WO2019135289A1 - Information communication system and information communication method - Google Patents

Information communication system and information communication method Download PDF

Info

Publication number
WO2019135289A1
WO2019135289A1 PCT/JP2018/000135 JP2018000135W WO2019135289A1 WO 2019135289 A1 WO2019135289 A1 WO 2019135289A1 JP 2018000135 W JP2018000135 W JP 2018000135W WO 2019135289 A1 WO2019135289 A1 WO 2019135289A1
Authority
WO
WIPO (PCT)
Prior art keywords
information processing
processing apparatus
data
information
communication system
Prior art date
Application number
PCT/JP2018/000135
Other languages
French (fr)
Japanese (ja)
Inventor
翔 中ノ瀬
健一 宇佐美
Original Assignee
GITAI Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GITAI Japan株式会社 filed Critical GITAI Japan株式会社
Priority to PCT/JP2018/000135 priority Critical patent/WO2019135289A1/en
Publication of WO2019135289A1 publication Critical patent/WO2019135289A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/472End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content
    • H04N21/4728End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content for selecting a Region Of Interest [ROI], e.g. for requesting a higher resolution version of a selected region

Definitions

  • the present invention relates to an information communication system and an information communication method, and more particularly to data communication using an omnidirectional camera.
  • an omnidirectional camera cameras capable of capturing an image in the omnidirectional direction (that is, in the range of 360 degrees) (hereinafter referred to as an omnidirectional camera) have appeared and are mounted on various devices.
  • Patent Document 1 discloses a technique for raising the image quality and improving the visibility of an image.
  • an object of the present invention is to provide a technology for performing real-time information communication at high speed using an omnidirectional camera.
  • the inventor of the present invention has attempted to speed up communication by a three-step method. That is, the inventors have been able to transmit data for transmitting video data of the omnidirectional camera with low delay, data reduction technology for transmitting data of the video of the omnidirectional camera with low capacity, and We have invented a technology that restores and renders the video data of an astronomical camera as an all-astronomical image with low delay, and further realizes real-time information communication at high speed by combining these technologies alone or in combination.
  • the present invention is based on such findings.
  • a first information processing apparatus including an omnidirectional camera, and a second information processing apparatus communicably connected to the first information processing apparatus and including a head mounted display (HMD)
  • An information communication system including an apparatus;
  • the omnidirectional camera acquires video data of a target space and transmits the video data to the first information processing apparatus,
  • the first information processing apparatus converts the video data into binary data that can be restored in a predetermined video format at least every one frame, and transmits the binary data to the second information processing apparatus.
  • the second information processing apparatus converts the binary data into predetermined texture data and displays the texture data on the display unit.
  • An information communication system is obtained.
  • FIG. 7 is a diagram illustrating another process of the system of FIG. 1;
  • FIG. 7 is a diagram illustrating another process of the system of FIG. 1;
  • An information communication system and an information communication method have the following configuration.
  • An information communication system including: a first information processing apparatus including an omnidirectional camera; and a second information processing apparatus communicably connected to the first information processing apparatus and including a head mounted display (HMD).
  • the omnidirectional camera acquires video data of a target space and transmits the video data to the first information processing apparatus,
  • the first information processing apparatus converts the video data into binary data that can be restored in a predetermined video format at least every one frame, and transmits the binary data to the second information processing apparatus.
  • the second information processing apparatus converts the binary data into predetermined texture data and displays the texture data on the display unit.
  • Information communication system including: a first information processing apparatus including an omnidirectional camera; and a second information processing apparatus communicably connected to the first information processing apparatus and including a head mounted display (HMD).
  • HMD head mounted display
  • the display unit is a head mounted display (HMD), and displays visual field information in a virtual space using a pseudo sphere object and a virtual camera disposed at the center of the pseudo sphere object.
  • the second information processing apparatus configures the target space in the virtual space by arranging the texture data inside the pseudo sphere object.
  • Information communication system [Item 3] An information communication system according to item 2;
  • the second information processing apparatus acquires inclination information of the HMD, and transmits the acquired information to the second information processing apparatus.
  • the first information processing apparatus converts partial video data corresponding to the tilt information in the video data into partial binary data and transmits the partial binary data to the second information processing apparatus.
  • Information communication system is a head mounted display (HMD), and displays visual field information in a virtual space using a pseudo sphere object and a virtual camera disposed at the center of the pseudo sphere object.
  • the second information processing apparatus configures the target space in the virtual space by arranging the texture data inside the pseudo sphere object.
  • Information communication system [Item 3]
  • UDP User Datagram Protocol
  • Information communication using a first information processing apparatus including an omnidirectional camera and a second information processing apparatus communicably connected to the first information processing apparatus and including a head mounted display (HMD) Method The omnidirectional camera acquiring video data of a target space and transmitting the video data to the first information processing apparatus; The first information processing apparatus converts the video data into binary data that can be restored according to a predetermined video format at least every one frame, and transmits the binary data to the second information processing apparatus; The second information processing apparatus converts the binary data into predetermined texture data and displays the texture data on the display unit.
  • HMD head mounted display
  • An information communication system is a technology for synchronizing an image acquired by an omnidirectional camera with ultra-low delay and stable synchronization via a wireless Internet circuit (Wifi / Mobile network).
  • the information communication system can be mainly culture in the following three configurations. That is, data transfer technology for transmitting video data of the omnidirectional camera with low delay, data amount reduction technology for transmitting video data of the omnidirectional camera with low capacity, and It is a technology that restores and renders video data as an omnidirectional video with low delay.
  • FIG. 1 is a diagram showing the configuration of an information communication system according to an embodiment of the present invention. Note that this is an example, and other elements may be added.
  • the information communication system 1 can be divided into two components of a remote device for remote control by a user at a remote location and an operation device for user control.
  • the operation device and the remote device are connected via a network (described later).
  • the remote device includes an omnidirectional camera, a first information processing terminal (PC1), and a body.
  • the omnidirectional camera is an imaging device capable of taking 360-degree panoramic photographs of all directions in the vertical and horizontal directions, and may also be called an omnidirectional camera.
  • the body is a device capable of expanding a part of the user's body, and can be exemplified by, for example, a device such as a robot arm, but is not limited thereto.
  • the operation device includes a second information processing terminal (PC2) and a head mount display (HMD).
  • PC2 second information processing terminal
  • HMD head mount display
  • FIG. 2 is a block diagram showing the first information processing terminal 100.
  • the first information processing terminal 100 includes at least a processor 10, a memory 11, a storage 12, a transmission / reception unit 13, an input / output unit 14 and the like, which are electrically connected to one another through a bus 15. Ru.
  • the input / output unit is further communicably connected to the omnidirectional camera 130, the body control unit 132, and the body 134.
  • the first information processing terminal 100 is implemented in a remote device, it is preferable to employ a relatively small device.
  • the illustrated functional blocks may be omitted as appropriate.
  • the processor 10 is an arithmetic device that controls the overall operation of the first information processing apparatus 100, controls transmission and reception of data between elements, and performs information processing and the like necessary for executing an application.
  • the processor 10 is a CPU (Central Processing Unit), and executes a program or the like stored in the storage 12 and expanded in the memory 11 to perform each information processing.
  • CPU Central Processing Unit
  • the memory 11 includes a main storage constituted by a volatile storage device such as a dynamic random access memory (DRAM), and an auxiliary storage constituted by a nonvolatile storage device such as a flash memory or a hard disc drive (HDD). .
  • the memory 11 is used as a work area or the like of the processor 10, and stores a BIOS (Basic Input / Output System) executed when the computer terminal 120 is started, various setting information, and the like.
  • BIOS Basic Input / Output System
  • the storage 12 stores various programs such as application programs.
  • a database storing data used for each process may be constructed in the storage 22.
  • the transmission / reception unit 13 connects the computer terminal 120 to a network.
  • the transmission / reception unit 13 may include a short range communication interface such as Bluetooth (registered trademark) and BLE (Bluetooth Low Energy).
  • an information input device such as a keyboard or a mouse and an output device such as a display may be connected to the input / output unit 14.
  • the bus 15 is commonly connected to the above-described elements, and transmits, for example, an address signal, a data signal, and various control signals.
  • FIG. 3 is a block diagram showing the second information processing terminal 200.
  • the second information processing terminal 200 includes at least a processor 20, a memory 21, a storage 22, a transmitting / receiving unit 23, an input / output unit 24 and the like, which are electrically connected to each other through a bus 25. Ru.
  • the input / output unit 24 is communicably connected to the operation unit 242 and the HMD 244.
  • the HMD 244 has a display and a sensor not shown.
  • the display is a non-transmissive display device configured to completely cover the user's field of view, and the user can view only the screen displayed on the display. Then, since the user wearing the non-transmissive HMD 244 loses all the visibility of the outside world, the display mode completely immerses in the virtual space displayed by the executed application.
  • the user can configure the omnidirectional image acquired by the omnidirectional camera 130 (see FIG. 2) in the HMD 244 to give the experience as if the view was synchronized with the remote device.
  • a sensor provided in the HMD 244 is fixed near the display.
  • the sensor includes a geomagnetic sensor, an acceleration sensor, and / or a tilt (angular velocity, gyro) sensor, and can detect various movements of the HMD 244 mounted on the user's head through one or more of these.
  • angular velocity sensor in particular, according to the movement of the HMD 244, the angular velocity around three axes of the HMD 244 can be detected over time, and the time change of the angle (tilt) around each axis can be determined.
  • the operation unit 242 has, for example, a glove type that can be worn on the user's hand, and has a mechanism that can limit the amount of movement of each finger.
  • the operation unit 242 includes a motion detection unit that detects the movement of the user's finger, and a tactile sense presentation unit that transmits the tactile signal generated by the second information processing apparatus 200 to the user's finger.
  • FIG. 4 is a diagram showing the flow of information processing performed among the omnidirectional camera 130, the first information processing apparatus 100, the second information processing apparatus 200, and the HMD 244 regarding the processing of the information communication system according to the present embodiment. It is.
  • the omnidirectional camera 130 acquires video data.
  • the acquired video data is transmitted to the first information processing apparatus 100 (SQ101).
  • the first information processing apparatus 100 converts the received video data into predetermined binary data (SQ102).
  • the first information processing apparatus 100 transmits binary data to the second information processing apparatus 200 (SQ 103).
  • binary data is transmitted to the second information processing apparatus 200 using User Datagram Protocol (UDP).
  • UDP User Datagram Protocol
  • Communication between the first information processing apparatus 100 and the second information processing apparatus 200 in the present embodiment uses a unique protocol based on UDP.
  • a unique protocol based on UDP.
  • RTP guarantee of data order
  • the second information processing apparatus 200 converts the received binary data into a predetermined texture for each frame of the moving image (SQ 104).
  • the converted texture data is transmitted to the HMD 244 (SQ 105).
  • the virtual space output and displayed on the HMD 244 according to the present embodiment is, as shown in FIG. 5, a virtual camera in which the visual field information in the virtual space is arranged at the center of the pseudo sphere object V and the pseudo sphere object V. It is displayed using Vc.
  • the second information processing apparatus 200 configures a virtual space by pasting texture data inside the pseudo sphere object V.
  • the information communication technology according to the present invention further includes a data amount reduction technology for transmitting image data of the omnidirectional camera with a low capacity, and an omnidirectional camera with low latency data of the image of the omnidirectional camera. It also provides technology to restore and render as video.
  • FIG. 6 is a diagram showing the process flow of a further embodiment of the information communication system according to the present invention.
  • the same processing as that of the embodiment described above is denoted by the same reference numeral to simplify the description.
  • the video data acquired by the omnidirectional camera is transmitted to the first information processing apparatus 100 (SQ 101).
  • the tilt information of the HMD 244 (i.e., the tilt of the head of the user: the viewing direction) is further used.
  • the HMD 244 detects tilt information (SQ601), and the tilt information is transmitted to the second information processing apparatus 200 (SQ602).
  • the tilt information is further transmitted to the first information processing apparatus 100 (SQ 603).
  • the first information processing apparatus generates partial binary data (partial binary data) for video data corresponding to tilt information among video data acquired from the omnidirectional camera (SQ 604).
  • the video data acquired from the omnidirectional camera is divided into six regions, and partial binary data is generated for the corresponding region according to the tilt information.
  • Back side hemisphere Region 4: (X, Y, Z) (0, -1, 0) as a vertex, (0, 0, 1), (0, -1, 0),
  • binary data is transmitted to the second information processing apparatus via UDP (SQ 603).
  • the second information processing apparatus 200 converts the received partial binary data into a predetermined texture for each frame of a moving image (SQ 104).
  • the converted texture data is transmitted to the HMD 244 (SQ 105).
  • the second information processing apparatus 200 constructs a virtual space by attaching the texture data converted from the partial binary data to a part of the inside of the pseudo sphere object V.
  • the virtual space output and displayed on the HMD 244 an image converted from partial binary data corresponding to the above-described six areas is displayed (SQ106).
  • the video data from the omnidirectional camera only video data of only the area viewed by the user among the above six areas is to be transmitted based on the inclination of the HMD. It becomes. Accordingly, the amount of data to be transmitted can be reduced.
  • ⁇ Differential binary data> The technology according to the embodiment to be described subsequently is intended to transmit only the difference of video data, and it is possible to realize further reduction of transmission data.
  • FIG. 7 is a diagram showing the flow of such processing. Also in FIG. 7, the same processing as that of the above-described embodiment is denoted by the same reference numeral, and the description thereof will be simplified.
  • the video data acquired by the omnidirectional camera is transmitted to the first information processing apparatus 100 (SQ 101).
  • the tilt information of the HMD 244 (that is, the tilt of the head of the user: the direction of the line of sight) is used further, the tilt information is detected by the HMD 244 (SQ601), and the second information processing apparatus 200 is used. Transmission to the first information processing apparatus 100 (SQ 602, SQ 603).
  • the first information processing apparatus 100 detects and specifies a portion (difference area) having a change in the video based on the change of the RGB data value in the above-described video data (SQ 701).
  • the first information processing apparatus 100 generates binary data (difference binary data) only for the difference area (SQ 702), and transmits the binary data to the second information processing apparatus 200 via UDP (SQ 703).
  • the second information processing apparatus 200 updates only the part corresponding to the difference area in the texture data (SQ 704), and transmits the updated data to the HMD (SQ 705).
  • the difference may be detected after processing for removing noise that enters video data (that is, an image for each frame).
  • a plurality of points (noises) of a color different from that of a normal object or landscape may be included in the image for each frame. It can happen. At this time, if it is determined that the noise (that is, equivalent to the above-described “portion with change”) is a difference region to be transmitted, unnecessary difference processing data is generated.
  • the following three steps are performed to remove the noise. That is, (1) Binarize the image for each frame constituting the video (process to convert the image into two gradations of white and black) (2) enlarge the image (dpi) by N times (for example, twice) (3) Reduce the magnified image (dpi) to M times (M> N: 3 times, for example)
  • the form of connecting each element is not limited to this. It may be in a form of being connected by a wireless network, or it may be in a form in which the information processing apparatus is included in the HMD or the operation unit. Alternatively, the computing process may be performed by cloud computing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • User Interface Of Digital Computer (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

[Problem] To provide a technology for performing real-time information communication at high speed by using an entire celestial sphere camera. [Solution] The present invention is an information communication system including a first information processing device provided with an entire celestial sphere camera, and a second information processing device that is communicably connected to the first information processing device and that is provided with a head mounted display (HMD). The entire celestial sphere camera acquires video image data of a target space and transmits the data to the first information processing device. The first information processing device converts the video image data to binary data that can be restored for each frame by a predetermined video image format, and transmits the binary data to the second information processing device. The second information processing device converts the binary data to predetermined texture data and displays the texture data on a display unit.

Description

情報通信システム及び情報通信方法Information communication system and information communication method
 本発明は、情報通信システム及び情報通信方法に関し、特に全天球カメラを利用したデータ通信に関する。 The present invention relates to an information communication system and an information communication method, and more particularly to data communication using an omnidirectional camera.
 近年、全天球方向(つまり、360度の範囲)の映像を撮像可能なカメラ(以下、全天球カメラという)が登場し、様々なデバイスに搭載されている。 In recent years, cameras capable of capturing an image in the omnidirectional direction (that is, in the range of 360 degrees) (hereinafter referred to as an omnidirectional camera) have appeared and are mounted on various devices.
このような全天球カメラにより撮像された映像をヘッドマウント・ディスプレイ(HMD)において見る際に、ユーザの視線方向に合わせて動的に映像の明るさを調整し、撮像時のダイナミックレンジを疑似的に上げ、映像の視認性を向上する技術が開示されている(特許文献1)。 When viewing an image captured by such an omnidirectional camera on a head mounted display (HMD), the brightness of the image is dynamically adjusted according to the user's gaze direction, and the dynamic range at the time of imaging is simulated. Patent Document 1 discloses a technique for raising the image quality and improving the visibility of an image.
特開2017-22665号公報JP, 2017-22665, A
 一方、近年、遠隔地にあるデバイスをリアルタイムで操作・同期させるテレプレゼンス(Telepresence)技術の研究が進み、遠隔地に存在する操作対象としてのデバイスの「眼」として全天球カメラを適用することも提案されている。 On the other hand, in recent years, research on telepresence (Telepresence) technology for operating and synchronizing devices in remote locations in real time has progressed, and applying the omnidirectional camera as the “eye” of the device as an operation object located in remote locations Is also proposed.
 しかしながら、全天球カメラにより得られる情報量は大きいことから、特に、ユーザと遠隔地デバイス(ロボットアーム等)をリアルタイムで同期させることに課題が存在している。 However, since the amount of information obtained by the omnidirectional camera is large, there is a problem, in particular, in real time synchronizing the user and the remote device (robot arm etc.).
 そこで、本発明は、全天球カメラを利用したリアルタイム情報通信を高速で行うための技術を提供することを一つの目的とする。 Therefore, an object of the present invention is to provide a technology for performing real-time information communication at high speed using an omnidirectional camera.
 上述した目的を達成するために、本発明の発明者は、3段階の方法によって、通信の高速化を図った。即ち、発明者は、全天球カメラの映像のデータを低遅延で送信するためのデータ転送技術、全天球カメラの映像のデータを低容量で送信するためのデータ量削減技術、そして、全天球カメラの映像のデータを低遅延で全天球映像として復元・描画する技術を発明し、更に、これらの技術を単独で又は組み合わせることによって、リアルタイム情報通信を高速で行うことを実現した。本発明はかかる知見に基づくものである。 In order to achieve the above-mentioned purpose, the inventor of the present invention has attempted to speed up communication by a three-step method. That is, the inventors have been able to transmit data for transmitting video data of the omnidirectional camera with low delay, data reduction technology for transmitting data of the video of the omnidirectional camera with low capacity, and We have invented a technology that restores and renders the video data of an astronomical camera as an all-astronomical image with low delay, and further realizes real-time information communication at high speed by combining these technologies alone or in combination. The present invention is based on such findings.
 即ち、本発明によれば
 全天球カメラを備える第1情報処理装置と、当該第1情報処理装置と通信可能に接続され且つヘッドマウント・ディスプレイ(Head Mounted Display:HMD)を備える第2情報処理装置とを含む情報通信システムであって、
 前記全天球カメラは、対象空間の映像データを取得して、前記第1情報処理装置に送信し、
 前記第1情報処理装置は、前記映像データを少なくとも1フレーム毎に所定映像形式によって復元可能なバイナリデータに変換して前記第2情報処理装置に送信し、
 前記第2情報処理装置は、前記バイナリデータを所定のテクスチャデータに変換し、前記表示部に表示する、
情報通信システムが得られる。
That is, according to the present invention, a first information processing apparatus including an omnidirectional camera, and a second information processing apparatus communicably connected to the first information processing apparatus and including a head mounted display (HMD) An information communication system including an apparatus;
The omnidirectional camera acquires video data of a target space and transmits the video data to the first information processing apparatus,
The first information processing apparatus converts the video data into binary data that can be restored in a predetermined video format at least every one frame, and transmits the binary data to the second information processing apparatus.
The second information processing apparatus converts the binary data into predetermined texture data and displays the texture data on the display unit.
An information communication system is obtained.
 本発明によれば全天球カメラを利用したリアルタイム情報通信を高速で行うためのフィードバック生成方法を提供することができる。 According to the present invention, it is possible to provide a feedback generation method for performing high-speed real-time information communication using an omnidirectional camera.
本発明の実施の形態による情報通信システムの構成図である。It is a block diagram of the information communication system by embodiment of this invention. 図1に示される第1情報処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the 1st information processing apparatus shown by FIG. 図1に示される第2情報処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the 2nd information processing apparatus shown by FIG. 図1のシステムの処理を表す図である。It is a figure showing the process of the system of FIG. 図1の全天球カメラによって取得される全天球映像を模式的に示す図である。It is a figure which shows typically the omnidirectional image acquired by the omnidirectional camera of FIG. 図1のシステムの他の処理を表す図である。FIG. 7 is a diagram illustrating another process of the system of FIG. 1; 図1のシステムの他の処理を表す図である。FIG. 7 is a diagram illustrating another process of the system of FIG. 1;
 本発明の実施形態の内容を列記して説明する。本発明の実施の形態による情報通信システム及び情報通信方法は、以下のような構成を備える。
 [項目1]
 全天球カメラを備える第1情報処理装置と、当該第1情報処理装置と通信可能に接続され且つヘッドマウント・ディスプレイ(Head Mounted Display:HMD)を備える第2情報処理装置とを含む情報通信システムであって、
 前記全天球カメラは、対象空間の映像データを取得して、前記第1情報処理装置に送信し、
 前記第1情報処理装置は、前記映像データを少なくとも1フレーム毎に所定映像形式によって復元可能なバイナリデータに変換して前記第2情報処理装置に送信し、
 前記第2情報処理装置は、前記バイナリデータを所定のテクスチャデータに変換し、前記表示部に表示する、
情報通信システム。
 [項目2]
 項目1に記載の情報通信システムであって、
 前記表示部は、ヘッドマウント・ディスプレイ(Head Mounted Display:HMD)であり、仮想空間内における視界情報を疑似球体オブジェクトと当該疑似球体オブジェクトの中心に配置された仮想カメラとを利用して表示するものであり、
 前記第2情報処理装置は、前記テクスチャデータを前記疑似球体オブジェクトの内側に配置することにより、前記仮想空間内に前記対象空間を構成する、
情報通信システム。
 [項目3]
 項目2に記載の情報通信システムであって、
 前記第2情報処理装置は、前記HMDの傾き情報を取得して前記第2情報処理装置に送信し、
 前記第1情報処理装置は、前記映像データのうち前記傾き情報に対応する部分映像データについて部分バイナリデータに変換して前記第2情報処理装置に送信する、
情報通信システム。
 [項目4]
 項目3に記載の情報通信システムであって、
 前記第1情報処理装置は、前記部分映像データ内において変化のある部分を検知し、当該変化のある部分のみに対応する差分映像データについて差分バイナリデータに変換して前記第2情報処理装置に送信し、
 前記第2情報処理装置は、前記テクスチャデータのうち、前記差分バイナリデータに対応する部分のみを更新する、
情報通信システム。
 [項目5]
 項目4に記載の情報通信システムであって、
 前記第1情報処理装置は、前記部分映像データ内におけるRGBデータ値の変化に基づいて前記検知を行う、
情報通信システム。
 [項目6]
 項目3乃至項目5のいずれかに記載の情報通信システムであって、
 前記第1情報処理装置は、前記映像データを6つの領域に分割し、前記傾き情報に対応する領域の前記部分映像データについて部分バイナリデータに変換して前記第2情報処理装置に送信する、
情報通信システム。
 [項目7]
 項目1又は項目2に記載の情報通信システムであって、
 前記第1情報処理装置は、前記バイナリデータをユーザ・データグラム・プロトコル(User Datagram Protocol:UDP)を利用して、前記第2情報処理装置に送信する、
情報通信システム。
 [項目8]
 全天球カメラを備える第1情報処理装置と、当該第1情報処理装置と通信可能に接続され且つヘッドマウント・ディスプレイ(Head Mounted Display:HMD)を備える第2情報処理装置とを利用した情報通信方法であって、
 前記全天球カメラが、対象空間の映像データを取得して、前記第1情報処理装置に送信するステップと、
 前記第1情報処理装置が、前記映像データを少なくとも1フレーム毎に所定映像形式によって復元可能なバイナリデータに変換して前記第2情報処理装置に送信するステップと、
 前記第2情報処理装置が、前記バイナリデータを所定のテクスチャデータに変換し、前記表示部に表示するステップと、を含む
情報通信方法。
The contents of the embodiment of the present invention will be listed and described. An information communication system and an information communication method according to an embodiment of the present invention have the following configuration.
[Item 1]
An information communication system including: a first information processing apparatus including an omnidirectional camera; and a second information processing apparatus communicably connected to the first information processing apparatus and including a head mounted display (HMD). And
The omnidirectional camera acquires video data of a target space and transmits the video data to the first information processing apparatus,
The first information processing apparatus converts the video data into binary data that can be restored in a predetermined video format at least every one frame, and transmits the binary data to the second information processing apparatus.
The second information processing apparatus converts the binary data into predetermined texture data and displays the texture data on the display unit.
Information communication system.
[Item 2]
An information communication system according to item 1;
The display unit is a head mounted display (HMD), and displays visual field information in a virtual space using a pseudo sphere object and a virtual camera disposed at the center of the pseudo sphere object. And
The second information processing apparatus configures the target space in the virtual space by arranging the texture data inside the pseudo sphere object.
Information communication system.
[Item 3]
An information communication system according to item 2;
The second information processing apparatus acquires inclination information of the HMD, and transmits the acquired information to the second information processing apparatus.
The first information processing apparatus converts partial video data corresponding to the tilt information in the video data into partial binary data and transmits the partial binary data to the second information processing apparatus.
Information communication system.
[Item 4]
An information communication system according to item 3;
The first information processing apparatus detects a portion having a change in the partial video data, converts difference image data corresponding to only the portion having the change into difference binary data, and transmits the difference to the second information processing device And
The second information processing apparatus updates only a portion corresponding to the difference binary data in the texture data.
Information communication system.
[Item 5]
An information communication system according to item 4;
The first information processing apparatus performs the detection based on changes in RGB data values in the partial video data.
Information communication system.
[Item 6]
An information communication system according to any one of items 3 to 5;
The first information processing apparatus divides the video data into six areas, converts the partial video data of the area corresponding to the tilt information into partial binary data, and transmits the partial binary data to the second information processing apparatus.
Information communication system.
[Item 7]
An information communication system according to item 1 or 2;
The first information processing apparatus transmits the binary data to the second information processing apparatus using a User Datagram Protocol (UDP).
Information communication system.
[Item 8]
Information communication using a first information processing apparatus including an omnidirectional camera and a second information processing apparatus communicably connected to the first information processing apparatus and including a head mounted display (HMD) Method,
The omnidirectional camera acquiring video data of a target space and transmitting the video data to the first information processing apparatus;
The first information processing apparatus converts the video data into binary data that can be restored according to a predetermined video format at least every one frame, and transmits the binary data to the second information processing apparatus;
The second information processing apparatus converts the binary data into predetermined texture data and displays the texture data on the display unit.
<実施の形態の詳細>
 以下、本発明の実施の形態による情報通信システム及び情報通信方法について、図面を参照しながら説明する。
<Details of Embodiment>
Hereinafter, an information communication system and an information communication method according to an embodiment of the present invention will be described with reference to the drawings.
<概要>
 本発明の実施の形態による情報通信システムは、全天球カメラにより取得した映像を無線インターネット回線(Wifi/Mobile network)経由でも超低遅延かつ安定して同期するための技術である。
<Overview>
An information communication system according to an embodiment of the present invention is a technology for synchronizing an image acquired by an omnidirectional camera with ultra-low delay and stable synchronization via a wireless Internet circuit (Wifi / Mobile network).
 情報通信システムは、主として以下の3つの構成に文化手することができる。即ち、全天球カメラの映像のデータを低遅延で送信するためのデータ転送技術、全天球カメラの映像のデータを低容量で送信するためのデータ量削減技術、そして、全天球カメラの映像のデータを低遅延で全天球映像として復元・描画する技術である。 The information communication system can be mainly culture in the following three configurations. That is, data transfer technology for transmitting video data of the omnidirectional camera with low delay, data amount reduction technology for transmitting video data of the omnidirectional camera with low capacity, and It is a technology that restores and renders video data as an omnidirectional video with low delay.
<構成>
 図1は、本発明の実施の形態による情報通信システムの構成を示す図である。なお、では一例であり、これ以外の要素が追加されていてもよい。
<Configuration>
FIG. 1 is a diagram showing the configuration of an information communication system according to an embodiment of the present invention. Note that this is an example, and other elements may be added.
 図1に示されるように、情報通信システム1は、遠隔地においてユーザが遠隔操作するための遠隔デバイスと、ユーザが操作するための操作デバイスとの2つの要素に分解することができる。操作デバイスと遠隔デバイスとはネットワーク(後述する)を介して接続されている。 As shown in FIG. 1, the information communication system 1 can be divided into two components of a remote device for remote control by a user at a remote location and an operation device for user control. The operation device and the remote device are connected via a network (described later).
 遠隔デバイスは、全天球カメラと、第1情報処理端末(PC1)と、ボディとを含む。全天球カメラは、上下左右全方位の360度パノラマ写真が撮れる撮影装置であり、全方位カメラとも呼ばれることがある。ボディは、ユーザの身体の一部を拡張し得る装置であり、例えば、ロボットアーム等の装置が例示できるがこれに限られない。 The remote device includes an omnidirectional camera, a first information processing terminal (PC1), and a body. The omnidirectional camera is an imaging device capable of taking 360-degree panoramic photographs of all directions in the vertical and horizontal directions, and may also be called an omnidirectional camera. The body is a device capable of expanding a part of the user's body, and can be exemplified by, for example, a device such as a robot arm, but is not limited thereto.
 操作デバイスは、第2情報処理端末(PC2)と、ヘッドマウント・ディスプレイ(Head Mount Display:以下、HMD)とを含んでいる。 The operation device includes a second information processing terminal (PC2) and a head mount display (HMD).
<第1情報処理装置100>
 図2は、第1情報処理端末100を示すブロック図である。図に示されるように、第1情報処理端末100は、少なくとも、プロセッサ10、メモリ11、ストレージ12、送受信部13、入出力部14等を備え、これらはバス15を通じて相互に電気的に接続される。
<First Information Processing Apparatus 100>
FIG. 2 is a block diagram showing the first information processing terminal 100. As shown in FIG. As shown in the figure, the first information processing terminal 100 includes at least a processor 10, a memory 11, a storage 12, a transmission / reception unit 13, an input / output unit 14 and the like, which are electrically connected to one another through a bus 15. Ru.
 入出力部は、更に、全天球カメラ130と、ボディ制御部132と、ボディ134と通信可能に接続されている。 The input / output unit is further communicably connected to the omnidirectional camera 130, the body control unit 132, and the body 134.
 第1情報処理端末100は、遠隔デバイス内に実装されるため、比較的小型の装置を採用することが好ましい。また、図示されている機能ブロックについては、適宜省略することもできる。 Since the first information processing terminal 100 is implemented in a remote device, it is preferable to employ a relatively small device. The illustrated functional blocks may be omitted as appropriate.
 プロセッサ10は、第1情報処理装置100全体の動作を制御し、各要素間におけるデータの送受信の制御、及びアプリケーションの実行に必要な情報処理等を行う演算装置である。例えばプロセッサ10はCPU(Central Processing Unit)であり、ストレージ12に格納されメモリ11に展開されたプログラム等を実行して各情報処理を実施する。 The processor 10 is an arithmetic device that controls the overall operation of the first information processing apparatus 100, controls transmission and reception of data between elements, and performs information processing and the like necessary for executing an application. For example, the processor 10 is a CPU (Central Processing Unit), and executes a program or the like stored in the storage 12 and expanded in the memory 11 to perform each information processing.
 メモリ11は、DRAM(Dynamic Random Access Memory)等の揮発性記憶装置で構成される主記憶と、フラッシュメモリやHDD(Hard Disc Drive)等の不揮発性記憶装置で構成される補助記憶と、を含む。メモリ11は、プロセッサ10のワークエリア等として使用され、また、コンピュータ端末120の起動時に実行されるBIOS(Basic Input / Output System)、及び各種設定情報等を格納する。 The memory 11 includes a main storage constituted by a volatile storage device such as a dynamic random access memory (DRAM), and an auxiliary storage constituted by a nonvolatile storage device such as a flash memory or a hard disc drive (HDD). . The memory 11 is used as a work area or the like of the processor 10, and stores a BIOS (Basic Input / Output System) executed when the computer terminal 120 is started, various setting information, and the like.
 ストレージ12は、アプリケーション・プログラム等の各種プログラムを格納する。各処理に用いられるデータを格納したデータベースがストレージ22に構築されていてもよい。 The storage 12 stores various programs such as application programs. A database storing data used for each process may be constructed in the storage 22.
 送受信部13は、コンピュータ端末120をネットワークに接続する。なお、送受信部13は、Bluetooth(登録商標)及びBLE(Bluetooth Low Energy)などの近距離通信インタフェースを備えていてもよい。 The transmission / reception unit 13 connects the computer terminal 120 to a network. The transmission / reception unit 13 may include a short range communication interface such as Bluetooth (registered trademark) and BLE (Bluetooth Low Energy).
 入出力部14には、必要に応じて、更にキーボード・マウス類等の情報入力機器、及びディスプレイ等の出力機器が接続されていてもよい。 If necessary, an information input device such as a keyboard or a mouse and an output device such as a display may be connected to the input / output unit 14.
 バス15は、上記各要素に共通に接続され、例えば、アドレス信号、データ信号及び各種制御信号を伝達する。 The bus 15 is commonly connected to the above-described elements, and transmits, for example, an address signal, a data signal, and various control signals.
<第2情報処理装置200>
 図3は、第2情報処理端末200を示すブロック図である。図に示されるように、第2情報処理端末200は、少なくとも、プロセッサ20、メモリ21、ストレージ22、送受信部23、入出力部24等を備え、これらはバス25を通じて相互に電気的に接続される。
<Second Information Processing Device 200>
FIG. 3 is a block diagram showing the second information processing terminal 200. As shown in FIG. As shown in the figure, the second information processing terminal 200 includes at least a processor 20, a memory 21, a storage 22, a transmitting / receiving unit 23, an input / output unit 24 and the like, which are electrically connected to each other through a bus 25. Ru.
 入出力部24には、更に、操作部242と、HMD244と通信可能に接続されている。 Further, the input / output unit 24 is communicably connected to the operation unit 242 and the HMD 244.
 HMD244は、図示しないディスプレイおよびセンサを具備する。ディスプレイは、ユーザの視界を完全に覆うよう構成された非透過型の表示装置であり、ユーザはディスプレイに表示される画面のみを観察することができる。そして、非透過型のHMD244を装着したユーザは、外界の視界を全て失うため、実行されるアプリケーションにより表示される仮想空間に完全に没入する表示態様となる。 The HMD 244 has a display and a sensor not shown. The display is a non-transmissive display device configured to completely cover the user's field of view, and the user can view only the screen displayed on the display. Then, since the user wearing the non-transmissive HMD 244 loses all the visibility of the outside world, the display mode completely immerses in the virtual space displayed by the executed application.
 ユーザは、全天球カメラ130(図2参照)によって取得された全天球映像をHMD244内に構成することにより、あたかも、遠隔デバイスに視界が同期したかのような体験をすることができる。 The user can configure the omnidirectional image acquired by the omnidirectional camera 130 (see FIG. 2) in the HMD 244 to give the experience as if the view was synchronized with the remote device.
 なお、例えば、操作部242を利用して、ボディ134(図2参照)を遠隔操作することも可能である。 Note that, for example, it is also possible to remotely control the body 134 (see FIG. 2) using the operation unit 242.
 HMD244が具備するセンサは、ディスプレイ近辺に固定される。センサは、地磁気センサ、加速度センサ、および/または傾き(角速度、ジャイロ)センサを含み、これらの1つ以上を通じて、ユーザの頭部に装着されたHMD244の各種動きを検知することができる。特に角速度センサの場合には、HMD244の動きに応じて、HMD244の3軸回りの角速度を経時的に検知し、各軸回りの角度(傾き)の時間変化を決定することができる。 A sensor provided in the HMD 244 is fixed near the display. The sensor includes a geomagnetic sensor, an acceleration sensor, and / or a tilt (angular velocity, gyro) sensor, and can detect various movements of the HMD 244 mounted on the user's head through one or more of these. In the case of an angular velocity sensor, in particular, according to the movement of the HMD 244, the angular velocity around three axes of the HMD 244 can be detected over time, and the time change of the angle (tilt) around each axis can be determined.
 操作部242は、例えば、ユーザの手に装着可能なグローブ型を有しており、各指の動作量を制限可能な機構を有している。操作部242は、ユーザの指の動きを検知する動き検知部と、第2情報処理装置200で生成した触覚信号をユーザの指に伝達する触覚提示部とを含んでいる。 The operation unit 242 has, for example, a glove type that can be worn on the user's hand, and has a mechanism that can limit the amount of movement of each finger. The operation unit 242 includes a motion detection unit that detects the movement of the user's finger, and a tactile sense presentation unit that transmits the tactile signal generated by the second information processing apparatus 200 to the user's finger.
<処理の流れ>
 続いて、本実施の形態による情報通信システムの処理の流れを説明する。図4は、本実施の形態による情報通信システムの処理に関して、全天球カメラ130、第1情報処理装置100、第2情報処理装置200、及びHMD244の間で行われる情報処理の流れを示す図である。
<Flow of processing>
Subsequently, the flow of processing of the information communication system according to the present embodiment will be described. FIG. 4 is a diagram showing the flow of information processing performed among the omnidirectional camera 130, the first information processing apparatus 100, the second information processing apparatus 200, and the HMD 244 regarding the processing of the information communication system according to the present embodiment. It is.
 図示されるように、全天球カメラ130は、映像データを取得する。取得した映像データは、第1情報処理装置100に送信される(SQ101)。第1情報処理装置100は、受信した映像データを所定のバイナリデータに変換する(SQ102)。 As illustrated, the omnidirectional camera 130 acquires video data. The acquired video data is transmitted to the first information processing apparatus 100 (SQ101). The first information processing apparatus 100 converts the received video data into predetermined binary data (SQ102).
 本実施の形態においては、映像データの解像度がHDTV(1280×720)以上の場合はJPEG形式で復元可能なバイナリデータを使用している。一方、映像データの解像度がHDTV(1280×720)未満の場合はWebP形式で復元可能なバイナリデータに変換する。なお、画像形式は一例であり、これ以外の形式を採用してもよい。 In this embodiment, when the resolution of video data is HDTV (1280 × 720) or more, binary data that can be restored in JPEG format is used. On the other hand, if the resolution of the video data is less than HDTV (1280 × 720), it is converted into binary data that can be restored in WebP format. Note that the image format is an example, and other formats may be adopted.
 続いて、第1情報処理装置100は、バイナリデータを第2情報処理装置200に送信する(SQ103)。本実施の形態においては、バイナリデータは、ユーザ・データグラム・プロトコル(User Datagram Protocol:UDP)を利用して、第2情報処理装置200に送信される。 Subsequently, the first information processing apparatus 100 transmits binary data to the second information processing apparatus 200 (SQ 103). In the present embodiment, binary data is transmitted to the second information processing apparatus 200 using User Datagram Protocol (UDP).
 本実施の形態における第1情報処理装置100と第2情報処理装置200との通信は、UDPをベースとした独自プロトコルを用いることとしている。UDPのメインデータ部分の先頭に独自のシーケンス(順序)番号を付与することで、RTPと同じ機能(=データの順番の保証)をRTPよりはるかに軽量なヘッダーデータ量で実現させる独自プロトコルを定義している。 Communication between the first information processing apparatus 100 and the second information processing apparatus 200 in the present embodiment uses a unique protocol based on UDP. By assigning a unique sequence (order) number at the beginning of the main data part of UDP, a proprietary protocol is realized that achieves the same function as RTP (= guarantee of data order) with a much lighter amount of header data than RTP. doing.
 第2情報処理装置200は、受信したバイナリデータを動画のフレーム毎に所定のテクスチャに変換する(SQ104)。変換されたテクスチャデータは、HMD244に送信される(SQ105)。 The second information processing apparatus 200 converts the received binary data into a predetermined texture for each frame of the moving image (SQ 104). The converted texture data is transmitted to the HMD 244 (SQ 105).
 本実施の形態によるHMD244に出力され表示される仮想空間は、図5に示されるように、当該仮想空間内における視界情報を疑似球体オブジェクトVと当該疑似球体オブジェクトVの中心に配置された仮想カメラVcとを利用して表示するものである。 The virtual space output and displayed on the HMD 244 according to the present embodiment is, as shown in FIG. 5, a virtual camera in which the visual field information in the virtual space is arranged at the center of the pseudo sphere object V and the pseudo sphere object V. It is displayed using Vc.
 第2情報処理装置200は、テクスチャデータを疑似球体オブジェクトVの内側に貼り付けることによって仮想空間を構成する。 The second information processing apparatus 200 configures a virtual space by pasting texture data inside the pseudo sphere object V.
 以上のように、本実施の形態によれば、映像データから変換されたバイナリデータをUDP経由で送信することとしているため、全天球カメラから得られた全天球映像データを高速かつ低遅延で送信することができる。 As described above, according to the present embodiment, since binary data converted from video data is transmitted via UDP, high speed and low delay of all celestial sphere video data obtained from all celestial sphere cameras is achieved. Can be sent.
<部分バイナリ変換>
 上述した実施の形態は、主に通信速度を改善するための技術である転送技術を説明した。しかしながら、本発明による情報通信技術は、更に、全天球カメラの映像のデータを低容量で送信するためのデータ量削減技術、そして、全天球カメラの映像のデータを低遅延で全天球映像として復元・描画する技術も提供するものである。
<Partial binary conversion>
The above-described embodiment has mainly described the transfer technology, which is a technology for improving the communication speed. However, the information communication technology according to the present invention further includes a data amount reduction technology for transmitting image data of the omnidirectional camera with a low capacity, and an omnidirectional camera with low latency data of the image of the omnidirectional camera. It also provides technology to restore and render as video.
 図6は、本発明による情報通信システムの更なる実施の形態の処理の流れを示す図である。なお、図において上述した実施の形態と同様の処理については同一の参照符号を付しその説明を簡略化する。 FIG. 6 is a diagram showing the process flow of a further embodiment of the information communication system according to the present invention. In the figure, the same processing as that of the embodiment described above is denoted by the same reference numeral to simplify the description.
 上述した実施の形態と同様に、全天球カメラによって取得された映像データは、第1情報処理装置100に送信される(SQ101)。 As in the embodiment described above, the video data acquired by the omnidirectional camera is transmitted to the first information processing apparatus 100 (SQ 101).
 本実施の形態においては、HMD244の傾き情報(即ち、ユーザの頭部の傾き:視線方向)を更に利用することとしている。HMD244は傾き情報を検知し(SQ601)、当該傾き情報は第2情報処理装置200に送信される(SQ602)。 In the present embodiment, the tilt information of the HMD 244 (i.e., the tilt of the head of the user: the viewing direction) is further used. The HMD 244 detects tilt information (SQ601), and the tilt information is transmitted to the second information processing apparatus 200 (SQ602).
 傾き情報は、第1情報処理装置100に更に送信される(SQ603)。第1情報処理装置は、全天球カメラから取得した映像データのうち傾き情報に対応する映像データについて部分的なバイナリデータ(部分バイナリデータ)を生成する(SQ604)。 The tilt information is further transmitted to the first information processing apparatus 100 (SQ 603). The first information processing apparatus generates partial binary data (partial binary data) for video data corresponding to tilt information among video data acquired from the omnidirectional camera (SQ 604).
 本実施の形態においては、全天球カメラから取得される映像データを6つの領域に分割し、傾き情報に応じてそれに対応する領域について部分的なバイナリデータを生成する。 In the present embodiment, the video data acquired from the omnidirectional camera is divided into six regions, and partial binary data is generated for the corresponding region according to the tilt information.
 図5を参照して、分割される領域は、以下の6つの領域である。
 領域1:(X,Y,Z)=(1,0,0)を頂点として、(0,0,1)、(0,-1,0)、(0,0,-1)及び(0,1,0)を通る仮想円を含む半球:図の右側半球
 領域2:(X,Y,Z)=(-1,0,0)を頂点として、(0,0,1)、(0,-1,0)、(0,0,-1)及び(0,1,0)を通る仮想円を含む半球:図の左側半球
 領域3:(X,Y,Z)=(0,1,0)を頂点として、(0,0,1)、(-1,0,0)、(0,0,-1)及び(1,0,0)を通る仮想円を含む半球:図の奥側半球
 領域4:(X,Y,Z)=(0,-1,0)を頂点として、(0,0,1)、(-1,0,0)、(0,0,-1)及び(1,0,0)を通る仮想円を含む半球:図の手前側半球
 領域5:(X,Y,Z)=(0,0,1)を頂点として、(1,0,0)、(0,-1,0)、(1,0,0)及び(0,1,0)を通る仮想円を含む半球:図の上側半球
 領域6:(X,Y,Z)=(0,0,-1)を頂点として、(1,0,0)、(0,-1,0)、(1,0,0)及び(0,1,0)を通る仮想円を含む半球:図の下側半球
Referring to FIG. 5, the divided areas are the following six areas.
Region 1: (X, Y, Z) = (1, 0, 0) as a vertex, (0, 0, 1), (0, -1, 0), (0, 0, -1) and (0 , 1, 0): A hemisphere including an imaginary circle passing through: right hemisphere in the figure Region 2: (X, Y, Z) = (-1, 0, 0) as a vertex, (0, 0, 1), (0 , -1, 0), (0, 0, -1) and (0, 1, 0) including a phantom circle: the left hemisphere in the figure Region 3: (X, Y, Z) = (0, 1) , 0) as vertices, and a hemisphere including an imaginary circle passing through (0, 0, 1), (-1, 0, 0), (0, 0, -1) and (1, 0, 0): Back side hemisphere Region 4: (X, Y, Z) = (0, -1, 0) as a vertex, (0, 0, 1), (-1, 0, 0), (0, 0, -1) And a hemisphere including a virtual circle passing through (1, 0, 0): the front hemisphere of the figure Region 5: (X, Y, Z) = (0, 0, 1) A hemisphere including a virtual circle passing through (1, 0, 0), (0, -1, 0), (1, 0, 0) and (0, 1, 0) with the vertex at the top: the upper hemisphere of the figure Region 6: (X, Y, Z) = (0, 0, -1) as a vertex, (1, 0, 0), (0, -1, 0), (1, 0, 0) and (0) , 1, 0) including the imaginary circle passing through: the lower hemisphere of the figure
 上述した領域の数やその分割方法は例示であり、適宜変更することが可能である。 The number of areas described above and the method of dividing the area are examples and can be changed as appropriate.
 本実施の形態においても、バイナリデータは、UDP経由で第2情報処理装置に送信される(SQ603)。 Also in the present embodiment, binary data is transmitted to the second information processing apparatus via UDP (SQ 603).
 第2情報処理装置200は、受信した部分バイナリデータを動画のフレーム毎に所定のテクスチャに変換する(SQ104)。変換されたテクスチャデータは、HMD244に送信される(SQ105)。 The second information processing apparatus 200 converts the received partial binary data into a predetermined texture for each frame of a moving image (SQ 104). The converted texture data is transmitted to the HMD 244 (SQ 105).
 第2情報処理装置200は、部分バイナリデータから変換されたテクスチャデータを疑似球体オブジェクトVの内側の一部に貼り付けることによって仮想空間を構成する。
HMD244に出力され表示される仮想空間には、上述した6つの領域に分割した領域に対応する部分バイナリデータから変換された映像が表示される(SQ106)。
The second information processing apparatus 200 constructs a virtual space by attaching the texture data converted from the partial binary data to a part of the inside of the pseudo sphere object V.
In the virtual space output and displayed on the HMD 244, an image converted from partial binary data corresponding to the above-described six areas is displayed (SQ106).
 かかる実施の形態によれば、全天球カメラからの映像データのうち、HMDの傾きに基づいて、 上述した6つの領域のうちからユーザの見ている範囲の領域のみの映像データのみが送信対象となる。従って、送信対象となるデータ量を削減することができる。 According to this embodiment, of the video data from the omnidirectional camera, only video data of only the area viewed by the user among the above six areas is to be transmitted based on the inclination of the HMD. It becomes. Accordingly, the amount of data to be transmitted can be reduced.
<差分バイナリデータ>
 続いて説明する実施の形態による技術は、映像データの差分のみを送信対象とするものであり、更なる送信データの削減を実現することが可能となる。
<Differential binary data>
The technology according to the embodiment to be described subsequently is intended to transmit only the difference of video data, and it is possible to realize further reduction of transmission data.
 図7は、かかる処理の流れを示す図である。なお、図7においても、上述した実施の形態と同様の処理については同一の参照符号を付しその説明を簡略化する。 FIG. 7 is a diagram showing the flow of such processing. Also in FIG. 7, the same processing as that of the above-described embodiment is denoted by the same reference numeral, and the description thereof will be simplified.
 上述した実施の形態と同様に、全天球カメラによって取得された映像データは、第1情報処理装置100に送信される(SQ101)。 As in the embodiment described above, the video data acquired by the omnidirectional camera is transmitted to the first information processing apparatus 100 (SQ 101).
 本実施の形態においても、HMD244の傾き情報(即ち、ユーザの頭部の傾き:視線方向)を更に利用することとし、HMD244によって傾き情報を検知し(SQ601)、第2情報処理装置200を介して第1情報処理装置100に送信することとしている(SQ602、SQ603)。 Also in the present embodiment, the tilt information of the HMD 244 (that is, the tilt of the head of the user: the direction of the line of sight) is used further, the tilt information is detected by the HMD 244 (SQ601), and the second information processing apparatus 200 is used. Transmission to the first information processing apparatus 100 (SQ 602, SQ 603).
 第1情報処理装置100は、上述した映像データ内においてRGBデータ値の変化に基づいて映像内の変化のある部分(差分領域)を検知・特定する(SQ701)。第1情報処理装置100は、当該差分領域についてのみバイナリデータ(差分バイナリデータ)を生成し(SQ702)、UDP経由で第2情報処理装置200に送信する(SQ703)。 The first information processing apparatus 100 detects and specifies a portion (difference area) having a change in the video based on the change of the RGB data value in the above-described video data (SQ 701). The first information processing apparatus 100 generates binary data (difference binary data) only for the difference area (SQ 702), and transmits the binary data to the second information processing apparatus 200 via UDP (SQ 703).
 第2情報処理装置200では、テクスチャデータのうち、差分領域に対応する部分のみを更新し(SQ704)、当該更新データをHMDに送信する(SQ705)。 The second information processing apparatus 200 updates only the part corresponding to the difference area in the texture data (SQ 704), and transmits the updated data to the HMD (SQ 705).
 かかる構成によれば、映像データのうち、変化のある部分のみが送信対象となるため、送信データの更なる削減を行うことができる。 According to this configuration, only the portion of the video data that has a change is to be transmitted, so that it is possible to further reduce the transmission data.
 なお、この際、映像データ(即ち、フレーム毎の画像)に入るノイズを除去する処理を行った後に差分を検知することとしてもよい。 At this time, the difference may be detected after processing for removing noise that enters video data (that is, an image for each frame).
 即ち、例えば、全天球カメラ側の一般的な問題(仕様)等によっては、1フレーム毎の画像には、通常の物体や風景とは異なる色の点(ノイズ)が複数入り込んでしまうことが起こり得る。このとき、当該ノイズ(即ち、上述した「変化のある部分」に相当)を送信対象の差分領域であると判定してしまうと、不必要な差分処理データが発生することとなる。 That is, for example, depending on a general problem (specification) or the like on the omnidirectional camera side, a plurality of points (noises) of a color different from that of a normal object or landscape may be included in the image for each frame. It can happen. At this time, if it is determined that the noise (that is, equivalent to the above-described “portion with change”) is a difference region to be transmitted, unnecessary difference processing data is generated.
 そこで、本実施の形態においては、このノイズを除去するために、以下の3ステップの処理を行うこととしている。
 即ち、
 (1)映像を構成するフレーム毎の画像を2値化(画像を白と黒の2階調に変換する処理)する
 (2)当該画像(dpi)をN倍(例えば2倍)に拡大する
 (3)拡大した画像(dpi)をM倍(M>N:例えば3倍)に縮小する
Therefore, in the present embodiment, the following three steps are performed to remove the noise.
That is,
(1) Binarize the image for each frame constituting the video (process to convert the image into two gradations of white and black) (2) enlarge the image (dpi) by N times (for example, twice) (3) Reduce the magnified image (dpi) to M times (M> N: 3 times, for example)
 かかるステップを行うことにより、ノイズである通常の物体や風景とは異なる色の点は画像から除去できることから、通常の物体や風景(色の集合体)のみが画像内に残る。差 By performing such steps, it is possible to remove from the image noise that is different from normal objects and scenery that are noises, so that only ordinary objects and scenery (a collection of colors) remain in the image. difference
 上述した実施の形態における情報処理装置は物理的にHMDや操作部に接続されていることとしたが、各要素を接続する形態はこれに限られるものではない。無線ネットワークによって接続されている形態でもよいし、情報処理装置がHMDや操作部に内包される形態でもよい。または演算処理をクラウドコンピューティングに実施させる形態でもよい。 Although the information processing apparatus in the embodiment described above is physically connected to the HMD or the operation unit, the form of connecting each element is not limited to this. It may be in a form of being connected by a wireless network, or it may be in a form in which the information processing apparatus is included in the HMD or the operation unit. Alternatively, the computing process may be performed by cloud computing.
 上述した実施の形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。 The embodiments described above are merely examples for facilitating the understanding of the present invention, and are not intended to limit and interpret the present invention. It goes without saying that the present invention can be modified and improved without departing from the gist thereof, and that the present invention includes equivalents thereof.
 1    情報通信システム
 100    第1情報処理システム
 200    第2情報処理システム
1 information communication system 100 first information processing system 200 second information processing system

Claims (8)

  1.  全天球カメラを備える第1情報処理装置と、当該第1情報処理装置と通信可能に接続され且つヘッドマウント・ディスプレイ(Head Mounted Display:HMD)を備える第2情報処理装置とを含む情報通信システムであって、
     前記全天球カメラは、対象空間の映像データを取得して、前記第1情報処理装置に送信し、
     前記第1情報処理装置は、前記映像データを少なくとも1フレーム毎に所定映像形式によって復元可能なバイナリデータに変換して前記第2情報処理装置に送信し、
     前記第2情報処理装置は、前記バイナリデータを所定のテクスチャデータに変換し、前記表示部に表示する、
    情報通信システム。
    An information communication system including: a first information processing apparatus including an omnidirectional camera; and a second information processing apparatus communicably connected to the first information processing apparatus and including a head mounted display (HMD). And
    The omnidirectional camera acquires video data of a target space and transmits the video data to the first information processing apparatus,
    The first information processing apparatus converts the video data into binary data that can be restored in a predetermined video format at least every one frame, and transmits the binary data to the second information processing apparatus.
    The second information processing apparatus converts the binary data into predetermined texture data and displays the texture data on the display unit.
    Information communication system.
  2.  請求項1に記載の情報通信システムであって、
     前記表示部は、ヘッドマウント・ディスプレイ(Head Mounted Display:HMD)であり、仮想空間内における視界情報を疑似球体オブジェクトと当該疑似球体オブジェクトの中心に配置された仮想カメラとを利用して表示するものであり、
     前記第2情報処理装置は、前記テクスチャデータを前記疑似球体オブジェクトの内側に配置することにより、前記仮想空間内に前記対象空間を構成する、
    情報通信システム。
    The information communication system according to claim 1, wherein
    The display unit is a head mounted display (HMD), and displays visual field information in a virtual space using a pseudo sphere object and a virtual camera disposed at the center of the pseudo sphere object. And
    The second information processing apparatus configures the target space in the virtual space by arranging the texture data inside the pseudo sphere object.
    Information communication system.
  3.  請求項2に記載の情報通信システムであって、
     前記第2情報処理装置は、前記HMDの傾き情報を取得して前記第2情報処理装置に送信し、
     前記第1情報処理装置は、前記映像データのうち前記傾き情報に対応する部分映像データについて部分バイナリデータに変換して前記第2情報処理装置に送信する、
    情報通信システム。
    The information communication system according to claim 2, wherein
    The second information processing apparatus acquires inclination information of the HMD, and transmits the acquired information to the second information processing apparatus.
    The first information processing apparatus converts partial video data corresponding to the tilt information in the video data into partial binary data and transmits the partial binary data to the second information processing apparatus.
    Information communication system.
  4.  請求項3に記載の情報通信システムであって、
     前記第1情報処理装置は、前記部分映像データ内において変化のある部分を検知し、当該変化のある部分のみに対応する差分映像データについて差分バイナリデータに変換して前記第2情報処理装置に送信し、
     前記第2情報処理装置は、前記テクスチャデータのうち、前記差分バイナリデータに対応する部分のみを更新する、
    情報通信システム。
    The information communication system according to claim 3, wherein
    The first information processing apparatus detects a portion having a change in the partial video data, converts difference image data corresponding to only the portion having the change into difference binary data, and transmits the difference to the second information processing device And
    The second information processing apparatus updates only a portion corresponding to the difference binary data in the texture data.
    Information communication system.
  5.  請求項4に記載の情報通信システムであって、
     前記第1情報処理装置は、前記部分映像データ内におけるRGBデータ値の変化に基づいて前記検知を行う、
    情報通信システム。
    The information communication system according to claim 4, wherein
    The first information processing apparatus performs the detection based on changes in RGB data values in the partial video data.
    Information communication system.
  6.  請求項3乃至請求項5のいずれかに記載の情報通信システムであって、
     前記第1情報処理装置は、前記映像データを6つの領域に分割し、前記傾き情報に対応する領域の前記部分映像データについて部分バイナリデータに変換して前記第2情報処理装置に送信する、
    情報通信システム。
    The information communication system according to any one of claims 3 to 5, wherein
    The first information processing apparatus divides the video data into six areas, converts the partial video data of the area corresponding to the tilt information into partial binary data, and transmits the partial binary data to the second information processing apparatus.
    Information communication system.
  7.  請求項1乃至請求項6のいずれかに記載の情報通信システムであって、
     前記第1情報処理装置は、前記バイナリデータをユーザ・データグラム・プロトコル(User Datagram Protocol:UDP)を利用して、前記第2情報処理装置に送信する、
    情報通信システム。
    The information communication system according to any one of claims 1 to 6, wherein
    The first information processing apparatus transmits the binary data to the second information processing apparatus using a User Datagram Protocol (UDP).
    Information communication system.
  8.  全天球カメラを備える第1情報処理装置と、当該第1情報処理装置と通信可能に接続され且つヘッドマウント・ディスプレイ(Head Mounted Display:HMD)を備える第2情報処理装置とを利用した情報通信方法であって、
     前記全天球カメラが、対象空間の映像データを取得して、前記第1情報処理装置に送信するステップと、
     前記第1情報処理装置が、前記映像データを少なくとも1フレーム毎に所定映像形式によって復元可能なバイナリデータに変換して前記第2情報処理装置に送信するステップと、
     前記第2情報処理装置が、前記バイナリデータを所定のテクスチャデータに変換し、前記表示部に表示するステップと、を含む
    情報通信方法。

     
    Information communication using a first information processing apparatus including an omnidirectional camera and a second information processing apparatus communicably connected to the first information processing apparatus and including a head mounted display (HMD) Method,
    The omnidirectional camera acquiring video data of a target space and transmitting the video data to the first information processing apparatus;
    The first information processing apparatus converts the video data into binary data that can be restored according to a predetermined video format at least every one frame, and transmits the binary data to the second information processing apparatus;
    The second information processing apparatus converts the binary data into predetermined texture data and displays the texture data on the display unit.

PCT/JP2018/000135 2018-01-07 2018-01-07 Information communication system and information communication method WO2019135289A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000135 WO2019135289A1 (en) 2018-01-07 2018-01-07 Information communication system and information communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000135 WO2019135289A1 (en) 2018-01-07 2018-01-07 Information communication system and information communication method

Publications (1)

Publication Number Publication Date
WO2019135289A1 true WO2019135289A1 (en) 2019-07-11

Family

ID=67144112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000135 WO2019135289A1 (en) 2018-01-07 2018-01-07 Information communication system and information communication method

Country Status (1)

Country Link
WO (1) WO2019135289A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298652A (en) * 2000-04-17 2001-10-26 Sony Corp Method and device for compressing image and software storage medium
JP2004023748A (en) * 2002-06-20 2004-01-22 Ricoh Co Ltd Device for recording image, method of recording image, program, and information recording medium
JP2008171292A (en) * 2007-01-15 2008-07-24 Toshiba Corp Image forming device, display terminal, communication system, communication method, and program
JP2017123503A (en) * 2016-01-04 2017-07-13 日本電信電話株式会社 Video distribution apparatus, video distribution method and computer program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298652A (en) * 2000-04-17 2001-10-26 Sony Corp Method and device for compressing image and software storage medium
JP2004023748A (en) * 2002-06-20 2004-01-22 Ricoh Co Ltd Device for recording image, method of recording image, program, and information recording medium
JP2008171292A (en) * 2007-01-15 2008-07-24 Toshiba Corp Image forming device, display terminal, communication system, communication method, and program
JP2017123503A (en) * 2016-01-04 2017-07-13 日本電信電話株式会社 Video distribution apparatus, video distribution method and computer program

Similar Documents

Publication Publication Date Title
US11303875B2 (en) Split rendering between a head-mounted display (HMD) and a host computer
CN110488977B (en) Virtual reality display method, device and system and storage medium
US10585283B2 (en) Head mounted display and control method therefor
WO2018051815A1 (en) Information processing apparatus and method and program
WO2019026765A1 (en) Rendering device, head-mounted display, image transmission method, and image correction method
JP2017097122A (en) Information processing device and image generation method
WO2020140758A1 (en) Image display method, image processing method, and related devices
JP7192592B2 (en) Imaging device, image communication system, image processing method, program
JP2020150330A (en) Image communication system, imaging apparatus, mode switching method, program
US11120632B2 (en) Image generating apparatus, image generating system, image generating method, and program
JP5743016B2 (en) Apparatus and method for generating images
US10572764B1 (en) Adaptive stereo rendering to reduce motion sickness
US11006042B2 (en) Imaging device and image processing method
KR20140141419A (en) Display apparatus and control method thereof
JP6518645B2 (en) INFORMATION PROCESSING APPARATUS AND IMAGE GENERATION METHOD
JP2007102462A (en) Image composition method, system, terminal and image composition program
US20230071690A1 (en) Remote control system, remote operation apparatus, video image processing apparatus, and computer-readable medium
WO2019135289A1 (en) Information communication system and information communication method
JP2020145590A (en) Image processing system, image processing method, and program
CN107580157B (en) Image processing apparatus, image processing method, and program
JP2018078422A (en) Imaging apparatus
US10186016B2 (en) Image processing device, image display device, image processing system, and image processing method
JP2020109955A (en) Photographing device, photographing system, image processing method, and program
JP2018109740A (en) Display device, program, and method for display
US20220165021A1 (en) Apparatus, system, method, and non-transitory medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP