WO2019138561A1 - Radio base station and user equipment - Google Patents

Radio base station and user equipment Download PDF

Info

Publication number
WO2019138561A1
WO2019138561A1 PCT/JP2018/000729 JP2018000729W WO2019138561A1 WO 2019138561 A1 WO2019138561 A1 WO 2019138561A1 JP 2018000729 W JP2018000729 W JP 2018000729W WO 2019138561 A1 WO2019138561 A1 WO 2019138561A1
Authority
WO
WIPO (PCT)
Prior art keywords
nsss
npss
base station
frequency
radio
Prior art date
Application number
PCT/JP2018/000729
Other languages
French (fr)
Japanese (ja)
Inventor
坪井 淳
アナス ベンジャブール
祥久 岸山
佐和橋 衛
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/000729 priority Critical patent/WO2019138561A1/en
Publication of WO2019138561A1 publication Critical patent/WO2019138561A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a radio base station and a user terminal.
  • IoT Internet-of-Things
  • various devices such as control devices, sensors, actuators or meters are connected to the Internet.
  • a wireless system of Machine-Type Communications (MTCs) capable of connecting a device to the Internet at low cost using a license band or an unlicensed band is considered.
  • MTCs Machine-Type Communications
  • a Narrowband (NB) -IoT radio interface for efficiently multiplexing IoT traffic is defined based on the radio interface of Long Term Evolution (LTE).
  • 3GPP TS 36.211 "Evolved UTRA; Physical channels and modulation (Release 13),” V13.2.0, June 2016.
  • 3GPP TSG RAN WG 1 # 84 R 1-161 116 “NB-PSS and NB-NSSS Design,” Qualcomm Incorporated, Feb. 2016.
  • the number of antennas mounted on the UE may be limited in order to realize low power consumption and low cost of the user equipment (UE). For example, when the number of antennas of the UE is one, the reception antenna diversity effect can not be expected. Therefore, for example, there is a possibility that the detection success rate in the UE of the synchronization signal transmitted by the radio base station may decrease.
  • One aspect of the present disclosure is to provide a radio base station and a user terminal that can improve the detection success rate of synchronization signals.
  • a wireless base station includes: a transmitting unit that transmits a first wireless signal and a second wireless signal according to transmission timing synchronized at different frequencies; the first wireless signal; And a setting unit configured to set a synchronization signal common to the two radio signals to each of the first radio signal and the second radio signal.
  • FIG. 6 illustrates an example of multiplexing of NPSS and NSSS into a radio frame. It is a figure which shows the example of the resource mapping of NPSS. It is a figure showing an example of resource mapping of NSSS. It is a figure which shows the example of the production
  • FIG. 18 is a diagram showing an example of detection processing of the NPSS and the NSSS according to the second modification.
  • FIG. 18 is a diagram showing an example of an NPSS and NSSS detection process according to a third modification.
  • FIG. 18 is a diagram illustrating an example of an NPSS and NSSS detection process according to a fourth modification. It is a figure which shows the example of a detection process of cell ID in UE.
  • FIG. 5 is a diagram illustrating autocorrelation of a received signal delayed by one FTT block interval. It is a figure which shows the example of the hardware constitutions of the wireless base station which concerns on this indication, and a user terminal.
  • Category 1 is a wireless interface that supports system bandwidths from a minimum of 1.4 MHz to a maximum of 20 MHz.
  • RB Resource Block
  • PBCH Physical Broadcast Channel
  • Category M1 and category NB-IoT assume reception with one receive antenna without using receive antenna diversity in order to reduce the amount of computation and power consumption of the UE.
  • NB-IoT defines three types of deployment scenarios: in-band, guard band and stand-alone.
  • the in-band scenario deploys NB-IoT using one or more RBs 2a in the LTE system band.
  • the guard band scenario develops NB-IoT using LTE guard band 2b.
  • LTE 90% of the system bandwidth is a channel occupied bandwidth and 10% is a guard band.
  • guard bands 500 kHz at both ends, for a total of 1 MHz, are provided.
  • this 10% guard band is used to deploy NB-IoT.
  • the standalone scenario deploys NB-IoT using frequency spectrum 2c outside the LTE system band.
  • a cell ID (PCID: Physical Cell ID) is detected using a synchronization signal.
  • the synchronization signal according to NB-IoT includes narrowband primary synchronization signal (NPSS: Narrowband Primary Synchronization Signal) and narrowband secondary synchronization signal (NSSS: Narrowband Secondary Synchronization Signal).
  • the multiplexing method and sequence of NPSS and NSSS in NB-IoT are different from those in PSS and SSS in LTE. Then, with reference to FIG. 3, the multiplexing method of the NPSS and NSSS to the radio frame in the in-band scenario will be described.
  • One radio frame length is 10 ms.
  • the NPSS is multiplexed into the fifth sub-frame b1 of each radio frame.
  • the NSSS is multiplexed into the ninth subframe b2 of every other (for example, even-numbered) radio frame.
  • the NPSS is periodically multiplexed at 10 ms intervals and the NSSS at 20 ms intervals.
  • a physical downlink control channel (PDCCH: Physical Downlink Control Channael) is multiplexed in three OFDM symbol sections from the beginning of a subframe in LTE. Therefore, in any of the in-band, guard band and stand-alone scenarios, NPSS and NSSS are multiplexed between 4 OFDM symbols and 14 OFDM symbols in a subframe (11 OFDM symbol intervals) so as not to interfere with PDCCH .
  • PDCCH Physical Downlink Control Channael
  • a cell-specific reference signal may be multiplexed (may be referred to as "mapping” or “arrangement") into a resource element (RE: Resource Element), an NPSS, and If one or both of the NSSSs are to be mapped, one or both of the NPSS and the NSSS may be punctured.
  • the NPSS and NSSS may not necessarily be multiplexed to the RE on which the CRS is multiplexed.
  • the NPSS sequence is represented by a sequence obtained by modulating a ZC (Zadoff-Chu) sequence with a binary sequence in 11 OFDM symbol intervals in a subframe.
  • the modulation by the sequence of binary values, ie, ⁇ +1, -1 ⁇ , is called a code cover (Code cover).
  • a ZC sequence of OFDM symbols (FFT block length) is used for 11 OFDM symbols in a subframe.
  • the synchronization timing of an OFDM symbol can be detected by calculating the correlation between consecutive OFDM symbols using a ZC sequence. However, since the correlation peak of the ZC sequence appears at 11 places in the sub-frame, 11 OFDM symbols are multiplied by the code cover.
  • the radio base station 10 generates a ZC sequence of sequence length 11 in the frequency domain (S11).
  • An NPSS sequence of OFDM symbol index l in the frequency domain is represented by Equation 1 below.
  • the radio base station 10 maps the ZC sequence generated in S11 to a subcarrier (S12), and generates a ZC sequence (FFT block) in the time domain by IFFT (S13).
  • the radio base station 10 inserts a CP (Cyclic Prefix) into each FFT block (S14).
  • the radio base station 10 multiplies the FFT block including 11 CPs by the binary modulation sequence (code cover) (S15), and generates an NPSS symbol (sequence) (S16).
  • the UE can detect the start position of 11 OFDM symbol sections by calculating the correlation between a plurality of OFDM symbols as described later.
  • the NSSS sequence represents one of the 504 cell IDs and is used to detect an 80 ms superframe.
  • the NSSS sequence is generated by combining the 131 sequence length ZC sequence and the binary scrambling sequence in the frequency domain.
  • the 504 cell IDs are identified by the 126 root indexes of the ZC sequence and the scrambling codes of the 4 Hadamard sequences.
  • Equation 2 The NSSS sequence is represented by Equation 2 below.
  • exp [ ⁇ j ((( ⁇ un ⁇ ) ⁇ (n ⁇ +1)) / 131)] is a ZC sequence.
  • Equation 2 is the 126 root indexes represented by Equation 3 below.
  • N Ncell ID is the cell ID of NB-IoT.
  • exp [ ⁇ j 2 ⁇ f n] is a term indicating a cyclic shift of a sequence according to the radio frame number n f , and is used to detect synchronization timing in an 80 ms period.
  • the radio base station 10 generates a ZC sequence of sequence length 11 in the frequency domain (S21).
  • the radio base station 10 maps the ZC sequence generated in S21 to a subcarrier (S22), and generates a ZC sequence (FFT block) in the time domain by IFFT (S23).
  • the radio base station 10 inserts a CP into each FFT block (S24).
  • the radio base station 10 multiplies the FFT block including the CP by the binary scrambling sequence (S25), and generates an NSSS symbol (sequence) (S26).
  • PVS Precoding Vector Switching
  • two sets of PSS and SSS are multiplexed in one radio frame (10 ms). Then, one set is multiplied by the precoding vector ⁇ 1, 1 ⁇ , and the other set is multiplied by the precoding vector ⁇ 1, ⁇ 1 ⁇ .
  • the PSS and SSS are channels that the UE first supplements in downlink.
  • LTE adopts selective transmission diversity, which does not require any change in the UE for the signal waveform transmitted by the radio base station from one transmit antenna.
  • LTE adopts PVS transmission diversity which can efficiently utilize transmission power from two transmitters among selective transmission diversity.
  • the UE calculates an estimate of the channel response of each subcarrier position from the PSS sequence detected first. Then, the UE performs in-phase synthesis of the correlation of the SSS sequence in the frequency domain, using the estimated value of the channel response of each subcarrier position. As described above, the method of in-phase combining the correlation of each subcarrier position across a plurality of subcarriers can reduce the noise component as compared to the method by power combining, so that false detection of the SSS sequence can be reduced.
  • the UE since the same set of PSS and SSS are multiplied by the same precoding vector, the UE does not need to be aware of (detect) the precoding vector, and each subs estimated by PSS The channel response of the carrier position can be used to perform in-phase combination (addition) of the SSS correlation value.
  • Non-Patent Document 3 a transmission method in the case of applying PVS transmission diversity in time domain to NPSS and NSSS will be described with reference to FIG. The details of the contents are disclosed in Non-Patent Document 3.
  • Non-Patent Document 3 alternately switches two types of precoding vectors in each of NPSS and NSSS.
  • the multiple interval (period) of NPSS is 10 ms, which is longer than in the case of LTE. Therefore, in order to obtain the PVS transmission diversity effect in the detection of the NPSS, it is necessary to receive a reception signal of at least a 20 ms period in one detection loop process.
  • the multiplexing interval (period) of the NSSS is 20 ms. Therefore, in order to obtain the PVS transmission diversity effect in the detection of the NSSS, a single detection loop process may require a maximum of 40 ms.
  • NB-IoT UEs Reduction in power consumption is required of NB-IoT UEs. Therefore, in the present embodiment, an NB-IoT system will be described, in which the time required to detect a cell ID in the UE is shortened, and the time for standby is increased accordingly, and thus the power consumption in the UE is reduced.
  • the UE adopts a wireless interface of narrow band transmission of 180 kHz.
  • the entire signal band drops, and the UE may not be able to obtain a frequency diversity effect.
  • UE since UE receives a signal by one receiving antenna, there is a possibility that a reception diversity effect may not be obtained. As a result, burst errors may occur and the cell ID detection success rate may be reduced.
  • the PVS transmit diversity method discussed herein is designed to multiplex the NPSS and NSSS into predetermined multiplexes while alternately switching between two precoding vectors in each of the NPSS and NSSS regardless of the reception quality. It is a method of transmitting at intervals (period). Therefore, the precoding gain is small as compared with the method of selecting the optimal precoding vector according to channel state information (CSI) of reception.
  • CSI channel state information
  • the UE when a configuration is employed in which a downlink signal is transmitted from one transmission antenna to a wireless base station (access point) in order to miniaturize the wireless base station and reduce power consumption, the UE is required to have a transmit antenna diversity gain. I can not get As a result, the cell ID detection success rate decreases.
  • a synchronization signal multiplexing method and a cell search method will be described which enhance the cell ID detection success rate. As a result, even when a sufficient antenna diversity effect can not be obtained, the cell ID detection success rate can be increased.
  • FIG. 9 is an example of detecting both NPSS and NSSS using frequency hopping. Although the case where two channels (carrier frequencies) are used is described in this embodiment, this embodiment can also be applied to the case where three or more carrier frequencies are used.
  • the radio base station 10 synchronizes and transmits the transmission timings of radio frames in two different channels according to NB-IoT.
  • the two channels used to transmit the radio frame are a combination of two RBs 2a in the LTE channel occupied band, a combination of the RB 2a in the LTE channel occupied band and an RB 2b in the guard band shown in FIG.
  • any combination may be used, such as a combination of RB 2 a in the LTE channel occupancy band and RB 2 c in a frequency band outside the LTE system band.
  • the two channels may be any combination of in-band scenario, guard-band scenario and stand-alone scenario.
  • the UE searches for carrier frequencies in a system-predefined frequency raster upon detection of a cell ID.
  • the UE can perform blind search for a carrier frequency on which frequency hopping should be performed.
  • frequency intervals of two channels corresponding to frequency hopping intervals
  • frequency interval candidates may be predetermined between the radio base station 10 and the UE (that is, in the NB-IoT system). Thereby, the search time of cell ID in UE can be shortened.
  • the UE estimates the multiplexing position of the NPSS in one radio frame as follows.
  • 10 ms is the multiplexing interval of NPSS, 1 ⁇ k ⁇ (N rf + 11 ⁇ N OFDM ), N rf is the number of samples in one radio frame length, and N OFDM is the number of samples in one OFDM symbol length is there.
  • the UE calculates the correlation value N NPSS f2 [k] at each sample timing of the search period 102 of T NPSS Ave at the carrier frequency f 2 .
  • UE adds the correlation value ⁇ NPSS f1 [k] according to the carrier frequency f 1 definitive search period 101, and a correlation value [rho NPSS f2 according to the carrier frequency f 2 definitive search period 102 [k], adding The correlation value ⁇ ⁇ NPSS [k] is calculated.
  • the in-phase component and the quadrature component are independently added.
  • the UE calculates k at which the power
  • the k corresponds to the reception timing of the NPSS. That is, the process in which the UE calculates the k corresponds to the process of detecting (estimating) the reception timing of the NPSS.
  • the NPSS is multiplexed at an interval of one radio frame length (10 ms)
  • a period of at least two radio frame lengths (20 ms) is required to detect the correlation of the NPSS.
  • the UE estimates the NSSS reception timing from the NPSS reception timing estimate.
  • the NSSS is multiplexed into one subframe of any of two consecutive radio frames. Therefore, although it is possible to detect the multiplex position of the NPSS, it is not immediately known as to which of the two radio frames the NSSS is multiplexed. Therefore, the UE detects, for each of the two radio frames, the NSSS sequence that is the maximum correlation power, and estimates that the NSSS is multiplexed in the radio frame that is the higher correlation power. Then, the UE detects (estimates) the cell ID using the NSSS sequence that is the maximum correlation power. The details will be described below.
  • 20 ms is a multiplexing interval of NSSS, 1 ⁇ m ⁇ N NSSS , and N NSSS is the number of NSSS sequences.
  • the UE switches the carrier frequency to f 2 by frequency hopping, and similarly to the above, the correlation value P (1) f 2 [m] of the NSSS in the first half period 131 in the search period 130 for the carrier frequency f 2 and the second half
  • the correlation value P (2) f2 [m] of the NSSS in the period 132 is calculated.
  • the UE calculates the combined correlation power of the first half periods 121 and 131 (
  • the UE detects the combined correlation power (
  • the UE compares the combined correlation power in the first half period with the combined correlation power in the second half period, and estimates that the NSSS is multiplexed in the larger one of the first half period or the second half period. Then, the UE calculates an NSSS sequence m ⁇ in which the larger combined correlation power is maximum.
  • the NSSS sequence m ⁇ corresponds to a cell ID. That is, the process in which the UE calculates the NSSS sequence m ⁇ corresponds to the process of detecting (estimating) the cell ID. As detected.
  • the radio base station 10 may transmit information regarding the frequency hopping interval (hereinafter referred to as “frequency hopping interval information”) in the NPSS sequence.
  • the radio base station 10 may transmit frequency hopping interval information in symbol information.
  • the UE can omit the blind search process for frequency hopping information.
  • the configuration of the radio frame ie, the multiplexing position of the NPSS in the radio frame may be known at the UE. Also, since the sample rate in one radio frame is known, the number of samples in one radio frame may also be known.
  • the UE does not use frequency hopping for NPSS, but detects using the received signal (140) transmitted on one carrier (1 RB) (carrier frequency f 1 in FIG. 10)
  • the frequency hopping may be used for the NSSS, as in FIG.
  • NB-IoT can increase the cell ID detection success rate even if frequency hopping is used only for NSSS detection as shown in FIG.
  • the radio base station 10 synchronizes the transmission timing of the NPSS in the radio frame of the same transmission timing on two carriers, and multiplies the synchronized NPSS by the same precoding vector. Similarly, the radio base station 10 synchronizes the transmission timing of the NSSS in the radio frame of the same transmission timing on two carriers, and multiplies the synchronized NSSS by the same precoding vector.
  • the UE calculates the correlation values N NPSS (1) f 1 [k], N NPSS (2) f 1 [k], N NPSS (3) f 1 [k], N NPSS (4) relating to the calculated four radio frames. 4) Calculate the added correlation value by adding f1 [k]. Next, the UE calculates k that maximizes the power of the added correlation value among the sample timing candidates of 1 ⁇ k ⁇ (N rf + 11 ⁇ N OFDM ). That is, the UE detects the reception timing of the NPSS.
  • the correlation value P (2a) f1 [m] is calculated.
  • the UE calculates the correlation value P (1b) f1 [m] of the NSSS in the first half period 321 and the correlation value P (2b) f1 [m] of the second half period 322 in the second search period 320. calculate. Then, the UE adds the correlation values P (1a) f1 [m] and P (1b) f1 [m] in the first half periods 311 and 321, respectively, for the carrier frequency f 1 and adds the correlation value P ⁇ (1 ) Calculate f1 [m].
  • the UE switches the carrier frequency to f 2 by frequency hopping, and similarly, the correlation value P (1a) f 2 [m] of the NSSS in the first half period 331 and the second half period 332 in the third search period 330. Calculate the correlation value P (2a) f1 [m] of NSSS.
  • the UE generates the correlation value P (1b) f2 [m] of the NSSS in the first half period 341 and the correlation value P (2b) f2 [m] of the second half period 342 in the fourth search period 340. calculate. Then, the UE adds the correlation values P (1a) f2 [m] and P (1b) f2 [m] in the first half periods 331 and 341, respectively, for the carrier frequency f 2 and adds the correlation values P ⁇ (1) Calculate f2 [m]. Also, the UE adds the correlation values P (2a) f2 [m] and P (1 b) f2 [m] in the second half periods 332 and 342, respectively, and adds the correlation values P (2) f2 [m]. calculate.
  • the UE calculates the combined correlation power of the first half periods 311, 321, 331, 341 of the carrier frequencies f 1 and f 2 (
  • 2 ) and. That is, the combined correlation power of the first half period and the combined correlation power of the second half period are respectively calculated by the correlation value of the number of precoding vector sets “2” ⁇ the number of carriers of frequency hopping “2” 4 cycles. Become.
  • the UE compares the combined correlation power in the first half period with the combined correlation power in the second half period, and estimates that the NSSS is multiplexed in the larger one of the first half period and the second half period. Then, the UE calculates an NSSS sequence m ⁇ in which the larger combined correlation power is the largest correlation power. That is, the UE detects (estimates) the cell ID.
  • the radio base station 10 transmits the radio frame transmitted using the carrier frequency f 1 at the first transmission timing and the carrier frequency at the second transmission timing that is one radio frame length later than the first transmission timing. transmitted using the f 2.
  • nsss is straddling carrier frequencies f 1 and the carrier frequency f 2, will have been transmitted at intervals of 1 radio frame length.
  • the method for the UE to detect the reception timing of the NPSS is the same as that in the case of FIG. Next, the detection method of NSSS in UE will be described.
  • the NSSS multiplexing interval is equivalent to one radio frame length. However, it is not immediately known whether the NSSS is multiplexed in the next radio frame of the radio frame in which the NPSS is detected. Thus, the UE detects which of two consecutive radio frames an NSSS is multiplexed for a signal transmitted using the same carrier frequency.
  • the carrier frequency f 1 a first radio frame length periods of 401 consecutive after NPSS detected for the second radio frame length periods 402, respectively, nsss
  • the correlation values P (1) f1 [m] and P (2) f1 [m] are calculated.
  • the UE compares max
  • the UE when the UE estimates that the NSSS is multiplexed in the first radio frame length period 401, the correlation power of the NSSS for the third radio frame length period 403A in the same carrier frequency f 1
  • the UE switches to the carrier frequency f 2 and calculates the correlation power
  • the UE obtains an NSSS sequence m for which (
  • the UE has two if eye NSSS the radio frame length periods of 402 was estimated to be multiplexed by switching the carrier frequency f 2, the correlation of the NSSS for the third period of the radio frame length 403B power
  • the NSSS sequence cyclically shifts the sequence every 20 ms, and synchronizes for 80 ms with four types of cyclic shift amounts.
  • the UE calculates the correlation value of the NSSS sequence for the following two ways: . That is, the correlation value is calculated for the case where the cyclic shift amount of the NSSS of the carrier frequency f 2 is the same as the cyclic shift amount of the carrier frequency f 2 with respect to the cyclic shift amount of the NSSS sequence of the carrier frequency f 1 . Then, the UE calculates the correlation power for each of the two correlation values, and estimates that the NSSS sequence is multiplexed in the radio frame with the larger correlation power.
  • the radio base station 10 does not perform the time shift for one radio frame length, and shifts the search period related to the NPSS by the one radio frame length at the UE side.
  • the process according to the third modification may be realized.
  • the radio base station 10 multiplexes the NPSS and the NSSS onto two carriers (two RBs), and a radio frame (radio frame number) at the carrier frequency f 1 and a carrier frequency a radio frame (radio frame number) in f 2, 1 radio frame, for example in the case of transmitting by shifting will be described. That is, FIG. 13 corresponds to the combination of FIG. 11 and FIG.
  • the detection process of the NPSS of the UE in the case of FIG. 13 is the same as that of the case of FIG. Next, detection processing of NSSS in the UE will be described.
  • the UE adds the correlation values P (1) f1 [m] of the NSSS in the first half periods 501 and 503 for the carrier frequency f 1 to calculate P P (1) f1 [m]. Further, UE calculates the P ⁇ (2) f1 [m ] from the second half of the correlation value P (2) of the NSSS of the period 502 f1 [m].
  • the UE adds the correlation value P (1) f2 [m] of the NSSS in the first half period 504 and 506 with respect to the carrier frequency f 2 to calculate P ((1) f2 [m].
  • the UE determines the combined correlation power of the first half periods 501, 503, 504, and 506 of the carrier frequencies f 1 and f 2 (
  • the UE compares the combined correlation power in the first half period with the combined correlation power in the second half period, and estimates that the NSSS is multiplexed in the larger one of the first half period and the second half period. Then, the UE calculates an NSSS sequence m ⁇ in which the larger combined correlation power is the largest correlation power. That is, the UE detects the cell ID.
  • the radio base station 10 does not perform time shift by one radio frame length, and shifts the search period related to the NPSS by one radio frame length at the UE side.
  • the process according to the fourth modification may be realized.
  • the frequency diversity effect is obtained as compared with the case where only PVS transmission diversity is used, so that the detection success rate of the NPSS and NSSS sequences is improved.
  • the UE 20 may have a functional block that performs processing reverse to the processing in the radio base station 10 shown in FIGS. 5 and 6. That is, after the UE performs the process shown in FIG. 14 to detect the NPSS (cell ID), the UE may perform processes such as CP removal, FFT, demapping, ZC sequence extraction and the like.
  • the cross correlation between the received signal including PSS and the PSS sequence replica in the time domain is calculated.
  • UE 20 has a relatively large reference error of frequency error. If the frequency error of the reference oscillator is large, the frequency offset will be large. For example, under NB-IoT simulation conditions, a frequency offset of 20 ppm is assumed.
  • the multiplexing interval of NPSS and NSSS is 10 ms or more. Therefore, there is a possibility that the NSSS reception timing estimated from the NPSS reception timing may deviate from the original correct reception timing due to the frequency offset, that is, the frequency difference of the reference oscillator between the radio base station 10 and the UE 20. is there. As a result, the correlation value of the correct NSSS sequence may be reduced, and the detection success rate of the NSSS sequence may be greatly reduced.
  • NB-IoT uses a method of detecting autocorrelation between sequences of NPSSs multiplexed into 11 OFDM symbols in a subframe.
  • the UE 20 does not perform oversampling in the reception process and the sampling frequency in the UE 20 is set equal to the chip rate of the ZC sequence will be described.
  • the present embodiment is not limited to this configuration, and can be applied to other configurations.
  • the UE 20 can detect the FFT block timing, the reception timing of the NPSS, the subframe timing, and the radio frame timing from the timing at which the autocorrelation of the NPSS is maximum.
  • the NPSS is multiplexed into 11 FFT blocks. Therefore, the UE 20 sets the vector ⁇ ( ⁇ ) as a sample value signal of the received signal of 11 FFT blocks with the sampling time ⁇ as the start timing as shown in the following Equation 5.
  • the UE 20 calculates the autocorrelation of the received signal delayed by k FFT block intervals (1 ⁇ k ⁇ 11) as shown in the following Equation 6.
  • Equation 6 s (l) represents the modulation component in the l-th FFT block of NPSS, and the superscript "H” represents Hermitian transposition.
  • the UE 20 uses a cost function represented by the following Equation 7.
  • each correlation value is multiplied by a weighting factor and synthesized.
  • the weighting factor may be set to maximize the detection success rate of the NPSS.
  • the influence of noise can be reduced by adjusting the cost functions of a plurality of NPSSs multiplexed at intervals of 10 ms to the same phase and adding them.
  • the cost function m m ( ⁇ ) represents the amount of phase rotation due to the frequency offset of one FFT block interval including CP. Therefore, the frequency offset ⁇ f ⁇ is expressed by the following equation 9.
  • arg [ ⁇ ( ⁇ ⁇ )] ⁇ .
  • f s represents a sampling frequency
  • f SC represents a subcarrier interval
  • N FFT represents the number of samples in an effective symbol section (FFT block section)
  • N CP represents a sample number in a CP section.
  • f s 7.67 MHz
  • f SC 15 kHz
  • N FFT 512
  • N CP 36
  • Equations 9 and 10 are capable of phase detection in the range of ⁇ ⁇ arg [ ⁇ ( ⁇ ⁇ )] ⁇ . However, when the frequency offset becomes high, arg [ ⁇ ( ⁇ ⁇ )] exceeds the range of 2 ⁇ . Therefore, as shown in the following equation, the detection range of the frequency offset is expanded.
  • Equation 11 the values of arg [ ⁇ ( ⁇ ⁇ )] and G are detected most likely.
  • the value of G is, for example, a value of G ⁇ ⁇ 0, ⁇ 1, ⁇ 2 ⁇ according to the magnitude of the frequency offset value.
  • the received signal including NSSS is converted to a frequency domain signal by FFT using FFT block timing and subframe timing estimated using NPSS.
  • UE20 may use only NPSS multiplexed to the same radio
  • the estimated value of the channel response in subcarrier #n of the radio frame v can be calculated as the following equation 12.
  • the UE 20 performs the correlation detection process of the NSSS sequence at the NSSS multiplex timing of the continuous radio frame, and estimates that the NSSS is multiplexed in the radio frame with the large correlation value.
  • the index of the 504 cell IDs represented by the root index of 126 ZC sequences and 4 scrambled sequences is denoted by ⁇ (0 ⁇ ⁇ ⁇ 504).
  • the index of the cyclic shift pattern of the scrambled sequence is represented by c (0 ⁇ c ⁇ 4). Then, ⁇ , c and ⁇ are detected according to the following equation 13.
  • Equation 13 d l NSSS ( ⁇ , (c + ⁇ / 2) mod 4 (n) represents an NSSS sequence replica.
  • the method (A2) is a method in which the correlation value of the NSSS sequence of each subcarrier in the frequency domain is in-phase added assuming flat fading since the transmission band of NB-IoT is a narrow band.
  • Equation 14 assuming that the channel response in the frequency domain is constant, the in-phase component and the quadrature component of the correlation value are averaged independently.
  • the radio base station 10 transmits the first and second radio signals including the common NPSS and NSSS in frame synchronization on the first carrier frequency and the second carrier frequency.
  • the UE 20 detects the NPSS from the first and / or second radio signals, switches between the first carrier frequency and the second carrier frequency, and receives the first radio signal and the second radio signal received from each of them. Detect NSSS based on correlation with
  • the detection success rate of NSSS in UE20 can be raised by the frequency diversity effect.
  • each functional block may be realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
  • the wireless base station 10, the user terminal 20, and the like in one embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention.
  • FIG. 16 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 performs a calculation by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and performs communication by the communication device 1004 or This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-mentioned generation of ZC sequence (S11, S21), subcarrier mapping (S12, S22), IFFT (S13, S23), CP insertion (S14, S24), multiplication of binary modulation sequence (code cover) (code cover) S15), multiplication of a binary scrambling sequence (S25), generation of an NPSS symbol (sequence) (S16), generation of an NSSS symbol (sequence) (S26), etc. may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the control unit of the radio base station 10 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks.
  • the various processes described above have been described to be executed by one processor 1001, but may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used.
  • the storage 1003 may be called an auxiliary storage device.
  • the above-mentioned storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server or any other suitable medium.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, a network controller, a network card, a communication module, or the like.
  • the transmission unit, the antenna, the reception unit, and the like included in the above-described wireless base station 10 and user terminal 20 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods.
  • notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band),
  • the present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
  • the specific operation supposed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases.
  • the various operations performed for communication with the terminals may be the base station and / or other network nodes other than the base station (eg, It is obvious that this may be performed by, but not limited to, MME (Mobility Management Entity) or S-GW (Serving Gateway).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Information, signals, etc. may be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input and output may be performed via a plurality of network nodes.
  • the input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information to be input or output may be overwritten, updated or added. The output information etc. may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value (0 or 1) represented by one bit, may be performed by a boolean value (Boolean: true or false), or may be compared with a numerical value (for example, a predetermined value). Comparison with the value).
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, etc. may be sent and received via a transmission medium.
  • software may use a wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission medium.
  • wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave
  • Information, signal The information, signals, etc. described herein may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • the channels and / or symbols may be signals.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell or the like.
  • radio resources may be indexed.
  • a base station can accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station RRH for indoor use: Remote Communication service can also be provided by Radio Head.
  • the terms "cell” or “sector” refer to a part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
  • base station “eNB”, “cell” and “sector” may be used interchangeably herein.
  • a base station may be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), femtocell, small cell, and the like.
  • the user terminal may be a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote communication device, a mobile subscriber station, an access terminal, a mobile terminal by a person skilled in the art It may also be called a terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, a UE (User Equipment), or some other suitable term.
  • determining may encompass a wide variety of operations.
  • “Judgment”, “decision” are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc.
  • “determination” and “determination” are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled”.
  • the coupling or connection between elements may be physical, logical or a combination thereof.
  • the two elements are by using one or more wires, cables and / or printed electrical connections, and radio frequency as some non-limiting and non-exclusive examples. It can be considered “connected” or “coupled” to one another by using electromagnetic energy such as electromagnetic energy having wavelengths in the region, microwave region and light (both visible and invisible) regions.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) according to the applied standard.
  • the correction RS may be called TRS (Tracking RS), PC-RS (Phase Compensation RS), PTRS (Phase Tracking RS), or Additional RS.
  • the demodulation RS and the correction RS may be different names corresponding to each other.
  • the demodulation RS and the correction RS may be defined by the same name (for example, the demodulation RS).
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • a radio frame may be comprised of one or more frames in the time domain.
  • One or more frames in the time domain may be referred to as subframes, time units, and so on.
  • a subframe may be further comprised of one or more slots in the time domain.
  • the slot may be further configured with one or more symbols (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier-frequency division multiple access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier-frequency division multiple access
  • a radio frame, a subframe, a slot, and a symbol all represent time units in transmitting a signal.
  • a radio frame, a subframe, a slot, and a symbol may be another name corresponding to each.
  • the base station performs scheduling to assign radio resources (frequency bandwidth usable in each mobile station, transmission power, etc.) to each mobile station.
  • the minimum time unit of scheduling may be called a TTI (Transmission Time Interval).
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot may be called a TTI
  • a resource unit is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers in frequency domain.
  • the time domain of a resource unit may include one or more symbols, and may be one slot, one subframe, or one TTI long.
  • One TTI and one subframe may be configured of one or more resource units, respectively.
  • resource units may be referred to as resource blocks (RBs), physical resource blocks (PRBs: physical RBs), PRB pairs, RB pairs, scheduling units, frequency units, and subbands.
  • a resource unit may be configured of one or more REs.
  • 1 RE may be a resource of a unit smaller than the resource unit serving as a resource allocation unit (for example, the smallest resource unit), and is not limited to the name of RE.
  • the above-described radio frame structure is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of symbols and resource blocks included in the slots, and the sub The number of carriers can vary.
  • notification of predetermined information is not limited to what is explicitly performed, but is performed by implicit (for example, not notifying of the predetermined information) It is also good.
  • One aspect of the present disclosure is useful for a wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The radio base station transmits first and second radio signals, which include a common narrowband primary synchronization signal (NPSS) and narrowband secondary synchronization signal (NSSS), by using first and second carrier frequencies, respectively, and in a mutually synchronized manner. The user equipment detects the NPSS upon receipt of the first and/or the second radio signal, and detects the NSSS on the basis of a correlation between the first radio signal received from the first carrier frequency and the second radio signal received from the second carrier frequency.

Description

無線基地局およびユーザ端末Radio base station and user terminal
 本発明は、無線基地局およびユーザ端末に関する。 The present invention relates to a radio base station and a user terminal.
 Internet-of-Things(IoT)では、制御機器、センサ、アクチュエータまたはメーターなど、様々な機器がインターネットに接続される。 In Internet-of-Things (IoT), various devices such as control devices, sensors, actuators or meters are connected to the Internet.
 3rd Generation Partnership Project(3GPP)では、IoTを実現すべく、ライセンスバンドまたはアンライセンスバンドを用いて、機器を低コストでインターネットに接続できるMachine-Type Communications(MTCs)の無線方式が検討されている。例えば、3GPPでは、Long Term Evolution(LTE)の無線インタフェースをベースに、IoTトラヒックを効率的に多重するためのNarrowband(NB)-IoT無線インタフェースが規定されている。 In the 3rd Generation Partnership Project (3GPP), in order to realize IoT, a wireless system of Machine-Type Communications (MTCs) capable of connecting a device to the Internet at low cost using a license band or an unlicensed band is considered. For example, in 3GPP, a Narrowband (NB) -IoT radio interface for efficiently multiplexing IoT traffic is defined based on the radio interface of Long Term Evolution (LTE).
 NB-IoTでは、ユーザ装置(UE)の低消費電力化および低コスト化を実現するために、UEに搭載されるアンテナ数が制限され得る。例えば、UEのアンテナ数が1本である場合、受信アンテナダイバーシチ効果が期待できない。そのため、例えば、無線基地局が送信した同期信号のUEにおける検出成功率が低下する可能性がある。 In NB-IoT, the number of antennas mounted on the UE may be limited in order to realize low power consumption and low cost of the user equipment (UE). For example, when the number of antennas of the UE is one, the reception antenna diversity effect can not be expected. Therefore, for example, there is a possibility that the detection success rate in the UE of the synchronization signal transmitted by the radio base station may decrease.
 本開示の一態様は、同期信号の検出成功率を向上できる無線基地局およびユーザ端末を提供することにある。 One aspect of the present disclosure is to provide a radio base station and a user terminal that can improve the detection success rate of synchronization signals.
 本開示の一態様に係る無線基地局は、第1の無線信号と、第2の無線信号と、を異なる周波数において同期した送信タイミングに従って送信する送信部と、前記第1の無線信号と前記第2の無線信号とに共通の同期信号を、前記第1の無線信号及び前記第2の無線信号のそれぞれに設定する設定部と、を備える。 A wireless base station according to an aspect of the present disclosure includes: a transmitting unit that transmits a first wireless signal and a second wireless signal according to transmission timing synchronized at different frequencies; the first wireless signal; And a setting unit configured to set a synchronization signal common to the two radio signals to each of the first radio signal and the second radio signal.
 本開示の一態様によれば、同期信号の検出成功率を向上できる。 According to one aspect of the present disclosure, it is possible to improve the detection success rate of the synchronization signal.
3GPPで規定されているMTCの無線インタフェースを示す図である。It is a figure which shows the radio | wireless interface of MTC prescribed | regulated by 3GPP. NB-IoTでの利用が想定されている狭帯域キャリアの例を示す図である。It is a figure which shows the example of the narrow band carrier assumed to use by NB-IoT. 無線フレームへのNPSSおよびNSSSの多重法の例を示す図である。FIG. 6 illustrates an example of multiplexing of NPSS and NSSS into a radio frame. NPSSのリソースマッピングの例を示す図である。It is a figure which shows the example of the resource mapping of NPSS. NSSSのリソースマッピングの例を示す図であるIt is a figure showing an example of resource mapping of NSSS. NPSSの生成方法の例を示す図である。It is a figure which shows the example of the production | generation method of NPSS. NSSSの生成方法の例を示す図である。It is a figure which shows the example of the production | generation method of NSSS. LTEにおける2送信アンテナによるPVS送信ダイバーシチの送信法を示す図である。It is a figure which shows the transmission method of PVS transmission diversity by 2 transmitting antennas in LTE. NPSSおよびNSSSにPVS送信ダイバーシチを適用する例を示す図である。It is a figure which shows the example which applies PVS transmission diversity to NPSS and NSSS. 本実施の形態に係るNPSSおよびNSSSの検出処理の例を示す図である。It is a figure which shows the example of the detection process of NPSS and NSSS which concern on this Embodiment. 変形例1に係るNPSSおよびNSSSの検出処理の例を示す図である。It is a figure which shows the example of the detection process of NPSS and NSSS which concerns on modification 1. FIG. 変形例2に係るNPSSおよびNSSSの検出処理の例を示す図である。FIG. 18 is a diagram showing an example of detection processing of the NPSS and the NSSS according to the second modification. 変形例3に係るNPSSおよびNSSSの検出処理の例を示す図である。FIG. 18 is a diagram showing an example of an NPSS and NSSS detection process according to a third modification. 変形例4に係るNPSSおよびNSSSの検出処理の例を示す図である。FIG. 18 is a diagram illustrating an example of an NPSS and NSSS detection process according to a fourth modification. UEにおけるセルIDの検出処理の例を示す図である。It is a figure which shows the example of a detection process of cell ID in UE. 1FTTブロック間隔遅延した受信信号の自己相関を示す図である。FIG. 5 is a diagram illustrating autocorrelation of a received signal delayed by one FTT block interval. 本開示に係る無線基地局及びユーザ端末のハードウェア構成の例を示す図である。It is a figure which shows the example of the hardware constitutions of the wireless base station which concerns on this indication, and a user terminal.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 まず、図1を参照しながら、3GPPで規定されているMTCの主な無線インタフェースについて説明する。 First, the main radio interface of the MTC defined in 3GPP will be described with reference to FIG.
 カテゴリ1は、最小1.4MHzから最大20MHzのシステム帯域幅をサポートする無線インタフェースである。 Category 1 is a wireless interface that supports system bandwidths from a minimum of 1.4 MHz to a maximum of 20 MHz.
 カテゴリM1(eMTC)は、LTEの同期信号、物理報知チャネル(PBCH:Phjysical Broadcast Channel)と同じ送信帯域幅である6リソースブロック(RB:Resource Block)(=1.08MHz)に狭帯域化した無線インタフェースである。狭帯域化により、ユーザ端末(UE:User Equipment)の演算量および消費電力を低減している。 Category M1 (eMTC) is a radio narrowed to 6 resource blocks (RB: Resource Block) (= 1.08 MHz), which have the same transmission bandwidth as LTE synchronization signals and physical broadcast channels (PBCH: Phjysical Broadcast Channel) It is an interface. By narrowing the bandwidth, the amount of computation and power consumption of a user terminal (UE: User Equipment) are reduced.
 カテゴリNB1(NB-IoT)は、UEの更なる低コスト化、および、カバレッジエリアの拡大を目標として、1RB帯域(=180kHz)に狭帯域化した無線インタフェースである。 The category NB1 (NB-IoT) is a radio interface narrowed to 1 RB band (= 180 kHz) with the goal of further reducing the cost of the UE and expanding the coverage area.
 カテゴリM1およびカテゴリNB-IoTは、UEの演算量および消費電力を低減すべく、受信アンテナダイバーシチを用いない1受信アンテナによる受信を想定している。 Category M1 and category NB-IoT assume reception with one receive antenna without using receive antenna diversity in order to reduce the amount of computation and power consumption of the UE.
 次に、図2を参照しながら、NB-IoTの展開シナリオ(導入シナリオ)について説明する。 Next, the NB-IoT deployment scenario (introduction scenario) will be described with reference to FIG.
 図2に示すように、NB-IoTでは、インバンド、ガードバンドおよびスタンドアロンの3種類の展開シナリオが規定されている。 As shown in FIG. 2, NB-IoT defines three types of deployment scenarios: in-band, guard band and stand-alone.
 インバンドのシナリオは、LTEのシステム帯域の中の1または複数のRB2aを用いてNB-IoTを展開する。 The in-band scenario deploys NB-IoT using one or more RBs 2a in the LTE system band.
 ガードバンドのシナリオは、LTEのガードバンド2bを用いてNB-IoTを展開する。LTEでは、システム帯域幅のうち、90%がチャネル占有帯域幅であり、10%がガードバンドである。例えば、システム帯域幅が10MHzの場合、両端にそれぞれ500kHz、合計1MHzのガードバンドを有する。ガードバンドのシナリオでは、この10%のガードバンドを用いて、NB-IoTを展開する。 The guard band scenario develops NB-IoT using LTE guard band 2b. In LTE, 90% of the system bandwidth is a channel occupied bandwidth and 10% is a guard band. For example, when the system bandwidth is 10 MHz, guard bands of 500 kHz at both ends, for a total of 1 MHz, are provided. In the guard band scenario, this 10% guard band is used to deploy NB-IoT.
 スタンドアロンのシナリオは、LTEのシステム帯域外の周波数スペクトル2cを用いて、NB-IoTを展開する。 The standalone scenario deploys NB-IoT using frequency spectrum 2c outside the LTE system band.
 NB-IoTでも、LTEと同様、同期信号を用いて、セルID(PCID:Physical Cell ID)を検出する。NB-IoTに係る同期信号は、狭帯域のプライマリ同期信号(NPSS:Narrowband Primary Synchronization Signal)、および、狭帯域のセカンダリ同期信号(NSSS:Narrowband Secondary Synchronization Signal)を含む。 In NB-IoT, as in LTE, a cell ID (PCID: Physical Cell ID) is detected using a synchronization signal. The synchronization signal according to NB-IoT includes narrowband primary synchronization signal (NPSS: Narrowband Primary Synchronization Signal) and narrowband secondary synchronization signal (NSSS: Narrowband Secondary Synchronization Signal).
 NB-IoTにおけるNPSSおよびNSSSの多重法および系列は、LTEにおけるPSSおよびSSSの場合と異なる。そこで、図3を参照しながら、インバンドのシナリオにおける、無線フレームへのNPSSおよびNSSSの多重法について説明する。 The multiplexing method and sequence of NPSS and NSSS in NB-IoT are different from those in PSS and SSS in LTE. Then, with reference to FIG. 3, the multiplexing method of the NPSS and NSSS to the radio frame in the in-band scenario will be described.
 NB-IoTのチャネル帯域幅は、LTEにおける1RBに相当し、1RBは12サブキャリア(=180kHz)で構成されている。1無線フレーム長は10msである。 The channel bandwidth of NB-IoT corresponds to 1 RB in LTE, and 1 RB is composed of 12 subcarriers (= 180 kHz). One radio frame length is 10 ms.
 NPSSは、各無線フレームの第5サブフレームb1に多重される。NSSSは、1つおき(例えば偶数番目)の無線フレームの第9サブフレームb2に多重される。よって、NPSSは10ms間隔で、NSSSは20ms間隔で、周期的に多重される。 The NPSS is multiplexed into the fifth sub-frame b1 of each radio frame. The NSSS is multiplexed into the ninth subframe b2 of every other (for example, even-numbered) radio frame. Thus, the NPSS is periodically multiplexed at 10 ms intervals and the NSSS at 20 ms intervals.
 次に、図4Aおよび図4Bを参照しながら、NPSSおよびNSSSのリソースマッピング方法について説明する。 Next, the resource mapping method of the NPSS and the NSSS will be described with reference to FIGS. 4A and 4B.
 図4Aおよび図4Bに示すように、LTEにおけるサブフレームの先頭から3OFDMシンボル区間には、物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channael)が多重されている。したがって、インバンド、ガードバンドおよびスタンドアロンの何れのシナリオにおいても、NPSSおよびNSSSは、PDCCHに干渉を与えないように、サブフレームの4OFDMシンボルから14OFDMシンボルまでの間(11OFDMシンボル区間)に多重される。 As shown in FIG. 4A and FIG. 4B, a physical downlink control channel (PDCCH: Physical Downlink Control Channael) is multiplexed in three OFDM symbol sections from the beginning of a subframe in LTE. Therefore, in any of the in-band, guard band and stand-alone scenarios, NPSS and NSSS are multiplexed between 4 OFDM symbols and 14 OFDM symbols in a subframe (11 OFDM symbol intervals) so as not to interfere with PDCCH .
 インバンドのシナリオでは、セル固有参照信号(CRS:Cell-specific Reference Signal)が多重(「マッピング」又は「配置」と称されてもよい)されたリソースエレメント(RE:Resource Element)に、NPSSおよびNSSSの一方又は双方をマッピングすることになる場合には、NPSSおよびNSSSの一方又は双方はパンクチャされてよい。ガードバンドおよびスタンドアロンのシナリオでは、NPSSおよびNSSSは、必ずしもCRSが多重されているREに、多重されなくてもよい。 In the in-band scenario, a cell-specific reference signal (CRS) may be multiplexed (may be referred to as "mapping" or "arrangement") into a resource element (RE: Resource Element), an NPSS, and If one or both of the NSSSs are to be mapped, one or both of the NPSS and the NSSS may be punctured. In guard band and stand-alone scenarios, the NPSS and NSSS may not necessarily be multiplexed to the RE on which the CRS is multiplexed.
 次に、NPSS系列およびNSSS系列について説明する。 Next, the NPSS sequence and the NSSS sequence will be described.
 LTEの場合、無線基地局(eNodeB)の識別情報(identifier,ID)に相当する168個のSSS系列と、同一の無線基地局に属する3つのセルの番号を表す3つのPSS系列とを用いて、504個のセルIDを識別する。NB-IoTの場合は、LTEの場合とは異なり、NSSS系列で、504個のセルIDを表す。 In the case of LTE, using 168 SSS sequences corresponding to identification information (identifier, ID) of a wireless base station (eNodeB) and three PSS sequences representing the numbers of three cells belonging to the same wireless base station , Identifies 504 cell IDs. In the case of NB-IoT, unlike in the case of LTE, the NSSS sequence represents 504 cell IDs.
 NPSS系列は、ZC(Zadoff-Chu)系列をサブフレーム内の11OFDMシンボル区間において2値の系列で変調した系列によって表される。この2値、すなわち{+1,-1}の系列による変調は、コードカバー(Code cover)と呼ばれている。OFDMシンボル(FFTブロック長)のZC系列は、サブフレーム内の11OFDMシンボルに用いられる。 The NPSS sequence is represented by a sequence obtained by modulating a ZC (Zadoff-Chu) sequence with a binary sequence in 11 OFDM symbol intervals in a subframe. The modulation by the sequence of binary values, ie, {+1, -1}, is called a code cover (Code cover). A ZC sequence of OFDM symbols (FFT block length) is used for 11 OFDM symbols in a subframe.
 OFDMシンボルの同期タイミングは、ZC系列を用いた連続するOFDMシンボル間の相関を算出することにより検出できる。しかし、サブフレーム内の11箇所でZC系列の相関ピークが出現しまうため、11OFDMシンボルにコードカバーを乗算している。コードカバーの系列は、S(l)={1 1 1 1 -1 -1 1 1 1 -1 1}であり、l=3,4,…,13である。 The synchronization timing of an OFDM symbol can be detected by calculating the correlation between consecutive OFDM symbols using a ZC sequence. However, since the correlation peak of the ZC sequence appears at 11 places in the sub-frame, 11 OFDM symbols are multiplied by the code cover. The sequence of the code cover is S (l) = {1 1 1 1 −1 −1 1 1 1 1 −1 1}, and l = 3, 4,.
 次に、図5を参照しながら、無線基地局10におけるNPSS系列(シンボル)の生成法について説明する。 Next, a method of generating an NPSS sequence (symbol) in the radio base station 10 will be described with reference to FIG.
 まず、無線基地局10は、周波数領域において、系列長11のZC系列を生成する(S11)。周波数領域における、OFDMシンボルインデックスlのNPSS系列は、次の式1で表される。
Figure JPOXMLDOC01-appb-M000001
 式1において、n=0,1,…,10であり、u=5がルートインデックスである。
First, the radio base station 10 generates a ZC sequence of sequence length 11 in the frequency domain (S11). An NPSS sequence of OFDM symbol index l in the frequency domain is represented by Equation 1 below.
Figure JPOXMLDOC01-appb-M000001
In Equation 1, n = 0, 1, ..., 10, and u = 5 is the root index.
 次に、無線基地局10は、S11で生成したZC系列をサブキャリアにマッピングし(S12)、IFFTによって時間領域におけるZC系列(FFTブロック)を生成する(S13)。次に、無線基地局10は、各FFTブロックに、CP(Cyclic Prefix)を挿入する(S14)。次に、無線基地局10は、11個のCPを含むFFTブロックに、2値の変調系列(コードカバー)を乗算し(S15)、NPSSシンボル(系列)を生成する(S16)。 Next, the radio base station 10 maps the ZC sequence generated in S11 to a subcarrier (S12), and generates a ZC sequence (FFT block) in the time domain by IFFT (S13). Next, the radio base station 10 inserts a CP (Cyclic Prefix) into each FFT block (S14). Next, the radio base station 10 multiplies the FFT block including 11 CPs by the binary modulation sequence (code cover) (S15), and generates an NPSS symbol (sequence) (S16).
 UEは、後述するように、複数のOFDMシンボル間の相関を算出することにより、11OFDMシンボル区間の先頭位置を検出できる。 The UE can detect the start position of 11 OFDM symbol sections by calculating the correlation between a plurality of OFDM symbols as described later.
 NSSS系列は、504個のセルIDの1つを表し、かつ、80msのスーパーフレームの検出に用いられる。NSSS系列は、周波数領域における、131系列長のZC系列と2値のスクランブル系列との組み合わせによって生成される。504個のセルIDは、ZC系列の126個のルートインデックスと、4個のアダマール系列のスクランブル符号とによって識別される。 The NSSS sequence represents one of the 504 cell IDs and is used to detect an 80 ms superframe. The NSSS sequence is generated by combining the 131 sequence length ZC sequence and the binary scrambling sequence in the frequency domain. The 504 cell IDs are identified by the 126 root indexes of the ZC sequence and the scrambling codes of the 4 Hadamard sequences.
 NSSS系列は、次の式2で表される。
Figure JPOXMLDOC01-appb-M000002
 式2において、n=0,1,…,131、n^=n mod 131である。また、exp[-j(((πun^)×(n^+1))/131)]は、ZC系列である。
The NSSS sequence is represented by Equation 2 below.
Figure JPOXMLDOC01-appb-M000002
In Equation 2, n = 0, 1, ..., 131, and n ^ = n mod 131. Further, exp [−j (((πun ^ ) × (n ^ +1)) / 131)] is a ZC sequence.
 式2のuは、次の式3で表される126個のルートインデックスである。
Figure JPOXMLDOC01-appb-M000003
 式3において、NNcell IDは、NB-IoTのセルIDである。
U in Equation 2 is the 126 root indexes represented by Equation 3 below.
Figure JPOXMLDOC01-appb-M000003
In Equation 3, N Ncell ID is the cell ID of NB-IoT.
 式2において、bq(m)は、4種類の系列長128のアダマール系列を表し、m=n mod 128である。qは、次の式3-2で表される。
Figure JPOXMLDOC01-appb-M000004
 式3-2において、exp[-j2πθfn]は、無線フレーム番号nfに応じた系列の巡回シフトを示す項であり、80ms期間の同期タイミングを検出するために用いられる。
In Equation 2, b q (m) represents four types of Hadamard sequences of 128 sequence lengths, and m = n mod 128. q is expressed by the following equation 3-2.
Figure JPOXMLDOC01-appb-M000004
In Expression 3-2, exp [−j 2πθ f n] is a term indicating a cyclic shift of a sequence according to the radio frame number n f , and is used to detect synchronization timing in an 80 ms period.
 巡回シフト量θfは、次の式4で表される。
Figure JPOXMLDOC01-appb-M000005
The amount of cyclic shift θ f is expressed by the following equation 4.
Figure JPOXMLDOC01-appb-M000005
 次に、図6を参照しながら、無線基地局10におけるNSSSシンボル(系列)の生成法について説明する。 Next, a method of generating an NSSS symbol (sequence) in the radio base station 10 will be described with reference to FIG.
 まず、無線基地局10は、周波数領域において、系列長11のZC系列を生成する(S21)。次に、無線基地局10は、S21で生成したZC系列を、サブキャリアにマッピングし(S22)、IFFTによって、時間領域のZC系列(FFTブロック)を生成する(S23)。次に、無線基地局10は、各FFTブロックにCPを挿入する(S24)。次に、無線基地局10は、CPを含むFFTブロックに、2値のスクランブル系列を乗算し(S25)、NSSSシンボル(系列)を生成する(S26)。 First, the radio base station 10 generates a ZC sequence of sequence length 11 in the frequency domain (S21). Next, the radio base station 10 maps the ZC sequence generated in S21 to a subcarrier (S22), and generates a ZC sequence (FFT block) in the time domain by IFFT (S23). Next, the radio base station 10 inserts a CP into each FFT block (S24). Next, the radio base station 10 multiplies the FFT block including the CP by the binary scrambling sequence (S25), and generates an NSSS symbol (sequence) (S26).
 LTEにおけるPSSおよびSSSには、Precoding Vector Switching(PVS)を用いる送信ダイバーシチが適用される。そこで、次に、図7を参照しながら、LTEにおける、2つの送信アンテナによるPVS送信ダイバーシチの送信法を示す。 Transmission diversity using Precoding Vector Switching (PVS) is applied to PSS and SSS in LTE. Therefore, next, a transmission method of PVS transmission diversity by two transmission antennas in LTE will be described with reference to FIG.
 LTEでは、1無線フレーム(10ms)内に、2セットのPSSとSSSが多重される。そして、一方のセットにプリコーディングベクトル{1,1}が、他方のセットにプリコーディングベクトル{1,-1}が乗算される。 In LTE, two sets of PSS and SSS are multiplexed in one radio frame (10 ms). Then, one set is multiplied by the precoding vector {1, 1}, and the other set is multiplied by the precoding vector {1, −1}.
 PSSおよびSSSは、UEが、下りリンクにおいて、最初に補足するチャネルである。LTEは、UEにおけるPSSおよびSSSの検出処理を簡単にするために、無線基地局が1つの送信アンテナから送信した信号波形についてUEにおいて変更を必要としない、選択送信ダイバーシチを採用する。さらに、LTEは、選択送信ダイバーシチの中でも、2系統の送信機から送信電力を効率的に活用できる、PVS送信ダイバーシチを採用する。 The PSS and SSS are channels that the UE first supplements in downlink. In order to simplify the detection process of PSS and SSS in the UE, LTE adopts selective transmission diversity, which does not require any change in the UE for the signal waveform transmitted by the radio base station from one transmit antenna. Furthermore, LTE adopts PVS transmission diversity which can efficiently utilize transmission power from two transmitters among selective transmission diversity.
 UEは、最初に検出したPSS系列から、各サブキャリア位置のチャネル応答の推定値を算出する。そして、UEは、各サブキャリア位置のチャネル応答の推定値を用いて、SSS系列の相関を周波数領域において同相合成する。このように、複数のサブキャリアにわたって、各サブキャリア位置の相関を同相合成する方法は、電力合成による方法と比較して、雑音成分を低減できるため、SSS系列の誤検出を低減できる。 The UE calculates an estimate of the channel response of each subcarrier position from the PSS sequence detected first. Then, the UE performs in-phase synthesis of the correlation of the SSS sequence in the frequency domain, using the estimated value of the channel response of each subcarrier position. As described above, the method of in-phase combining the correlation of each subcarrier position across a plurality of subcarriers can reduce the noise component as compared to the method by power combining, so that false detection of the SSS sequence can be reduced.
 前述のように、LTEの場合、同じセットのPSSとSSSには同一のプリコーディングベクトルが乗算されているため、UEは、プリコーディングベクトルを意識(検出)する必要なく、PSSによって推定した各サブキャリア位置のチャネル応答を用いて、SSSの相関値を同相合成(加算)できる。 As described above, in the case of LTE, since the same set of PSS and SSS are multiplied by the same precoding vector, the UE does not need to be aware of (detect) the precoding vector, and each subs estimated by PSS The channel response of the carrier position can be used to perform in-phase combination (addition) of the SSS correlation value.
 次に、図8を参照しながら、NPSSおよびNSSSに、時間領域のPVS送信ダイバーシチを適用した場合の送信法について説明する。なお、当該内容の詳細については、非特許文献3に開示されている。 Next, a transmission method in the case of applying PVS transmission diversity in time domain to NPSS and NSSS will be described with reference to FIG. The details of the contents are disclosed in Non-Patent Document 3.
 非特許文献3が開示するPVS送信ダイバーシチ法は、NPSSとNSSSのそれぞれにおいて、2種類のプリコーディングベクトルを交互に切り換える。 The PVS transmission diversity method disclosed in Non-Patent Document 3 alternately switches two types of precoding vectors in each of NPSS and NSSS.
 NB-IoTの場合、NPSSの多重間隔(周期)は10msであり、LTEの場合と比較して長い。よって、NPSSの検出においてPVS送信ダイバーシチ効果を得るためには、1回の検出ループ処理で、少なくとも20ms期間の受信信号を受信する必要がある。 In the case of NB-IoT, the multiple interval (period) of NPSS is 10 ms, which is longer than in the case of LTE. Therefore, in order to obtain the PVS transmission diversity effect in the detection of the NPSS, it is necessary to receive a reception signal of at least a 20 ms period in one detection loop process.
 さらに、NSSSの多重間隔(周期)は20msである。よって、NSSSの検出においてPVS送信ダイバーシチ効果を得るためには、1回の検出ループ処理で、最大40ms期間を要する可能性がある。 Furthermore, the multiplexing interval (period) of the NSSS is 20 ms. Therefore, in order to obtain the PVS transmission diversity effect in the detection of the NSSS, a single detection loop process may require a maximum of 40 ms.
 1回の検出ループ処理に要する時間が長くなるほど、セルIDの検出に要する時間も長くなる。また、セルIDの検出成功率を高めるために、複数回の検出ループ処理を行うと、その分、相関関係を算出する処理の回数も増える。これらは何れも、UEの消費電力を増加させる要因となる。NB-IoTのUEには、消費電力の低減が要求されている。そこで、本実施の形態では、UEにおいてセルIDの検出に要する時間が短くなり、その分待ち受けの時間が長くなり、延いてはUEにおける消費電力が低減する、NB-IoTのシステムについて説明する。 The longer the time required for one detection loop process, the longer the time required for cell ID detection. Also, if detection loop processing is performed a plurality of times in order to increase the detection success rate of the cell ID, the number of processing for calculating the correlation also increases accordingly. All of these are factors that increase the power consumption of the UE. Reduction in power consumption is required of NB-IoT UEs. Therefore, in the present embodiment, an NB-IoT system will be described, in which the time required to detect a cell ID in the UE is shortened, and the time for standby is increased accordingly, and thus the power consumption in the UE is reduced.
 NB-IoTでは、演算量および消費電力の低減のため、UEに、180kHzの狭帯域送信の無線インタフェースを採用している。この場合、周波数フラットフェージングを受けて受信レベルが落ち込んだ場合に、信号帯域の全体が落ち込んでしまい、UEは、周波数ダイバーシチ効果が得られない可能性がある。また、UEは、1つの受信アンテナで信号を受信するため、受信ダイバーシチ効果も得られない可能性がある。その結果、バースト誤りが生じ、セルIDの検出成功率が低下する可能性がある。 In NB-IoT, to reduce the amount of computation and power consumption, the UE adopts a wireless interface of narrow band transmission of 180 kHz. In this case, when the reception level drops due to frequency flat fading, the entire signal band drops, and the UE may not be able to obtain a frequency diversity effect. Moreover, since UE receives a signal by one receiving antenna, there is a possibility that a reception diversity effect may not be obtained. As a result, burst errors may occur and the cell ID detection success rate may be reduced.
 また、NB-IoTでは、2つの送信アンテナで信号を送信するPVS送信ダイバーシチを無線基地局に採用することが検討されている。しかし、ここで検討されているPVS送信ダイバーシチ法は、上述のとおり、受信品質に関わらず、NPSSおよびNSSSのそれぞれにおいて、2種類のプリコーディングベクトルを交互に切り替えながら、NPSSおよびNSSSを所定の多重間隔(周期)で送信する方法である。したがって、受信のチャネル状態情報(CSI:Channel State Information)に応じて最適なプリコーディングベクトルを選択する方法と比較して、プリコーディング利得が小さい。 Also, in NB-IoT, adoption of PVS transmit diversity for transmitting signals with two transmit antennas as a wireless base station is being considered. However, as described above, the PVS transmit diversity method discussed herein is designed to multiplex the NPSS and NSSS into predetermined multiplexes while alternately switching between two precoding vectors in each of the NPSS and NSSS regardless of the reception quality. It is a method of transmitting at intervals (period). Therefore, the precoding gain is small as compared with the method of selecting the optimal precoding vector according to channel state information (CSI) of reception.
 また、無線基地局の小型化および低消費電力化のために、無線基地局(アクセスポイント)に、1つの送信アンテナから下りリンク信号を送信する構成を採用した場合、UEは、送信アンテナダイバーシチ利得を得られない。その結果、セルIDの検出成功率が低下する。 In addition, when a configuration is employed in which a downlink signal is transmitted from one transmission antenna to a wireless base station (access point) in order to miniaturize the wireless base station and reduce power consumption, the UE is required to have a transmit antenna diversity gain. I can not get As a result, the cell ID detection success rate decreases.
 本実施の形態では、セルIDの検出成功率を高める同期信号の多重法およびセルサーチ法について説明する。これにより、充分なアンテナダイバーシチ効果が得られない場合であっても、セルIDの検出成功率を高めることができる。 In the present embodiment, a synchronization signal multiplexing method and a cell search method will be described which enhance the cell ID detection success rate. As a result, even when a sufficient antenna diversity effect can not be obtained, the cell ID detection success rate can be increased.
<2つのチャネルを用いた同期信号の検出方法>
 次に、図9を参照しながら、本実施の形態に係る、NPSSおよびNSSSの送信方法および検出方法について説明する。図9は、NPSSおよびNSSSの両方を、周波数ホッピングを用いて検出する例である。なお、本実施の形態では、2つのチャネル(キャリア周波数)を用いる場合について説明するが、本実施の形態は、3つ以上のキャリア周波数を用いる場合にも適用できる。
<Method of Detecting Synchronization Signal Using Two Channels>
Next, the transmission method and detection method of the NPSS and the NSSS according to the present embodiment will be described with reference to FIG. FIG. 9 is an example of detecting both NPSS and NSSS using frequency hopping. Although the case where two channels (carrier frequencies) are used is described in this embodiment, this embodiment can also be applied to the case where three or more carrier frequencies are used.
 無線基地局10は、NB-IoTに係る互いに異なる2つのチャネルにおいて、無線フレームの送信タイミングを同期させて送信する。ここで、無線フレームの送信に用いられる2つのチャネルは、図2に示す、LTEのチャネル占有帯域内の2つのRB2aの組み合わせ、LTEのチャネル占有帯域内のRB2aとガードバンド内のRB2bとの組み合わせ、または、LTEのチャネル占有帯域内のRB2aとLTEのシステム帯域外の周波数帯域のRB2cとの組み合わせなど、どのような組み合わせであってもよい。換言すると、2つのチャネルは、インバンドのシナリオと、ガードバンドのシナリオと、スタンドアロンのシナリオと、のうちの何れか2つの組み合わせであってよい。 The radio base station 10 synchronizes and transmits the transmission timings of radio frames in two different channels according to NB-IoT. Here, the two channels used to transmit the radio frame are a combination of two RBs 2a in the LTE channel occupied band, a combination of the RB 2a in the LTE channel occupied band and an RB 2b in the guard band shown in FIG. Alternatively, any combination may be used, such as a combination of RB 2 a in the LTE channel occupancy band and RB 2 c in a frequency band outside the LTE system band. In other words, the two channels may be any combination of in-band scenario, guard-band scenario and stand-alone scenario.
 なお、インバンドのシナリオでは、NB-IoTの2つのチャネル間の周波数相関が充分小さくように、周波数間隔の離れた2つのRBを割り当てることが望ましい。 In the in-band scenario, it is desirable to allocate two RBs separated by frequency intervals so that the frequency correlation between the two NB-IoT channels is sufficiently small.
 一般的に、UEは、セルIDの検出の際、システムで予め規定された周波数ラスタにおけるキャリア周波数をサーチする。この場合、UEは、キャリア周波数をサーチする際に、合わせて、周波数ホッピングを行うべきキャリア周波数をブラインドサーチできる。 In general, the UE searches for carrier frequencies in a system-predefined frequency raster upon detection of a cell ID. In this case, when searching for a carrier frequency, the UE can perform blind search for a carrier frequency on which frequency hopping should be performed.
 しかし、2つのチャネルの周波数間隔(周波数ホッピング間隔に相当)、および、周波数間隔の候補は、無線基地局10とUEとの間で(つまりNB-IoTシステムにおいて)、予め定められてよい。これにより、UEにおけるセルIDのサーチ時間を短縮できる。 However, frequency intervals of two channels (corresponding to frequency hopping intervals) and frequency interval candidates may be predetermined between the radio base station 10 and the UE (that is, in the NB-IoT system). Thereby, the search time of cell ID in UE can be shortened.
 次に、UEにおけるNPSSの検出処理について説明する。 Next, the detection process of the NPSS in the UE will be described.
 UEは、最初(例えば電源立ち上げ時)のセルIDの検出処理を開始したタイミングでは、1無線フレーム内におけるNPSSの多重位置が不明である。よって、UEは、次のように、1無線フレーム内におけるNPSSの多重位置を推定する。 At the timing when the UE starts the process of detecting the cell ID for the first time (for example, when power is turned on), the multiplexing position of the NPSS in one radio frame is unknown. Therefore, the UE estimates the multiplexing position of the NPSS in one radio frame as follows.
 まず、UEは、2つのチャネルのうち、キャリア周波数f1において、「TNPSS Ave=10ms+11OFDMシンボル」のサーチ期間101の各サンプルタイミングにおける複素量の相関値ρNPSS f1[k]を算出する。ここで、10msはNPSSの多重間隔であり、1≦k≦(Nrf+11×NOFDM)であり、Nrfは1無線フレーム長におけるサンプル数であり、NOFDMは1OFDMシンボル長におけるサンプル数である。 First, UE, of the two channels, the carrier frequency f 1, and calculates a correlation value ρ NPSS f1 [k] of the complex quantity in each sample timing of the search period 101 of "T NPSS Ave = 10ms + 11OFDM symbol". Here, 10 ms is the multiplexing interval of NPSS, 1 ≦ k ≦ (N rf + 11 × N OFDM ), N rf is the number of samples in one radio frame length, and N OFDM is the number of samples in one OFDM symbol length is there.
 サーチ期間を11OFDMシンボル分、長くしている理由は、UEがNPSSの検出処理を開始したタイミングがNPSSの多重されているサブフレームの途中であっても、NPSSを検出できるようにするためである。また、NPSSを検出するための各サンプルタイミングにおける相関値ρNPSS f1[k]の算出方法の詳細については後述する。 The reason why the search period is extended by 11 OFDM symbols is to be able to detect the NPSS even when the timing at which the UE starts the NPSS detection process is in the middle of the NPSS multiplexed subframe. . Further, details of a method of calculating the correlation value N NPSS f1 [k] at each sample timing for detecting the NPSS will be described later.
 次に、UEは、キャリア周波数f2において、TNPSS Aveのサーチ期間102の各サンプルタイミングにおける相関値ρNPSS f2[k]を算出する。 Next, the UE calculates the correlation value N NPSS f2 [k] at each sample timing of the search period 102 of T NPSS Ave at the carrier frequency f 2 .
 次に、UEは、キャリア周波数f1おけるサーチ期間101に係る相関値ρNPSS f1[k]と、キャリア周波数f2おけるサーチ期間102に係る相関値ρNPSS f2[k]とを加算し、加算相関値ρ~NPSS[k]を算出する。なお、当該加算では、同相成分および直交成分がそれぞれ独立に加算される。 Then, UE adds the correlation value ρ NPSS f1 [k] according to the carrier frequency f 1 definitive search period 101, and a correlation value [rho NPSS f2 according to the carrier frequency f 2 definitive search period 102 [k], adding The correlation value ~ ~ NPSS [k] is calculated. In the addition, the in-phase component and the quadrature component are independently added.
 次に、UEは、その加算相関値ρ~NPSS[k]の電力|ρ~NPSS[k]|2が最大となるkを算出する。当該kは、NPSSの受信タイミングに相当する。すなわち、UEが、当該kを算出する処理が、NPSSの受信タイミングを検出(推定)する処理に相当する。 Next, the UE calculates k at which the power | ρ ̃NPSS [k] | 2 of the added correlation value ~ ̃NPSS [k] is maximum. The k corresponds to the reception timing of the NPSS. That is, the process in which the UE calculates the k corresponds to the process of detecting (estimating) the reception timing of the NPSS.
 なお、NPSSは1無線フレーム長(10ms)の間隔で多重されているため、NPSSの相関を検出するには、少なくとも2無線フレーム長(20ms)の期間を要する。 Note that, since the NPSS is multiplexed at an interval of one radio frame length (10 ms), a period of at least two radio frame lengths (20 ms) is required to detect the correlation of the NPSS.
 上述の方法によれば、周波数相関の比較的低い2RBの相関値を平均化しているため、周波数ダイバーシチ効果が得られ、NPSSの受信タイミングの検出成功率が高まる。 According to the above-described method, since the correlation values of 2 RBs with relatively low frequency correlation are averaged, the frequency diversity effect is obtained, and the detection success rate of the NPSS reception timing is increased.
 次に、UEにおけるNSSSの検出処理について説明する。 Next, detection processing of NSSS in the UE will be described.
 UEは、NPSSの受信タイミングの推定値から、NSSSの受信タイミングを推定する。NSSSは連続する2無線フレームの何れかの無線フレームの1サブフレームに多重されている。よって、NPSSの多重位置を検出できても、NSSSが当該2無線フレームのうちの何れに多重されているかについては、直ちに判明するわけではない。よって、UEは、2無線フレームのそれぞれについて、最大の相関電力となるNSSS系列を検出し、より大きな相関電力となる無線フレームに、NSSSが多重されていると推定する。そして、UEは、その最大の相関電力となるNSSS系列を用いて、セルIDを検出(推定)する。以下、詳細に説明する。 The UE estimates the NSSS reception timing from the NPSS reception timing estimate. The NSSS is multiplexed into one subframe of any of two consecutive radio frames. Therefore, although it is possible to detect the multiplex position of the NPSS, it is not immediately known as to which of the two radio frames the NSSS is multiplexed. Therefore, the UE detects, for each of the two radio frames, the NSSS sequence that is the maximum correlation power, and estimates that the NSSS is multiplexed in the radio frame that is the higher correlation power. Then, the UE detects (estimates) the cell ID using the NSSS sequence that is the maximum correlation power. The details will be described below.
 まず、UEは、キャリア周波数f1において、周波数領域のNSSSの多重タイミングにおける受信信号と、NSSS系列レプリカとの相関値を算出する。具体的には、UEは、「TNSSS Ave=20ms」のサーチ期間120における、前半の10msの期間(以下「前半期間」という)121の各サンプルタイミングにおけるNSSSの相関値P(1) f1[m]を算出する。つまり、相関値P(1) f1[m]は、キャリア周波数f1における、2無線フレーム長のうちの前半の1無線フレーム長におけるNSSSの相関値である。 First, UE, in a carrier frequency f 1, and calculates the received signal at multiple timings NSSS the frequency domain, the correlation value between NSSS sequence replica. Specifically, the UE sets the NSSS correlation value P (1) f 1 [ 1] f 1 [at each sample timing of the first half 10 ms period (hereinafter referred to as “first half period”) 121 in the search period 120 of “T NSSS Ave = 20 ms”. m] to calculate. That is, the correlation value P (1) f1 [m] is the carrier frequency f 1, a correlation value NSSS in one radio frame length in the first half of the second radio frame length.
 さらに、UEは、キャリア周波数f1について、「TNSSS Ave=20ms」のサーチ期間120における、後半の10ms(122)の期間(以下「後半期間」という)122の各サンプルタイミングにおけるNSSSの相関値P(2) f1[m]を算出する。つまり、相関値P(2) f1[m]は、キャリア周波数f1における、2無線フレーム長のうちの後半の1無線フレーム長におけるNSSSの相関値である。ここで、20msはNSSSの多重間隔であり、1≦m≦NNSSSであり、NNSSSはNSSS系列数である。 Furthermore, the UE is the correlation value of the NSSS at each sample timing of the second half 10 ms (122) period (hereinafter referred to as "second half period") 122 in the search period 120 of "T NSSS Ave = 20 ms" for the carrier frequency f 1 P (2) Calculate f1 [m]. That is, the correlation value P (2) f1 [m] is the correlation value of the NSSS at one radio frame length in the second half of the two radio frame lengths at the carrier frequency f 1 . Here, 20 ms is a multiplexing interval of NSSS, 1 ≦ m ≦ N NSSS , and N NSSS is the number of NSSS sequences.
 次に、UEは、周波数ホッピングによりキャリア周波数をf2に切り替え、上記同様、キャリア周波数f2について、サーチ期間130における、前半期間131のNSSSの相関値P(1) f2[m]と、後半期間132のNSSSの相関値P(2) f2[m]とを算出する。 Next, the UE switches the carrier frequency to f 2 by frequency hopping, and similarly to the above, the correlation value P (1) f 2 [m] of the NSSS in the first half period 131 in the search period 130 for the carrier frequency f 2 and the second half The correlation value P (2) f2 [m] of the NSSS in the period 132 is calculated.
 次に、UEは、キャリア周波数f1およびf2の前半期間121、131のNSSSの相関値から、前半期間121、131の合成相関電力(|P(1) f1[m]|2+|P(1) f2[m]|2)を算出する。また、UEは、キャリア周波数f1およびf2の後半期間122、132のNSSSの相関値から、後半期間122、132の合成相関電力(|P(1) f2[m]|2+|P(2) f2[m]|2)を算出する。 Next, from the correlation values of the NSSS in the first half periods 121 and 131 of the carrier frequencies f 1 and f 2 , the UE calculates the combined correlation power of the first half periods 121 and 131 (| P (1) f 1 [m] | 2 + | P (1) Calculate f2 [m] | 2 ). In addition, the UE detects the combined correlation power (| P (1) f2 [m] | 2 + | P ( ) from the correlation values of the NSSS in the second half periods 122 and 132 of the carrier frequencies f 1 and f 2 ). 2) Calculate f2 [m] | 2 ).
 次に、UEは、前半期間の合成相関電力と後半期間の合成相関電力とを比較し、前半期間または後半期間のうち、より大きな方にNSSSが多重されていると推定する。そして、UEは、より大きな方の合成相関電力が最大となるNSSS系列m^を算出する。当該NSSS系列m^は、セルIDに相当する。すなわち、UEが、当該NSSS系列m^を算出する処理が、セルIDを検出(推定)する処理に相当する。として検出する。 Next, the UE compares the combined correlation power in the first half period with the combined correlation power in the second half period, and estimates that the NSSS is multiplexed in the larger one of the first half period or the second half period. Then, the UE calculates an NSSS sequence m ^ in which the larger combined correlation power is maximum. The NSSS sequence m ^ corresponds to a cell ID. That is, the process in which the UE calculates the NSSS sequence m ^ corresponds to the process of detecting (estimating) the cell ID. As detected.
 なお、無線基地局10は、周波数ホッピングの間隔に関する情報(以下「周波数ホッピング間隔情報」という)を、NPSS系列に含めて送信してよい。または、無線基地局10は、周波数ホッピング間隔情報を、シンボル情報に含めて送信してもよい。これにより、UEは、周波数ホッピング情報に関するブラインドサーチ処理を省略できる。 Note that the radio base station 10 may transmit information regarding the frequency hopping interval (hereinafter referred to as “frequency hopping interval information”) in the NPSS sequence. Alternatively, the radio base station 10 may transmit frequency hopping interval information in symbol information. By this means, the UE can omit the blind search process for frequency hopping information.
 また、無線フレームの構成、すなわち、無線フレームにおけるNPSSの多重位置は、UEにおいて既知であってよい。また、1無線フレームにおけるサンプルレートが既知であるため、1無線フレームにおけるサンプル数も既知であってよい。 Also, the configuration of the radio frame, ie, the multiplexing position of the NPSS in the radio frame may be known at the UE. Also, since the sample rate in one radio frame is known, the number of samples in one radio frame may also be known.
 以上の処理によれば、周波数ダイバーシチ効果により、NPSSおよびNSSSの検出成功率を高めることができる。 According to the above process, it is possible to increase the detection success rate of the NPSS and the NSSS by the frequency diversity effect.
<変形例1>
 UEは、図10の例に示すように、NPSSについては、周波数ホッピングを用いず、1つのキャリア(1RB)(図10ではキャリア周波数f1)で送信された受信信号(140)を用いて検出し、NSSSについては、図9と同様に、周波数ホッピングを用いて検出してもよい。
<Modification 1>
As shown in the example of FIG. 10, the UE does not use frequency hopping for NPSS, but detects using the received signal (140) transmitted on one carrier (1 RB) (carrier frequency f 1 in FIG. 10) The frequency hopping may be used for the NSSS, as in FIG.
 NB-IoTは、NSSS系列のみでセルIDを表すために、図10に示すように、NSSSの検出にのみ周波数ホッピングを用いても、セルIDの検出成功率を高めることができる。 As shown in FIG. 10, NB-IoT can increase the cell ID detection success rate even if frequency hopping is used only for NSSS detection as shown in FIG.
<変形例2>
 次に、図11を参照しながら、無線基地局10が、NPSSおよびNSSSを2つのキャリア(2RB)に多重して送信する場合の例について説明する。
<Modification 2>
Next, with reference to FIG. 11, an example in which the radio base station 10 multiplexes the NPSS and the NSSS onto two carriers (2 RBs) and transmits will be described.
 無線基地局10は、図11に示すように、2つのキャリアにおいて、同じ送信タイミングの無線フレーム内におけるNPSSの送信タイミングを同期し、その同期するNPSSには、同じプリコーディングベクトルを乗算する。同様に、無線基地局10は、2つのキャリアにおいて、同じ送信タイミングの無線フレーム内におけるNSSSの送信タイミングを同期し、その同期するNSSSには、同じプリコーディングベクトルを乗算する。 As shown in FIG. 11, the radio base station 10 synchronizes the transmission timing of the NPSS in the radio frame of the same transmission timing on two carriers, and multiplies the synchronized NPSS by the same precoding vector. Similarly, the radio base station 10 synchronizes the transmission timing of the NSSS in the radio frame of the same transmission timing on two carriers, and multiplies the synchronized NSSS by the same precoding vector.
 例えば、無線基地局10は、送信アンテナ#1および送信アンテナ#2の送信ウエイトを{w1,w2}とすると、NPSSに対して、{w1、w2}={1,1}および{w1,w2}={1,-1}のプリコーディングベクトルを、交互に乗算する。例えば、奇数番目(第3の送信タイミング)のNPSSに{w1、w2}={1,1}を、偶数番目(第4の送信タイミング)のNPSSに{w1,w2}={1,-1}を乗算する。無線基地局10は、NSSSに対しても、同様に、{w1,w2}={1,1}および{w1,w2}={1,-1}のプリコーディングベクトルを、交互に乗算する。 For example, assuming that the transmit weights of transmit antenna # 1 and transmit antenna # 2 are {w 1 , w 2 }, the radio base station 10 sets {w 1 , w 2 } = {1, 1} and The precoding vectors of {w 1 , w 2 } = {1, −1} are alternately multiplied. For example, odd and {w 1, w 2} = {1,1} (third transmission timing) NPSS of the even-numbered {w 1, w 2} to NPSS the (fourth transmission timing) = { Multiply by 1, -1}. The radio base station 10, even for nsss, similarly, a precoding vector of {w 1, w 2} = {1,1} and {w 1, w 2} = {1, -1}, alternating Multiply by
 次に、UEにおけるNPSSの検出処理について説明する。 Next, the detection process of the NPSS in the UE will be described.
 UEは、図11の例に示すように、キャリア周波数f1において、「TNPSS Ave=10ms+11OFDMシンボル」のサーチ期間211、212について、それぞれ、相関値ρNPSS(1) f1[k]、ρNPSS(2) f1[k]を算出する。同様に、UEは、キャリア周波数f2において、「TNPSS Ave=10ms+11OFDMシンボル」のサーチ期間221、222について、それぞれ、相関値ρNPSS(3) f1[k]、ρNPSS(4) f1[k]を算出する。 As shown in the example of FIG. 11, the UE transmits correlation values 相関 NPSS (1) f1 [k] and ρ NPSS for search periods 211 and 212 of “T NPSS Ave = 10 ms + 11 OFDM symbol” at carrier frequency f 1 , respectively. (2) Calculate f1 [k]. Similarly, the UE detects correlation values N NPSS (3) f1 [k] and N NPSS (4) f1 [k 1 for search periods 221 and 222 of “T NPSS Ave = 10 ms + 11 OFDM symbol” at carrier frequency f 2 . Calculate].
 次に、UEは、その算出した4つの無線フレームに係る相関値ρNPSS(1) f1[k]、ρNPSS(2) f1[k]、ρNPSS(3) f1[k]、ρNPSS(4) f1[k]を加算した加算相関値を算出する。次に、UEは、1≦k≦(Nrf+11×NOFDM)のサンプルタイミング候補の中で、加算相関値の電力が最大となるkを算出する。すなわち、UEは、NPSSの受信タイミングを検出する。 Next, the UE calculates the correlation values N NPSS (1) f 1 [k], N NPSS (2) f 1 [k], N NPSS (3) f 1 [k], N NPSS (4) relating to the calculated four radio frames. 4) Calculate the added correlation value by adding f1 [k]. Next, the UE calculates k that maximizes the power of the added correlation value among the sample timing candidates of 1 ≦ k ≦ (N rf + 11 × N OFDM ). That is, the UE detects the reception timing of the NPSS.
 次に、UEにおけるNSSSの検出処理について説明する。 Next, detection processing of NSSS in the UE will be described.
 まず、UEは、キャリア周波数f1において、1回目のサーチ期間310(TNSSS Ave=20ms)における、前半期間311のNSSSの相関値P(1a) f1[m]と、後半期間312のNSSSの相関値P(2a) f1[m]とを算出する。 First, the UE determines the correlation value P (1a) f1 [m] of the NSSS of the first half period 311 and the NSSS of the second half period 312 in the first search period 310 (T NSSS Ave = 20 ms) at the carrier frequency f 1 The correlation value P (2a) f1 [m] is calculated.
 次に、UEは、2回目のサーチ期間320における、前半期間321のNSSSの相関値P(1b) f1[m]と、後半期間322のNSSSの相関値P(2b) f1[m]とを算出する。そして、UEは、キャリア周波数f1について、前半期間311、321のそれぞれにおける相関値P(1a) f1[m]、P(1b) f1[m]を加算して、加算相関値P ̄(1) f1[m]を算出する。 Next, the UE calculates the correlation value P (1b) f1 [m] of the NSSS in the first half period 321 and the correlation value P (2b) f1 [m] of the second half period 322 in the second search period 320. calculate. Then, the UE adds the correlation values P (1a) f1 [m] and P (1b) f1 [m] in the first half periods 311 and 321, respectively, for the carrier frequency f 1 and adds the correlation value P ̄ (1 ) Calculate f1 [m].
 次に、UEは、周波数ホッピングによりキャリア周波数をf2に切り替え、同様に、3回目のサーチ期間330における、前半期間331のNSSSの相関値P(1a) f2[m]と、後半期間332のNSSSの相関値P(2a) f1[m]とを算出する。 Next, the UE switches the carrier frequency to f 2 by frequency hopping, and similarly, the correlation value P (1a) f 2 [m] of the NSSS in the first half period 331 and the second half period 332 in the third search period 330. Calculate the correlation value P (2a) f1 [m] of NSSS.
 次に、UEは、4回目のサーチ期間340における、前半期間341のNSSSの相関値P(1b) f2[m]と、後半期間342のNSSSの相関値P(2b) f2[m]とを算出する。そして、UEは、キャリア周波数f2について、前半期間331、341のそれぞれにおける相関値P(1a) f2[m]、P(1b) f2[m]を加算して加算相関値P ̄(1) f2[m]を算出する。また、UEは、後半期間332、342のそれぞれにおける相関値P(2a) f2[m]、P(1b) f2[m]を加算して、加算相関値P ̄(2) f2[m]を算出する。 Next, the UE generates the correlation value P (1b) f2 [m] of the NSSS in the first half period 341 and the correlation value P (2b) f2 [m] of the second half period 342 in the fourth search period 340. calculate. Then, the UE adds the correlation values P (1a) f2 [m] and P (1b) f2 [m] in the first half periods 331 and 341, respectively, for the carrier frequency f 2 and adds the correlation values P ̄ (1) Calculate f2 [m]. Also, the UE adds the correlation values P (2a) f2 [m] and P (1 b) f2 [m] in the second half periods 332 and 342, respectively, and adds the correlation values P (2) f2 [m]. calculate.
 次に、UEは、キャリア周波数f1およびf2の前半期間311,321,331,341の合成相関電力(|P ̄(1) f1[m]|2+|P ̄(1) f2[m]|2)と、キャリア周波数f1およびf2の後半期間312,322,332,342の合成相関電力(|P ̄(1) f2[m]|2+|P ̄(2) f2[m]|2)とを算出する。すなわち、前半期間の合成相関電力および後半期間の合成相関電力は、それぞれ、プリコーディングベクトルのセット数「2」×周波数ホッピングのキャリア数「2」=4サイクル分の相関値によって算出された値となる。 Next, the UE calculates the combined correlation power of the first half periods 311, 321, 331, 341 of the carrier frequencies f 1 and f 2 (| P ((1) f 1 [m] | 2 + | P 1 (1) f 2 [m 2 ) and the second half period 312, 322, 332, 342 of the carrier frequencies f 1 and f 2 (│P 1 (1) f 2 [m] │ 2 + | P ((2) f 2 [m 2 ] | 2 ) and. That is, the combined correlation power of the first half period and the combined correlation power of the second half period are respectively calculated by the correlation value of the number of precoding vector sets “2” × the number of carriers of frequency hopping “2” = 4 cycles. Become.
 次に、UEは、前半期間の合成相関電力と後半期間の合成相関電力とを比較し、前半期間と後半期間のうち、より大きな方に、NSSSが多重されていると推定する。そして、UEは、より大きな方の合成相関電力が最大の相関電力となるNSSS系列m^を算出する。すなわち、UEは、セルIDを検出(推定)する。 Next, the UE compares the combined correlation power in the first half period with the combined correlation power in the second half period, and estimates that the NSSS is multiplexed in the larger one of the first half period and the second half period. Then, the UE calculates an NSSS sequence m ^ in which the larger combined correlation power is the largest correlation power. That is, the UE detects (estimates) the cell ID.
 上述の変形例2に係る処理によれば、PVS送信ダイバーシチのみを用いる場合と比較して、周波数ダイバーシチ効果が得られるため、NPSSおよびNSSS系列の検出成功率が向上する。 According to the process according to the above-described modification 2, compared to the case where only PVS transmission diversity is used, the frequency diversity effect is obtained, so that the detection success rate of the NPSS and NSSS sequences is improved.
<変形例3>
 次に、図12を参照しながら、無線基地局10が、キャリア周波数f1における無線フレーム(無線フレーム番号)と、キャリア周波数f2における無線フレーム(無線フレーム番号)とを、1無線フレーム長分、時間シフトさせて送信する場合の例について説明する。すなわち、無線基地局10は、第1の送信タイミングにおいてキャリア周波数f1を用いて送信した無線フレームを、第1の送信タイミングから1無線フレーム長分の時間遅い第2の送信タイミングにおいて、キャリア周波数f2を用いて送信する。これにより、NSSSは、キャリア周波数f1およびキャリア周波数f2に跨がって、1無線フレーム長の間隔で送信されていることになる。
<Modification 3>
Next, referring to FIG. 12, the radio base station 10, the radio frame in the carrier frequency f 1 (radio frame number), and a radio frame (radio frame number) in the carrier frequency f 2, 1 radio frame length fraction An example of time-shifted transmission will be described. That is, the radio base station 10 transmits the radio frame transmitted using the carrier frequency f 1 at the first transmission timing and the carrier frequency at the second transmission timing that is one radio frame length later than the first transmission timing. transmitted using the f 2. Thus, nsss is straddling carrier frequencies f 1 and the carrier frequency f 2, will have been transmitted at intervals of 1 radio frame length.
 図12において、UEがNPSSの受信タイミングを検出する方法については、図9の場合と同様であるので、説明を省略する。次にUEにおけるNSSSの検出方法について説明する。 In FIG. 12, the method for the UE to detect the reception timing of the NPSS is the same as that in the case of FIG. Next, the detection method of NSSS in UE will be described.
 図12に示すように、周波数ホッピングを用いる場合、NSSSの多重間隔は、等価的に1無線フレーム長となる。しかし、NPSSが検出された無線フレームの次の無線フレームにNSSSが多重されているか否かについては、直ちに判明するわけではない。そこで、UEは、同じキャリア周波数を用いて送信された信号に対して、連続する2つの無線フレームの何れにNSSSが多重されているかを検出する。 As shown in FIG. 12, when frequency hopping is used, the NSSS multiplexing interval is equivalent to one radio frame length. However, it is not immediately known whether the NSSS is multiplexed in the next radio frame of the radio frame in which the NPSS is detected. Thus, the UE detects which of two consecutive radio frames an NSSS is multiplexed for a signal transmitted using the same carrier frequency.
 例えば、UEは、図12に示すように、キャリア周波数f1において、NPSS検出後の連続する1つ目の無線フレーム長の期間401と2つ目の無線フレーム長の期間402について、それぞれ、NSSSの相関値P(1) f1[m]、および、P(2) f1[m]を算出する。 For example, UE, as shown in FIG. 12, the carrier frequency f 1, a first radio frame length periods of 401 consecutive after NPSS detected for the second radio frame length periods 402, respectively, nsss The correlation values P (1) f1 [m] and P (2) f1 [m] are calculated.
 次に、UEは、max|P(1) f1[m]|2とmax|P(2) f1[m]|2とを比較し、何れか大きい方の無線フレーム長の期間に、NSSSが多重されていると推定する。 Next, the UE compares max | P (1) f1 [m] | 2 with max | P (2) f1 [m] | 2 and, during the larger radio frame length period, NSSS Estimated to be multiplexed.
 次に、UEは、1つ目の無線フレーム長の期間401にNSSSが多重されていると推定した場合、同じキャリア周波数f1において、3つ目の無線フレーム長の期間403AについてNSSSの相関電力|P(3) f1[m]|2を算出する。次に、UEは、キャリア周波数f2に切り替えて、4つ目の無線フレーム長の期間404についてNSSSの相関電力|P(4) f2[m]|2を算出する。次に、UEは、(|P(1) f1[m]|2+|P(3) f1[m]|2+|P(4) f2[m]|2)が最大となるNSSS系列m^を算出する。すなわち、UEは、セルIDを検出(推定)する。 Next, when the UE estimates that the NSSS is multiplexed in the first radio frame length period 401, the correlation power of the NSSS for the third radio frame length period 403A in the same carrier frequency f 1 | P (3) f1 [m ] | 2 is calculated. Next, the UE switches to the carrier frequency f 2 and calculates the correlation power | P (4) f 2 [m] | 2 of the NSSS for the period 404 of the fourth radio frame length. Next, the UE obtains an NSSS sequence m for which (| P (1) f1 [m] | 2 + | P (3) f1 [m] | 2 + | P (4) f2 [m] | 2 ) is maximum. Calculate ^ . That is, the UE detects (estimates) the cell ID.
 一方、UEは、2つ目の無線フレーム長の期間402にNSSSが多重されていると推定した場合、キャリア周波数をf2に切り替えて、3つ目の無線フレーム長の期間403BについてNSSSの相関電力|P(3) f2[m]|2を算出する。そして、UEは、(|P(2) f2[m]|2+|P(3) f2[m]|2)が最大となるNSSS系列m^を算出する。すなわち、UEは、セルIDを検出(推定)する。 Meanwhile, UE has two if eye NSSS the radio frame length periods of 402 was estimated to be multiplexed by switching the carrier frequency f 2, the correlation of the NSSS for the third period of the radio frame length 403B power | P (3) f2 [m ] | 2 is calculated. Then, the UE calculates an NSSS sequence m ^ that maximizes (| P (2) f 2 [m] | 2 + | P (3) f 2 [m] | 2 ). That is, the UE detects (estimates) the cell ID.
 前述のように、NB-IoTの無線インタフェースでは、NSSS系列は、20ms毎に系列を巡回シフトし、4種類の巡回シフト量で、80ms期間の同期をとる。このように、無線フレーム(無線フレーム番号)が、1無線フレーム分シフトして、2つのキャリア(2RB)から送信される場合、UEは、NSSS系列の相関値を、次の2通りについて算出する。すなわち、キャリア周波数f1のNSSS系列の巡回シフト量に対するキャリア周波数f2のNSSSの巡回シフト量が、同じ場合と、1つ先の巡回シフト量の場合とについて、相関値を算出する。そして、UEは、それら2つの相関値のそれぞれについて相関電力を算出し、相関電力の大きい方の無線フレームに、NSSS系列が多重されていると推定する。 As described above, in the NB-IoT wireless interface, the NSSS sequence cyclically shifts the sequence every 20 ms, and synchronizes for 80 ms with four types of cyclic shift amounts. Thus, when the radio frame (radio frame number) is shifted by one radio frame and transmitted from two carriers (2 RBs), the UE calculates the correlation value of the NSSS sequence for the following two ways: . That is, the correlation value is calculated for the case where the cyclic shift amount of the NSSS of the carrier frequency f 2 is the same as the cyclic shift amount of the carrier frequency f 2 with respect to the cyclic shift amount of the NSSS sequence of the carrier frequency f 1 . Then, the UE calculates the correlation power for each of the two correlation values, and estimates that the NSSS sequence is multiplexed in the radio frame with the larger correlation power.
 なお、無線基地局10が、図9に示すように、1無線フレーム長分の時間シフトを行わず、UE側で、NPSSに係るサーチ期間を、1無線フレーム長分、時間シフトさせることにより、当該変形例3に係る処理を実現してもよい。 In addition, as shown in FIG. 9, the radio base station 10 does not perform the time shift for one radio frame length, and shifts the search period related to the NPSS by the one radio frame length at the UE side. The process according to the third modification may be realized.
 変形例3に係る処理によれば、周波数タイバーシチ効果により、NSSSの検出成功率率を高めることができる。 According to the process according to the third modification, it is possible to increase the detection success rate of NSSS by the frequency diversity effect.
<変形例4>
 次に、図13を参照しながら、無線基地局10が、NPSSおよびNSSSを2つのキャリア(2つのRB)に多重し、かつ、キャリア周波数f1における無線フレーム(無線フレーム番号)と、キャリア周波数f2における無線フレーム(無線フレーム番号)とを、1無線フレーム分、シフトさせて送信する場合の例について説明する。すなわち、図13は、図11と図12との組み合わせに相当する。
<Modification 4>
Next, referring to FIG. 13, the radio base station 10 multiplexes the NPSS and the NSSS onto two carriers (two RBs), and a radio frame (radio frame number) at the carrier frequency f 1 and a carrier frequency a radio frame (radio frame number) in f 2, 1 radio frame, for example in the case of transmitting by shifting will be described. That is, FIG. 13 corresponds to the combination of FIG. 11 and FIG.
 この場合、基地局は、図11の場合と同様に、NPSSに対して、{w1、w2}={1,1}および{w1,w2}={1,-1}のプリコーディングベクトルを、交互に乗算し、NSSSに対しても、{w1、w2}={1,1}および{w1,w2}={1,-1}のプリコーディングベクトルを、交互に乗算する。 In this case, as in the case of FIG. 11, the base station transmits {w 1 , w 2 } = {1, 1} and {w 1 , w 2 } = {1, −1} to the NPSS. The coding vectors are alternately multiplied, and for NSSS also alternating precoding vectors of {w 1 , w 2 } = {1, 1} and {w 1 , w 2 } = {1, −1} Multiply by
 図13に場合におけるUEのNPSSの検出処理については、図11の場合と同様であるため、説明を省略する。次に、UEにおけるNSSSの検出処理について説明する。 The detection process of the NPSS of the UE in the case of FIG. 13 is the same as that of the case of FIG. Next, detection processing of NSSS in the UE will be described.
 UEは、キャリア周波数f1について、前半期間501、503のNSSSの相関値P(1) f1[m]を加算してP ̄(1) f1[m]を算出する。また、UEは、後半期間502のNSSSの相関値P(2) f1[m]からP ̄(2) f1[m]を算出する。 The UE adds the correlation values P (1) f1 [m] of the NSSS in the first half periods 501 and 503 for the carrier frequency f 1 to calculate P P (1) f1 [m]. Further, UE calculates the P ¯ (2) f1 [m ] from the second half of the correlation value P (2) of the NSSS of the period 502 f1 [m].
 次に、UEは、キャリア周波数f2について、前半期間504,506のNSSSの相関値P(1) f2[m]を加算してP ̄(1) f2[m]を算出する、また、UEは、後半期間505のNSSSの相関値P(2) f2[m]からP ̄(2) f2[m]を算出する。 Next, the UE adds the correlation value P (1) f2 [m] of the NSSS in the first half period 504 and 506 with respect to the carrier frequency f 2 to calculate P ((1) f2 [m]. Calculates the correlation value P (2) f2 [m] of the NSSS in the second half period 505 to P (2) f2 [m].
 次に、UEは、キャリア周波数f1およびf2の前半期間501,503,504,506の合成相関電力(|P ̄(1) f1[m]|2+|P ̄(1) f2[m]|2)と、キャリア周波数f1およびf2の後半期間502,505の合成相関電力(|P ̄(2) f1[m]|2+|P ̄(2) f2[m]|2)とを算出する。 Next, the UE determines the combined correlation power of the first half periods 501, 503, 504, and 506 of the carrier frequencies f 1 and f 2 (| P ((1) f 1 [m] | 2 + | P 1 (1) f 2 [m 2 ) and the second half period 502, 505 of the carrier frequency f 1 and f 2 combined correlation power (| P ((2) f 1 [m] | 2 + | P ((2) f 2 [m] | 2 ) And calculate.
 次に、UEは、前半期間の合成相関電力と後半期間の合成相関電力とを比較し、前半期間と後半期間のうち、より大きな方に、NSSSが多重されていると推定する。そして、UEは、より大きな方の合成相関電力が最大の相関電力となるNSSS系列m^を算出する。すなわち、UEは、セルIDを検出する。 Next, the UE compares the combined correlation power in the first half period with the combined correlation power in the second half period, and estimates that the NSSS is multiplexed in the larger one of the first half period and the second half period. Then, the UE calculates an NSSS sequence m ^ in which the larger combined correlation power is the largest correlation power. That is, the UE detects the cell ID.
 なお、無線基地局10が、図11に示すように、1無線フレーム長分の時間シフトを行わず、UE側で、NPSSに係るサーチ期間を、1無線フレーム長分、時間シフトさせることにより、当該変形例4に係る処理を実現してもよい。 In addition, as shown in FIG. 11, the radio base station 10 does not perform time shift by one radio frame length, and shifts the search period related to the NPSS by one radio frame length at the UE side. The process according to the fourth modification may be realized.
 変形例4に係る処理によれば、PVS送信ダイバーシチのみを用いる場合と比較して、周波数ダイバーシチ効果が得られるため、NPSSおよびNSSS系列の検出成功率が向上する。 According to the process according to the fourth modification, the frequency diversity effect is obtained as compared with the case where only PVS transmission diversity is used, so that the detection success rate of the NPSS and NSSS sequences is improved.
<セルID検出処理の具体例>
 次に、図14を参照しながら、UE20におけるセルIDの検出処理の具体例について説明する。なお、図14には示していないが、UE20は、図5および図6に示す無線基地局10における処理とは逆の処理を行う機能ブロックを有してよい。すなわち、UEは、図14に示す処理を行ってNPSS(セルID)を検出した後、CPの除去、FFT、デマッピング、ZC系列の抽出等の処理を行ってよい。
<Specific Example of Cell ID Detection Process>
Next, with reference to FIG. 14, a specific example of the cell ID detection process in the UE 20 will be described. Although not shown in FIG. 14, the UE 20 may have a functional block that performs processing reverse to the processing in the radio base station 10 shown in FIGS. 5 and 6. That is, after the UE performs the process shown in FIG. 14 to detect the NPSS (cell ID), the UE may perform processes such as CP removal, FFT, demapping, ZC sequence extraction and the like.
 LTEにおけるPSSの相関検出では、PSSを含む受信信号と、時間領域のPSS系列レプリカとの相互相関を計算している。 In the correlation detection of PSS in LTE, the cross correlation between the received signal including PSS and the PSS sequence replica in the time domain is calculated.
 しかし、NB-IoTでは、UE20が、周波数誤差の比較的大きな基準発振器を備えることが想定される。基準発振器の周波数誤差が大きい場合、周波数オフセットが大きくなる。例えば、NB-IoTのシミュレーション条件では、20ppmの周波数オフセットが仮定されている。 However, in NB-IoT, it is assumed that UE 20 has a relatively large reference error of frequency error. If the frequency error of the reference oscillator is large, the frequency offset will be large. For example, under NB-IoT simulation conditions, a frequency offset of 20 ppm is assumed.
 NPSSおよびNSSSの多重間隔は、10ms以上である。よって、周波数オフセット、すなわち無線基地局10とUE20との間の基準発振器の周波数差に起因して、NPSSの受信タイミングから推定されるNSSSの受信タイミングが、本来の正しい受信タイミングからずれる可能性がある。その結果、正しいNSSS系列の相関値が小さくなってしまい、NSSS系列の検出成功率が大きく低下する可能性がある。 The multiplexing interval of NPSS and NSSS is 10 ms or more. Therefore, there is a possibility that the NSSS reception timing estimated from the NPSS reception timing may deviate from the original correct reception timing due to the frequency offset, that is, the frequency difference of the reference oscillator between the radio base station 10 and the UE 20. is there. As a result, the correlation value of the correct NSSS sequence may be reduced, and the detection success rate of the NSSS sequence may be greatly reduced.
 そこで、NB-IoTは、サブフレーム内の11OFDMシンボルに多重されているNPSSの系列間の自己相関を検出する方法を用いる。 Therefore, NB-IoT uses a method of detecting autocorrelation between sequences of NPSSs multiplexed into 11 OFDM symbols in a subframe.
 なお、以下では、説明をわかりやすくするため、UE20が受信処理においてオーバーサンプリングを行わず、UE20におけるサンプリング周波数がZC系列のチップレートに等しく設定されている場合について説明する。ただし、本実施の形態は、この構成に限定されるものではなく、これ以外の構成にも適用可能である。 In the following, in order to make the description easy to understand, the case where the UE 20 does not perform oversampling in the reception process and the sampling frequency in the UE 20 is set equal to the chip rate of the ZC sequence will be described. However, the present embodiment is not limited to this configuration, and can be applied to other configurations.
<NPSS受信タイミングおよび無線フレームタイミングの検出>
 次に、NPSS受信タイミングおよび無線フレームタイミングの検出方法について説明する。
<Detection of NPSS Reception Timing and Radio Frame Timing>
Next, the detection method of the NPSS reception timing and the radio frame timing will be described.
 UE20は、NPSSの自己相関が最大となるタイミングから、FFTブロックタイミング、NPSSの受信タイミング、サブフレームタイミング、および、無線フレームタイミングを検出できる。 The UE 20 can detect the FFT block timing, the reception timing of the NPSS, the subframe timing, and the radio frame timing from the timing at which the autocorrelation of the NPSS is maximum.
 NPSSは、11FFTブロックに多重されている。よって、UE20は、ベクトルγ(τ)を、次の式5に示すように、サンプリング時間τを開始タイミングとする11FFTブロック区間の受信信号のサンプル値信号とする。
Figure JPOXMLDOC01-appb-M000006
The NPSS is multiplexed into 11 FFT blocks. Therefore, the UE 20 sets the vector γ (τ) as a sample value signal of the received signal of 11 FFT blocks with the sampling time τ as the start timing as shown in the following Equation 5.
Figure JPOXMLDOC01-appb-M000006
 式5において、R(l=1,2,…,11)は、同一のZC系列で拡散されたNPSSのFFTブロック長の受信信号を表す。 In Equation 5, R 1 (1 = 1, 2,..., 11) represents a received signal of the FFT block length of NPSS spread with the same ZC sequence.
 UE20は、次の式6に示すように、k FFTブロック間隔(1≦k≦11)遅延した受信信号の自己相関を計算する。
Figure JPOXMLDOC01-appb-M000007
The UE 20 calculates the autocorrelation of the received signal delayed by k FFT block intervals (1 ≦ k ≦ 11) as shown in the following Equation 6.
Figure JPOXMLDOC01-appb-M000007
 式6において、s(l)は、NPSSのl番目のFFTブロックにおける変調成分を表し、上付きの「H」は、エルミート転置を表す。 In Equation 6, s (l) represents the modulation component in the l-th FFT block of NPSS, and the superscript "H" represents Hermitian transposition.
 例えば、k=1の場合、図15に示すように、1FTTブロック間隔遅延した受信信号の自己相関を示す。NPSSの正しい受信タイミングをτ0とした場合、周波数オフセットに起因する1FFTブロック区間の位相回転量をθで表すと、E[Ak0)]∝ejkθとなる。 For example, when k = 1, as shown in FIG. 15, the autocorrelation of the received signal delayed by 1FTT block interval is shown. Assuming that the correct reception timing of the NPSS is τ 0 , the phase rotation amount in one FFT block section due to the frequency offset is represented by θ, and E [A k0 )] ∝e jkθ .
 周波数オフセットの影響を小さくするために、UE20は、次の式7で示すコスト関数を用いる。
Figure JPOXMLDOC01-appb-M000008
In order to reduce the influence of the frequency offset, the UE 20 uses a cost function represented by the following Equation 7.
Figure JPOXMLDOC01-appb-M000008
 Ak(τ)は、kの値が大きくなるほど、周波数オフセットが大きくなるため、相関ピーク位置の誤差が大きくなる。したがって、式7では、周波数オフセットの影響を小さくするために、各相関値に重み係数を乗算して合成している。 As the value of A k (τ) becomes larger, the frequency offset becomes larger, so the error of the correlation peak position becomes larger. Therefore, in Equation 7, in order to reduce the influence of the frequency offset, each correlation value is multiplied by a weighting factor and synthesized.
 重み係数は、NPSSの検出成功率が最大になるように設定されてよい。例えば、非特許文献3では、重み係数を、w1=0.76、w2=0.54、w3=0.34に設定している。 The weighting factor may be set to maximize the detection success rate of the NPSS. For example, in Non-Patent Document 3, the weighting factors are set to w 1 = 0.76, w 2 = 0.54 and w 3 = 0.34.
 UE20の移動速度が低速または静止の場合、最大ドップラ周波数は低く、時間領域のチャネル変動は非常に小さくなる。したがって、次の式8に示すように、10ms間隔で多重されている複数のNPSSのコスト関数を同位相に調整して加算することにより、雑音の影響を低減できる。
Figure JPOXMLDOC01-appb-M000009
When the moving speed of the UE 20 is low or stationary, the maximum Doppler frequency is low, and channel fluctuation in the time domain is very small. Therefore, as shown in the following equation 8, the influence of noise can be reduced by adjusting the cost functions of a plurality of NPSSs multiplexed at intervals of 10 ms to the same phase and adding them.
Figure JPOXMLDOC01-appb-M000009
<周波数オフセット推定>
 次に、周波数オフセットの推定方法について説明する。
<Frequency offset estimation>
Next, a method of estimating the frequency offset will be described.
 コスト関数ρm(τ)は、CPを含む1FFTブロック間隔の周波数オフセットに起因する位相回転量を表している。よって、周波数オフセットΔf^は、次の式9で表される。
Figure JPOXMLDOC01-appb-M000010
The cost function m m (τ) represents the amount of phase rotation due to the frequency offset of one FFT block interval including CP. Therefore, the frequency offset Δf ^ is expressed by the following equation 9.
Figure JPOXMLDOC01-appb-M000010
 式9において、-π<arg[ρ(τ^)]<πである。また、fsはサンプリング周波数、fSCはサブキャリア間隔、NFFTは有効シンボル区間(FFTブロック区間)のサンプル数、NCPはCP区間のサンプル数を表す。fs=7.67MHz、fSC=15kHz、NFFT=512、NCP=36の場合、周波数オフセットΔf^は、次の式10で算出される。
Figure JPOXMLDOC01-appb-M000011
In Expression 9, −π <arg [ρ (τ ^ )] <π. Further, f s represents a sampling frequency, f SC represents a subcarrier interval, N FFT represents the number of samples in an effective symbol section (FFT block section), and N CP represents a sample number in a CP section. In the case of f s = 7.67 MHz, f SC = 15 kHz, N FFT = 512, and N CP = 36, the frequency offset Δf ^ is calculated by the following equation 10.
Figure JPOXMLDOC01-appb-M000011
 式9、式10は、-π<arg[ρ(τ^)]<πの範囲の位相検出が可能である。しかし、周波数オフセットが高くなると、arg[ρ(τ^)]が、2πの範囲を超えてしまう。そこで、次式に示すように、周波数オフセットの検出範囲を拡大する。
Figure JPOXMLDOC01-appb-M000012
Equations 9 and 10 are capable of phase detection in the range of −π <arg [τ (τ ^ )] <π. However, when the frequency offset becomes high, arg [ρ (τ ^ )] exceeds the range of 2π. Therefore, as shown in the following equation, the detection range of the frequency offset is expanded.
Figure JPOXMLDOC01-appb-M000012
 式11において、arg[ρ(τ^)]およびGの値を、最尤検出する。Gの値は、周波数オフセット値の大きさに応じて、例えば、G∈{0,±1,±2}の値とする。 In Equation 11, the values of arg [ρ (τ ^ )] and G are detected most likely. The value of G is, for example, a value of G∈ {0, ± 1, ± 2} according to the magnitude of the frequency offset value.
<NSSS系列推定>
 次に、NSSS系列の推定方法、すなわち、セルIDの推定方法について説明する。
<NSSS Sequence Estimation>
Next, a method of estimating an NSSS sequence, that is, a method of estimating a cell ID will be described.
 式11で推定した周波数オフセット値を受信信号に補償した後、NPSSを用いて推定したFFTブロックタイミングおよびサブフレームタイミングを用いて、NSSSを含む受信信号を、FFTによって周波数領域信号に変換する。 After the frequency offset value estimated by Equation 11 is compensated for the received signal, the received signal including NSSS is converted to a frequency domain signal by FFT using FFT block timing and subframe timing estimated using NPSS.
 NSSS系列の推定法には、例えば、以下の2つがある。(A1)NPSSを用いて推定した周波数応答を用いてNSSSの周波数領域の各サブキャリア位置の相関値を同相加算する方法(A2)NSSSの送信帯域内のフラットフェージングを仮定して、周波数領域の相関値を同相加算する方法 There are the following two methods for estimating an NSSS sequence, for example. (A1) Method of in-phase addition of correlation value of each subcarrier position in the frequency domain of NSSS using frequency response estimated using NPSS (A2) Assuming flat fading in transmission band of NSSS, In-phase addition of correlation values
 まず、(A1)の方法について説明する。 First, the method (A1) will be described.
 UE20は、サブキャリアインデックスをn(n=1,2,…,11)で表し、NPSSの周波数領域の受信信号から、各サブキャリア位置のチャネル応答を求める。なお、UE20は、NSSSと同一の無線フレームに多重されているNPSSのみを、NSSSのチャネル応答の推定に用いてよい。無線フレームvのサブキャリア#nにおけるチャネル応答の推定値は、次の式12のように算出できる。
Figure JPOXMLDOC01-appb-M000013
The UE 20 represents a subcarrier index by n (n = 1, 2,..., 11), and obtains a channel response of each subcarrier position from a received signal in the frequency domain of the NPSS. In addition, UE20 may use only NPSS multiplexed to the same radio | wireless frame as NSSS for estimation of the channel response of NSSS. The estimated value of the channel response in subcarrier #n of the radio frame v can be calculated as the following equation 12.
Figure JPOXMLDOC01-appb-M000013
 UE20は、NSSS系列の相関検出を開始する無線フレームに、NSSSが多重されているか否か不明である。したがって、UE20は、連続する無線フレームのNSSSの多重タイミングで、NSSS系列の相関検出処理を行い、相関値の大きな無線フレームにNSSSが多重されていると推定する。 It is unknown whether the UE 20 multiplexes the NSSS in the radio frame that starts the correlation detection of the NSSS sequence. Therefore, the UE 20 performs the correlation detection process of the NSSS sequence at the NSSS multiplex timing of the continuous radio frame, and estimates that the NSSS is multiplexed in the radio frame with the large correlation value.
 また、インデックスμを、20ms期間の無線フレームを示すインデックスとして定義する(μ=v mod 2)。また、126個のZC系列のルートインデックスと4個のスクランブル系列で表される504個のセルIDのインデックスをκで表す(0≦κ<504)。また、スクランブル系列の巡回シフトパターンのインデックスをcで表す(0≦c<4)。そして、次の式13に示す規範で、κ、cおよびμを検出する。
Figure JPOXMLDOC01-appb-M000014
Further, an index μ is defined as an index indicating a radio frame of 20 ms period (μ = v mod 2). Also, the index of the 504 cell IDs represented by the root index of 126 ZC sequences and 4 scrambled sequences is denoted by κ (0 ≦ κ <504). Also, the index of the cyclic shift pattern of the scrambled sequence is represented by c (0 ≦ c <4). Then, κ, c and μ are detected according to the following equation 13.
Figure JPOXMLDOC01-appb-M000014
 式13において、dl NSSS(κ,(c+λ/2)mod4(n)は、は、NSSS系列レプリカを表す。 In Equation 13, d l NSSS (κ, (c + λ / 2) mod 4 (n) represents an NSSS sequence replica.
 次に、(A2)の方法について説明する。(A2)の方法は、NB-IoTの送信帯域が狭帯域であるため、フラットフェージングを仮定して、周波数領域で各サブキャリアのNSSS系列の相関値を同相加算する方法である。 Next, the method (A2) will be described. The method (A2) is a method in which the correlation value of the NSSS sequence of each subcarrier in the frequency domain is in-phase added assuming flat fading since the transmission band of NB-IoT is a narrow band.
 次の式14に示すように、周波数領域のチャネル応答が一定であることを仮定して、相関値の同相成分および直交成分を、それぞれ独立に平均化する。
Figure JPOXMLDOC01-appb-M000015
As shown in the following Equation 14, assuming that the channel response in the frequency domain is constant, the in-phase component and the quadrature component of the correlation value are averaged independently.
Figure JPOXMLDOC01-appb-M000015
<実施の形態の効果>
 本実施の形態では、無線基地局10が、共通のNPSSおよびNSSSを含む第1および第2の無線信号を、第1のキャリア周波数および第2のキャリア周波数において、フレーム同期させて送信する。UE20は、第1および/または第2の無線信号からNPSSを検出し、第1のキャリア周波数と第2のキャリア周波数とを切り換えて、それぞれから受信した第1の無線信号と第2の無線信号との相関関係に基づいて、NSSSを検出する。
<Effect of the embodiment>
In the present embodiment, the radio base station 10 transmits the first and second radio signals including the common NPSS and NSSS in frame synchronization on the first carrier frequency and the second carrier frequency. The UE 20 detects the NPSS from the first and / or second radio signals, switches between the first carrier frequency and the second carrier frequency, and receives the first radio signal and the second radio signal received from each of them. Detect NSSS based on correlation with
 当該構成によれば、周波数タイバーシチ効果により、UE20におけるNSSSの検出成功率を高めることができる。 According to the said structure, the detection success rate of NSSS in UE20 can be raised by the frequency diversity effect.
 なお、上述における「第1」、「第2」、「第3」および「第4」等の表現は、説明をわかりやすくするために用いており、これらが必ずしも関連していることを意味しない。 Note that the expressions "first", "second", "third" and "fourth" in the above description are used to make the explanation easy to understand, and do not necessarily mean that they are related .
 (ハードウェア構成)
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
(Hardware configuration)
Note that the block diagram used in the description of the above embodiment shows blocks in units of functions. These functional blocks (components) are realized by any combination of hardware and / or software. Moreover, the implementation means of each functional block is not particularly limited. That is, each functional block may be realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
 例えば、本発明の一実施の形態における無線基地局10、ユーザ端末20などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、本発明の一実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the wireless base station 10, the user terminal 20, and the like in one embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention. FIG. 16 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention. The above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "device" can be read as a circuit, a device, a unit, or the like. The hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、一以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、一以上のチップで実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be a plurality of processors. Also, the processing may be performed by one processor, or the processing may be performed by one or more processors simultaneously, sequentially, or in other manners. The processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、又は、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the radio base station 10 and the user terminal 20 performs a calculation by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and performs communication by the communication device 1004 or This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のZC系列の生成(S11,S21)、サブキャリアマッピング(S12,S22)、IFFT(S13,S23)、CP挿入(S14,S24)、2値の変調系列(コードカバー)の乗算(S15)、2値のスクランブル系列の乗算(S25)、NPSSシンボル(系列)の生成(S16)、NSSSシンボル(系列)の生成(S26)などは、プロセッサ1001で実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-mentioned generation of ZC sequence (S11, S21), subcarrier mapping (S12, S22), IFFT (S13, S23), CP insertion (S14, S24), multiplication of binary modulation sequence (code cover) (code cover) S15), multiplication of a binary scrambling sequence (S25), generation of an NPSS symbol (sequence) (S16), generation of an NSSS symbol (sequence) (S26), etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、無線基地局10の制御部は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Also, the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these. As a program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit of the radio base station 10 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks. The various processes described above have been described to be executed by one processor 1001, but may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done. The memory 1002 may be called a register, a cache, a main memory (main storage device) or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer readable recording medium, and for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used. The storage 1003 may be called an auxiliary storage device. The above-mentioned storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server or any other suitable medium.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の無線基地局10及びユーザ端末20が備える送信部、アンテナ、受信部などは、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like. For example, the transmission unit, the antenna, the reception unit, and the like included in the above-described wireless base station 10 and user terminal 20 may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 Also, the radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
 (情報の通知、シグナリング)
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
(Information notification, signaling)
In addition, notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods. For example, notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Also, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
 (適応システム)
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
(Adaptive system)
Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band), The present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
 (処理手順等)
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
(Processing procedure etc.)
As long as there is no contradiction, the processing procedure, sequence, flow chart, etc. of each aspect / embodiment described in this specification may be reversed. For example, for the methods described herein, elements of the various steps are presented in an exemplary order and are not limited to the particular order presented.
 (基地局の操作)
 本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
(Operation of base station)
The specific operation supposed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases. In a network of one or more network nodes with a base station, the various operations performed for communication with the terminals may be the base station and / or other network nodes other than the base station (eg, It is obvious that this may be performed by, but not limited to, MME (Mobility Management Entity) or S-GW (Serving Gateway). Although the case where one other network node other than a base station was illustrated above was illustrated, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 (入出力の方向)
 情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。
(Direction of input / output)
Information, signals, etc. may be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input and output may be performed via a plurality of network nodes.
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。
(Handling of input / output information etc.)
The input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information to be input or output may be overwritten, updated or added. The output information etc. may be deleted. The input information or the like may be transmitted to another device.
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
(Judgment method)
The determination may be performed by a value (0 or 1) represented by one bit, may be performed by a boolean value (Boolean: true or false), or may be compared with a numerical value (for example, a predetermined value). Comparison with the value).
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
(software)
Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Also, software, instructions, etc. may be sent and received via a transmission medium. For example, software may use a wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission medium.
 (情報、信号)
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
(Information, signal)
The information, signals, etc. described herein may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips etc that may be mentioned throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。 The terms described in the present specification and / or the terms necessary for the understanding of the present specification may be replaced with terms having the same or similar meanings. For example, the channels and / or symbols may be signals. Also, the signal may be a message. Also, the component carrier (CC) may be called a carrier frequency, a cell or the like.
 (「システム」、「ネットワーク」)
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
("System", "Network")
The terms "system" and "network" as used herein are used interchangeably.
 (パラメータ、チャネルの名称)
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
(Name of parameter, channel)
In addition, the information, parameters, and the like described in the present specification may be represented by absolute values, may be represented by relative values from predetermined values, or may be represented by corresponding other information. . For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。 The names used for the parameters described above are in no way limiting. In addition, the formulas etc. that use these parameters may differ from those explicitly disclosed herein. Since various channels (eg PUCCH, PDCCH etc.) and information elements (eg TPC etc.) can be identified by any suitable names, the various names assigned to these various channels and information elements can be Is not limited.
 (基地局)
 基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
(base station)
A base station (radio base station) can accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station RRH for indoor use: Remote Communication service can also be provided by Radio Head. The terms "cell" or "sector" refer to a part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage. Moreover, the terms "base station", "eNB", "cell" and "sector" may be used interchangeably herein. A base station may be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), femtocell, small cell, and the like.
 (端末)
 ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。
(Terminal)
The user terminal may be a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote communication device, a mobile subscriber station, an access terminal, a mobile terminal by a person skilled in the art It may also be called a terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, a UE (User Equipment), or some other suitable term.
 (用語の意味、解釈)
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
(Meaning and interpretation of terms)
The terms "determining", "determining" as used herein may encompass a wide variety of operations. "Judgment", "decision" are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc. Also, "determination" and "determination" are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”. Also, "judgement" and "decision" are to be considered as "judgement" and "decision" that they have resolved (resolving), selecting (selecting), choosing (choosing), establishing (establishing), etc. May be included. That is, "judgment""decision" may include considering that some action is "judged""decision".
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled" or any variants thereof mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled”. The coupling or connection between elements may be physical, logical or a combination thereof. As used herein, the two elements are by using one or more wires, cables and / or printed electrical connections, and radio frequency as some non-limiting and non-exclusive examples. It can be considered "connected" or "coupled" to one another by using electromagnetic energy such as electromagnetic energy having wavelengths in the region, microwave region and light (both visible and invisible) regions.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。また、補正用RSは、TRS(Tracking RS)、PC-RS(Phase Compensation RS)、PTRS(Phase Tracking RS)、Additional RSと呼ばれてもよい。また、復調用RS及び補正用RSは、それぞれに対応する別の呼び方であってもよい。また、復調用RS及び補正用RSは同じ名称(例えば復調RS)で規定されてもよい。 The reference signal may be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) according to the applied standard. Further, the correction RS may be called TRS (Tracking RS), PC-RS (Phase Compensation RS), PTRS (Phase Tracking RS), or Additional RS. Also, the demodulation RS and the correction RS may be different names corresponding to each other. Also, the demodulation RS and the correction RS may be defined by the same name (for example, the demodulation RS).
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。 The “parts” in the configuration of each of the above-described devices may be replaced with “means”, “circuit”, “device” or the like.
 「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 As long as “including”, “comprising”, and variations thereof are used in the present specification or claims, these terms as well as the term “comprising” are inclusive. Intended to be Further, it is intended that the term "or" as used in the present specification or in the claims is not an exclusive OR.
 無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレーム、タイムユニット等と呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボル等)で構成されてもよい。 A radio frame may be comprised of one or more frames in the time domain. One or more frames in the time domain may be referred to as subframes, time units, and so on. A subframe may be further comprised of one or more slots in the time domain. The slot may be further configured with one or more symbols (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier-frequency division multiple access (SC-FDMA) symbols, etc.) in the time domain.
 無線フレーム、サブフレーム、スロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。 A radio frame, a subframe, a slot, and a symbol all represent time units in transmitting a signal. A radio frame, a subframe, a slot, and a symbol may be another name corresponding to each.
 例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅、送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよい。 For example, in the LTE system, the base station performs scheduling to assign radio resources (frequency bandwidth usable in each mobile station, transmission power, etc.) to each mobile station. The minimum time unit of scheduling may be called a TTI (Transmission Time Interval).
 例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot may be called a TTI.
 リソースユニットは、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースユニットの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースユニットで構成されてもよい。また、リソースユニットは、リソースブロック(RB:Resource Block)、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア、スケジューリングユニット、周波数ユニット、サブバンドと呼ばれてもよい。また、リソースユニットは、1つ又は複数のREで構成されてもよい。例えば、1REは、リソース割当単位となるリソースユニットより小さい単位のリソース(例えば、最小のリソース単位)であればよく、REという呼称に限定されない。 A resource unit is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers in frequency domain. Also, the time domain of a resource unit may include one or more symbols, and may be one slot, one subframe, or one TTI long. One TTI and one subframe may be configured of one or more resource units, respectively. Also, resource units may be referred to as resource blocks (RBs), physical resource blocks (PRBs: physical RBs), PRB pairs, RB pairs, scheduling units, frequency units, and subbands. Also, a resource unit may be configured of one or more REs. For example, 1 RE may be a resource of a unit smaller than the resource unit serving as a resource allocation unit (for example, the smallest resource unit), and is not limited to the name of RE.
 上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。 The above-described radio frame structure is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of symbols and resource blocks included in the slots, and the sub The number of carriers can vary.
 本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 Throughout the disclosure, when articles are added by translation, such as, for example, a, an, and the in English, these articles are not clearly indicated by the context: It shall contain several things.
 (態様のバリエーション等)
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
(Variation of aspect etc.)
Each aspect / embodiment described in this specification may be used alone, may be used in combination, and may be switched and used along with execution. In addition, notification of predetermined information (for example, notification of "it is X") is not limited to what is explicitly performed, but is performed by implicit (for example, not notifying of the predetermined information) It is also good.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described above in detail, it is apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be embodied as modifications and alterations without departing from the spirit and scope of the present invention defined by the description of the claims. Accordingly, the description in the present specification is for the purpose of illustration and does not have any limiting meaning on the present invention.
 本開示の一態様は、無線通信システムに有用である。 One aspect of the present disclosure is useful for a wireless communication system.
 10 無線基地局
 20 ユーザ端末
10 radio base station 20 user terminal

Claims (6)

  1.  第1の無線信号と、第2の無線信号と、を異なる周波数において同期した送信タイミングに従って送信する送信部と、
     前記第1の無線信号と前記第2の無線信号とに共通の同期信号を、前記第1の無線信号及び前記第2の無線信号のそれぞれに設定する設定部と、
     を備える無線基地局。
    A transmitter configured to transmit the first wireless signal and the second wireless signal according to transmission timing synchronized at different frequencies;
    A setting unit configured to set a synchronization signal common to the first wireless signal and the second wireless signal to each of the first wireless signal and the second wireless signal;
    A wireless base station comprising
  2.  前記送信部は、第1の送信タイミングにおいて第1の周波数にて送信した前記第1の無線信号を、第2の送信タイミングにおいて第2の周波数にて送信する、
     請求項1に記載の無線基地局。
    The transmission unit transmits the first radio signal transmitted at a first frequency at a first transmission timing at a second frequency at a second transmission timing.
    The radio base station according to claim 1.
  3.  前記同期信号のそれぞれは、前記第1及び第2の無線信号の少なくとも一方の送信タイミングを検出するために用いられるプライマリ同期信号と、前記無線基地局が提供する無線エリアの識別情報を検出するために用いられるセカンダリ同期信号と、を含む、
     請求項1または2に記載の無線基地局。
    Each of the synchronization signals is for detecting a primary synchronization signal used to detect a transmission timing of at least one of the first and second radio signals and identification information of a wireless area provided by the wireless base station. And a secondary synchronization signal used for
    The radio base station according to claim 1 or 2.
  4.  前記プライマリ同期信号は、前記第1の周波数および前記第2の周波数を特定するための情報を含む、
     請求項3に記載の無線基地局。
    The primary synchronization signal includes information for identifying the first frequency and the second frequency,
    The radio base station according to claim 3.
  5.  前記設定部は、第3の送信タイミングにおいて送信される前記同期信号と、第4の送信タイミングにおいて送信される前記同期信号とに、互いに異なるプリコーディングを設定する、
     請求項1から4の何れか1項に記載の無線基地局。
    The setting unit sets different precodings for the synchronization signal transmitted at a third transmission timing and the synchronization signal transmitted at a fourth transmission timing.
    The radio base station according to any one of claims 1 to 4.
  6.  異なる周波数において互いに同期した送信タイミングに従って送信された第1の無線信号と第2の無線信号とを受信する受信部と、
     前記第1の無線信号及び前記第2の無線信号のそれぞれに共通に設定された同期信号を、前記周波数を切り換えて検出する検出部と、
     を備えるユーザ端末。
    A receiver configured to receive a first wireless signal and a second wireless signal transmitted according to transmission timings synchronized with each other at different frequencies;
    A detection unit that switches the frequency and detects a synchronization signal commonly set to each of the first wireless signal and the second wireless signal;
    A user terminal comprising
PCT/JP2018/000729 2018-01-12 2018-01-12 Radio base station and user equipment WO2019138561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000729 WO2019138561A1 (en) 2018-01-12 2018-01-12 Radio base station and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000729 WO2019138561A1 (en) 2018-01-12 2018-01-12 Radio base station and user equipment

Publications (1)

Publication Number Publication Date
WO2019138561A1 true WO2019138561A1 (en) 2019-07-18

Family

ID=67219490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000729 WO2019138561A1 (en) 2018-01-12 2018-01-12 Radio base station and user equipment

Country Status (1)

Country Link
WO (1) WO2019138561A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210321352A1 (en) * 2019-01-24 2021-10-14 Samsung Electronics Co., Ltd. Wireless communication apparatus including synchronization signal detector and cell searching method thereof
CN113810922A (en) * 2020-06-11 2021-12-17 华为技术有限公司 Communication method and device
CN114467336A (en) * 2019-10-03 2022-05-10 株式会社Ntt都科摩 Terminal and base station device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503313A (en) * 2006-09-11 2010-01-28 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Time-frequency hopping pattern detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503313A (en) * 2006-09-11 2010-01-28 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Time-frequency hopping pattern detection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASTRI ET AL.: "Efficient design of SS block", 3GPP TSG-RAN WG1#87 RL-1612289, 18 November 2016 (2016-11-18), XP051176238 *
NEC: "Discussion on PSS/SSS/PBCH in numerology multiplexing", 3GPP TSG RAN WG1 MEETING #86BIS R1- 1609153, 30 September 2016 (2016-09-30), XP051158456 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210321352A1 (en) * 2019-01-24 2021-10-14 Samsung Electronics Co., Ltd. Wireless communication apparatus including synchronization signal detector and cell searching method thereof
US11930468B2 (en) * 2019-01-24 2024-03-12 Samsung Electronics Co., Ltd. Wireless communication apparatus including synchronization signal detector and cell searching method thereof
CN114467336A (en) * 2019-10-03 2022-05-10 株式会社Ntt都科摩 Terminal and base station device
CN114467336B (en) * 2019-10-03 2024-05-17 株式会社Ntt都科摩 Terminal and base station device
CN113810922A (en) * 2020-06-11 2021-12-17 华为技术有限公司 Communication method and device
CN113810922B (en) * 2020-06-11 2023-07-11 华为技术有限公司 Communication method and device

Similar Documents

Publication Publication Date Title
US11831479B2 (en) Device and method of configurable synchronization signal and channel design
US20230107098A1 (en) Terminal and communication method
US20200295910A1 (en) Methods and devices for reference signal configuration
CN110945821B (en) Techniques for extended cell discovery
US10743351B2 (en) Method and wireless device for transmitting random-access preamble by means of single-tone method
CN108353349B (en) Discovery of reference signal configuration and scrambling in license-assisted access
US20170150427A1 (en) Device, Network, and Method of Cell Discovery
CN110999236B (en) Terminal and communication method of terminal
JP6419084B2 (en) Method for transmitting / receiving channel quality indication information in a wireless connection system and apparatus for supporting the same
CN110050452B (en) Base station device, terminal device, communication method, and integrated circuit
CN110603873A (en) Base station device, terminal device, communication method, and integrated circuit
CN110249684B (en) Terminal, system and wireless communication method
US9185571B2 (en) Employing reference signals in communications
US20180076980A1 (en) Terminal device, wireless transmission method, base station device, and channel estimation method
JPWO2009019892A1 (en) Terminal apparatus, base station apparatus, and frequency resource allocation method
JP7096156B2 (en) Terminals, wireless communication methods and systems
CN105580455B (en) Receiver and method for estimating large scale channel characteristics
US9900134B2 (en) Reference signal presence detection based license assisted access and reference signal sequence design
KR20150041103A (en) Method and system having reference signal design for new carrier types
JP7118011B2 (en) BASE STATION, SYNCHRONIZATION SIGNAL TRANSMISSION METHOD, AND WIRELESS COMMUNICATION SYSTEM
US11075709B2 (en) Variable spreading factor codes for non-orthogonal multiple access
WO2019138561A1 (en) Radio base station and user equipment
US20140211735A1 (en) Small cell base station and victim terminal device detection method
US20200052848A1 (en) Methods and apparatuses for reference signal transmission
US11683816B1 (en) Systems and methods for fast control messaging for multiple numerology access zones

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP