WO2019144575A1 - Fast pedestrian detection method and device - Google Patents

Fast pedestrian detection method and device Download PDF

Info

Publication number
WO2019144575A1
WO2019144575A1 PCT/CN2018/095058 CN2018095058W WO2019144575A1 WO 2019144575 A1 WO2019144575 A1 WO 2019144575A1 CN 2018095058 W CN2018095058 W CN 2018095058W WO 2019144575 A1 WO2019144575 A1 WO 2019144575A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
network
target
candidate
convolutional neural
Prior art date
Application number
PCT/CN2018/095058
Other languages
French (fr)
Chinese (zh)
Inventor
林倞
尹森堂
张冬雨
王青
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2019144575A1 publication Critical patent/WO2019144575A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes
    • G06F18/24137Distances to cluster centroïds
    • G06F18/2414Smoothing the distance, e.g. radial basis function networks [RBFN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/103Static body considered as a whole, e.g. static pedestrian or occupant recognition

Definitions

  • the invention relates to the field of pedestrian detection technology, in particular to a fast pedestrian detection method and device for an embedded system based on deep learning.
  • an object of the present invention to provide a method and apparatus for rapid pedestrian detection, which utilizes different intermediate layers to perform target objects in a specific scale range by utilizing the variation law of the neural network sensing domain.
  • the detection better adapts to the relationship between the sensing domain and the size of the object, and effectively improves the detection result.
  • Another object of the present invention is to provide a fast pedestrian detection method and apparatus, which can adjust and train the VGG-16 network to obtain a squeezeze VGG-16 network that meets the requirements of the embedded system, thereby effectively reducing the parameter amount of the network model and speeding up. Computational efficiency.
  • a further object of the present invention is to provide a method and apparatus for rapid pedestrian detection, which can amplify a feature map of a specific network layer by a method of deconvolution, and enhance detection of a small object, compared to a conventional image enlargement method. Hardly increase the amount of memory and calculations.
  • Another object of the present invention is to provide a fast pedestrian detection method and apparatus, which is excellent in detecting a blurred object and a long-distance small object by using a region of 1.5 times the size of the target object as a background semantic feature. performance.
  • the present invention provides a rapid pedestrian detection method comprising the following steps:
  • Step S1 constructing a configurable depth model based on a convolutional neural network, learning a constructed network parameter using the training sample, and obtaining a model for the testing process;
  • step S2 the test sample is input, and the trained model is used to detect the target object in different scales by using different intermediate layers to detect the target object in the image, and the block diagram of the target object in the image is predicted.
  • step S1 further comprises:
  • the training sample is used to learn the constructed network parameters, that is, the model used for the test process.
  • the depth model comprises a multi-scale target candidate network and a target detection network
  • the target candidate network proposes differences of features based on different layers of the convolutional neural network, and generates candidates for different scale target objects in the intermediate layer respectively.
  • Block diagram; the target detection network performs refined classification and detection on the basis of candidate block diagrams output by the target candidate network.
  • the convolutional neural network is formed by stacking a convolution layer, a downsampling layer, and an upsampling layer.
  • the convolution layer refers to a convolution operation on a two-dimensional space of an input image or a feature map to extract a layered feature;
  • the downsampling layer uses a max-pooling operation without overlap, which is used to extract a shape and Offset invariant features, while reducing the size of the feature map, and improving computational efficiency;
  • the upsampling layer refers to the operation of deconvolving the input feature map in a two-dimensional space to increase the pixel of the feature map .
  • the depth model uses a Squeeze VGG-16 convolutional neural network as a backbone network, and the Squeeze VGG-16 convolutional neural network is characterized by a conv1-1 layer and a 12-layer Fire module layer immediately following it. Network structure.
  • the target candidate network generates network branches in Fire9, Fire12, conv6 and the added pooling layer to detect different scales.
  • the regression of the candidate box of the object is preferably, on the basis of the Squeeze VGG-16 convolutional neural network.
  • the target detection area uses the picture area of the target candidate area preset multiple size as the target background semantic information, and performs the upsampling of the feature map of the Fire9 layer as an enhanced pair.
  • the small object perceives the information, and the background semantic information and the upsampled information are obtained through the pooling of the region of interest to obtain a fixed size feature, and then a layer of fully connected layers is added to perform the regression of the category and the final candidate frame.
  • the training sample includes RGB image data and annotation information of a pedestrian area in the image
  • the actual training image data is a small patch cropped according to the region where the pedestrian is located.
  • Object, loss function Can be defined as:
  • the present invention also provides a fast pedestrian detection system, comprising:
  • a training unit for constructing a configurable depth model based on a convolutional neural network, learning a constructed network parameter using the training sample, and obtaining a model for the testing process
  • the detecting unit is configured to input the test sample, and the trained model is used to detect the target object in different scales by using different intermediate layers to detect the target object in the image, and predict the block diagram of the target object in the image.
  • a fast pedestrian detection method and device of the present invention draws on a compression network method, adjusts and trains the VGG-16 network to obtain a squeezeze VGG-16 network that meets the requirements of the embedded system, and effectively reduces the network model.
  • the parameter quantity accelerates the calculation efficiency; on the other hand, the problem of the inconsistency between the sensing domain and the object size in the traditional detection method, the invention utilizes the variation law of the neural network sensing domain (ie, the deeper the neural network layer, the larger the sensing domain is, suitable for Detecting larger target objects), using different intermediate layers to detect target objects in a specific scale range, better adapting to the relationship between the sensing domain and the object size, effectively improving the detection results; in addition, in order to enhance the small objects
  • the detection method of the present invention uses a deconvolution method to amplify the feature map of a specific network layer.
  • the display memory and the calculation amount are hardly increased; in order to enhance the detection of the fuzzy object, the layer is On the feature map, use the area 1.5 times the size of the target object as the background semantic feature to add to the network. Blur distant objects and the detection of small objects, with excellent performance.
  • FIG. 1 is a flow chart showing the steps of a fast pedestrian detection method according to the present invention.
  • FIG. 2 is a schematic structural diagram of a Squeeze VGG-16 neural network according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a Fire module in a specific embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a target candidate network according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a target detection network according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a process of fast pedestrian detection in a specific embodiment of the present invention.
  • FIG. 7 is a system architecture diagram of a fast pedestrian detection device according to the present invention.
  • Figure 8 is a detailed structural view of a training unit in a specific embodiment of the present invention.
  • Figure 9 is a detailed structural view of a detecting unit in a specific embodiment of the present invention.
  • a fast pedestrian detection method of the present invention includes the following steps:
  • step S1 a configurable depth model based on a convolutional neural network is constructed, and the constructed network parameters are learned by using the training samples to obtain a model for the testing process.
  • the depth model is composed of two sub-networks: a first sub-network, which is a multi-scale target candidate network, used to extract character features and give candidate regions, specifically, the target candidate network.
  • a first sub-network which is a multi-scale target candidate network, used to extract character features and give candidate regions, specifically, the target candidate network.
  • candidate block diagrams for pedestrians of different scales are generated in the middle layer respectively;
  • the second sub-network is the target detection network, and the effect of the detection is enhanced, and the parameters are shared with the target candidate network.
  • step S1 further includes:
  • Step S100 constructing a configurable depth model based on a convolutional neural network.
  • the convolutional neural network is formed by stacking a convolutional layer, a downsampling layer, and an upsampling layer, and the convolutional layer is a convolution operation on an input image or a feature image in a two-dimensional space to extract hierarchical features.
  • the downsampling layer uses a max-pooling operation without overlap, which is used to extract features with shape and offset invariance, while reducing the size of the feature map and improving computational efficiency; the upsampling layer refers to the pair
  • the input feature map performs a deconvolution operation on the two-dimensional space to increase the pixels of the feature map, and is mainly used for the target detection network to improve the detection effect.
  • the Squeeze VGG-16 volume is adopted.
  • the Squeeze VGG-16 convolutional neural network uses a conv1-1 layer followed by a 12-layer Fire module as a convolutional layer to extract features; -pool5 is the downsampling layer; the pre-trained model on the ImageNet dataset is used for initialization. That is, the present invention first pre-trains Squeeze VGG-16 as a network initialization using the ImageNet data set.
  • FIG. 3 is a schematic structural diagram of a Fire module according to an embodiment of the present invention.
  • the Fire module consists of two convolution layers with a convolution kernel size of 1 ⁇ 1 and a convolution layer with a convolution kernel size of 3 ⁇ 3, in order to replace the 1 ⁇ 1 convolution kernel.
  • 3 ⁇ 3 convolution kernel so that the parameter amount is reduced by 9 times, but in order not to affect the network representation ability, not all replacement, but part is to use 1 ⁇ 1 convolution kernel, part uses 3 ⁇ 3 convolution Nuclear, another advantage of this is to reduce the input channel of the 3 ⁇ 3 convolution kernel, and at the same time reduce the amount of parameters.
  • the Fire module first uses the 1 ⁇ 1 convolution layer to reduce the input layer. Then, referring to the GoogLeNet structure, using 1x1 and 3x3 convolutional layers to extract features, and finally connecting the two parts of the feature, this way greatly reduces the amount of computation and model parameters.
  • the target candidate network is based on the Squeeze VGG-16 convolutional neural network, and according to the convolution layer feature, a total of 4 layers are generated in the Fire9, Fire12, conv6, and the added pooling layer, and a network branch is generated.
  • the branch performs regression of the candidate frame of the object detected at different scales. But for the Fire-9 layer, it is closer to the lower layer of the backbone network. Compared to other layers, the gradient will have a large impact, and the learning process is unstable. Therefore, a buffer layer is added, as shown in the det-conv layer in Figure 4. As shown, the buffer layer avoids detecting the gradient of the branch being directly back-propagated (backpropagated) to the backbone layer.
  • the invention utilizes the variation law of the neural network sensing domain (ie, the deeper the neural network layer is, the larger the sensing domain is, it is suitable for detecting a larger target object), and the different intermediate layers are used to detect the target object in a specific scale range, which is better. Adapted to the relationship between the sensing domain and the size of the object, effectively improving the detection results.
  • FIG. 5 is a schematic structural diagram of a target detection network according to an embodiment of the present invention.
  • the target detection network shares parameters with the target candidate network, and summarizes candidate blocks of the target candidate network to enhance the ability of the monitoring network to distinguish objects from the background.
  • the target detection network uses, as a target background semantic information, a picture area of 1.5 times the target candidate area on the basis of the target candidate area; and performs a upsampling of the feature map of the Fire9 layer.
  • the background semantic information and the upsampled information are subjected to ROI pooling to obtain fixed-size features, and then a layer of fully-connected layers is added to perform regression of categories and final candidate frames.
  • the backbone cnn layer is connected to a proposal node for summarizing the candidate frame information obtained by the target candidate network;
  • W and H are the width and height of the input picture
  • the cube 1 Represents the mapping of the object area in the feature map
  • cube 2 represents the mapping of the context area on the feature map.
  • the context area is about 1.5 times the object area.
  • the Fire9 layer is upsampled once.
  • step S101 a training sample is input.
  • the training process needs to provide the corresponding frame of the reference character in the image, and in order to speed up the training, the training process cuts the image containing the reference character from the original image to form a patch, and the patch is smaller than the original image. For training, it effectively speeds up the training process.
  • the input training samples include RGB image data and annotation information of the pedestrian area in the image, and the actual training image data is a small patch (image block) which is cropped according to the region where the pedestrian is located.
  • training samples Where X i represents a patch of the training picture; in practical applications, in addition to the category of pedestrians, there are other categories, such as background, bicycle rider, sitting person, etc.
  • Step S102 initializing the convolutional neural network and its parameters, including weights and offsets of each layer connection in the network layer.
  • the present invention pre-trains the Squeeze VGG-16 convolutional neural network as a network initialization using the ImageNet data set.
  • Step S103 using a forward propagation algorithm and a backward propagation algorithm, using the training samples to learn the constructed network parameters, that is, the model used for the testing process.
  • the forward propagation algorithm first normalizes the size of the input image to 3 ⁇ 480 ⁇ 640, and intercepts a patch of 3 ⁇ 448 ⁇ 448 size and corresponding annotation information as an input of the convolutional neural network.
  • the convolutional layer the downsampling layer and the corrected linear unit layer (ReLU Nonlinearity Layer), in the Fire9 layer, the image feature size is 512 ⁇ 60 ⁇ 80; in the Fire12 layer, the feature image size is 512 ⁇ 30 ⁇ 40, behind
  • the two branch feature map sizes are 512 x 15 x 20 and 512 x 8 x 10, respectively.
  • the four coordinate points and category information of the target block diagram are obtained by convolution.
  • the output is 6 ⁇ 60 ⁇ 80
  • 6 Contains four coordinates of background, pedestrian category and candidate block diagram.
  • the candidate block diagrams obtained by each branch layer are summarized in the proposal node, and the background semantic information of the Fire9 layer and the features obtained by the pooling operation of the upsampled information through the region of interest are superimposed to be the final block diagram. Regression and category regression.
  • the loss function for a particular detection layer m, only contributes to the loss function if the target scale is within the range detectable by m, so the loss function is defined as
  • p(X) (p 0 (X), . . . , p K (X)) represents the probability distribution of the target category;
  • is the balance coefficient;
  • b is the four coordinate points of the block diagram, Refers to the coordinate point obtained by forward propagation; in the loss function, the cross-entropy loss function is used to define the category regression, ie
  • Step S2 using the trained model to utilize the variation rule of the neural network perception domain, using different intermediate layers to detect the target objects in different scales, and predicting the block diagram of the target object (such as a pedestrian) in the image.
  • step S2 further includes:
  • Step S200 loading the trained model
  • Step S201 inputting a test sample
  • Step S202 using the trained model, using different intermediate layers to detect pedestrians in different scales through the variation pattern of the neural network perception domain, and predicting the pedestrian block diagram in the image.
  • 6 is a schematic diagram of a process of fast pedestrian detection in a specific embodiment of the present invention, that is, using a target candidate network in a model based on the Squeeze VGG-16 convolutional neural network, according to the characteristics of the convolution layer, in fire9, fire12, conv6, and increasing
  • the pooling layer has a total of 4 layers to generate network branches, and the target candidate regions (intermediate layer a, intermediate layer b, intermediate layer c) of the object are detected at different scales; then the target detection network is used, and the target is selected based on the target candidate region
  • the 1.5-time-size image area of the candidate area is used as the background semantic information of the target, and the feature map of the Fire9 layer is up-sampled once, as information for enhancing the perception of the small object, and the background semantic information and the upsamp
  • the pedestrian detection method proposed by the invention draws on two evaluation indexes respectively: an average precision rate mAP and a frame number per second FPS.
  • the mAP is used to evaluate the ratio of the final detection area to the real target person area, and the average value of the precision is compared under different cross-section ratios;
  • FPS mainly the efficiency index, refers to the number of pictures that can be processed per second.
  • FIG. 7 is a system architecture diagram of a fast pedestrian detection device according to the present invention. As shown in FIG. 7, a fast pedestrian detecting device of the present invention includes:
  • the training unit 70 is configured to construct a configurable convolutional neural network-based depth model, learn the constructed network parameters using the training samples, and obtain a model for the testing process.
  • the depth model constructed by the training unit 70 is composed of two sub-networks: a first sub-network, which is a multi-scale target candidate network, for extracting character features and giving candidate regions, specifically
  • the target candidate network proposes feature differences based on different layers of the convolutional neural network, and generates candidate block diagrams for different scale pedestrians in the middle layer;
  • the second sub-network is the target detection network, enhances the detection effect, and the target candidate Network sharing parameters, refined classification and detection based on candidate block diagrams.
  • the training unit 70 further includes:
  • the model construction unit 701 is configured to construct a configurable convolutional neural network based depth model.
  • the convolutional neural network is formed by stacking a convolutional layer, a downsampling layer, and an upsampling layer, and the convolutional layer is a convolution operation on an input image or a feature image in a two-dimensional space to extract hierarchical features.
  • the downsampling layer uses a max-pooling operation without overlap, which is used to extract features with shape and offset invariance, while reducing the size of the feature map and improving computational efficiency.
  • the upsampling layer refers to the pair
  • the input feature map performs a deconvolution operation on a two-dimensional space to increase the pixels of the feature map.
  • a Squeeze VGG-16 convolutional neural network is employed as the backbone network.
  • the target candidate network is based on the Squeeze VGG-16 convolutional neural network, and according to the convolution layer feature, a total of 4 layers are generated in fire9, fire12, conv6, and the added pooling layer, and a network branch is generated.
  • the branch performs regression of the candidate frame of the object detected at different scales. But for the fire-9 layer, it is closer to the lower layer of the backbone network. Compared with other layers, the gradient will have a great influence on the gradient.
  • the learning process is unstable, so there is an additional buffer layer.
  • the buffer layer avoids detecting the gradient of the branch. Direct back-propagated to the backbone layer.
  • the target detection network shares parameters with the target candidate network, and summarizes candidate blocks of the target candidate network to enhance the ability of the monitoring network to distinguish objects from the background.
  • the target detection network uses, as a target background semantic information, a picture area of 1.5 times the target candidate area on the basis of the target candidate area; and performs a upsampling of the feature map of the Fire9 layer.
  • the background semantic information and the upsampled information are obtained by pooling the region of interest to obtain fixed-size features, and then a layer of fully connected layers is added to perform regression of the category and the final candidate frame.
  • the backbone cnn layer is connected to a proposal subnet
  • W and H are the width and height of the input picture
  • cube 1 represents the pooling of the object area
  • cube 2 represents the pooling of the context area, which is about 1.5 times the object area
  • Enhance the detection of small objects and then perform upsampling on the Fire9 layer.
  • similar to the fast RCNN algorithm use the pooling of the region of interest to obtain fixed-size features, then add a layer of fully-connected layers to classify and finalize the candidate box.
  • the training sample input unit 702 is configured to input a training sample.
  • the initializing unit 703 is configured to initialize the convolutional neural network and its parameters, including weights and offsets of each layer connection in the network layer.
  • the present invention pre-trains the Squeeze VGG-16 convolutional neural network as a network initialization using the ImageNet data set.
  • the sample training unit 704 is configured to adopt a forward propagation algorithm and a backward propagation algorithm, and use the training samples to learn the constructed network parameters, that is, the model used for the testing process.
  • the forward propagation algorithm first normalizes the size of the input image to 3 ⁇ 480 ⁇ 640, and intercepts a patch of 3 ⁇ 448 ⁇ 448 size and corresponding annotation information as an input of the convolutional neural network.
  • the convolutional layer the downsampling layer and the corrected linear unit layer (ReLU Nonlinearity Layer), in the Fire9 layer, the image feature size is 512 ⁇ 60 ⁇ 80; in the Fire12 layer, the feature image size is 512 ⁇ 30 ⁇ 40, behind
  • the two branch feature map sizes are 512 x 15 x 20 and 512 x 8 x 10, respectively.
  • the four coordinate points and category information of the target block diagram are obtained by convolution.
  • the output is 6 ⁇ 60 ⁇ 80
  • 6 Contains four coordinates of background, pedestrian category and candidate block diagram.
  • the candidate block diagrams obtained by each branch layer are summarized in the proposal node, and the background semantic information of the Fire9 layer and the features obtained by the pooling operation of the upsampled information through the region of interest are superimposed to be the final block diagram. Regression and category regression.
  • the loss function for a particular detection layer m, only contributes to the loss function if the target scale is within the range detectable by m, so the loss function is defined as
  • p(X) (p 0 (X), . . . , p K (X)) is the probability distribution of the target class.
  • the cross-entropy loss function is used to define the category regression, ie
  • the detecting unit 71 is configured to input a test sample, and use a trained model to detect a target object (such as a pedestrian) in different scales by using different intermediate layers to detect a target object in the image ( A block diagram such as a pedestrian.
  • a target object such as a pedestrian
  • a block diagram such as a pedestrian.
  • the detecting unit 71 further includes:
  • a model loading unit 710 configured to load the trained model
  • test sample input unit 711 for inputting a test sample
  • the image prediction unit 712 is configured to use the trained model to detect pedestrians in different scales by using different intermediate layers through the trained model to predict the pedestrian's block diagram in the image. Specifically, the image prediction unit 712 generates a network branch in total of 4 layers in Fire9, Fire12, conv6, and the added pooling layer according to the convolution layer feature, based on the Squeeze VGG-16 convolutional neural network, using the target candidate network in the model. The target candidate region of the object is detected at different scales; then, the target detection region is used, and the image region of the target candidate region is used as the background semantic information of the target candidate region, and the feature map of the Fire9 layer is performed.
  • the background semantic information and the upsampled information are pooled through the region of interest to obtain fixed-size features, and then a layer of fully connected layers is added to perform regression of categories and final candidate frames. .
  • the fast pedestrian detection method and device of the present invention learns from the compression network method, adjusts and trains the VGG-16 network to obtain the squeezeze VGG-16 network that meets the requirements of the embedded system, and effectively reduces the parameter amount of the network model.
  • the present invention utilizes the variation law of the neural network sensing domain (ie, the deeper the neural network layer is, the larger the sensing domain is, which is suitable for detecting large Some target objects) use different intermediate layers to detect target objects in a specific scale range, better adapt to the relationship between the sensing domain and the object size, and effectively improve the detection result; in addition, in order to enhance the detection of small objects
  • the present invention uses a deconvolution method to amplify a feature map of a specific network layer.
  • the display memory and the calculation amount are hardly increased; in order to enhance the detection of the fuzzy object, the feature map at the layer is enhanced.
  • the target object 1.5 times the size of the area as a background semantic feature added to the network, for blur Sample distance and small objects, with excellent performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Human Computer Interaction (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

Disclosed in the present invention are a fast pedestrian detection method and a device. The method comprises the following steps: step S1, constructing a configurable deep model on the basis of a convolutional neural network, and utilizing training samples to learn parameters of a constructed network to obtain a model used for a test process; and step S2, inputting test samples, utilizing a variation law of neural-network perception domains and using different intermediate layers to detect target objects in different scale ranges through a trained model, and obtaining box graphs of the target objects in images by prediction. The method of the invention uses the different intermediate layers to detect the target objects in the certain scale ranges through utilizing the variation law of the neural-network perception domains, better adapts to relationships of the perception domains and object sizes, and effectively improves a detection result.

Description

一种快速行人检测方法及装置Fast pedestrian detection method and device 技术领域Technical field
本发明涉及行人检测技术领域,特别是涉及一种基于深度学习的面向嵌入式系统的快速行人检测方法及装置。The invention relates to the field of pedestrian detection technology, in particular to a fast pedestrian detection method and device for an embedded system based on deep learning.
背景技术Background technique
作为计算机视觉中目标检测的一部分,行人检测在现实世界的应用有着重要意义,随着图像采集技术的成熟与存储技术成本的下降,越来越多的摄像机被部署在公共场所,另一方面,随着自动驾驶、智能交通的推行,车载摄像头也产生了海量的视频资源。传统的人工筛选和处理,不仅效率低下,耗费大量人力物力,而且可能引入一些人为因素,导致一些偏差。近年来,深度学习在计算机视觉领域取得前所未有的突破,不仅效率远胜人力,准确度在很多领域也超过人类。因此,有效利用深度学习的方法进行行人检测的课题备受关注。As part of the detection of targets in computer vision, the application of pedestrian detection in the real world is of great significance. With the maturity of image acquisition technology and the decline in the cost of storage technology, more and more cameras are deployed in public places. With the implementation of autonomous driving and intelligent transportation, the in-vehicle camera has also produced a huge amount of video resources. Traditional manual screening and processing is not only inefficient, it consumes a lot of manpower and material resources, but also may introduce some human factors, leading to some deviations. In recent years, deep learning has achieved unprecedented breakthroughs in the field of computer vision. Not only is efficiency far better than manpower, but accuracy has surpassed humans in many fields. Therefore, the problem of effectively using the deep learning method for pedestrian detection has attracted attention.
人是视频监控或自动驾驶中最主要的目标之一,而行人检测的首要任务就是识别人体的存在,并提供相应的标注信息。由于在现实世界中捕捉到的图像质量参差不齐,对于小物体、遮挡的物体的检测一直是行人检测的难点,另一方面,车载摄像头也经常会捕捉到一些模糊的图像,这样的图像中也存在大量类似行人却不是行人的物体。而具体到嵌入式系统,由于识别能力强的大型神经网络模型通常难以有效率的运行在计算资源有限的嵌入式设备上,而对于嵌入式设备的应用需求又是实时的,因此兼顾检测准确率和效率是面向嵌入式系统的快速行人检测的重中之重。People are one of the most important goals in video surveillance or autonomous driving, and the primary task of pedestrian detection is to identify the presence of the human body and provide corresponding annotation information. Because the quality of images captured in the real world is uneven, the detection of small objects and occluded objects has always been a difficult point for pedestrian detection. On the other hand, car cameras often capture some blurred images. There are also a large number of objects that are similar to pedestrians but not pedestrians. Specific to embedded systems, large-scale neural network models with strong recognition capabilities are often difficult to run efficiently on embedded devices with limited computing resources, while the application requirements for embedded devices are real-time, so the accuracy of detection is considered. And efficiency is a top priority for fast pedestrian detection for embedded systems.
发明内容Summary of the invention
为克服上述现有技术存在的不足,本发明之一目的在于提供一种快速行人检测方法及装置,通过利用神经网络感知域的变化规律,使用不同的中间层对特定尺度范围内的目标物体进行检测,更好的适应了感知域与物体大小的关系,有效提高了检测结果。In order to overcome the deficiencies of the prior art described above, it is an object of the present invention to provide a method and apparatus for rapid pedestrian detection, which utilizes different intermediate layers to perform target objects in a specific scale range by utilizing the variation law of the neural network sensing domain. The detection better adapts to the relationship between the sensing domain and the size of the object, and effectively improves the detection result.
本发明之另一目的在于提供一种快速行人检测方法及装置,通过调整并训练VGG-16的网络得到适应嵌入式系统要求的squeeze VGG-16网络,有效降低了网络模型的参数量并加快了计算效率。Another object of the present invention is to provide a fast pedestrian detection method and apparatus, which can adjust and train the VGG-16 network to obtain a squeezeze VGG-16 network that meets the requirements of the embedded system, thereby effectively reducing the parameter amount of the network model and speeding up. Computational efficiency.
本发明之再一目的在于提供一种快速行人检测方法及装置,通过去卷积的方法对特定网络层的特征图进行放大,增强了对小物体的检测,相比于传统图片放大的方法,几乎不增加显存和计算量。A further object of the present invention is to provide a method and apparatus for rapid pedestrian detection, which can amplify a feature map of a specific network layer by a method of deconvolution, and enhance detection of a small object, compared to a conventional image enlargement method. Hardly increase the amount of memory and calculations.
本发明之又一目的在于提供一种快速行人检测方法及装置,通过使用目标对象1.5倍大小的区域作为背景语义特征增加到网络中,对于模糊物体和远距离小物体的检测,有着极佳的性能。Another object of the present invention is to provide a fast pedestrian detection method and apparatus, which is excellent in detecting a blurred object and a long-distance small object by using a region of 1.5 times the size of the target object as a background semantic feature. performance.
为达上述及其它目的,本发明提出一种快速行人检测方法,包括如下步骤:To achieve the above and other objects, the present invention provides a rapid pedestrian detection method comprising the following steps:
步骤S1,构建可配置的基于卷积神经网络的深度模型,利用训练样本学习出构建的网络参数,获得用于测试过程的模型;Step S1, constructing a configurable depth model based on a convolutional neural network, learning a constructed network parameter using the training sample, and obtaining a model for the testing process;
步骤S2,输入测试样本,通过训练好的模型利用神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的目标物体进行检测,预测出图像中目标物体的框图。In step S2, the test sample is input, and the trained model is used to detect the target object in different scales by using different intermediate layers to detect the target object in the image, and the block diagram of the target object in the image is predicted.
优选地,步骤S1进一步包括:Preferably, step S1 further comprises:
构建可配置的基于卷积神经网络的深度模型;Construct a configurable depth model based on convolutional neural networks;
输入训练样本;Enter training samples;
初始化卷积神经网络及其参数,包括网络层中每层连接的权重和偏置;Initializing the convolutional neural network and its parameters, including the weight and offset of each layer connection in the network layer;
采用前向传播算法和后向传播算法,利用训练样本学习出构建的网络参数,即用于测试过程的模型。Using the forward propagation algorithm and the backward propagation algorithm, the training sample is used to learn the constructed network parameters, that is, the model used for the test process.
优选地,所述该深度模型包括多尺度的目标候选网络与目标检测网络,所 述目标候选网络基于卷积神经网络不同层提出特征的差异性,在中间层分别生成对不同尺度目标物体的候选框图;所述目标检测网络在所述目标候选网络输出的候选框图的基础上进行精细化的分类和检测。Preferably, the depth model comprises a multi-scale target candidate network and a target detection network, and the target candidate network proposes differences of features based on different layers of the convolutional neural network, and generates candidates for different scale target objects in the intermediate layer respectively. Block diagram; the target detection network performs refined classification and detection on the basis of candidate block diagrams output by the target candidate network.
优选地,所述卷积神经网络由卷积层、降采样层、上采样层堆叠而成。所述卷积层是指对输入的图像或者特征图在二维空间上进行卷积运算,提取层次化特征;所述降采样层使用没有重叠的max-pooling操作,该操作用于提取形状和偏移不变的特征,同时减少特征图大小,提高计算效率;所述上采样层,是指对输入的特征图在二维空间上进行去卷积的操作,用以增大特征图的像素。Preferably, the convolutional neural network is formed by stacking a convolution layer, a downsampling layer, and an upsampling layer. The convolution layer refers to a convolution operation on a two-dimensional space of an input image or a feature map to extract a layered feature; the downsampling layer uses a max-pooling operation without overlap, which is used to extract a shape and Offset invariant features, while reducing the size of the feature map, and improving computational efficiency; the upsampling layer refers to the operation of deconvolving the input feature map in a two-dimensional space to increase the pixel of the feature map .
优选地,所述深度模型采用Squeeze VGG-16卷积神经网络作为骨干网络,所述Squeeze VGG-16卷积神经网络采用conv1-1层和紧随其后的12层Fire模块层为特征提取的网络结构。Preferably, the depth model uses a Squeeze VGG-16 convolutional neural network as a backbone network, and the Squeeze VGG-16 convolutional neural network is characterized by a conv1-1 layer and a 12-layer Fire module layer immediately following it. Network structure.
优选地,所述目标候选网络在所述Squeeze VGG-16卷积神经网络基础上,根据卷积层特征,在Fire9、Fire12、conv6以及增加的pooling层,产生网络分支,以进行不同尺度检测到物体的候选框的回归。Preferably, on the basis of the Squeeze VGG-16 convolutional neural network, according to the convolution layer feature, the target candidate network generates network branches in Fire9, Fire12, conv6 and the added pooling layer to detect different scales. The regression of the candidate box of the object.
优选地,所述目标检测网络在所述目标候选区域的基础上,将目标候选区域预设倍数大小的图片区域作为目标的背景语义信息,将Fire9层的特征图进行一次上采样,作为增强对小物体感知的信息,并将背景语义信息与上采样信息经过感兴趣区域的池化获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归。Preferably, on the basis of the target candidate area, the target detection area uses the picture area of the target candidate area preset multiple size as the target background semantic information, and performs the upsampling of the feature map of the Fire9 layer as an enhanced pair. The small object perceives the information, and the background semantic information and the upsampled information are obtained through the pooling of the region of interest to obtain a fixed size feature, and then a layer of fully connected layers is added to perform the regression of the category and the final candidate frame.
优选地,所述训练样本包括RGB图像数据和图像中行人区域的标注信息,实际训练用的图像数据是根据行人所在区域裁剪得到的小的patch。Preferably, the training sample includes RGB image data and annotation information of a pedestrian area in the image, and the actual training image data is a small patch cropped according to the region where the pedestrian is located.
优选地,所述后向传播算法,需先求出正向传播预测的目标框图与图像实际目标框图的损失函数
Figure PCTCN2018095058-appb-000001
然后求得其对参数W的梯度,采用梯度下降的算法更新W以最小化损失函数
Figure PCTCN2018095058-appb-000002
假定中间层有M个分支可以输出目标候选区域,l m表示分支m的损失函数,α m表示l m函数的权重,S={S 1,S 2,…,S M}指相应尺度的目标对象,则损失函数
Figure PCTCN2018095058-appb-000003
可定义为:
Preferably, in the backward propagation algorithm, the target block diagram of the forward propagation prediction and the loss function of the actual target block diagram of the image are first obtained.
Figure PCTCN2018095058-appb-000001
Then find its gradient to the parameter W, and update the W with a gradient descent algorithm to minimize the loss function.
Figure PCTCN2018095058-appb-000002
It is assumed that there are M branches in the middle layer to output the target candidate region, l m represents the loss function of the branch m, α m represents the weight of the l m function, and S={S 1 , S 2 , . . . , S M } refers to the target of the corresponding scale. Object, loss function
Figure PCTCN2018095058-appb-000003
Can be defined as:
Figure PCTCN2018095058-appb-000004
Figure PCTCN2018095058-appb-000004
为达到上述目的,本发明还提供一种快速行人检测系统,包括:To achieve the above object, the present invention also provides a fast pedestrian detection system, comprising:
训练单元,用于构建可配置的基于卷积神经网络的深度模型,利用训练样本学习出构建的网络参数,获得用于测试过程的模型;a training unit for constructing a configurable depth model based on a convolutional neural network, learning a constructed network parameter using the training sample, and obtaining a model for the testing process;
检测单元,用于输入测试样本,通过训练好的模型利用神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的目标物体进行检测,预测出图像中目标物体的框图。The detecting unit is configured to input the test sample, and the trained model is used to detect the target object in different scales by using different intermediate layers to detect the target object in the image, and predict the block diagram of the target object in the image.
与现有技术相比,本发明一种快速行人检测方法及装置借鉴压缩网络的方法,调整并训练VGG-16的网络得到适应嵌入式系统要求的squeeze VGG-16网络,有效降低了网络模型的参数量并加快了计算效率;另一方面,针对传统检测方法中感知域与物体大小不一致的问题,本发明利用神经网络感知域的变化规律(即神经网络层越深,感知域越大,适合检测大一些的目标物体),使用不同的中间层对特定尺度范围内的目标物体进行检测,更好的适应了感知域与物体大小的关系,有效提高了检测结果;另外,为了增强对小物体的检测,本发明使用去卷积的方法对特定网络层的特征图进行放大,相比于传统图片放大的方法,几乎不增加显存和计算量;为了增强对于模糊物体的检测,在该层的特征图上,使用目标对象1.5倍大小的区域作为背景语义特征增加到网络中,对于模糊物体和远距离小物体的检测,有着极佳的性能。Compared with the prior art, a fast pedestrian detection method and device of the present invention draws on a compression network method, adjusts and trains the VGG-16 network to obtain a squeezeze VGG-16 network that meets the requirements of the embedded system, and effectively reduces the network model. The parameter quantity accelerates the calculation efficiency; on the other hand, the problem of the inconsistency between the sensing domain and the object size in the traditional detection method, the invention utilizes the variation law of the neural network sensing domain (ie, the deeper the neural network layer, the larger the sensing domain is, suitable for Detecting larger target objects), using different intermediate layers to detect target objects in a specific scale range, better adapting to the relationship between the sensing domain and the object size, effectively improving the detection results; in addition, in order to enhance the small objects The detection method of the present invention uses a deconvolution method to amplify the feature map of a specific network layer. Compared with the conventional image enlargement method, the display memory and the calculation amount are hardly increased; in order to enhance the detection of the fuzzy object, the layer is On the feature map, use the area 1.5 times the size of the target object as the background semantic feature to add to the network. Blur distant objects and the detection of small objects, with excellent performance.
附图说明DRAWINGS
图1为本发明一种快速行人检测方法的步骤流程图;1 is a flow chart showing the steps of a fast pedestrian detection method according to the present invention;
图2为本发明具体实施例中Squeeze VGG-16神经网络结构示意图;2 is a schematic structural diagram of a Squeeze VGG-16 neural network according to an embodiment of the present invention;
图3为本发明具体实施例中Fire模块的示意图;3 is a schematic diagram of a Fire module in a specific embodiment of the present invention;
图4为本发明具体实施例中目标候选网络的结构示意图;4 is a schematic structural diagram of a target candidate network according to an embodiment of the present invention;
图5为本发明具体实施例中目标检测网络的结构示意图;FIG. 5 is a schematic structural diagram of a target detection network according to an embodiment of the present invention; FIG.
图6为本发明具体实施例中快速行人检测的过程示意图;6 is a schematic diagram of a process of fast pedestrian detection in a specific embodiment of the present invention;
图7为本发明一种快速行人检测装置的系统架构图;7 is a system architecture diagram of a fast pedestrian detection device according to the present invention;
图8为本发明具体实施例中训练单元的细部结构图;Figure 8 is a detailed structural view of a training unit in a specific embodiment of the present invention;
图9为本发明具体实施例中检测单元的细部结构图。Figure 9 is a detailed structural view of a detecting unit in a specific embodiment of the present invention.
具体实施方式Detailed ways
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。The embodiments of the present invention will be described by way of specific examples and the accompanying drawings, and those skilled in the art can readily understand the advantages and advantages of the present invention. The present invention may be embodied or applied in various other specific embodiments, and various modifications and changes may be made without departing from the spirit and scope of the invention.
图1为本发明一种快速行人检测方法的步骤流程图。如图1所示,本发明一种快速行人检测方法,包括如下步骤:1 is a flow chart showing the steps of a fast pedestrian detection method according to the present invention. As shown in FIG. 1, a fast pedestrian detection method of the present invention includes the following steps:
步骤S1,构建可配置的基于卷积神经网络的深度模型,利用训练样本学习出构建的网络参数,获得用于测试过程的模型。在本发明具体实施例中,该深度模型由两个子网路组成:第一个子网络,为多尺度的目标候选网络,用于提取人物特征并给出候选区域,具体地,该目标候选网络基于卷积神经网络不同层提出特征的差异性,在中间层分别生成对不同尺度行人的候选框图;第二个子网络,为目标检测网络,增强检测的效果,其与目标候选网络共享参数,在候选框图的基础上进行精细化的分类和检测。具体地,步骤S1进一步包括:In step S1, a configurable depth model based on a convolutional neural network is constructed, and the constructed network parameters are learned by using the training samples to obtain a model for the testing process. In a specific embodiment of the present invention, the depth model is composed of two sub-networks: a first sub-network, which is a multi-scale target candidate network, used to extract character features and give candidate regions, specifically, the target candidate network. Based on the difference of features proposed by different layers of the convolutional neural network, candidate block diagrams for pedestrians of different scales are generated in the middle layer respectively; the second sub-network is the target detection network, and the effect of the detection is enhanced, and the parameters are shared with the target candidate network. Refined classification and detection based on candidate block diagrams. Specifically, step S1 further includes:
步骤S100,构建可配置的基于卷积神经网络的深度模型。Step S100, constructing a configurable depth model based on a convolutional neural network.
所述卷积神经网络由卷积层、降采样层、上采样层堆叠而成,所述卷积层是指对输入的图像或者特征图在二维空间上进行卷积运算,提取层次化特征;所述的降采样层使用没有重叠的max-pooling操作,该操作用于提取形状和偏移不变的特征,同时减少特征图大小,提高计算效率;所述的上采样层,是指对输入的特征图在二维空间上进行去卷积的操作,用以增大特征图的像素,主要用于目标检测网络,提升检测效果,在本发明具体实施例中,采用Squeeze VGG-16卷积神经网络作为骨干网络,如图2所示,该Squeeze VGG-16卷积神经 网络采用conv1-1层和紧随其后的12层Fire模块作为卷积层,用以提取特征;其中的pool1-pool5是降采样层;使用在ImageNet数据集上预先训练好的模型作为初始化。即本发明首先利用ImageNet数据集预先训练Squeeze VGG-16作为网络初始化。The convolutional neural network is formed by stacking a convolutional layer, a downsampling layer, and an upsampling layer, and the convolutional layer is a convolution operation on an input image or a feature image in a two-dimensional space to extract hierarchical features. The downsampling layer uses a max-pooling operation without overlap, which is used to extract features with shape and offset invariance, while reducing the size of the feature map and improving computational efficiency; the upsampling layer refers to the pair The input feature map performs a deconvolution operation on the two-dimensional space to increase the pixels of the feature map, and is mainly used for the target detection network to improve the detection effect. In the specific embodiment of the present invention, the Squeeze VGG-16 volume is adopted. As an backbone network, as shown in Figure 2, the Squeeze VGG-16 convolutional neural network uses a conv1-1 layer followed by a 12-layer Fire module as a convolutional layer to extract features; -pool5 is the downsampling layer; the pre-trained model on the ImageNet dataset is used for initialization. That is, the present invention first pre-trains Squeeze VGG-16 as a network initialization using the ImageNet data set.
图3为本发明具体实施例中Fire模块的结构示意图。如图3所示,Fire模块由两个卷积核大小为1×1的卷积层和一个卷积核大小为3×3的卷积层组成,目的在于用1×1的卷积核代替3×3的卷积核,从而使参数量减少9倍,但为了不影响网络的表征能力,不是全部替代,而是一部分是用1×1的卷积核,一部分使用3×3的卷积核,这样做的另一个好处是减少3×3卷积核的输入通道,同时起到降低参数量的效果,具体地,Fire模块先是使用1×1的卷积层对输入层进行降维操作,然后参照GoogLeNet结构,使用1×1和3×3的卷积层提取特征,最后将两部分特征连接起来,这样的方式极大降低了计算量和模型参数。FIG. 3 is a schematic structural diagram of a Fire module according to an embodiment of the present invention. As shown in Figure 3, the Fire module consists of two convolution layers with a convolution kernel size of 1 × 1 and a convolution layer with a convolution kernel size of 3 × 3, in order to replace the 1 × 1 convolution kernel. 3 × 3 convolution kernel, so that the parameter amount is reduced by 9 times, but in order not to affect the network representation ability, not all replacement, but part is to use 1 × 1 convolution kernel, part uses 3 × 3 convolution Nuclear, another advantage of this is to reduce the input channel of the 3 × 3 convolution kernel, and at the same time reduce the amount of parameters. Specifically, the Fire module first uses the 1 × 1 convolution layer to reduce the input layer. Then, referring to the GoogLeNet structure, using 1x1 and 3x3 convolutional layers to extract features, and finally connecting the two parts of the feature, this way greatly reduces the amount of computation and model parameters.
图4为本发明具体实施例中目标候选网络的架构示意图。在本发明具体实施例中,所述目标候选网络在Squeeze VGG-16卷积神经网络基础上,根据卷积层特征,在Fire9、Fire12、conv6以及增加的pooling层共计4层,产生网络分支,分支进行不同尺度检测到物体的候选框的回归。但对于Fire-9层,它比较接近主干网络的低层,相比其他层对梯度的影响会很大,学习过程不稳定,因此多了一个buffer(缓冲)层,如图4中det-conv层所示,buffer层避免检测分支的梯度被直接back-propagated(反向传播)到主干层。4 is a schematic structural diagram of a target candidate network in a specific embodiment of the present invention. In the specific embodiment of the present invention, the target candidate network is based on the Squeeze VGG-16 convolutional neural network, and according to the convolution layer feature, a total of 4 layers are generated in the Fire9, Fire12, conv6, and the added pooling layer, and a network branch is generated. The branch performs regression of the candidate frame of the object detected at different scales. But for the Fire-9 layer, it is closer to the lower layer of the backbone network. Compared to other layers, the gradient will have a large impact, and the learning process is unstable. Therefore, a buffer layer is added, as shown in the det-conv layer in Figure 4. As shown, the buffer layer avoids detecting the gradient of the branch being directly back-propagated (backpropagated) to the backbone layer.
本发明利用神经网络感知域的变化规律(即神经网络层越深,感知域越大,适合检测大一些的目标物体),使用不同的中间层对特定尺度范围内的目标物体进行检测,更好的适应了感知域与物体大小的关系,有效提高了检测结果。The invention utilizes the variation law of the neural network sensing domain (ie, the deeper the neural network layer is, the larger the sensing domain is, it is suitable for detecting a larger target object), and the different intermediate layers are used to detect the target object in a specific scale range, which is better. Adapted to the relationship between the sensing domain and the size of the object, effectively improving the detection results.
图5为本发明具体实施例中目标检测网络的架构示意图。所述目标检测网络与目标候选网络共享参数,将目标候选网络的候选框汇总,以增强监测网络对物体与背景的区分能力。在本发明具体实施例中,所述目标检测网络,在目 标候选区域的基础上,将目标候选区域1.5倍大小的图片区域作为目标的背景语义信息;将Fire9层的特征图进行一次上采样,作为增强对小物体感知的信息,将背景语义信息与上采样信息经过感兴趣区域的池化(ROI pooling)获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归,具体地,主干cnn层连接一个proposals的节点,用于汇总目标候选网络所得到的候选框信息;另一方面,针对fire9层的特征图,W和H是输入图片的宽度和高度,立方体1代表物体区域的在特征图的映射,而立方体2代表context区域在特征图上的映射,context区域约为物体区域的1.5倍,同时为了加强对小物体的检测,再对Fire9层进行一次上采样,之后与faster RCNN算法类似,使用感兴趣区域的池化获得固定大小的特征;将Fire9层处理后的特征与proposals汇总的特征连接(concat)到一起,后增加一层全连接层,进行类别和最终候选框的回归,在此不予赘述。FIG. 5 is a schematic structural diagram of a target detection network according to an embodiment of the present invention. The target detection network shares parameters with the target candidate network, and summarizes candidate blocks of the target candidate network to enhance the ability of the monitoring network to distinguish objects from the background. In a specific embodiment of the present invention, the target detection network uses, as a target background semantic information, a picture area of 1.5 times the target candidate area on the basis of the target candidate area; and performs a upsampling of the feature map of the Fire9 layer. As information for enhancing the perception of small objects, the background semantic information and the upsampled information are subjected to ROI pooling to obtain fixed-size features, and then a layer of fully-connected layers is added to perform regression of categories and final candidate frames. Specifically, the backbone cnn layer is connected to a proposal node for summarizing the candidate frame information obtained by the target candidate network; on the other hand, for the feature map of the fire9 layer, W and H are the width and height of the input picture, and the cube 1 Represents the mapping of the object area in the feature map, and cube 2 represents the mapping of the context area on the feature map. The context area is about 1.5 times the object area. At the same time, in order to enhance the detection of the small object, the Fire9 layer is upsampled once. , then similar to the fast RCNN algorithm, using the pooling of the region of interest to obtain fixed-size features; The 9-layer processed features are concated with the features of the proposals, and then a layer of fully connected layers is added for regression of the category and final candidate boxes, which are not described here.
步骤S101,输入训练样本。In step S101, a training sample is input.
训练过程需要提供图像中参考人物的对应的框,同时为了加速训练,训练过程将含有参考人物的图像从原始图像中裁剪出来,形成一个个patch(图像块),patch相比于原始图像更小,用以训练,有效加速了训练过程。具体地,在本发明中,输入的训练样本包括RGB图像数据和图像中行人区域的标注信息,实际训练用的图像数据是根据行人所在区域裁剪得到的小的patch(图象块)。用数学语言表示,训练样本
Figure PCTCN2018095058-appb-000005
其中X i表示训练图片的一个patch;在实际应用中,除了行人这一类别,还有其他类别,例如背景、骑自行车车的人、坐着的人等K个类别,因此标注数据Y i=(y i,b i)由类别标签y i∈{0,1,2,...,K}和框图坐标点
Figure PCTCN2018095058-appb-000006
组成,其中
Figure PCTCN2018095058-appb-000007
为框图左上角的起始坐标点,
Figure PCTCN2018095058-appb-000008
为框图宽度和高度。
The training process needs to provide the corresponding frame of the reference character in the image, and in order to speed up the training, the training process cuts the image containing the reference character from the original image to form a patch, and the patch is smaller than the original image. For training, it effectively speeds up the training process. Specifically, in the present invention, the input training samples include RGB image data and annotation information of the pedestrian area in the image, and the actual training image data is a small patch (image block) which is cropped according to the region where the pedestrian is located. Expressed in mathematical language, training samples
Figure PCTCN2018095058-appb-000005
Where X i represents a patch of the training picture; in practical applications, in addition to the category of pedestrians, there are other categories, such as background, bicycle rider, sitting person, etc. K categories, so the label data Y i = (y i ,b i ) by category label y i ∈{0,1,2,...,K} and block coordinate points
Figure PCTCN2018095058-appb-000006
Composition, of which
Figure PCTCN2018095058-appb-000007
For the starting coordinate point in the upper left corner of the block diagram,
Figure PCTCN2018095058-appb-000008
For block diagram width and height.
步骤S102,初始化卷积神经网络及其参数,包括网络层中每层连接的权重和偏置。具体地,本发明利用ImageNet数据集预先训练Squeeze VGG-16卷积神经网络作为网络初始化。Step S102, initializing the convolutional neural network and its parameters, including weights and offsets of each layer connection in the network layer. In particular, the present invention pre-trains the Squeeze VGG-16 convolutional neural network as a network initialization using the ImageNet data set.
步骤S103,采用前向传播算法和后向传播算法,利用训练样本学习出构建的网络参数,即用于测试过程的模型。Step S103, using a forward propagation algorithm and a backward propagation algorithm, using the training samples to learn the constructed network parameters, that is, the model used for the testing process.
在本发明中,所述前向传播算法,首先将输入图像的大小归一化为3×480×640,截取3×448×448大小的patch和相应的标注信息作为卷积神经网络的输入,经过卷积层、降采样层和矫正线性单元层(ReLU Nonlinearity Layer),在Fire9层,图像特征图大小为512×60×80;在Fire12层,特征图大小为512×30×40,在后面两个分支特征图大小依次是512×15×20和512×8×10。在不同特征图上,采用卷积的方式得到目标框图的四个坐标点和类别信息,以Fire9层为例,假定只检测行人和背景,则输出为特征大小为6×60×80,其中6包含背景、行人两个类别和候选框图四个坐标点。在目标检测网络中,将各个分支层得到的候选框图在proposals节点进行汇总,同时与Fire9层的背景语义信息和上采样信息经过感兴趣区域的池化操作得到的特征进行叠加,做最后的框图回归和类别回归。In the present invention, the forward propagation algorithm first normalizes the size of the input image to 3×480×640, and intercepts a patch of 3×448×448 size and corresponding annotation information as an input of the convolutional neural network. After the convolutional layer, the downsampling layer and the corrected linear unit layer (ReLU Nonlinearity Layer), in the Fire9 layer, the image feature size is 512×60×80; in the Fire12 layer, the feature image size is 512×30×40, behind The two branch feature map sizes are 512 x 15 x 20 and 512 x 8 x 10, respectively. On the different feature maps, the four coordinate points and category information of the target block diagram are obtained by convolution. Taking the Fire9 layer as an example, if only the pedestrian and the background are detected, the output is 6×60×80, 6 Contains four coordinates of background, pedestrian category and candidate block diagram. In the target detection network, the candidate block diagrams obtained by each branch layer are summarized in the proposal node, and the background semantic information of the Fire9 layer and the features obtained by the pooling operation of the upsampled information through the region of interest are superimposed to be the final block diagram. Regression and category regression.
在本发明中,所述后向传播算法,需要先求出正向(即前向)传播预测的目标框图与图像实际目标框图的损失函数
Figure PCTCN2018095058-appb-000009
然后求得其对参数W的梯度,采用梯度下降的算法更新W以最小化损失函数
Figure PCTCN2018095058-appb-000010
假定中间层有M个分支可以输出目标候选区域(M个尺度的感知域可以近似的检测出图像中所有目标物体),l m表示分支m的损失函数,α m表示l m函数的权重,S={S 1,S 2,…,S M}指相应尺度的目标对象,则损失函数
Figure PCTCN2018095058-appb-000011
可定义为:
In the present invention, the backward propagation algorithm needs to first find the target block diagram of the forward (ie, forward) propagation prediction and the loss function of the actual target block diagram of the image.
Figure PCTCN2018095058-appb-000009
Then find its gradient to the parameter W, and update the W with a gradient descent algorithm to minimize the loss function.
Figure PCTCN2018095058-appb-000010
It is assumed that there are M branches in the middle layer to output target candidate regions (the sensing domains of M scales can approximate all target objects in the image), l m represents the loss function of the branch m, and α m represents the weight of the l m function, S ={S 1 ,S 2 ,...,S M } refers to the target object of the corresponding scale, then the loss function
Figure PCTCN2018095058-appb-000011
Can be defined as:
Figure PCTCN2018095058-appb-000012
Figure PCTCN2018095058-appb-000012
所述损失函数,对于特定的检测层m,只有目标尺度在m所能检测的范围内,才对损失函数有贡献,故将损失函数定义为The loss function, for a particular detection layer m, only contributes to the loss function if the target scale is within the range detectable by m, so the loss function is defined as
Figure PCTCN2018095058-appb-000013
Figure PCTCN2018095058-appb-000013
其中,p(X)=(p 0(X),...,p K(X))表示目标类别的概率分布;λ是平衡系数;b为框图的4个坐标点,,
Figure PCTCN2018095058-appb-000014
指前向传播得到的坐标点;损失函数中,使用交叉熵损失函数定义类别回归,即
Where p(X)=(p 0 (X), . . . , p K (X)) represents the probability distribution of the target category; λ is the balance coefficient; b is the four coordinate points of the block diagram,
Figure PCTCN2018095058-appb-000014
Refers to the coordinate point obtained by forward propagation; in the loss function, the cross-entropy loss function is used to define the category regression, ie
L cls(p(X),y)=-log y(P(X))         (3) L cls (p(X), y)=-log y (P(X)) (3)
使用平滑的曼哈顿距离标准(smooth L1 criterion)进行目标框图的回归,定义如下Use the smooth Manhattan distance standard (smooth L1 criterion) to perform regression of the target block diagram, as defined below
Figure PCTCN2018095058-appb-000015
Figure PCTCN2018095058-appb-000015
步骤S2,通过训练好的模型利用神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的目标物体进行检测,预测出图像中目标物体(如行人)的框图。Step S2, using the trained model to utilize the variation rule of the neural network perception domain, using different intermediate layers to detect the target objects in different scales, and predicting the block diagram of the target object (such as a pedestrian) in the image.
具体地,步骤S2进一步包括:Specifically, step S2 further includes:
步骤S200,载入训练好的模型;Step S200, loading the trained model;
步骤S201,输入测试样本;Step S201, inputting a test sample;
步骤S202,利用训练好的模型,通过神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的行人进行检测,预测图像中行人的框图。图6为本发明具体实施例中快速行人检测的过程示意图,即利用模型中的目标候选网络在Squeeze VGG-16卷积神经网络基础上,根据卷积层特征,在fire9、fire12、conv6以及增加的pooling层共计4层产生网络分支,进行不同尺度检测到物体的目标候选区域(中间层a,中间层b,中间层c);然后利用目标检测网络,在目标候选区域的基础上,将目标候选区域1.5倍大小的图片区域作为目标的背景语义信息,将Fire9层的特征图进行一次上采样,作为增强对小物体感知的信息,将背景语义信息与上采样信息经过感兴趣区域的池化获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归。优选地,于步骤S202中,还使用去卷积的方法对特定网络层的特征图进行放大。Step S202, using the trained model, using different intermediate layers to detect pedestrians in different scales through the variation pattern of the neural network perception domain, and predicting the pedestrian block diagram in the image. 6 is a schematic diagram of a process of fast pedestrian detection in a specific embodiment of the present invention, that is, using a target candidate network in a model based on the Squeeze VGG-16 convolutional neural network, according to the characteristics of the convolution layer, in fire9, fire12, conv6, and increasing The pooling layer has a total of 4 layers to generate network branches, and the target candidate regions (intermediate layer a, intermediate layer b, intermediate layer c) of the object are detected at different scales; then the target detection network is used, and the target is selected based on the target candidate region The 1.5-time-size image area of the candidate area is used as the background semantic information of the target, and the feature map of the Fire9 layer is up-sampled once, as information for enhancing the perception of the small object, and the background semantic information and the upsampled information are pooled through the region of interest. A fixed size feature is obtained, followed by a layer of fully connected layers for regression of the category and final candidate box. Preferably, in step S202, the feature map of the specific network layer is also amplified by using a method of deconvolution.
本发明提出的行人检测方法,分别借鉴两方面的评价指标:平均查准率mAP和每秒帧数FPS。mAP用于评价最后检测区域与真实目标人物区域的交并比的情况,在不同交并比下查准率的平均值;FPS,主要是效率指标,指每秒可以处理的图片数目。The pedestrian detection method proposed by the invention draws on two evaluation indexes respectively: an average precision rate mAP and a frame number per second FPS. The mAP is used to evaluate the ratio of the final detection area to the real target person area, and the average value of the precision is compared under different cross-section ratios; FPS, mainly the efficiency index, refers to the number of pictures that can be processed per second.
图7为本发明一种快速行人检测装置的系统架构图。如图7所示,本发明一种快速行人检测装置,包括:FIG. 7 is a system architecture diagram of a fast pedestrian detection device according to the present invention. As shown in FIG. 7, a fast pedestrian detecting device of the present invention includes:
训练单元70,用于构建可配置的基于卷积神经网络的深度模型,利用训练样本学习出构建的网络参数,获得用于测试过程的模型。在本发明具体实施例中,训练单元70所构建的深度模型由两个子网路组成:第一个子网络,为多尺度的目标候选网络,用于提取人物特征并给出候选区域,具体地,该目标候选网络基于卷积神经网络不同层提出特征的差异性,在中间层分别生成对不同尺度行人的候选框图;第二个子网络,为目标检测网络,增强检测的效果,其与目标候选网络共享参数,在候选框图的基础上进行精细化的分类和检测。具体地,如图8所示,训练单元70进一步包括:The training unit 70 is configured to construct a configurable convolutional neural network-based depth model, learn the constructed network parameters using the training samples, and obtain a model for the testing process. In a specific embodiment of the present invention, the depth model constructed by the training unit 70 is composed of two sub-networks: a first sub-network, which is a multi-scale target candidate network, for extracting character features and giving candidate regions, specifically The target candidate network proposes feature differences based on different layers of the convolutional neural network, and generates candidate block diagrams for different scale pedestrians in the middle layer; the second sub-network is the target detection network, enhances the detection effect, and the target candidate Network sharing parameters, refined classification and detection based on candidate block diagrams. Specifically, as shown in FIG. 8, the training unit 70 further includes:
模型构建单元701,用于构建可配置的基于卷积神经网络的深度模型。The model construction unit 701 is configured to construct a configurable convolutional neural network based depth model.
所述卷积神经网络由卷积层、降采样层、上采样层堆叠而成,所述卷积层是指对输入的图像或者特征图在二维空间上进行卷积运算,提取层次化特征;所述的降采样层使用没有重叠的max-pooling操作,该操作用于提取形状和偏移不变的特征,同时减少特征图大小,提高计算效率,所述的上采样层,是指对输入的特征图在二维空间上进行去卷积的操作,用以增大特征图的像素。在本发明具体实施例中,采用Squeeze VGG-16卷积神经网络作为骨干网络。The convolutional neural network is formed by stacking a convolutional layer, a downsampling layer, and an upsampling layer, and the convolutional layer is a convolution operation on an input image or a feature image in a two-dimensional space to extract hierarchical features. The downsampling layer uses a max-pooling operation without overlap, which is used to extract features with shape and offset invariance, while reducing the size of the feature map and improving computational efficiency. The upsampling layer refers to the pair The input feature map performs a deconvolution operation on a two-dimensional space to increase the pixels of the feature map. In a specific embodiment of the invention, a Squeeze VGG-16 convolutional neural network is employed as the backbone network.
在本发明具体实施例中,所述目标候选网络在Squeeze VGG-16卷积神经网络基础上,根据卷积层特征,在fire9、fire12、conv6以及增加的pooling层共计4层,产生网络分支,分支进行不同尺度检测到物体的候选框的回归。但对于fire-9层,它比较接近主干网络的低层,相比其他层对梯度的影响会很大,学习过程不稳定,因此多了一个buffer(缓冲)层,buffer层避免检测分支的梯度被直接back-propagated(反向传播)到主干层。In a specific embodiment of the present invention, the target candidate network is based on the Squeeze VGG-16 convolutional neural network, and according to the convolution layer feature, a total of 4 layers are generated in fire9, fire12, conv6, and the added pooling layer, and a network branch is generated. The branch performs regression of the candidate frame of the object detected at different scales. But for the fire-9 layer, it is closer to the lower layer of the backbone network. Compared with other layers, the gradient will have a great influence on the gradient. The learning process is unstable, so there is an additional buffer layer. The buffer layer avoids detecting the gradient of the branch. Direct back-propagated to the backbone layer.
所述目标检测网络与目标候选网络共享参数,将目标候选网络的候选框汇总,以增强监测网络对物体与背景的区分能力。在本发明具体实施例中,所述目标检测网络,在目标候选区域的基础上,将目标候选区域1.5倍大小的图片 区域作为目标的背景语义信息;将Fire9层的特征图进行一次上采样,作为增强对小物体感知的信息,将背景语义信息与上采样信息经过感兴趣区域的池化获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归,具体地,主干cnn层连接一个proposal的子网,W和H是输入图片的宽度和高度,立方体1代表物体区域的pooling,而立方体2代表context区域的pooling,context区域约为物体区域的1.5倍,同时为了加强对小物体的检测,再对Fire9层进行一次上采样,之后与faster RCNN算法类似,使用感兴趣区域的池化获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归。The target detection network shares parameters with the target candidate network, and summarizes candidate blocks of the target candidate network to enhance the ability of the monitoring network to distinguish objects from the background. In a specific embodiment of the present invention, the target detection network uses, as a target background semantic information, a picture area of 1.5 times the target candidate area on the basis of the target candidate area; and performs a upsampling of the feature map of the Fire9 layer. As information for enhancing the perception of small objects, the background semantic information and the upsampled information are obtained by pooling the region of interest to obtain fixed-size features, and then a layer of fully connected layers is added to perform regression of the category and the final candidate frame. Specifically, The backbone cnn layer is connected to a proposal subnet, W and H are the width and height of the input picture, cube 1 represents the pooling of the object area, and cube 2 represents the pooling of the context area, which is about 1.5 times the object area, and Enhance the detection of small objects, and then perform upsampling on the Fire9 layer. Then, similar to the fast RCNN algorithm, use the pooling of the region of interest to obtain fixed-size features, then add a layer of fully-connected layers to classify and finalize the candidate box. Return.
训练样本输入单元702,用于输入训练样本。The training sample input unit 702 is configured to input a training sample.
具体地,训练样本
Figure PCTCN2018095058-appb-000016
其中X i表示训练图片的一个patch,标注数据Y i=(y i,b i)由类别标签y i和框图坐标点
Figure PCTCN2018095058-appb-000017
组成。
Specifically, training samples
Figure PCTCN2018095058-appb-000016
Where X i represents a patch of the training picture, and the annotation data Y i =(y i ,b i ) is determined by the category label y i and the block coordinate point
Figure PCTCN2018095058-appb-000017
composition.
初始化单元703,用于初始化卷积神经网络及其参数,包括网络层中每层连接的权重和偏置。具体地,本发明利用ImageNet数据集预先训练Squeeze VGG-16卷积神经网络作为网络初始化。The initializing unit 703 is configured to initialize the convolutional neural network and its parameters, including weights and offsets of each layer connection in the network layer. In particular, the present invention pre-trains the Squeeze VGG-16 convolutional neural network as a network initialization using the ImageNet data set.
样本训练单元704,用于采用前向传播算法和后向传播算法,利用训练样本学习出构建的网络参数,即用于测试过程的模型。The sample training unit 704 is configured to adopt a forward propagation algorithm and a backward propagation algorithm, and use the training samples to learn the constructed network parameters, that is, the model used for the testing process.
在本发明中,所述前向传播算法,首先将输入图像的大小归一化为3×480×640,截取3×448×448大小的patch和相应的标注信息作为卷积神经网络的输入,经过卷积层、降采样层和矫正线性单元层(ReLU Nonlinearity Layer),在Fire9层,图像特征图大小为512×60×80;在Fire12层,特征图大小为512×30×40,在后面两个分支特征图大小依次是512×15×20和512×8×10。在不同特征图上,采用卷积的方式得到目标框图的四个坐标点和类别信息,以Fire9层为例,假定只检测行人和背景,则输出为特征大小为6×60×80,其中6包含背景、行人两个类别和候选框图四个坐标点。在目标检测网络中,将各个分支层得到的候选框图在proposals节点进行汇总,同时与Fire9层的背景语义信息和上采样信息经过感兴趣区域的池化操作得到的特征进行叠加,做最后的框图 回归和类别回归。In the present invention, the forward propagation algorithm first normalizes the size of the input image to 3×480×640, and intercepts a patch of 3×448×448 size and corresponding annotation information as an input of the convolutional neural network. After the convolutional layer, the downsampling layer and the corrected linear unit layer (ReLU Nonlinearity Layer), in the Fire9 layer, the image feature size is 512×60×80; in the Fire12 layer, the feature image size is 512×30×40, behind The two branch feature map sizes are 512 x 15 x 20 and 512 x 8 x 10, respectively. On the different feature maps, the four coordinate points and category information of the target block diagram are obtained by convolution. Taking the Fire9 layer as an example, if only the pedestrian and the background are detected, the output is 6×60×80, 6 Contains four coordinates of background, pedestrian category and candidate block diagram. In the target detection network, the candidate block diagrams obtained by each branch layer are summarized in the proposal node, and the background semantic information of the Fire9 layer and the features obtained by the pooling operation of the upsampled information through the region of interest are superimposed to be the final block diagram. Regression and category regression.
所述后向传播算法,需要先求出正向传播预测的目标框图与图像实际目标框图的损失函数
Figure PCTCN2018095058-appb-000018
然后求得其对参数W的梯度,采用梯度下降的算法更新W以最小化损失函数
Figure PCTCN2018095058-appb-000019
假定中间层有M个分支可以输出目标候选区域(M个尺度的感知域可以近似的检测出图像中所有目标物体),l m表示分支m的损失函数,α m表示l m函数的权重,S={S 1,S 2,…,S M}指相应尺度的目标对象,则损失函数
Figure PCTCN2018095058-appb-000020
可定义为:
The backward propagation algorithm needs to first find the target block diagram of the forward propagation prediction and the loss function of the actual target block diagram of the image.
Figure PCTCN2018095058-appb-000018
Then find its gradient to the parameter W, and update the W with a gradient descent algorithm to minimize the loss function.
Figure PCTCN2018095058-appb-000019
It is assumed that there are M branches in the middle layer to output target candidate regions (the sensing domains of M scales can approximate all target objects in the image), l m represents the loss function of the branch m, and α m represents the weight of the l m function, S ={S 1 ,S 2 ,...,S M } refers to the target object of the corresponding scale, then the loss function
Figure PCTCN2018095058-appb-000020
Can be defined as:
Figure PCTCN2018095058-appb-000021
Figure PCTCN2018095058-appb-000021
所述损失函数,对于特定的检测层m,只有目标尺度在m所能检测的范围内,才对损失函数有贡献,故将损失函数定义为The loss function, for a particular detection layer m, only contributes to the loss function if the target scale is within the range detectable by m, so the loss function is defined as
Figure PCTCN2018095058-appb-000022
Figure PCTCN2018095058-appb-000022
其中,p(X)=(p 0(X),...,p K(X))为目标类别的概率分布。损失函数中,使用交叉熵损失函数定义类别回归,即 Where p(X)=(p 0 (X), . . . , p K (X)) is the probability distribution of the target class. In the loss function, the cross-entropy loss function is used to define the category regression, ie
L cls(p(X),y)=-log y(P(X)) L cls (p(X), y)=-log y (P(X))
使用smooth L1 criterion进行目标框图的回归,定义如下Use the smooth L1 criterion to perform the regression of the target block diagram, as defined below
Figure PCTCN2018095058-appb-000023
Figure PCTCN2018095058-appb-000023
检测单元71,用于输入测试样本,通过训练好的模型利用神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的目标物体(如行人)进行检测,预测出图像中目标物体(如行人)的框图。The detecting unit 71 is configured to input a test sample, and use a trained model to detect a target object (such as a pedestrian) in different scales by using different intermediate layers to detect a target object in the image ( A block diagram such as a pedestrian.
具体地,如图9所示,检测单元71进一步包括:Specifically, as shown in FIG. 9, the detecting unit 71 further includes:
模型载入单元710,用于载入训练好的模型;a model loading unit 710, configured to load the trained model;
测试样本输入单元711,用于输入测试样本;a test sample input unit 711 for inputting a test sample;
图像预测单元712,用于利用训练好的模型,通过训练好的模型利用神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的行人进行检测,预测图像中行人的框图。具体地,图像预测单元712利用模型中的目标候选网络,在Squeeze VGG-16卷积神经网络基础上,根据卷积层特征,在Fire9、Fire12、 conv6以及增加的pooling层共计4层产生网络分支,进行不同尺度检测到物体的目标候选区域;然后利用目标检测网络,在目标候选区域的基础上,将目标候选区域1.5倍大小的图片区域作为目标的背景语义信息,将Fire9层的特征图进行一次上采样,作为增强对小物体感知的信息,将背景语义信息与上采样信息经过感兴趣区域的池化获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归。The image prediction unit 712 is configured to use the trained model to detect pedestrians in different scales by using different intermediate layers through the trained model to predict the pedestrian's block diagram in the image. Specifically, the image prediction unit 712 generates a network branch in total of 4 layers in Fire9, Fire12, conv6, and the added pooling layer according to the convolution layer feature, based on the Squeeze VGG-16 convolutional neural network, using the target candidate network in the model. The target candidate region of the object is detected at different scales; then, the target detection region is used, and the image region of the target candidate region is used as the background semantic information of the target candidate region, and the feature map of the Fire9 layer is performed. Once upsampling, as information to enhance the perception of small objects, the background semantic information and the upsampled information are pooled through the region of interest to obtain fixed-size features, and then a layer of fully connected layers is added to perform regression of categories and final candidate frames. .
综上所述,本发明一种快速行人检测方法及装置借鉴压缩网络的方法,调整并训练VGG-16的网络得到适应嵌入式系统要求的squeeze VGG-16网络,有效降低了网络模型的参数量并加快了计算效率;另一方面,针对传统检测方法中感知域与物体大小不一致的问题,本发明利用神经网络感知域的变化规律(即神经网络层越深,感知域越大,适合检测大一些的目标物体),使用不同的中间层对特定尺度范围内的目标物体进行检测,更好的适应了感知域与物体大小的关系,有效提高了检测结果;另外,为了增强对小物体的检测,本发明使用去卷积的方法对特定网络层的特征图进行放大,相比于传统图片放大的方法,几乎不增加显存和计算量;为了增强对于模糊物体的检测,在该层的特征图上,使用目标对象1.5倍大小的区域作为背景语义特征增加到网络中,对于模糊物体和远距离小物体的检测,有着极佳的性能。In summary, the fast pedestrian detection method and device of the present invention learns from the compression network method, adjusts and trains the VGG-16 network to obtain the squeezeze VGG-16 network that meets the requirements of the embedded system, and effectively reduces the parameter amount of the network model. On the other hand, in view of the problem that the sensing domain and the object size are inconsistent in the traditional detection method, the present invention utilizes the variation law of the neural network sensing domain (ie, the deeper the neural network layer is, the larger the sensing domain is, which is suitable for detecting large Some target objects) use different intermediate layers to detect target objects in a specific scale range, better adapt to the relationship between the sensing domain and the object size, and effectively improve the detection result; in addition, in order to enhance the detection of small objects The present invention uses a deconvolution method to amplify a feature map of a specific network layer. Compared with the conventional image enlargement method, the display memory and the calculation amount are hardly increased; in order to enhance the detection of the fuzzy object, the feature map at the layer is enhanced. On the top, using the target object 1.5 times the size of the area as a background semantic feature added to the network, for blur Sample distance and small objects, with excellent performance.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。The above-described embodiments are merely illustrative of the principles of the invention and its effects, and are not intended to limit the invention. Modifications and variations of the above-described embodiments can be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the invention should be as set forth in the claims.

Claims (10)

  1. 一种快速行人检测方法,包括如下步骤:A rapid pedestrian detection method includes the following steps:
    步骤S1,构建可配置的基于卷积神经网络的深度模型,利用训练样本学习出构建的网络参数,获得用于测试过程的模型;Step S1, constructing a configurable depth model based on a convolutional neural network, learning a constructed network parameter using the training sample, and obtaining a model for the testing process;
    步骤S2,输入测试样本,通过训练好的模型利用神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的目标物体进行检测,预测出图像中目标物体的框图。In step S2, the test sample is input, and the trained model is used to detect the target object in different scales by using different intermediate layers to detect the target object in the image, and the block diagram of the target object in the image is predicted.
  2. 如权利要求1所述的一种快速行人检测方法,其特征在于,步骤S1进一步包括:The method of detecting a rapid pedestrian detection according to claim 1, wherein the step S1 further comprises:
    构建可配置的基于卷积神经网络的深度模型;Construct a configurable depth model based on convolutional neural networks;
    输入训练样本;Enter training samples;
    初始化卷积神经网络及其参数,包括网络层中每层连接的权重和偏置;Initializing the convolutional neural network and its parameters, including the weight and offset of each layer connection in the network layer;
    采用前向传播算法和后向传播算法,利用训练样本学习出构建的网络参数,即用于测试过程的模型。Using the forward propagation algorithm and the backward propagation algorithm, the training sample is used to learn the constructed network parameters, that is, the model used for the test process.
  3. 如权利要求2所述的一种快速行人检测方法,其特征在于,所述该深度模型包括多尺度的目标候选网络与目标检测网络,所述目标候选网络基于卷积神经网络不同层提出特征的差异性,在中间层分别生成对不同尺度目标物体的候选框图;所述目标检测网络在所述目标候选网络输出的候选框图的基础上进行精细化的分类和检测。A fast pedestrian detection method according to claim 2, wherein the depth model comprises a multi-scale target candidate network and a target detection network, and the target candidate network proposes features based on different layers of the convolutional neural network Differentiating, generating candidate block diagrams for different scale target objects in the middle layer; the target detection network performs refined classification and detection on the basis of the candidate block diagram outputted by the target candidate network.
  4. 如权利要求3所述的一种快速行人检测方法,其特征在于:所述卷积神经网络由卷积层、降采样层、上采样层堆叠而成,所述卷积层是指对输入的图像或者特征图在二维空间上进行卷积运算,提取层次化特征;所述降采样层使用没有重叠的max-pooling操作,该操作用于提取形状和偏移不变的特征,同时减少特征图大小,提高计算效率;所述上采样层,是指对输入的特征图在二维空间上进行去卷积的操作,用以增大特征图的像素。A fast pedestrian detection method according to claim 3, wherein said convolutional neural network is formed by stacking a convolutional layer, a downsampling layer, and an upsampling layer, and said convolutional layer is for inputting The image or feature map is convoluted on a two-dimensional space to extract hierarchical features; the downsampling layer uses a max-pooling operation without overlap, which is used to extract features with shape and offset invariance while reducing features The size of the graph increases the computational efficiency; the upsampling layer refers to an operation of deconvolving the input feature map in a two-dimensional space to increase the pixels of the feature map.
  5. 如权利要求4所述的一种快速行人检测方法,其特征在于:所述深度 模型采用Squeeze VGG-16卷积神经网络作为骨干网络,所述Squeeze VGG-16卷积神经网络采用conv1-1层和紧随其后的12层Fire模块层为特征提取的网络结构。A fast pedestrian detection method according to claim 4, wherein said depth model uses a Squeeze VGG-16 convolutional neural network as a backbone network, and said Squeeze VGG-16 convolutional neural network uses a conv1-1 layer. And the 12-layer Fire module layer that follows is the feature extraction network structure.
  6. 如权利要求5所述的一种快速行人检测方法,其特征在于:所述目标候选网络在所述Squeeze VGG-16卷积神经网络基础上,根据卷积层特征,在Fire9、Fire12、conv6以及增加的pooling层,产生网络分支,以进行不同尺度检测到物体的候选框的回归。A fast pedestrian detection method according to claim 5, wherein said target candidate network is based on said Squeeze VGG-16 convolutional neural network, according to convolutional layer characteristics, in Fire9, Fire12, conv6, and The increased pooling layer generates network branches to detect the regression of candidate frames of objects at different scales.
  7. 如权利要求5所述的一种快速行人检测方法,其特征在于:所述目标检测网络在所述目标候选区域的基础上,将目标候选区域预设倍数大小的图片区域作为目标的背景语义信息,将Fire9层的特征图进行一次上采样,作为增强对小物体感知的信息,并将背景语义信息与上采样信息经过感兴趣区域的池化获得固定大小的特征,之后增加一层全连接层,进行类别和最终候选框的回归。The method of claim 5, wherein the target detection network uses the target area as a target background information by using a target area of a target multiple candidate size based on the target candidate area. The feature map of the Fire9 layer is upsampled once, as information for enhancing the perception of the small object, and the background semantic information and the upsampled information are obtained through the pool of the region of interest to obtain a fixed size feature, and then a layer of fully connected layer is added. , the regression of the category and the final candidate box.
  8. 如权利要求1所述的一种快速行人检测方法,其特征在于:所述训练样本包括RGB图像数据和图像中行人区域的标注信息,实际训练用的图像数据是根据行人所在区域裁剪得到的小的patch。A fast pedestrian detection method according to claim 1, wherein the training sample comprises RGB image data and annotation information of a pedestrian area in the image, and the actual training image data is small according to the region where the pedestrian is located. Patch.
  9. 如权利要求1所述的一种快速行人检测方法,其特征在于:所述后向传播算法,需先求出前向传播预测的目标框图与图像实际目标框图的损失函数
    Figure PCTCN2018095058-appb-100001
    然后求得其对参数W的梯度,采用梯度下降的算法更新W以最小化损失函数
    Figure PCTCN2018095058-appb-100002
    假定中间层有M个分支可以输出目标候选区域,l m表示分支m的损失函数,α m表示l m函数的权重,S={S 1,S 2,…,S M}指相应尺度的目标对象,则损失函数
    Figure PCTCN2018095058-appb-100003
    可定义为:
    A fast pedestrian detection method according to claim 1, wherein said backward propagation algorithm first needs to obtain a target block diagram of the forward propagation prediction and a loss function of the actual target block diagram of the image.
    Figure PCTCN2018095058-appb-100001
    Then find its gradient to the parameter W, and update the W with a gradient descent algorithm to minimize the loss function.
    Figure PCTCN2018095058-appb-100002
    It is assumed that there are M branches in the middle layer to output the target candidate region, l m represents the loss function of the branch m, α m represents the weight of the l m function, and S={S 1 , S 2 , . . . , S M } refers to the target of the corresponding scale. Object, loss function
    Figure PCTCN2018095058-appb-100003
    Can be defined as:
    Figure PCTCN2018095058-appb-100004
    Figure PCTCN2018095058-appb-100004
  10. 一种快速行人检测系统,包括:A fast pedestrian detection system comprising:
    训练单元,用于构建可配置的基于卷积神经网络的深度模型,利用训练样本学习出构建的网络参数,获得用于测试过程的模型;a training unit for constructing a configurable depth model based on a convolutional neural network, learning a constructed network parameter using the training sample, and obtaining a model for the testing process;
    检测单元,用于输入测试样本,通过训练好的模型利用神经网络感知域的变化规律使用不同的中间层对不同尺度范围内的目标物体进行检测,预测出图像中目标物体的框图。The detecting unit is configured to input the test sample, and the trained model is used to detect the target object in different scales by using different intermediate layers to detect the target object in the image, and predict the block diagram of the target object in the image.
PCT/CN2018/095058 2018-01-24 2018-07-10 Fast pedestrian detection method and device WO2019144575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810069322.X 2018-01-24
CN201810069322.XA CN108399362B (en) 2018-01-24 2018-01-24 Rapid pedestrian detection method and device

Publications (1)

Publication Number Publication Date
WO2019144575A1 true WO2019144575A1 (en) 2019-08-01

Family

ID=63094281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095058 WO2019144575A1 (en) 2018-01-24 2018-07-10 Fast pedestrian detection method and device

Country Status (2)

Country Link
CN (1) CN108399362B (en)
WO (1) WO2019144575A1 (en)

Cited By (281)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110427915A (en) * 2019-08-14 2019-11-08 北京百度网讯科技有限公司 Method and apparatus for output information
CN110473195A (en) * 2019-08-13 2019-11-19 中山大学 It is a kind of can automatic customization medicine lesion detection framework and method
CN110490252A (en) * 2019-08-19 2019-11-22 西安工业大学 A kind of occupancy detection method and system based on deep learning
CN110533084A (en) * 2019-08-12 2019-12-03 长安大学 A kind of multiscale target detection method based on from attention mechanism
CN110580727A (en) * 2019-08-27 2019-12-17 天津大学 depth V-shaped dense network imaging method with increased information flow and gradient flow
CN110619676A (en) * 2019-09-18 2019-12-27 东北大学 End-to-end three-dimensional face reconstruction method based on neural network
CN110619309A (en) * 2019-09-19 2019-12-27 天津天地基业科技有限公司 Embedded platform face detection method based on octave convolution sum YOLOv3
CN110619365A (en) * 2019-09-18 2019-12-27 苏州经贸职业技术学院 Drowning detection method
CN110619268A (en) * 2019-08-07 2019-12-27 北京市新技术应用研究所 Pedestrian re-identification method and device based on space-time analysis and depth features
CN110633631A (en) * 2019-08-06 2019-12-31 厦门大学 Pedestrian re-identification method based on component power set and multi-scale features
CN110647816A (en) * 2019-08-26 2020-01-03 合肥工业大学 Target detection method for real-time monitoring of goods shelf medicines
CN110659576A (en) * 2019-08-23 2020-01-07 深圳久凌软件技术有限公司 Pedestrian searching method and device based on joint judgment and generation learning
CN110659601A (en) * 2019-09-19 2020-01-07 西安电子科技大学 Depth full convolution network remote sensing image dense vehicle detection method based on central point
CN110659664A (en) * 2019-08-02 2020-01-07 杭州电子科技大学 SSD-based method for high-precision identification of small objects
CN110674777A (en) * 2019-09-30 2020-01-10 电子科技大学 Optical character recognition method in patent text scene
CN110675309A (en) * 2019-08-28 2020-01-10 江苏大学 Image style conversion method based on convolutional neural network and VGGNet16 model
CN110705583A (en) * 2019-08-15 2020-01-17 平安科技(深圳)有限公司 Cell detection model training method and device, computer equipment and storage medium
CN110705540A (en) * 2019-11-25 2020-01-17 中国农业科学院农业信息研究所 Animal remedy production pointer instrument image identification method and device based on RFID and deep learning
CN110706239A (en) * 2019-09-26 2020-01-17 哈尔滨工程大学 Scene segmentation method fusing full convolution neural network and improved ASPP module
CN110717903A (en) * 2019-09-30 2020-01-21 天津大学 Method for detecting crop diseases by using computer vision technology
CN110728186A (en) * 2019-09-11 2020-01-24 中国科学院声学研究所南海研究站 Fire detection method based on multi-network fusion
CN110728640A (en) * 2019-10-12 2020-01-24 合肥工业大学 Double-channel single-image fine rain removing method
CN110728238A (en) * 2019-10-12 2020-01-24 安徽工程大学 Personnel re-detection method of fusion type neural network
CN110751076A (en) * 2019-10-09 2020-02-04 上海应用技术大学 Vehicle detection method
CN110751644A (en) * 2019-10-23 2020-02-04 上海应用技术大学 Road surface crack detection method
CN110781895A (en) * 2019-10-10 2020-02-11 湖北工业大学 Image semantic segmentation method based on convolutional neural network
CN110826485A (en) * 2019-11-05 2020-02-21 中国人民解放军战略支援部队信息工程大学 Target detection method and system for remote sensing image
CN110826476A (en) * 2019-11-02 2020-02-21 国网浙江省电力有限公司杭州供电公司 Image detection method and device for identifying target object, electronic equipment and storage medium
CN110826552A (en) * 2019-11-05 2020-02-21 华中农业大学 Grape nondestructive automatic detection device and method based on deep learning
CN110837837A (en) * 2019-11-05 2020-02-25 安徽工业大学 Violation detection method based on convolutional neural network
CN110852272A (en) * 2019-11-11 2020-02-28 上海应用技术大学 Pedestrian detection method
CN110852179A (en) * 2019-10-17 2020-02-28 天津大学 Method for detecting suspicious personnel intrusion based on video monitoring platform
CN110909797A (en) * 2019-11-22 2020-03-24 北京深睿博联科技有限责任公司 Image detection method and device, equipment and storage medium
CN110942008A (en) * 2019-11-21 2020-03-31 圆通速递有限公司 Method and system for positioning waybill information based on deep learning
CN110942144A (en) * 2019-12-05 2020-03-31 深圳牛图科技有限公司 Neural network construction method integrating automatic training, checking and reconstructing
CN110956157A (en) * 2019-12-14 2020-04-03 深圳先进技术研究院 Deep learning remote sensing image target detection method and device based on candidate frame selection
CN110956115A (en) * 2019-11-26 2020-04-03 证通股份有限公司 Scene recognition method and device
CN110986949A (en) * 2019-12-04 2020-04-10 日照职业技术学院 Path identification method based on artificial intelligence platform
CN110992238A (en) * 2019-12-06 2020-04-10 上海电力大学 Digital image tampering blind detection method based on dual-channel network
CN111008603A (en) * 2019-12-08 2020-04-14 中南大学 Multi-class target rapid detection method for large-scale remote sensing image
CN111008994A (en) * 2019-11-14 2020-04-14 山东万腾电子科技有限公司 Moving target real-time detection and tracking system and method based on MPSoC
CN111008632A (en) * 2019-10-17 2020-04-14 安徽清新互联信息科技有限公司 License plate character segmentation method based on deep learning
CN111008562A (en) * 2019-10-31 2020-04-14 北京城建设计发展集团股份有限公司 Human-vehicle target detection method with feature map depth fusion
CN111008567A (en) * 2019-11-07 2020-04-14 郑州大学 Driver behavior identification method
CN111008554A (en) * 2019-10-16 2020-04-14 合肥湛达智能科技有限公司 Dynamic traffic zebra crossing interior impersonation pedestrian identification method based on deep learning
CN111027449A (en) * 2019-12-05 2020-04-17 光典信息发展有限公司 Positioning and identifying method for paper file electronic image filing seal
CN111046723A (en) * 2019-10-17 2020-04-21 安徽清新互联信息科技有限公司 Deep learning-based lane line detection method
CN111046928A (en) * 2019-11-27 2020-04-21 上海交通大学 Single-stage real-time universal target detector with accurate positioning and method
CN111062297A (en) * 2019-12-11 2020-04-24 青岛科技大学 Violent abnormal behavior detection method based on EANN deep learning model
CN111062278A (en) * 2019-12-03 2020-04-24 西安工程大学 Abnormal behavior identification method based on improved residual error network
CN111079642A (en) * 2019-12-13 2020-04-28 国网浙江余姚市供电有限公司 Line movable monitoring method and device and computer readable medium
CN111091101A (en) * 2019-12-23 2020-05-01 中国科学院自动化研究所 High-precision pedestrian detection method, system and device based on one-step method
CN111105393A (en) * 2019-11-25 2020-05-05 长安大学 Grape disease and pest identification method and device based on deep learning
CN111126359A (en) * 2019-11-15 2020-05-08 西安电子科技大学 High-definition image small target detection method based on self-encoder and YOLO algorithm
CN111126310A (en) * 2019-12-26 2020-05-08 华侨大学 Pedestrian gender identification method based on scene migration
CN111145195A (en) * 2019-12-03 2020-05-12 上海海事大学 Method for detecting portrait outline in video based on lightweight deep neural network
CN111144209A (en) * 2019-11-25 2020-05-12 浙江工商大学 Monitoring video head detection method based on heterogeneous multi-branch deep convolutional neural network
CN111160115A (en) * 2019-12-10 2020-05-15 上海工程技术大学 Video pedestrian re-identification method based on twin double-flow 3D convolutional neural network
CN111161295A (en) * 2019-12-30 2020-05-15 神思电子技术股份有限公司 Background stripping method for dish image
CN111161217A (en) * 2019-12-10 2020-05-15 中国民航大学 Conv-LSTM multi-scale feature fusion-based fuzzy detection method
CN111160274A (en) * 2019-12-31 2020-05-15 合肥湛达智能科技有限公司 Pedestrian detection method based on binaryzation fast RCNN (radar cross-correlation neural network)
CN111178148A (en) * 2019-12-06 2020-05-19 天津大学 Ground target geographic coordinate positioning method based on unmanned aerial vehicle vision system
CN111178178A (en) * 2019-12-16 2020-05-19 汇纳科技股份有限公司 Multi-scale pedestrian re-identification method, system, medium and terminal combined with region distribution
CN111178251A (en) * 2019-12-27 2020-05-19 汇纳科技股份有限公司 Pedestrian attribute identification method and system, storage medium and terminal
CN111179338A (en) * 2019-12-10 2020-05-19 同济大学 Lightweight target positioning method for mobile power supply receiving end
CN111199220A (en) * 2020-01-21 2020-05-26 北方民族大学 Lightweight deep neural network method for people detection and people counting in elevator
CN111199212A (en) * 2020-01-02 2020-05-26 西安工程大学 Pedestrian attribute identification method based on attention model
CN111209887A (en) * 2020-01-15 2020-05-29 西安电子科技大学 SSD model optimization method for small target detection
CN111209952A (en) * 2020-01-03 2020-05-29 西安工业大学 Underwater target detection method based on improved SSD and transfer learning
CN111209860A (en) * 2020-01-06 2020-05-29 上海海事大学 Video attendance system and method based on deep learning and reinforcement learning
CN111222534A (en) * 2019-11-15 2020-06-02 重庆邮电大学 Single-shot multi-frame detector optimization method based on bidirectional feature fusion and more balanced L1 loss
CN111222519A (en) * 2020-01-16 2020-06-02 西北大学 Construction method, method and device of hierarchical colored drawing manuscript line extraction model
CN111222402A (en) * 2019-11-14 2020-06-02 北京理工大学 Crowd gathering density analysis method oriented to unmanned aerial vehicle image
CN111242010A (en) * 2020-01-10 2020-06-05 厦门博海中天信息科技有限公司 Method for judging and identifying identity of litter worker based on edge AI
CN111242839A (en) * 2020-01-13 2020-06-05 华南理工大学 Image scaling and cutting method based on scale grade
CN111259800A (en) * 2020-01-16 2020-06-09 天津大学 Neural network-based unmanned special vehicle detection method
CN111259898A (en) * 2020-01-08 2020-06-09 西安电子科技大学 Crop segmentation method based on unmanned aerial vehicle aerial image
CN111259736A (en) * 2020-01-08 2020-06-09 上海海事大学 Real-time pedestrian detection method based on deep learning in complex environment
CN111260658A (en) * 2020-01-10 2020-06-09 厦门大学 Novel depth reinforcement learning algorithm for image segmentation
CN111275711A (en) * 2020-01-08 2020-06-12 西安电子科技大学 Real-time image semantic segmentation method based on lightweight convolutional neural network model
CN111275171A (en) * 2020-01-19 2020-06-12 合肥工业大学 Small target detection method based on parameter sharing and multi-scale super-resolution reconstruction
CN111275688A (en) * 2020-01-19 2020-06-12 合肥工业大学 Small target detection method based on context feature fusion screening of attention mechanism
CN111292366A (en) * 2020-02-17 2020-06-16 华侨大学 Visual driving ranging algorithm based on deep learning and edge calculation
CN111291820A (en) * 2020-02-19 2020-06-16 中国电子科技集团公司第二十八研究所 Target detection method combining positioning information and classification information
CN111310861A (en) * 2020-03-27 2020-06-19 西安电子科技大学 License plate recognition and positioning method based on deep neural network
CN111310773A (en) * 2020-03-27 2020-06-19 西安电子科技大学 Efficient license plate positioning method of convolutional neural network
CN111339967A (en) * 2020-02-28 2020-06-26 长安大学 Pedestrian detection method based on multi-view graph convolution network
CN111339871A (en) * 2020-02-18 2020-06-26 中国电子科技集团公司第二十八研究所 Target group distribution pattern studying and judging method and device based on convolutional neural network
CN111339975A (en) * 2020-03-03 2020-06-26 华东理工大学 Target detection, identification and tracking method based on central scale prediction and twin neural network
CN111368673A (en) * 2020-02-26 2020-07-03 华南理工大学 Method for quickly extracting human body key points based on neural network
CN111368453A (en) * 2020-03-17 2020-07-03 创新奇智(合肥)科技有限公司 Fabric cutting optimization method based on deep reinforcement learning
CN111368726A (en) * 2020-03-04 2020-07-03 西安咏圣达电子科技有限公司 Construction site working face people counting method, system, storage medium and device
CN111414909A (en) * 2020-03-16 2020-07-14 上海富瀚微电子股份有限公司 Target detection method and device
CN111414997A (en) * 2020-03-27 2020-07-14 中国人民解放军空军工程大学 Artificial intelligence-based method for battlefield target identification
CN111428567A (en) * 2020-02-26 2020-07-17 沈阳大学 Pedestrian tracking system and method based on affine multi-task regression
CN111428751A (en) * 2020-02-24 2020-07-17 清华大学 Object detection method based on compressed sensing and convolutional network
CN111429410A (en) * 2020-03-13 2020-07-17 杭州电子科技大学 Object X-ray image material distinguishing system and method based on deep learning
CN111428586A (en) * 2020-03-09 2020-07-17 同济大学 Three-dimensional human body posture estimation method based on feature fusion and sample enhancement
CN111461291A (en) * 2020-03-13 2020-07-28 西安科技大学 Long-distance pipeline inspection method based on YO L Ov3 pruning network and deep learning defogging model
CN111460924A (en) * 2020-03-16 2020-07-28 上海师范大学 Gate ticket-passing behavior detection method based on target detection
CN111460980A (en) * 2020-03-30 2020-07-28 西安工程大学 Multi-scale detection method for small-target pedestrian based on multi-semantic feature fusion
CN111462132A (en) * 2020-03-20 2020-07-28 西北大学 Video object segmentation method and system based on deep learning
CN111462085A (en) * 2020-03-31 2020-07-28 上海大学 Digital image local filtering evidence obtaining method based on convolutional neural network
CN111462108A (en) * 2020-04-13 2020-07-28 山西新华化工有限责任公司 Machine learning-based head and face product design ergonomics assessment operation method
CN111461160A (en) * 2019-11-11 2020-07-28 天津津航技术物理研究所 Anti-cloud-fog and anti-smoke-interference infrared imaging seeker target tracking method
CN111476314A (en) * 2020-04-27 2020-07-31 中国科学院合肥物质科学研究院 Fuzzy video detection method integrating optical flow algorithm and deep learning
CN111488805A (en) * 2020-03-24 2020-08-04 广州大学 Video behavior identification method based on saliency feature extraction
CN111523645A (en) * 2020-04-16 2020-08-11 北京航天自动控制研究所 Convolutional neural network design method for improving small-scale target detection and identification performance
CN111553199A (en) * 2020-04-07 2020-08-18 厦门大学 Motor vehicle traffic violation automatic detection technology based on computer vision
CN111563525A (en) * 2020-03-25 2020-08-21 北京航空航天大学 Moving target detection method based on YOLOv3-Tiny
CN111582452A (en) * 2020-05-09 2020-08-25 北京百度网讯科技有限公司 Method and device for generating neural network model
CN111597900A (en) * 2020-04-16 2020-08-28 浙江工业大学 Illegal dog walking identification method
CN111597945A (en) * 2020-05-11 2020-08-28 济南博观智能科技有限公司 Target detection method, device, equipment and medium
CN111597939A (en) * 2020-05-07 2020-08-28 西安电子科技大学 High-speed rail line nest defect detection method based on deep learning
CN111597897A (en) * 2020-04-16 2020-08-28 浙江工业大学 Parking space identification method for high-speed service area
CN111626196A (en) * 2020-05-27 2020-09-04 成都颜禾曦科技有限公司 Typical bovine animal body structure intelligent analysis method based on knowledge graph
CN111652930A (en) * 2020-06-04 2020-09-11 上海媒智科技有限公司 Image target detection method, system and equipment
CN111652846A (en) * 2020-04-30 2020-09-11 成都数之联科技有限公司 Semiconductor defect identification method based on characteristic pyramid convolution neural network
CN111652216A (en) * 2020-06-03 2020-09-11 北京工商大学 Multi-scale target detection model method based on metric learning
CN111667030A (en) * 2020-07-13 2020-09-15 华东理工大学 Method, system and storage medium for realizing remote sensing image target detection based on deep neural network
CN111695403A (en) * 2020-04-19 2020-09-22 东风汽车股份有限公司 2D and 3D image synchronous detection method based on depth perception convolutional neural network
CN111709935A (en) * 2020-06-17 2020-09-25 西安科技大学 Real-time coal gangue positioning and identifying method for ground moving belt
CN111709311A (en) * 2020-05-27 2020-09-25 西安理工大学 Pedestrian re-identification method based on multi-scale convolution feature fusion
CN111709336A (en) * 2020-06-08 2020-09-25 杭州像素元科技有限公司 Highway pedestrian detection method and device and readable storage medium
CN111709449A (en) * 2020-05-20 2020-09-25 西安理工大学 Multi-layer feature fusion small-scale target detection method based on clustering algorithm
CN111709313A (en) * 2020-05-27 2020-09-25 杭州电子科技大学 Pedestrian re-identification method based on local and channel combination characteristics
CN111723743A (en) * 2020-06-19 2020-09-29 北京邮电大学 Small-scale pedestrian rapid detection method
CN111738124A (en) * 2020-06-15 2020-10-02 西安电子科技大学 Remote sensing image cloud detection method based on Gabor transformation and attention
CN111738237A (en) * 2020-04-29 2020-10-02 上海海事大学 Target detection method of multi-core iteration RPN based on heterogeneous convolution
CN111753625A (en) * 2020-03-18 2020-10-09 北京沃东天骏信息技术有限公司 Pedestrian detection method, device, equipment and medium
CN111767878A (en) * 2020-07-03 2020-10-13 中国科学院自动化研究所 Deep learning-based traffic sign detection method and system in embedded device
CN111767847A (en) * 2020-06-29 2020-10-13 佛山市南海区广工大数控装备协同创新研究院 Pedestrian multi-target tracking method integrating target detection and association
CN111783685A (en) * 2020-05-08 2020-10-16 西安建筑科技大学 Target detection improved algorithm based on single-stage network model
CN111783934A (en) * 2020-05-15 2020-10-16 北京迈格威科技有限公司 Convolutional neural network construction method, device, equipment and medium
CN111784652A (en) * 2020-06-24 2020-10-16 西安电子科技大学 MRI segmentation method based on reinforcement learning multi-scale neural network
CN111783523A (en) * 2020-05-19 2020-10-16 中国人民解放军93114部队 Remote sensing image rotating target detection method
CN111797836A (en) * 2020-06-18 2020-10-20 中国空间技术研究院 Extraterrestrial celestial body patrolling device obstacle segmentation method based on deep learning
CN111814621A (en) * 2020-06-29 2020-10-23 中国科学院合肥物质科学研究院 Multi-scale vehicle and pedestrian detection method and device based on attention mechanism
CN111832608A (en) * 2020-05-29 2020-10-27 上海海事大学 Multi-abrasive-particle identification method for ferrographic image based on single-stage detection model yolov3
CN111832630A (en) * 2020-06-23 2020-10-27 成都恒创新星科技有限公司 Target detection method based on first-order gradient neural network
CN111832513A (en) * 2020-07-21 2020-10-27 西安电子科技大学 Real-time football target detection method based on neural network
CN111832450A (en) * 2020-06-30 2020-10-27 成都睿沿科技有限公司 Knife holding detection method based on image recognition
CN111832479A (en) * 2020-07-14 2020-10-27 西安电子科技大学 Video target detection method based on improved self-adaptive anchor R-CNN
CN111860637A (en) * 2020-07-17 2020-10-30 河南科技大学 Single-shot multi-frame infrared target detection method
CN111860265A (en) * 2020-07-10 2020-10-30 武汉理工大学 Multi-detection-frame loss balancing road scene understanding algorithm based on sample loss
CN111860587A (en) * 2020-06-12 2020-10-30 长安大学 Method for detecting small target of picture
CN111881803A (en) * 2020-07-22 2020-11-03 安徽农业大学 Livestock face recognition method based on improved YOLOv3
CN111881714A (en) * 2020-05-22 2020-11-03 北京交通大学 Unsupervised cross-domain pedestrian re-identification method
CN111881932A (en) * 2020-06-11 2020-11-03 中国人民解放军战略支援部队信息工程大学 FasterRCNN target detection algorithm for military aircraft
CN111915583A (en) * 2020-07-29 2020-11-10 西安电子科技大学 Vehicle and pedestrian detection method based on vehicle-mounted thermal infrared imager in complex scene
CN111986149A (en) * 2020-07-16 2020-11-24 江西斯源科技有限公司 Plant disease and insect pest detection method based on convolutional neural network
CN111985365A (en) * 2020-08-06 2020-11-24 合肥学院 Straw burning monitoring method and system based on target detection technology
CN111986172A (en) * 2020-08-18 2020-11-24 华北电力科学研究院有限责任公司 Infrared image fault detection method and device for power equipment
CN111986186A (en) * 2020-08-25 2020-11-24 华中科技大学 Quantitative on-line detection system and method for defects of PCB (printed Circuit Board) patches in front of furnace
CN111985473A (en) * 2020-08-20 2020-11-24 中再云图技术有限公司 Method for identifying private business of store
CN111985464A (en) * 2020-08-13 2020-11-24 山东大学 Multi-scale learning character recognition method and system for court judgment documents
CN111986126A (en) * 2020-07-17 2020-11-24 浙江工业大学 Multi-target detection method based on improved VGG16 network
CN111984879A (en) * 2020-08-19 2020-11-24 交控科技股份有限公司 User guiding method, device, equipment and storage medium applied to train
CN111986145A (en) * 2020-07-09 2020-11-24 浙江工业大学 Bearing roller flaw detection method based on fast-RCNN
CN112001878A (en) * 2020-05-21 2020-11-27 合肥合工安驰智能科技有限公司 Deep learning ore scale measuring method based on binarization neural network and application system
CN112001385A (en) * 2020-08-20 2020-11-27 长安大学 Target cross-domain detection and understanding method, system, equipment and storage medium
CN112001339A (en) * 2020-08-27 2020-11-27 杭州电子科技大学 Pedestrian social distance real-time monitoring method based on YOLO v4
CN112001259A (en) * 2020-07-28 2020-11-27 联芯智能(南京)科技有限公司 Aerial weak human body target intelligent detection method based on visible light image
CN112036437A (en) * 2020-07-28 2020-12-04 农业农村部南京农业机械化研究所 Rice seedling detection model based on improved YOLOV3 network and method thereof
CN112085126A (en) * 2020-09-30 2020-12-15 浙江大学 Single-sample target detection method focusing on classification task
CN112101455A (en) * 2020-09-15 2020-12-18 重庆市农业科学院 Tea lesser leafhopper identification and counting method based on convolutional neural network
CN112101434A (en) * 2020-09-04 2020-12-18 河南大学 Infrared image weak and small target detection method based on improved YOLO v3
CN112115291A (en) * 2020-08-12 2020-12-22 南京止善智能科技研究院有限公司 Three-dimensional indoor model retrieval method based on deep learning
CN112115885A (en) * 2020-09-22 2020-12-22 中国农业科学院农业信息研究所 Fruit tree bearing branch shearing point positioning method for picking based on deep convolutional neural network
CN112149664A (en) * 2020-09-04 2020-12-29 浙江工业大学 Target detection method for optimizing classification and positioning tasks
CN112163492A (en) * 2020-09-21 2021-01-01 华南理工大学 Long-time cross-scene optimized traffic object detection method, system and medium
CN112183430A (en) * 2020-10-12 2021-01-05 河北工业大学 Sign language identification method and device based on double neural network
CN112200045A (en) * 2020-09-30 2021-01-08 华中科技大学 Remote sensing image target detection model establishing method based on context enhancement and application
CN112215100A (en) * 2020-09-27 2021-01-12 浙江工业大学 Target detection method for degraded image under unbalanced training sample
CN112232411A (en) * 2020-10-15 2021-01-15 浙江凌图科技有限公司 Optimization method of HarDNet-Lite on embedded platform
CN112257796A (en) * 2020-10-28 2021-01-22 辽宁工程技术大学 Image integration method of convolutional neural network based on selective characteristic connection
CN112308062A (en) * 2020-11-23 2021-02-02 浙江卡易智慧医疗科技有限公司 Medical image access number identification method in complex background image
CN112347851A (en) * 2020-09-30 2021-02-09 山东理工大学 Multi-target detection network construction method, multi-target detection method and device
CN112347843A (en) * 2020-09-18 2021-02-09 深圳数联天下智能科技有限公司 Method and related device for training wrinkle detection model
CN112348036A (en) * 2020-11-26 2021-02-09 北京工业大学 Self-adaptive target detection method based on lightweight residual learning and deconvolution cascade
CN112364974A (en) * 2020-08-28 2021-02-12 西安电子科技大学 Improved YOLOv3 algorithm based on activation function
CN112381792A (en) * 2020-11-13 2021-02-19 中国人民解放军空军工程大学 Radar wave-absorbing coating/electromagnetic shielding film damage intelligent imaging online detection method based on deep learning
CN112396000A (en) * 2020-11-19 2021-02-23 中山大学 Method for constructing multi-mode dense prediction depth information transmission model
CN112396036A (en) * 2020-12-09 2021-02-23 中山大学 Method for re-identifying blocked pedestrians by combining space transformation network and multi-scale feature extraction
CN112419237A (en) * 2020-11-03 2021-02-26 中国计量大学 Automobile clutch master cylinder groove surface defect detection method based on deep learning
CN112434828A (en) * 2020-11-23 2021-03-02 南京富岛软件有限公司 Intelligent identification method for safety protection in 5T operation and maintenance
CN112446376A (en) * 2019-09-05 2021-03-05 中国科学院沈阳自动化研究所 Intelligent segmentation and compression method for industrial image
CN112446308A (en) * 2020-11-16 2021-03-05 北京科技大学 Semantic enhancement-based pedestrian detection method based on multi-scale feature pyramid fusion
CN112464765A (en) * 2020-09-10 2021-03-09 天津师范大学 Safety helmet detection algorithm based on single-pixel characteristic amplification and application thereof
CN112465815A (en) * 2020-12-17 2021-03-09 杭州电子科技大学 Remote sensing target significance detection method based on edge subject fusion information
CN112487979A (en) * 2020-11-30 2021-03-12 北京百度网讯科技有限公司 Target detection method, model training method, device, electronic device and medium
CN112528826A (en) * 2020-12-04 2021-03-19 江苏省农业科学院 Picking device control method based on 3D visual perception
CN112556682A (en) * 2021-02-07 2021-03-26 天津蓝鳍海洋工程有限公司 Automatic target detection algorithm for underwater composite sensor
CN112560627A (en) * 2020-12-09 2021-03-26 江苏集萃未来城市应用技术研究所有限公司 Real-time detection method for abnormal behaviors of construction site personnel based on neural network
CN112560682A (en) * 2020-12-16 2021-03-26 重庆守愚科技有限公司 Valve automatic detection method based on deep learning
CN112580778A (en) * 2020-11-25 2021-03-30 江苏集萃未来城市应用技术研究所有限公司 Job worker mobile phone use detection method based on YOLOv5 and Pose-animation
CN112613359A (en) * 2020-12-09 2021-04-06 苏州玖合智能科技有限公司 Method for constructing neural network for detecting abnormal behaviors of people
CN112613472A (en) * 2020-12-31 2021-04-06 上海交通大学 Pedestrian detection method and system based on deep search matching
CN112634367A (en) * 2020-12-25 2021-04-09 天津大学 Anti-occlusion object pose estimation method based on deep neural network
CN112633086A (en) * 2020-12-09 2021-04-09 西安电子科技大学 Near-infrared pedestrian monitoring method, system, medium and equipment based on multitask EfficientDet
CN112651441A (en) * 2020-12-25 2021-04-13 深圳市信义科技有限公司 Fine-grained non-motor vehicle feature detection method, storage medium and computer equipment
CN112699808A (en) * 2020-12-31 2021-04-23 深圳市华尊科技股份有限公司 Dense target detection method, electronic equipment and related product
CN112700444A (en) * 2021-02-19 2021-04-23 中国铁道科学研究院集团有限公司铁道建筑研究所 Bridge bolt detection method based on self-attention and central point regression model
CN112733848A (en) * 2021-01-08 2021-04-30 中国电子科技集团公司第二十八研究所 Target detection method based on multi-scale features and expanded inverse residual full-connection
CN112733714A (en) * 2021-01-11 2021-04-30 北京大学 Automatic crowd counting image identification method based on VGG network
CN112770325A (en) * 2020-12-09 2021-05-07 华南理工大学 Cognitive Internet of vehicles spectrum sensing method based on deep learning
CN112784921A (en) * 2021-02-02 2021-05-11 西北工业大学 Task attention guided small sample image complementary learning classification algorithm
CN112906718A (en) * 2021-03-09 2021-06-04 西安电子科技大学 Multi-target detection method based on convolutional neural network
CN112906658A (en) * 2021-03-30 2021-06-04 航天时代飞鸿技术有限公司 Lightweight automatic detection method for ground target investigation by unmanned aerial vehicle
CN112949508A (en) * 2021-03-08 2021-06-11 咪咕文化科技有限公司 Model training method, pedestrian detection method, electronic device and readable storage medium
CN112949814A (en) * 2019-11-26 2021-06-11 联合汽车电子有限公司 Compression and acceleration method and device of convolutional neural network and embedded equipment
CN113011398A (en) * 2021-04-28 2021-06-22 北京邮电大学 Target change detection method and device for multi-temporal remote sensing image
CN113012208A (en) * 2021-03-22 2021-06-22 上海应用技术大学 Multi-view remote sensing image registration method and system
CN113076957A (en) * 2021-04-21 2021-07-06 河南大学 RGB-D image saliency target detection method based on cross-modal feature fusion
CN113112511A (en) * 2021-04-19 2021-07-13 新东方教育科技集团有限公司 Method and device for correcting test paper, storage medium and electronic equipment
CN113128316A (en) * 2020-01-15 2021-07-16 北京四维图新科技股份有限公司 Target detection method and device
CN113177545A (en) * 2021-04-29 2021-07-27 北京百度网讯科技有限公司 Target object detection method and device, electronic equipment and storage medium
CN113221957A (en) * 2021-04-17 2021-08-06 南京航空航天大学 Radar information fusion characteristic enhancement method based on Centernet
CN113221787A (en) * 2021-05-18 2021-08-06 西安电子科技大学 Pedestrian multi-target tracking method based on multivariate difference fusion
CN113222064A (en) * 2021-05-31 2021-08-06 苏州晗林信息技术发展有限公司 Image target object real-time detection method, system, terminal and storage medium
CN113297961A (en) * 2021-05-24 2021-08-24 南京邮电大学 Target tracking method based on boundary feature fusion twin circulation neural network
CN113312961A (en) * 2021-04-03 2021-08-27 国家计算机网络与信息安全管理中心 Logo recognition acceleration method
CN113312995A (en) * 2021-05-18 2021-08-27 华南理工大学 Anchor-free vehicle-mounted pedestrian detection method based on central axis
CN113324864A (en) * 2020-02-28 2021-08-31 南京理工大学 Pantograph carbon slide plate abrasion detection method based on deep learning target detection
CN113343853A (en) * 2021-06-08 2021-09-03 深圳格瑞健康管理有限公司 Intelligent screening method and device for child dental caries
CN113361491A (en) * 2021-07-19 2021-09-07 厦门大学 Method for predicting pedestrian crossing intention of unmanned automobile
CN113379709A (en) * 2021-06-16 2021-09-10 浙江工业大学 Three-dimensional target detection method based on sparse multi-scale voxel characteristic fusion
CN113379718A (en) * 2021-06-28 2021-09-10 北京百度网讯科技有限公司 Target detection method and device, electronic equipment and readable storage medium
CN113408340A (en) * 2021-05-12 2021-09-17 北京化工大学 Dual-polarization SAR small ship detection method based on enhanced feature pyramid
CN113449743A (en) * 2021-07-12 2021-09-28 西安科技大学 Coal dust particle feature extraction method
CN113449634A (en) * 2021-06-28 2021-09-28 上海翰声信息技术有限公司 Video detection method and device for processing under strong light environment
CN113469254A (en) * 2021-07-02 2021-10-01 上海应用技术大学 Target detection method and system based on target detection model
CN113487600A (en) * 2021-07-27 2021-10-08 大连海事大学 Characteristic enhancement scale self-adaptive sensing ship detection method
CN113591735A (en) * 2021-08-04 2021-11-02 上海新纪元机器人有限公司 Pedestrian detection method and system based on deep learning
CN113592825A (en) * 2021-08-02 2021-11-02 安徽理工大学 YOLO algorithm-based real-time coal gangue detection method
CN113591854A (en) * 2021-08-12 2021-11-02 中国海洋大学 Low-redundancy quick reconstruction method of plankton hologram
CN113642410A (en) * 2021-07-15 2021-11-12 南京航空航天大学 Ampullaria gigas egg detection method based on multi-scale feature fusion and dynamic convolution
CN113657174A (en) * 2021-07-21 2021-11-16 北京中科慧眼科技有限公司 Vehicle pseudo-3D information detection method and device and automatic driving system
CN113706491A (en) * 2021-08-20 2021-11-26 西安电子科技大学 Meniscus injury grading method based on mixed attention weak supervision transfer learning
CN113780193A (en) * 2021-09-15 2021-12-10 易采天成(郑州)信息技术有限公司 RCNN-based cattle group target detection method and equipment
CN113807243A (en) * 2021-09-16 2021-12-17 上海交通大学 Water obstacle detection system and method based on attention to unknown target
CN113805151A (en) * 2021-08-17 2021-12-17 青岛本原微电子有限公司 Attention mechanism-based medium repetition frequency radar target detection method
CN113887330A (en) * 2021-09-10 2022-01-04 国网吉林省电力有限公司 Target detection system based on remote sensing image
CN113902024A (en) * 2021-10-20 2022-01-07 浙江大立科技股份有限公司 Small-volume target detection and identification method based on deep learning and dual-band fusion
CN113901944A (en) * 2021-10-25 2022-01-07 大连理工大学 Marine organism target detection method based on improved YOLO algorithm
CN113989630A (en) * 2021-08-31 2022-01-28 中通服公众信息产业股份有限公司 Lens shielding distinguishing method based on semantic analysis
CN114067186A (en) * 2021-09-26 2022-02-18 北京建筑大学 Pedestrian detection method and device, electronic equipment and storage medium
CN114283320A (en) * 2021-12-25 2022-04-05 福州大学 Target detection method based on full convolution and without branch structure
CN114332008A (en) * 2021-12-28 2022-04-12 福州大学 Unsupervised defect detection and positioning method based on multi-level feature reconstruction
CN114359644A (en) * 2021-12-22 2022-04-15 华南农业大学 Crop pest and disease identification method based on improved VGG-16 network
CN114495166A (en) * 2022-01-17 2022-05-13 北京小龙潜行科技有限公司 Pasture shoe changing action identification method applied to edge computing equipment
CN114612769A (en) * 2022-03-14 2022-06-10 电子科技大学 Integrated sensing infrared imaging ship detection method integrated with local structure information
US11403069B2 (en) 2017-07-24 2022-08-02 Tesla, Inc. Accelerated mathematical engine
CN114863097A (en) * 2022-04-06 2022-08-05 北京航空航天大学 Infrared dim target detection method based on attention system convolutional neural network
US11409692B2 (en) 2017-07-24 2022-08-09 Tesla, Inc. Vector computational unit
CN114884775A (en) * 2022-03-31 2022-08-09 南京邮电大学 Deep learning-based large-scale MIMO system channel estimation method
CN115019036A (en) * 2022-05-10 2022-09-06 西北工业大学 Small sample semantic segmentation method for learning non-target knowledge
CN115082909A (en) * 2021-11-03 2022-09-20 中国人民解放军陆军军医大学第一附属医院 Lung lesion identification method and system
CN115082386A (en) * 2022-06-07 2022-09-20 华南理工大学 Injection molding part flaw detection method and device based on normal sample auxiliary feature extraction and medium
US11487288B2 (en) 2017-03-23 2022-11-01 Tesla, Inc. Data synthesis for autonomous control systems
WO2022237061A1 (en) * 2021-05-10 2022-11-17 苏州大学 Embedded object cognitive system based on image processing
CN115423810A (en) * 2022-11-04 2022-12-02 国网江西省电力有限公司电力科学研究院 Blade icing form analysis method for wind generating set
US11537811B2 (en) 2018-12-04 2022-12-27 Tesla, Inc. Enhanced object detection for autonomous vehicles based on field view
US11561791B2 (en) 2018-02-01 2023-01-24 Tesla, Inc. Vector computational unit receiving data elements in parallel from a last row of a computational array
US11562231B2 (en) 2018-09-03 2023-01-24 Tesla, Inc. Neural networks for embedded devices
US11567514B2 (en) 2019-02-11 2023-01-31 Tesla, Inc. Autonomous and user controlled vehicle summon to a target
US11610117B2 (en) 2018-12-27 2023-03-21 Tesla, Inc. System and method for adapting a neural network model on a hardware platform
US11636333B2 (en) 2018-07-26 2023-04-25 Tesla, Inc. Optimizing neural network structures for embedded systems
US11665108B2 (en) 2018-10-25 2023-05-30 Tesla, Inc. QoS manager for system on a chip communications
CN110941970B (en) * 2019-12-05 2023-05-30 深圳牛图科技有限公司 High-speed dimension code positioning and identifying system based on full convolution neural network
US11681649B2 (en) 2017-07-24 2023-06-20 Tesla, Inc. Computational array microprocessor system using non-consecutive data formatting
CN116468928A (en) * 2022-12-29 2023-07-21 长春理工大学 Thermal infrared small target detection method based on visual perception correlator
CN116524293A (en) * 2023-04-10 2023-08-01 哈尔滨市科佳通用机电股份有限公司 Gate regulator pull rod head missing fault image recognition method and system based on deep learning
US11734562B2 (en) 2018-06-20 2023-08-22 Tesla, Inc. Data pipeline and deep learning system for autonomous driving
US11748620B2 (en) 2019-02-01 2023-09-05 Tesla, Inc. Generating ground truth for machine learning from time series elements
US11790664B2 (en) 2019-02-19 2023-10-17 Tesla, Inc. Estimating object properties using visual image data
US11816585B2 (en) 2018-12-03 2023-11-14 Tesla, Inc. Machine learning models operating at different frequencies for autonomous vehicles
US11841434B2 (en) 2018-07-20 2023-12-12 Tesla, Inc. Annotation cross-labeling for autonomous control systems
CN117237614A (en) * 2023-11-10 2023-12-15 江西啄木蜂科技有限公司 Deep learning-based lake surface floater small target detection method
US11893774B2 (en) 2018-10-11 2024-02-06 Tesla, Inc. Systems and methods for training machine models with augmented data
US11893393B2 (en) 2017-07-24 2024-02-06 Tesla, Inc. Computational array microprocessor system with hardware arbiter managing memory requests

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109089040B (en) * 2018-08-20 2021-05-14 Oppo广东移动通信有限公司 Image processing method, image processing device and terminal equipment
CN109409364A (en) * 2018-10-16 2019-03-01 北京百度网讯科技有限公司 Image labeling method and device
CN109508675B (en) * 2018-11-14 2020-07-28 广州广电银通金融电子科技有限公司 Pedestrian detection method for complex scene
CN109522855B (en) * 2018-11-23 2020-07-14 广州广电银通金融电子科技有限公司 Low-resolution pedestrian detection method and system combining ResNet and SENet and storage medium
CN109522966B (en) * 2018-11-28 2022-09-27 中山大学 Target detection method based on dense connection convolutional neural network
CN109670439A (en) * 2018-12-14 2019-04-23 中国石油大学(华东) A kind of pedestrian and its location detection method end to end
CN109886066B (en) * 2018-12-17 2023-05-09 南京理工大学 Rapid target detection method based on multi-scale and multi-layer feature fusion
CN109685718B (en) * 2018-12-17 2020-11-10 中国科学院自动化研究所 Picture squaring zooming method, system and device
CN109902800B (en) * 2019-01-22 2020-11-27 北京大学 Method for detecting general object by using multi-stage backbone network based on quasi-feedback neural network
CN111523351A (en) * 2019-02-02 2020-08-11 北京地平线机器人技术研发有限公司 Neural network training method and device and electronic equipment
WO2020168515A1 (en) * 2019-02-21 2020-08-27 深圳市大疆创新科技有限公司 Image processing method and apparatus, image capture processing system, and carrier
CN109993712B (en) 2019-04-01 2023-04-25 腾讯科技(深圳)有限公司 Training method of image processing model, image processing method and related equipment
CN110110783A (en) * 2019-04-30 2019-08-09 天津大学 A kind of deep learning object detection method based on the connection of multilayer feature figure
CN110110793B (en) * 2019-05-10 2021-10-26 中山大学 Binocular image rapid target detection method based on double-current convolutional neural network
CN110580726B (en) * 2019-08-21 2022-10-04 中山大学 Dynamic convolution network-based face sketch generation model and method in natural scene
CN110909615B (en) * 2019-10-28 2023-03-28 西安交通大学 Target detection method based on multi-scale input mixed perception neural network
CN111144203B (en) * 2019-11-19 2023-06-16 浙江工商大学 Pedestrian shielding detection method based on deep learning
CN111160527A (en) * 2019-12-27 2020-05-15 歌尔股份有限公司 Target identification method and device based on MASK RCNN network model
CN111176820B (en) * 2019-12-31 2021-06-25 中科院计算技术研究所大数据研究院 Deep neural network-based edge computing task allocation method and device
CN111242127B (en) * 2020-01-15 2023-02-24 上海应用技术大学 Vehicle detection method with granularity level multi-scale characteristic based on asymmetric convolution
CN111277751B (en) * 2020-01-22 2021-06-15 Oppo广东移动通信有限公司 Photographing method and device, storage medium and electronic equipment
CN111598951B (en) * 2020-05-18 2022-09-30 清华大学 Method, device and storage medium for identifying space target
CN111860508A (en) * 2020-07-28 2020-10-30 平安科技(深圳)有限公司 Image sample selection method and related equipment
CN113379699A (en) * 2021-06-08 2021-09-10 上海电机学院 Transmission line insulator defect detection method based on deep learning
CN113486810A (en) * 2021-07-08 2021-10-08 国网江苏省电力有限公司徐州供电分公司 Intelligent identification method for birds stolen and hunted in park

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107341517A (en) * 2017-07-07 2017-11-10 哈尔滨工业大学 The multiple dimensioned wisp detection method of Fusion Features between a kind of level based on deep learning
CN107563349A (en) * 2017-09-21 2018-01-09 电子科技大学 A kind of Population size estimation method based on VGGNet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105787439B (en) * 2016-02-04 2019-04-05 广州新节奏智能科技股份有限公司 A kind of depth image human synovial localization method based on convolutional neural networks
CN105956608A (en) * 2016-04-21 2016-09-21 恩泊泰(天津)科技有限公司 Objective positioning and classifying algorithm based on deep learning
CN106934346B (en) * 2017-01-24 2019-03-15 北京大学 A kind of method of target detection performance optimization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107341517A (en) * 2017-07-07 2017-11-10 哈尔滨工业大学 The multiple dimensioned wisp detection method of Fusion Features between a kind of level based on deep learning
CN107563349A (en) * 2017-09-21 2018-01-09 电子科技大学 A kind of Population size estimation method based on VGGNet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU, KUI ET AL.: "Multi-scale Pedestrian Detection based on Convolutional Neural Networks", JOURNAL OF CHINA JILIANG UNIVERSITY, vol. 28, no. 4, 15 December 2017 (2017-12-15), pages 474 - 476 *
LI, YA ET AL.: "A Deep Joint Learning Approach for Age Invariant Face Verification", JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS, vol. 40, no. 1, 15 February 2017 (2017-02-15) *

Cited By (470)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11487288B2 (en) 2017-03-23 2022-11-01 Tesla, Inc. Data synthesis for autonomous control systems
US11681649B2 (en) 2017-07-24 2023-06-20 Tesla, Inc. Computational array microprocessor system using non-consecutive data formatting
US11403069B2 (en) 2017-07-24 2022-08-02 Tesla, Inc. Accelerated mathematical engine
US11409692B2 (en) 2017-07-24 2022-08-09 Tesla, Inc. Vector computational unit
US11893393B2 (en) 2017-07-24 2024-02-06 Tesla, Inc. Computational array microprocessor system with hardware arbiter managing memory requests
US11561791B2 (en) 2018-02-01 2023-01-24 Tesla, Inc. Vector computational unit receiving data elements in parallel from a last row of a computational array
US11797304B2 (en) 2018-02-01 2023-10-24 Tesla, Inc. Instruction set architecture for a vector computational unit
US11734562B2 (en) 2018-06-20 2023-08-22 Tesla, Inc. Data pipeline and deep learning system for autonomous driving
US11841434B2 (en) 2018-07-20 2023-12-12 Tesla, Inc. Annotation cross-labeling for autonomous control systems
US11636333B2 (en) 2018-07-26 2023-04-25 Tesla, Inc. Optimizing neural network structures for embedded systems
US11983630B2 (en) 2018-09-03 2024-05-14 Tesla, Inc. Neural networks for embedded devices
US11562231B2 (en) 2018-09-03 2023-01-24 Tesla, Inc. Neural networks for embedded devices
US11893774B2 (en) 2018-10-11 2024-02-06 Tesla, Inc. Systems and methods for training machine models with augmented data
US11665108B2 (en) 2018-10-25 2023-05-30 Tesla, Inc. QoS manager for system on a chip communications
US11816585B2 (en) 2018-12-03 2023-11-14 Tesla, Inc. Machine learning models operating at different frequencies for autonomous vehicles
US11908171B2 (en) 2018-12-04 2024-02-20 Tesla, Inc. Enhanced object detection for autonomous vehicles based on field view
US11537811B2 (en) 2018-12-04 2022-12-27 Tesla, Inc. Enhanced object detection for autonomous vehicles based on field view
US11610117B2 (en) 2018-12-27 2023-03-21 Tesla, Inc. System and method for adapting a neural network model on a hardware platform
US11748620B2 (en) 2019-02-01 2023-09-05 Tesla, Inc. Generating ground truth for machine learning from time series elements
US11567514B2 (en) 2019-02-11 2023-01-31 Tesla, Inc. Autonomous and user controlled vehicle summon to a target
US11790664B2 (en) 2019-02-19 2023-10-17 Tesla, Inc. Estimating object properties using visual image data
CN110659664A (en) * 2019-08-02 2020-01-07 杭州电子科技大学 SSD-based method for high-precision identification of small objects
CN110659664B (en) * 2019-08-02 2022-12-13 杭州电子科技大学 SSD-based high-precision small object identification method
CN110633631A (en) * 2019-08-06 2019-12-31 厦门大学 Pedestrian re-identification method based on component power set and multi-scale features
CN110633631B (en) * 2019-08-06 2022-02-18 厦门大学 Pedestrian re-identification method based on component power set and multi-scale features
CN110619268A (en) * 2019-08-07 2019-12-27 北京市新技术应用研究所 Pedestrian re-identification method and device based on space-time analysis and depth features
CN110619268B (en) * 2019-08-07 2022-11-25 北京市新技术应用研究所 Pedestrian re-identification method and device based on space-time analysis and depth features
CN110533084A (en) * 2019-08-12 2019-12-03 长安大学 A kind of multiscale target detection method based on from attention mechanism
CN110533084B (en) * 2019-08-12 2022-09-30 长安大学 Multi-scale target detection method based on self-attention mechanism
CN110473195B (en) * 2019-08-13 2023-04-18 中山大学 Medical focus detection framework and method capable of being customized automatically
CN110473195A (en) * 2019-08-13 2019-11-19 中山大学 It is a kind of can automatic customization medicine lesion detection framework and method
CN110427915A (en) * 2019-08-14 2019-11-08 北京百度网讯科技有限公司 Method and apparatus for output information
CN110427915B (en) * 2019-08-14 2022-09-27 北京百度网讯科技有限公司 Method and apparatus for outputting information
CN110705583A (en) * 2019-08-15 2020-01-17 平安科技(深圳)有限公司 Cell detection model training method and device, computer equipment and storage medium
CN110705583B (en) * 2019-08-15 2024-03-15 平安科技(深圳)有限公司 Cell detection model training method, device, computer equipment and storage medium
CN110490252A (en) * 2019-08-19 2019-11-22 西安工业大学 A kind of occupancy detection method and system based on deep learning
CN110490252B (en) * 2019-08-19 2022-11-15 西安工业大学 Indoor people number detection method and system based on deep learning
CN110659576A (en) * 2019-08-23 2020-01-07 深圳久凌软件技术有限公司 Pedestrian searching method and device based on joint judgment and generation learning
CN110647816B (en) * 2019-08-26 2022-11-22 合肥工业大学 Target detection method for real-time monitoring of goods shelf medicines
CN110647816A (en) * 2019-08-26 2020-01-03 合肥工业大学 Target detection method for real-time monitoring of goods shelf medicines
CN110580727B (en) * 2019-08-27 2023-04-18 天津大学 Depth V-shaped dense network imaging method with increased information flow and gradient flow
CN110580727A (en) * 2019-08-27 2019-12-17 天津大学 depth V-shaped dense network imaging method with increased information flow and gradient flow
CN110675309A (en) * 2019-08-28 2020-01-10 江苏大学 Image style conversion method based on convolutional neural network and VGGNet16 model
CN112446376A (en) * 2019-09-05 2021-03-05 中国科学院沈阳自动化研究所 Intelligent segmentation and compression method for industrial image
CN112446376B (en) * 2019-09-05 2023-08-01 中国科学院沈阳自动化研究所 Intelligent segmentation and compression method for industrial image
CN110728186A (en) * 2019-09-11 2020-01-24 中国科学院声学研究所南海研究站 Fire detection method based on multi-network fusion
CN110728186B (en) * 2019-09-11 2023-04-07 中国科学院声学研究所南海研究站 Fire detection method based on multi-network fusion
CN110619365A (en) * 2019-09-18 2019-12-27 苏州经贸职业技术学院 Drowning detection method
CN110619676B (en) * 2019-09-18 2023-04-18 东北大学 End-to-end three-dimensional face reconstruction method based on neural network
CN110619676A (en) * 2019-09-18 2019-12-27 东北大学 End-to-end three-dimensional face reconstruction method based on neural network
CN110619365B (en) * 2019-09-18 2023-09-12 苏州经贸职业技术学院 Method for detecting falling water
CN110619309A (en) * 2019-09-19 2019-12-27 天津天地基业科技有限公司 Embedded platform face detection method based on octave convolution sum YOLOv3
CN110659601A (en) * 2019-09-19 2020-01-07 西安电子科技大学 Depth full convolution network remote sensing image dense vehicle detection method based on central point
CN110619309B (en) * 2019-09-19 2023-07-18 天地伟业技术有限公司 Embedded platform face detection method based on octave convolution and YOLOv3
CN110659601B (en) * 2019-09-19 2022-12-02 西安电子科技大学 Depth full convolution network remote sensing image dense vehicle detection method based on central point
CN110706239A (en) * 2019-09-26 2020-01-17 哈尔滨工程大学 Scene segmentation method fusing full convolution neural network and improved ASPP module
CN110717903A (en) * 2019-09-30 2020-01-21 天津大学 Method for detecting crop diseases by using computer vision technology
CN110674777A (en) * 2019-09-30 2020-01-10 电子科技大学 Optical character recognition method in patent text scene
CN110751076B (en) * 2019-10-09 2023-03-28 上海应用技术大学 Vehicle detection method
CN110751076A (en) * 2019-10-09 2020-02-04 上海应用技术大学 Vehicle detection method
CN110781895B (en) * 2019-10-10 2023-06-20 湖北工业大学 Image semantic segmentation method based on convolutional neural network
CN110781895A (en) * 2019-10-10 2020-02-11 湖北工业大学 Image semantic segmentation method based on convolutional neural network
CN110728238A (en) * 2019-10-12 2020-01-24 安徽工程大学 Personnel re-detection method of fusion type neural network
CN110728640B (en) * 2019-10-12 2023-07-18 合肥工业大学 Fine rain removing method for double-channel single image
CN110728640A (en) * 2019-10-12 2020-01-24 合肥工业大学 Double-channel single-image fine rain removing method
CN111008554B (en) * 2019-10-16 2024-02-02 合肥湛达智能科技有限公司 Deep learning-based method for identifying pedestrians without giving away in dynamic traffic zebra stripes
CN111008554A (en) * 2019-10-16 2020-04-14 合肥湛达智能科技有限公司 Dynamic traffic zebra crossing interior impersonation pedestrian identification method based on deep learning
CN111008632A (en) * 2019-10-17 2020-04-14 安徽清新互联信息科技有限公司 License plate character segmentation method based on deep learning
CN110852179A (en) * 2019-10-17 2020-02-28 天津大学 Method for detecting suspicious personnel intrusion based on video monitoring platform
CN111046723A (en) * 2019-10-17 2020-04-21 安徽清新互联信息科技有限公司 Deep learning-based lane line detection method
CN111008632B (en) * 2019-10-17 2023-06-09 安徽清新互联信息科技有限公司 License plate character segmentation method based on deep learning
CN111046723B (en) * 2019-10-17 2023-06-02 安徽清新互联信息科技有限公司 Lane line detection method based on deep learning
CN110852179B (en) * 2019-10-17 2023-08-25 天津大学 Suspicious personnel invasion detection method based on video monitoring platform
CN110751644A (en) * 2019-10-23 2020-02-04 上海应用技术大学 Road surface crack detection method
CN110751644B (en) * 2019-10-23 2023-05-09 上海应用技术大学 Road surface crack detection method
CN111008562B (en) * 2019-10-31 2023-04-18 北京城建设计发展集团股份有限公司 Human-vehicle target detection method with feature map depth fusion
CN111008562A (en) * 2019-10-31 2020-04-14 北京城建设计发展集团股份有限公司 Human-vehicle target detection method with feature map depth fusion
CN110826476A (en) * 2019-11-02 2020-02-21 国网浙江省电力有限公司杭州供电公司 Image detection method and device for identifying target object, electronic equipment and storage medium
CN110826485A (en) * 2019-11-05 2020-02-21 中国人民解放军战略支援部队信息工程大学 Target detection method and system for remote sensing image
CN110826552A (en) * 2019-11-05 2020-02-21 华中农业大学 Grape nondestructive automatic detection device and method based on deep learning
CN110837837A (en) * 2019-11-05 2020-02-25 安徽工业大学 Violation detection method based on convolutional neural network
CN110826485B (en) * 2019-11-05 2023-04-18 中国人民解放军战略支援部队信息工程大学 Target detection method and system for remote sensing image
CN110837837B (en) * 2019-11-05 2023-10-17 安徽工业大学 Vehicle violation detection method based on convolutional neural network
CN111008567A (en) * 2019-11-07 2020-04-14 郑州大学 Driver behavior identification method
CN111008567B (en) * 2019-11-07 2023-03-24 郑州大学 Driver behavior identification method
CN110852272B (en) * 2019-11-11 2023-03-28 上海应用技术大学 Pedestrian detection method
CN110852272A (en) * 2019-11-11 2020-02-28 上海应用技术大学 Pedestrian detection method
CN111461160A (en) * 2019-11-11 2020-07-28 天津津航技术物理研究所 Anti-cloud-fog and anti-smoke-interference infrared imaging seeker target tracking method
CN111461160B (en) * 2019-11-11 2023-07-14 天津津航技术物理研究所 Infrared imaging seeker target tracking method for preventing cloud and fog interference
CN111008994A (en) * 2019-11-14 2020-04-14 山东万腾电子科技有限公司 Moving target real-time detection and tracking system and method based on MPSoC
CN111222402A (en) * 2019-11-14 2020-06-02 北京理工大学 Crowd gathering density analysis method oriented to unmanned aerial vehicle image
CN111222534A (en) * 2019-11-15 2020-06-02 重庆邮电大学 Single-shot multi-frame detector optimization method based on bidirectional feature fusion and more balanced L1 loss
CN111222534B (en) * 2019-11-15 2022-10-11 重庆邮电大学 Single-shot multi-frame detector optimization method based on bidirectional feature fusion and more balanced L1 loss
CN111126359A (en) * 2019-11-15 2020-05-08 西安电子科技大学 High-definition image small target detection method based on self-encoder and YOLO algorithm
CN110942008B (en) * 2019-11-21 2023-05-12 圆通速递有限公司 Deep learning-based face sheet information positioning method and system
CN110942008A (en) * 2019-11-21 2020-03-31 圆通速递有限公司 Method and system for positioning waybill information based on deep learning
CN110909797B (en) * 2019-11-22 2023-05-05 北京深睿博联科技有限责任公司 Image detection method and device, equipment and storage medium
CN110909797A (en) * 2019-11-22 2020-03-24 北京深睿博联科技有限责任公司 Image detection method and device, equipment and storage medium
CN111105393A (en) * 2019-11-25 2020-05-05 长安大学 Grape disease and pest identification method and device based on deep learning
CN110705540B (en) * 2019-11-25 2024-05-31 中国农业科学院农业信息研究所 Animal remedy production pointer instrument image recognition method and device based on RFID and deep learning
CN111144209A (en) * 2019-11-25 2020-05-12 浙江工商大学 Monitoring video head detection method based on heterogeneous multi-branch deep convolutional neural network
CN111105393B (en) * 2019-11-25 2023-04-18 长安大学 Grape disease and pest identification method and device based on deep learning
CN110705540A (en) * 2019-11-25 2020-01-17 中国农业科学院农业信息研究所 Animal remedy production pointer instrument image identification method and device based on RFID and deep learning
CN112949814B (en) * 2019-11-26 2024-04-26 联合汽车电子有限公司 Compression and acceleration method and device of convolutional neural network and embedded device
CN110956115A (en) * 2019-11-26 2020-04-03 证通股份有限公司 Scene recognition method and device
CN112949814A (en) * 2019-11-26 2021-06-11 联合汽车电子有限公司 Compression and acceleration method and device of convolutional neural network and embedded equipment
CN110956115B (en) * 2019-11-26 2023-09-29 证通股份有限公司 Scene recognition method and device
CN111046928A (en) * 2019-11-27 2020-04-21 上海交通大学 Single-stage real-time universal target detector with accurate positioning and method
CN111046928B (en) * 2019-11-27 2023-05-23 上海交通大学 Single-stage real-time universal target detector and method with accurate positioning
CN111062278A (en) * 2019-12-03 2020-04-24 西安工程大学 Abnormal behavior identification method based on improved residual error network
CN111145195A (en) * 2019-12-03 2020-05-12 上海海事大学 Method for detecting portrait outline in video based on lightweight deep neural network
CN111062278B (en) * 2019-12-03 2023-04-07 西安工程大学 Abnormal behavior identification method based on improved residual error network
CN111145195B (en) * 2019-12-03 2023-02-24 上海海事大学 Method for detecting portrait contour in video based on lightweight deep neural network
CN110986949A (en) * 2019-12-04 2020-04-10 日照职业技术学院 Path identification method based on artificial intelligence platform
CN111027449B (en) * 2019-12-05 2023-05-30 光典信息发展有限公司 Positioning and identifying method for paper archive electronic image archive chapter
CN110941970B (en) * 2019-12-05 2023-05-30 深圳牛图科技有限公司 High-speed dimension code positioning and identifying system based on full convolution neural network
CN111027449A (en) * 2019-12-05 2020-04-17 光典信息发展有限公司 Positioning and identifying method for paper file electronic image filing seal
CN110942144A (en) * 2019-12-05 2020-03-31 深圳牛图科技有限公司 Neural network construction method integrating automatic training, checking and reconstructing
CN110942144B (en) * 2019-12-05 2023-05-02 深圳牛图科技有限公司 Neural network construction method integrating automatic training, checking and reconstruction
CN110992238B (en) * 2019-12-06 2023-10-17 上海电力大学 Digital image tampering blind detection method based on dual-channel network
CN110992238A (en) * 2019-12-06 2020-04-10 上海电力大学 Digital image tampering blind detection method based on dual-channel network
CN111178148A (en) * 2019-12-06 2020-05-19 天津大学 Ground target geographic coordinate positioning method based on unmanned aerial vehicle vision system
CN111178148B (en) * 2019-12-06 2023-06-02 天津大学 Ground target geographic coordinate positioning method based on unmanned aerial vehicle vision system
CN111008603A (en) * 2019-12-08 2020-04-14 中南大学 Multi-class target rapid detection method for large-scale remote sensing image
CN111008603B (en) * 2019-12-08 2023-04-18 中南大学 Multi-class target rapid detection method for large-scale remote sensing image
CN111179338A (en) * 2019-12-10 2020-05-19 同济大学 Lightweight target positioning method for mobile power supply receiving end
CN111160115B (en) * 2019-12-10 2023-05-02 上海工程技术大学 Video pedestrian re-identification method based on twin double-flow 3D convolutional neural network
CN111161217B (en) * 2019-12-10 2023-04-18 中国民航大学 Conv-LSTM multi-scale feature fusion-based fuzzy detection method
CN111161217A (en) * 2019-12-10 2020-05-15 中国民航大学 Conv-LSTM multi-scale feature fusion-based fuzzy detection method
CN111160115A (en) * 2019-12-10 2020-05-15 上海工程技术大学 Video pedestrian re-identification method based on twin double-flow 3D convolutional neural network
CN111179338B (en) * 2019-12-10 2023-08-04 同济大学 Lightweight target positioning method for mobile power supply receiving end
CN111062297A (en) * 2019-12-11 2020-04-24 青岛科技大学 Violent abnormal behavior detection method based on EANN deep learning model
CN111062297B (en) * 2019-12-11 2023-05-23 青岛科技大学 Violent abnormal behavior detection method based on EANN deep learning model
CN111079642B (en) * 2019-12-13 2023-11-14 国网浙江余姚市供电有限公司 Line movable monitoring method and device and computer readable medium
CN111079642A (en) * 2019-12-13 2020-04-28 国网浙江余姚市供电有限公司 Line movable monitoring method and device and computer readable medium
CN110956157A (en) * 2019-12-14 2020-04-03 深圳先进技术研究院 Deep learning remote sensing image target detection method and device based on candidate frame selection
CN111178178A (en) * 2019-12-16 2020-05-19 汇纳科技股份有限公司 Multi-scale pedestrian re-identification method, system, medium and terminal combined with region distribution
CN111178178B (en) * 2019-12-16 2023-10-10 汇纳科技股份有限公司 Multi-scale pedestrian re-identification method, system, medium and terminal combined with region distribution
CN111091101A (en) * 2019-12-23 2020-05-01 中国科学院自动化研究所 High-precision pedestrian detection method, system and device based on one-step method
CN111091101B (en) * 2019-12-23 2023-06-02 中国科学院自动化研究所 High-precision pedestrian detection method, system and device based on one-step method
CN111126310A (en) * 2019-12-26 2020-05-08 华侨大学 Pedestrian gender identification method based on scene migration
CN111126310B (en) * 2019-12-26 2023-03-24 华侨大学 Pedestrian gender identification method based on scene migration
CN111178251A (en) * 2019-12-27 2020-05-19 汇纳科技股份有限公司 Pedestrian attribute identification method and system, storage medium and terminal
CN111161295A (en) * 2019-12-30 2020-05-15 神思电子技术股份有限公司 Background stripping method for dish image
CN111161295B (en) * 2019-12-30 2023-11-21 神思电子技术股份有限公司 Dish image background stripping method
CN111160274A (en) * 2019-12-31 2020-05-15 合肥湛达智能科技有限公司 Pedestrian detection method based on binaryzation fast RCNN (radar cross-correlation neural network)
CN111160274B (en) * 2019-12-31 2023-03-24 合肥湛达智能科技有限公司 Pedestrian detection method based on binaryzation fast RCNN (radar cross-correlation neural network)
CN111199212B (en) * 2020-01-02 2023-04-07 西安工程大学 Pedestrian attribute identification method based on attention model
CN111199212A (en) * 2020-01-02 2020-05-26 西安工程大学 Pedestrian attribute identification method based on attention model
CN111209952B (en) * 2020-01-03 2023-05-30 西安工业大学 Underwater target detection method based on improved SSD and migration learning
CN111209952A (en) * 2020-01-03 2020-05-29 西安工业大学 Underwater target detection method based on improved SSD and transfer learning
CN111209860A (en) * 2020-01-06 2020-05-29 上海海事大学 Video attendance system and method based on deep learning and reinforcement learning
CN111209860B (en) * 2020-01-06 2023-04-07 上海海事大学 Video attendance system and method based on deep learning and reinforcement learning
CN111259736A (en) * 2020-01-08 2020-06-09 上海海事大学 Real-time pedestrian detection method based on deep learning in complex environment
CN111259898B (en) * 2020-01-08 2023-03-24 西安电子科技大学 Crop segmentation method based on unmanned aerial vehicle aerial image
CN111259898A (en) * 2020-01-08 2020-06-09 西安电子科技大学 Crop segmentation method based on unmanned aerial vehicle aerial image
CN111275711A (en) * 2020-01-08 2020-06-12 西安电子科技大学 Real-time image semantic segmentation method based on lightweight convolutional neural network model
CN111259736B (en) * 2020-01-08 2023-04-07 上海海事大学 Real-time pedestrian detection method based on deep learning in complex environment
CN111242010A (en) * 2020-01-10 2020-06-05 厦门博海中天信息科技有限公司 Method for judging and identifying identity of litter worker based on edge AI
CN111260658B (en) * 2020-01-10 2023-10-17 厦门大学 Deep reinforcement learning method for image segmentation
CN111260658A (en) * 2020-01-10 2020-06-09 厦门大学 Novel depth reinforcement learning algorithm for image segmentation
CN111242839A (en) * 2020-01-13 2020-06-05 华南理工大学 Image scaling and cutting method based on scale grade
CN111242839B (en) * 2020-01-13 2023-04-21 华南理工大学 Image scaling and clipping method based on scale level
CN113128316A (en) * 2020-01-15 2021-07-16 北京四维图新科技股份有限公司 Target detection method and device
CN111209887A (en) * 2020-01-15 2020-05-29 西安电子科技大学 SSD model optimization method for small target detection
CN111259800A (en) * 2020-01-16 2020-06-09 天津大学 Neural network-based unmanned special vehicle detection method
CN111222519B (en) * 2020-01-16 2023-03-24 西北大学 Construction method, method and device of hierarchical colored drawing manuscript line extraction model
CN111222519A (en) * 2020-01-16 2020-06-02 西北大学 Construction method, method and device of hierarchical colored drawing manuscript line extraction model
CN111275171B (en) * 2020-01-19 2023-07-04 合肥工业大学 Small target detection method based on parameter sharing multi-scale super-division reconstruction
CN111275171A (en) * 2020-01-19 2020-06-12 合肥工业大学 Small target detection method based on parameter sharing and multi-scale super-resolution reconstruction
CN111275688B (en) * 2020-01-19 2023-12-12 合肥工业大学 Small target detection method based on context feature fusion screening of attention mechanism
CN111275688A (en) * 2020-01-19 2020-06-12 合肥工业大学 Small target detection method based on context feature fusion screening of attention mechanism
CN111199220A (en) * 2020-01-21 2020-05-26 北方民族大学 Lightweight deep neural network method for people detection and people counting in elevator
CN111199220B (en) * 2020-01-21 2023-04-28 北方民族大学 Light-weight deep neural network method for personnel detection and personnel counting in elevator
CN111292366B (en) * 2020-02-17 2023-03-10 华侨大学 Visual driving ranging algorithm based on deep learning and edge calculation
CN111292366A (en) * 2020-02-17 2020-06-16 华侨大学 Visual driving ranging algorithm based on deep learning and edge calculation
CN111339871A (en) * 2020-02-18 2020-06-26 中国电子科技集团公司第二十八研究所 Target group distribution pattern studying and judging method and device based on convolutional neural network
CN111339871B (en) * 2020-02-18 2022-09-16 中国电子科技集团公司第二十八研究所 Target group distribution pattern studying and judging method and device based on convolutional neural network
CN111291820A (en) * 2020-02-19 2020-06-16 中国电子科技集团公司第二十八研究所 Target detection method combining positioning information and classification information
CN111291820B (en) * 2020-02-19 2023-05-30 中国电子科技集团公司第二十八研究所 Target detection method combining positioning information and classification information
CN111428751A (en) * 2020-02-24 2020-07-17 清华大学 Object detection method based on compressed sensing and convolutional network
CN111428751B (en) * 2020-02-24 2022-12-23 清华大学 Object detection method based on compressed sensing and convolutional network
CN111428567B (en) * 2020-02-26 2024-02-02 沈阳大学 Pedestrian tracking system and method based on affine multitask regression
CN111368673A (en) * 2020-02-26 2020-07-03 华南理工大学 Method for quickly extracting human body key points based on neural network
CN111428567A (en) * 2020-02-26 2020-07-17 沈阳大学 Pedestrian tracking system and method based on affine multi-task regression
CN111368673B (en) * 2020-02-26 2023-04-07 华南理工大学 Method for quickly extracting human body key points based on neural network
CN111339967B (en) * 2020-02-28 2023-04-07 长安大学 Pedestrian detection method based on multi-view graph convolution network
CN111339967A (en) * 2020-02-28 2020-06-26 长安大学 Pedestrian detection method based on multi-view graph convolution network
CN113324864A (en) * 2020-02-28 2021-08-31 南京理工大学 Pantograph carbon slide plate abrasion detection method based on deep learning target detection
CN111339975B (en) * 2020-03-03 2023-04-21 华东理工大学 Target detection, identification and tracking method based on central scale prediction and twin neural network
CN111339975A (en) * 2020-03-03 2020-06-26 华东理工大学 Target detection, identification and tracking method based on central scale prediction and twin neural network
CN111368726A (en) * 2020-03-04 2020-07-03 西安咏圣达电子科技有限公司 Construction site working face people counting method, system, storage medium and device
CN111368726B (en) * 2020-03-04 2023-11-10 西安咏圣达电子科技有限公司 Construction site operation face personnel number statistics method, system, storage medium and device
CN111428586B (en) * 2020-03-09 2023-05-16 同济大学 Three-dimensional human body posture estimation method based on feature fusion and sample enhancement
CN111428586A (en) * 2020-03-09 2020-07-17 同济大学 Three-dimensional human body posture estimation method based on feature fusion and sample enhancement
CN111461291B (en) * 2020-03-13 2023-05-12 西安科技大学 Long-distance pipeline inspection method based on YOLOv3 pruning network and deep learning defogging model
CN111461291A (en) * 2020-03-13 2020-07-28 西安科技大学 Long-distance pipeline inspection method based on YO L Ov3 pruning network and deep learning defogging model
CN111429410A (en) * 2020-03-13 2020-07-17 杭州电子科技大学 Object X-ray image material distinguishing system and method based on deep learning
CN111429410B (en) * 2020-03-13 2023-09-01 杭州电子科技大学 Object X-ray image material discrimination system and method based on deep learning
CN111414909A (en) * 2020-03-16 2020-07-14 上海富瀚微电子股份有限公司 Target detection method and device
CN111414909B (en) * 2020-03-16 2023-05-12 上海富瀚微电子股份有限公司 Target detection method and device
CN111460924B (en) * 2020-03-16 2023-04-07 上海师范大学 Gate ticket-evading behavior detection method based on target detection
CN111460924A (en) * 2020-03-16 2020-07-28 上海师范大学 Gate ticket-passing behavior detection method based on target detection
CN111368453A (en) * 2020-03-17 2020-07-03 创新奇智(合肥)科技有限公司 Fabric cutting optimization method based on deep reinforcement learning
CN111753625B (en) * 2020-03-18 2024-04-09 北京沃东天骏信息技术有限公司 Pedestrian detection method, device, equipment and medium
CN111753625A (en) * 2020-03-18 2020-10-09 北京沃东天骏信息技术有限公司 Pedestrian detection method, device, equipment and medium
CN111462132A (en) * 2020-03-20 2020-07-28 西北大学 Video object segmentation method and system based on deep learning
CN111488805B (en) * 2020-03-24 2023-04-25 广州大学 Video behavior recognition method based on salient feature extraction
CN111488805A (en) * 2020-03-24 2020-08-04 广州大学 Video behavior identification method based on saliency feature extraction
CN111563525A (en) * 2020-03-25 2020-08-21 北京航空航天大学 Moving target detection method based on YOLOv3-Tiny
CN111310773A (en) * 2020-03-27 2020-06-19 西安电子科技大学 Efficient license plate positioning method of convolutional neural network
CN111310861B (en) * 2020-03-27 2023-05-23 西安电子科技大学 License plate recognition and positioning method based on deep neural network
CN111310861A (en) * 2020-03-27 2020-06-19 西安电子科技大学 License plate recognition and positioning method based on deep neural network
CN111310773B (en) * 2020-03-27 2023-03-24 西安电子科技大学 Efficient license plate positioning method of convolutional neural network
CN111414997A (en) * 2020-03-27 2020-07-14 中国人民解放军空军工程大学 Artificial intelligence-based method for battlefield target identification
CN111460980A (en) * 2020-03-30 2020-07-28 西安工程大学 Multi-scale detection method for small-target pedestrian based on multi-semantic feature fusion
CN111462085A (en) * 2020-03-31 2020-07-28 上海大学 Digital image local filtering evidence obtaining method based on convolutional neural network
CN111462085B (en) * 2020-03-31 2023-09-19 上海大学 Digital image local filtering evidence obtaining method based on convolutional neural network
CN111553199A (en) * 2020-04-07 2020-08-18 厦门大学 Motor vehicle traffic violation automatic detection technology based on computer vision
CN111462108A (en) * 2020-04-13 2020-07-28 山西新华化工有限责任公司 Machine learning-based head and face product design ergonomics assessment operation method
CN111462108B (en) * 2020-04-13 2023-05-02 山西新华防化装备研究院有限公司 Machine learning-based head-face product design ergonomics evaluation operation method
CN111523645A (en) * 2020-04-16 2020-08-11 北京航天自动控制研究所 Convolutional neural network design method for improving small-scale target detection and identification performance
CN111597900B (en) * 2020-04-16 2023-10-24 浙江工业大学 Illegal dog walking identification method
CN111597897B (en) * 2020-04-16 2023-10-24 浙江工业大学 High-speed service area parking space recognition method
CN111597900A (en) * 2020-04-16 2020-08-28 浙江工业大学 Illegal dog walking identification method
CN111597897A (en) * 2020-04-16 2020-08-28 浙江工业大学 Parking space identification method for high-speed service area
CN111695403A (en) * 2020-04-19 2020-09-22 东风汽车股份有限公司 2D and 3D image synchronous detection method based on depth perception convolutional neural network
CN111695403B (en) * 2020-04-19 2024-03-22 东风汽车股份有限公司 Depth perception convolutional neural network-based 2D and 3D image synchronous detection method
CN111476314B (en) * 2020-04-27 2023-03-07 中国科学院合肥物质科学研究院 Fuzzy video detection method integrating optical flow algorithm and deep learning
CN111476314A (en) * 2020-04-27 2020-07-31 中国科学院合肥物质科学研究院 Fuzzy video detection method integrating optical flow algorithm and deep learning
CN111738237A (en) * 2020-04-29 2020-10-02 上海海事大学 Target detection method of multi-core iteration RPN based on heterogeneous convolution
CN111738237B (en) * 2020-04-29 2024-03-15 上海海事大学 Heterogeneous convolution-based target detection method for multi-core iteration RPN
CN111652846A (en) * 2020-04-30 2020-09-11 成都数之联科技有限公司 Semiconductor defect identification method based on characteristic pyramid convolution neural network
CN111652846B (en) * 2020-04-30 2022-08-16 成都数之联科技股份有限公司 Semiconductor defect identification method based on characteristic pyramid convolution neural network
CN111597939A (en) * 2020-05-07 2020-08-28 西安电子科技大学 High-speed rail line nest defect detection method based on deep learning
CN111597939B (en) * 2020-05-07 2023-04-18 西安电子科技大学 High-speed rail line nest defect detection method based on deep learning
CN111783685A (en) * 2020-05-08 2020-10-16 西安建筑科技大学 Target detection improved algorithm based on single-stage network model
CN111582452B (en) * 2020-05-09 2023-10-27 北京百度网讯科技有限公司 Method and device for generating neural network model
CN111582452A (en) * 2020-05-09 2020-08-25 北京百度网讯科技有限公司 Method and device for generating neural network model
CN111597945A (en) * 2020-05-11 2020-08-28 济南博观智能科技有限公司 Target detection method, device, equipment and medium
CN111597945B (en) * 2020-05-11 2023-08-18 济南博观智能科技有限公司 Target detection method, device, equipment and medium
CN111783934A (en) * 2020-05-15 2020-10-16 北京迈格威科技有限公司 Convolutional neural network construction method, device, equipment and medium
CN111783523B (en) * 2020-05-19 2022-10-21 中国人民解放军93114部队 Remote sensing image rotating target detection method
CN111783523A (en) * 2020-05-19 2020-10-16 中国人民解放军93114部队 Remote sensing image rotating target detection method
CN111709449A (en) * 2020-05-20 2020-09-25 西安理工大学 Multi-layer feature fusion small-scale target detection method based on clustering algorithm
CN112001878A (en) * 2020-05-21 2020-11-27 合肥合工安驰智能科技有限公司 Deep learning ore scale measuring method based on binarization neural network and application system
CN111881714A (en) * 2020-05-22 2020-11-03 北京交通大学 Unsupervised cross-domain pedestrian re-identification method
CN111881714B (en) * 2020-05-22 2023-11-21 北京交通大学 Unsupervised cross-domain pedestrian re-identification method
CN111709313A (en) * 2020-05-27 2020-09-25 杭州电子科技大学 Pedestrian re-identification method based on local and channel combination characteristics
CN111626196A (en) * 2020-05-27 2020-09-04 成都颜禾曦科技有限公司 Typical bovine animal body structure intelligent analysis method based on knowledge graph
CN111709311A (en) * 2020-05-27 2020-09-25 西安理工大学 Pedestrian re-identification method based on multi-scale convolution feature fusion
CN111626196B (en) * 2020-05-27 2023-05-16 西南石油大学 Knowledge-graph-based intelligent analysis method for body structure of typical bovine animal
CN111709313B (en) * 2020-05-27 2022-07-29 杭州电子科技大学 Pedestrian re-identification method based on local and channel combination characteristics
CN111832608B (en) * 2020-05-29 2023-09-12 上海海事大学 Iron spectrum image multi-abrasive particle identification method based on single-stage detection model yolov3
CN111832608A (en) * 2020-05-29 2020-10-27 上海海事大学 Multi-abrasive-particle identification method for ferrographic image based on single-stage detection model yolov3
CN111652216A (en) * 2020-06-03 2020-09-11 北京工商大学 Multi-scale target detection model method based on metric learning
CN111652216B (en) * 2020-06-03 2023-04-07 北京工商大学 Multi-scale target detection model method based on metric learning
CN111652930B (en) * 2020-06-04 2024-02-27 上海媒智科技有限公司 Image target detection method, system and equipment
CN111652930A (en) * 2020-06-04 2020-09-11 上海媒智科技有限公司 Image target detection method, system and equipment
CN111709336B (en) * 2020-06-08 2024-04-26 杭州像素元科技有限公司 Expressway pedestrian detection method, equipment and readable storage medium
CN111709336A (en) * 2020-06-08 2020-09-25 杭州像素元科技有限公司 Highway pedestrian detection method and device and readable storage medium
CN111881932A (en) * 2020-06-11 2020-11-03 中国人民解放军战略支援部队信息工程大学 FasterRCNN target detection algorithm for military aircraft
CN111881932B (en) * 2020-06-11 2023-09-15 中国人民解放军战略支援部队信息工程大学 FasterRCNN target detection algorithm for military aircraft
CN111860587B (en) * 2020-06-12 2024-02-02 长安大学 Detection method for small targets of pictures
CN111860587A (en) * 2020-06-12 2020-10-30 长安大学 Method for detecting small target of picture
CN111738124B (en) * 2020-06-15 2023-08-22 西安电子科技大学 Remote sensing image cloud detection method based on Gabor transformation and attention
CN111738124A (en) * 2020-06-15 2020-10-02 西安电子科技大学 Remote sensing image cloud detection method based on Gabor transformation and attention
CN111709935A (en) * 2020-06-17 2020-09-25 西安科技大学 Real-time coal gangue positioning and identifying method for ground moving belt
CN111709935B (en) * 2020-06-17 2023-04-07 西安科技大学 Real-time coal gangue positioning and identifying method for ground moving belt
CN111797836B (en) * 2020-06-18 2024-04-26 中国空间技术研究院 Depth learning-based obstacle segmentation method for extraterrestrial celestial body inspection device
CN111797836A (en) * 2020-06-18 2020-10-20 中国空间技术研究院 Extraterrestrial celestial body patrolling device obstacle segmentation method based on deep learning
CN111723743A (en) * 2020-06-19 2020-09-29 北京邮电大学 Small-scale pedestrian rapid detection method
CN111832630A (en) * 2020-06-23 2020-10-27 成都恒创新星科技有限公司 Target detection method based on first-order gradient neural network
CN111784652B (en) * 2020-06-24 2024-02-06 西安电子科技大学 MRI (magnetic resonance imaging) segmentation method based on reinforcement learning multi-scale neural network
CN111784652A (en) * 2020-06-24 2020-10-16 西安电子科技大学 MRI segmentation method based on reinforcement learning multi-scale neural network
CN111767847A (en) * 2020-06-29 2020-10-13 佛山市南海区广工大数控装备协同创新研究院 Pedestrian multi-target tracking method integrating target detection and association
CN111767847B (en) * 2020-06-29 2023-06-09 佛山市南海区广工大数控装备协同创新研究院 Pedestrian multi-target tracking method integrating target detection and association
CN111814621B (en) * 2020-06-29 2024-01-23 中国科学院合肥物质科学研究院 Attention mechanism-based multi-scale vehicle pedestrian detection method and device
CN111814621A (en) * 2020-06-29 2020-10-23 中国科学院合肥物质科学研究院 Multi-scale vehicle and pedestrian detection method and device based on attention mechanism
CN111832450A (en) * 2020-06-30 2020-10-27 成都睿沿科技有限公司 Knife holding detection method based on image recognition
CN111832450B (en) * 2020-06-30 2023-11-28 成都睿沿科技有限公司 Knife holding detection method based on image recognition
CN111767878A (en) * 2020-07-03 2020-10-13 中国科学院自动化研究所 Deep learning-based traffic sign detection method and system in embedded device
CN111986145A (en) * 2020-07-09 2020-11-24 浙江工业大学 Bearing roller flaw detection method based on fast-RCNN
CN111860265B (en) * 2020-07-10 2024-01-05 武汉理工大学 Multi-detection-frame loss balanced road scene understanding algorithm based on sample loss
CN111860265A (en) * 2020-07-10 2020-10-30 武汉理工大学 Multi-detection-frame loss balancing road scene understanding algorithm based on sample loss
CN111667030A (en) * 2020-07-13 2020-09-15 华东理工大学 Method, system and storage medium for realizing remote sensing image target detection based on deep neural network
CN111667030B (en) * 2020-07-13 2023-04-07 华东理工大学 Method, system and storage medium for realizing remote sensing image target detection based on deep neural network
CN111832479A (en) * 2020-07-14 2020-10-27 西安电子科技大学 Video target detection method based on improved self-adaptive anchor R-CNN
CN111832479B (en) * 2020-07-14 2023-08-01 西安电子科技大学 Video target detection method based on improved self-adaptive anchor point R-CNN
CN111986149A (en) * 2020-07-16 2020-11-24 江西斯源科技有限公司 Plant disease and insect pest detection method based on convolutional neural network
CN111860637A (en) * 2020-07-17 2020-10-30 河南科技大学 Single-shot multi-frame infrared target detection method
CN111986126A (en) * 2020-07-17 2020-11-24 浙江工业大学 Multi-target detection method based on improved VGG16 network
CN111860637B (en) * 2020-07-17 2023-11-21 河南科技大学 Single-shot multi-frame infrared target detection method
CN111832513B (en) * 2020-07-21 2024-02-09 西安电子科技大学 Real-time football target detection method based on neural network
CN111832513A (en) * 2020-07-21 2020-10-27 西安电子科技大学 Real-time football target detection method based on neural network
CN111881803A (en) * 2020-07-22 2020-11-03 安徽农业大学 Livestock face recognition method based on improved YOLOv3
CN111881803B (en) * 2020-07-22 2023-10-31 安徽农业大学 Face recognition method based on improved YOLOv3
CN112036437A (en) * 2020-07-28 2020-12-04 农业农村部南京农业机械化研究所 Rice seedling detection model based on improved YOLOV3 network and method thereof
CN112036437B (en) * 2020-07-28 2024-06-07 农业农村部南京农业机械化研究所 Rice seedling detection model based on improved YOLOV network and method thereof
CN112001259A (en) * 2020-07-28 2020-11-27 联芯智能(南京)科技有限公司 Aerial weak human body target intelligent detection method based on visible light image
CN111915583B (en) * 2020-07-29 2024-02-09 西安电子科技大学 Vehicle and pedestrian detection method based on vehicle-mounted thermal infrared imager in complex scene
CN111915583A (en) * 2020-07-29 2020-11-10 西安电子科技大学 Vehicle and pedestrian detection method based on vehicle-mounted thermal infrared imager in complex scene
CN111985365A (en) * 2020-08-06 2020-11-24 合肥学院 Straw burning monitoring method and system based on target detection technology
CN112115291B (en) * 2020-08-12 2024-02-27 南京止善智能科技研究院有限公司 Three-dimensional indoor model retrieval method based on deep learning
CN112115291A (en) * 2020-08-12 2020-12-22 南京止善智能科技研究院有限公司 Three-dimensional indoor model retrieval method based on deep learning
CN111985464B (en) * 2020-08-13 2023-08-22 山东大学 Court judgment document-oriented multi-scale learning text recognition method and system
CN111985464A (en) * 2020-08-13 2020-11-24 山东大学 Multi-scale learning character recognition method and system for court judgment documents
CN111986172B (en) * 2020-08-18 2024-06-04 华北电力科学研究院有限责任公司 Infrared image fault detection method and device for power equipment
CN111986172A (en) * 2020-08-18 2020-11-24 华北电力科学研究院有限责任公司 Infrared image fault detection method and device for power equipment
CN111984879A (en) * 2020-08-19 2020-11-24 交控科技股份有限公司 User guiding method, device, equipment and storage medium applied to train
CN112001385B (en) * 2020-08-20 2024-02-06 长安大学 Target cross-domain detection and understanding method, system, equipment and storage medium
CN112001385A (en) * 2020-08-20 2020-11-27 长安大学 Target cross-domain detection and understanding method, system, equipment and storage medium
CN111985473A (en) * 2020-08-20 2020-11-24 中再云图技术有限公司 Method for identifying private business of store
CN111986186B (en) * 2020-08-25 2024-03-22 华中科技大学 Quantitative in-furnace PCB patch defect online detection system and method
CN111986186A (en) * 2020-08-25 2020-11-24 华中科技大学 Quantitative on-line detection system and method for defects of PCB (printed Circuit Board) patches in front of furnace
CN112001339A (en) * 2020-08-27 2020-11-27 杭州电子科技大学 Pedestrian social distance real-time monitoring method based on YOLO v4
CN112001339B (en) * 2020-08-27 2024-02-23 杭州电子科技大学 Pedestrian social distance real-time monitoring method based on YOLO v4
CN112364974B (en) * 2020-08-28 2024-02-09 西安电子科技大学 YOLOv3 algorithm based on activation function improvement
CN112364974A (en) * 2020-08-28 2021-02-12 西安电子科技大学 Improved YOLOv3 algorithm based on activation function
CN112101434B (en) * 2020-09-04 2022-09-09 河南大学 Infrared image weak and small target detection method based on improved YOLO v3
CN112149664B (en) * 2020-09-04 2024-05-07 浙江工业大学 Target detection method for optimizing classification and positioning tasks
CN112149664A (en) * 2020-09-04 2020-12-29 浙江工业大学 Target detection method for optimizing classification and positioning tasks
CN112101434A (en) * 2020-09-04 2020-12-18 河南大学 Infrared image weak and small target detection method based on improved YOLO v3
CN112464765A (en) * 2020-09-10 2021-03-09 天津师范大学 Safety helmet detection algorithm based on single-pixel characteristic amplification and application thereof
CN112464765B (en) * 2020-09-10 2022-09-23 天津师范大学 Safety helmet detection method based on single-pixel characteristic amplification and application thereof
CN112101455A (en) * 2020-09-15 2020-12-18 重庆市农业科学院 Tea lesser leafhopper identification and counting method based on convolutional neural network
CN112101455B (en) * 2020-09-15 2022-08-09 重庆市农业科学院 Tea lesser leafhopper identification and counting method based on convolutional neural network
CN112347843A (en) * 2020-09-18 2021-02-09 深圳数联天下智能科技有限公司 Method and related device for training wrinkle detection model
CN112163492A (en) * 2020-09-21 2021-01-01 华南理工大学 Long-time cross-scene optimized traffic object detection method, system and medium
CN112163492B (en) * 2020-09-21 2023-09-08 华南理工大学 Long-time cross-scene optimization traffic object detection method, system and medium
CN112115885B (en) * 2020-09-22 2023-08-11 中国农业科学院农业信息研究所 Fruit tree fruiting branch shearing point positioning method based on deep convolutional neural network
CN112115885A (en) * 2020-09-22 2020-12-22 中国农业科学院农业信息研究所 Fruit tree bearing branch shearing point positioning method for picking based on deep convolutional neural network
CN112215100B (en) * 2020-09-27 2024-02-09 浙江工业大学 Target detection method for degraded image under unbalanced training sample
CN112215100A (en) * 2020-09-27 2021-01-12 浙江工业大学 Target detection method for degraded image under unbalanced training sample
CN112347851B (en) * 2020-09-30 2023-02-21 山东理工大学 Multi-target detection network construction method, multi-target detection method and device
CN112200045A (en) * 2020-09-30 2021-01-08 华中科技大学 Remote sensing image target detection model establishing method based on context enhancement and application
CN112200045B (en) * 2020-09-30 2024-03-19 华中科技大学 Remote sensing image target detection model establishment method based on context enhancement and application
CN112085126B (en) * 2020-09-30 2023-12-12 浙江大学 Single sample target detection method focusing on classification task
CN112347851A (en) * 2020-09-30 2021-02-09 山东理工大学 Multi-target detection network construction method, multi-target detection method and device
CN112085126A (en) * 2020-09-30 2020-12-15 浙江大学 Single-sample target detection method focusing on classification task
CN112183430A (en) * 2020-10-12 2021-01-05 河北工业大学 Sign language identification method and device based on double neural network
CN112183430B (en) * 2020-10-12 2024-04-05 河北工业大学 Sign language recognition method and device based on dual neural network
CN112232411B (en) * 2020-10-15 2024-05-14 苏州凌图科技有限公司 HarDNet-Lite optimization method in embedded platform
CN112232411A (en) * 2020-10-15 2021-01-15 浙江凌图科技有限公司 Optimization method of HarDNet-Lite on embedded platform
CN112257796A (en) * 2020-10-28 2021-01-22 辽宁工程技术大学 Image integration method of convolutional neural network based on selective characteristic connection
CN112419237B (en) * 2020-11-03 2023-06-30 中国计量大学 Deep learning-based automobile clutch master cylinder groove surface defect detection method
CN112419237A (en) * 2020-11-03 2021-02-26 中国计量大学 Automobile clutch master cylinder groove surface defect detection method based on deep learning
CN112381792A (en) * 2020-11-13 2021-02-19 中国人民解放军空军工程大学 Radar wave-absorbing coating/electromagnetic shielding film damage intelligent imaging online detection method based on deep learning
CN112381792B (en) * 2020-11-13 2023-05-23 中国人民解放军空军工程大学 Intelligent imaging on-line detection method for radar wave-absorbing coating/electromagnetic shielding film damage based on deep learning
CN112446308A (en) * 2020-11-16 2021-03-05 北京科技大学 Semantic enhancement-based pedestrian detection method based on multi-scale feature pyramid fusion
CN112396000B (en) * 2020-11-19 2023-09-05 中山大学 Method for constructing multi-mode dense prediction depth information transmission model
CN112396000A (en) * 2020-11-19 2021-02-23 中山大学 Method for constructing multi-mode dense prediction depth information transmission model
CN112308062A (en) * 2020-11-23 2021-02-02 浙江卡易智慧医疗科技有限公司 Medical image access number identification method in complex background image
CN112434828A (en) * 2020-11-23 2021-03-02 南京富岛软件有限公司 Intelligent identification method for safety protection in 5T operation and maintenance
CN112308062B (en) * 2020-11-23 2022-08-23 浙江卡易智慧医疗科技有限公司 Medical image access number identification method in complex background image
CN112580778A (en) * 2020-11-25 2021-03-30 江苏集萃未来城市应用技术研究所有限公司 Job worker mobile phone use detection method based on YOLOv5 and Pose-animation
CN112348036A (en) * 2020-11-26 2021-02-09 北京工业大学 Self-adaptive target detection method based on lightweight residual learning and deconvolution cascade
CN112487979B (en) * 2020-11-30 2023-08-04 北京百度网讯科技有限公司 Target detection method, model training method, device, electronic equipment and medium
CN112487979A (en) * 2020-11-30 2021-03-12 北京百度网讯科技有限公司 Target detection method, model training method, device, electronic device and medium
CN112528826B (en) * 2020-12-04 2024-02-02 江苏省农业科学院 Control method of picking device based on 3D visual perception
CN112528826A (en) * 2020-12-04 2021-03-19 江苏省农业科学院 Picking device control method based on 3D visual perception
CN112396036B (en) * 2020-12-09 2023-08-08 中山大学 Method for re-identifying blocked pedestrians by combining space transformation network and multi-scale feature extraction
CN112770325B (en) * 2020-12-09 2022-12-16 华南理工大学 Cognitive internet of vehicles spectrum sensing method based on deep learning
CN112560627A (en) * 2020-12-09 2021-03-26 江苏集萃未来城市应用技术研究所有限公司 Real-time detection method for abnormal behaviors of construction site personnel based on neural network
CN112770325A (en) * 2020-12-09 2021-05-07 华南理工大学 Cognitive Internet of vehicles spectrum sensing method based on deep learning
CN112633086A (en) * 2020-12-09 2021-04-09 西安电子科技大学 Near-infrared pedestrian monitoring method, system, medium and equipment based on multitask EfficientDet
CN112633086B (en) * 2020-12-09 2024-01-26 西安电子科技大学 Near-infrared pedestrian monitoring method, system, medium and equipment based on multitasking EfficientDet
CN112396036A (en) * 2020-12-09 2021-02-23 中山大学 Method for re-identifying blocked pedestrians by combining space transformation network and multi-scale feature extraction
CN112613359B (en) * 2020-12-09 2024-02-02 苏州玖合智能科技有限公司 Construction method of neural network for detecting abnormal behaviors of personnel
CN112613359A (en) * 2020-12-09 2021-04-06 苏州玖合智能科技有限公司 Method for constructing neural network for detecting abnormal behaviors of people
CN112560682A (en) * 2020-12-16 2021-03-26 重庆守愚科技有限公司 Valve automatic detection method based on deep learning
CN112465815B (en) * 2020-12-17 2023-09-19 杭州电子科技大学 Remote sensing target significance detection method based on edge main body fusion information
CN112465815A (en) * 2020-12-17 2021-03-09 杭州电子科技大学 Remote sensing target significance detection method based on edge subject fusion information
CN112651441A (en) * 2020-12-25 2021-04-13 深圳市信义科技有限公司 Fine-grained non-motor vehicle feature detection method, storage medium and computer equipment
CN112634367A (en) * 2020-12-25 2021-04-09 天津大学 Anti-occlusion object pose estimation method based on deep neural network
CN112699808A (en) * 2020-12-31 2021-04-23 深圳市华尊科技股份有限公司 Dense target detection method, electronic equipment and related product
CN112613472A (en) * 2020-12-31 2021-04-06 上海交通大学 Pedestrian detection method and system based on deep search matching
CN112613472B (en) * 2020-12-31 2022-04-26 上海交通大学 Pedestrian detection method and system based on deep search matching
CN112699808B (en) * 2020-12-31 2024-06-07 深圳市华尊科技股份有限公司 Dense target detection method, electronic equipment and related products
CN112733848B (en) * 2021-01-08 2022-11-04 中国电子科技集团公司第二十八研究所 Target detection method based on multi-scale features and expanded inverse residual full-connection
CN112733848A (en) * 2021-01-08 2021-04-30 中国电子科技集团公司第二十八研究所 Target detection method based on multi-scale features and expanded inverse residual full-connection
CN112733714A (en) * 2021-01-11 2021-04-30 北京大学 Automatic crowd counting image identification method based on VGG network
CN112733714B (en) * 2021-01-11 2024-03-01 北京大学 VGG network-based automatic crowd counting image recognition method
CN112784921A (en) * 2021-02-02 2021-05-11 西北工业大学 Task attention guided small sample image complementary learning classification algorithm
CN112556682A (en) * 2021-02-07 2021-03-26 天津蓝鳍海洋工程有限公司 Automatic target detection algorithm for underwater composite sensor
CN112700444B (en) * 2021-02-19 2023-06-23 中国铁道科学研究院集团有限公司铁道建筑研究所 Bridge bolt detection method based on self-attention and central point regression model
CN112700444A (en) * 2021-02-19 2021-04-23 中国铁道科学研究院集团有限公司铁道建筑研究所 Bridge bolt detection method based on self-attention and central point regression model
CN112949508A (en) * 2021-03-08 2021-06-11 咪咕文化科技有限公司 Model training method, pedestrian detection method, electronic device and readable storage medium
CN112906718B (en) * 2021-03-09 2023-08-22 西安电子科技大学 Multi-target detection method based on convolutional neural network
CN112906718A (en) * 2021-03-09 2021-06-04 西安电子科技大学 Multi-target detection method based on convolutional neural network
CN113012208A (en) * 2021-03-22 2021-06-22 上海应用技术大学 Multi-view remote sensing image registration method and system
CN113012208B (en) * 2021-03-22 2024-05-17 上海应用技术大学 Multi-view remote sensing image registration method and system
CN112906658A (en) * 2021-03-30 2021-06-04 航天时代飞鸿技术有限公司 Lightweight automatic detection method for ground target investigation by unmanned aerial vehicle
CN113312961A (en) * 2021-04-03 2021-08-27 国家计算机网络与信息安全管理中心 Logo recognition acceleration method
CN113221957A (en) * 2021-04-17 2021-08-06 南京航空航天大学 Radar information fusion characteristic enhancement method based on Centernet
CN113221957B (en) * 2021-04-17 2024-04-16 南京航空航天大学 Method for enhancing radar information fusion characteristics based on center
CN113112511A (en) * 2021-04-19 2021-07-13 新东方教育科技集团有限公司 Method and device for correcting test paper, storage medium and electronic equipment
CN113112511B (en) * 2021-04-19 2024-01-05 新东方教育科技集团有限公司 Method and device for correcting test paper, storage medium and electronic equipment
CN113076957A (en) * 2021-04-21 2021-07-06 河南大学 RGB-D image saliency target detection method based on cross-modal feature fusion
CN113011398A (en) * 2021-04-28 2021-06-22 北京邮电大学 Target change detection method and device for multi-temporal remote sensing image
CN113177545B (en) * 2021-04-29 2023-08-04 北京百度网讯科技有限公司 Target object detection method, target object detection device, electronic equipment and storage medium
CN113177545A (en) * 2021-04-29 2021-07-27 北京百度网讯科技有限公司 Target object detection method and device, electronic equipment and storage medium
WO2022237061A1 (en) * 2021-05-10 2022-11-17 苏州大学 Embedded object cognitive system based on image processing
CN113408340A (en) * 2021-05-12 2021-09-17 北京化工大学 Dual-polarization SAR small ship detection method based on enhanced feature pyramid
CN113408340B (en) * 2021-05-12 2024-03-29 北京化工大学 Dual-polarization SAR small ship detection method based on enhanced feature pyramid
CN113221787B (en) * 2021-05-18 2023-09-29 西安电子科技大学 Pedestrian multi-target tracking method based on multi-element difference fusion
CN113221787A (en) * 2021-05-18 2021-08-06 西安电子科技大学 Pedestrian multi-target tracking method based on multivariate difference fusion
CN113312995A (en) * 2021-05-18 2021-08-27 华南理工大学 Anchor-free vehicle-mounted pedestrian detection method based on central axis
CN113297961A (en) * 2021-05-24 2021-08-24 南京邮电大学 Target tracking method based on boundary feature fusion twin circulation neural network
CN113297961B (en) * 2021-05-24 2023-11-17 南京邮电大学 Target tracking method based on boundary feature fusion twin-cycle neural network
CN113222064A (en) * 2021-05-31 2021-08-06 苏州晗林信息技术发展有限公司 Image target object real-time detection method, system, terminal and storage medium
CN113343853A (en) * 2021-06-08 2021-09-03 深圳格瑞健康管理有限公司 Intelligent screening method and device for child dental caries
CN113379709B (en) * 2021-06-16 2024-03-08 浙江工业大学 Three-dimensional target detection method based on sparse multi-scale voxel feature fusion
CN113379709A (en) * 2021-06-16 2021-09-10 浙江工业大学 Three-dimensional target detection method based on sparse multi-scale voxel characteristic fusion
CN113449634A (en) * 2021-06-28 2021-09-28 上海翰声信息技术有限公司 Video detection method and device for processing under strong light environment
CN113379718B (en) * 2021-06-28 2024-02-02 北京百度网讯科技有限公司 Target detection method, target detection device, electronic equipment and readable storage medium
CN113379718A (en) * 2021-06-28 2021-09-10 北京百度网讯科技有限公司 Target detection method and device, electronic equipment and readable storage medium
CN113469254A (en) * 2021-07-02 2021-10-01 上海应用技术大学 Target detection method and system based on target detection model
CN113469254B (en) * 2021-07-02 2024-04-16 上海应用技术大学 Target detection method and system based on target detection model
CN113449743B (en) * 2021-07-12 2022-12-09 西安科技大学 Coal dust particle feature extraction method
CN113449743A (en) * 2021-07-12 2021-09-28 西安科技大学 Coal dust particle feature extraction method
CN113642410A (en) * 2021-07-15 2021-11-12 南京航空航天大学 Ampullaria gigas egg detection method based on multi-scale feature fusion and dynamic convolution
CN113642410B (en) * 2021-07-15 2024-03-29 南京航空航天大学 Method for detecting ampullaria gigas eggs based on multi-scale feature fusion and dynamic convolution
CN113361491A (en) * 2021-07-19 2021-09-07 厦门大学 Method for predicting pedestrian crossing intention of unmanned automobile
CN113657174A (en) * 2021-07-21 2021-11-16 北京中科慧眼科技有限公司 Vehicle pseudo-3D information detection method and device and automatic driving system
CN113487600A (en) * 2021-07-27 2021-10-08 大连海事大学 Characteristic enhancement scale self-adaptive sensing ship detection method
CN113487600B (en) * 2021-07-27 2024-05-03 大连海事大学 Feature enhancement scale self-adaptive perception ship detection method
CN113592825A (en) * 2021-08-02 2021-11-02 安徽理工大学 YOLO algorithm-based real-time coal gangue detection method
CN113591735A (en) * 2021-08-04 2021-11-02 上海新纪元机器人有限公司 Pedestrian detection method and system based on deep learning
CN113591854B (en) * 2021-08-12 2023-09-26 中国海洋大学 Low-redundancy rapid reconstruction method of plankton hologram
CN113591854A (en) * 2021-08-12 2021-11-02 中国海洋大学 Low-redundancy quick reconstruction method of plankton hologram
CN113805151A (en) * 2021-08-17 2021-12-17 青岛本原微电子有限公司 Attention mechanism-based medium repetition frequency radar target detection method
CN113706491A (en) * 2021-08-20 2021-11-26 西安电子科技大学 Meniscus injury grading method based on mixed attention weak supervision transfer learning
CN113706491B (en) * 2021-08-20 2024-02-13 西安电子科技大学 Meniscus injury grading method based on mixed attention weak supervision migration learning
CN113989630B (en) * 2021-08-31 2024-04-23 中通服公众信息产业股份有限公司 Lens shielding judging method based on semantic analysis
CN113989630A (en) * 2021-08-31 2022-01-28 中通服公众信息产业股份有限公司 Lens shielding distinguishing method based on semantic analysis
CN113887330A (en) * 2021-09-10 2022-01-04 国网吉林省电力有限公司 Target detection system based on remote sensing image
CN113780193A (en) * 2021-09-15 2021-12-10 易采天成(郑州)信息技术有限公司 RCNN-based cattle group target detection method and equipment
CN113807243A (en) * 2021-09-16 2021-12-17 上海交通大学 Water obstacle detection system and method based on attention to unknown target
CN113807243B (en) * 2021-09-16 2023-12-05 上海交通大学 Water obstacle detection system and method based on attention to unknown target
CN114067186B (en) * 2021-09-26 2024-04-16 北京建筑大学 Pedestrian detection method and device, electronic equipment and storage medium
CN114067186A (en) * 2021-09-26 2022-02-18 北京建筑大学 Pedestrian detection method and device, electronic equipment and storage medium
CN113902024A (en) * 2021-10-20 2022-01-07 浙江大立科技股份有限公司 Small-volume target detection and identification method based on deep learning and dual-band fusion
CN113902024B (en) * 2021-10-20 2024-06-04 浙江大立科技股份有限公司 Small-volume target detection and identification method based on deep learning and dual-band fusion
CN113901944A (en) * 2021-10-25 2022-01-07 大连理工大学 Marine organism target detection method based on improved YOLO algorithm
CN113901944B (en) * 2021-10-25 2024-04-09 大连理工大学 Marine organism target detection method based on improved YOLO algorithm
CN115082909A (en) * 2021-11-03 2022-09-20 中国人民解放军陆军军医大学第一附属医院 Lung lesion identification method and system
CN115082909B (en) * 2021-11-03 2024-04-12 中国人民解放军陆军军医大学第一附属医院 Method and system for identifying lung lesions
CN114359644B (en) * 2021-12-22 2024-04-16 华南农业大学 Crop pest identification method based on improved VGG-16 network
CN114359644A (en) * 2021-12-22 2022-04-15 华南农业大学 Crop pest and disease identification method based on improved VGG-16 network
CN114283320A (en) * 2021-12-25 2022-04-05 福州大学 Target detection method based on full convolution and without branch structure
CN114332008A (en) * 2021-12-28 2022-04-12 福州大学 Unsupervised defect detection and positioning method based on multi-level feature reconstruction
CN114495166A (en) * 2022-01-17 2022-05-13 北京小龙潜行科技有限公司 Pasture shoe changing action identification method applied to edge computing equipment
CN114612769A (en) * 2022-03-14 2022-06-10 电子科技大学 Integrated sensing infrared imaging ship detection method integrated with local structure information
CN114612769B (en) * 2022-03-14 2023-05-26 电子科技大学 Integrated sensing infrared imaging ship detection method integrated with local structure information
CN114884775A (en) * 2022-03-31 2022-08-09 南京邮电大学 Deep learning-based large-scale MIMO system channel estimation method
CN114863097A (en) * 2022-04-06 2022-08-05 北京航空航天大学 Infrared dim target detection method based on attention system convolutional neural network
CN114863097B (en) * 2022-04-06 2024-05-31 北京航空航天大学 Infrared dim target detection method based on attention mechanism convolutional neural network
CN115019036B (en) * 2022-05-10 2024-02-27 西北工业大学 Small sample semantic segmentation method for learning non-target knowledge
CN115019036A (en) * 2022-05-10 2022-09-06 西北工业大学 Small sample semantic segmentation method for learning non-target knowledge
CN115082386A (en) * 2022-06-07 2022-09-20 华南理工大学 Injection molding part flaw detection method and device based on normal sample auxiliary feature extraction and medium
CN115082386B (en) * 2022-06-07 2024-04-26 华南理工大学 Injection molding flaw detection method, device and medium based on normal sample auxiliary feature extraction
CN115423810B (en) * 2022-11-04 2023-03-14 国网江西省电力有限公司电力科学研究院 Blade icing form analysis method for wind generating set
CN115423810A (en) * 2022-11-04 2022-12-02 国网江西省电力有限公司电力科学研究院 Blade icing form analysis method for wind generating set
CN116468928B (en) * 2022-12-29 2023-12-19 长春理工大学 Thermal infrared small target detection method based on visual perception correlator
CN116468928A (en) * 2022-12-29 2023-07-21 长春理工大学 Thermal infrared small target detection method based on visual perception correlator
CN116524293A (en) * 2023-04-10 2023-08-01 哈尔滨市科佳通用机电股份有限公司 Gate regulator pull rod head missing fault image recognition method and system based on deep learning
CN116524293B (en) * 2023-04-10 2024-01-30 哈尔滨市科佳通用机电股份有限公司 Brake adjuster pull rod head loss fault identification method and system based on deep learning
CN117237614A (en) * 2023-11-10 2023-12-15 江西啄木蜂科技有限公司 Deep learning-based lake surface floater small target detection method
CN117237614B (en) * 2023-11-10 2024-02-06 江西啄木蜂科技有限公司 Deep learning-based lake surface floater small target detection method

Also Published As

Publication number Publication date
CN108399362A (en) 2018-08-14
CN108399362B (en) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2019144575A1 (en) Fast pedestrian detection method and device
US20220108546A1 (en) Object detection method and apparatus, and computer storage medium
CN106845487B (en) End-to-end license plate identification method
CN111738231B (en) Target object detection method and device, computer equipment and storage medium
CN110070107B (en) Object recognition method and device
CN112150821B (en) Lightweight vehicle detection model construction method, system and device
WO2021249255A1 (en) Grabbing detection method based on rp-resnet
Wu et al. FPANet: Feature pyramid aggregation network for real-time semantic segmentation
WO2021218786A1 (en) Data processing system, object detection method and apparatus thereof
CN107545263B (en) Object detection method and device
CN110782420A (en) Small target feature representation enhancement method based on deep learning
JP2016062610A (en) Feature model creation method and feature model creation device
WO2023019875A1 (en) Vehicle loss detection method and apparatus, and electronic device and storage medium
CN111310604A (en) Object detection method and device and storage medium
CN110222718B (en) Image processing method and device
CN112232355B (en) Image segmentation network processing method, image segmentation device and computer equipment
CN112733614B (en) Pest image detection method with similar size enhanced identification
CN107066916A (en) Scene Semantics dividing method based on deconvolution neutral net
CN114972976B (en) Night target detection and training method and device based on frequency domain self-attention mechanism
CN111368634B (en) Human head detection method, system and storage medium based on neural network
CN111368972A (en) Convolution layer quantization method and device thereof
CN115631344B (en) Target detection method based on feature self-adaptive aggregation
CN115082855A (en) Pedestrian occlusion detection method based on improved YOLOX algorithm
US20230104262A1 (en) Panoptic segmentation refinement network
CN112396035A (en) Object detection method and device based on attention detection model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901926

Country of ref document: EP

Kind code of ref document: A1