. Note that a peeling chamber which can peel off a used photoelectric layer may be further provided. In such a case, deposition (overcoating) of the photoelectric layer on the collected photoelectric device unit 50 may be performed without peeling off the used photoelectric layer, or photoelectric conversion may be performed after peeling of the used photoelectric layer. It is also possible to deposit a layer.
 なお、上記第1の実施形態では、パターンジェネレータ84を、GLVで構成する場合について例示したが、これに限らず、パターンジェネレータ84を、反射型の液晶表示素子あるいはデジタル・マイクロミラー・デバイス(Digital Micromirror Device)、PLV(Planer Light Valve)などの複数の可動反射素子を有する反射型の空間光変調器を用いて構成しても良い。 In the first embodiment, the pattern generator 84 is exemplified by GLV. However, the present invention is not limited to this. The pattern generator 84 may be a reflective liquid crystal display device or a digital micromirror device (Digital It may be configured using a reflective spatial light modulator having a plurality of movable reflective elements such as Micromirror Device) and PLV (Planer Light Valve).
《第2の実施形態》
 次に、第2の実施形態について、図18及び図19に基づいて説明する。図18には、第2の実施形態に係る露光装置1000の構成が概略的に示されている。ここで、前述した第1の実施形態と同一若しくは同等の構成部分については、同一の符号を用いるとともに、その説明を省略する。
Second Embodiment
Next, a second embodiment will be described based on FIG. 18 and FIG. FIG. 18 schematically shows the arrangement of an exposure apparatus 1000 according to the second embodiment. Here, the same reference numerals are used for constituent parts that are the same as or equivalent to those of the first embodiment described above, and the description thereof will be omitted.
 本第2の実施形態に係る露光装置1000では、前述の光学システム18に代えて、光学システム118が用いられている点が、前述の第1の実施形態に係る露光装置100と相違するが、その他の部分の構成等は、露光装置100と同様である。以下、相違点を中心として説明する。 An exposure apparatus 1000 according to the second embodiment is different from the exposure apparatus 100 according to the first embodiment in that an optical system 118 is used instead of the optical system 18 described above. The configuration and the like of the other parts are the same as in the exposure apparatus 100. The following description will focus on the differences.
 光学システム118は、不図示の吊り下げ支持機構によりボディフレームの上部フレーム(不図示)から吊り下げ支持された電子ビーム光学ユニット18Aと、電子ビーム光学ユニット18Aの一部を構成する第1の真空室34を区画する筐体19上に搭載された光学ユニット117とを備えている。 The optical system 118 includes an electron beam optical unit 18A suspended and supported from an upper frame (not shown) of the body frame by a suspension support mechanism (not shown), and a first vacuum forming a part of the electron beam optical unit 18A. And an optical unit 117 mounted on a housing 19 partitioning the chamber 34.
 光学ユニット117は、筐体19上に固定された保持部材120と、電子ビーム光学ユニット18Aが備える45の電子ビーム光学系70の配置に対応する配置で保持部材120によって保持された45の光照射装置180と、を備えている。保持部材120には、45の電子ビーム光学系70の配置に対応する配置で45のZ軸方向に延びる貫通孔120aが形成され、各貫通孔120a内に光照射装置180が配置されている。 The optical unit 117 is a light irradiation of 45 held by the holding member 120 in an arrangement corresponding to the arrangement of the holding member 120 fixed on the housing 19 and the 45 electron beam optical systems 70 provided in the electron beam optical unit 18A. And an apparatus 180. In the holding member 120, through holes 120a extending in the Z-axis direction of 45 are formed in an arrangement corresponding to the arrangement of the 45 electron beam optical systems 70, and the light irradiation devices 180 are arranged in the respective through holes 120a.
 図19には、光学ユニット117を構成する45の光照射装置180の1つが、真空隔壁81及び光電素子54とともに一部省略して断面図にて示されている。図19は、図18の楕円B内の一部の拡大図に相当する。 In FIG. 19, one of the 45 light irradiators 180 that constitute the optical unit 117 is shown in a cross-sectional view, with the vacuum barrier 81 and the photoelectric element 54 partially omitted. FIG. 19 corresponds to an enlarged view of a part in the ellipse B of FIG.
 光照射装置180は、図19に示されるように、発光デバイス184と、発光デバイス184の光射出側の面に設けられた光学素子の一種であるマイクロレンズアレイ184cとを有している。本第2の実施形態では、発光デバイス184として、自発光型コントラストデバイスアレイを主体とする発光デバイスが用いられているので、以下では、発光デバイス184と同一の符号を用いて自発光型コントラストデバイスアレイ184とも称する。 The light irradiation device 180 includes a light emitting device 184 and a microlens array 184 c which is a type of optical element provided on the light emitting side of the light emitting device 184 as shown in FIG. In the second embodiment, a light emitting device mainly composed of a self light emitting contrast device array is used as the light emitting device 184. Therefore, in the following, the self light emitting contrast device using the same reference numerals as the light emitting device 184 Also referred to as array 184.
 発光デバイス184、すなわち自発光型コントラストデバイスアレイ184は、半導体基板上に作り込まれ、1次元アレイ状又は2次元アレイ状に配置され、個別に制御可能な複数の発光部を有するプログラマブルパターニングデバイスである。自発光型コントラストデバイスアレイ184は、基板上に複数の化合物半導体構成材料層を積層して形成した後に、ウエットエッチングによって各化合物半導体構成材料層を選択的に除去し、各発光素子(発光部)の半導体層をメサ構造に成形したり、発光素子間を素子分離したりする方法で製造される。本実施形態では、発光デバイス184として、例えばダブルヘテロ接合(構造)による半導体のpn接合を有し、半導体基板上にXY2次元アレイ状に配置された発光部184a、複数の発光部184aを個別に駆動する複数のCMOS駆動回路184bと、を有している。ここで、発光デバイス184では、複数の発光部184aとして、自発光型コントラストデバイスの一種であるマイクロLEDが用いられているので、以下では、発光部と同一の符号を用いてマイクロLED184aと表記する。なお、図19では、CMOS駆動回路184bが、簡略化して単なるトランジスタとして示されている。図19において、符号185は、複数のCMOS駆動回路184bに接続された配線を簡略化して示す。 A light emitting device 184, ie, a self light emitting contrast device array 184, is a programmable patterning device built in a semiconductor substrate and arranged in a one or two dimensional array form and having a plurality of individually controllable light emitting parts is there. The self-luminous contrast device array 184 is formed by laminating a plurality of compound semiconductor constituent material layers on a substrate, and then selectively removing each compound semiconductor constituent material layer by wet etching to form each light emitting element (light emitting portion) The semiconductor layer is formed into a mesa structure, or the light emitting elements are separated. In the present embodiment, the light emitting device 184 includes, for example, a pn junction of a semiconductor with a double hetero junction (structure), and the light emitting portion 184 a and the plurality of light emitting portions 184 a arranged individually in an XY two-dimensional array on the semiconductor substrate. And a plurality of CMOS drive circuits 184b to be driven. Here, in the light emitting device 184, since a micro LED, which is a type of self-luminous contrast device, is used as the plurality of light emitting portions 184a, hereinafter, the micro LED 184a is described using the same reference numeral as the light emitting portion. . In FIG. 19, the CMOS drive circuit 184b is simplified and shown as a mere transistor. In FIG. 19, reference numeral 185 schematically shows interconnections connected to a plurality of CMOS drive circuits 184b.
 発光デバイス184は、複数のマイクロLED184aそれぞれからの光ビームLBの強度をそれぞれに対する印加電圧を制御することで個別に制御可能であり、強度の制御には強度をゼロにすること、すなわち光ビームLBの発光停止を含む。このため、発光デバイス84は、例えば明暗パターンからなる光学パターンを発生することができる。なお、発光部としては、マイクロLEDに限らず、他の放射放出ダイオード、例えば発光ダイオード、有機LED、高分子LED、レーザダイオードなどを用いることもできる。また、発光部として、放射放出ダイオードに限らず、垂直共振器面発光レーザ(VCSEL)あるいは垂直外部共振器面発光レーザ(VECSEL)などの他の自発光型コントラストデバイスを用いても良い。これらの自発光型コントラストデバイスは、半導体基板に対して垂直な方向、すなわち光電素子54の基材56の面に対して垂直な方向に光ビームを射出するので、図19の発光部184aとして、マイクロLEDに代えてこれらの自発光型コントラストデバイスを用いることが可能である。 The light emitting device 184 can individually control the intensity of the light beam LB from each of the plurality of micro LEDs 184a by controlling the voltage applied thereto, and the intensity is controlled to zero, that is, the light beam LB Light emission stop. For this reason, the light emitting device 84 can generate an optical pattern composed of, for example, a bright and dark pattern. In addition, as a light emission part, not only micro LED but another radiation emission diode, for example, a light emitting diode, an organic LED, a polymer LED, a laser diode, etc. can also be used. The light emitting portion is not limited to the radiation emitting diode, but may be another self-emitting contrast device such as a vertical cavity surface emitting laser (VCSEL) or a vertical external cavity surface emitting laser (VECSEL). These self-luminous contrast devices emit light beams in a direction perpendicular to the semiconductor substrate, ie, in a direction perpendicular to the surface of the substrate 56 of the photoelectric element 54, and therefore, as a light emitting unit 184a in FIG. It is possible to use these self-luminous contrast devices instead of micro LEDs.
 マイクロレンズアレイ184cは、複数の発光部、ここでは、自発光型コントラストデバイスの一種であるマイクロLED184aのそれぞれに対応して設けられ、複数のマイクロLED184aの配置に対応してXY平面内で互いに交差する2方向(例えばX軸方向及びY軸方向)に2次元アレイ状に配置されて一体化された複数のマイクロレンズ(光学部材、光学素子)186を含む。マイクロレンズアレイ184cの複数のマイクロレンズ186のそれぞれは、対応するマイクロLED84aで発生する発散光である光ビームLBを集光して平行光に変換する。 The microlens array 184c is provided corresponding to each of a plurality of light emitting units, in this case, the micro LEDs 184a, which is a type of self-luminous contrast device, and crosses one another in the XY plane corresponding to the arrangement of the plurality of micro LEDs 184a. And a plurality of microlenses (optical members, optical elements) 186 arranged and integrated in a two-dimensional array in two directions (for example, the X-axis direction and the Y-axis direction). Each of the plurality of microlenses 186 of the microlens array 184c condenses the light beam LB, which is divergent light generated by the corresponding micro LED 84a, and converts it into parallel light.
 光照射装置180は、真空隔壁81の上方に所定のクリアランス(ギャップ、隙間)を介して配置され、真空隔壁81の下方には、所定のクリアランス(ギャップ、隙間)を介して光電素子ユニット50の一部を構成する光電素子54が配置されている。 The light irradiation device 180 is disposed above the vacuum barrier 81 via a predetermined clearance (gap), and below the vacuum barrier 81 via a predetermined clearance (gap). A photoelectric element 54 which constitutes a part is disposed.
 本第2の実施形態に係る露光装置1000は、光学ユニット117以外の構成は、前述した第1の実施形態に係る露光装置100と同様になっている。 The exposure apparatus 1000 according to the second embodiment is the same as the exposure apparatus 100 according to the first embodiment described above except for the optical unit 117.
 光電素子54を有する光電素子ユニット50は、ホルダ88によって、筐体19の内部で所定の位置に支持することとしても良いが、ホルダ88を筐体19に対して移動可能な構成とし、不図示の真空対応アクチュエータによって、ホルダ88とともに光電素子ユニット50を、XY平面内で移動可能な構成を採用しても良い。後者の場合、光照射装置180の各マイクロLED184aと、光電素子54のアパーチャ58aとは1:1で対応するものとしても良いが、これに限らず、マイクロLED184aの数とアパーチャ58aの数とを異ならせても良い。すなわち、マイクロLED184aより多くのアパーチャ58aを遮光膜58に形成しても良いし、マイクロLED184aより少ない数のアパーチャ58aを遮光膜58に形成しても良い。 The photoelectric device unit 50 having the photoelectric device 54 may be supported at a predetermined position inside the housing 19 by the holder 88, but the holder 88 is configured to be movable with respect to the housing 19, and not shown. With the vacuum compatible actuator, the holder 88 and the photoelectric device unit 50 may be movable in the XY plane. In the latter case, each micro LED 184a of the light irradiation device 180 may correspond to the aperture 58a of the photoelectric element 54, but the invention is not limited thereto. The number of micro LEDs 184a and the number of apertures 58a are not limited thereto. It may be different. That is, more apertures 58a may be formed in the light shielding film 58 than the micro LEDs 184a, or a smaller number of apertures 58a may be formed in the light shielding film 58 than the micro LEDs 184a.
 例えば、マイクロLED184aの列の数より少ない数のアパーチャ58aの列を光電素子54の遮光膜58に形成しても良い。この場合、マイクロLED184aの列の少なくとも1列は、バックアップ用のLED列とすることとしても良い。 For example, the light shielding film 58 of the photoelectric element 54 may be formed with a smaller number of rows of apertures 58a than the number of rows of the micro LEDs 184a. In this case, at least one row of the row of micro LEDs 184a may be a backup LED row.
 例えば、マイクロLED84aの列の数より多い数のアパーチャ58aの列を光電素子54の遮光膜58に形成しても良い。この場合、アパーチャ58aの列の少なくとも1列は、バックアップ用のアパーチャ列とすることとしても良い。通常用いられるメインのアパーチャ列のアパーチャ58aに対応する光電層60の一部が他の部分に比べて経時的に劣化したときなどに、バックアップ用のアパーチャ列を介して光電層60に光ビームを照射することとしても良い。これにより、光電層60の寿命を実質的に延ばすことができる。 For example, the light shielding film 58 of the photoelectric element 54 may be formed with a row of apertures 58 a in a number greater than the number of rows of the micro LEDs 84 a. In this case, at least one row of the rows of the apertures 58a may be a row of apertures for backup. When a portion of the photoelectric layer 60 corresponding to the aperture 58a of the main aperture row normally used degrades with time as compared to other portions, etc., a light beam is transmitted to the photoelectric layer 60 via the backup aperture row. It is good also as irradiation. Thereby, the life of the photoelectric layer 60 can be substantially extended.
 本第2の実施形態に係る露光装置1000は、光照射装置80に代えて、光照射装置180を有しているが、光照射装置180と電子ビーム光学系70とによって、マルチビーム光学システム200と同等のマルチビーム光学システムが構成され、該マルチビーム光学システムと制御部11と反射電子検出装置106と信号処理装置108とを含む露光ユニットを45備えている。 The exposure apparatus 1000 according to the second embodiment includes a light irradiation apparatus 180 in place of the light irradiation apparatus 80. However, the multi-beam optical system 200 is provided by the light irradiation apparatus 180 and the electron beam optical system 70. And an exposure unit 45 including the multi-beam optical system, the control unit 11, the backscattered electron detection device 106, and the signal processing device 108.
 以上説明した本第2の実施形態に係る露光装置1000によると、前述した第1の実施形態に係る露光装置100と同等の効果を得ることができる他、光照射装置180は、光照射装置80に比べて格段小型化できるので、装置の小型化が可能である。 The exposure apparatus 1000 according to the second embodiment described above can obtain the same effects as those of the exposure apparatus 100 according to the first embodiment described above. The size of the apparatus can be reduced because the size of the apparatus can be significantly reduced.
 なお、上記第2の実施形態では、光照射装置180が、自発光型コントラストデバイスアレイ(発光素子)184と、その光射出面側に設けられたマイクロレンズアレイ184cとを有する場合について例示したが、光照射装置180は、マイクロレンズアレイ184cなどの光学部材を必ずしも有していなくても良い。 In the second embodiment described above, the light irradiation device 180 includes the self-emission contrast device array (light emitting element) 184 and the microlens array 184 c provided on the light emission surface side thereof. The light irradiation device 180 may not necessarily have an optical member such as the microlens array 184 c.
 また、上記第2の実施形態では、各光照射装置180が、第1の真空室34の真空隔壁81介して光電素子54(光電素子ユニット50)とは反対側に配置される場合について説明したが、これに限らず、例えば、図20に示されるように、光照射装置180の少なくとも一部、例えば発光デバイス184部分が、真空隔壁81の一部を形成していても良い。この場合おいて、光照射装置180は、マイクロレンズアレイ184cを有していなくても良い。その場合、発光デバイス184によって光照射装置が構成されることとなるが、その発光デバイス184の少なくとも一部が真空隔壁81の一部を形成しても良く、併せて真空隔壁81に光電素子54の基材56が接近するようにホルダ88の高さ方向のサイズを調整しても良い。 In the second embodiment, the case where each light irradiation device 180 is disposed on the opposite side to the photoelectric element 54 (photoelectric element unit 50) via the vacuum dividing wall 81 of the first vacuum chamber 34 has been described. However, not limited to this, for example, as shown in FIG. 20, at least a part of the light irradiation device 180, for example, the light emitting device 184 may form a part of the vacuum barrier 81. In this case, the light irradiation device 180 may not have the microlens array 184c. In that case, the light emitting device is configured by the light emitting device 184, but at least a part of the light emitting device 184 may form a part of the vacuum dividing wall 81, The size of the holder 88 in the height direction may be adjusted so that the base material 56 of the above becomes closer.
 なお、これまでは、光照射装置180が、半導体基板に垂直な方向に光を出射する発光部、例えば放射放出ダイオード、VCSELあるいはVECSELなどを複数有する自発光型コントラストデバイスアレイを、発光デバイスとして備えている場合について説明した。しかし、これに限らず、半導体基板に平行に光を出射する発光部を複数有する自発光型コントラストデバイスアレイを、発光デバイスとして用いて光照射装置を構成することもできる。例えば、発光部として、半導体基板上に作り込まれ、XY2次元アレイ状に配置されたダブルヘテロ構造を有する複数のフォトニック結晶レーザ(以下、適宜、フォトニックレーザと称する)と、複数のフォトニックレーザを個別に駆動する複数のCMOS駆動回路とを有する自発光型コントラストデバイスアレイ(発光デバイス)を用いることができる。フォトニックレーザは、半導体基板の内部で基板の面に平行な方向に光ビームを放出する端面発光レーザであるため、自発光型コントラストデバイスアレイで用いるためには、その光ビームを面外に取り出す必要がある。この取り出し方法として、光導波路の末端部に平面回折格子型結合器を形成する方法、光導波路の末端部の先に斜めミラーを形成して光を基板の面に垂直な方向に反射させる方法、及び例えばシリコン細線光導波路自体を上方に立体的に湾曲させる方法などが知られている。 Heretofore, the light irradiation device 180 includes, as a light emitting device, a self light emitting contrast device array having a plurality of light emitting units that emit light in a direction perpendicular to the semiconductor substrate, such as a radiation emitting diode, VCSEL or VECSEL. Explained the case. However, the present invention is not limited to this, and a light emitting device can be configured using a self-luminous contrast device array having a plurality of light emitting units emitting light parallel to the semiconductor substrate as a light emitting device. For example, a plurality of photonic crystal lasers (hereinafter, appropriately referred to as photonic lasers) having a double hetero structure which is fabricated on a semiconductor substrate and arranged in an XY two-dimensional array as a light emitting unit, and a plurality of photonics A self light emitting contrast device array (light emitting device) having a plurality of CMOS drive circuits for individually driving lasers can be used. A photonic laser is an edge-emitting laser that emits a light beam in a direction parallel to the plane of the substrate inside a semiconductor substrate, so for use in a self-luminous contrast device array, the light beam is extracted out of plane There is a need. As the extraction method, a method of forming a plane diffraction grating type coupler at the end of the optical waveguide, a method of forming an oblique mirror at the end of the end of the optical waveguide and reflecting light in the direction perpendicular to the surface of the substrate And, for example, a method of three-dimensionally curving the silicon wire optical waveguide itself upward is known.
 なお、上記第1の実施形態では、蒸着材料であるアルカリ金属発生剤300の加熱開始からの経過時間に基づいて、加熱の終了のタイミングを決定していたが、これに限らず、次の変形例のように、蒸着の進行状態をモニタしつつ、加熱終了のタイミングを決定しても良い。 In the first embodiment, the timing of the end of heating is determined based on the elapsed time from the start of heating of the alkali metal generating agent 300 which is the vapor deposition material, but the present invention is not limited to this. As in the example, the heating completion timing may be determined while monitoring the progress of deposition.
 なお、上記第1、第2の実施形態(以下、上記各実施形態と称する)では、搬送システム42の少なくとも一部が設けられる第2の真空室72が、蒸着室を兼ねている場合について例示したが、これに限らず、第2の真空室72とは別に蒸着室を設けても良い。この場合、搬送システム42によって、第2の真空室72を介して、蒸着室と第1の真空室34との間で、又は蒸着室と第2の真空室72内のキャリアとの間、キャリアと第1の真空室34との間及び第1の真空室34とキャリアとの間で、新たな光電素子ユニット50又は使用済みの光電素子ユニット50の搬送が行われることとなる。なお、搬送システム42が、第1の真空室34と第2の真空室72(内部のキャリア)との間で光電素子ユニット50の搬送を行う第1搬送装置と、キャリアと第2の真空室72(又は蒸着室)内のユニット保持部材188との間で半完成ユニット50Aを搬送する第2搬送装置と、を備えていても良い。この場合、第2搬送装置は、キャリアから半完成ユニット50Aを搬出可能である。第2の真空室72の代わりに、あるいは第2の真空室72とともに、蒸着室内に半完成ユニット50Aを複数(又は1つ)収納可能なキャリアを設置しても良い。
《変形例》
 図21には、本変形例に係る蒸着室172を区画する筐体145及びその内部の構成が示されている。本変形例では、筐体145の天井部分に所定深さの凹部145aが形成され、この凹部145aの内部底面には、例えば平面視円形又は正方形の開口145bが形成されている。また、凹部145aの内部には、光源部146Aと真空隔壁146Bとを上下方向に並べて保持する保持部材147が実質的に隙間なく挿入されている。保持部材147は、光源部146A及び真空隔壁146Bの側面の全体を取り囲んでいる。真空隔壁146Bは、石英ガラスなどの光透過部材から成る。
In the first and second embodiments (hereinafter referred to as the above embodiments), the second vacuum chamber 72 in which at least a part of the transfer system 42 is provided doubles as an evaporation chamber. However, the present invention is not limited to this, and a deposition chamber may be provided separately from the second vacuum chamber 72. In this case, the carrier system 42, via the second vacuum chamber 72, between the deposition chamber and the first vacuum chamber 34, or between the deposition chamber and the carrier in the second vacuum chamber 72, the carrier Between the first vacuum chamber 34 and the first vacuum chamber 34 and the carrier, transportation of a new photoelectric device unit 50 or a used photoelectric device unit 50 is performed. In addition, the 1st conveying apparatus which the conveyance system 42 conveys the photoelectric device unit 50 between the 1st vacuum chamber 34 and the 2nd vacuum chamber 72 (carrier inside), a carrier, and the 2nd vacuum chamber And a second transfer device for transferring the semi-finished unit 50A to and from the unit holding member 188 in the chamber 72 (or the deposition chamber). In this case, the second transfer device can carry the semi-finished unit 50A out of the carrier. Instead of the second vacuum chamber 72 or together with the second vacuum chamber 72, a carrier capable of storing a plurality of (or one) semifinished units 50A in the deposition chamber may be installed.
<< Modification >>
FIG. 21 shows a housing 145 for partitioning the deposition chamber 172 according to the present modification and the internal configuration thereof. In the present modification, a recess 145a of a predetermined depth is formed in the ceiling portion of the housing 145, and an opening 145b having, for example, a circular or square plan view is formed on the inner bottom surface of the recess 145a. Further, a holding member 147 that holds the light source unit 146A and the vacuum dividing wall 146B side by side in the vertical direction is inserted into the recess 145a substantially without a gap. The holding member 147 surrounds the whole of the side surfaces of the light source part 146A and the vacuum bulkhead 146B. The vacuum bulkhead 146B is made of a light transmitting member such as quartz glass.
 筐体145の天井部には、前述のユニット保持部材188が設けられ、ユニット保持部材188に半完成ユニット50Aが保持されている。 The above-mentioned unit holding member 188 is provided on the ceiling portion of the housing 145, and the unit holding member 188 holds the semi-finished unit 50A.
 光源部146Aは、例えばレーザダイオードを光源として有している。このため、光源からレーザビームLBが発せられると、そのレーザビームLBは、真空隔壁146Bを透過後開口145bを通過して、半完成ユニット50Aのベース部材53(基材56及びその下面の遮光膜58)に照射される。このとき、図21に示されるように、少なくとも遮光膜58に形成されたアパーチャ58aの内部に光電層が形成されていると、その光電層の光電変換によって電子が発生し、その電子が引き出し電極55で加速されて電子ビームEBとなって、下方に進行する。 The light source unit 146A has, for example, a laser diode as a light source. Therefore, when the laser beam LB is emitted from the light source, the laser beam LB passes through the vacuum partition wall 146B and then passes through the opening 145b to pass through the opening 53b of the base member 53 of the semifinished unit 50A 58). At this time, as shown in FIG. 21, when the photoelectric layer is formed at least inside the aperture 58a formed in the light shielding film 58, electrons are generated by photoelectric conversion of the photoelectric layer, and the electrons are extracted as an extraction electrode It is accelerated at 55 to form an electron beam EB, which travels downward.
 本変形では、開口145bの真下の筐体145の底壁部分に、電流測定用のファラデーカップ143が埋め込まれている。そのファラデーカップ143を取り囲む状態で、前述の加熱装置160の一部を兼ねる可動壁162が設けられている。また、底壁上面の可動壁162の内側の所定領域には、蒸着材料であるアルカリ金属発生剤300が置かれている。ここでは、粉状のアルカリ金属発生剤300が、上から見てリング状となる状態で置かれている。 In this modification, a Faraday cup 143 for current measurement is embedded in the bottom wall portion of the housing 145 directly below the opening 145 b. In a state of surrounding the Faraday cup 143, a movable wall 162 which doubles as a part of the heating device 160 described above is provided. Further, an alkali metal generating agent 300 which is a vapor deposition material is placed in a predetermined region inside the movable wall 162 on the top surface of the bottom wall. Here, a powdery alkali metal generator 300 is placed in a ring shape as viewed from above.
 本変形例に係るファラデーカップ143は、一例として、図22に示されるように、上面に開口151aが形成された内側のカップ状の捕集電極151と、捕集電極151の周囲を覆う、上面に孔153aが開けられた外側の二次電子抑制電極153と、を備え、捕集電極151と二次電子抑制電極153との間に絶縁物155が充填されている。二次電子抑制電極153は、二次電子がまわりに逃げないようにするためのものである。二次電子抑制電極153は、グランドに接続され、捕集電極151には、電流計157が接続されている。 As an example, as shown in FIG. 22, the Faraday cup 143 according to the present modification covers the inner cup-shaped collecting electrode 151 having the opening 151 a formed on the upper surface, and covers the periphery of the collecting electrode 151. And an outer secondary electron suppression electrode 153 in which a hole 153a is opened, and an insulator 155 is filled between the collection electrode 151 and the secondary electron suppression electrode 153. The secondary electron suppression electrode 153 is for preventing secondary electrons from escaping. The secondary electron suppression electrode 153 is connected to the ground, and an ammeter 157 is connected to the collection electrode 151.
 ファラデーカップ143では、二次電子抑制電極153の孔153a及び捕集電極151の開口151aを介して電子(電子ビーム)が捕集電極の内面に当たると、捕集電極151には電荷がたまり、捕集電極151に接続された電流計157には入射した電子の数に応じた電流が流れる。電流は単位時間あたりに回路内を移動する電子の数を表しているので、捕集電極から流れ込む電流を電流計157で測る事で、捕集電極151に入射した電子の単位時間あたりの数Nを求めることができる。連続的な1価イオンのイオンビームの場合、以下の式でNは表される。
N=I/e
ここで,Iは観測された電流値(アンペア)、eは電気素量(約1.60×10-19C)である。測定された電流値が1ナノアンペア(10-9A)であった場合,1秒あたり約60億個のイオンがファラデーカップ143に入射したことになる。ファラデーカップは入射する荷電粒子の数と電流値の関係が直接的である(上式で定まる)ため,精度の良い計測が可能である。
In the Faraday cup 143, when an electron (electron beam) hits the inner surface of the collection electrode through the hole 153a of the secondary electron suppression electrode 153 and the opening 151a of the collection electrode 151, charge is collected in the collection electrode 151 and collected. A current corresponding to the number of incident electrons flows through an ammeter 157 connected to the collector electrode 151. Since the current represents the number of electrons moving in the circuit per unit time, the number of electrons incident on the collection electrode 151 per unit time can be determined by measuring the current flowing from the collection electrode with the ammeter 157. You can ask for In the case of a continuous ion beam of monovalent ions, N is represented by the following equation.
N = I / e
Here, I is the observed current value (amps) and e is the elementary charge (about 1.60 × 10 −19 C). If the measured current value is 1 nanoampere (10 -9 A), about 6 billion ions would be incident on the Faraday cup 143 per second. Because the relationship between the number of charged particles and the current value is direct (as determined by the above equation), the Faraday cup enables accurate measurement.
 そこで、本変形例では、上記第1の実施形態と同様に、アルカリ金属発生剤300を加熱してアルカリ金属の蒸気を発生させて半完成ユニット50Aに対する光電層の蒸着を行う際に、主制御装置110が電流計157の計測結果をモニタし続け、その計測結果が目標とする電流値に一致した段階で、加熱(蒸着)を停止することとしている。これにより、所望の光電変換効率を有する光電層60を、半完成ユニット50Aのベース部材53の一面に形成することができる。 Therefore, in the present modification, as in the first embodiment, when the alkali metal generating agent 300 is heated to generate alkali metal vapor and vapor deposition of the photoelectric layer on the semi-finished unit 50A, main control is performed. The device 110 continues to monitor the measurement result of the ammeter 157, and the heating (deposition) is stopped when the measurement result matches the target current value. Thereby, the photoelectric layer 60 having desired photoelectric conversion efficiency can be formed on one surface of the base member 53 of the semi-finished unit 50A.
 なお、筐体145は、前述の筐体45に代えて設けても良いし、筐体45とは別に設けても良い。前者では、前述と同様、筐体145に搬送システム42(又は搬送システム42と同様の搬送システム)が設けられ、後者では、搬送システム42(又は搬送システム42と同様の搬送システム)が、蒸着室172内部のユニット保持部材188に対して光電素子ユニット50又は半完成ユニット50Aをロードし、ユニット保持部材188から光電素子ユニット50をアンロード可能に構成される。筐体145を、筐体45とは別に設ける場合、筐体45と筐体145とをゲートバルブを介して開閉可能に構成しても良い。
 また、蒸着を行う加熱装置160と、ファラデーカップ143とを別々の場所(例えば別々の室)に設けても良い。この場合も、ファラデーカップ143の上方に光源部などが配置されていれば良い。
The housing 145 may be provided instead of the housing 45 described above, or may be provided separately from the housing 45. In the former, the transport system 42 (or a transport system similar to the transport system 42) is provided in the case 145 as described above, and in the latter, the transport system 42 (or a transport system similar to the transport system 42) The photoelectric element unit 50 or the semifinished unit 50A is loaded to the unit holding member 188 inside 172, and the photoelectric element unit 50 can be unloaded from the unit holding member 188. When the housing 145 is provided separately from the housing 45, the housing 45 and the housing 145 may be configured to be able to be opened and closed via a gate valve.
In addition, the heating device 160 for vapor deposition and the Faraday cup 143 may be provided in different places (for example, separate chambers). Also in this case, a light source unit or the like may be disposed above the Faraday cup 143.
 なお、上記各実施形態では、アパーチャ58aを介して光電層60に光を照射しているが、アパーチャを用いなくても良い。一例として、上記第1の実施形態について説明すると、例えば図23(A)に示されるように、パターンジェネレータで形成した光パターン像を光電素子上に投影し、さらに光電素子で電子像に変換してウエハ面上に縮小して結像するようにしても良い。この場合、光電素子として、基材の光射出面に光電層が蒸着された光電素子が用いられ、該光電素子と引き出し電極55とによって、光電素子ユニットが構成される。 In each of the above embodiments, light is emitted to the photoelectric layer 60 through the aperture 58a, but the aperture may not be used. As an example, the first embodiment will be described. For example, as shown in FIG. 23A, a light pattern image formed by a pattern generator is projected on a photoelectric element and further converted into an electronic image by the photoelectric element. Alternatively, the image may be reduced and formed on the wafer surface. In this case, a photoelectric element in which a photoelectric layer is vapor-deposited on the light emission surface of the base is used as the photoelectric element, and the photoelectric element and the lead-out electrode 55 constitute a photoelectric element unit.
 上記第1の実施形態では、図23(B)に示されるように、複数のアパーチャを介して光電素子(光電層)に光を照射している。このようにアパーチャを用いることで、パターンジェネレータと光電素子との間の投影系(光学系)の収差などの影響をうけずに、所望の断面形状を有する光ビームを光電層に入射させることできる。この場合、アパーチャと光電層とは、前述した実施形態のように一体的に形成されていても良いし、所定のクリアランス(隙間、ギャップ)を介して対向配置されていても良い。後者では、多数のアパーチャが形成された遮光膜を有するアパーチャ部材と、基材の光射出面に光電層が蒸着された光電素子とが用いられ、該光電素子と引き出し電極55とによって、光電素子ユニットが構成される。 In the first embodiment, as shown in FIG. 23B, light is emitted to the photoelectric element (photoelectric layer) through the plurality of apertures. By using the aperture in this manner, a light beam having a desired cross-sectional shape can be made incident on the photoelectric layer without being affected by the aberration of the projection system (optical system) between the pattern generator and the photoelectric element. . In this case, the aperture and the photoelectric layer may be integrally formed as in the embodiment described above, or may be disposed to face each other via a predetermined clearance (a gap, a gap). In the latter, an aperture member having a light shielding film in which a large number of apertures are formed, and a photoelectric element in which a photoelectric layer is vapor-deposited on the light emission surface of the substrate are used. A unit is configured.
 上記のアパーチャ部材と光電素子とを用いる場合、アパーチャ部材のみをXY平面内で移動する駆動機構、光電素子(光電素子ユニット)のみをXY平面内で移動する駆動機構、アパーチャ部材及び光電素子(光電素子ユニット)を一体でXY平面内で移動する駆動機構のいずれかを設けても良い。前二者の場合、光電層60の長寿命化を図ることができる。 When using the above-mentioned aperture member and photoelectric element, the drive mechanism which moves only the aperture member in the XY plane, the drive mechanism which moves only the photoelectric element (photoelectric element unit) in the XY plane, the aperture member and the photoelectric element One of the drive mechanisms may be provided to move the element unit integrally in the XY plane. In the case of the former two, the lifetime of the photoelectric layer 60 can be extended.
 また、上述のアパーチャ部材の代わりに、透過型液晶素子などの空間光変調器を使って複数のアパーチャを形成しても良い。 Also, instead of the above-mentioned aperture members, spatial light modulators such as transmissive liquid crystal elements may be used to form a plurality of apertures.
 なお、上記第2の実施形態では、パターンジェネレータの代わりに、自発光型コントラストデバイスアレイ(発光デバイス)が用いられるが、この場合も、アパーチャ58を介して光電層60に光を照射しても良いし、アパーチャを用いることなく、発光デバイスから光電素子に光ビームを照射しても良い。 In the second embodiment, a self-luminous contrast device array (light emitting device) is used instead of the pattern generator, but also in this case, even if light is irradiated to the photoelectric layer 60 through the aperture 58 Alternatively, the light emitting device may emit a light beam from the light emitting device without using an aperture.
 なお、上記各実施形態において、光電素子54のようなアパーチャが光電層と一体的に設けられたいわばアパーチャ一体型の光電素子を有する光電素子ユニット用いる場合、その光電素子ユニットを、ホルダ88と一体でXY平面内で移動可能なアクチュエータを設けることとしても良い。 In the above embodiments, in the case of using a photoelectric element unit having a so-called aperture-integrated photoelectric element in which an aperture such as the photoelectric element 54 is integrally provided with the photoelectric layer, the photoelectric element unit is integrated with the holder 88 It is also possible to provide an actuator movable in the XY plane.
 なお、引き出し電極55とともに光電素子ユニットを構成するのに用いることができる、アパーチャ一体型光電素子としては、図24(A)に示されるタイプに限らず、例えば図24(B)に示されるように、図24(A)の光電素子54において、アパーチャ58a内の空間が光透過膜144で埋められたタイプの光電素子54aを用いることもできる。光電素子54aでは、基材56と、遮光膜58と、光透過膜144とを含んで、ベース部材53aが構成される。なお、光電素子54aにおいて、光透過膜144の代わりに、基材56の一部がアパーチャ58a内の空間を埋めるようにすることもできる。いずれの場合にも、遮光膜58と光電層60との間に光が通過可能な別の膜が形成されていても良い。 The aperture integrated photoelectric element that can be used to form the photoelectric element unit together with the lead-out electrode 55 is not limited to the type shown in FIG. 24A, for example, as shown in FIG. 24B. Alternatively, in the photoelectric device 54 of FIG. 24A, a photoelectric device 54a of a type in which the space in the aperture 58a is filled with the light transmission film 144 can be used. In the photoelectric element 54a, the base member 53a is configured to include the base material 56, the light shielding film 58, and the light transmitting film 144. In the photoelectric element 54a, instead of the light transmitting film 144, a part of the base 56 may be filled in the space in the aperture 58a. In any case, another film through which light can pass may be formed between the light shielding film 58 and the photoelectric layer 60.
 この他、図24(C)に示されるように、基材56の上面(光入射面)にクロムの蒸着によりアパーチャ58aを有する遮光膜58を形成し、基材56の下面(光射出面)に光電層60を形成したタイプの光電素子54b、あるいは図24(D)に示されるように、図24(C)の光電素子54bにおいて、アパーチャ58a内の空間が光透過膜144で埋められたタイプの光電素子54cを用いることもできる。光電素子54bは、ベース部材53を、光電素子54とは上下反転して用い、ベース部材53の基材56の遮光膜58とは反対側の面に光電層60が形成されている。光電素子54cは、ベース部材53aを、光電素子54aとは上下反転して用い、ベース部材53aの基材56の遮光膜58とは反対側の面に光電層60が形成されている。 Besides, as shown in FIG. 24C, a light shielding film 58 having an aperture 58a is formed on the upper surface (light incident surface) of the substrate 56 by vapor deposition of chromium, and the lower surface (light emitting surface) of the substrate 56 In the photoelectric device 54b of the type in which the photoelectric layer 60 is formed, or as shown in FIG. 24D, the space in the aperture 58a is filled with the light transmission film 144 in the photoelectric device 54b of FIG. It is also possible to use a type of photoelectric device 54c. The photoelectric device 54 b uses the base member 53 upside down from the photoelectric device 54, and the photoelectric layer 60 is formed on the surface of the base member 56 opposite to the light shielding film 58 of the base member 53. The photoelectric device 54c uses the base member 53a upside down from the photoelectric device 54a, and the photoelectric layer 60 is formed on the surface of the base 56 of the base member 53a opposite to the light shielding film 58.
 これまでに説明したアパーチャ一体型光電素子54、54a、54b、54cのいずれにおいても、基材56を石英ガラスなどの光透過部材のみでなく、光透過部材と光透過膜(単層、又は多層)の積層体によって構成しても良い。 In any of the aperture-integrated photoelectric elements 54, 54a, 54b, 54c described above, the base 56 is not only a light transmitting member such as quartz glass but also a light transmitting member and a light transmitting film (single layer or multilayer ) May be configured.
 なお、上記各実施形態では、第2の真空室72内に少なくとも一部が収納された搬送システム42が、第1の真空室34に設けられたホルダ88と第2の真空室72との間で搬送対象物として、光電素子ユニットを搬送する場合について説明したが、搬送システム42の搬送対象物は、これに限られるものではない。例えば、搬送システム42は、光電素子ユニットの代わりに、ホルダ88と第2の真空室72との間で光電素子54を搬送することとしても良い。この場合には、引き出し電極55を例えばホルダ88から吊り下げ支持するなどして、ホルダ88の下方に配置する必要がある。光電層60が蒸着により形成されて最終的に光電素子54となる部材は、光電層60が形成される前の段階では、光透過部材から成る基材56そのものか、一面に遮光膜58が形成された基材56(すなわち、前述したベース部材53)であるが、これらの基材56も、搬送システム42は、搬送対象物として、第1の真空室34と第2の真空室72との間で搬送可能である。 In each of the above embodiments, the transport system 42 at least a part of which is accommodated in the second vacuum chamber 72 is between the holder 88 provided in the first vacuum chamber 34 and the second vacuum chamber 72. Although the case where the photoelectric device unit is transported as the transport object has been described, the transport object of the transport system 42 is not limited to this. For example, the transfer system 42 may transfer the photoelectric device 54 between the holder 88 and the second vacuum chamber 72 instead of the photoelectric device unit. In this case, it is necessary to dispose the extraction electrode 55 below the holder 88, for example, by suspending and supporting the extraction electrode 55 from the holder 88. The member that is to be the photoelectric element 54 after the photoelectric layer 60 is formed by vapor deposition is the substrate 56 itself made of a light transmitting member or the light shielding film 58 is formed on one surface before the photoelectric layer 60 is formed. The base materials 56 (i.e., the base members 53 described above) are also used. However, as for these base materials 56, the transfer system 42 is configured to transfer the first vacuum chamber 34 and the second vacuum chamber 72 as transfer objects. It can be transported between.
 また、上記各実施形態では、第2の真空室72内(又は蒸着室内)で半完成ユニット50Aに対する光電層60の形成(蒸着)が行われるものとしたが、第1真空室34内で、ホルダ88に保持された半完成ユニット50Aに対する光電層60の形成(蒸着)を行うようにすることもできる。この場合、ロボットアームのハンド部42dにヒータ・コイル(高周波加熱用)を一体的に設けることとしても良いし、ハンド部42dとは別に加熱装置を設けることとしても良い。後者の場合、搬送システム42が、半完成ユニット50A及び蒸着源(蒸着材料)に加えて、加熱装置を、搬送対象物として、第1の真空室34と第2の真空室72との間で搬送可能に構成することも可能である。この場合において、ファラデーカップその他の蒸着モニタを、搬送システム42が、搬送対象物として、第1の真空室34と第2の真空室72との間で搬送可能に構成することも可能である。この他、搬送システム42は、少なくとも水分を吸着するゲッター剤(水分ゲッター剤)を搬送対象物として、第1の真空室34と第2の真空室72との間で搬送可能に構成しても良い。 In each of the above-described embodiments, the formation (deposition) of the photoelectric layer 60 for the semi-completed unit 50A is performed in the second vacuum chamber 72 (or the deposition chamber). It is also possible to perform formation (deposition) of the photoelectric layer 60 for the semifinished unit 50A held by the holder 88. In this case, the heater / coil (for high frequency heating) may be integrally provided on the hand unit 42d of the robot arm, or a heating device may be provided separately from the hand unit 42d. In the latter case, in addition to the semi-completed unit 50A and the deposition source (deposition material), the transport system 42 sets the heating device as the transport object between the first vacuum chamber 34 and the second vacuum chamber 72. It is also possible to configure to be transportable. In this case, it is also possible to configure the Faraday cup or other deposition monitor so that the transport system 42 can transport the first vacuum chamber 34 and the second vacuum chamber 72 as a transport target. In addition, even if the transfer system 42 is configured to be able to transfer between the first vacuum chamber 34 and the second vacuum chamber 72 with the getter agent (water getter agent) that adsorbs at least water as the object to be transferred. good.
 なお、上記各実施形態において、搬送対象物は、ホルダ88に対する光電素子ユニット50(又は光電素子54)の位置決めに用いるセンサを含むこととすることができる。かかるセンサとしては、光電素子ユニットがホルダ88上に所定の位置関係で保持された際にホルダ88の所定位置に形成された貫通孔を通過する光ビームを検出する検出器を含むセンサを用いることができる。例えば、図25(A)に示されるように、ホルダ88の複数箇所、例えば3箇所に所定深さの凹部88aを形成し、各凹部88aの内部底面に貫通孔88bを形成する。そして、光電素子ユニット50の基材56の下面のそれぞれの凹部88aに対向する位置に開口パターンAPをクロム等で形成する。 In each of the above embodiments, the object to be transported can include a sensor used for positioning the photoelectric device unit 50 (or the photoelectric device 54) with respect to the holder 88. As such a sensor, a sensor including a detector for detecting a light beam passing through a through hole formed at a predetermined position of the holder 88 when the photoelectric element unit is held in a predetermined positional relationship on the holder 88 is used. Can. For example, as shown in FIG. 25A, recesses 88a having a predetermined depth are formed at a plurality of locations, for example, three locations, of the holder 88, and the through holes 88b are formed on the inner bottom surface of each recess 88a. Then, an opening pattern AP is formed of chromium or the like at a position facing the respective concave portions 88 a of the lower surface of the base material 56 of the photoelectric device unit 50.
 この場合、光電素子ユニット50がホルダ88上に所定(所期)の位置関係で保持されると、図25(B)に示されるように、各開口パターンAPが対応する凹部88aにそれぞれ係合し、各開口パターンAPの中心と対応する貫通孔88bとがほぼ一致し、矢印で示されるような複数(ここでは3つ)の光ビームの通路が同時に形成される一方、光電素子ユニット50がホルダ88上に所定(所期)の位置関係からずれた位置関係で保持された場合、3つの光ビームの通路が同時形成されることはない。したがって、図25(B)に示されるように、ロボットアームのハンド部42dで、光電素子ユニット50と3つの検出器89とを、所定の位置関係で保持した状態で、3つの検出器89の出力をモニタしつつハンド部42dをXY平面内で微動し、3つの検出器89の全てが同時に光を検出した位置で、光電素子ユニット50をホルダ88に保持させることとすれば良い。なお、上述の構成の位置決めシステムを採用する場合、複数の光ビームの光源をホルダ88の上方に設ける必要があることは勿論である。例えば、図20に示されるように、真空隔壁81を透明部材で形成し、その真空隔壁81の上に複数の光源90を配置しても良い。 In this case, when the photoelectric device unit 50 is held on the holder 88 in a predetermined (predetermined) positional relationship, as shown in FIG. 25 (B), each opening pattern AP engages with the corresponding recess 88a. While the paths of a plurality of (here, three) light beams as shown by the arrows are formed at the same time, while the centers of the aperture patterns AP substantially coincide with the corresponding through holes 88b. When held on the holder 88 in a positional relationship out of the predetermined (predicted) positional relationship, paths of three light beams are not simultaneously formed. Therefore, as shown in FIG. 25B, with the hand unit 42d of the robot arm, while holding the photoelectric device unit 50 and the three detectors 89 in a predetermined positional relationship, the three detectors 89 are While monitoring the output, the hand portion 42d may be finely moved in the XY plane, and the photoelectric element unit 50 may be held by the holder 88 at a position where all three detectors 89 simultaneously detect light. When the positioning system of the above-described configuration is adopted, it is of course necessary to provide light sources of a plurality of light beams above the holder 88. For example, as shown in FIG. 20, the vacuum dividing wall 81 may be formed of a transparent member, and a plurality of light sources 90 may be disposed on the vacuum dividing wall 81.
 なお、光電素子ユニット50のロード時に、ロボットアームのハンド部42dで、複数の検出器89と光電素子ユニット50とを所定の位置関係で保持することとしても良いが、これに限らず、光電素子ユニット50のホルダ88へのロード後に、光電素子ユニット50が所望の位置に位置決めされていることを確認する目的で、少なくとも1つの光検出器89を搬送システム42で搬送しても良い。この場合には、光電素子ユニット50のホルダ88へのロード時に正確な位置決めを実現するため、位置決めピン等をホルダ88に設けても良い。 Although the plurality of detectors 89 and the photoelectric device unit 50 may be held in a predetermined positional relationship by the hand unit 42d of the robot arm when the photoelectric device unit 50 is loaded, the present invention is not limited to this. After loading the unit 50 into the holder 88, at least one photodetector 89 may be transported by the transport system 42 in order to verify that the optoelectronic device unit 50 is positioned at the desired position. In this case, a positioning pin or the like may be provided on the holder 88 in order to realize accurate positioning when the photoelectric device unit 50 is loaded on the holder 88.
 なお、図25(A)及び図25(B)に示される複数の開口パターンAPそれぞれを光電層で被覆することとしても良い。かかる場合、光電素子ユニット50がホルダ88上に所定(所期)の位置関係で保持されると、それぞれの開口パターンAPを被覆する光電層による光電変換によって発生した電子が貫通孔88bを介して下向きに射出されるので、この電子を検出するための検出器(例えば、ファラデーカップ)を、前述の検出器89の代わりに、光電素子ユニット50のロード時、又はロード後に位置決め状態の確認のため、搬送システム42で搬送しても良い。 Each of the plurality of opening patterns AP shown in FIGS. 25A and 25B may be covered with a photoelectric layer. In such a case, when the photoelectric device unit 50 is held on the holder 88 in a predetermined (predetermined) positional relationship, electrons generated by photoelectric conversion by the photoelectric layer covering the respective opening patterns AP are transmitted through the through holes 88 b. Since the light is emitted downward, a detector (e.g., a Faraday cup) for detecting the electrons is used to confirm the positioning state at the time of loading or after loading of the photoelectric element unit 50 instead of the above-described detector 89. , And may be transported by the transport system 42.
 なお、上述した、ホルダ88に対する光電素子ユニット50の位置決めに用いるセンサは、光電素子54の基材56に上述の開口パターンAP(又は光電層で被覆した開口パターンAP)を形成することで、ホルダ88に対する光電素子54の位置決めにも用いることができる。 The above-described sensor used for positioning the photoelectric device unit 50 with respect to the holder 88 is a holder by forming the above-mentioned opening pattern AP (or the opening pattern AP covered with the photoelectric layer) on the base 56 of the photoelectric device 54. It can also be used to position the photoelectric element 54 relative to 88.
 また、上記各実施形態では、露光装置100、1000が備える光学系が、複数のマルチビーム光学システムを備えるマルチカラムタイプである場合について説明したが、これに限らず、光学系は、シングルカラムタイプのマルチビーム光学系であっても良い。 In each of the above embodiments, the optical system included in the exposure apparatuses 100 and 1000 has been described as a multi-column type including a plurality of multi-beam optical systems. However, the present invention is not limited thereto. It may be a multi-beam optical system.
 また、上記各実施形態では、ウエハWが単独でウエハステージWST上に搬送され、そのウエハステージWSTを走査方向に移動しつつ、マルチビーム光学システムの電子ビーム光学系70からウエハWに電子ビームを照射して露光を行う露光装置について説明したが、これに限らず、ウエハWがシャトルと呼ばれるウエハと一体で搬送可能なテーブル(ホルダ)と一体でステージ上で交換されるタイプの露光装置にも、上記各実施形態(ウエハステージWSTを除く)は適用が可能である。なお、シングルビームをターゲットに照射するシングルカラムタイプの装置に適用可能である。 In each of the above embodiments, the wafer W alone is transported onto the wafer stage WST, and the electron beam is transmitted from the electron beam optical system 70 of the multibeam optical system to the wafer W while moving the wafer stage WST in the scanning direction. Although the exposure apparatus that performs exposure by performing irradiation has been described, the present invention is not limited to this, and a type of exposure apparatus in which the wafer W is integrated with a table (holder) that can be transported integrally with the wafer called shuttle is also replaced on the stage. The above embodiments (except for the wafer stage WST) can be applied. In addition, it is applicable to the apparatus of the single column type which irradiates a single beam to a target.
 また、上記各実施形態において、電子ビーム光学系70から照射される電子ビームが所望の位置に照射されているかを確認するために、基準マークを使っても良い。基準マークに照射されるように電子ビームを照射し、その照射によって反射電子を検出することによって、基準マークと電子ビームの照射位置との位置関係を検出することで、電子ビームが所望の位置に照射されたか否かを確認するがことできる。基準マークは、ウエハステージWSTに保持された基準ウエハに設けられていても良いし、ウエハステージWSTが有していても良い。なお、電子ビーム光学系70から照射される電子ビームが所望の位置に照射されているかを確認するために、ウエハを露光しても良い。 In each of the above embodiments, a reference mark may be used to confirm that the electron beam emitted from the electron beam optical system 70 is irradiated at a desired position. The electron beam is irradiated so that the reference mark is irradiated, and the reflected electron is detected by the irradiation to detect the positional relationship between the reference mark and the irradiation position of the electron beam, whereby the electron beam is at the desired position It can be checked whether or not it has been irradiated. The reference mark may be provided on the reference wafer held by wafer stage WST, or may be provided on wafer stage WST. The wafer may be exposed to confirm that the electron beam emitted from the electron beam optical system 70 is irradiated at a desired position.
 また、上記各実施形態では、ウエハステージWSTが、Xステージに対して6自由度方向に移動可能な場合について説明したが、これに限らず、ウエハステージWSTはXY平面内でのみ移動可能であっても良い。この場合、ウエハステージWSTの位置情報を計測する位置計測系28も、XY平面内の3自由度方向に関する位置情報を計測可能であっても良い。 In each of the above embodiments, the case where wafer stage WST can be moved in the direction of six degrees of freedom with respect to X stage has been described, but not limited to this, wafer stage WST can be moved only in the XY plane It is good. In this case, position measurement system 28 for measuring the position information of wafer stage WST may also be capable of measuring the position information in the direction of three degrees of freedom in the XY plane.
 上記各実施形態では、光学システム18、118の全体が、ボディフレームから吊り下げ支持機構によって吊り下げ支持される場合について説明したが、これに限らず、光学システム18、118の少なくとも一部が、床置タイプの不図示の支持部材を介して床面Fの上方に支持されても良い。 In the above embodiments, the entire optical system 18, 118 is supported by being suspended from the body frame by the suspension support mechanism. However, the present invention is not limited thereto. At least a part of the optical system 18, 118 is It may be supported above the floor F via a floor-standing type support member (not shown).
 また、コンプリメンタリ・リソグラフィを構成する露光技術は、ArF光源を用いた液浸露光技術と、荷電粒子ビーム露光技術との組み合わせに限られず、例えば、ラインアンドスペースパターンをArF光源やKrF等のその他の光源を用いたドライ露光技術で形成しても良い。 Further, the exposure technology constituting the complementary lithography is not limited to the combination of the liquid immersion exposure technology using an ArF light source and the charged particle beam exposure technology, and, for example, the line and space pattern can be other ArF light source, KrF, etc. It may be formed by a dry exposure technique using a light source.
 なお、上記各実施形態では、ターゲットが半導体素子製造用のウエハである場合について説明したが、上記各実施形態に係る露光装置100、1000は、ガラス基板上に微細なパターンを形成してマスクを製造する際にも好適に適用できる。 In each of the above embodiments, the case where the target is a wafer for manufacturing semiconductor devices has been described. However, the exposure apparatuses 100 and 1000 according to each of the above embodiments form a fine pattern on a glass substrate to form a mask. It can be suitably applied when manufacturing.
 半導体素子などの電子デバイス(マイクロデバイス)は、図26に示されるように、デバイスの機能・性能設計を行うステップ、シリコン材料からウエハを製作するステップ、リソグラフィ技術等によってウエハ上に実際の回路等を形成するウエハ処理ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。ウエハ処理ステップは、リソグラフィステップ(ウエハ上にレジスト(感応材)を塗布する工程、前述した実施形態に係る電子ビーム露光装置及びその露光方法によりウエハに対する露光(設計されたパターンデータに従ったパターンの描画)を行う工程、露光されたウエハを現像する工程を含む)、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップなどを含む。ウエハ処理ステップは、リソグラフィステップに先立って、前工程の処理(酸化ステップ、CVDステップ、電極形成ステップ、イオン打ち込みステップなどをさらに含んでいても良い。この場合、リソグラフィステップで、上記各実施形態の電子ビーム露光装置100、1000を用いて前述の露光方法を実行することで、ウエハ上にデバイスパターンが形成されるので、高集積度のマイクロデバイスを生産性良く(歩留まり良く)製造することができる。特に、リソグラフィステップ(露光を行う工程)で、前述したコンプリメンタリ・リソグラフィを行い、その際に上記各実施形態の電子ビーム露光装置100、1000を用いて前述の露光方法を実行することで、より高集積度の高いマイクロデバイスを製造することが可能になる。 As shown in FIG. 26, electronic devices (micro devices) such as semiconductor devices are subjected to functional device / functional performance design steps, wafer fabrication steps from silicon materials, and actual circuits on wafers by lithography techniques etc. Are manufactured through a wafer processing step of forming a semiconductor device, a device assembly step (including a dicing step, a bonding step, and a package step), an inspection step, and the like. The wafer processing step is a lithography step (a step of applying a resist (sensitive material) on the wafer, an electron beam exposure apparatus according to the embodiment described above, and exposure of the wafer by the exposure method thereof (a pattern according to designed pattern data) A step of drawing), a step of developing the exposed wafer), an etching step of etching away the exposed member of the portion other than the portion where the resist remains, a resist for removing the unnecessary resist after the etching is completed Include removal steps and the like. The wafer processing step may further include pre-process processing (oxidation step, CVD step, electrode formation step, ion implantation step, etc.) prior to the lithography step, in which case the lithography step corresponds to that of each of the above embodiments. By executing the above-described exposure method using the electron beam exposure apparatus 100, 1000, a device pattern is formed on the wafer, so that micro devices with high integration can be manufactured with high productivity (high yield). In particular, in the lithography step (step of performing exposure), the above-described complementary lithography is performed, and at that time, the above-described exposure method is performed using the electron beam exposure apparatus 100 or 1000 of each embodiment. It becomes possible to manufacture highly integrated microdevices.
 なお、上記各実施形態では、電子ビームを使用する露光装置について説明したが、露光装置に限らず、溶接、3次元造形など電子ビームを用いてターゲットに対する所定の加工及び所定の処理の少なくとも一方を行う装置、あるいは電子ビームを用いる検査装置などにも上記実施形態の電子ビーム装置は適用することができる。 In each of the above embodiments, an exposure apparatus using an electron beam has been described. However, the present invention is not limited to the exposure apparatus, and at least one of predetermined processing and predetermined processing on a target using an electron beam such as welding and three-dimensional modeling. The electron beam apparatus according to the above-described embodiment can be applied to an apparatus to be used or an inspection apparatus using an electron beam.
 なお、上記各実施形態では、光電層60がアルカリ光電変換膜によって形成される場合について説明したが、電子ビーム装置の種類、用途によっては、光電層として、アルカリ光電変換膜に限らず、その他の種類の光電変換膜を用いて光電素子を構成しても良い。 In each of the above embodiments, the case where the photoelectric layer 60 is formed of an alkaline photoelectric conversion film has been described. However, depending on the type of electron beam apparatus and application, the photoelectric layer is not limited to the alkaline photoelectric conversion film. The photoelectric device may be configured using a photoelectric conversion film of a type.
 また、上述の各実施形態では、部材、開口、穴などの形状を、円形、矩形などを用いて説明している場合があるが、これらの形状に限られないことは言うまでもない。 Moreover, in the above-mentioned each embodiment, although shapes, such as a member, an opening, and a hole, may be demonstrated using circular, a rectangle, etc., it is needless to say that it is not restricted to these shapes.
 なお、上記実施形態で引用した露光装置などに関する全ての公報、国際公開、米国特許出願公開明細書及び米国特許明細書などの開示を援用して本明細書の記載の一部とする。 The disclosures of all publications, international publications, U.S. patent application specifications, U.S. patent application specifications and the like relating to the exposure apparatus and the like cited in the above embodiments are incorporated herein by reference.
 34…第1室、39…バルブ、42…搬送システム、43…ゲートバルブ、50…光電素子ユニット、50A…半完成ユニット、53 ベース部材、54…光電素子、55…引き出し電極、56…基材、58…遮光膜、58a…アパーチャ、60…光電層、62A…第1配線、62B…第2配線、62C…第3配線、62D…第4配線、62E…第5配線、62F…第6配線、66A、66B、66C…電気接点、70…電子ビーム光学系、71a…通路、72…第2室、80…光照射装置、82…照明系、84…パターンジェネレータ、86…投影系、88…ホルダ、89…検出器、100…露光装置、122…引き出し電極、143…ファラデーカップ、160…加熱装置、172…蒸着室、184…発光デバイス、184a…発光部、184c…マイクロレンズアレイ、188…ユニット保持部材、EB…電子ビーム、W…ウエハ。
 
34: first chamber, 39: valve, 42: transfer system, 43: gate valve, 50: photoelectric element unit, 50A: semi-finished unit, 53 base member, 54: photoelectric element, 55: extraction electrode, 56: base material 58: light shielding film 58a: aperture 60: photoelectric layer 62A: first wiring 62B: second wiring 62C: third wiring 62D: fourth wiring 62E: fifth wiring 62F: sixth wiring , 66A, 66B, 66C: electrical contacts, 70: electron beam optical system, 71a: passage, 72: second chamber, 80: light irradiation device, 82: illumination system, 84: pattern generator, 86: projection system, 88: ... Holder 89 detector 100 exposure device 122 extraction electrode 143 Faraday cup 160 heating device 172 deposition chamber 184 light emitting device 184 a light emitting portion 1 84c micro lens array 188 unit holding member EB electron beam W wafer

Claims (59)

  1.  光の照射により電子を発生する光電変換層を有する光電素子を用いる電子ビーム装置であって、
     前記光電素子と該光電素子から発生される電子を加速する引き出し電極とを有する光電素子ユニットを保持可能なホルダが設けられ、内部を真空引き可能な第1室と、
     前記光電素子から発生する電子を、前記第1室を介して電子ビームとしてターゲットに照射する電子光学系と、
     前記第1室と連通可能で、内部を真空引き可能な第2室と、
     前記ホルダと前記第2室との間で前記光電素子ユニットを搬送可能な搬送系と、を備える電子ビーム装置。
    An electron beam apparatus using a photoelectric element having a photoelectric conversion layer that generates electrons by light irradiation, comprising:
    A holder capable of holding a photoelectric device unit having the photoelectric device and an extraction electrode for accelerating electrons generated from the photoelectric device is provided, and a first chamber capable of evacuating the inside thereof;
    An electron optical system which irradiates a target generated as an electron beam from the photoelectric element as an electron beam through the first chamber;
    A second chamber that can communicate with the first chamber and can evacuate the inside;
    An electron beam apparatus comprising: a transport system capable of transporting the photoelectric element unit between the holder and the second chamber;
  2.  前記第1室の内部には、前記引き出し電極によって加速された前記電子ビームをさらに加速する別の引き出し電極が設けられている請求項1に記載の電子ビーム装置。 The electron beam apparatus according to claim 1, wherein another extraction electrode for further accelerating the electron beam accelerated by the extraction electrode is provided inside the first chamber.
  3.  前記第1室と前記第2室とは、ゲートバルブを介して隣接して配置されている請求項1又は2に記載の電子ビーム装置。 The electron beam apparatus according to claim 1, wherein the first chamber and the second chamber are disposed adjacent to each other via a gate valve.
  4.  前記光電素子は、ベース部材を有し、
     前記光電変換層は、前記ベース部材の光射出側の面に蒸着により形成され、
     前記光電変換層の蒸着前の前記ベース部材と前記引き出し電極とが接続された前記光電素子ユニットの半完成ユニット及び前記光電変換層が蒸着された前記ベース部材と前記引き出し電極とが接続された前記光電素子ユニットのいずれも保持可能なユニット保持部材が設けられ、該ユニット保持部材に保持された前記半完成ユニットと前記光電素子ユニットの少なくとも一方に対して光電変換層の蒸着を行う蒸着室を備える請求項1~3のいずれか一項に記載の電子ビーム装置。
    The photoelectric device has a base member,
    The photoelectric conversion layer is formed on the light emitting side of the base member by vapor deposition.
    The semifinished unit of the photoelectric device unit in which the base member and the lead-out electrode are connected before the deposition of the photoelectric conversion layer, the base member on which the photoelectric conversion layer is deposited, and the lead-out electrode are connected A unit holding member capable of holding any of the photoelectric device units is provided, and a deposition chamber for depositing a photoelectric conversion layer on at least one of the semi-finished unit held by the unit holding members and the photoelectric device unit is provided. The electron beam apparatus according to any one of claims 1 to 3.
  5.  前記搬送系は、前記第1室と前記蒸着室との間で前記光電素子ユニットを搬送可能である請求項4に記載の電子ビーム装置。 5. The electron beam apparatus according to claim 4, wherein the transfer system can transfer the photoelectric element unit between the first chamber and the deposition chamber.
  6.  前記蒸着室には、前記光電変換層の材料を加熱して蒸発させる蒸発装置が配置される請求項4又は5に記載の電子ビーム装置。 The electron beam apparatus according to claim 4 or 5, wherein an evaporation device that heats and evaporates the material of the photoelectric conversion layer is disposed in the deposition chamber.
  7.  前記蒸着室では、前記搬送系により前記ホルダ上から前記ユニット保持部材に搬送された前記光電素子ユニットに対して光電変換層の蒸着が実施可能である請求項4又は5に記載の電子ビーム装置。 The electron beam apparatus according to claim 4, wherein, in the deposition chamber, deposition of a photoelectric conversion layer can be performed on the photoelectric element unit transported from the holder to the unit holding member by the transport system.
  8.  前記搬送系により前記ホルダ上から前記ユニット保持部材に搬送された、使用済みの前記光電素子ユニットの光電変換層のリペアが前記蒸着室で行われる請求項7に記載の電子ビーム装置。 The electron beam apparatus according to claim 7, wherein repair of the photoelectric conversion layer of the used photoelectric device unit, which has been transported from above the holder to the unit holding member by the transport system, is performed in the vapor deposition chamber.
  9.  前記蒸着室には、蒸着状態をモニタするための蒸着モニタが設けられている請求項4~8のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 4 to 8, wherein the deposition chamber is provided with a deposition monitor for monitoring a deposition state.
  10.  前記蒸着モニタは、ファラデーカップを含む請求項9に記載の電子ビーム装置。 The electron beam apparatus according to claim 9, wherein the deposition monitor includes a Faraday cup.
  11.  前記第2室が、前記蒸着室を含む請求項4~10のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 4 to 10, wherein the second chamber includes the deposition chamber.
  12.  前記第2室及び前記蒸着室の少なくとも一方の内部には、前記光電素子ユニットの半完成ユニットを少なくとも1つ収納可能なキャリアが配置され、
     前記搬送系は、前記キャリアから前記半完成ユニットを搬出可能である請求項4~11のいずれか一項に記載の電子ビーム装置。
    A carrier capable of storing at least one semi-finished unit of the photoelectric device unit is disposed in at least one of the second chamber and the deposition chamber,
    The electron beam apparatus according to any one of claims 4 to 11, wherein the transport system can carry the semi-finished unit out of the carrier.
  13.  前記ベース部材は、前記光電変換層に入射する光が通過する透明部材を含む請求項4~12のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 4 to 12, wherein the base member includes a transparent member through which light incident on the photoelectric conversion layer passes.
  14.  前記ベース部材は、複数のアパーチャを形成する遮光膜を有し、
     前記複数のアパーチャの少なくとも1つを通過した光が前記光電変換層に入射する請求項4~13のいずれか一項に記載の電子ビーム装置。
    The base member has a light shielding film forming a plurality of apertures,
    The electron beam apparatus according to any one of claims 4 to 13, wherein light having passed through at least one of the plurality of apertures is incident on the photoelectric conversion layer.
  15.  第1電子光学系としての前記電子光学系とは別の第2電子光学系を備え、
     前記第1室には、第1ホルダとしての前記ホルダとは別の、光電素子と該光電素子から発生される電子を加速する引き出し電極とを有する光電素子ユニットを保持可能な第2ホルダが配置され、
     前記第1電子光学系は、前記第1ホルダに保持された光電素子ユニットの光電素子から発生する電子を電子ビームとして前記ターゲットに照射し、
     前記第2電子光学系は、前記第2ホルダに保持された光電素子ユニットの光電素子から発生する電子を電子ビームとして前記ターゲットに照射する請求項1~14のいずれか一項に記載の電子ビーム装置。
    A second electron optical system other than the electron optical system as the first electron optical system,
    In the first chamber, a second holder capable of holding a photoelectric element unit having a photoelectric element and a lead-out electrode for accelerating electrons generated from the photoelectric element other than the holder as the first holder is disposed. And
    The first electron optical system irradiates the electron generated from the photoelectric element of the photoelectric element unit held by the first holder to the target as an electron beam,
    The electron beam according to any one of claims 1 to 14, wherein the second electron optical system irradiates electrons generated from a photoelectric element of the photoelectric element unit held by the second holder as an electron beam to the target. apparatus.
  16.  前記搬送系は、前記第2ホルダと前記第2室との間で前記光電素子ユニットを搬送可能である請求項15に記載の電子ビーム装置。 The electron beam apparatus according to claim 15, wherein the transport system can transport the photoelectric element unit between the second holder and the second chamber.
  17.  前記第1電子光学系の電子ビームの第1通路と前記第1室とは分離可能であり、
     前記第2電子光学系の電子ビームの第2通路と前記第1室とは分離可能である請求項15又は16に記載の電子ビーム装置。
    The first passage of the electron beam of the first electron optical system and the first chamber are separable,
    17. The electron beam apparatus according to claim 15, wherein the second passage of the electron beam of the second electron optical system and the first chamber are separable.
  18.  前記第1室と前記第1通路との分離、及び前記第1室と前記第2通路との分離は、バルブを使って行われる請求項17に記載の電子ビーム装置。 The electron beam apparatus according to claim 17, wherein the separation of the first chamber and the first passage, and the separation of the first chamber and the second passage are performed using a valve.
  19.  前記ホルダに保持された前記光電素子ユニットの電気接続部と電気的に接続される電気配線部を有する請求項1~18のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 18, further comprising an electrical wiring portion electrically connected to the electrical connection portion of the photoelectric device unit held by the holder.
  20.  前記光電素子ユニットの前記電気接続部は、前記光電変換層と電気的に接続されている第1接続部を有し、
     前記電気配線部は、前記第1接続部に接続される第1配線部を有する請求項19に記載の電子ビーム装置。
    The electrical connection portion of the photoelectric device unit has a first connection portion electrically connected to the photoelectric conversion layer,
    20. The electron beam apparatus according to claim 19, wherein the electrical wiring portion includes a first wiring portion connected to the first connection portion.
  21.  前記光電素子ユニットの前記電気接続部は、前記引き出し電極と電気的に接続されている第2接続部を有し、
     前記電気配線部は、前記第2接続部に接続される第2配線部を有する請求項19又は20に記載の電子ビーム装置。
    The electrical connection portion of the photoelectric device unit has a second connection portion electrically connected to the lead-out electrode,
    The electron beam apparatus according to claim 19, wherein the electrical wiring portion includes a second wiring portion connected to the second connection portion.
  22.  前記光電素子ユニットの前記電気接続部は、前記引き出し電極と電気的に接続されている第2接続部を有し、
     前記第1接続部と前記第1配線部が接続されるととともに、前記第2接続部と前記第2配線部とが接続されることにより、前記ホルダに保持された前記光電素子ユニットの前記光電変換層と前記引き出し電極との間に電位差を生じさせる請求項20に記載の電子ビーム装置。
    The electrical connection portion of the photoelectric device unit has a second connection portion electrically connected to the lead-out electrode,
    The first connection portion and the first wiring portion are connected, and the second connection portion and the second wiring portion are connected, whereby the photoelectric conversion of the photoelectric element unit held by the holder is performed. 21. The electron beam apparatus according to claim 20, wherein a potential difference is generated between a conversion layer and the extraction electrode.
  23.  前記電子光学系は、前記ホルダの下方に位置し、
     前記引き出し電極が前記光電変換層と前記電子光学系との間に配置されるように、前記光電素子ユニットが前記ホルダに保持される請求項1~22のいずれか一項に記載の電子ビーム装置。
    The electron optical system is located below the holder,
    The electron beam apparatus according to any one of claims 1 to 22, wherein the photoelectric element unit is held by the holder such that the extraction electrode is disposed between the photoelectric conversion layer and the electron optical system. .
  24.  前記ホルダは、前記光電素子ユニットをキネマティック支持する請求項1~23のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 23, wherein the holder kinematically supports the photoelectric device unit.
  25.  前記搬送系は、前記第1室と前記第2室との間で、光電素子ユニットとは異なる搬送対象物を搬送可能である請求項1~24のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 24, wherein the transport system is capable of transporting a transport target different from the photoelectric device unit between the first chamber and the second chamber.
  26.  光の照射により電子ビームを発生する光電変換層を有する光電素子を用いる電子ビーム装置であって、
     前記光電素子を保持するホルダが設けられ、内部を真空引き可能な第1室と、
     前記光電素子から発生する電子を、前記第1室を介して電子ビームとして、ターゲットに照射する電子光学系と、
     前記第1室と連通可能で、内部を真空引き可能な第2室と、
     前記第1室と前記第2室との間で搬送対象物を搬送可能な搬送系と、を備える電子ビーム装置。
    An electron beam apparatus using a photoelectric element having a photoelectric conversion layer that generates an electron beam by light irradiation, comprising:
    A holder for holding the photoelectric element, and a first chamber capable of evacuating the inside;
    An electron optical system that irradiates a target, as an electron beam, electrons generated from the photoelectric element through the first chamber;
    A second chamber that can communicate with the first chamber and can evacuate the inside;
    An electron beam apparatus comprising: a transport system capable of transporting an object to be transported between the first chamber and the second chamber.
  27.  前記搬送対象物は、前記光電素子を含み、
     前記搬送系は、前記ホルダと前記第2室との間で前記光電素子を搬送する請求項26に記載の電子ビーム装置。
    The transport object includes the photoelectric device,
    27. The electron beam apparatus according to claim 26, wherein the transport system transports the photoelectric element between the holder and the second chamber.
  28.  前記光電素子には、前記光電素子で発生した電子を加速するための引き出し電極が接続され、
     前記搬送対象物は、前記光電素子に前記引き出し電極が接続された光電素子ユニットを含む請求項27に記載の電子ビーム装置。
    An extraction electrode for accelerating electrons generated in the photoelectric element is connected to the photoelectric element,
    28. The electron beam apparatus according to claim 27, wherein the transport target includes a photoelectric device unit in which the lead-out electrode is connected to the photoelectric device.
  29.  前記搬送対象物は、センサを含む請求項26~28のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 26 to 28, wherein the transport target includes a sensor.
  30.  前記センサは、前記ホルダに対する前記光電素子の位置決めに用いるセンサを含む請求項29に記載の電子ビーム装置。 The electron beam apparatus according to claim 29, wherein the sensor includes a sensor used to position the photoelectric element with respect to the holder.
  31.  前記センサは、前記光電素子に照射される光を検出する検出器を含む請求項29又は30に記載の電子ビーム装置。 31. The electron beam apparatus according to claim 29, wherein the sensor includes a detector that detects light emitted to the photoelectric element.
  32.  前記センサは、前記ホルダと前記電子光学系との間に配置され、電子ビームを検出する検出器を含む請求項29~31のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 29 to 31, wherein the sensor includes a detector which is disposed between the holder and the electron optical system and detects an electron beam.
  33.  前記検出器は、ファラデーカップを含む請求項32に記載の電子ビーム装置 The electron beam device according to claim 32, wherein the detector includes a faraday cup.
  34.  前記搬送対象物は前記ホルダに保持された光電素子に対して光電変換層の蒸着を行うための蒸着装置を含む請求項26~33のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 26 to 33, wherein the object to be transported includes a deposition apparatus for depositing a photoelectric conversion layer on the photoelectric element held by the holder.
  35.  前記搬送対象物は、蒸着モニタを含む請求項34に記載の電子ビーム装置。 The electron beam apparatus according to claim 34, wherein the transfer target includes a deposition monitor.
  36.  前記蒸着モニタは、ファラデーカップを含む請求項35に記載の電子ビーム装置 The electron beam apparatus according to claim 35, wherein the deposition monitor includes a Faraday cup.
  37.  第1電子光学系としての前記電子光学系とは別の第2電子光学系を備え、
     前記第1室には、第1ホルダとしての前記ホルダとは別の、光電素子を保持可能な第2ホルダが配置され、
     前記第1電子光学系は、前記第1ホルダに保持された光電素子から発生する電子を電子ビームとして前記ターゲットに照射し、
     前記第2電子光学系は、前記第2ホルダに保持された光電素子から発生する電子を電子ビームとして前記ターゲットに照射する請求項26~36のいずれか一項に記載の電子ビーム装置。
    A second electron optical system other than the electron optical system as the first electron optical system,
    In the first chamber, a second holder capable of holding a photoelectric element, which is different from the holder as the first holder, is disposed.
    The first electron optical system irradiates the target generated as an electron beam from the photoelectric element held by the first holder onto the target.
    The electron beam apparatus according to any one of claims 26 to 36, wherein the second electron optical system irradiates the target with electrons generated from a photoelectric element held by the second holder as an electron beam.
  38.  前記搬送系は、前記第2ホルダと前記第2室との間で光電素子を搬送可能である請求項37に記載の電子ビーム装置。 The electron beam apparatus according to claim 37, wherein the transport system can transport a photoelectric element between the second holder and the second chamber.
  39.  前記第1電子光学系の電子ビームの第1通路と前記第1室とは分離可能であり、
     前記第2電子光学系の電子ビームの第2通路と前記第1室とは分離可能である請求項37又は38に記載の電子ビーム装置。
    The first passage of the electron beam of the first electron optical system and the first chamber are separable,
    39. The electron beam apparatus according to claim 37, wherein the second passage of the electron beam of the second electron optical system and the first chamber are separable.
  40.  前記第1室と前記第1通路との分離、及び前記第1室と前記第2通路との分離は、バルブを使って行われる請求項39に記載の電子ビーム装置。 40. The electron beam apparatus according to claim 39, wherein the separation of the first chamber and the first passage, and the separation of the first chamber and the second passage are performed using a valve.
  41.  前記ホルダは、前記光電素子をキネマティック支持する請求項26~40のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 26 to 40, wherein the holder kinematically supports the photoelectric element.
  42.  光電素子に光を照射する光光学系をさらに備える請求項1~41のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of the preceding claims, further comprising an optical optical system for irradiating light to the photoelectric element.
  43.  前記光光学系は、複数の光ビームを提供可能な光学デバイスと、前記光学デバイスと前記ホルダとの間に配置された投影系と、を有する請求項42に記載の電子ビーム装置。 43. The electron beam apparatus according to claim 42, wherein the light optical system includes an optical device capable of providing a plurality of light beams, and a projection system disposed between the optical device and the holder.
  44.  前記光光学系は、前記光学デバイスに照明光を照射する照明系を有し、
     前記光学デバイスは、前記照明光の照射により複数の光ビームを提供可能である請求項43に記載の電子ビーム装置。
    The optical optical system includes an illumination system that illuminates the optical device with illumination light.
    44. The electron beam device according to claim 43, wherein the optical device can provide a plurality of light beams by the irradiation of the illumination light.
  45.  前記光光学系は、複数の発光部を有し、前記複数の発光部のそれぞれから光ビームを提供可能な発光デバイスを有する請求項42に記載の電子ビーム装置。 The electron beam apparatus according to claim 42, wherein the light optical system includes a plurality of light emitting units, and includes a light emitting device capable of providing a light beam from each of the plurality of light emitting units.
  46.  前記発光デバイスの少なくとも一部が、前記第1室の隔壁を兼ねる請求項45に記載の電子ビーム装置。 46. The electron beam apparatus according to claim 45, wherein at least a part of the light emitting device doubles as a partition of the first chamber.
  47.  前記発光デバイスは、前記第1室の隔壁を介して前記光電素子とは反対側に配置される請求項45に記載の電子ビーム装置。 46. The electron beam apparatus according to claim 45, wherein the light emitting device is disposed on the opposite side to the photoelectric element through the partition wall of the first chamber.
  48.  前記複数の発光部と前記光電素子との間の光路上に複数の光学部材が配置され、
     前記複数の光学部材は、前記電子光学系の光軸に交差する方向に並置され、
     前記複数の光学部材のそれぞれは、前記複数の発光部のうちの少なくとも1つの発光部からの光ビームを集光して、前記複数の光ビームのうちの1つを射出する請求項45~47のいずれか一項に記載の電子ビーム装置。
    A plurality of optical members are disposed on an optical path between the plurality of light emitting units and the photoelectric element;
    The plurality of optical members are juxtaposed in a direction intersecting the optical axis of the electron optical system,
    The plurality of optical members each condense a light beam from at least one light emitting unit of the plurality of light emitting units, and emit one of the plurality of light beams. Electron beam apparatus according to any one of the preceding claims.
  49.  前記発光デバイスは、前記複数の光学部材と一体である請求項46に記載の電子ビーム装置。 47. The electron beam device of claim 46, wherein the light emitting device is integral with the plurality of optical members.
  50.  前記ターゲットは、半導体ウエハを含む請求項1~49のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of the preceding claims, wherein the target comprises a semiconductor wafer.
  51.  リソグラフィ工程を含むデバイス製造方法であって、
     前記リソグラフィ工程は、ターゲット上にラインアンドスペースパターンを形成することと、請求項1~50のいずれか一項に記載の電子ビーム装置を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと、を含むデバイス製造方法。
    A device manufacturing method including a lithography process, comprising:
    The lithography process includes forming a line and space pattern on a target, and cutting the line pattern forming the line and space pattern using the electron beam apparatus according to any one of claims 1 to 50. And performing a device manufacturing method.
  52.  ターゲットに電子ビームを照射する電子ビーム装置で用いられる光電素子ユニットであって、
     光の照射により電子を発生する光電変換層が形成されたベース部材を有する光電素子と、
     前記ベース部材に接続され、前記光電変換層から発生する電子を加速するための引き出し電極と、を備えた光電素子ユニット。
    A photoelectric device unit used in an electron beam apparatus for irradiating an electron beam onto a target,
    A photoelectric element having a base member on which a photoelectric conversion layer that generates electrons by light irradiation is formed;
    An extraction electrode connected to the base member for accelerating electrons generated from the photoelectric conversion layer.
  53.  ターゲットに電子ビームを照射する電子ビーム装置で用いられる、光電素子ユニットであって、
     光の照射により電子を発生する光電変換層が形成されるベース部材を有する光電素子と、
     前記ベース部材に接続され、前記ベース部材に形成される光電変換層から発生する電子を加速するための引き出し電極と、を備えた光電素子ユニット。
    A photoelectric element unit used in an electron beam apparatus for irradiating an electron beam to a target,
    A photoelectric element having a base member on which a photoelectric conversion layer that generates electrons by irradiation of light is formed;
    A photoelectric element unit comprising: an extraction electrode connected to the base member for accelerating electrons generated from a photoelectric conversion layer formed on the base member.
  54.  前記光電変換層は、前記電子ビーム装置内で前記ベース部材に形成される請求項52又は53に記載の光電素子ユニット。 54. The photoelectric element unit according to claim 52, wherein the photoelectric conversion layer is formed on the base member in the electron beam apparatus.
  55.  前記電子ビーム装置のホルダに保持されたときに、前記電子ビーム装置の電気配線部と接続される電気接続部を有する請求項52~54のいずれか一項に記載の光電素子ユニット。 The photoelectric device unit according to any one of claims 52 to 54, comprising an electrical connection portion connected to the electrical wiring portion of the electron beam device when held by the holder of the electron beam device.
  56.  前記光電素子ユニットの前記電気接続部は、前記光電変換層と電気的に接続されている第1接続部を有し、
     前記電子ビーム装置の前記ホルダに保持されたときに、前記第1接続部は前記電気配線部の第1配線部に接続される請求項55に記載の光電素子ユニット。
    The electrical connection portion of the photoelectric device unit has a first connection portion electrically connected to the photoelectric conversion layer,
    56. The photoelectric device unit according to claim 55, wherein the first connection portion is connected to the first wiring portion of the electrical wiring portion when held by the holder of the electron beam apparatus.
  57.  前記光電素子ユニットの前記電気接続部は、前記引き出し電極と電気的に接続されている第2接続部を有し、
     前記電子ビーム装置の前記ホルダに保持されたときに、前記第2接続部は前記電気配線部の第2配線部に接続される請求項55又は56に記載の光電素子ユニット。
    The electrical connection portion of the photoelectric device unit has a second connection portion electrically connected to the lead-out electrode,
    57. The photoelectric element unit according to claim 55, wherein the second connection portion is connected to the second wiring portion of the electrical wiring portion when held by the holder of the electron beam apparatus.
  58.  前記光電変換層は、蒸着により前記ベース部材に形成される請求項52~57のいずれか一項に記載の光電素子ユニット。 The photoelectric device unit according to any one of claims 52 to 57, wherein the photoelectric conversion layer is formed on the base member by vapor deposition.
  59.  前記ベース部材は、複数のアパーチャを有する遮光膜が形成され、
     前記電子ビーム装置での使用時には、前記アパーチャを通過した光が前記光電変換層に入射する請求項52~58のいずれか一項に記載の光電素子ユニット。
    The base member is formed with a light shielding film having a plurality of apertures,
    The photoelectric device unit according to any one of claims 52 to 58, wherein the light passing through the aperture is incident on the photoelectric conversion layer during use in the electron beam apparatus.
PCT/JP2018/002192 2018-01-25 2018-01-25 Electron beam device, device production method, and photoelectric element unit WO2019146027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002192 WO2019146027A1 (en) 2018-01-25 2018-01-25 Electron beam device, device production method, and photoelectric element unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002192 WO2019146027A1 (en) 2018-01-25 2018-01-25 Electron beam device, device production method, and photoelectric element unit

Publications (1)

Publication Number Publication Date
WO2019146027A1 true WO2019146027A1 (en) 2019-08-01

Family

ID=67395260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002192 WO2019146027A1 (en) 2018-01-25 2018-01-25 Electron beam device, device production method, and photoelectric element unit

Country Status (1)

Country Link
WO (1) WO2019146027A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049168A1 (en) * 2019-09-10 2021-03-18 株式会社ジャパンディスプレイ Exposure device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936928A (en) * 1982-08-25 1984-02-29 Toshiba Corp Electron beam transferring apparatus
JPH07254539A (en) * 1994-03-15 1995-10-03 Toshiba Corp Electron beam exposure device
JPH1079344A (en) * 1996-09-04 1998-03-24 Canon Inc Original holder and aligner using the same
JP2001509967A (en) * 1997-05-26 2001-07-24 テクニッシェ・ウニベルシテイト・デルフト Lithography system
JP2002500817A (en) * 1998-03-31 2002-01-08 エテック システムズ インコーポレイテッド Gated photocathode for controlled single and multiple electron beam emission
JP2003045368A (en) * 2001-07-27 2003-02-14 Hamamatsu Photonics Kk Electron beam generating device, and photoelectric surface housing cartridge
US20040069960A1 (en) * 2002-10-10 2004-04-15 Applied Materials, Inc. Electron beam pattern generator with photocathode comprising low work function cesium halide
JP2005332922A (en) * 2004-05-19 2005-12-02 Canon Inc Photoelectric exposure device
JP2007080697A (en) * 2005-09-14 2007-03-29 Japan Synchrotron Radiation Research Inst Photoelectric transfer element and electron beam generator using it
US20120223245A1 (en) * 2011-03-01 2012-09-06 John Bennett Electron beam source system and method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936928A (en) * 1982-08-25 1984-02-29 Toshiba Corp Electron beam transferring apparatus
JPH07254539A (en) * 1994-03-15 1995-10-03 Toshiba Corp Electron beam exposure device
JPH1079344A (en) * 1996-09-04 1998-03-24 Canon Inc Original holder and aligner using the same
JP2001509967A (en) * 1997-05-26 2001-07-24 テクニッシェ・ウニベルシテイト・デルフト Lithography system
JP2002500817A (en) * 1998-03-31 2002-01-08 エテック システムズ インコーポレイテッド Gated photocathode for controlled single and multiple electron beam emission
JP2003045368A (en) * 2001-07-27 2003-02-14 Hamamatsu Photonics Kk Electron beam generating device, and photoelectric surface housing cartridge
US20040069960A1 (en) * 2002-10-10 2004-04-15 Applied Materials, Inc. Electron beam pattern generator with photocathode comprising low work function cesium halide
JP2005332922A (en) * 2004-05-19 2005-12-02 Canon Inc Photoelectric exposure device
JP2007080697A (en) * 2005-09-14 2007-03-29 Japan Synchrotron Radiation Research Inst Photoelectric transfer element and electron beam generator using it
US20120223245A1 (en) * 2011-03-01 2012-09-06 John Bennett Electron beam source system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049168A1 (en) * 2019-09-10 2021-03-18 株式会社ジャパンディスプレイ Exposure device

Similar Documents

Publication Publication Date Title
WO2016167339A1 (en) Exposure system
JP2004055767A (en) Electron beam exposure system and method for manufacturing semiconductor device
WO2019146027A1 (en) Electron beam device, device production method, and photoelectric element unit
JP4440031B2 (en) Exposure apparatus and device manufacturing method
WO2018155537A1 (en) Electron beam apparatus and exposure method, and device production method
JP2017163083A (en) Device and method for exposing charged particle beam, and method of manufacturing device
US11276558B2 (en) Exposure apparatus and exposure method, lithography method, and device manufacturing method
TW201923830A (en) Electron beam apparatus and device manufacturing method
TW201921411A (en) Electron beam apparatus and device manufacturing method
WO2017188343A1 (en) Holding device, exposure method, exposure system, and transfer system
TW201921404A (en) Electron beam apparatus and device manufacturing method
WO2018155545A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155539A1 (en) Electron beam apparatus and device production method, and photoelectric element holding container
TW201921405A (en) Electron beam apparatus and device manufacturing method
WO2018074306A1 (en) Exposure system and lithography system
JP2016207756A (en) Stage device and exposure device
WO2019064520A1 (en) Electron beam apparatus, and device manufacturing method
WO2018155540A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155542A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155543A1 (en) Electronic beam apparatus and device production method
WO2018155538A1 (en) Electron beam apparatus and exposure method, and device production method
WO2019064530A1 (en) Electron beam apparatus, device manufacturing method, exposure method, and photoelectric element
TW201923808A (en) Electron beam apparatus and exposure method, and device manufacturing method
WO2019064507A1 (en) Electron beam apparatus, exposure method, and device manufacturing method
JP2016207755A (en) Exposure system and exchange method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP