WO2019124273A1 - Automatic traveling system, automatic traveling management system, recording medium having automatic traveling management program recorded therein, automatic traveling management method, region determination system, region determination program, recording medium having region determination program recorded therein, region determination method, combine harvester control system, combine harvester control program, recording medium having combine harvester control program recorded therein, and combine harvester control method - Google Patents

Automatic traveling system, automatic traveling management system, recording medium having automatic traveling management program recorded therein, automatic traveling management method, region determination system, region determination program, recording medium having region determination program recorded therein, region determination method, combine harvester control system, combine harvester control program, recording medium having combine harvester control program recorded therein, and combine harvester control method Download PDF

Info

Publication number
WO2019124273A1
WO2019124273A1 PCT/JP2018/046182 JP2018046182W WO2019124273A1 WO 2019124273 A1 WO2019124273 A1 WO 2019124273A1 JP 2018046182 W JP2018046182 W JP 2018046182W WO 2019124273 A1 WO2019124273 A1 WO 2019124273A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling
area
combine
field
travel
Prior art date
Application number
PCT/JP2018/046182
Other languages
French (fr)
Japanese (ja)
Inventor
阪口和央
佐野友彦
吉田脩
中林隆志
丸尾賢
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017242047A external-priority patent/JP6824149B2/en
Priority claimed from JP2017242048A external-priority patent/JP6910283B2/en
Priority claimed from JP2017245310A external-priority patent/JP6937681B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to KR1020207013203A priority Critical patent/KR20200096497A/en
Priority to CN201880074148.6A priority patent/CN111386030B/en
Publication of WO2019124273A1 publication Critical patent/WO2019124273A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • B60Y2200/221Tractors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • B60Y2200/222Harvesters

Definitions

  • the present invention relates to an automatic travel system for managing automatic travel of a harvester for harvesting agricultural products in a field.
  • the present invention relates to an area determination system that calculates a work target area in a field.
  • the present invention also relates to a combine control system for controlling a combine having a reaping device for reaping a field crop in the field.
  • the traveling direction of the harvester is recorded. Then, by the automatic traveling based on the recorded orientation, the harvest traveling in the uncut area in the field is performed.
  • Patent Document 1 describes the invention of a harvester ("Combine” in Patent Document 1) that travels automatically. In a harvesting operation using this harvesting machine, a worker manually operates the harvesting machine at the beginning of the harvesting operation and performs harvesting traveling so as to go around the outer peripheral part in the field.
  • the traveling direction of the harvester is recorded. Then, by the automatic traveling based on the recorded orientation, the harvest traveling in the uncut area in the field is performed.
  • Patent Document 2 describes the invention of a combine having a reaping device for reaping a field crop in a field.
  • the combine is configured to perform field harvesting operations by automatic travel.
  • the traveling path of the harvester tends to be complicated while traveling around the outer peripheral portion in the field. And if the traveling locus of the harvester while traveling round the outer peripheral part in the field is complicated, the calculation accuracy of the outer shape of the second region tends to be low.
  • An object of the present invention is to provide an automatic travel system that facilitates automatic travel on an inner circumferential portion in a field.
  • the shape of the work target area is calculated based on the traveling locus of the harvester in the circumferential traveling at the outer peripheral portion in the field, if the traveling locus is complicated, the shape of the operation target area calculated is complicated It tends to be.
  • An object of the present invention is to provide a region determination system capable of calculating the shape of a work target region as a relatively simple form.
  • Patent document 2 does not describe in detail the method of the direction change when the combine performs a direction change in order to cut off the grain casserole of the corner in the uncut area of a field.
  • An object of the present invention is to provide a combine control system that can prevent the combine from treading on the unstacked area of the field crop and can easily change the direction of the combine smoothly.
  • the solution means corresponding to the problem [1] is as follows.
  • the feature of the present invention is an automatic running of a harvester for harvesting crops in a field by a first harvest run including a harvest run on the outer periphery of the field and a second harvest run performed after the first harvest run.
  • An automatic traveling system for managing comprising: an area setting unit which sets an inner side of a first area which is an area which has been harvested by the first harvest traveling as a second area; and the second set by the area setting unit The traveling of the harvester is controlled so that the second harvest traveling is performed by the inner traveling route calculation unit which calculates the inner traveling route which is the traveling route in the two areas, and the automatic traveling based on the inner traveling route.
  • a first travel information generation unit that generates first travel information that is information indicating a travel route or a travel position for the vehicle; and the middle travel ratio is divided into the first travel information generated by the first travel information generation unit; It is to include middle traveling information, which is information indicating a traveling route or traveling position for traveling.
  • the first travel information is generated based on the field external shape data acquired by the data acquisition unit.
  • the first travel information includes middle travel information, which is information indicating a travel route or travel position for middle travel.
  • the split travel information is generated according to the external shape of the field. Therefore, even if the external shape of the field is relatively complex, it is possible to realize a configuration in which the traveling route or traveling position for mid-division traveling is calculated so that the traveling locus of the harvester in the first harvest traveling becomes simple. .
  • the outer shape of the second region can be accurately calculated, and the inner circumferential traveling route can be appropriately calculated.
  • automatic travel in the inner circumference part in a field can be appropriately performed.
  • the traveling control unit controls the traveling of the harvester based on the split travel information so that the split travel is performed by automatic travel in the first harvest traveling. is there.
  • the split travel is performed by automatic travel. Therefore, it is easy to avoid a situation in which the traveling route or traveling position for mid-division traveling indicated by the mid-division traveling information deviates from the actual traveling route or traveling position.
  • the display device displays the traveling route or traveling position for the middle division traveling based on the middle division traveling information.
  • the worker in the case where the split travel is performed by the automatic travel, the worker can grasp the travel route or the travel position where the split travel is scheduled to be performed. Therefore, when the split travel is being performed by the automatic travel, it is possible to check whether the split travel is properly performed as planned.
  • middle division traveling when middle division traveling is performed by manual traveling, the operator can perform appropriate middle division traveling by performing middle division traveling according to the display on the display device.
  • the data acquisition unit acquires the field outline data from a work vehicle other than the harvester.
  • the work vehicle can generate the field outline data.
  • the data acquisition unit can acquire the field external shape data generated by the work vehicle other than the harvester. This makes it possible to effectively use the field external shape data generated by the work vehicle other than the harvester.
  • the management server which stores the field external shape data is provided, and the data acquisition unit acquires the field external shape data from the management server.
  • the field external shape data is stored in the management server. Therefore, if the field outline is calculated only once and the calculation result is stored as the field outline data in the management server, the field outline data can be used repeatedly. That is, it is possible to avoid the need to calculate the field outline every time the harvesting operation is performed.
  • the first traveling information generation unit is configured to travel for the middle division traveling when the external appearance determining unit determines that the external shape of the field is a shape having the recessed portion;
  • the first travel information is generated such that the top portion of the recess is included in the route or travel position.
  • the external shape of the field is a shape having a recessed portion
  • the traveling path of the harvester Tend when traveling along the entire length of the recessed portion along the border line of the field when the harvester travels around the outer peripheral portion in the field, the traveling path of the harvester Tend to be complicated.
  • the traveling route or traveling position for middle-division traveling includes the apex portion of the recessed portion. Therefore, if the harvester travels based on the first travel information generated in the above configuration, the harvester travels along the perimeter of the field along the border of the field, and the harvester travels along the border of the field, When it reaches, middle division traveling will be performed from that point.
  • another feature of the present invention is a harvester for harvesting crops in a field according to a first harvest run including a harvest run on the periphery of the field and a second harvest run performed after the first harvest run.
  • An automatic travel management program for managing the automatic travel of the vehicle, wherein an area setting function of setting the inside of the first area which is an area harvested by the first harvest travel as the second area, and the area setting function The harvesting is performed such that the second harvest traveling is performed by an inner traveling route calculation function of calculating an inner traveling route which is a traveling route in the set second region, and an automatic traveling based on the inner traveling route.
  • Running control function for controlling the running of the aircraft, a data acquisition function for acquiring field external shape data which is data indicating the external shape of a field, and the field external shape data acquired by the data acquisition function And a first travel information generation function of generating first travel information, which is information indicating a travel route or travel position for the first crop travel, based on the computer system.
  • the first traveling information generated by the first traveling information generation function includes middle traveling information which is information indicating a traveling route or traveling position for middle traveling.
  • another feature of the present invention is a harvester for harvesting crops in a field according to a first harvest run including a harvest run on the periphery of the field and a second harvest run performed after the first harvest run.
  • a recording medium recording an automatic travel management program for managing automatic travel of the vehicle, wherein the automatic travel management program uses the inside of the first area which is the area already harvested by the first harvest traveling as a second area
  • a traveling control function for controlling the traveling of the harvester so that the second harvest traveling is performed, and a data acquisition function for acquiring field external shape data, which is data indicating an outline of a field,
  • a first travel information generation function for generating first travel information which is information indicating a travel route or travel position for the first crop travel based on the field outline data acquired by the data acquisition function; The first travel
  • another feature of the present invention is a harvester for harvesting crops in a field according to a first harvest run including a harvest run on the periphery of the field and a second harvest run performed after the first harvest run.
  • An automatic travel management method for managing automatic travel of the vehicle wherein an area setting step of setting an inner side of a first area which is an area harvested by the first harvest travel as a second area, and the area setting step The harvesting such that the second harvest traveling is performed by an inner traveling route calculating step of calculating an inner traveling route which is a traveling route in the set second region, and an automatic traveling based on the inner traveling route.
  • a running control step for controlling the running of the aircraft a data obtaining step for obtaining field outer shape data which is data indicating the outer shape of the field, and the data obtaining step Generating first travel information, which is information indicating a travel route or travel position for the first crop travel based on the field external shape data, and generating the first travel information
  • the first traveling information generated by the step includes the traveling traveling information or traveling position for traveling traveling in a middle traveling, which is information including traveling traveling information for traveling traveling in middle traveling.
  • a feature of the present invention is that the harvester is traveling while harvesting crops based on a satellite positioning module that outputs positioning data indicating the vehicle position of the harvester and the positioning data output by the satellite positioning module.
  • An area calculation unit that calculates an area on the outer circumference side of the field as an outer circumference area and calculates an inner side of the outer circumference area as a work target area; and the area calculation section calculates the shape of the work target area as a polygon It is configured to be calculated as
  • the shape of the work target area is calculated as a polygon. Therefore, the shape of the work target area can be calculated as a relatively simple shape.
  • the information processing apparatus further includes: a notification unit that notifies the shape of the work target area calculated by the area calculation unit; and an operation input unit that receives an artificial operation input. It is preferable to change the number of sides of the polygon based on the artificial operation input input to.
  • a configuration is conceivable in which the travel route in the work target area is calculated based on the shape of the work target area.
  • the calculated shape of the work target area does not match the actual shape, the calculated travel route tends to be inappropriate.
  • harvest traveling in the work target area will be inefficient, uncut and the like will occur.
  • the shape of the work target area calculated by the area calculation unit is notified by the notification unit. Therefore, the worker can check whether the calculated shape of the work target area matches the actual shape.
  • the operator can change the number of sides of the calculated work target area by operating the operation input unit.
  • the calculated shape of the work target area can be changed to conform to the actual shape.
  • a distance calculation unit is provided for calculating a distance between the outer peripheral boundary of the outer peripheral region and the inner peripheral boundary of the outer peripheral region, and the distance calculator calculates the distance.
  • the area calculation unit preferably increases the number of sides of the polygon.
  • the outer peripheral area can be used as a space for the harvester to turn when the harvest run is performed in the work target area. Further, the outer peripheral area can also be used as a space for movement when moving to the discharge place of the harvest or once moving to the fuel supply place after the harvest traveling in the work target area is once finished.
  • the outer circumference area is narrow. As a result, it becomes difficult to use the outer peripheral area.
  • the region calculation unit calculates Increase the number of sides of the work area. As a result, at a point where the number of sides increases, the distance between the outer peripheral boundary line in the outer peripheral region and the inner peripheral boundary line in the outer peripheral region becomes long. As a result, the outer peripheral area can be expanded.
  • a distance calculating unit that calculates a distance between the outer peripheral boundary of the outer peripheral region and the inner peripheral boundary of the outer peripheral region, and the distance calculated by the distance calculating unit. It is preferable that the warning unit further includes a warning unit that urges additional circular travel in the area on the outer periphery side of the agricultural field when the distance is shorter than the predetermined distance.
  • the outer peripheral area can be used as a space for the harvester to turn when the harvest run is performed in the work target area. Further, the outer peripheral area can also be used as a space for movement when moving to the discharge place of the harvest or once moving to the fuel supply place after the harvest traveling in the work target area is once finished.
  • the outer circumference area is narrow, so the outer circumference area is used as described above. It becomes difficult.
  • the warning unit when the distance between the outer peripheral boundary in the outer peripheral region and the inner peripheral boundary in the outer peripheral region is shorter than a predetermined distance, the warning unit performs the outer periphery of the field. You will be prompted to make additional round trips in the side area. Therefore, when the outer peripheral area is narrow, the worker can surely recognize that it is necessary to perform additional round trip to expand the outer peripheral area.
  • another feature of the present invention is the area determination program, wherein the harvester produces the crop based on the positioning data output by the satellite positioning module that outputs the positioning data indicating the vehicle position of the harvester.
  • the area calculation function of calculating the area on the outer circumference side of the crop field traveling while harvesting as the outer circumference area and calculating the inner side of the outer circumference area as the work target area is configured to be realized by the computer.
  • the function is to calculate the shape of the work target area as a polygon.
  • another feature of the present invention is a field where the harvester travels while harvesting crops based on the positioning data output by the satellite positioning module that outputs the positioning data indicating the vehicle position of the harvester.
  • a recording medium storing an area determination program for causing a computer to realize an area calculation function of calculating an area on the outer circumference side of the area as an outer circumference area and calculating an inner side of the outer circumference area as a work target area; An area determination program for calculating the shape of the work target area as a polygon is recorded.
  • Another feature of the present invention is a method of determining an area, wherein the harvester produces an agricultural product based on the positioning data output by a satellite positioning module that outputs positioning data indicating the vehicle position of the harvester.
  • a feature of the present invention is a combine control system for controlling a combine having a reaping device for reaping field crop in a field, comprising a direction change control unit for controlling the direction change of the combine, in an uncut area of the field
  • the direction change control unit is a direction changing method that includes a reaping and turning operation that turns while reaping the in-plant area reed. It controls the combine so that a change of direction of the combine is performed by a change of direction.
  • this cutting direction special direction change includes a reaping and turning operation which is turned while reaping the crop.
  • the combine turns into the uncut area by the reaping and turning operation in the change of direction. That is, in the change of direction, since the combine enters the uncut area while harvesting the planted straw, it is possible to prevent the combine from stepping on the planted paddy in the uncut area.
  • the space available for turning is wider than in the case of controlling the combine so that the combine does not enter the uncut area during turning. This makes it easy to change the direction of the combine smoothly.
  • the present invention it is possible to prevent the combine from treading on the unstacked area of the field crop, and it is easy to smoothly change the direction of the combine.
  • the corner part special direction change is performed after a first reverse operation for moving backward to a position behind the corner part in the advancing direction of the combine before the direction change, and after the first reverse operation.
  • the first reverse operation is performed prior to the reaping and turning operation. This makes it easy to prevent the combine from crossing the border of the field due to the reaping and turning motion.
  • a determination unit for determining the direction change method of the combine is provided, and the direction change control unit is configured to control the direction change of the combine according to the determination content by the determination unit,
  • the determining unit changes the direction of the combine performed to reap the grain of the erection of the corner. It is decided to be carried out by means of special direction change, and the determination unit determines the planted grain weir of the corner if the distance between the corner and the boundary of the field is greater than or equal to the predetermined distance. It is preferable to determine that the change in direction of the combine to be carried out for harvesting is performed by a different direction change method than the corner direction change in direction.
  • the corner for the special direction change is performed to secure a wide space for the direction change while ensuring Turn around.
  • the direction change can be performed even if it is a direction change method different from the corner direction specific direction change.
  • the direction change of a combine is performed by the direction change method different from the corner special direction change. . Therefore, in the case where the distance between the corner and the boundary of the field is relatively long, it is possible to realize a configuration in which the direction change can be performed by a method in which the direction change can be made faster than the corner direction change.
  • the corner special direction change is surely performed by turning the corner for the corner and the field.
  • the distance to the boundary is relatively long, it is possible to realize a configuration capable of performing a quick turn by a turning method different from the corner turning.
  • another feature of the present invention is a combine control program for controlling a combine having a reaping device for reaping field crop in a field, which causes a computer to realize a direction change control function for controlling the change in direction of the combine.
  • the turning control function is configured to turn while cutting the planted grain when the combine makes a turn to harvest the planted grain in the corner of the field in the uncut area of the field. It is to control the combine so that the direction change of the combine is performed by the corner direction special direction change which is a direction change method including a turning operation.
  • another feature of the present invention is a recording medium recording a combine control program for controlling a combine having a reaping device for reaping a field crop in the field, wherein the combine control program is configured to change the direction of the combine.
  • the computer is configured to cause the computer to realize a direction change control function to be controlled, and when the combine performs direction change in order to reap cropped rice straw at the corners of the uncut area of the field, the direction change control function is
  • a combine control program for controlling the combine so as to change the direction of the combine by special direction change for the corner which is a direction change method including a reaping and turning motion that turns while harvesting the planted rice straw is recorded It is.
  • another feature of the present invention is a combine control method for controlling a combine having a reaper for harvesting a field crop in a field, comprising a direction change control step for controlling the direction change of the combine, wherein
  • the direction change control step when the combine performs a direction change in order to reap the planted grain weirs in the corner in the uncut area, the direction change control step is a direction change method including a reaping and turning motion that turns while reaping the weed It controls the combine so that the turn of the combine is performed by the corner turn.
  • FIG. 17. It is a figure which shows 1st Embodiment (It is the same as the following until FIG. 17.), and is a general view of an automatic travel system. It is a left view of a combine. It is a block diagram showing composition of an automatic run system. It is a figure which shows the 1st 1st crop driving
  • the automatic travel system A includes various work vehicles W and a management server 2.
  • the various work vehicles W and the management server 2 are configured to be able to communicate with each other.
  • the various work vehicles W include a general-purpose combine 1 (corresponding to “a harvester” according to the present invention), a tractor 5, and a rice transplanter 6.
  • the combine 1 includes a crawler-type traveling device 11, a driving unit 12, a threshing device 13, a grain tank 14, a harvesting device H, a conveying device 16, a grain discharging device 18, and a satellite positioning module 80.
  • a crawler-type traveling device 11 a driving unit 12, a threshing device 13, a grain tank 14, a harvesting device H, a conveying device 16, a grain discharging device 18, and a satellite positioning module 80.
  • the traveling device 11 is provided at the lower portion of the combine 1. Combine 1 is self-propelled by traveling device 11.
  • the operating unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11.
  • An operator who monitors the operation of the combine 1 can ride on the operation unit 12. The worker may monitor the operation of the combine 1 from the outside of the combine 1.
  • the grain discharging device 18 is provided on the upper side of the grain tank 14.
  • the satellite positioning module 80 is attached to the upper surface of the driver 12.
  • the harvesting device H is provided at the front of the combine 1.
  • the transport device 16 is provided on the rear side of the harvesting device H.
  • the harvesting apparatus H has a reaper 15 and a reel 17.
  • the reaper unit 15 reaps the crop of the field in the field.
  • the reel 17 scrapes the cropped cereals to be harvested while being rotationally driven.
  • the harvester H harvests the field crop (corresponding to the "agricultural crop” according to the present invention). Then, the combine 1 can carry out a harvest run traveling by the traveling device 11 while harvesting the grain of the field by the harvesting device H.
  • the cropped rice bran that has been clipped by the cropping unit 15 is transported by the transport device 16 to the threshing device 13.
  • the reaping grain is threshed.
  • the grains obtained by the threshing process are stored in a grain tank 14.
  • the grains stored in the grain tank 14 are discharged to the outside by the grain discharging device 18 as needed.
  • a communication terminal 4 (corresponding to a “display device” according to the present invention) is disposed.
  • the communication terminal 4 is configured to be able to display various information.
  • the communication terminal 4 is fixed to the operation unit 12.
  • the present invention is not limited to this, and the communication terminal 4 may be configured to be attachable to and detachable from the operation unit 12, and the communication terminal 4 may be located outside the machine of the combine 1 .
  • the combine 1 includes a control unit 20.
  • the control unit 20 includes a data acquisition unit 21, an outer shape determination unit 22, an own vehicle position calculation unit 23, an area setting unit 24, an inner circumference traveling route calculation unit 25, a traveling control unit 26 and a first traveling information generation unit 27.
  • a data acquisition unit 21 an outer shape determination unit 22
  • an own vehicle position calculation unit 23 an area setting unit 24
  • an inner circumference traveling route calculation unit 25 a traveling control unit 26 and a first traveling information generation unit 27.
  • Combine 1 is comprised so that the grain of a field may be harvested by 1st harvest driving
  • the first harvest run includes the harvest run at the outer peripheral portion Q in the field.
  • the second harvest run is performed after the first harvest run.
  • the outer peripheral part Q of 1st grain field G1 (equivalent to the "field" which concerns on this invention) is shown.
  • the traveling control unit 26 controls the traveling of the combine 1 so that the first harvesting traveling and the second harvesting traveling are performed by the automatic traveling. Then, the automatic traveling system A manages automatic traveling of the combine 1.
  • the automatic traveling system A combines the first crop traveling including the crop traveling on the outer circumference portion Q in the field and the second harvesting travel performed after the first harvest traveling, the combine 1 to harvest the crop in the field Manage automatic driving of
  • the data acquisition unit 21 is configured to be able to communicate with the management server 2, the tractor 5, and the rice transplanter 6.
  • Field external shape data is stored in the management server 2.
  • Field external shape data is data indicating the external shape of a field.
  • the tractor 5 and the rice transplanter 6 are comprised so that generation
  • the data acquisition unit 21 is configured to acquire field external shape data from the management server 2, the tractor 5, and the rice transplanter 6.
  • the automatic travel system A includes the data acquisition unit 21 that acquires the field external shape data, which is data indicating the external shape of the field.
  • the automatic travel system A also includes a management server 2 that stores field external shape data. Then, the data acquisition unit 21 acquires the field external shape data from the work vehicle W different from the combine 1. Further, the data acquisition unit 21 acquires field external shape data from the management server 2.
  • the field external shape data acquired by the data acquisition unit 21 is sent to the external shape determination unit 22 and the first travel information generation unit 27.
  • the outer shape determination unit 22 determines whether or not the outer shape of the field has a shape having a recessed portion P, based on the field outer shape data received from the data acquisition unit 21.
  • the recessed portion P is a portion which is recessed from the outer peripheral side to the inner peripheral side of the field in the outer shape of the field.
  • the outline of the first grain field G1 shown in FIG. 4 is a shape having a recess P.
  • the determination result by the outer shape determination unit 22 is sent to the first travel information generation unit 27.
  • the automatic traveling system A based on the field external shape data acquired by the data acquisition unit 21, the automatic traveling system A has a shape having a recess P in which the outline of the field is recessed from the outer peripheral side to the inner peripheral side of the field. And an outer shape determination unit 22 that determines whether or not.
  • the satellite positioning module 80 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 3, the satellite positioning module 80 sends positioning data to the vehicle position calculation unit 23 based on the received GPS signal.
  • GPS Global Positioning System
  • the vehicle position calculation unit 23 calculates position coordinates of the combine 1 with time based on the positioning data received from the satellite positioning module 80. As shown in FIG. 3, position coordinates of the combine 1 calculated over time are sent to the area setting unit 24, the traveling control unit 26, and the first traveling information generating unit 27.
  • the region setting unit 24 is configured to set the inside of the first region R1 as a second region R2 based on the temporal position coordinates of the combine 1 received from the vehicle position calculation unit 23.
  • the first region R1 is a region that has been harvested by the first harvest run.
  • the region setting unit 24 calculates the traveling locus of the combine 1 in the first harvest traveling based on the temporal position coordinate of the combine 1 received from the vehicle position calculation unit 23. Further, the region setting unit 24 calculates a first region R1 based on the calculated traveling locus of the combine 1. Then, the region setting unit 24 calculates the second region R2 based on the calculated first region R1. The area setting unit 24 sets the second area R2 by this method.
  • a first travel path FL which is a travel path of the combine 1 for the first crop travel in the first grain field G1 is indicated by an arrow.
  • the first grain field G1 is in the state shown in FIG. That is, the area which has been harvested by the first harvest run is the first area R1.
  • the region setting unit 24 sets the inside of the first region R1 as a second region R2.
  • the automatic travel system A includes the area setting unit 24 which sets the inside of the first area R1 which is the area that has been harvested by the first harvest traveling as the second area R2.
  • the contents set by the area setting unit 24 are sent to the inner traveling route calculating unit 25.
  • the inner traveling route calculating unit 25 calculates the inner traveling route LIC based on the setting content received from the region setting unit 24.
  • the inner circumferential traveling route LIC is a traveling route in the second region R2.
  • the region setting unit 24 calculates the outer shape of the second region R2 based on the traveling locus of the combine 1 in the first harvest traveling. That is, the setting contents by the area setting unit 24 include the outer shape of the second area R2. Then, the inner traveling route calculating unit 25 calculates the inner traveling route LIC based on the outer shape of the second region R2.
  • the inner traveling route calculating unit 25 calculates the inner traveling route LIC as shown in FIG.
  • the inner circumferential traveling paths LIC are a plurality of parallel lines parallel to each other.
  • the inner traveling route LIC calculated by the inner traveling route calculation unit 25 is sent to the traveling control unit 26.
  • the automatic traveling system A includes the inner traveling route calculation unit 25 that calculates the inner traveling route LIC, which is the traveling route in the second region R2 set by the region setting unit 24.
  • the travel control unit 26 receives the position coordinates of the combine 1 received from the vehicle position calculation unit 23 and the inner traveling route LIC received from the inner traveling route calculation unit 25; Control the automatic travel of the combine 1 based on More specifically, the traveling control unit 26 controls the traveling of the combine 1 so that the combine 1 automatically travels along the inner traveling route LIC.
  • the automatic travel system A includes the travel control unit 26 that controls the travel of the combine 1 so that the second harvest travel is performed by the automatic travel based on the inner circumferential travel route LIC.
  • the first travel information generation unit 27 generates first travel information based on the field external shape data received from the data acquisition unit 21.
  • the first travel information is information indicating a travel path or travel position for the first harvest travel.
  • the first travel information generated by the first travel information generation unit 27 includes middle division travel information.
  • Mid-division travel information is information indicating a travel route or travel position for mid-division travel.
  • the split travel is a harvest travel which is performed to divide the uncut area in the field.
  • a first travel path FL which is a travel path of the combine 1 for the first crop travel in the first grain field G1 is indicated by an arrow.
  • the first traveling information generation unit 27 In the harvesting work in the first grain field G1, the first traveling information generation unit 27 generates information indicating the first traveling path FL.
  • the first travel route FL is a travel route that makes three rounds in the counterclockwise direction from the point located at the lower right in FIG. 4. That is, in the present embodiment, the first traveling information generation unit 27 generates information indicating the first traveling route FL, which is a traveling route for the first harvest traveling.
  • the first traveling route FL includes three midway routes LM which are traveling routes for mid-division traveling. That is, the first travel information generated by the first travel information generation unit 27 in the harvesting operation in the first grain field G1 includes information indicating the split route LM.
  • the uncut area in the first grain field G1 is divided into two.
  • the automatic traveling system A Based on the field outline data acquired by the data acquisition unit 21, the automatic traveling system A generates the first traveling information, which is information indicating the traveling route or traveling position for the first harvest traveling.
  • a travel information generation unit 27 is provided. Further, the first traveling information generated by the first traveling information generation unit 27 includes middle traveling information which is information indicating a traveling route or traveling position for middle traveling.
  • the first travel information generation unit 27 determines that the traveling path or traveling position for the split travel is the recessed portion P The first travel information is generated such that the top portion Pt is included.
  • the outer shape of the first grain field G1 shown in FIG. 4 is a shape having a recess P. Therefore, in the harvesting operation in the first grain field G1, the outer shape determination unit 22 determines that the outer shape of the first grain field G1 has a shape having a recessed portion P. Then, the determination result by the outer shape determination unit 22 is sent to the first travel information generation unit 27.
  • the first traveling information generation unit 27 that receives the determination result generates the first traveling information so that the top portion Pt of the recessed portion P is included in the traveling route or traveling position for the mid-division traveling.
  • the inclining path LM shown in FIG. 4 includes the top portion Pt of the recess P.
  • the first travel information generated by the first travel information generation unit 27 is sent to the travel control unit 26 and the communication terminal 4.
  • the travel control unit 26 receives the position coordinates of the combine 1 received from the vehicle position calculation unit 23 and the first travel information received from the first travel information generation unit 27. Based on the automatic travel of the combine 1 is controlled. More specifically, the traveling control unit 26 controls traveling of the combine 1 so that the combine 1 automatically travels through the traveling route or traveling position indicated by the first traveling information.
  • the traveling control unit 26 controls the traveling of the combine 1 based on the middle traveling information so that the middle traveling is performed by the automatic traveling in the first harvest traveling.
  • the travel control unit 26 travels the combine 1 so that the combine 1 automatically travels along the first travel path FL Control.
  • the traveling control unit 26 controls the traveling of the combine 1 so that harvest traveling along the split route LM is performed by automatic traveling.
  • the communication terminal 4 is configured to display a traveling route or a traveling position for the first harvest traveling based on the first traveling information received from the first traveling information generation unit 27. At this time, in particular, the communication terminal 4 displays the traveling route or traveling position for middle-division traveling based on the middle-division traveling information included in the first traveling information.
  • the communication terminal 4 receives the first travel information received from the first travel information generating unit 27 as shown in FIG.
  • the indicated first travel route FL is displayed.
  • the communication terminal 4 displays the split route LM on the basis of the split travel information included in the first travel information.
  • the automatic travel system A includes the communication terminal 4 that displays the travel route or the travel position for middle-division travel based on the middle-division travel information.
  • the data acquisition unit 21 acquires field external shape data from any of the management server 2, the tractor 5, and the rice transplanter 6.
  • the field external shape data acquired by the data acquisition unit 21 is sent to the external shape determination unit 22 and the first travel information generation unit 27.
  • the outline determination unit 22 determines whether the outline of the first grain field G1 has a shape having a recess P. As shown in FIG. 4, the outer shape of the first grain field G1 is a shape having a recess P. Therefore, it is determined by the outer shape determination unit 22 that the outer shape of the first grain field G1 is a shape having the recessed portion P. The determination result is sent to the first travel information generation unit 27.
  • the first travel information generation unit 27 that receives the determination result generates first travel information indicating the first travel path FL, as shown in FIG. 4.
  • the first travel route FL is a travel route that makes three rounds in the counterclockwise direction from the point located at the lower right in FIG. 4. Further, as shown in FIG. 4, the first traveling route FL includes three midway routes LM, which are traveling routes for mid-division traveling. And since the external shape of the 1st grain field G1 is a shape which has concave part P, top part Pt of concave part P is contained in middle part route LM.
  • the portions other than the split route LM pass through the outer peripheral portion Q in the first grain field G1. .
  • the first travel information generated by the first travel information generation unit 27 is sent to the travel control unit 26 and the communication terminal 4. Then, as shown in FIG. 10, the communication terminal 4 displays the first traveling route FL indicated by the first traveling information received from the first traveling information generation unit 27.
  • the traveling control unit 26 receives the first traveling information, automatic traveling of the combine 1 is started.
  • the combine 1 is controlled by the travel control unit 26 so as to automatically travel along the first travel path FL.
  • the first harvest traveling is performed.
  • the portion where the first harvest run is performed is harvested. Also, the area inside this harvested area is left uncut. Moreover, as shown in FIG.4 and FIG.5, when the combine 1 carries out a harvest driving along the middle route LM, the uncut area in the 1st grain field G1 is divided into two.
  • the region setting unit 24 calculates the traveling locus of the combine 1 in the first harvest traveling based on the temporal position coordinates of the combine 1 in the first harvest traveling. Furthermore, the region setting unit 24 calculates, as the first region R1, a region that has been harvested by the first harvest traveling based on the calculated traveling trajectory of the combine 1. Then, the region setting unit 24 calculates the inside of the calculated first region R1 as the second region R2. The area setting unit 24 sets the second area R2 by this method.
  • the setting content by the area setting unit 24 is sent to the inner traveling route calculating unit 25.
  • the contents set by the area setting unit 24 include the outer shape of the second area R2.
  • the inner traveling route calculating unit 25 calculates the inner traveling route LIC based on the outer shape of the second region R2.
  • the inner traveling routes LIC calculated at this time are a plurality of parallel lines parallel to each other.
  • the inner traveling route LIC calculated by the inner traveling route calculation unit 25 is sent to the traveling control unit 26.
  • the traveling control unit 26 receives the inner traveling route LIC
  • the combine 1 is controlled by the traveling control unit 26 so as to automatically travel along the inner traveling route LIC shown in FIG.
  • a second harvest run is performed by this automatic run.
  • the 1st grain field G1 will be in the state shown in FIG.
  • the first traveling information generation unit 27 generates the first crop shown in FIGS. 4 to 6 based on the positional coordinates of the combine 1 in the first harvest traveling and the second harvest traveling shown in FIGS. 4 to 6 over time.
  • the traveling locus of the combine 1 in traveling and second harvest traveling is calculated.
  • the first travel information generation unit 27 calculates an area that has already been harvested at the time of FIG. 7 based on the calculated travel locus of the combine 1.
  • the first travel information generating unit 27 calculates the uncut area at the time of FIG. 7 based on the area that has already been calculated as described above and the field external shape data. Furthermore, the first travel information generation unit 27 generates first travel information indicating a first travel path FL indicated by an arrow in FIG. 7 based on the calculated uncut area. As shown in FIG. 7, the first travel route FL generated at this time is a travel route that makes three rounds in the counterclockwise direction from the point located at the upper right of FIG. 7 in the uncrop area.
  • running route FL shown by the 1st driving information generated at this time except the part which touches the field which has already been harvested, it passes through the outer peripheral part Q in the 1st grain field G1. There is.
  • the first traveling information is sent to the traveling control unit 26 and the communication terminal 4. Then, the communication terminal 4 again displays the first travel route FL indicated by the first travel information received from the first travel information generation unit 27 (not shown).
  • the combine 1 is controlled by the traveling control unit 26 so as to automatically travel along the first traveling path FL shown in FIG. 7. By this automatic traveling, the second first harvest traveling is performed.
  • the portion where the second first harvest run is performed is harvested. Also, the area inside this harvested area is left uncut.
  • the area setting unit 24 sets a first area R1 and a second area R2, as shown in FIG. Then, as shown in FIG. 9, the inner traveling route calculation unit 25 calculates the inner traveling route LIC based on the outer shape of the second region R2 shown in FIG. 8.
  • the inner traveling routes LIC calculated at this time are a plurality of parallel lines parallel to each other.
  • the combine 1 is controlled by the traveling control unit 26 so as to automatically travel along the inner traveling route LIC shown in FIG. 9 as in the first second harvest traveling.
  • a second second harvest run is performed by this automatic run. And if this 2nd crop run is completed, the whole 1st grain field G1 will be harvested.
  • the data acquisition unit 21 acquires field external shape data from any of the management server 2, the tractor 5, and the rice transplanter 6.
  • the field external shape data acquired by the data acquisition unit 21 is sent to the external shape determination unit 22 and the first travel information generation unit 27.
  • the outline determination unit 22 determines whether the outline of the second grain field G2 has a shape having a recess P. As shown in FIG. 11, the outer shape of the second grain field G2 does not have a shape having a recess P. Therefore, it is determined by the outer shape determination unit 22 that the outer shape of the second grain field G2 is not a shape having the recessed portion P. The determination result is sent to the first travel information generation unit 27.
  • the first travel information generation unit 27 that receives the determination result generates first travel information indicating a first travel route FL indicated by an arrow in FIG.
  • the first travel route FL is a travel route that makes three rounds in the counterclockwise direction along the outer shape of the second grain field G2 from the point located at the lower right in FIG. And contains.
  • the split route LM extends in the vertical direction in FIG. 11 in the central portion of the second grain field G2.
  • portions other than the split route LM pass through the outer peripheral portion Q in the second grain field G2 .
  • the first travel information generated by the first travel information generation unit 27 is sent to the travel control unit 26 and the communication terminal 4. Then, as shown in FIG. 13, the communication terminal 4 displays the first traveling route FL indicated by the first traveling information received from the first traveling information generation unit 27.
  • the traveling control unit 26 receives the first traveling information, automatic traveling of the combine 1 is started.
  • the combine 1 is controlled by the travel control unit 26 so as to automatically travel along the first travel path FL shown in FIG. By this automatic traveling, the first harvest traveling is performed.
  • the portion where the first harvest run is performed is harvested. Also, the area inside this harvested area is left uncut. Moreover, as shown in FIG.11 and FIG.12, when the combine 1 carries out a harvest driving along the middle route LM, the uncut area in the 2nd grain field G2 is divided into two.
  • the region setting unit 24 calculates the traveling locus of the combine 1 in the first harvest traveling based on the temporal position coordinates of the combine 1 in the first harvest traveling. Furthermore, the region setting unit 24 calculates, as the first region R1, a region that has been harvested by the first harvest traveling based on the calculated traveling trajectory of the combine 1. Then, the region setting unit 24 calculates the inside of the calculated first region R1 as the second region R2. The area setting unit 24 sets the second area R2 by this method.
  • the area setting unit 24 sets two second areas R2.
  • the inner traveling route LIC is calculated, and the second harvest traveling is performed by automatic traveling. Then, when the second harvest run is completed, the entire second grain field G2 is harvested.
  • the outer peripheral portion Q is shown. In the actual communication terminal 4, the outer peripheral portion Q may be displayed or may not be displayed as described above.
  • the first travel information includes middle travel information, which is information indicating a travel route or travel position for middle travel.
  • mid-division travel information is generated according to the external shape of the field. Therefore, even if the external shape of the field is relatively complex, it is possible to realize a configuration in which the traveling route or traveling position for mid-division traveling is calculated so that the traveling locus of combine 1 in the first harvest traveling becomes simple. .
  • the outer shape of the second region R2 can be accurately calculated, and the inner traveling route LIC can be appropriately calculated. And based on the computed inner circumference travel route LIC, automatic travel in the inner circumference portion in a field can be appropriately performed.
  • the first traveling information generation unit 27 generates, as the first traveling information, information indicating the first traveling route FL, which is a traveling route for the first harvest traveling.
  • the first traveling route FL includes a split route LM. That is, the first travel information generated by the first travel information generation unit 27 includes information indicating the split route LM.
  • FIG. 14 and FIG. 15 are diagrams showing the communication terminal 4 in the first alternative embodiment of the first embodiment.
  • the first travel information generation unit 27 generates information indicating the middle division location PM based on the field external shape data received from the data acquisition unit 21.
  • the middle division point PM is a traveling position for middle division traveling. That is, the information indicating the middle division location PM corresponds to the "middle division traveling information" according to the present invention.
  • the first travel information and the middle division travel information are the same.
  • the "first travel information” according to the present invention may be the same as the "mid-division travel information".
  • the communication terminal 4 displays the traveling position indicated by the first traveling information received from the first traveling information generation unit 27. More specifically, the communication terminal 4 displays the middle division point PM by a triangular symbol.
  • the field shown in FIG. 14 is the first grain field G1 described above. Moreover, the field shown by FIG. 15 is the above-mentioned 2nd grain field G2.
  • the first travel information generating unit 27 sets the first split information PM to the first point Pt of the recess P. Generate travel information.
  • the first running information generation unit 27 sets the first running information so that the middle split point PM is located at the central portion of the field. Generate
  • the first harvest run is completed. Then, as described in the above embodiment, the inner traveling route LIC is calculated, and the second harvest traveling is performed by the automatic traveling. Then, by performing the first harvest run and the second harvest run as many times as necessary, the entire field becomes harvested.
  • harvest travel on the outer periphery portion Q in the middle division travel and in the field may be performed by automatic travel.
  • the outer peripheral part Q is shown.
  • the outer peripheral portion Q may be displayed or may not be displayed as described above.
  • the first travel information generation unit 27 generates, as the first travel information, information indicating the travel route for the first harvest travel. Then, the first travel information generated by the first travel information generation unit 27 includes information indicating the split route LM.
  • FIG. 16 and FIG. 17 are diagrams showing the communication terminal 4 in the second alternative embodiment of the first embodiment.
  • the first traveling information generation unit 27 generates information indicating the band-shaped first traveling region FR based on the field external shape data received from the data acquisition unit 21.
  • the field shown in FIG. 16 is the first grain field G1 described above.
  • the field shown in FIG. 17 is the second grain field G2 described above.
  • the first travel area FR is indicated by hatching.
  • the first travel area FR is a travel position for the first harvest travel. That is, the information indicating the first travel area FR corresponds to the "first travel information" according to the present invention. As shown in FIG. 16, the first traveling area FR overlaps with the outer peripheral portion Q in the first grain field G1. Moreover, as shown in FIG. 17, 1st driving
  • the first traveling region FR includes a middle division region RM which is a traveling position for middle traveling. That is, in the second alternative embodiment, the first driving information generated by the first driving information generation unit 27 includes information indicating the middle split area RM. Further, the middle split area RM corresponds to “middle split travel information” according to the present invention.
  • the communication terminal 4 displays the traveling position indicated by the first traveling information received from the first traveling information generation unit 27. More specifically, the communication terminal 4 displays the first travel area FR including the middle split area RM in the form of a strip.
  • the first travel information generating unit 27 performs the first process such that the vertex portion Pt of the recess P is included in the middle split region RM. Generate travel information.
  • the first running information generation unit 27 sets the first running information so that the middle split area RM is located at the central portion of the field.
  • the harvest traveling in the outer peripheral portion Q in the field is carried out as in the above embodiment.
  • the first harvest run including Then, as described in the above embodiment, the inner traveling route LIC is calculated, and the second harvest traveling is performed by the automatic traveling. Then, by performing the first harvest run and the second harvest run as many times as necessary, the entire field becomes harvested.
  • harvest travel in the first travel area FR may be performed by automatic travel.
  • the outer peripheral part Q is shown.
  • the outer peripheral portion Q may be displayed or may not be displayed as described above.
  • the traveling device 11 may be a wheel type or a semi crawler type.
  • Field external shape data may be configured to be generated inside the combine 1.
  • the data acquisition unit 21 may be configured to acquire the field outline data generated inside the combine 1.
  • the first harvest traveling by the combine 1 may be performed by manual traveling.
  • the inner traveling routes LIC calculated by the inner traveling route calculation unit 25 are a plurality of parallel lines parallel to each other, but the present invention is not limited to this.
  • the inner circumferential traveling routes LIC calculated by the route calculation unit 25 may not be a plurality of parallel lines parallel to each other.
  • the inner circumferential traveling route LIC calculated by the inner circumferential traveling route calculation unit 25 may be a spiral traveling route.
  • the outer shape determination unit 22 may not be provided.
  • the first travel information generation unit 27 determines the recessed portion P in the travel path or travel position for mid-division travel.
  • the first travel information may be generated such that the top portion Pt of the second travel information is not included.
  • the automatic travel system A may not have the management server 2.
  • the communication terminal 4 may not be provided.
  • a part of the data acquisition unit 21, the external shape determination unit 22, the vehicle position calculation unit 23, the area setting unit 24, the inner circumference traveling route calculation unit 25, the traveling control unit 26, and the first traveling information generation unit 27 may be provided outside the combine 1 and may be provided, for example, in the management server 2.
  • the first travel route FL may be a straight route or a curved route.
  • the inner circumferential traveling route LIC may be a straight route or a curved route.
  • the program may be configured as an automatic travel management program that causes a computer to realize the function of each member in the above embodiment. Moreover, you may be comprised as a recording medium with which the automatic driving
  • FIGS. 18 to 29 a second embodiment of the present invention will be described with reference to FIGS. 18 to 29.
  • the direction of arrow F shown in FIG. 18 is “front”, and the direction of arrow B is “rear” unless otherwise noted.
  • the direction of the arrow U shown in FIG. 18 is “up”, and the direction of the arrow D is “down”.
  • the ordinary type combine 101 (corresponding to “the harvester” according to the present invention) is a crawler-type traveling device 111, an operation unit 112, a threshing device 113, a grain tank 114, a harvesting device H, A carrier device 116, a grain discharging device 118, and a satellite positioning module 180 are provided.
  • the traveling device 111 is provided at the lower part of the combine 101.
  • the combine 101 can be self-propelled by the traveling device 111.
  • the operation unit 112, the threshing device 113, and the grain tank 114 are provided on the upper side of the traveling device 111.
  • An operator who monitors the operation of the combine 101 can get on the operation unit 112. The worker may monitor the work of the combine 101 from the outside of the combine 101.
  • the grain discharging device 118 is provided on the upper side of the grain tank 114.
  • the satellite positioning module 180 is attached to the top surface of the driver 112.
  • the harvesting device H is provided at the front of the combine 101.
  • the transport device 116 is provided on the rear side of the harvesting device H.
  • the harvesting apparatus H has a reaper 115 and a reel 117.
  • the reaper 115 harvests the crop of the field in the field.
  • the reel 117 scrapes the cropped cereals to be harvested while being rotationally driven.
  • the harvester H harvests the field crop (corresponding to the "agricultural crop" according to the present invention). Then, the combine 101 can carry out a harvest run traveling by the traveling device 111 while harvesting the grain of the field by the harvesting device H.
  • the cropped rice bran that has been clipped by the cropping unit 115 is transported by the transport device 116 to the threshing device 113.
  • the reaping grain is threshed.
  • the grains obtained by the threshing process are stored in a grain tank 114.
  • the grains stored in the grain tank 114 are discharged to the outside by the grain discharging device 118 as needed.
  • the communication terminal 104 is disposed in the operation unit 112.
  • the communication terminal 104 is configured to be able to display various information.
  • the communication terminal 104 is fixed to the operation unit 112.
  • the present invention is not limited to this, the communication terminal 104 may be configured to be attachable to and detachable from the operation unit 112, and the communication terminal 104 may be located outside the combine 101. .
  • the combine 101 is configured to harvest cereals in the field by harvesting and traveling in the inner region of the field after harvesting the crop in the region on the outer peripheral side of the field and then traveling round There is.
  • the area determination system A1 calculates the area on the outer periphery side of the field where the combine 101 travels circularly as the outer peripheral area SA, and calculates the inside of the outer peripheral area SA as the work target area CA. .
  • the configuration of the area determination system A1 will be described below.
  • the area determination system A1 includes a satellite positioning module 180, a control unit 120, and a communication terminal 104.
  • the control unit 120 is included in the combine 101. Further, as described above, the satellite positioning module 180 and the communication terminal 104 are also provided in the combine 101.
  • the control unit 120 includes a host vehicle position calculation unit 121, a travel route setting unit 122, a travel control unit 123, an area calculation unit 124, and a distance calculation unit 125.
  • the communication terminal 104 further includes a display unit 104a (corresponding to the "notification unit” and the “warning unit” according to the present invention), and the operation input unit 104b.
  • the satellite positioning module 180 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 19, the satellite positioning module 180 sends positioning data indicating the vehicle position of the combine 101 to the vehicle position calculation unit 121 based on the received GPS signal.
  • GPS Global Positioning System
  • the area determination system A1 includes the satellite positioning module 180 that outputs the positioning data indicating the vehicle position of the combine 101.
  • the vehicle position calculation unit 121 calculates position coordinates of the combine 101 with time based on the positioning data output by the satellite positioning module 180.
  • the calculated positional coordinates of the combine 101 with time are sent to the traveling control unit 123 and the area calculation unit 124.
  • the area calculation unit 124 calculates the outer peripheral area SA and the work target area CA based on the temporal position coordinates of the combine 101 received from the host vehicle position calculation unit 121.
  • the area calculation unit 124 calculates the traveling locus of the combine 101 in the circumferential traveling on the outer circumference side of the field based on the temporal position coordinate of the combine 101 received from the vehicle position calculation unit 121. .
  • region calculation part 124 calculates the area
  • the area calculation unit 124 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the area calculation unit 124 is configured to calculate the shape of the work target area CA as a polygon.
  • the traveling path of the combine 101 for circumferential traveling on the outer circumference side of the field is indicated by an arrow.
  • the combine 101 performs three rounds of circular traveling. Then, when the harvest traveling along the traveling route is completed, the field is in the state shown in FIG.
  • the area calculation unit 124 calculates an area on the outer circumference side of the field where the combine 101 travels while harvesting the grain as the outer circumference area SA. In addition, the area calculation unit 124 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the shape of the calculated work target area CA is a square.
  • the present invention is not limited to this, and the calculated shape of the work target area CA may be a polygon other than a quadrangle.
  • the shape of the calculated work target area CA may be a triangle.
  • the shape of the calculated work target area CA may be a pentagon or a hexagon.
  • the area determination system A1 calculates the area on the outer circumference side of the field where the combine 101 travels while harvesting the grain as the outer circumference area SA, and
  • the area calculation unit 124 calculates the inside of the outer peripheral area SA as the work target area CA.
  • the calculation result by the area calculation unit 124 is sent to the travel route setting unit 122, the distance calculation unit 125, and the display unit 104a in the communication terminal 104.
  • the display unit 104a in the communication terminal 104 is configured to be able to display the shapes of the outer peripheral area SA and the work target area CA calculated by the area calculation unit 124. As a result, the display unit 104a notifies the worker of the shapes of the outer peripheral area SA and the work target area CA calculated by the area calculation unit 124.
  • the area determination system A1 includes the display unit 104a that reports the shape of the work target area CA calculated by the area calculation unit 124.
  • the operation input unit 104b in the communication terminal 104 is configured to receive an artificial operation input by the worker. As shown in FIG. 19, the operation input unit 104 b sends a signal corresponding to an artificial operation input to the area calculation unit 124.
  • the area calculation unit 124 changes the number of sides of the work target area CA based on the signal received from the operation input unit 104 b. That is, as described above, the shape of the work target area CA is calculated as a polygon based on the traveling locus of the combine 101 in the circumferential traveling on the outer peripheral side of the farmland. Thereafter, the number of sides of this polygon is changed based on the artificial operation input inputted to the operation input unit 104b.
  • the shape of the work target area CA calculated by the area calculation unit 124 is a square.
  • the shape of the work target area CA is calculated based on the traveling locus of the combine 101 in the circumferential traveling on the outer circumference side of the farmland.
  • “area shape: quadrilateral” is displayed on the display unit 104 a.
  • This display shows the shape of the calculated work target area CA.
  • the upward button b1 and the downward button b2 are displayed above and below this display.
  • the upward button b1 and the downward button b2 are included in the operation input unit 104b.
  • the display unit 104 a is a touch panel, and the upward button b 1 and the downward button b 2 are touch buttons displayed on the display unit 104 a.
  • the number of sides of the work target area CA is changed. For example, in the state shown in FIG. 22, when the worker presses the upward button b1, the number of sides of the work target area CA increases. That is, the shape of the work target area CA is recalculated by the area calculation unit 124 as a pentagon. Along with this, “area shape: pentagon” is displayed on the display unit 104 a.
  • the number of sides of the work target area CA decreases. That is, the shape of the work target area CA is recalculated by the area calculation unit 124 as a triangle. Along with this, "area shape: triangle" is displayed on the display unit 104a.
  • the area determination system A1 includes the operation input unit 104b that receives an artificial operation input. Further, the region calculation unit 124 changes the number of sides of the polygon based on the artificial operation input input to the operation input unit 104 b.
  • the worker performs the operation input to the operation input unit 104b, so that the shape of the work target area CA matches the shape of the actual uncut area UA. It is possible to increase or decrease the number of sides.
  • the traveling route setting unit 122 sets a reaper traveling route LI, which is a traveling route in the work target area CA, as shown in FIG.
  • the cutting traveling path LI is a plurality of parallel lines parallel to one another.
  • the reaper traveling route LI calculated by the traveling route setting unit 122 is sent to the traveling control unit 123.
  • the traveling control unit 123 controls the automatic traveling of the combine 101 based on the position coordinates of the combine 101 received from the vehicle position calculation unit 121 and the reaper traveling route LI received from the traveling route setting unit 122. More specifically, the traveling control unit 123 controls the traveling of the combine 101 so that the combine 101 automatically travels along the reaper traveling route LI.
  • the operator manually operates the combine 101, and performs harvesting and traveling along the border line of the field at the outer peripheral portion in the field as shown in FIG.
  • the combine 101 performs three rounds of circular traveling.
  • this round trip is completed, the field is in the state shown in FIG.
  • the region calculation unit 124 calculates the traveling locus of the combine 101 in the round trip shown in FIG. 20 based on the temporal position coordinate of the combine 101 received from the host vehicle position calculation unit 121. Then, as shown in FIG. 21, the area calculation unit 124 calculates, based on the calculated traveling locus of the combine 101, an area on the outer peripheral side of the field where the combine 101 travels while harvesting grains as the outer peripheral area SA. Do. In addition, the area calculation unit 124 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the outer peripheral area SA and the work target area CA calculated at this time and the actual uncut area UA are superimposed and shown. Moreover, in FIG. 21, the outline of the actual field is shown by a dotted line. As shown in FIG. 21, the area calculation unit 124 is configured to calculate the work target area CA as a polygon. Thus, the actual uncut area UA is approximately calculated by the polygon. In the example shown in FIG. 21, the shape of the work target area CA is calculated as a quadrangle.
  • the traveling route setting unit 122 sets the reaper traveling route LI in the work target area CA as shown in FIG.
  • the calculated shape of the work target area CA is displayed on the display unit 104 a of the communication terminal 104.
  • the operator can instruct the start of the automatic traveling along the reaper traveling route LI by pressing the automatic traveling start button (not shown). However, in this description, it is assumed that the start of automatic traveling is not instructed at this point.
  • the shape of the work target area CA can be changed by operating the operation input unit 104b.
  • the number of sides of the work target area CA decreases. That is, the shape of the work target area CA is recalculated by the area calculation unit 124 as a triangle.
  • "area shape: triangle" is displayed on the display unit 104a.
  • FIG. 24 the outer peripheral area SA and the work target area CA recalculated at this time are superimposed on the actual uncut area UA. Moreover, in FIG. 24, the outline of the actual field is shown by a dotted line.
  • the traveling route setting unit 122 sets the reaper traveling route LI in the work target area CA again, as shown in FIG. Then, when the operator presses the automatic travel start button, the automatic travel along the reaper traveling path LI is started. When automatic traveling along the reaping traveling route LI is completed, the entire field is harvested.
  • the outer circumferential area SA is used as a space for the combine 101 to change its direction when performing harvest traveling in the work target area CA. Further, the outer peripheral area SA is also used as a space for movement, such as when moving to a discharge place of grain or after moving to a fuel supply place after the harvest traveling is once finished.
  • the distance calculation unit 125 determines the outer boundary of the outer peripheral area SA as shown in FIG. 25 based on the calculation result received from the area calculation unit 124. The distance between the line OB and the inner boundary IB of the outer peripheral area SA is calculated. As shown in FIG. 19, the distance calculated by the distance calculation unit 125 is sent to the region calculation unit 124.
  • the distance calculation unit 125 specifies the narrowest part of the outer peripheral area SA, and then sets the width of the outer peripheral area SA at that part to the outer peripheral border line OB and the inner peripheral border line IB. It may be configured to calculate as the distance between
  • the distance calculation unit 125 selects a plurality of parts in the outer peripheral area SA, and calculates the distance between the outer peripheral border OB and the inner peripheral border IB at each of the selected sites. It may be configured. In this case, the shortest distance among the distances calculated for each part may be output as a final calculation result by the distance calculation unit 125. In addition, the average value of the distances calculated for each part may be output as a final calculation result by the distance calculation unit 125.
  • the region calculation unit 124 determines the outer boundary border OB in the outer peripheral region SA and the inner boundary border IB in the outer peripheral region SA, To increase the number of sides of the work area CA.
  • the predetermined distance may be a fixed value determined according to the model of the combine 101, or may be arbitrarily set by the operator.
  • the distance between the outer peripheral border line OB and the inner peripheral border line IB is shorter than a predetermined distance.
  • the area calculation unit 124 increases the number of sides of the work target area CA.
  • the shape of the work target area CA is a triangle.
  • the shape of the work target area CA becomes a quadrangle.
  • the shape of the work target area CA is calculated as a polygon based on the traveling locus of the combine 101 in the circumferential traveling on the outer peripheral side of the farmland. Thereafter, when the distance calculated by the distance calculation unit 125 is shorter than the predetermined distance, the number of sides of the polygon increases.
  • the width of the outer peripheral area SA can be secured to a certain extent.
  • the area determination system A1 includes the distance calculation unit 125 that calculates the distance between the outer peripheral border line OB in the outer peripheral area SA and the inner peripheral border line IB in the outer peripheral area SA. .
  • the area calculation unit 124 increases the number of sides of the polygon.
  • the width increase of the outer peripheral area SA can be secured to a certain extent by the side increase processing.
  • FIGS. 27 to 29 Another of the two processes performed to secure the width of the outer peripheral area SA to a certain extent is a warning process.
  • this process will be described mainly with reference to FIGS. 27 to 29.
  • the calculated outer peripheral area SA and the work target area CA and the actual uncut area UA are shown in an overlapping manner.
  • the outline of the actual field is shown by a dotted line.
  • the distance calculation unit 125 determines the outer boundary of the outer peripheral area SA as shown in FIG. 27 based on the calculation result received from the area calculation unit 124. The distance between the line OB and the inner boundary IB of the outer peripheral area SA is calculated. As shown in FIG. 19, the distance calculated by the distance calculation unit 125 is sent to the display unit 104a.
  • the distance calculation unit 125 specifies the narrowest part of the outer peripheral area SA, and then sets the width of the outer peripheral area SA at that part to the outer peripheral border line OB and the inner peripheral border line IB. It may be configured to calculate as the distance between
  • the distance calculation unit 125 selects a plurality of parts in the outer peripheral area SA, and calculates the distance between the outer peripheral border OB and the inner peripheral border IB at each of the selected sites. It may be configured. In this case, the shortest distance among the distances calculated for each part may be output as a final calculation result by the distance calculation unit 125. In addition, the average value of the distances calculated for each part may be output as a final calculation result by the distance calculation unit 125.
  • the display unit 104a displays a warning prompting to additionally perform a round trip in the area on the outer circumference side of the field.
  • the predetermined distance may be a fixed value determined according to the model of the combine 101, or may be arbitrarily set by the operator.
  • the distance between the outer peripheral border line OB and the inner peripheral border line IB is shorter than a predetermined distance.
  • the display unit 104a displays a warning message a1 prompting the user to additionally perform a round trip in the area on the outer periphery of the agricultural field.
  • display portion 104a emphasizes and displays a portion where the distance between boundary line OB on the outer circumference side and boundary line IB on the inner circumference side is short in outer circumference area SA. .
  • the area determination system A1 includes the display unit 104a that urges additional circumferential travel in the area on the outer periphery of the field when the distance calculated by the distance calculation unit 125 is shorter than the predetermined distance. .
  • the outer peripheral area SA When the operator additionally performs circumferential traveling in the area on the outer periphery side of the agricultural field according to the warning, the outer peripheral area SA is expanded, and the agricultural field is in the state shown in FIG. As shown in FIG. 29, by the expansion of the outer peripheral area SA, the distance between the boundary OB on the outer peripheral side and the boundary IB on the inner peripheral side becomes longer at the portion P2 of the outer peripheral area SA. Thus, the width of the outer peripheral area SA can be secured to a certain extent.
  • the warning process can ensure the width of the outer peripheral area SA to a certain extent.
  • the above-described side increase processing and warning processing may be executed in combination as appropriate.
  • the warning process may be performed when the distance calculated by the distance calculation unit 125 is still shorter than the predetermined distance after the side increase process is performed.
  • the above-described side increase processing and warning processing may be configured to be used according to the conditions. For example, if the shape of the work target area CA calculated by the area calculation unit 124 is a triangle, the process of increasing the side may be performed, and if it is a polygon other than a triangle, a warning process may be performed. .
  • the shape of the work target area CA is calculated as a polygon. Therefore, the shape of the work target area CA can be calculated as a relatively simple form.
  • the traveling device 111 may be a wheel type or a semi crawler type.
  • the reaping traveling route LI calculated by the traveling route setting unit 122 is a plurality of parallel lines parallel to each other, but the present invention is not limited to this, and the traveling route setting unit 122
  • the reaper traveling route LI to be calculated may not be a plurality of parallel lines parallel to each other.
  • the reaper traveling route LI calculated by the traveling route setting unit 122 may be a spiral traveling route.
  • the operator manually operates the combine 101, and as shown in FIG. 20, the harvesting travels along the border of the field on the outer peripheral portion in the field.
  • the present invention is not limited to this, and the combine 101 may be configured to automatically travel and to perform harvest traveling so as to orbit along the border of the field at the outer peripheral portion in the field.
  • the travel route setting unit 122 the travel control unit 123, the area calculation unit 124, the distance calculation unit 125, the display unit 104a, and the operation input unit 104b It may be provided outside, for example, it may be provided in a management server provided outside the combine 101.
  • the traveling route setting unit 122 and the traveling control unit 123 may not be provided. That is, the "harvest machine” which concerns on this invention does not need to be what can be drive
  • the display unit 104 a in the communication terminal 104 corresponds to the “notification unit” and the “warning unit” according to the present invention.
  • the present invention is not limited to this, and a member corresponding to the "notification unit” and a member corresponding to the "warning unit” may be separately provided.
  • a speaker that urges by voice to additionally perform circumferential traveling in the area on the outer circumference side of the field when the distance calculated by the distance calculation unit 125 is shorter than a predetermined distance It may be provided.
  • the distance calculation unit 125 may not be provided.
  • the display unit 104a may not be provided.
  • the operation input unit 104b may not be provided.
  • the communication terminal 104 may not be provided.
  • the reaping travel path LI may be a straight path or a curved path.
  • the program may be configured as a region determination program that causes a computer to realize the function of each member in the above embodiment.
  • the recording medium may be configured as a recording medium in which a region determination program that causes a computer to realize the function of each member in the above-described embodiment is recorded.
  • the method may be configured as a region determination method in which what is performed by each member in the above embodiment is performed in one or more steps.
  • FIGS. 30 to 40 a third embodiment of the present invention will be described with reference to FIGS. 30 to 40.
  • the direction of arrow F shown in FIG. 30 is “front”, and the direction of arrow B is “rear”. Further, the direction of the arrow U shown in FIG. 30 is “up”, and the direction of the arrow D is “down”.
  • the ordinary type combine 201 includes a crawler type traveling device 211, a driving unit 212, a threshing device 213, a grain tank 214, a harvesting device H, a conveying device 216, a grain discharging device 218, satellite positioning.
  • a module 280 is provided.
  • the traveling device 211 is provided at the lower part of the combine 201.
  • the combine 201 can be self-propelled by the traveling device 211.
  • the driving unit 212, the threshing device 213, and the grain tank 214 are provided on the upper side of the traveling device 211.
  • An operator who monitors the operation of the combine 201 can get on the operation unit 212.
  • the worker may monitor the work of the combine 201 from the outside of the combine 201.
  • the grain discharging device 218 is provided on the upper side of the grain tank 214.
  • the satellite positioning module 280 is attached to the top surface of the driver 212.
  • the harvesting device H is provided at the front of the combine 201.
  • the transport device 216 is provided on the rear side of the harvesting device H.
  • the harvesting device H also has a reaper 215 and a reel 217.
  • the reaper 215 reaps the field crop of the field.
  • the reel 217 scrapes the cropping object of harvest while being rotationally driven.
  • the harvester H harvests the grain in the field.
  • combine 201 can reap travel which runs by traveling device 211, while reaping a crop of a field of a field with reaper 215.
  • the combine 201 has a reaper 215 that reaps the field crop of the field.
  • the cropped rice straw which has been cut by the reaper 215 is transported by the transport device 216 to the threshing device 213.
  • the reaping grain is threshed.
  • the grains obtained by the threshing process are stored in a grain tank 214.
  • the grains stored in the grain tank 214 are discharged to the outside by the grain discharging device 218 as needed.
  • the communication terminal 204 is disposed in the operation unit 212.
  • the communication terminal 204 is configured to be able to display various information.
  • the communication terminal 204 is fixed to the driver 212.
  • the present invention is not limited to this.
  • the communication terminal 204 may be configured to be attachable to and detachable from the operation unit 212, and the communication terminal 204 may be located outside the combine 201. .
  • the combine 201 performs circulation while harvesting grains in the area on the outer periphery side of the field as shown in FIG. 32, then the combine 201 performs reaping travel in the inner area of the field as shown in FIG. 33. , Are configured to harvest the grain of the field.
  • the combine 201 is controlled by the combine control system A2.
  • the configuration of the combine control system A2 will be described.
  • the combine control system A2 includes a satellite positioning module 280 and a control unit 220.
  • the control unit 220 is included in the combine 201.
  • the satellite positioning module 280 is also provided in the combine 201.
  • the control unit 220 includes a host vehicle position calculation unit 221, a route calculation unit 222, a travel control unit 223, an area calculation unit 224, a distance calculation unit 225, and a determination unit 226. Further, the traveling control unit 223 includes a reaper traveling control unit 223a and a direction change control unit 223b.
  • the satellite positioning module 280 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 31, the satellite positioning module 280 sends positioning data indicating the vehicle position of the combine 201 to the vehicle position calculation unit 221 based on the received GPS signal.
  • GPS Global Positioning System
  • the host vehicle position calculation unit 221 calculates position coordinates of the combine 201 with time based on the positioning data output by the satellite positioning module 280.
  • the calculated position coordinates of the combine 201 over time are sent to the traveling control unit 223 and the area calculation unit 224.
  • the area calculation unit 224 calculates the outer peripheral area SA and the work target area CA based on the temporal position coordinates of the combine 201 received from the host vehicle position calculation unit 221.
  • the area calculation unit 224 calculates the traveling locus of the combine 201 in the circumferential traveling on the outer periphery side of the field based on the temporal position coordinate of the combine 201 received from the vehicle position calculation unit 221. .
  • region calculation part 224 calculates the area
  • region SA based on the calculated traveling locus of the combine 201.
  • the area calculation unit 224 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the traveling path of the combine 201 for circumferential traveling on the outer circumference side of the field is indicated by an arrow.
  • the combine 201 performs three rounds of circular traveling.
  • the area calculation unit 224 calculates an area on the outer circumference side of the field where the combine 201 travels while harvesting the grain as the outer circumference area SA. In addition, the area calculation unit 224 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the area calculation unit 224 uses the uncorrected area CA1 and the cut area CA2 in the work target area CA based on the temporal position coordinates of the combine 201 received from the host vehicle position calculation unit 221. Calculate
  • the area calculation unit 224 calculates the traveling locus of the combine 201 in the reaping travel in the work target area CA based on the temporal position coordinates of the combine 201 received from the host vehicle position calculation unit 221. . Then, based on the calculated traveling locus of the combine 201, the area calculation unit 224 calculates an area where the combine 201 travels by cutting as the cut area CA2. In addition, the area calculation unit 224 calculates a portion other than the cut area CA2 in the work target area CA as the uncut area CA1.
  • the calculation result by the region calculation unit 224 is sent to the route calculation unit 222 and the distance calculation unit 225.
  • the route calculation unit 222 calculates a reaper traveling route LI, which is a traveling route for reaper travel in the work area CA.
  • the reaper traveling route LI is a plurality of mesh lines extending in the vertical and horizontal directions. The plurality of mesh lines may not be straight, and may be curved.
  • the reaping traveling route LI calculated by the route calculating unit 222 is sent to the traveling control unit 223.
  • the reaper traveling control unit 223a controls automatic traveling of the combine 201 based on the position coordinates of the combine 201 received from the host vehicle position calculation unit 221 and the reaper traveling route LI received from the route calculation unit 222. More specifically, as shown in FIG. 33, the reaper traveling control unit 223a controls the traveling of the combine 201 so that reaper traveling is performed by automatic traveling along the reaper traveling route LI.
  • the distance calculation unit 225 determines the distance between the corner CP in the uncut area CA1 and the boundary line OBL of the field. calculate.
  • the distance calculation unit 225 identifies the narrowest portion between the corner CP and the boundary line OBL of the field, and then determines the distance between the corner CP and the boundary line OBL of the field at the portion.
  • the distance calculation unit 225 may be configured to output a final calculation result.
  • the distance calculation unit 225 selects a plurality of parts between the corner CP and the boundary line OBL of the field, and in each selected part, the distance between the corner CP and the boundary line OBL of the field is It may be configured to calculate. In this case, the shortest distance among the distances calculated for each part may be output as a final calculation result by the distance calculation unit 225. In addition, the average value of the distances calculated at each part may be output as a final calculation result by the distance calculation unit 225.
  • the distance calculated by the distance calculation unit 225 is sent to the determination unit 226.
  • the determination unit 226 determines the direction change method of the combine 201 based on the distance calculated by the distance calculation unit 225.
  • the determining unit 226 performs combining of the combine 201 performed to harvest the grain crest of the corner CP. It is decided that the turn is made by corner turn.
  • the predetermined distance may be a fixed value determined according to the model of the combine 201, or may be arbitrarily set by the operator.
  • the corner special direction change is a direction change method including a reaping and turning operation.
  • the reaping and turning operation is an operation of turning while reaping the crop of rice plant.
  • the corner-use special direction change in this embodiment includes the first reverse operation, the reaping and turning operation, the second reverse operation, and the forward operation.
  • the first reverse operation is an operation performed prior to the reaping and turning operation, and is an operation of moving backward to a position behind the corner CP in the advancing direction of the combine 201 before changing the direction.
  • the second reverse operation is an operation performed after the reaping and turning operation, and is an operation to move backward to a position behind the corner CP in the advancing direction of the combine 201 after the change of direction.
  • the forward movement is an operation performed after the second reverse movement, and is a movement to move forward.
  • the corner-use special direction change is performed in the first reverse operation and the first reverse operation for moving backward to a position behind the corner portion CP in the advancing direction of the combine 201 before the direction change.
  • the determining unit 226 changes the direction of the combine 201 performed to reap the crop of the corner CP. Is determined to be performed by a turning method different from the corner turning.
  • the combine control system A2 includes the determination unit 226 that determines the direction change method of the combine 201.
  • the content of the determination by the determination unit 226 is sent to the direction change control unit 223b.
  • the direction change control unit 223b is configured to control the direction change of the combine 201 according to the content of the determination by the determination unit 226.
  • the combine control system A2 includes the direction change control unit 223b that controls the change of direction of the combine 201.
  • the determination unit 226 is performed to reap the crop of the corner CP. It is determined that the turn of combine 201 is to be performed by corner turn. And, in this case, when the combine 201 performs the direction change in order to cut the planted grain of the corner CP, the direction change control unit 223b causes the direction change of the combine 201 to be performed by the special direction change for the corner.
  • the combine 201 is to be controlled.
  • the direction change control unit 223b performs a reaping turning that turns while harvesting the planted grain.
  • the combine 201 is controlled so that the turn of the combine 201 is performed by the corner directed change which is the turn method including the operation.
  • the operator manually operates the combine 201, and as shown in FIG. 32, performs mowing travel so as to go around along the boundary line OBL of the field at the outer peripheral portion in the field.
  • the combine 201 performs three rounds of circular traveling. When this round trip is completed, the field is in the state shown in FIG.
  • the region calculation unit 224 calculates the traveling locus of the combine 201 in the round trip shown in FIG. 32 based on the temporal position coordinate of the combine 201 received from the host vehicle position calculation unit 221. Then, as shown in FIG. 33, based on the calculated traveling locus of the combine 201, the area calculating unit 224 calculates an area on the outer peripheral side of the field where the combine 201 travels while harvesting the cropped rice husk. Calculated as In addition, the area calculation unit 224 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the route calculation unit 222 sets the reaper traveling route LI in the work target area CA.
  • the reaper traveling control unit 223a controls the traveling of the combine 201 so that reaper traveling is performed by automatic traveling along the reaper traveling path LI.
  • the transport vehicle CV is parked outside the farmland. Then, in the outer peripheral area SA, the stop position PP is set at a position near the transport vehicle CV.
  • the transporter CV can collect and transport the grains discharged by the combine 201 from the grain discharge device 218.
  • the combine 201 stops at the stopping position PP, and discharges the grain to the transport vehicle CV by the grain discharging device 218.
  • the combine 201 performs direction change and starts reaper traveling along another reaper traveling route LI. At this time, the direction change of the combine 201 is automatically performed by the control of the direction change control unit 223b.
  • the first route LI1 and the second route LI2 in FIG. 34 are both reaping travel routes LI.
  • the first route LI1 and the second route LI2 are orthogonal to each other.
  • the combine 201 completes the mowing travel along the first path LI1 and is located at the position Q1.
  • the distance calculation unit 225 calculates the distance between the corner portion CP and the boundary line OBL of the field. As shown in FIG. 34, the distance calculated at this time is the distance DS1.
  • the determination unit 226 determines that the change of direction of the combine 201 performed to harvest the planted rice cake of the corner CP is performed by the special change of direction for the corner.
  • the combine 201 starts corner special direction change from the position Q1.
  • the combine 201 performs the first reverse operation along the first path LI1.
  • the combine 201 moves to the position Q2.
  • the position Q2 is a position behind the corner CP in the traveling direction of the cutting along the first path LI1.
  • the combine 201 performs a reaping and turning operation. As a result, the combine 201 moves to the position Q3. In addition, by this cutting and turning operation, the planted grain weirs of the portion CP1 which is a part of the corner portion CP are cut off.
  • the combine 201 performs a second reverse operation. As a result, the combine 201 moves to the position Q4.
  • the position Q4 is a position behind the corner CP in the traveling direction of the cutting along the second path LI2.
  • the combine 201 moves forward from the position Q4 to complete the change of direction.
  • the orientation of the combine 201's airframe is oriented along the second path LI2. Then, the reaping travel along the second path LI2 is started, and the weed of the corner CP is reaped.
  • the third route LI3 and the fourth route LI4 in FIG. 35 are both reaping travel routes LI. Also, the third path LI3 and the fourth path LI4 are orthogonal to each other.
  • the combine 201 completes the mowing travel along the third path LI3 and is located at the position Q5.
  • the distance calculation unit 225 calculates the distance between the corner portion CP and the boundary line OBL of the field. As shown in FIG. 35, the distance calculated at this time is the distance DS2.
  • the determination unit 226 determines that the change in direction of the combine 201 performed to harvest the planted rice cake of the corner CP is performed by a different method of change from the special direction change for corner.
  • the determination unit 226 determines that the change in direction of the combine 201 performed to harvest the planted rice cake of the corner CP is normally performed by an ⁇ turn.
  • the normal ⁇ -turn is a direction changing method in which a reverse operation is performed after performing a normal turning operation of turning without cutting off the built-up rice husk, and then an advancing operation is performed thereafter.
  • the ⁇ -turn is a method capable of quick change of direction as compared to the corner specific change of direction.
  • the combine 201 starts the normal ⁇ turn from the position Q5.
  • the combine 201 performs a normal turning operation. Thereby, the combine 201 moves to the position Q6.
  • the combine 201 performs a reverse operation. As a result, the combine 201 moves to the position Q7.
  • the position Q7 is a position behind the corner CP in the traveling direction of the cutting along the fourth route LI4.
  • the combine 201 moves forward from the position Q7 to complete the change of direction.
  • the orientation of the combine 201's airframe is oriented along the fourth path LI4. Then, the reaping travel along the fourth path LI4 is started, and the weed of the corner CP is reaped.
  • the combine 201 when the combine 201 changes its direction in order to reap the planted rice cake of the corner CP in the uncrop area CA1 of the field, the combine 201 changes its direction by the special direction change for the corner Is controlled to do And this cutting direction special direction change includes a reaping and turning operation which is turned while reaping the crop.
  • the combine 201 in the direction change, the combine 201 enters the uncut area CA1 by the reaping and turning operation. That is, in the change of direction, since the combine 201 enters the uncut area CA1 while harvesting the built-up cereal weir, it is possible to prevent the combine 201 from stepping on the built-up cereal in the uncut area CA1.
  • the space available for the direction change is wider. Thereby, it is easy to smoothly change the direction of the combine 201.
  • the combine 201 when the combine 201 changes its direction in order to reap the erected grain of the corner CP in the uncut area CA1 of the field, the combine 201 It is controlled to perform a turn by a special turn for the corner or by an alpha turn.
  • the combine 201 when the combine 201 changes its direction in the acute angle part of the field, the combine 201 is controlled to change direction by the special alpha turn for the acute angle part.
  • the special ⁇ -turn for acute-angled part after performing the first reverse movement, performs a normal turning operation that turns without cutting off the built-up rice husk, and the second turning after the normal turning operation. It is a direction change method in which reverse movement is performed and then forward movement is performed.
  • the fifth route LI5 and the sixth route LI6 in FIG. 36 are both reaping travel routes LI. Then, in FIG. 36, after the combine 201 completes the mowing travel along the fifth route LI 5 in the acute angle part of the field, the direction is changed to harvest the planted rice cake of the corner CP, and the sixth route LI 6 The operation up to the start of the reaping travel along is shown.
  • the combine 201 completes the mowing travel along the fifth route LI5 and is located at the position Q8. Then, since the combine 201 is located at the acute angle portion of the field, the determination unit 226 determines that the change of direction of the combine 201 performed for cutting off the erected grain of the corner portion CP is performed by the special alpha turn for acute portion. Decide to be.
  • the combine 201 starts the special alpha turn for sharp corners from the position Q8.
  • the combine 201 performs the first reverse operation along the fifth route LI5.
  • the combine 201 moves to the position Q9.
  • the combine 201 performs a normal turning operation. As a result, the combine 201 moves to the position Q10. Next, the combine 201 performs a second reverse operation. As a result, the combine 201 moves to the position Q11. Then, the combine 201 moves forward from the position Q11 to complete the change of direction.
  • the orientation of the combine 201's airframe is oriented along the sixth path LI6. Then, the reaping travel along the sixth path LI6 is started, and the weeds of the corner CP are reaped.
  • the first reverse operation is performed prior to the normal turning operation.
  • the combine 201 changes its direction at the acute angle portion of the field, it is possible to avoid the situation where the combine 201 usually crosses the boundary line OBL of the field by turning operation.
  • the corner special direction change includes the first reverse operation, the reaping and turning operation, the second reverse operation, and the forward operation.
  • the corner redirection may not include some or all of the first reverse motion, the second reverse motion, and the forward motion.
  • FIG. 37 is a view showing an example in which the direction change of the combine 201 is performed by the corner special direction change in the first alternative embodiment of the third embodiment.
  • the corner special direction change does not include the first reverse movement prior to the reaping movement.
  • the seventh route LI7 in FIG. 37 is a reaper traveling route LI. Then, in FIG. 37, when the combine 201 travels in the outer peripheral area SA, a direction change of 90 degrees is performed to reap the planted grain weir of the corner portion CP, and the reaping travel along the seventh route LI7 The operation to start is shown.
  • the combine 201 travels in the outer peripheral area SA and is located at the position Q12.
  • the distance calculation unit 225 calculates the distance between the corner portion CP and the boundary line OBL of the field. As shown in FIG. 37, the distance calculated at this time is the distance DS3.
  • the determination unit 226 determines that the change of direction of the combine 201 performed to harvest the planted rice cake of the corner CP is performed by the special change of direction for the corner.
  • the combine 201 starts corner special direction change from position Q12.
  • the combine 201 performs a reaping and turning operation.
  • the combine 201 moves to the position Q13.
  • the planted grain weirs of the portion CP2 which is a part of the corner portion CP are reaped.
  • the combine 201 performs a reverse operation. Thereby, the combine 201 moves to the position Q14.
  • the position Q14 is a position behind the corner CP in the traveling direction of the cutting along the seventh route LI7.
  • the combine 201 moves forward from the position Q14 to complete the change of direction.
  • the orientation of the airframe of the combine 201 becomes the orientation along the seventh path LI7. Then, the reaping travel along the seventh path LI7 is started, and the weeds of the corner CP are reaped.
  • the combine 201 performs the direction change in the field shown in FIG. 38 as an example where the direction change of the combine 201 is performed by a direction change method different from the corner direction special direction change. The case will be described.
  • the eighth route LI8 in FIG. 38 is a reaper traveling route LI. Then, in FIG. 38, when the combine 201 travels in the outer peripheral area SA, a direction change of 90 degrees is performed to reap the planted grain weir of the corner portion CP, and the reaping travel along the eighth route LI8 The operation to start is shown.
  • the combine 201 travels in the outer peripheral area SA and is located at the position Q15.
  • the distance calculation unit 225 calculates the distance between the corner portion CP and the boundary line OBL of the field. As shown in FIG. 38, the distance calculated at this time is the distance DS4.
  • the determination unit 226 determines that the change in direction of the combine 201 performed to harvest the planted rice cake of the corner CP is performed by a different method of change from the special direction change for corner.
  • the determination unit 226 determines that the change of direction of the combine 201 performed to harvest the planted rice cake of the corner CP is normally performed by turning.
  • the normal turning is a direction changing method in which the turning is performed only by the normal turning operation in which the turning is performed without cutting off the potted rice husk.
  • the combine 201 starts normal turning from the position Q15. That is, the combine 201 performs the normal turning operation from the position Q15, and completes the direction change.
  • the orientation of the airframe of the combine 201 becomes an orientation along the eighth path LI8. Then, the mowing travel along the eighth route LI8 is started, and the weed of the corner CP is reaped.
  • the corner-use special direction change includes only four operations of the first reverse operation, the reaping and turning operation, the second reverse operation, and the forward operation.
  • the corner portion special direction change may include another operation in addition to the first reverse operation, the reaping and turning operation, the second reverse operation, and the forward operation.
  • FIG. 39 is a view showing an example in which the direction change of the combine 201 is performed by the corner special direction change in the second different embodiment of the third embodiment.
  • the corner special direction change is a first reverse operation, a first reaping and turning operation (corresponding to the "removing and turning operation” according to the present invention, a second reverse operation, and a second reaping turning operation. It includes six operations (corresponding to “the reaping and turning operation” according to the present invention), the third reverse operation, and the forward operation.
  • the ninth route LI9 and the tenth route LI10 in FIG. 39 are both reaping travel routes LI.
  • the ninth route LI9 and the tenth route LI10 are orthogonal to each other.
  • the combine 201 completes the mowing travel along the ninth path LI9 and is located at the position Q16.
  • the distance calculation unit 225 calculates the distance between the corner portion CP and the boundary line OBL of the field. As shown in FIG. 39, the distance calculated at this time is the distance DS5.
  • the determination unit 226 determines that the change of direction of the combine 201 performed to harvest the planted rice cake of the corner CP is performed by the special change of direction for the corner.
  • the combine 201 starts corner special direction change from position Q16.
  • the combine 201 performs the first reverse operation along the ninth route LI9.
  • the combine 201 moves to the position Q17.
  • the position Q17 is a position on the rear side of the corner portion CP in the traveling direction of the mowing travel along the ninth route LI9.
  • the combine 201 performs a first reaping and turning operation. As a result, the combine 201 moves to the position Q18. In addition, by this first reaping and turning operation, the weeds of the erected grain of the portion CP3 which is a part of the corner portion CP are reaped.
  • the combine 201 performs a second reverse operation. As a result, the combine 201 moves to the position Q19.
  • the position Q19 is a position behind the corner CP in the traveling direction of the cutting travel along the tenth path LI10.
  • the combine 201 performs a second reaping and turning operation. As a result, the combine 201 moves to the position Q20. In addition, by this second reaping and turning operation, the weeds of the erected grain of the portion CP4 which is a part of the corner portion CP are reaped.
  • the combine 201 performs a third reverse operation. As a result, the combine 201 moves to the position Q21.
  • the position Q21 is a position on the rear side of the corner portion CP in the traveling direction of the mowing travel along the tenth route LI10.
  • the combine 201 moves forward from the position Q21 to complete the change of direction.
  • the orientation of the combine 201's airframe is oriented along the tenth path LI10. Then, the reaping travel along the tenth path LI10 is started, and the weed of the corner CP is reaped.
  • the replanting and turning operation reaps the built-in grain weir at a part of the corner portion CP.
  • the present invention is not limited to this. It is not necessary for the planted cereal weed to be harvested by the "harvest turning motion" according to the present invention to be the planted cereal for corner CP.
  • 3rd another embodiment of 3rd Embodiment is described focusing on a different point from the said embodiment.
  • the configuration other than the parts described below is the same as that of the above embodiment.
  • the same reference numerals are given to the same components as those in the above embodiment.
  • FIG. 40 is a view showing an example in the case where the direction change of the combine 201 is performed by the corner special direction change in the third alternate embodiment of the third embodiment.
  • Each of the eleventh route LI11 and the twelfth route LI12 in FIG. 40 is a reaper traveling route LI. Further, the eleventh route LI11 and the twelfth route LI12 are orthogonal to each other.
  • FIG. 40 in order to show the operation of the combine 201, the locus of the center portion in the left-right direction of the fuselage at the front end of the reaper 215 is indicated by an arrow.
  • the combine 201 can perform turning by two ways of turning from the position shown in FIG.
  • the first of the two ways of turning is similar to that described in FIG. That is, the first direction change method shown in FIG. 40 includes four operations of a first reverse operation, a reaping and turning operation, a second reverse operation, and an advance operation. Then, in the reaping and turning operation of the four operations, the cropped weir of the portion CP5 which is a part of the corner portion CP is reaped.
  • the second of the two ways of turning is constituted by three operations of the reaper turning operation, the reverse operation and the forward operation. Then, in the reaping and turning operation of the three operations, the cropped weirs in portions other than the corner portion CP are reaped.
  • the corner CP is included in one of the two uncut areas CA1, and the twelfth route LI12 is set. Further, the other of the two uncut areas CA1 is located forward in the traveling direction of the combine 201 before turning.
  • the combine 201 enters the other of the two uncut areas CA1. At this time, a part of the planted rice straw in the other of the two uncut areas CA1 is harvested. Thereafter, the combine 201 performs reverse movement and forward movement to complete the change of direction.
  • Both of the two direction changing methods shown in FIG. 40 correspond to the “special direction change for corner” according to the present invention.
  • the traveling device 211 may be a wheel type or a semi crawler type.
  • the reaping travel route LI calculated by the route calculation unit 222 is a plurality of mesh lines extending in the vertical and horizontal directions.
  • the present invention is not limited to this, and the reaping travel route LI calculated by the route calculation unit 222 may not be a plurality of mesh lines extending in the vertical and horizontal directions.
  • the reaping traveling route LI calculated by the route calculating unit 222 may be a spiral traveling route.
  • the reaper traveling route LI may not be orthogonal to another reaper traveling route LI.
  • the operator manually operates the combine 201, and as shown in FIG. 32, the mowing travel is performed along the border line OBL of the field in the outer peripheral portion in the field. Do.
  • the present invention is not limited to this, and the combine 201 may travel automatically, and may be configured to perform reaping travel along the border line OBL of the field at the outer peripheral portion in the field. .
  • the combine 201 may be configured to perform a direction change of an angle other than 90 degrees under the control of the direction change control unit 223b.
  • the “special direction change for corner” according to the present invention is not limited to the 90 ° direction change method, and may be an angle change method other than 90 °.
  • the timing at which the determination unit 226 determines the direction change method of the combine 201 is immediately before the combine 201 performs the direction change.
  • the present invention is not limited to this, and the timing when the determination unit 226 determines the turning method of the combine 201 may be at any time.
  • the timing at which the determination unit 226 determines the direction changing method of the combine 201 may be when the area calculation unit 224 calculates the outer peripheral area SA and the work target area CA.
  • the reaper travel control unit 223a may not be provided. That is, the reaping travel along the reaping travel path LI may be performed by the operator manually operating the combine 201.
  • Some or all of the host vehicle position calculation unit 221, the route calculation unit 222, the travel control unit 223, the area calculation unit 224, the distance calculation unit 225, and the determination unit 226 are provided outside the combine 201 It may be provided, for example, in a management server provided outside the combine 201.
  • the determination unit 226 may not be provided.
  • the distance calculation unit 225 may not be provided.
  • the communication terminal 204 may not be provided.
  • the external shape of the field in the above embodiment is a square.
  • the present invention is not limited to this, and the external shape of the field may be a shape other than a square.
  • the outer shape of the field may be pentagon or triangle.
  • the reaping travel path LI may be a straight path or a curved path.
  • the present invention may be configured as a combine control program that causes a computer to realize the function of each member in the above embodiment. Further, the present invention may be configured as a recording medium on which a combine control program that causes a computer to realize the function of each member in the above embodiment is recorded. Moreover, you may be comprised as a combine control method which performs what is performed by each member in the said embodiment by one or several steps.
  • the present invention can be used not only for ordinary type combine but also for self-release type combine. Moreover, it can utilize also for various harvest machines, such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
  • First Embodiment 1 Combine harvester 2 Management server 4 Communication terminal (display device) 21 data acquisition unit 22 external shape determination unit 24 area setting unit 25 inner circumference traveling route calculation unit 26 traveling control unit 27 first traveling information generation unit A automatic traveling system G1 first cereal field (field) G2 second grain field (field) LIC Inner circumference travel path P recessed part Pt peak part Q outer peripheral part R1 first area R2 second area W work vehicle
  • Second Embodiment 101 combine harvesters 104a Display unit (notification unit, warning unit) 104b operation input unit 124 area calculation unit 125 distance calculation unit 180 satellite positioning module A1 area determination system CA work target area IB inner peripheral border OB outer peripheral border SA outer peripheral area
  • Third Embodiment 201 combine 215 reaper 220 control part 223 b direction change control part 226 determination part A2 combine control system CA1 uncut area CP corner part OBL field boundary line

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

This automatic traveling system A comprises: a region setting unit 24 for setting an inside of a first region, which is a region where harvesting has been finished by first harvesting traveling, as a second region; an inner circumferential traveling route calculation unit 25 for calculating an inner circumferential traveling route; a traveling control unit 26 for controlling first traveling of a harvester such that second harvesting traveling is performed by automatic traveling based on the inner circumferential traveling rout; a data acquisition unit 21 for acquiring agricultural field contour data; and a first traveling information generation unit 27 for generating first traveling information on the basis of the agricultural field contour data, wherein internal division traveling information is included in the first traveling information.

Description

自動走行システム、自動走行管理プログラム、自動走行管理プログラムを記録した記録媒体、自動走行管理方法、領域決定システム、領域決定プログラム、領域決定プログラムを記録した記録媒体、領域決定方法、コンバイン制御システム、コンバイン制御プログラム、コンバイン制御プログラムを記録した記録媒体、コンバイン制御方法Automatic traveling system, automatic traveling management program, recording medium recording automatic traveling management program, automatic traveling management method, area determination system, area determination program, recording medium recording area determination program, area determination method, combine control system, combine control system Control program, recording medium storing combine control program, combine control method
 本発明は、圃場の農作物を収穫する収穫機の自動走行を管理する自動走行システムに関する。 The present invention relates to an automatic travel system for managing automatic travel of a harvester for harvesting agricultural products in a field.
 また、本発明は、圃場における作業対象領域を算出する領域決定システムに関する。 Further, the present invention relates to an area determination system that calculates a work target area in a field.
 また、本発明は、圃場の植立穀稈を刈り取る刈取装置を有するコンバインを制御するコンバイン制御システムに関する。 The present invention also relates to a combine control system for controlling a combine having a reaping device for reaping a field crop in the field.
 [1]上記のような自動走行システムとして、例えば、特許文献1に記載のものが既に知られている。この自動走行システムを利用した収穫作業において、作業者は、収穫作業の最初に収穫機(特許文献1では「コンバイン」)を手動で操作し、圃場内の外周部分を一周するように収穫走行を行う。 [1] As the above-mentioned automatic travel system, for example, the one described in Patent Document 1 is already known. In the harvesting work using this automatic traveling system, the operator manually operates the harvesting machine ("combine" in Patent Document 1) at the beginning of the harvesting work, and performs the harvesting traveling so as to go around the outer peripheral part in the field. Do.
 この外周部分での走行において、収穫機の走行すべき方位が記録される。そして、記録された方位に基づく自動走行によって、圃場における未刈領域での収穫走行が行われる。 During traveling on the outer circumference, the traveling direction of the harvester is recorded. Then, by the automatic traveling based on the recorded orientation, the harvest traveling in the uncut area in the field is performed.
 [2]特許文献1には、自動走行する収穫機(特許文献1では「コンバイン」)の発明が記載されている。この収穫機を利用した収穫作業において、作業者は、収穫作業の最初に収穫機を手動で操作し、圃場内の外周部分を一周するように収穫走行を行う。 [2] Patent Document 1 describes the invention of a harvester ("Combine" in Patent Document 1) that travels automatically. In a harvesting operation using this harvesting machine, a worker manually operates the harvesting machine at the beginning of the harvesting operation and performs harvesting traveling so as to go around the outer peripheral part in the field.
 この外周部分での走行において、収穫機の走行すべき方位が記録される。そして、記録された方位に基づく自動走行によって、圃場における未刈領域での収穫走行が行われる。 During traveling on the outer circumference, the traveling direction of the harvester is recorded. Then, by the automatic traveling based on the recorded orientation, the harvest traveling in the uncut area in the field is performed.
 [3]特許文献2には、圃場の植立穀稈を刈り取る刈取装置を有するコンバインの発明が記載されている。このコンバインは、自動走行によって圃場での収穫作業を行うように構成されている。 [3] Patent Document 2 describes the invention of a combine having a reaping device for reaping a field crop in a field. The combine is configured to perform field harvesting operations by automatic travel.
日本国実開平2-107911号公報Japanese Utility Model Hei 2-107911 日本国特開2001-69836号公報Japanese Patent Application Laid-Open No. 2001-69836
 [1]背景技術[1]に対応する課題は、以下の通りである。
 特許文献1に記載の自動走行システムにおいて、圃場内の外周部分を周回走行することにより収穫済みとなった領域を第1領域として設定し、圃場内の内周部分を第2領域として設定することが考えられる。この場合、第2領域は、第1領域の内側に位置することとなる。
[1] Background Art The problems corresponding to [1] are as follows.
In the automatic traveling system described in Patent Document 1, an area which has been harvested by traveling around the outer periphery of the field is set as a first area, and an inner periphery of the field is set as a second area. Is considered. In this case, the second region is located inside the first region.
 この構成においては、第2領域の外形を、圃場内の外周部分を周回走行する間の収穫機の走行軌跡に基づいて算出することが考えられる。そして、算出された第2領域の外形に基づいて第2領域における走行経路を算出すると共に、算出された走行経路に基づいて収穫機を自動走行させれば、第2領域における収穫走行を自動走行によって行うことが可能となる。 In this configuration, it is conceivable to calculate the outer shape of the second region based on the traveling locus of the harvester while traveling round the outer peripheral portion in the field. Then, the travel route in the second region is calculated based on the calculated outer shape of the second region, and the harvest travel in the second region is automatically traveled if the harvest machine is automatically traveled based on the calculated travel route. Can be done by
 しかしながら、圃場の外形が比較的複雑である場合、圃場内の外周部分を周回走行する間の収穫機の走行軌跡が複雑になりがちである。そして、圃場内の外周部分を周回走行する間の収穫機の走行軌跡が複雑であると、第2領域の外形の算出精度が低くなりがちである。 However, if the external shape of the field is relatively complex, the traveling path of the harvester tends to be complicated while traveling around the outer peripheral portion in the field. And if the traveling locus of the harvester while traveling round the outer peripheral part in the field is complicated, the calculation accuracy of the outer shape of the second region tends to be low.
 第2領域の外形の算出精度が低い場合、第2領域における自動走行のための走行経路を適切に算出することが困難となる。これにより、第2領域における収穫走行が非効率的となることや、刈り残しが生じること等が想定される。 If the calculation accuracy of the outer shape of the second area is low, it is difficult to appropriately calculate a travel route for automatic traveling in the second area. As a result, it is assumed that harvest traveling in the second region will be inefficient, uncut and so forth.
 本発明の目的は、圃場内の内周部分における自動走行を適切に行いやすい自動走行システムを提供することである。 An object of the present invention is to provide an automatic travel system that facilitates automatic travel on an inner circumferential portion in a field.
 [2]背景技術[2]に対応する課題は、以下の通りである。
 特許文献1に記載の自動走行システムにおいて、圃場内の外周部分を周回走行することにより収穫済みとなった領域を外周領域として設定し、外周領域の内側を作業対象領域として算出し、作業対象領域における走行経路を算出することが考えられる。
[2] Background Art The problems corresponding to [2] are as follows.
In the automatic traveling system described in Patent Document 1, an area which has been harvested by traveling around the outer periphery of the field is set as an outer peripheral area, and the inner side of the outer peripheral area is calculated as a work target area. It is conceivable to calculate the travel route in
 ここで、圃場内の外周部分での周回走行における収穫機の走行軌跡に基づいて作業対象領域の形状を算出する場合、走行軌跡が複雑であると、算出される作業対象領域の形状は、複雑になりがちである。 Here, in the case where the shape of the work target area is calculated based on the traveling locus of the harvester in the circumferential traveling at the outer peripheral portion in the field, if the traveling locus is complicated, the shape of the operation target area calculated is complicated It tends to be.
 そして、算出される作業対象領域の形状が複雑である場合、作業対象領域における走行経路の算出のための処理が複雑となる。これにより、走行経路の算出に多くの時間が必要となる事態が想定される。 When the shape of the work target area to be calculated is complicated, the process for calculating the travel route in the work target area becomes complicated. As a result, it is assumed that much time is required to calculate the travel route.
 本発明の目的は、作業対象領域の形状を比較的単純な形として算出できる領域決定システムを提供することである。 An object of the present invention is to provide a region determination system capable of calculating the shape of a work target region as a relatively simple form.
 [3]背景技術[3]に対応する課題は、以下の通りである。
 特許文献2には、圃場の未刈領域における角部の植立穀稈を刈り取るためにコンバインが方向転換を行う際の方向転換の方法については詳述されていない。
[3] Background Art The problems corresponding to [3] are as follows.
Patent document 2 does not describe in detail the method of the direction change when the combine performs a direction change in order to cut off the grain casserole of the corner in the uncut area of a field.
 ここで、圃場の未刈領域における角部の植立穀稈を刈り取るためにコンバインが方向転換を行う際に、コンバインが未刈領域に入らないようにコンバインを制御する構成が考えられる。この構成によれば、方向転換の際に、コンバインが未刈領域の植立穀稈を踏み付けてしまうことを回避できる。 Here, a configuration is conceivable in which the combine is controlled so that the combine does not enter the uncut region when the combine performs a direction change in order to reap the crop in the corner of the field in the uncut region. According to this configuration, it is possible to prevent the combine from stomping on the uncut area of the cereal grain when turning.
 しかしながら、この構成では、方向転換のために利用可能なスペースが比較的狭くなりがちである。これにより、方向転換を円滑に行うことができず、作業効率が低下してしまいやすい。 However, in this configuration, the space available for turning tends to be relatively narrow. As a result, the direction change can not be smoothly performed, and work efficiency is likely to be reduced.
 本発明の目的は、コンバインが未刈領域の植立穀稈を踏み付けてしまうことを回避できると共に、コンバインの方向転換を円滑に行いやすいコンバイン制御システムを提供することである。 An object of the present invention is to provide a combine control system that can prevent the combine from treading on the unstacked area of the field crop and can easily change the direction of the combine smoothly.
 [1]課題[1]に対応する解決手段は、以下の通りである。
 本発明の特徴は、圃場における外周部分での収穫走行を含む第1収穫走行と、前記第1収穫走行の後に行われる第2収穫走行と、によって圃場の農作物を収穫する収穫機の自動走行を管理する自動走行システムであって、前記第1収穫走行により収穫済みとなった領域である第1領域の内側を第2領域として設定する領域設定部と、前記領域設定部により設定された前記第2領域における走行経路である内周走行経路を算出する内周走行経路算出部と、前記内周走行経路に基づいた自動走行によって前記第2収穫走行が行われるように前記収穫機の走行を制御する走行制御部と、圃場の外形を示すデータである圃場外形データを取得するデータ取得部と、前記データ取得部により取得された前記圃場外形データに基づいて、前記第1収穫走行のための走行経路または走行位置を示す情報である第1走行情報を生成する第1走行情報生成部と、を備え、前記第1走行情報生成部により生成される前記第1走行情報に、中割走行のための走行経路または走行位置を示す情報である中割走行情報が含まれていることにある。
[1] The solution means corresponding to the problem [1] is as follows.
The feature of the present invention is an automatic running of a harvester for harvesting crops in a field by a first harvest run including a harvest run on the outer periphery of the field and a second harvest run performed after the first harvest run. An automatic traveling system for managing, comprising: an area setting unit which sets an inner side of a first area which is an area which has been harvested by the first harvest traveling as a second area; and the second set by the area setting unit The traveling of the harvester is controlled so that the second harvest traveling is performed by the inner traveling route calculation unit which calculates the inner traveling route which is the traveling route in the two areas, and the automatic traveling based on the inner traveling route. The first harvest traveling on the basis of the traveling control unit, the data acquisition unit for acquiring field external shape data which is data indicating the external shape of the field, and the field external shape data acquired by the data acquiring unit A first travel information generation unit that generates first travel information that is information indicating a travel route or a travel position for the vehicle; and the middle travel ratio is divided into the first travel information generated by the first travel information generation unit; It is to include middle traveling information, which is information indicating a traveling route or traveling position for traveling.
 本発明であれば、データ取得部により取得された圃場外形データに基づいて、第1走行情報が生成される。そして、第1走行情報には、中割走行のための走行経路または走行位置を示す情報である中割走行情報が含まれている。 In the case of the present invention, the first travel information is generated based on the field external shape data acquired by the data acquisition unit. The first travel information includes middle travel information, which is information indicating a travel route or travel position for middle travel.
 即ち、本発明であれば、圃場の外形に応じて中割走行情報が生成されることとなる。従って、圃場の外形が比較的複雑であっても、第1収穫走行における収穫機の走行軌跡が単純になるように、中割走行のための走行経路または走行位置が算出される構成を実現できる。これにより、第2領域の外形を精度良く算出すると共に、内周走行経路を適切に算出することができる。そして、算出された内周走行経路に基づいて、圃場内の内周部分における自動走行を適切に行うことができる。 That is, according to the present invention, the split travel information is generated according to the external shape of the field. Therefore, even if the external shape of the field is relatively complex, it is possible to realize a configuration in which the traveling route or traveling position for mid-division traveling is calculated so that the traveling locus of the harvester in the first harvest traveling becomes simple. . Thus, the outer shape of the second region can be accurately calculated, and the inner circumferential traveling route can be appropriately calculated. And based on the computed inner circumference travel route, automatic travel in the inner circumference part in a field can be appropriately performed.
 従って、本発明であれば、圃場内の内周部分における自動走行を適切に行いやすい。 Therefore, according to the present invention, automatic traveling on the inner circumferential portion in the field can be easily performed properly.
 さらに、本発明において、前記走行制御部は、前記第1収穫走行において、自動走行によって前記中割走行が行われるように、前記中割走行情報に基づいて前記収穫機の走行を制御すると好適である。 Furthermore, in the present invention, preferably, the traveling control unit controls the traveling of the harvester based on the split travel information so that the split travel is performed by automatic travel in the first harvest traveling. is there.
 手動走行によって中割走行が行われる場合、中割走行情報により示される中割走行のための走行経路または走行位置と、実際の走行経路または走行位置と、がずれてしまう可能性がある。 When the split travel is performed by manual travel, there is a possibility that the travel route or travel position for the split travel indicated by the split travel information may deviate from the actual travel route or travel position.
 ここで、上記の構成によれば、自動走行によって中割走行が行われる。従って、中割走行情報により示される中割走行のための走行経路または走行位置と、実際の走行経路または走行位置と、がずれてしまう事態を回避しやすい。 Here, according to the above configuration, the split travel is performed by automatic travel. Therefore, it is easy to avoid a situation in which the traveling route or traveling position for mid-division traveling indicated by the mid-division traveling information deviates from the actual traveling route or traveling position.
 さらに、本発明において、前記中割走行情報に基づいて、前記中割走行のための走行経路または走行位置を表示する表示装置を備えると好適である。 Furthermore, in the present invention, it is preferable that the display device displays the traveling route or traveling position for the middle division traveling based on the middle division traveling information.
 この構成によれば、自動走行によって中割走行が行われる場合、作業者は、中割走行の行われる予定の走行経路または走行位置を把握することができる。そのため、自動走行によって中割走行が行われているときに、中割走行が予定通り適切に行われているか否かを確認することが可能となる。 According to this configuration, in the case where the split travel is performed by the automatic travel, the worker can grasp the travel route or the travel position where the split travel is scheduled to be performed. Therefore, when the split travel is being performed by the automatic travel, it is possible to check whether the split travel is properly performed as planned.
 また、手動走行によって中割走行が行われる場合、作業者は、表示装置の表示に従って中割走行を行うことにより、適切な中割走行を行うことができる。 In addition, when middle division traveling is performed by manual traveling, the operator can perform appropriate middle division traveling by performing middle division traveling according to the display on the display device.
 さらに、本発明において、前記データ取得部は、前記収穫機とは別の作業車から前記圃場外形データを取得すると好適である。 Furthermore, in the present invention, it is preferable that the data acquisition unit acquires the field outline data from a work vehicle other than the harvester.
 収穫機とは別の作業車に、圃場の外形を算出する機能が備えられている場合、その作業車は、圃場外形データを生成することができる。 When the work vehicle other than the harvester is provided with the function of calculating the field outline, the work vehicle can generate the field outline data.
 ここで、上記の構成によれば、データ取得部は、収穫機とは別の作業車によって生成された圃場外形データを取得することができる。これにより、収穫機とは別の作業車によって生成された圃場外形データを有効利用することが可能となる。 Here, according to the above configuration, the data acquisition unit can acquire the field external shape data generated by the work vehicle other than the harvester. This makes it possible to effectively use the field external shape data generated by the work vehicle other than the harvester.
 さらに、本発明において、前記圃場外形データを格納する管理サーバを備え、前記データ取得部は、前記管理サーバから前記圃場外形データを取得すると好適である。 Furthermore, in the present invention, it is preferable that the management server which stores the field external shape data is provided, and the data acquisition unit acquires the field external shape data from the management server.
 この構成によれば、圃場外形データが管理サーバに格納される。従って、圃場の外形を一度だけ算出し、その算出結果を圃場外形データとして管理サーバに格納しておけば、その圃場外形データを繰り返し利用することが可能となる。即ち、収穫作業の度に圃場の外形を算出する必要が生じることを回避できる。 According to this configuration, the field external shape data is stored in the management server. Therefore, if the field outline is calculated only once and the calculation result is stored as the field outline data in the management server, the field outline data can be used repeatedly. That is, it is possible to avoid the need to calculate the field outline every time the harvesting operation is performed.
 さらに、本発明において、前記データ取得部により取得された前記圃場外形データに基づいて、圃場の外形が、圃場の外周側から内周側に向かって凹入する凹入部を有する形状であるか否かを判定する外形判定部を備え、前記外形判定部により圃場の外形が前記凹入部を有する形状であると判定された場合、前記第1走行情報生成部は、前記中割走行のための走行経路または走行位置に前記凹入部の頂点部分が含まれるように前記第1走行情報を生成すると好適である。 Furthermore, in the present invention, based on the field external shape data acquired by the data acquisition unit, it is determined whether or not the external shape of the field has a recessed portion recessed from the outer periphery side to the inner periphery side of the field. The first traveling information generation unit is configured to travel for the middle division traveling when the external appearance determining unit determines that the external shape of the field is a shape having the recessed portion; Preferably, the first travel information is generated such that the top portion of the recess is included in the route or travel position.
 圃場の外形が凹入部を有する形状である場合、収穫機が圃場内の外周部分を周回走行する際に、凹入部の全長に亘って圃場の境界線に沿って走行すると、収穫機の走行軌跡が複雑になりがちである。 When the external shape of the field is a shape having a recessed portion, when traveling along the entire length of the recessed portion along the border line of the field when the harvester travels around the outer peripheral portion in the field, the traveling path of the harvester Tend to be complicated.
 ここで、上記の構成によれば、圃場の外形が凹入部を有する形状である場合、中割走行のための走行経路または走行位置に凹入部の頂点部分が含まれる。従って、上記の構成において生成された第1走行情報に基づいて収穫機が走行すれば、収穫機が圃場内の外周部分を、圃場の境界線に沿って収穫走行し、凹入部の頂点部分に到達すると、その地点から中割走行が行われることとなる。 Here, according to the above configuration, when the external shape of the field has a shape having a recessed portion, the traveling route or traveling position for middle-division traveling includes the apex portion of the recessed portion. Therefore, if the harvester travels based on the first travel information generated in the above configuration, the harvester travels along the perimeter of the field along the border of the field, and the harvester travels along the border of the field, When it reaches, middle division traveling will be performed from that point.
 これにより、収穫機が圃場内の外周部分を周回走行する際に、凹入部の全長に亘って圃場の境界線に沿って走行することにより収穫機の走行軌跡が複雑になる事態を回避できる。 This makes it possible to avoid the situation where the traveling locus of the harvester becomes complicated by traveling along the border line of the field over the entire length of the recess when the harvester goes around the outer peripheral part in the field.
 また、本発明の別の特徴は、圃場における外周部分での収穫走行を含む第1収穫走行と、前記第1収穫走行の後に行われる第2収穫走行と、によって圃場の農作物を収穫する収穫機の自動走行を管理する自動走行管理プログラムであって、前記第1収穫走行により収穫済みとなった領域である第1領域の内側を第2領域として設定する領域設定機能と、前記領域設定機能により設定された前記第2領域における走行経路である内周走行経路を算出する内周走行経路算出機能と、前記内周走行経路に基づいた自動走行によって前記第2収穫走行が行われるように前記収穫機の走行を制御する走行制御機能と、圃場の外形を示すデータである圃場外形データを取得するデータ取得機能と、前記データ取得機能により取得された前記圃場外形データに基づいて、前記第1収穫走行のための走行経路または走行位置を示す情報である第1走行情報を生成する第1走行情報生成機能と、をコンピュータに実現させるように構成されており、前記第1走行情報生成機能により生成される前記第1走行情報に、中割走行のための走行経路または走行位置を示す情報である中割走行情報が含まれていることにある。 In addition, another feature of the present invention is a harvester for harvesting crops in a field according to a first harvest run including a harvest run on the periphery of the field and a second harvest run performed after the first harvest run. An automatic travel management program for managing the automatic travel of the vehicle, wherein an area setting function of setting the inside of the first area which is an area harvested by the first harvest travel as the second area, and the area setting function The harvesting is performed such that the second harvest traveling is performed by an inner traveling route calculation function of calculating an inner traveling route which is a traveling route in the set second region, and an automatic traveling based on the inner traveling route. Running control function for controlling the running of the aircraft, a data acquisition function for acquiring field external shape data which is data indicating the external shape of a field, and the field external shape data acquired by the data acquisition function And a first travel information generation function of generating first travel information, which is information indicating a travel route or travel position for the first crop travel, based on the computer system. The first traveling information generated by the first traveling information generation function includes middle traveling information which is information indicating a traveling route or traveling position for middle traveling.
 また、本発明の別の特徴は、圃場における外周部分での収穫走行を含む第1収穫走行と、前記第1収穫走行の後に行われる第2収穫走行と、によって圃場の農作物を収穫する収穫機の自動走行を管理する自動走行管理プログラムを記録した記録媒体であって、前記自動走行管理プログラムは、前記第1収穫走行により収穫済みとなった領域である第1領域の内側を第2領域として設定する領域設定機能と、前記領域設定機能により設定された前記第2領域における走行経路である内周走行経路を算出する内周走行経路算出機能と、前記内周走行経路に基づいた自動走行によって前記第2収穫走行が行われるように前記収穫機の走行を制御する走行制御機能と、圃場の外形を示すデータである圃場外形データを取得するデータ取得機能と、前記データ取得機能により取得された前記圃場外形データに基づいて、前記第1収穫走行のための走行経路または走行位置を示す情報である第1走行情報を生成する第1走行情報生成機能と、をコンピュータに実現させるように構成されており、前記第1走行情報生成機能により生成される前記第1走行情報に、中割走行のための走行経路または走行位置を示す情報である中割走行情報が含まれている自動走行管理プログラムを記録していることにある。 In addition, another feature of the present invention is a harvester for harvesting crops in a field according to a first harvest run including a harvest run on the periphery of the field and a second harvest run performed after the first harvest run. A recording medium recording an automatic travel management program for managing automatic travel of the vehicle, wherein the automatic travel management program uses the inside of the first area which is the area already harvested by the first harvest traveling as a second area An area setting function to be set, an inner circumference traveling path calculation function for calculating an inner circumference traveling path which is a traveling path in the second area set by the area setting function, and automatic traveling based on the inner circumference traveling path A traveling control function for controlling the traveling of the harvester so that the second harvest traveling is performed, and a data acquisition function for acquiring field external shape data, which is data indicating an outline of a field, A first travel information generation function for generating first travel information which is information indicating a travel route or travel position for the first crop travel based on the field outline data acquired by the data acquisition function; The first travel information generated by the first travel information generation function includes break travel information, which is information indicating a travel route or travel position for the break travel. The automatic travel management program is being recorded.
 また、本発明の別の特徴は、圃場における外周部分での収穫走行を含む第1収穫走行と、前記第1収穫走行の後に行われる第2収穫走行と、によって圃場の農作物を収穫する収穫機の自動走行を管理する自動走行管理方法であって、前記第1収穫走行により収穫済みとなった領域である第1領域の内側を第2領域として設定する領域設定ステップと、前記領域設定ステップにより設定された前記第2領域における走行経路である内周走行経路を算出する内周走行経路算出ステップと、前記内周走行経路に基づいた自動走行によって前記第2収穫走行が行われるように前記収穫機の走行を制御する走行制御ステップと、圃場の外形を示すデータである圃場外形データを取得するデータ取得ステップと、前記データ取得ステップにより取得された前記圃場外形データに基づいて、前記第1収穫走行のための走行経路または走行位置を示す情報である第1走行情報を生成する第1走行情報生成ステップと、を備え、前記第1走行情報生成ステップにより生成される前記第1走行情報に、中割走行のための走行経路または走行位置を示す情報である中割走行情報が含まれていることにある。 In addition, another feature of the present invention is a harvester for harvesting crops in a field according to a first harvest run including a harvest run on the periphery of the field and a second harvest run performed after the first harvest run. An automatic travel management method for managing automatic travel of the vehicle, wherein an area setting step of setting an inner side of a first area which is an area harvested by the first harvest travel as a second area, and the area setting step The harvesting such that the second harvest traveling is performed by an inner traveling route calculating step of calculating an inner traveling route which is a traveling route in the set second region, and an automatic traveling based on the inner traveling route. A running control step for controlling the running of the aircraft, a data obtaining step for obtaining field outer shape data which is data indicating the outer shape of the field, and the data obtaining step Generating first travel information, which is information indicating a travel route or travel position for the first crop travel based on the field external shape data, and generating the first travel information The first traveling information generated by the step includes the traveling traveling information or traveling position for traveling traveling in a middle traveling, which is information including traveling traveling information for traveling traveling in middle traveling.
 [2]課題[2]に対応する解決手段は、以下の通りである。
 本発明の特徴は、収穫機の自車位置を示す測位データを出力する衛星測位モジュールと、前記衛星測位モジュールにより出力された前記測位データに基づいて、前記収穫機が農作物を収穫しながら周回走行した圃場の外周側の領域を外周領域として算出すると共に、前記外周領域の内側を作業対象領域として算出する領域算出部と、を備え、前記領域算出部は、前記作業対象領域の形状を多角形として算出するように構成されていることにある。
[2] The solution means corresponding to the problem [2] is as follows.
A feature of the present invention is that the harvester is traveling while harvesting crops based on a satellite positioning module that outputs positioning data indicating the vehicle position of the harvester and the positioning data output by the satellite positioning module. An area calculation unit that calculates an area on the outer circumference side of the field as an outer circumference area and calculates an inner side of the outer circumference area as a work target area; and the area calculation section calculates the shape of the work target area as a polygon It is configured to be calculated as
 本発明であれば、作業対象領域の形状が多角形として算出される。そのため、作業対象領域の形状を比較的単純な形として算出できる。 In the present invention, the shape of the work target area is calculated as a polygon. Therefore, the shape of the work target area can be calculated as a relatively simple shape.
 さらに、本発明において、前記領域算出部により算出された前記作業対象領域の形状を報知する報知部と、人為操作入力を受け付ける操作入力部と、を備え、前記領域算出部は、前記操作入力部に入力された前記人為操作入力に基づいて、前記多角形の辺の数を変更すると好適である。 Furthermore, in the present invention, the information processing apparatus further includes: a notification unit that notifies the shape of the work target area calculated by the area calculation unit; and an operation input unit that receives an artificial operation input. It is preferable to change the number of sides of the polygon based on the artificial operation input input to.
 作業対象領域の形状に基づいて、作業対象領域における走行経路が算出される構成が考えられる。この構成において、算出された作業対象領域の形状が実際の形状に合致していない場合、算出される走行経路が不適切になりがちである。これにより、作業対象領域における収穫走行が非効率的となることや、刈り残しが生じること等が想定される。 A configuration is conceivable in which the travel route in the work target area is calculated based on the shape of the work target area. In this configuration, when the calculated shape of the work target area does not match the actual shape, the calculated travel route tends to be inappropriate. As a result, it is assumed that harvest traveling in the work target area will be inefficient, uncut and the like will occur.
 ここで、上記の構成によれば、領域算出部により算出された作業対象領域の形状は、報知部によって報知される。そのため、作業者は、算出された作業対象領域の形状が実際の形状に合致しているか否かを確認することができる。 Here, according to the above configuration, the shape of the work target area calculated by the area calculation unit is notified by the notification unit. Therefore, the worker can check whether the calculated shape of the work target area matches the actual shape.
 そして、算出された作業対象領域の形状が実際の形状に合致していない場合、作業者は、操作入力部を操作することにより、算出された作業対象領域の辺の数を変更できる。これにより、算出された作業対象領域の形状を、実際の形状に合致するように変更することができる。 Then, when the calculated shape of the work target area does not match the actual shape, the operator can change the number of sides of the calculated work target area by operating the operation input unit. Thus, the calculated shape of the work target area can be changed to conform to the actual shape.
 さらに、本発明において、前記外周領域における外周側の境界線と、前記外周領域における内周側の境界線と、の間の距離を算出する距離算出部を備え、前記距離算出部により算出された距離が所定距離よりも短い場合、前記領域算出部は、前記多角形の辺の数を増加させると好適である。 Furthermore, in the present invention, a distance calculation unit is provided for calculating a distance between the outer peripheral boundary of the outer peripheral region and the inner peripheral boundary of the outer peripheral region, and the distance calculator calculates the distance. When the distance is shorter than a predetermined distance, the area calculation unit preferably increases the number of sides of the polygon.
 外周領域は、作業対象領域において収穫走行を行うときに、収穫機が方向転換をするためのスペースとして利用可能である。また、外周領域は、作業対象領域における収穫走行を一旦終えて、収穫物の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用可能である。 The outer peripheral area can be used as a space for the harvester to turn when the harvest run is performed in the work target area. Further, the outer peripheral area can also be used as a space for movement when moving to the discharge place of the harvest or once moving to the fuel supply place after the harvest traveling in the work target area is once finished.
 しかしながら、領域算出部により算出された外周領域における外周側の境界線と、外周領域における内周側の境界線と、の間の距離が比較的短い場合には、外周領域が狭いため、上記のように外周領域を利用することが困難となる。 However, if the distance between the boundary line on the outer circumference side in the outer circumference area calculated by the area calculation unit and the boundary line on the inner circumference side in the outer circumference area is relatively short, the outer circumference area is narrow. As a result, it becomes difficult to use the outer peripheral area.
 ここで、上記の構成によれば、外周領域における外周側の境界線と、外周領域における内周側の境界線と、の間の距離が所定距離よりも短い場合、領域算出部は、算出された作業対象領域の辺の数を増加させる。これにより、辺の数が増加した箇所において、外周領域における外周側の境界線と、外周領域における内周側の境界線と、の間の距離が長くなる。その結果、外周領域を拡大することが可能となる。 Here, according to the above configuration, when the distance between the outer peripheral boundary in the outer peripheral region and the inner peripheral boundary in the outer peripheral region is shorter than a predetermined distance, the region calculation unit calculates Increase the number of sides of the work area. As a result, at a point where the number of sides increases, the distance between the outer peripheral boundary line in the outer peripheral region and the inner peripheral boundary line in the outer peripheral region becomes long. As a result, the outer peripheral area can be expanded.
 従って、上記の構成によれば、外周領域を広く確保しやすくなる。 Therefore, according to the above configuration, it is easy to secure a wide outer peripheral area.
 さらに、本発明において、前記外周領域における外周側の境界線と、前記外周領域における内周側の境界線と、の間の距離を算出する距離算出部と、前記距離算出部により算出された距離が所定距離よりも短い場合に圃場の外周側の領域における周回走行を追加で行うように促す警告部と、を備えると好適である。 Furthermore, in the present invention, a distance calculating unit that calculates a distance between the outer peripheral boundary of the outer peripheral region and the inner peripheral boundary of the outer peripheral region, and the distance calculated by the distance calculating unit. It is preferable that the warning unit further includes a warning unit that urges additional circular travel in the area on the outer periphery side of the agricultural field when the distance is shorter than the predetermined distance.
 外周領域は、作業対象領域において収穫走行を行うときに、収穫機が方向転換をするためのスペースとして利用可能である。また、外周領域は、作業対象領域における収穫走行を一旦終えて、収穫物の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用可能である。 The outer peripheral area can be used as a space for the harvester to turn when the harvest run is performed in the work target area. Further, the outer peripheral area can also be used as a space for movement when moving to the discharge place of the harvest or once moving to the fuel supply place after the harvest traveling in the work target area is once finished.
 しかしながら、外周領域における外周側の境界線と、外周領域における内周側の境界線と、の間の距離が比較的短い場合には、外周領域が狭いため、上記のように外周領域を利用することが困難となる。 However, when the distance between the boundary on the outer circumference side in the outer circumference area and the boundary line on the inner circumference side in the outer circumference area is relatively short, the outer circumference area is narrow, so the outer circumference area is used as described above. It becomes difficult.
 ここで、外周領域が狭い場合には、追加の周回走行を行うことにより、外周領域を拡大することが考えられる。 Here, when the outer circumferential area is narrow, it is conceivable to expand the outer circumferential area by performing additional round trip.
 しかしながら、特に未熟な作業者にとっては、圃場の外周側の領域における周回走行を完了した時点で、追加の周回走行を行う必要があるかどうかを適切に判断することは難しい。 However, especially for an unskilled worker, it is difficult to properly determine whether it is necessary to perform additional round trips when completing round trips in the area on the outer circumference side of the field.
 ここで、上記の構成によれば、外周領域における外周側の境界線と、外周領域における内周側の境界線と、の間の距離が所定距離よりも短い場合、警告部により、圃場の外周側の領域における周回走行を追加で行うように促される。そのため、作業者は、外周領域が狭い場合に、外周領域を拡大するために追加の周回走行を行う必要があることを確実に認識できる。 Here, according to the above configuration, when the distance between the outer peripheral boundary in the outer peripheral region and the inner peripheral boundary in the outer peripheral region is shorter than a predetermined distance, the warning unit performs the outer periphery of the field. You will be prompted to make additional round trips in the side area. Therefore, when the outer peripheral area is narrow, the worker can surely recognize that it is necessary to perform additional round trip to expand the outer peripheral area.
 また、本発明の別の特徴は、領域決定プログラムであって、収穫機の自車位置を示す測位データを出力する衛星測位モジュールにより出力された前記測位データに基づいて、前記収穫機が農作物を収穫しながら周回走行した圃場の外周側の領域を外周領域として算出すると共に、前記外周領域の内側を作業対象領域として算出する領域算出機能をコンピュータに実現させるように構成されており、前記領域算出機能は、前記作業対象領域の形状を多角形として算出することにある。 Further, another feature of the present invention is the area determination program, wherein the harvester produces the crop based on the positioning data output by the satellite positioning module that outputs the positioning data indicating the vehicle position of the harvester. The area calculation function of calculating the area on the outer circumference side of the crop field traveling while harvesting as the outer circumference area and calculating the inner side of the outer circumference area as the work target area is configured to be realized by the computer. The function is to calculate the shape of the work target area as a polygon.
 また、本発明の別の特徴は、収穫機の自車位置を示す測位データを出力する衛星測位モジュールにより出力された前記測位データに基づいて、前記収穫機が農作物を収穫しながら周回走行した圃場の外周側の領域を外周領域として算出すると共に、前記外周領域の内側を作業対象領域として算出する領域算出機能をコンピュータに実現させる領域決定プログラムを記録した記録媒体であって、前記領域算出機能は、前記作業対象領域の形状を多角形として算出する領域決定プログラムを記録していることにある。 In addition, another feature of the present invention is a field where the harvester travels while harvesting crops based on the positioning data output by the satellite positioning module that outputs the positioning data indicating the vehicle position of the harvester. A recording medium storing an area determination program for causing a computer to realize an area calculation function of calculating an area on the outer circumference side of the area as an outer circumference area and calculating an inner side of the outer circumference area as a work target area; An area determination program for calculating the shape of the work target area as a polygon is recorded.
 また、本発明の別の特徴は、領域決定方法であって、収穫機の自車位置を示す測位データを出力する衛星測位モジュールにより出力された前記測位データに基づいて、前記収穫機が農作物を収穫しながら周回走行した圃場の外周側の領域を外周領域として算出すると共に、前記外周領域の内側を作業対象領域として算出する領域算出ステップを備え、前記領域算出ステップにおいて、前記作業対象領域の形状を多角形として算出することにある。 Another feature of the present invention is a method of determining an area, wherein the harvester produces an agricultural product based on the positioning data output by a satellite positioning module that outputs positioning data indicating the vehicle position of the harvester. An area calculation step of calculating an area on the outer circumference side of the crop field traveling while harvesting as an outer circumference area and calculating an inner side of the outer circumference area as a work target area, the shape of the work target area in the area calculation step Is to be calculated as a polygon.
 [3]課題[3]に対応する解決手段は、以下の通りである。
 本発明の特徴は、圃場の植立穀稈を刈り取る刈取装置を有するコンバインを制御するコンバイン制御システムであって、前記コンバインの方向転換を制御する方向転換制御部を備え、圃場の未刈領域における角部の植立穀稈を刈り取るために前記コンバインが方向転換を行う際、前記方向転換制御部は、植立穀稈を刈り取りながら旋回する刈取旋回動作を含む方向転換方法である角部用特別方向転換によって前記コンバインの方向転換が行われるように前記コンバインを制御することにある。
[3] The solution means corresponding to the problem [3] is as follows.
A feature of the present invention is a combine control system for controlling a combine having a reaping device for reaping field crop in a field, comprising a direction change control unit for controlling the direction change of the combine, in an uncut area of the field When the combine makes a direction change in order to reap the planted rice field in the corner, the direction change control unit is a direction changing method that includes a reaping and turning operation that turns while reaping the in-plant area reed. It controls the combine so that a change of direction of the combine is performed by a change of direction.
 本発明であれば、圃場の未刈領域における角部の植立穀稈を刈り取るためにコンバインが方向転換を行う際、コンバインは、角部用特別方向転換によって方向転換を行うように制御される。そして、この角部用特別方向転換には、植立穀稈を刈り取りながら旋回する刈取旋回動作が含まれている。 In the case of the present invention, when the combine makes a turn in order to reap the crop on the corner in the uncut area of the field, the combine is controlled to turn by a special turn for the corner . And this cutting direction special direction change includes a reaping and turning operation which is turned while reaping the crop.
 従って、本発明であれば、方向転換において、刈取旋回動作によりコンバインが未刈領域に入る。即ち、方向転換において、コンバインが植立穀稈を刈り取りながら未刈領域に入るため、コンバインが未刈領域の植立穀稈を踏み付けてしまうことを回避できる。 Therefore, according to the present invention, the combine turns into the uncut area by the reaping and turning operation in the change of direction. That is, in the change of direction, since the combine enters the uncut area while harvesting the planted straw, it is possible to prevent the combine from stepping on the planted paddy in the uncut area.
 しかも、方向転換の際にコンバインが未刈領域に入らないようにコンバインを制御する場合に比べて、方向転換のために利用可能なスペースが広くなる。これにより、コンバインの方向転換を円滑に行いやすい。 Furthermore, the space available for turning is wider than in the case of controlling the combine so that the combine does not enter the uncut area during turning. This makes it easy to change the direction of the combine smoothly.
 即ち、本発明であれば、コンバインが未刈領域の植立穀稈を踏み付けてしまうことを回避できると共に、コンバインの方向転換を円滑に行いやすい。 That is, according to the present invention, it is possible to prevent the combine from treading on the unstacked area of the field crop, and it is easy to smoothly change the direction of the combine.
 さらに、本発明において、前記角部用特別方向転換は、方向転換前の前記コンバインの進行方向において前記角部よりも後側の位置まで後進する第1後進動作と、前記第1後進動作の後に行われる前記刈取旋回動作と、前記刈取旋回動作の後に行われる動作であって、方向転換後の前記コンバインの進行方向において前記角部よりも後側の位置まで後進する第2後進動作と、前記第2後進動作の後に行われる前進動作と、を含んでいると好適である。 Furthermore, in the present invention, the corner part special direction change is performed after a first reverse operation for moving backward to a position behind the corner part in the advancing direction of the combine before the direction change, and after the first reverse operation. The reaping and turning operation to be performed and the operation to be performed after the reaping and turning operation, and a second reverse operation to reverse to a position behind the corner in the advancing direction of the combine after the change of direction; It is preferable to include an advancing operation performed after the second reverse operation.
 この構成によれば、刈取旋回動作に先立って、第1後進動作が行われる。これにより、コンバインが刈取旋回動作によって圃場の境界線を越えてしまう事態を回避しやすい。 According to this configuration, the first reverse operation is performed prior to the reaping and turning operation. This makes it easy to prevent the combine from crossing the border of the field due to the reaping and turning motion.
 しかも、この構成によれば、第2後進動作及び前進動作によって、コンバインが角部の植立穀稈を刈り取りやすい位置へ移動しながら方向転換を完了させやすい。 Moreover, according to this configuration, it is easy to complete the change of direction while moving the combine harvester to a position where it is easy to harvest the grain reed of the corner by the second reverse movement and the forward movement.
 さらに、本発明において、前記コンバインの方向転換方法を決定する決定部を備え、前記方向転換制御部は、前記決定部による決定内容に従って前記コンバインの方向転換を制御するように構成されており、前記決定部は、前記角部と圃場の境界線との間の距離が所定距離よりも短い場合には、前記角部の植立穀稈を刈り取るために行われる前記コンバインの方向転換が前記角部用特別方向転換によって行われることを決定し、前記決定部は、前記角部と圃場の境界線との間の距離が前記所定距離以上である場合には、前記角部の植立穀稈を刈り取るために行われる前記コンバインの方向転換が前記角部用特別方向転換とは異なる方向転換方法によって行われることを決定すると好適である。 Furthermore, in the present invention, a determination unit for determining the direction change method of the combine is provided, and the direction change control unit is configured to control the direction change of the combine according to the determination content by the determination unit, When the distance between the corner and the border of the field is shorter than a predetermined distance, the determining unit changes the direction of the combine performed to reap the grain of the erection of the corner. It is decided to be carried out by means of special direction change, and the determination unit determines the planted grain weir of the corner if the distance between the corner and the boundary of the field is greater than or equal to the predetermined distance. It is preferable to determine that the change in direction of the combine to be carried out for harvesting is performed by a different direction change method than the corner direction change in direction.
 この構成によれば、角部と圃場の境界線との間の距離が比較的短い場合には、角部用特別方向転換を行うことにより、方向転換のためのスペースを広く確保しながら、確実に方向転換を行うことができる。 According to this configuration, when the distance between the corner and the boundary of the field is relatively short, the corner for the special direction change is performed to secure a wide space for the direction change while ensuring Turn around.
 ここで、角部と圃場の境界線との間の距離が比較的長い場合には、角部用特別方向転換を行わずとも、方向転換のために利用可能なスペースを広く確保しやすい。即ち、この場合には、角部用特別方向転換とは異なる方向転換方法であっても、方向転換を行うことができる。 Here, when the distance between the corner and the boundary of the field is relatively long, it is easy to secure a wide available space for the direction change without performing the corner special direction change. That is, in this case, the direction change can be performed even if it is a direction change method different from the corner direction specific direction change.
 そして、上記の構成によれば、角部と圃場の境界線との間の距離が比較的長い場合には、角部用特別方向転換とは異なる方向転換方法によって、コンバインの方向転換が行われる。従って、角部と圃場の境界線との間の距離が比較的長い場合には、角部用特別方向転換よりも迅速に方向転換が可能な方法によって方向転換を行う構成を実現できる。 And according to said structure, when the distance between a corner and the boundary line of a field is comparatively long, the direction change of a combine is performed by the direction change method different from the corner special direction change. . Therefore, in the case where the distance between the corner and the boundary of the field is relatively long, it is possible to realize a configuration in which the direction change can be performed by a method in which the direction change can be made faster than the corner direction change.
 従って、上記の構成によれば、角部と圃場の境界線との間の距離が比較的短い場合には、角部用特別方向転換によって確実に方向転換を行いながらも、角部と圃場の境界線との間の距離が比較的長い場合には、角部用特別方向転換とは異なる方向転換方法によって迅速な方向転換を行うことが可能な構成を実現できる。 Therefore, according to the above-described configuration, when the distance between the corner and the boundary of the field is relatively short, the corner special direction change is surely performed by turning the corner for the corner and the field. In the case where the distance to the boundary is relatively long, it is possible to realize a configuration capable of performing a quick turn by a turning method different from the corner turning.
 また、本発明の別の特徴は、圃場の植立穀稈を刈り取る刈取装置を有するコンバインを制御するコンバイン制御プログラムであって、前記コンバインの方向転換を制御する方向転換制御機能をコンピュータに実現させるように構成されており、圃場の未刈領域における角部の植立穀稈を刈り取るために前記コンバインが方向転換を行う際、前記方向転換制御機能は、植立穀稈を刈り取りながら旋回する刈取旋回動作を含む方向転換方法である角部用特別方向転換によって前記コンバインの方向転換が行われるように前記コンバインを制御することにある。 In addition, another feature of the present invention is a combine control program for controlling a combine having a reaping device for reaping field crop in a field, which causes a computer to realize a direction change control function for controlling the change in direction of the combine. The turning control function is configured to turn while cutting the planted grain when the combine makes a turn to harvest the planted grain in the corner of the field in the uncut area of the field. It is to control the combine so that the direction change of the combine is performed by the corner direction special direction change which is a direction change method including a turning operation.
 また、本発明の別の特徴は、圃場の植立穀稈を刈り取る刈取装置を有するコンバインを制御するコンバイン制御プログラムを記録した記録媒体であって、前記コンバイン制御プログラムは、前記コンバインの方向転換を制御する方向転換制御機能をコンピュータに実現させるように構成されており、圃場の未刈領域における角部の植立穀稈を刈り取るために前記コンバインが方向転換を行う際、前記方向転換制御機能は、植立穀稈を刈り取りながら旋回する刈取旋回動作を含む方向転換方法である角部用特別方向転換によって前記コンバインの方向転換が行われるように前記コンバインを制御するコンバイン制御プログラムを記録していることにある。 Also, another feature of the present invention is a recording medium recording a combine control program for controlling a combine having a reaping device for reaping a field crop in the field, wherein the combine control program is configured to change the direction of the combine. The computer is configured to cause the computer to realize a direction change control function to be controlled, and when the combine performs direction change in order to reap cropped rice straw at the corners of the uncut area of the field, the direction change control function is A combine control program for controlling the combine so as to change the direction of the combine by special direction change for the corner, which is a direction change method including a reaping and turning motion that turns while harvesting the planted rice straw is recorded It is.
 また、本発明の別の特徴は、圃場の植立穀稈を刈り取る刈取装置を有するコンバインを制御するコンバイン制御方法であって、前記コンバインの方向転換を制御する方向転換制御ステップを備え、圃場の未刈領域における角部の植立穀稈を刈り取るために前記コンバインが方向転換を行う際、前記方向転換制御ステップにおいて、植立穀稈を刈り取りながら旋回する刈取旋回動作を含む方向転換方法である角部用特別方向転換によって前記コンバインの方向転換が行われるように前記コンバインを制御することにある。 In addition, another feature of the present invention is a combine control method for controlling a combine having a reaper for harvesting a field crop in a field, comprising a direction change control step for controlling the direction change of the combine, wherein In the direction change control step, when the combine performs a direction change in order to reap the planted grain weirs in the corner in the uncut area, the direction change control step is a direction change method including a reaping and turning motion that turns while reaping the weed It controls the combine so that the turn of the combine is performed by the corner turn.
第1実施形態を示す図であって(以下、図17まで同じ。)、自動走行システムの全体図である。It is a figure which shows 1st Embodiment (It is the same as the following until FIG. 17.), and is a general view of an automatic travel system. コンバインの左側面図である。It is a left view of a combine. 自動走行システムの構成を示すブロック図である。It is a block diagram showing composition of an automatic run system. 第1穀物圃場における1回目の第1収穫走行を示す図である。It is a figure which shows the 1st 1st crop driving | running | working in a 1st grain field. 1回目の第1収穫走行後の第1穀物圃場を示す図である。It is a figure which shows the 1st grain field after 1st 1st harvest driving | running | working. 第1穀物圃場における1回目の第2収穫走行を示す図である。It is a figure which shows 1st 2nd crop driving | running | working in a 1st grain field. 第1穀物圃場における2回目の第1収穫走行を示す図である。It is a figure which shows the 2nd 1st harvest driving | running | working in a 1st grain field. 2回目の第1収穫走行後の第1穀物圃場を示す図である。It is a figure which shows the 1st grain field after 2nd 1st harvest driving | running | working. 第1穀物圃場における2回目の第2収穫走行を示す図である。It is a figure which shows the 2nd 2nd harvest driving | running | working in a 1st grain field. 第1穀物圃場での収穫作業における通信端末の表示内容を示す図である。It is a figure which shows the display content of the communication terminal in the harvesting operation in a 1st grain field. 第2穀物圃場における第1収穫走行を示す図である。It is a figure which shows 1st harvest driving | running | working in a 2nd grain field. 第1収穫走行後の第2穀物圃場を示す図である。It is a figure which shows the 2nd grain field after 1st harvest driving | running | working. 第2穀物圃場での収穫作業における通信端末の表示内容を示す図である。It is a figure which shows the display content of the communication terminal in the harvesting operation in a 2nd grain field. 第1別実施形態における第1穀物圃場での収穫作業における通信端末の表示内容を示す図である。It is a figure which shows the display content of the communication terminal in the harvesting operation in the 1st grain field in 1st another embodiment. 第1別実施形態における第2穀物圃場での収穫作業における通信端末の表示内容を示す図である。It is a figure which shows the display content of the communication terminal in the harvesting operation in the 2nd grain field in 1st another embodiment. 第2別実施形態における第1穀物圃場での収穫作業における通信端末の表示内容を示す図である。It is a figure which shows the display content of the communication terminal in the harvesting operation in the 1st grain field in 2nd another embodiment. 第2別実施形態における第2穀物圃場での収穫作業における通信端末の表示内容を示す図である。It is a figure which shows the display content of the communication terminal in the harvesting operation in the 2nd grain field in 2nd another embodiment. 第2実施形態を示す図であって(以下、図29まで同じ。)、コンバインの左側面図である。It is a figure which shows 2nd Embodiment (following, it is the same to FIG. 29), and is a left view of a combine. 領域決定システムの構成を示すブロック図である。It is a block diagram which shows the structure of an area | region determination system. 圃場における周回走行を示す図である。It is a figure which shows the round trip in a field. 実際の未刈領域と、算出された外周領域及び作業対象領域と、を示す図である。It is a figure which shows an actual uncut area | region and the calculated outer periphery area | region and work object area | region. 表示部及び操作入力部の構成を示す図である。It is a figure which shows the structure of a display part and an operation input part. 表示部及び操作入力部の構成を示す図である。It is a figure which shows the structure of a display part and an operation input part. 実際の未刈領域と、再算出された外周領域及び作業対象領域と、を示す図である。It is a figure which shows an actual uncut area | region, the outer periphery area | region and work object area | region which were recalculated. 辺の増加処理が実行される前の外周領域及び作業対象領域を示す図である。It is a figure which shows the outer periphery area | region and work object area | region before the increase process of a side is performed. 辺の増加処理が実行された後の外周領域及び作業対象領域を示す図である。It is a figure which shows the outer periphery area | region and work object area | region after the increase process of a side was performed. 周回走行が追加で行われる前の外周領域及び作業対象領域を示す図である。It is a figure which shows the outer periphery area | region and work object area | region before circling traveling is performed additionally. 表示部における警告メッセージを示す図である。It is a figure which shows the warning message in a display part. 周回走行が追加で行われた後の外周領域及び作業対象領域を示す図である。It is a figure which shows the outer periphery area | region and work object area | region after circumference | surrounding traveling was additionally performed. 第3実施形態を示す図であって(以下、図40まで同じ。)、コンバインの左側面図である。It is a figure which shows 3rd Embodiment (following, it is the same to FIG. 40), and is a left view of a combine. 制御部に関する構成を示すブロック図である。It is a block diagram showing composition concerning a control part. 圃場における周回走行を示す図である。It is a figure which shows the round trip in a field. 刈取走行経路に沿った刈取走行を示す図である。It is a figure which shows mowing travel along a mowing travel path. 角部用特別方向転換によって方向転換が行われる場合の例を示す図である。It is a figure which shows the example in case direction change is performed by corner part direction change. 角部用特別方向転換とは異なる方向転換方法によって方向転換が行われる場合の例を示す図である。It is a figure which shows the example in case direction change is performed by the direction change method different from corner part direction change. 鋭角部用特別αターンによって方向転換が行われる場合の例を示す図である。It is a figure which shows the example in case turning is performed by the special alpha turn for acute-angled parts. 第1別実施形態において角部用特別方向転換によって方向転換が行われる場合の例を示す図である。It is a figure which shows the example in case direction change is performed by corner part specific direction change in 1st other embodiment. 第1別実施形態において角部用特別方向転換とは異なる方向転換方法によって方向転換が行われる場合の例を示す図である。It is a figure which shows the example in the case where a direction change is performed by the direction change method different from the corner direction specific direction change in 1st other embodiment. 第2別実施形態において角部用特別方向転換によって方向転換が行われる場合の例を示す図である。It is a figure which shows the example in case direction change is performed by corner part specific direction change in 2nd other embodiment. 第3別実施形態において角部用特別方向転換によって方向転換が行われる場合の例を示す図である。It is a figure which shows the example in case direction change is performed by corner part specific direction change in 3rd another embodiment.
[第1実施形態]
 以下、図1~図17を参照しながら、第1実施形態について説明する。尚、方向についての記載は、特に断りがない限り、図2に示す矢印Fの方向を「前」、矢印Bの方向を「後」とする。また、図2に示す矢印Uの方向を「上」、矢印Dの方向を「下」とする。
First Embodiment
The first embodiment will be described below with reference to FIGS. 1 to 17. In the description of the directions, unless otherwise noted, the direction of arrow F shown in FIG. 2 is "front", and the direction of arrow B is "rear". Further, the direction of the arrow U shown in FIG. 2 is “up”, and the direction of the arrow D is “down”.
 〔自動走行システムの全体構成〕
 図1に示すように、自動走行システムAは、種々の作業車Wと、管理サーバ2と、を備えている。種々の作業車Wと管理サーバ2とは、互いに通信可能に構成されている。
[Overall Configuration of Automatic Traveling System]
As shown in FIG. 1, the automatic travel system A includes various work vehicles W and a management server 2. The various work vehicles W and the management server 2 are configured to be able to communicate with each other.
 図1に示すように、種々の作業車Wには、普通型のコンバイン1(本発明に係る「収穫機」に相当)、トラクタ5、田植機6が含まれている。 As shown in FIG. 1, the various work vehicles W include a general-purpose combine 1 (corresponding to “a harvester” according to the present invention), a tractor 5, and a rice transplanter 6.
 〔コンバインの全体構成〕
 図2に示すように、コンバイン1は、クローラ式の走行装置11、運転部12、脱穀装置13、穀粒タンク14、収穫装置H、搬送装置16、穀粒排出装置18、衛星測位モジュール80を備えている。
[Overall configuration of combine]
As shown in FIG. 2, the combine 1 includes a crawler-type traveling device 11, a driving unit 12, a threshing device 13, a grain tank 14, a harvesting device H, a conveying device 16, a grain discharging device 18, and a satellite positioning module 80. Have.
 図2に示すように、走行装置11は、コンバイン1における下部に備えられている。コンバイン1は、走行装置11によって自走可能である。 As shown in FIG. 2, the traveling device 11 is provided at the lower portion of the combine 1. Combine 1 is self-propelled by traveling device 11.
 また、運転部12、脱穀装置13、穀粒タンク14は、走行装置11の上側に備えられている。運転部12には、コンバイン1の作業を監視する作業者が搭乗可能である。尚、作業者は、コンバイン1の機外からコンバイン1の作業を監視していても良い。 The operating unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11. An operator who monitors the operation of the combine 1 can ride on the operation unit 12. The worker may monitor the operation of the combine 1 from the outside of the combine 1.
 穀粒排出装置18は、穀粒タンク14の上側に設けられている。また、衛星測位モジュール80は、運転部12の上面に取り付けられている。 The grain discharging device 18 is provided on the upper side of the grain tank 14. In addition, the satellite positioning module 80 is attached to the upper surface of the driver 12.
 収穫装置Hは、コンバイン1における前部に備えられている。そして、搬送装置16は、収穫装置Hの後側に設けられている。また、収穫装置Hは、刈取部15及びリール17を有している。 The harvesting device H is provided at the front of the combine 1. The transport device 16 is provided on the rear side of the harvesting device H. In addition, the harvesting apparatus H has a reaper 15 and a reel 17.
 刈取部15は、圃場の植立穀稈を刈り取る。また、リール17は、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫装置Hは、圃場の穀物(本発明に係る「農作物」に相当)を収穫する。そして、コンバイン1は、収穫装置Hによって圃場の穀物を収穫しながら走行装置11によって走行する収穫走行が可能である。 The reaper unit 15 reaps the crop of the field in the field. In addition, the reel 17 scrapes the cropped cereals to be harvested while being rotationally driven. By this configuration, the harvester H harvests the field crop (corresponding to the "agricultural crop" according to the present invention). Then, the combine 1 can carry out a harvest run traveling by the traveling device 11 while harvesting the grain of the field by the harvesting device H.
 刈取部15により刈り取られた刈取穀稈は、搬送装置16によって脱穀装置13へ搬送される。脱穀装置13において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。 The cropped rice bran that has been clipped by the cropping unit 15 is transported by the transport device 16 to the threshing device 13. In the threshing device 13, the reaping grain is threshed. The grains obtained by the threshing process are stored in a grain tank 14. The grains stored in the grain tank 14 are discharged to the outside by the grain discharging device 18 as needed.
 また、図2に示すように、運転部12には、通信端末4(本発明に係る「表示装置」に相当)が配置されている。通信端末4は、種々の情報を表示可能に構成されている。本実施形態において、通信端末4は、運転部12に固定されている。しかしながら、本発明はこれに限定されず、通信端末4は、運転部12に対して着脱可能に構成されていても良いし、通信端末4は、コンバイン1の機外に位置していても良い。 Further, as shown in FIG. 2, in the operation unit 12, a communication terminal 4 (corresponding to a “display device” according to the present invention) is disposed. The communication terminal 4 is configured to be able to display various information. In the present embodiment, the communication terminal 4 is fixed to the operation unit 12. However, the present invention is not limited to this, and the communication terminal 4 may be configured to be attachable to and detachable from the operation unit 12, and the communication terminal 4 may be located outside the machine of the combine 1 .
 〔制御部に関する構成〕
 図3に示すように、コンバイン1は、制御部20を備えている。そして、制御部20は、データ取得部21、外形判定部22、自車位置算出部23、領域設定部24、内周走行経路算出部25、走行制御部26、第1走行情報生成部27を有している。
[Configuration of Control Unit]
As shown in FIG. 3, the combine 1 includes a control unit 20. Then, the control unit 20 includes a data acquisition unit 21, an outer shape determination unit 22, an own vehicle position calculation unit 23, an area setting unit 24, an inner circumference traveling route calculation unit 25, a traveling control unit 26 and a first traveling information generation unit 27. Have.
 コンバイン1は、図4に示すような第1収穫走行と、図6に示すような第2収穫走行と、によって圃場の穀物を収穫するように構成されている。第1収穫走行は、圃場における外周部分Qでの収穫走行を含んでいる。また、第2収穫走行は、第1収穫走行の後に行われる。尚、図4では、第1穀物圃場G1(本発明に係る「圃場」に相当)の外周部分Qが示されている。 Combine 1 is comprised so that the grain of a field may be harvested by 1st harvest driving | running as shown in FIG. 4, and 2nd crop driving | running | working as shown in FIG. The first harvest run includes the harvest run at the outer peripheral portion Q in the field. In addition, the second harvest run is performed after the first harvest run. In addition, in FIG. 4, the outer peripheral part Q of 1st grain field G1 (equivalent to the "field" which concerns on this invention) is shown.
 本実施形態において、走行制御部26は、自動走行によって第1収穫走行及び第2収穫走行が行われるように、コンバイン1の走行を制御する。そして、自動走行システムAは、コンバイン1の自動走行を管理する。 In the present embodiment, the traveling control unit 26 controls the traveling of the combine 1 so that the first harvesting traveling and the second harvesting traveling are performed by the automatic traveling. Then, the automatic traveling system A manages automatic traveling of the combine 1.
 このように、自動走行システムAは、圃場における外周部分Qでの収穫走行を含む第1収穫走行と、第1収穫走行の後に行われる第2収穫走行と、によって圃場の農作物を収穫するコンバイン1の自動走行を管理する。 Thus, the automatic traveling system A combines the first crop traveling including the crop traveling on the outer circumference portion Q in the field and the second harvesting travel performed after the first harvest traveling, the combine 1 to harvest the crop in the field Manage automatic driving of
 図3に示すように、データ取得部21は、管理サーバ2、トラクタ5、田植機6と互いに通信可能に構成されている。管理サーバ2には、圃場外形データが格納されている。圃場外形データとは、圃場の外形を示すデータである。また、トラクタ5及び田植機6は、圃場外形データを生成可能に構成されている。 As shown in FIG. 3, the data acquisition unit 21 is configured to be able to communicate with the management server 2, the tractor 5, and the rice transplanter 6. Field external shape data is stored in the management server 2. Field external shape data is data indicating the external shape of a field. Moreover, the tractor 5 and the rice transplanter 6 are comprised so that generation | occurrence | production of field external shape data is possible.
 そして、データ取得部21は、管理サーバ2、トラクタ5、田植機6から圃場外形データを取得するように構成されている。 The data acquisition unit 21 is configured to acquire field external shape data from the management server 2, the tractor 5, and the rice transplanter 6.
 このように、自動走行システムAは、圃場の外形を示すデータである圃場外形データを取得するデータ取得部21を備えている。また、自動走行システムAは、圃場外形データを格納する管理サーバ2を備えている。そして、データ取得部21は、コンバイン1とは別の作業車Wから圃場外形データを取得する。また、データ取得部21は、管理サーバ2から圃場外形データを取得する。 As described above, the automatic travel system A includes the data acquisition unit 21 that acquires the field external shape data, which is data indicating the external shape of the field. The automatic travel system A also includes a management server 2 that stores field external shape data. Then, the data acquisition unit 21 acquires the field external shape data from the work vehicle W different from the combine 1. Further, the data acquisition unit 21 acquires field external shape data from the management server 2.
 データ取得部21により取得された圃場外形データは、外形判定部22及び第1走行情報生成部27へ送られる。 The field external shape data acquired by the data acquisition unit 21 is sent to the external shape determination unit 22 and the first travel information generation unit 27.
 外形判定部22は、データ取得部21から受け取った圃場外形データに基づいて、圃場の外形が、凹入部Pを有する形状であるか否かを判定する。尚、凹入部Pとは、圃場の外形において、圃場の外周側から内周側に向かって凹入する部分である。例えば、図4に示す第1穀物圃場G1の外形は、凹入部Pを有する形状である。 The outer shape determination unit 22 determines whether or not the outer shape of the field has a shape having a recessed portion P, based on the field outer shape data received from the data acquisition unit 21. The recessed portion P is a portion which is recessed from the outer peripheral side to the inner peripheral side of the field in the outer shape of the field. For example, the outline of the first grain field G1 shown in FIG. 4 is a shape having a recess P.
 外形判定部22による判定結果は、第1走行情報生成部27へ送られる。 The determination result by the outer shape determination unit 22 is sent to the first travel information generation unit 27.
 このように、自動走行システムAは、データ取得部21により取得された圃場外形データに基づいて、圃場の外形が、圃場の外周側から内周側に向かって凹入する凹入部Pを有する形状であるか否かを判定する外形判定部22を備えている。 Thus, based on the field external shape data acquired by the data acquisition unit 21, the automatic traveling system A has a shape having a recess P in which the outline of the field is recessed from the outer peripheral side to the inner peripheral side of the field. And an outer shape determination unit 22 that determines whether or not.
 また、図2に示すように、衛星測位モジュール80は、GPS(グローバル・ポジショニング・システム)で用いられる人工衛星GSからのGPS信号を受信する。そして、図3に示すように、衛星測位モジュール80は、受信したGPS信号に基づいて、測位データを自車位置算出部23へ送る。 Also, as shown in FIG. 2, the satellite positioning module 80 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 3, the satellite positioning module 80 sends positioning data to the vehicle position calculation unit 23 based on the received GPS signal.
 自車位置算出部23は、衛星測位モジュール80から受け取った測位データに基づいて、コンバイン1の位置座標を経時的に算出する。図3に示すように、経時的に算出されたコンバイン1の位置座標は、領域設定部24、走行制御部26、第1走行情報生成部27へ送られる。 The vehicle position calculation unit 23 calculates position coordinates of the combine 1 with time based on the positioning data received from the satellite positioning module 80. As shown in FIG. 3, position coordinates of the combine 1 calculated over time are sent to the area setting unit 24, the traveling control unit 26, and the first traveling information generating unit 27.
 領域設定部24は、自車位置算出部23から受け取ったコンバイン1の経時的な位置座標に基づいて、第1領域R1の内側を第2領域R2として設定するように構成されている。第1領域R1とは、第1収穫走行により収穫済みとなった領域である。 The region setting unit 24 is configured to set the inside of the first region R1 as a second region R2 based on the temporal position coordinates of the combine 1 received from the vehicle position calculation unit 23. The first region R1 is a region that has been harvested by the first harvest run.
 より具体的には、領域設定部24は、自車位置算出部23から受け取ったコンバイン1の経時的な位置座標に基づいて、第1収穫走行におけるコンバイン1の走行軌跡を算出する。さらに、領域設定部24は、算出されたコンバイン1の走行軌跡に基づいて、第1領域R1を算出する。そして、領域設定部24は、算出された第1領域R1に基づいて、第2領域R2を算出する。この方法により、領域設定部24は、第2領域R2を設定する。 More specifically, the region setting unit 24 calculates the traveling locus of the combine 1 in the first harvest traveling based on the temporal position coordinate of the combine 1 received from the vehicle position calculation unit 23. Further, the region setting unit 24 calculates a first region R1 based on the calculated traveling locus of the combine 1. Then, the region setting unit 24 calculates the second region R2 based on the calculated first region R1. The area setting unit 24 sets the second area R2 by this method.
 例えば、図4においては、第1穀物圃場G1での第1収穫走行のためのコンバイン1の走行経路である第1走行経路FLが矢印で示されている。この第1走行経路FLに沿った第1収穫走行が完了すると、第1穀物圃場G1は、図5に示す状態となる。即ち、第1収穫走行によって収穫済みとなった領域が第1領域R1となる。そして、領域設定部24によって、第1領域R1の内側が第2領域R2として設定される。 For example, in FIG. 4, a first travel path FL, which is a travel path of the combine 1 for the first crop travel in the first grain field G1, is indicated by an arrow. When the first harvest traveling along the first traveling path FL is completed, the first grain field G1 is in the state shown in FIG. That is, the area which has been harvested by the first harvest run is the first area R1. Then, the region setting unit 24 sets the inside of the first region R1 as a second region R2.
 このように、自動走行システムAは、第1収穫走行により収穫済みとなった領域である第1領域R1の内側を第2領域R2として設定する領域設定部24を備えている。 As described above, the automatic travel system A includes the area setting unit 24 which sets the inside of the first area R1 which is the area that has been harvested by the first harvest traveling as the second area R2.
 領域設定部24による設定内容は、内周走行経路算出部25へ送られる。 The contents set by the area setting unit 24 are sent to the inner traveling route calculating unit 25.
 内周走行経路算出部25は、領域設定部24から受け取った設定内容に基づいて、内周走行経路LICを算出する。内周走行経路LICとは、第2領域R2における走行経路である。 The inner traveling route calculating unit 25 calculates the inner traveling route LIC based on the setting content received from the region setting unit 24. The inner circumferential traveling route LIC is a traveling route in the second region R2.
 より具体的には、領域設定部24は、第1収穫走行におけるコンバイン1の走行軌跡に基づいて、第2領域R2の外形を算出する。即ち、領域設定部24による設定内容には、第2領域R2の外形が含まれている。そして、内周走行経路算出部25は、第2領域R2の外形に基づいて、内周走行経路LICを算出する。 More specifically, the region setting unit 24 calculates the outer shape of the second region R2 based on the traveling locus of the combine 1 in the first harvest traveling. That is, the setting contents by the area setting unit 24 include the outer shape of the second area R2. Then, the inner traveling route calculating unit 25 calculates the inner traveling route LIC based on the outer shape of the second region R2.
 例えば、図5に示すように第2領域R2が設定された場合、内周走行経路算出部25は、図6に示すように、内周走行経路LICを算出する。尚、図6に示すように、本実施形態においては、内周走行経路LICは、互いに平行な複数の平行線である。 For example, when the second region R2 is set as shown in FIG. 5, the inner traveling route calculating unit 25 calculates the inner traveling route LIC as shown in FIG. As shown in FIG. 6, in the present embodiment, the inner circumferential traveling paths LIC are a plurality of parallel lines parallel to each other.
 内周走行経路算出部25により算出された内周走行経路LICは、走行制御部26へ送られる。 The inner traveling route LIC calculated by the inner traveling route calculation unit 25 is sent to the traveling control unit 26.
 このように、自動走行システムAは、領域設定部24により設定された第2領域R2における走行経路である内周走行経路LICを算出する内周走行経路算出部25を備えている。 As described above, the automatic traveling system A includes the inner traveling route calculation unit 25 that calculates the inner traveling route LIC, which is the traveling route in the second region R2 set by the region setting unit 24.
 コンバイン1が第2収穫走行を行う際、走行制御部26は、自車位置算出部23から受け取ったコンバイン1の位置座標と、内周走行経路算出部25から受け取った内周走行経路LICと、に基づいて、コンバイン1の自動走行を制御する。より具体的には、走行制御部26は、内周走行経路LICに沿ってコンバイン1が自動走行するように、コンバイン1の走行を制御する。 When the combine 1 performs the second harvest traveling, the travel control unit 26 receives the position coordinates of the combine 1 received from the vehicle position calculation unit 23 and the inner traveling route LIC received from the inner traveling route calculation unit 25; Control the automatic travel of the combine 1 based on More specifically, the traveling control unit 26 controls the traveling of the combine 1 so that the combine 1 automatically travels along the inner traveling route LIC.
 このように、自動走行システムAは、内周走行経路LICに基づいた自動走行によって第2収穫走行が行われるようにコンバイン1の走行を制御する走行制御部26を備えている。 Thus, the automatic travel system A includes the travel control unit 26 that controls the travel of the combine 1 so that the second harvest travel is performed by the automatic travel based on the inner circumferential travel route LIC.
 第1走行情報生成部27は、データ取得部21から受け取った圃場外形データに基づいて、第1走行情報を生成する。第1走行情報とは、第1収穫走行のための走行経路または走行位置を示す情報である。 The first travel information generation unit 27 generates first travel information based on the field external shape data received from the data acquisition unit 21. The first travel information is information indicating a travel path or travel position for the first harvest travel.
 そして、第1走行情報生成部27により生成される第1走行情報には、中割走行情報が含まれている。中割走行情報とは、中割走行のための走行経路または走行位置を示す情報である。中割走行とは、圃場における未刈領域を分割するように行われる収穫走行である。 The first travel information generated by the first travel information generation unit 27 includes middle division travel information. Mid-division travel information is information indicating a travel route or travel position for mid-division travel. The split travel is a harvest travel which is performed to divide the uncut area in the field.
 例えば、図4においては、第1穀物圃場G1での第1収穫走行のためのコンバイン1の走行経路である第1走行経路FLが矢印で示されている。第1穀物圃場G1での収穫作業において、第1走行情報生成部27は、第1走行経路FLを示す情報を生成する。図4に示すように、第1走行経路FLは、図4において右下に位置する地点から反時計周りに3周する走行経路である。即ち、本実施形態においては、第1走行情報生成部27は、第1収穫走行のための走行経路である第1走行経路FLを示す情報を生成する。 For example, in FIG. 4, a first travel path FL, which is a travel path of the combine 1 for the first crop travel in the first grain field G1, is indicated by an arrow. In the harvesting work in the first grain field G1, the first traveling information generation unit 27 generates information indicating the first traveling path FL. As shown in FIG. 4, the first travel route FL is a travel route that makes three rounds in the counterclockwise direction from the point located at the lower right in FIG. 4. That is, in the present embodiment, the first traveling information generation unit 27 generates information indicating the first traveling route FL, which is a traveling route for the first harvest traveling.
 そして、図4に示すように、第1走行経路FLには、中割走行のための走行経路である3本の中割経路LMが含まれている。即ち、第1穀物圃場G1での収穫作業において第1走行情報生成部27により生成される第1走行情報には、中割経路LMを示す情報が含まれている。コンバイン1が中割経路LMに沿って収穫走行することにより、第1穀物圃場G1における未刈領域は2つに分割されることとなる。 Then, as shown in FIG. 4, the first traveling route FL includes three midway routes LM which are traveling routes for mid-division traveling. That is, the first travel information generated by the first travel information generation unit 27 in the harvesting operation in the first grain field G1 includes information indicating the split route LM. When the combine 1 harvests and travels along the split route LM, the uncut area in the first grain field G1 is divided into two.
 このように、自動走行システムAは、データ取得部21により取得された圃場外形データに基づいて、第1収穫走行のための走行経路または走行位置を示す情報である第1走行情報を生成する第1走行情報生成部27を備えている。また、第1走行情報生成部27により生成される第1走行情報に、中割走行のための走行経路または走行位置を示す情報である中割走行情報が含まれている。 Thus, based on the field outline data acquired by the data acquisition unit 21, the automatic traveling system A generates the first traveling information, which is information indicating the traveling route or traveling position for the first harvest traveling. A travel information generation unit 27 is provided. Further, the first traveling information generated by the first traveling information generation unit 27 includes middle traveling information which is information indicating a traveling route or traveling position for middle traveling.
 また、外形判定部22により圃場の外形が凹入部Pを有する形状であると判定された場合、第1走行情報生成部27は、中割走行のための走行経路または走行位置に凹入部Pの頂点部分Ptが含まれるように第1走行情報を生成する。 In addition, when it is determined by the external shape determination unit 22 that the external shape of the field is a shape having a recessed portion P, the first travel information generation unit 27 determines that the traveling path or traveling position for the split travel is the recessed portion P The first travel information is generated such that the top portion Pt is included.
 例えば、上述の通り、図4に示す第1穀物圃場G1の外形は、凹入部Pを有する形状である。そのため、第1穀物圃場G1での収穫作業においては、外形判定部22により、第1穀物圃場G1の外形が凹入部Pを有する形状であると判定される。そして、外形判定部22による判定結果は、第1走行情報生成部27へ送られる。 For example, as described above, the outer shape of the first grain field G1 shown in FIG. 4 is a shape having a recess P. Therefore, in the harvesting operation in the first grain field G1, the outer shape determination unit 22 determines that the outer shape of the first grain field G1 has a shape having a recessed portion P. Then, the determination result by the outer shape determination unit 22 is sent to the first travel information generation unit 27.
 この判定結果を受け取った第1走行情報生成部27は、中割走行のための走行経路または走行位置に凹入部Pの頂点部分Ptが含まれるように第1走行情報を生成する。実際に、図4に示す中割経路LMには、凹入部Pの頂点部分Ptが含まれている。 The first traveling information generation unit 27 that receives the determination result generates the first traveling information so that the top portion Pt of the recessed portion P is included in the traveling route or traveling position for the mid-division traveling. Actually, the inclining path LM shown in FIG. 4 includes the top portion Pt of the recess P.
 第1走行情報生成部27により生成された第1走行情報は、走行制御部26及び通信端末4へ送られる。 The first travel information generated by the first travel information generation unit 27 is sent to the travel control unit 26 and the communication terminal 4.
 コンバイン1が第1収穫走行を行う際、走行制御部26は、自車位置算出部23から受け取ったコンバイン1の位置座標と、第1走行情報生成部27から受け取った第1走行情報と、に基づいて、コンバイン1の自動走行を制御する。より具体的には、走行制御部26は、第1走行情報により示される走行経路または走行位置を通ってコンバイン1が自動走行するように、コンバイン1の走行を制御する。 When the combine 1 performs the first harvest traveling, the travel control unit 26 receives the position coordinates of the combine 1 received from the vehicle position calculation unit 23 and the first travel information received from the first travel information generation unit 27. Based on the automatic travel of the combine 1 is controlled. More specifically, the traveling control unit 26 controls traveling of the combine 1 so that the combine 1 automatically travels through the traveling route or traveling position indicated by the first traveling information.
 このとき、特に、走行制御部26は、第1収穫走行において、自動走行によって中割走行が行われるように、中割走行情報に基づいてコンバイン1の走行を制御する。 At this time, in particular, the traveling control unit 26 controls the traveling of the combine 1 based on the middle traveling information so that the middle traveling is performed by the automatic traveling in the first harvest traveling.
 例えば、コンバイン1が図4に示す第1穀物圃場G1において第1収穫走行を行う際、走行制御部26は、第1走行経路FLに沿ってコンバイン1が自動走行するように、コンバイン1の走行を制御する。 For example, when the combine 1 performs the first harvest traveling in the first grain field G1 illustrated in FIG. 4, the travel control unit 26 travels the combine 1 so that the combine 1 automatically travels along the first travel path FL Control.
 このとき、特に、走行制御部26は、中割経路LMに沿った収穫走行が自動走行によって行われるように、コンバイン1の走行を制御する。 At this time, in particular, the traveling control unit 26 controls the traveling of the combine 1 so that harvest traveling along the split route LM is performed by automatic traveling.
 通信端末4は、第1走行情報生成部27から受け取った第1走行情報に基づいて、第1収穫走行のための走行経路または走行位置を表示するように構成されている。このとき、特に、通信端末4は、第1走行情報に含まれている中割走行情報に基づいて、中割走行のための走行経路または走行位置を表示する。 The communication terminal 4 is configured to display a traveling route or a traveling position for the first harvest traveling based on the first traveling information received from the first traveling information generation unit 27. At this time, in particular, the communication terminal 4 displays the traveling route or traveling position for middle-division traveling based on the middle-division traveling information included in the first traveling information.
 例えば、コンバイン1が図4に示す第1穀物圃場G1において第1収穫走行を行う際、通信端末4は、図10に示すように、第1走行情報生成部27から受け取った第1走行情報により示される第1走行経路FLを表示する。このとき、特に、通信端末4は、第1走行情報に含まれている中割走行情報に基づいて、中割経路LMを表示する。 For example, when the combine 1 performs the first harvest traveling in the first grain field G1 shown in FIG. 4, the communication terminal 4 receives the first travel information received from the first travel information generating unit 27 as shown in FIG. The indicated first travel route FL is displayed. At this time, in particular, the communication terminal 4 displays the split route LM on the basis of the split travel information included in the first travel information.
 このように、自動走行システムAは、中割走行情報に基づいて、中割走行のための走行経路または走行位置を表示する通信端末4を備える。 As described above, the automatic travel system A includes the communication terminal 4 that displays the travel route or the travel position for middle-division travel based on the middle-division travel information.
 〔圃場の外形が凹入部を有する形状である場合の収穫作業の流れ〕
 以下では、自動走行システムAを利用した収穫作業の例として、コンバイン1が、図4に示す第1穀物圃場G1で収穫作業を行う場合の流れについて説明する。
[Flow of harvesting work when the outline of the field has a shape with a recessed portion]
Hereinafter, as an example of a harvesting operation using the automatic traveling system A, a flow when the combine 1 performs the harvesting operation in the first grain field G1 shown in FIG. 4 will be described.
 最初に、データ取得部21が、管理サーバ2、トラクタ5、田植機6の何れかから圃場外形データを取得する。データ取得部21により取得された圃場外形データは、外形判定部22及び第1走行情報生成部27へ送られる。 First, the data acquisition unit 21 acquires field external shape data from any of the management server 2, the tractor 5, and the rice transplanter 6. The field external shape data acquired by the data acquisition unit 21 is sent to the external shape determination unit 22 and the first travel information generation unit 27.
 次に、外形判定部22が、データ取得部21から受け取った圃場外形データに基づいて、第1穀物圃場G1の外形が凹入部Pを有する形状であるか否かを判定する。図4に示すように、第1穀物圃場G1の外形は、凹入部Pを有する形状である。そのため、外形判定部22により、第1穀物圃場G1の外形が凹入部Pを有する形状であると判定される。この判定結果は、第1走行情報生成部27へ送られる。 Next, based on the field outline data received from the data acquisition unit 21, the outline determination unit 22 determines whether the outline of the first grain field G1 has a shape having a recess P. As shown in FIG. 4, the outer shape of the first grain field G1 is a shape having a recess P. Therefore, it is determined by the outer shape determination unit 22 that the outer shape of the first grain field G1 is a shape having the recessed portion P. The determination result is sent to the first travel information generation unit 27.
 この判定結果を受け取った第1走行情報生成部27は、図4に示すように、第1走行経路FLを示す第1走行情報を生成する。第1走行経路FLは、図4において右下に位置する地点から反時計周りに3周する走行経路である。また、図4に示すように、第1走行経路FLには、中割走行のための走行経路である3本の中割経路LMが含まれている。そして、第1穀物圃場G1の外形が凹入部Pを有する形状であるため、中割経路LMには、凹入部Pの頂点部分Ptが含まれている。 The first travel information generation unit 27 that receives the determination result generates first travel information indicating the first travel path FL, as shown in FIG. 4. The first travel route FL is a travel route that makes three rounds in the counterclockwise direction from the point located at the lower right in FIG. 4. Further, as shown in FIG. 4, the first traveling route FL includes three midway routes LM, which are traveling routes for mid-division traveling. And since the external shape of the 1st grain field G1 is a shape which has concave part P, top part Pt of concave part P is contained in middle part route LM.
 尚、図4に示すように、このとき生成される第1走行情報により示される第1走行経路FLにおいて、中割経路LM以外の部分は、第1穀物圃場G1における外周部分Qを通っている。 In addition, as shown in FIG. 4, in the first travel route FL indicated by the first travel information generated at this time, the portions other than the split route LM pass through the outer peripheral portion Q in the first grain field G1. .
 次に、第1走行情報生成部27により生成された第1走行情報が、走行制御部26及び通信端末4へ送られる。そして、通信端末4は、図10に示すように、第1走行情報生成部27から受け取った第1走行情報により示される第1走行経路FLを表示する。 Next, the first travel information generated by the first travel information generation unit 27 is sent to the travel control unit 26 and the communication terminal 4. Then, as shown in FIG. 10, the communication terminal 4 displays the first traveling route FL indicated by the first traveling information received from the first traveling information generation unit 27.
 また、走行制御部26が第1走行情報を受け取ると、コンバイン1の自動走行が開始される。コンバイン1は、第1走行経路FLに沿って自動走行するように、走行制御部26によって制御される。この自動走行により、第1収穫走行が行われる。 Further, when the traveling control unit 26 receives the first traveling information, automatic traveling of the combine 1 is started. The combine 1 is controlled by the travel control unit 26 so as to automatically travel along the first travel path FL. By this automatic traveling, the first harvest traveling is performed.
 第1収穫走行が完了すると、図5に示すように、第1収穫走行が行われた部分が収穫済みとなる。また、この収穫済みの領域の内側の領域は、未刈のまま残されている。また、図4及び図5に示すように、コンバイン1が中割経路LMに沿って収穫走行することにより、第1穀物圃場G1における未刈領域は2つに分割されている。 When the first harvest run is completed, as shown in FIG. 5, the portion where the first harvest run is performed is harvested. Also, the area inside this harvested area is left uncut. Moreover, as shown in FIG.4 and FIG.5, when the combine 1 carries out a harvest driving along the middle route LM, the uncut area in the 1st grain field G1 is divided into two.
 領域設定部24は、第1収穫走行におけるコンバイン1の経時的な位置座標に基づいて、第1収穫走行におけるコンバイン1の走行軌跡を算出する。さらに、領域設定部24は、算出されたコンバイン1の走行軌跡に基づいて、第1収穫走行により収穫済みとなった領域を、第1領域R1として算出する。そして、領域設定部24は、算出された第1領域R1の内側を、第2領域R2として算出する。この方法により、領域設定部24は、第2領域R2を設定する。 The region setting unit 24 calculates the traveling locus of the combine 1 in the first harvest traveling based on the temporal position coordinates of the combine 1 in the first harvest traveling. Furthermore, the region setting unit 24 calculates, as the first region R1, a region that has been harvested by the first harvest traveling based on the calculated traveling trajectory of the combine 1. Then, the region setting unit 24 calculates the inside of the calculated first region R1 as the second region R2. The area setting unit 24 sets the second area R2 by this method.
 そして、領域設定部24による設定内容は、内周走行経路算出部25へ送られる。領域設定部24による設定内容には、第2領域R2の外形が含まれている。そして、内周走行経路算出部25は、第2領域R2の外形に基づいて、図6に示すように、内周走行経路LICを算出する。このとき算出される内周走行経路LICは、互いに平行な複数の平行線である。 Then, the setting content by the area setting unit 24 is sent to the inner traveling route calculating unit 25. The contents set by the area setting unit 24 include the outer shape of the second area R2. Then, as shown in FIG. 6, the inner traveling route calculating unit 25 calculates the inner traveling route LIC based on the outer shape of the second region R2. The inner traveling routes LIC calculated at this time are a plurality of parallel lines parallel to each other.
 内周走行経路算出部25により算出された内周走行経路LICは、走行制御部26へ送られる。走行制御部26が内周走行経路LICを受け取ると、コンバイン1は、図6に示す内周走行経路LICに沿って自動走行するように、走行制御部26によって制御される。この自動走行により、第2収穫走行が行われる。そして、この第2収穫走行が完了すると、第1穀物圃場G1は、図7に示す状態となる。 The inner traveling route LIC calculated by the inner traveling route calculation unit 25 is sent to the traveling control unit 26. When the traveling control unit 26 receives the inner traveling route LIC, the combine 1 is controlled by the traveling control unit 26 so as to automatically travel along the inner traveling route LIC shown in FIG. A second harvest run is performed by this automatic run. And if this 2nd crop run is completed, the 1st grain field G1 will be in the state shown in FIG.
 第1走行情報生成部27は、図4から図6において示した第1収穫走行及び第2収穫走行におけるコンバイン1の経時的な位置座標に基づいて、図4から図6において示した第1収穫走行及び第2収穫走行におけるコンバイン1の走行軌跡を算出する。さらに、第1走行情報生成部27は、算出されたコンバイン1の走行軌跡に基づいて、図7の時点で収穫済みである領域を算出する。 The first traveling information generation unit 27 generates the first crop shown in FIGS. 4 to 6 based on the positional coordinates of the combine 1 in the first harvest traveling and the second harvest traveling shown in FIGS. 4 to 6 over time. The traveling locus of the combine 1 in traveling and second harvest traveling is calculated. Furthermore, the first travel information generation unit 27 calculates an area that has already been harvested at the time of FIG. 7 based on the calculated travel locus of the combine 1.
 そして、このように算出された収穫済みである領域と、圃場外形データと、に基づいて、第1走行情報生成部27は、図7の時点での未刈領域を算出する。さらに、第1走行情報生成部27は、算出された未刈領域に基づいて、図7に矢印で示す第1走行経路FLを示す第1走行情報を生成する。このとき生成される第1走行経路FLは、図7に示すように、未刈領域において、図7の右上に位置する地点から反時計周りに3周する走行経路である。 Then, the first travel information generating unit 27 calculates the uncut area at the time of FIG. 7 based on the area that has already been calculated as described above and the field external shape data. Furthermore, the first travel information generation unit 27 generates first travel information indicating a first travel path FL indicated by an arrow in FIG. 7 based on the calculated uncut area. As shown in FIG. 7, the first travel route FL generated at this time is a travel route that makes three rounds in the counterclockwise direction from the point located at the upper right of FIG. 7 in the uncrop area.
 尚、図7に示すように、このとき生成される第1走行情報により示される第1走行経路FLにおいて、収穫済みの領域に接する部分以外は、第1穀物圃場G1における外周部分Qを通っている。 In addition, as shown in FIG. 7, in the 1st driving | running route FL shown by the 1st driving information generated at this time, except the part which touches the field which has already been harvested, it passes through the outer peripheral part Q in the 1st grain field G1. There is.
 そして、この第1走行情報は、走行制御部26及び通信端末4へ送られる。そして、通信端末4は、再び、第1走行情報生成部27から受け取った第1走行情報により示される第1走行経路FLを表示する(図示せず)。 Then, the first traveling information is sent to the traveling control unit 26 and the communication terminal 4. Then, the communication terminal 4 again displays the first travel route FL indicated by the first travel information received from the first travel information generation unit 27 (not shown).
 また、コンバイン1は、図7に示す第1走行経路FLに沿って自動走行するように、走行制御部26によって制御される。この自動走行により、2回目の第1収穫走行が行われる。 Further, the combine 1 is controlled by the traveling control unit 26 so as to automatically travel along the first traveling path FL shown in FIG. 7. By this automatic traveling, the second first harvest traveling is performed.
 2回目の第1収穫走行が完了すると、図8に示すように、2回目の第1収穫走行が行われた部分が収穫済みとなる。また、この収穫済みの領域の内側の領域は、未刈のまま残されている。 When the second first harvest run is completed, as shown in FIG. 8, the portion where the second first harvest run is performed is harvested. Also, the area inside this harvested area is left uncut.
 1回目の第1収穫走行と同様に、領域設定部24は、図8に示すように、第1領域R1及び第2領域R2を設定する。そして、内周走行経路算出部25は、図8に示す第2領域R2の外形に基づいて、図9に示すように、内周走行経路LICを算出する。このとき算出される内周走行経路LICは、互いに平行な複数の平行線である。 The area setting unit 24 sets a first area R1 and a second area R2, as shown in FIG. Then, as shown in FIG. 9, the inner traveling route calculation unit 25 calculates the inner traveling route LIC based on the outer shape of the second region R2 shown in FIG. 8. The inner traveling routes LIC calculated at this time are a plurality of parallel lines parallel to each other.
 そして、1回目の第2収穫走行と同様に、コンバイン1は、図9に示す内周走行経路LICに沿って自動走行するように、走行制御部26によって制御される。この自動走行により、2回目の第2収穫走行が行われる。そして、この第2収穫走行が完了すると、第1穀物圃場G1の全体が収穫済みとなる。 Then, the combine 1 is controlled by the traveling control unit 26 so as to automatically travel along the inner traveling route LIC shown in FIG. 9 as in the first second harvest traveling. A second second harvest run is performed by this automatic run. And if this 2nd crop run is completed, the whole 1st grain field G1 will be harvested.
 〔圃場の外形が凹入部を有する形状でない場合の収穫作業の流れ〕
 以下では、自動走行システムAを利用した収穫作業の例として、コンバイン1が、図11に示す第2穀物圃場G2(本発明に係る「圃場」に相当)で収穫作業を行う場合の流れについて説明する。
[Flow of harvesting work when the outline of the field is not a shape with a recess]
In the following, as an example of the harvesting work using the automatic traveling system A, the flow when the combine 1 performs the harvesting work in the second grain field G2 (corresponding to the “field” according to the present invention) shown in FIG. Do.
 最初に、データ取得部21が、管理サーバ2、トラクタ5、田植機6の何れかから圃場外形データを取得する。データ取得部21により取得された圃場外形データは、外形判定部22及び第1走行情報生成部27へ送られる。 First, the data acquisition unit 21 acquires field external shape data from any of the management server 2, the tractor 5, and the rice transplanter 6. The field external shape data acquired by the data acquisition unit 21 is sent to the external shape determination unit 22 and the first travel information generation unit 27.
 次に、外形判定部22が、データ取得部21から受け取った圃場外形データに基づいて、第2穀物圃場G2の外形が凹入部Pを有する形状であるか否かを判定する。図11に示すように、第2穀物圃場G2の外形は、凹入部Pを有する形状でない。そのため、外形判定部22により、第2穀物圃場G2の外形が凹入部Pを有する形状でないと判定される。この判定結果は、第1走行情報生成部27へ送られる。 Next, based on the field outline data received from the data acquisition unit 21, the outline determination unit 22 determines whether the outline of the second grain field G2 has a shape having a recess P. As shown in FIG. 11, the outer shape of the second grain field G2 does not have a shape having a recess P. Therefore, it is determined by the outer shape determination unit 22 that the outer shape of the second grain field G2 is not a shape having the recessed portion P. The determination result is sent to the first travel information generation unit 27.
 この判定結果を受け取った第1走行情報生成部27は、図11に矢印で示す第1走行経路FLを示す第1走行情報を生成する。図11に示すように、第1走行経路FLは、図11おいて右下に位置する地点から第2穀物圃場G2の外形に沿って反時計周りに3周する走行経路と、中割経路LMと、を含んでいる。図11に示すように、中割経路LMは、第2穀物圃場G2の中央部分において、図11における上下方向に延びている。 The first travel information generation unit 27 that receives the determination result generates first travel information indicating a first travel route FL indicated by an arrow in FIG. As shown in FIG. 11, the first travel route FL is a travel route that makes three rounds in the counterclockwise direction along the outer shape of the second grain field G2 from the point located at the lower right in FIG. And contains. As shown in FIG. 11, the split route LM extends in the vertical direction in FIG. 11 in the central portion of the second grain field G2.
 尚、図11に示すように、このとき生成される第1走行情報により示される第1走行経路FLにおいて、中割経路LM以外の部分は、第2穀物圃場G2における外周部分Qを通っている。 In addition, as shown in FIG. 11, in the first travel route FL indicated by the first travel information generated at this time, portions other than the split route LM pass through the outer peripheral portion Q in the second grain field G2 .
 次に、第1走行情報生成部27により生成された第1走行情報が、走行制御部26及び通信端末4へ送られる。そして、通信端末4は、図13に示すように、第1走行情報生成部27から受け取った第1走行情報により示される第1走行経路FLを表示する。 Next, the first travel information generated by the first travel information generation unit 27 is sent to the travel control unit 26 and the communication terminal 4. Then, as shown in FIG. 13, the communication terminal 4 displays the first traveling route FL indicated by the first traveling information received from the first traveling information generation unit 27.
 また、走行制御部26が第1走行情報を受け取ると、コンバイン1の自動走行が開始される。コンバイン1は、図11に示す第1走行経路FLに沿って自動走行するように、走行制御部26によって制御される。この自動走行により、第1収穫走行が行われる。 Further, when the traveling control unit 26 receives the first traveling information, automatic traveling of the combine 1 is started. The combine 1 is controlled by the travel control unit 26 so as to automatically travel along the first travel path FL shown in FIG. By this automatic traveling, the first harvest traveling is performed.
 第1収穫走行が完了すると、図12に示すように、第1収穫走行が行われた部分が収穫済みとなる。また、この収穫済みの領域の内側の領域は、未刈のまま残されている。また、図11及び図12に示すように、コンバイン1が中割経路LMに沿って収穫走行することにより、第2穀物圃場G2における未刈領域は2つに分割されている。 When the first harvest run is completed, as shown in FIG. 12, the portion where the first harvest run is performed is harvested. Also, the area inside this harvested area is left uncut. Moreover, as shown in FIG.11 and FIG.12, when the combine 1 carries out a harvest driving along the middle route LM, the uncut area in the 2nd grain field G2 is divided into two.
 領域設定部24は、第1収穫走行におけるコンバイン1の経時的な位置座標に基づいて、第1収穫走行におけるコンバイン1の走行軌跡を算出する。さらに、領域設定部24は、算出されたコンバイン1の走行軌跡に基づいて、第1収穫走行により収穫済みとなった領域を、第1領域R1として算出する。そして、領域設定部24は、算出された第1領域R1の内側を、第2領域R2として算出する。この方法により、領域設定部24は、第2領域R2を設定する。 The region setting unit 24 calculates the traveling locus of the combine 1 in the first harvest traveling based on the temporal position coordinates of the combine 1 in the first harvest traveling. Furthermore, the region setting unit 24 calculates, as the first region R1, a region that has been harvested by the first harvest traveling based on the calculated traveling trajectory of the combine 1. Then, the region setting unit 24 calculates the inside of the calculated first region R1 as the second region R2. The area setting unit 24 sets the second area R2 by this method.
 尚、図12に示すように、この例においては、第1領域R1により囲まれる領域が2つ存在する。そのため、領域設定部24は、2つの第2領域R2を設定する。 As shown in FIG. 12, in this example, there are two areas surrounded by the first area R1. Therefore, the area setting unit 24 sets two second areas R2.
 その後、2つの第2領域R2のそれぞれにおいて、図6及び図9に基づいて説明したように、内周走行経路LICが算出されると共に、自動走行により第2収穫走行が行われる。そして、第2収穫走行が完了すると、第2穀物圃場G2の全体が収穫済みとなる。 Thereafter, in each of the two second regions R2, as described with reference to FIGS. 6 and 9, the inner traveling route LIC is calculated, and the second harvest traveling is performed by automatic traveling. Then, when the second harvest run is completed, the entire second grain field G2 is harvested.
 内周走行経路LICの算出、及び、自動走行による第2収穫走行については、図6及び図9に基づいて既に説明しているため、ここでは説明を割愛する。 The calculation of the inner circumferential traveling route LIC and the second harvest traveling by the automatic traveling have already been described based on FIG. 6 and FIG.
 尚、図10及び図13においては、外周部分Qが示されている。実際の通信端末4においては、このように外周部分Qが表示されていても良いし、表示されていなくても良い。 In FIGS. 10 and 13, the outer peripheral portion Q is shown. In the actual communication terminal 4, the outer peripheral portion Q may be displayed or may not be displayed as described above.
 以上で説明した構成であれば、データ取得部21により取得された圃場外形データに基づいて、第1走行情報が生成される。そして、第1走行情報には、中割走行のための走行経路または走行位置を示す情報である中割走行情報が含まれている。 If it is the structure demonstrated above, 1st driving information will be produced | generated based on the field external shape data acquired by the data acquisition part 21. FIG. The first travel information includes middle travel information, which is information indicating a travel route or travel position for middle travel.
 即ち、以上で説明した構成であれば、圃場の外形に応じて中割走行情報が生成されることとなる。従って、圃場の外形が比較的複雑であっても、第1収穫走行におけるコンバイン1の走行軌跡が単純になるように、中割走行のための走行経路または走行位置が算出される構成を実現できる。これにより、第2領域R2の外形を精度良く算出すると共に、内周走行経路LICを適切に算出することができる。そして、算出された内周走行経路LICに基づいて、圃場内の内周部分における自動走行を適切に行うことができる。 That is, according to the configuration described above, mid-division travel information is generated according to the external shape of the field. Therefore, even if the external shape of the field is relatively complex, it is possible to realize a configuration in which the traveling route or traveling position for mid-division traveling is calculated so that the traveling locus of combine 1 in the first harvest traveling becomes simple. . Thus, the outer shape of the second region R2 can be accurately calculated, and the inner traveling route LIC can be appropriately calculated. And based on the computed inner circumference travel route LIC, automatic travel in the inner circumference portion in a field can be appropriately performed.
 従って、以上で説明した構成であれば、圃場内の内周部分における自動走行を適切に行いやすい。 Therefore, if it is the structure demonstrated above, it will be easy to perform automatic driving | running | working in the inner peripheral part in a field appropriately.
[第1実施形態の別実施形態]
 以下、上記した実施形態を変更した別実施形態について説明する。以下の各別実施形態で説明している事項以外は、上記した実施形態で説明している事項と同様である。上記した実施形態及び以下の各別実施形態は、矛盾が生じない範囲で、適宜組み合わせてもよい。なお、本発明の範囲は、上記した実施形態及び以下の各別実施形態に限定されるものではない。
[Another Embodiment of the First Embodiment]
Hereinafter, another embodiment in which the above-described embodiment is modified will be described. Except for the matters described in the following different embodiments, the matters are the same as the matters described in the above-described embodiment. The above-described embodiment and the other embodiments described below may be combined as appropriate as long as no contradiction arises. Note that the scope of the present invention is not limited to the above-described embodiment and the following different embodiments.
 〔第1別実施形態〕
 上記実施形態においては、第1走行情報生成部27は、第1走行情報として、第1収穫走行のための走行経路である第1走行経路FLを示す情報を生成する。そして、第1走行経路FLには、中割経路LMが含まれている。即ち、第1走行情報生成部27により生成される第1走行情報には、中割経路LMを示す情報が含まれている。
First Embodiment
In the above embodiment, the first traveling information generation unit 27 generates, as the first traveling information, information indicating the first traveling route FL, which is a traveling route for the first harvest traveling. The first traveling route FL includes a split route LM. That is, the first travel information generated by the first travel information generation unit 27 includes information indicating the split route LM.
 しかしながら、本発明はこれに限定されない。以下では、第1実施形態の第1別実施形態について、上記実施形態とは異なる点を中心に説明する。以下で説明している部分以外の構成は、上記実施形態と同様である。また、上記実施形態と同様の構成については、同じ符号を付している。 However, the present invention is not limited to this. Hereinafter, a first alternative embodiment of the first embodiment will be described focusing on differences from the above embodiment. The configuration other than the parts described below is the same as that of the above embodiment. The same reference numerals are given to the same components as those in the above embodiment.
 図14及び図15は、第1実施形態の第1別実施形態における通信端末4を示す図である。この第1別実施形態において、第1走行情報生成部27は、データ取得部21から受け取った圃場外形データに基づいて、中割箇所PMを示す情報を生成する。 FIG. 14 and FIG. 15 are diagrams showing the communication terminal 4 in the first alternative embodiment of the first embodiment. In the first alternative embodiment, the first travel information generation unit 27 generates information indicating the middle division location PM based on the field external shape data received from the data acquisition unit 21.
 中割箇所PMは、中割走行のための走行位置である。即ち、中割箇所PMを示す情報は、本発明に係る「中割走行情報」に相当する。 The middle division point PM is a traveling position for middle division traveling. That is, the information indicating the middle division location PM corresponds to the "middle division traveling information" according to the present invention.
 また、この第1別実施形態においては、第1走行情報として、中割箇所PMを示す情報のみが生成される。即ち、この第1別実施形態においては、第1走行情報と中割走行情報とが同一である。このように、本発明に係る「第1走行情報」は、「中割走行情報」と同一であっても良い。 Moreover, in this 1st another embodiment, only the information which shows middle division location PM is produced | generated as 1st driving information. That is, in the first alternative embodiment, the first travel information and the middle division travel information are the same. As described above, the "first travel information" according to the present invention may be the same as the "mid-division travel information".
 そして、図14及び図15に示すように、通信端末4は、第1走行情報生成部27から受け取った第1走行情報により示される走行位置を表示する。より具体的には、通信端末4は、中割箇所PMを三角形のシンボルにより表示する。 Then, as shown in FIGS. 14 and 15, the communication terminal 4 displays the traveling position indicated by the first traveling information received from the first traveling information generation unit 27. More specifically, the communication terminal 4 displays the middle division point PM by a triangular symbol.
 尚、図14に示されている圃場は、上述の第1穀物圃場G1である。また、図15に示されている圃場は、上述の第2穀物圃場G2である。 The field shown in FIG. 14 is the first grain field G1 described above. Moreover, the field shown by FIG. 15 is the above-mentioned 2nd grain field G2.
 図14に示すように、圃場の外形が凹入部Pを有する形状である場合、第1走行情報生成部27は、中割箇所PMが凹入部Pの頂点部分Ptに位置するように、第1走行情報を生成する。また、図15に示すように、圃場の外形が凹入部Pを有する形状でない場合、第1走行情報生成部27は、中割箇所PMが圃場の中央部分に位置するように、第1走行情報を生成する。 As shown in FIG. 14, in the case where the outer shape of the field has a shape having a recess P, the first travel information generating unit 27 sets the first split information PM to the first point Pt of the recess P. Generate travel information. In addition, as shown in FIG. 15, when the outer shape of the field is not a shape having a recessed portion P, the first running information generation unit 27 sets the first running information so that the middle split point PM is located at the central portion of the field. Generate
 この第1別実施形態において、作業者が、通信端末4に表示される中割箇所PMに従って手動走行により中割走行を行うと共に、圃場における外周部分Qでの収穫走行を手動走行により行えば、上記実施形態と同様に、第1収穫走行が完了する。そして、上記実施形態において説明したように、内周走行経路LICが算出されると共に、自動走行により第2収穫走行が行われる。そして、第1収穫走行及び第2収穫走行を、必要な回数だけ行うことにより、圃場の全体が収穫済みとなる。 In the first alternative embodiment, if the worker performs the split travel by manual travel according to the split point PM displayed on the communication terminal 4 and performs the harvest travel at the outer peripheral portion Q in the field by manual travel, Similar to the above embodiment, the first harvest run is completed. Then, as described in the above embodiment, the inner traveling route LIC is calculated, and the second harvest traveling is performed by the automatic traveling. Then, by performing the first harvest run and the second harvest run as many times as necessary, the entire field becomes harvested.
 尚、中割走行及び圃場における外周部分Qでの収穫走行は、自動走行により行われても良い。 In addition, harvest travel on the outer periphery portion Q in the middle division travel and in the field may be performed by automatic travel.
 また、図14及び図15においては、外周部分Qが示されている。実際の通信端末4においては、このように外周部分Qが表示されていても良いし、表示されていなくても良い。 Moreover, in FIG.14 and FIG.15, the outer peripheral part Q is shown. In the actual communication terminal 4, the outer peripheral portion Q may be displayed or may not be displayed as described above.
〔第2別実施形態〕
 上記実施形態においては、第1走行情報生成部27は、第1走行情報として、第1収穫走行のための走行経路を示す情報を生成する。そして、第1走行情報生成部27により生成される第1走行情報には、中割経路LMを示す情報が含まれている。
Second alternative embodiment
In the above embodiment, the first travel information generation unit 27 generates, as the first travel information, information indicating the travel route for the first harvest travel. Then, the first travel information generated by the first travel information generation unit 27 includes information indicating the split route LM.
 しかしながら、本発明はこれに限定されない。以下では、第1実施形態の第2別実施形態について、上記実施形態とは異なる点を中心に説明する。以下で説明している部分以外の構成は、上記実施形態と同様である。また、上記実施形態と同様の構成については、同じ符号を付している。 However, the present invention is not limited to this. Hereinafter, a second alternative embodiment of the first embodiment will be described focusing on differences from the above embodiment. The configuration other than the parts described below is the same as that of the above embodiment. The same reference numerals are given to the same components as those in the above embodiment.
 図16及び図17は、第1実施形態の第2別実施形態における通信端末4を示す図である。この第2別実施形態において、第1走行情報生成部27は、データ取得部21から受け取った圃場外形データに基づいて、帯状の第1走行領域FRを示す情報を生成する。 FIG. 16 and FIG. 17 are diagrams showing the communication terminal 4 in the second alternative embodiment of the first embodiment. In the second alternative embodiment, the first traveling information generation unit 27 generates information indicating the band-shaped first traveling region FR based on the field external shape data received from the data acquisition unit 21.
 尚、図16に示されている圃場は、上述の第1穀物圃場G1である。また、図17に示されている圃場は、上述の第2穀物圃場G2である。 The field shown in FIG. 16 is the first grain field G1 described above. The field shown in FIG. 17 is the second grain field G2 described above.
 図16及び図17において、第1走行領域FRは、斜線のハッチングにより示されている。 In FIG. 16 and FIG. 17, the first travel area FR is indicated by hatching.
 第1走行領域FRは、第1収穫走行のための走行位置である。即ち、第1走行領域FRを示す情報は、本発明に係る「第1走行情報」に相当する。図16に示すように、第1走行領域FRは、第1穀物圃場G1における外周部分Qと重複している。また、図17に示すように、第1走行領域FRは、第2穀物圃場G2における外周部分Qと重複している。 The first travel area FR is a travel position for the first harvest travel. That is, the information indicating the first travel area FR corresponds to the "first travel information" according to the present invention. As shown in FIG. 16, the first traveling area FR overlaps with the outer peripheral portion Q in the first grain field G1. Moreover, as shown in FIG. 17, 1st driving | running | working area | region FR overlaps with the outer peripheral part Q in 2nd grain field G2.
 また、図16及び図17に示すように、第1走行領域FRには、中割走行のための走行位置である中割領域RMが含まれている。即ち、この第2別実施形態において、第1走行情報生成部27により生成される第1走行情報には、中割領域RMを示す情報が含まれている。また、中割領域RMは、本発明に係る「中割走行情報」に相当する。 Further, as shown in FIGS. 16 and 17, the first traveling region FR includes a middle division region RM which is a traveling position for middle traveling. That is, in the second alternative embodiment, the first driving information generated by the first driving information generation unit 27 includes information indicating the middle split area RM. Further, the middle split area RM corresponds to “middle split travel information” according to the present invention.
 そして、図16及び図17に示すように、通信端末4は、第1走行情報生成部27から受け取った第1走行情報により示される走行位置を表示する。より具体的には、通信端末4は、中割領域RMを含む第1走行領域FRを、帯状の図形により表示する。 Then, as shown in FIGS. 16 and 17, the communication terminal 4 displays the traveling position indicated by the first traveling information received from the first traveling information generation unit 27. More specifically, the communication terminal 4 displays the first travel area FR including the middle split area RM in the form of a strip.
 図16に示すように、圃場の外形が凹入部Pを有する形状である場合、第1走行情報生成部27は、中割領域RMに凹入部Pの頂点部分Ptが含まれるように、第1走行情報を生成する。また、図17に示すように、圃場の外形が凹入部Pを有する形状でない場合、第1走行情報生成部27は、中割領域RMが圃場の中央部分に位置するように、第1走行情報を生成する。 As shown in FIG. 16, in the case where the outer shape of the field has a shape having a recess P, the first travel information generating unit 27 performs the first process such that the vertex portion Pt of the recess P is included in the middle split region RM. Generate travel information. In addition, as shown in FIG. 17, when the outer shape of the field is not a shape having a recessed portion P, the first running information generation unit 27 sets the first running information so that the middle split area RM is located at the central portion of the field. Generate
 この第2別実施形態において、作業者が、通信端末4に表示される第1走行領域FRに従って手動走行により収穫作業を行えば、上記実施形態と同様に、圃場における外周部分Qでの収穫走行を含む第1収穫走行が完了する。そして、上記実施形態において説明したように、内周走行経路LICが算出されると共に、自動走行により第2収穫走行が行われる。そして、第1収穫走行及び第2収穫走行を、必要な回数だけ行うことにより、圃場の全体が収穫済みとなる。 In the second alternative embodiment, if the worker carries out the harvesting work by manual traveling in accordance with the first travel area FR displayed on the communication terminal 4, the harvest traveling in the outer peripheral portion Q in the field is carried out as in the above embodiment. The first harvest run, including Then, as described in the above embodiment, the inner traveling route LIC is calculated, and the second harvest traveling is performed by the automatic traveling. Then, by performing the first harvest run and the second harvest run as many times as necessary, the entire field becomes harvested.
 尚、第1走行領域FRでの収穫走行は、自動走行により行われても良い。 In addition, harvest travel in the first travel area FR may be performed by automatic travel.
 また、図16及び図17においては、外周部分Qが示されている。実際の通信端末4においては、このように外周部分Qが表示されていても良いし、表示されていなくても良い。 Moreover, in FIG. 16 and FIG. 17, the outer peripheral part Q is shown. In the actual communication terminal 4, the outer peripheral portion Q may be displayed or may not be displayed as described above.
 〔その他の実施形態〕
 (1)走行装置11は、ホイール式であっても良いし、セミクローラ式であっても良い。
Other Embodiments
(1) The traveling device 11 may be a wheel type or a semi crawler type.
 (2)圃場外形データがコンバイン1の内部で生成されるように構成されていても良い。この場合、データ取得部21は、コンバイン1の内部で生成された圃場外形データを取得するように構成されていても良い。 (2) Field external shape data may be configured to be generated inside the combine 1. In this case, the data acquisition unit 21 may be configured to acquire the field outline data generated inside the combine 1.
 (3)コンバイン1による第1収穫走行は、手動走行によって行われても良い。 (3) The first harvest traveling by the combine 1 may be performed by manual traveling.
 (4)上記実施形態においては、内周走行経路算出部25により算出される内周走行経路LICは、互いに平行な複数の平行線であるが、本発明はこれに限定されず、内周走行経路算出部25により算出される内周走行経路LICは、互いに平行な複数の平行線でなくても良い。例えば、内周走行経路算出部25により算出される内周走行経路LICは、渦巻き状の走行経路であっても良い。 (4) In the above embodiment, the inner traveling routes LIC calculated by the inner traveling route calculation unit 25 are a plurality of parallel lines parallel to each other, but the present invention is not limited to this. The inner circumferential traveling routes LIC calculated by the route calculation unit 25 may not be a plurality of parallel lines parallel to each other. For example, the inner circumferential traveling route LIC calculated by the inner circumferential traveling route calculation unit 25 may be a spiral traveling route.
 (5)外形判定部22は設けられていなくても良い。 (5) The outer shape determination unit 22 may not be provided.
 (6)外形判定部22により圃場の外形が凹入部Pを有する形状であると判定された場合、第1走行情報生成部27は、中割走行のための走行経路または走行位置に凹入部Pの頂点部分Ptが含まれないように第1走行情報を生成しても良い。 (6) If it is determined by the external shape determination unit 22 that the external shape of the field is a shape having a recessed portion P, the first travel information generation unit 27 determines the recessed portion P in the travel path or travel position for mid-division travel. The first travel information may be generated such that the top portion Pt of the second travel information is not included.
 (7)自動走行システムAは、管理サーバ2を備えていなくても良い。 (7) The automatic travel system A may not have the management server 2.
 (8)通信端末4は設けられていなくても良い。 (8) The communication terminal 4 may not be provided.
 (9)データ取得部21、外形判定部22、自車位置算出部23、領域設定部24、内周走行経路算出部25、走行制御部26、第1走行情報生成部27のうち、一部または全てがコンバイン1の外部に備えられていても良いのであって、例えば、管理サーバ2に備えられていても良い。 (9) A part of the data acquisition unit 21, the external shape determination unit 22, the vehicle position calculation unit 23, the area setting unit 24, the inner circumference traveling route calculation unit 25, the traveling control unit 26, and the first traveling information generation unit 27 Alternatively, all may be provided outside the combine 1 and may be provided, for example, in the management server 2.
 (10)第1走行経路FLは、直線状の経路でも良いし、湾曲した経路でも良い。また、内周走行経路LICは、直線状の経路でも良いし、湾曲した経路でも良い。 (10) The first travel route FL may be a straight route or a curved route. The inner circumferential traveling route LIC may be a straight route or a curved route.
 (11)上記実施形態における各部材の機能をコンピュータに実現させる自動走行管理プログラムとして構成されていても良い。また、上記実施形態における各部材の機能をコンピュータに実現させる自動走行管理プログラムが記録された記録媒体として構成されていても良い。また、上記実施形態において各部材により行われることを1つまたは複数のステップにより行う自動走行管理方法として構成されていても良い。 (11) The program may be configured as an automatic travel management program that causes a computer to realize the function of each member in the above embodiment. Moreover, you may be comprised as a recording medium with which the automatic driving | running | working management program which implement | achieves the function of each member in the said embodiment in a computer was recorded. Moreover, you may be comprised as an automatic driving | running | working management method which performs what is performed by each member in the said embodiment by one or several steps.
[第2実施形態]
 以下、図18~図29を参照しながら、本発明の第2実施形態について説明する。なお、方向についての記載は、特に断りがない限り、図18に示す矢印Fの方向を「前」、矢印Bの方向を「後」とする。また、図18に示す矢印Uの方向を「上」、矢印Dの方向を「下」とする。
Second Embodiment
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. 18 to 29. In the description of the directions, the direction of arrow F shown in FIG. 18 is “front”, and the direction of arrow B is “rear” unless otherwise noted. Further, the direction of the arrow U shown in FIG. 18 is “up”, and the direction of the arrow D is “down”.
 〔コンバインの全体構成〕
 図18に示すように、普通型のコンバイン101(本発明に係る「収穫機」に相当)は、クローラ式の走行装置111、運転部112、脱穀装置113、穀粒タンク114、収穫装置H、搬送装置116、穀粒排出装置118、衛星測位モジュール180を備えている。
[Overall configuration of combine]
As shown in FIG. 18, the ordinary type combine 101 (corresponding to “the harvester” according to the present invention) is a crawler-type traveling device 111, an operation unit 112, a threshing device 113, a grain tank 114, a harvesting device H, A carrier device 116, a grain discharging device 118, and a satellite positioning module 180 are provided.
 走行装置111は、コンバイン101における下部に備えられている。コンバイン101は、走行装置111によって自走可能である。 The traveling device 111 is provided at the lower part of the combine 101. The combine 101 can be self-propelled by the traveling device 111.
 また、運転部112、脱穀装置113、穀粒タンク114は、走行装置111の上側に備えられている。運転部112には、コンバイン101の作業を監視する作業者が搭乗可能である。尚、作業者は、コンバイン101の機外からコンバイン101の作業を監視していても良い。 The operation unit 112, the threshing device 113, and the grain tank 114 are provided on the upper side of the traveling device 111. An operator who monitors the operation of the combine 101 can get on the operation unit 112. The worker may monitor the work of the combine 101 from the outside of the combine 101.
 穀粒排出装置118は、穀粒タンク114の上側に設けられている。また、衛星測位モジュール180は、運転部112の上面に取り付けられている。 The grain discharging device 118 is provided on the upper side of the grain tank 114. In addition, the satellite positioning module 180 is attached to the top surface of the driver 112.
 収穫装置Hは、コンバイン101における前部に備えられている。そして、搬送装置116は、収穫装置Hの後側に設けられている。また、収穫装置Hは、刈取部115及びリール117を有している。 The harvesting device H is provided at the front of the combine 101. The transport device 116 is provided on the rear side of the harvesting device H. In addition, the harvesting apparatus H has a reaper 115 and a reel 117.
 刈取部115は、圃場の植立穀稈を刈り取る。また、リール117は、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫装置Hは、圃場の穀物(本発明に係る「農作物」に相当)を収穫する。そして、コンバイン101は、収穫装置Hによって圃場の穀物を収穫しながら走行装置111によって走行する収穫走行が可能である。 The reaper 115 harvests the crop of the field in the field. In addition, the reel 117 scrapes the cropped cereals to be harvested while being rotationally driven. By this configuration, the harvester H harvests the field crop (corresponding to the "agricultural crop" according to the present invention). Then, the combine 101 can carry out a harvest run traveling by the traveling device 111 while harvesting the grain of the field by the harvesting device H.
 刈取部115により刈り取られた刈取穀稈は、搬送装置116によって脱穀装置113へ搬送される。脱穀装置113において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク114に貯留される。穀粒タンク114に貯留された穀粒は、必要に応じて、穀粒排出装置118によって機外に排出される。 The cropped rice bran that has been clipped by the cropping unit 115 is transported by the transport device 116 to the threshing device 113. In the threshing device 113, the reaping grain is threshed. The grains obtained by the threshing process are stored in a grain tank 114. The grains stored in the grain tank 114 are discharged to the outside by the grain discharging device 118 as needed.
 また、図18に示すように、運転部112には、通信端末104が配置されている。通信端末104は、種々の情報を表示可能に構成されている。本実施形態において、通信端末104は、運転部112に固定されている。しかしながら、本発明はこれに限定されず、通信端末104は、運転部112に対して着脱可能に構成されていても良いし、通信端末104は、コンバイン101の機外に位置していても良い。 Further, as shown in FIG. 18, the communication terminal 104 is disposed in the operation unit 112. The communication terminal 104 is configured to be able to display various information. In the present embodiment, the communication terminal 104 is fixed to the operation unit 112. However, the present invention is not limited to this, the communication terminal 104 may be configured to be attachable to and detachable from the operation unit 112, and the communication terminal 104 may be located outside the combine 101. .
 ここで、コンバイン101は、圃場における外周側の領域で穀物を収穫しながら周回走行を行った後、圃場における内側の領域で収穫走行を行うことにより、圃場の穀物を収穫するように構成されている。 Here, the combine 101 is configured to harvest cereals in the field by harvesting and traveling in the inner region of the field after harvesting the crop in the region on the outer peripheral side of the field and then traveling round There is.
 そして、この収穫作業においては、領域決定システムA1により、コンバイン101が周回走行した圃場の外周側の領域が外周領域SAとして算出されると共に、外周領域SAの内側が作業対象領域CAとして算出される。 Then, in this harvesting operation, the area determination system A1 calculates the area on the outer periphery side of the field where the combine 101 travels circularly as the outer peripheral area SA, and calculates the inside of the outer peripheral area SA as the work target area CA. .
 以下では、領域決定システムA1の構成について説明する。 The configuration of the area determination system A1 will be described below.
 〔領域決定システムに関する構成〕
 図19に示すように、領域決定システムA1は、衛星測位モジュール180と、制御部120と、通信端末104と、を備えている。尚、制御部120は、コンバイン101に備えられている。また、上述の通り、衛星測位モジュール180及び通信端末104も、コンバイン101に備えられている。
[Configuration of area determination system]
As shown in FIG. 19, the area determination system A1 includes a satellite positioning module 180, a control unit 120, and a communication terminal 104. The control unit 120 is included in the combine 101. Further, as described above, the satellite positioning module 180 and the communication terminal 104 are also provided in the combine 101.
 制御部120は、自車位置算出部121、走行経路設定部122、走行制御部123、領域算出部124、距離算出部125を有している。また、通信端末104は、表示部104a(本発明に係る「報知部」及び「警告部」に相当)、操作入力部104bを有している。 The control unit 120 includes a host vehicle position calculation unit 121, a travel route setting unit 122, a travel control unit 123, an area calculation unit 124, and a distance calculation unit 125. The communication terminal 104 further includes a display unit 104a (corresponding to the "notification unit" and the "warning unit" according to the present invention), and the operation input unit 104b.
 図18に示すように、衛星測位モジュール180は、GPS(グローバル・ポジショニング・システム)で用いられる人工衛星GSからのGPS信号を受信する。そして、図19に示すように、衛星測位モジュール180は、受信したGPS信号に基づいて、コンバイン101の自車位置を示す測位データを自車位置算出部121へ送る。 As shown in FIG. 18, the satellite positioning module 180 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 19, the satellite positioning module 180 sends positioning data indicating the vehicle position of the combine 101 to the vehicle position calculation unit 121 based on the received GPS signal.
 このように、領域決定システムA1は、コンバイン101の自車位置を示す測位データを出力する衛星測位モジュール180を備えている。 As described above, the area determination system A1 includes the satellite positioning module 180 that outputs the positioning data indicating the vehicle position of the combine 101.
 自車位置算出部121は、衛星測位モジュール180により出力された測位データに基づいて、コンバイン101の位置座標を経時的に算出する。算出されたコンバイン101の経時的な位置座標は、走行制御部123及び領域算出部124へ送られる。 The vehicle position calculation unit 121 calculates position coordinates of the combine 101 with time based on the positioning data output by the satellite positioning module 180. The calculated positional coordinates of the combine 101 with time are sent to the traveling control unit 123 and the area calculation unit 124.
 領域算出部124は、自車位置算出部121から受け取ったコンバイン101の経時的な位置座標に基づいて、外周領域SA及び作業対象領域CAを算出する。 The area calculation unit 124 calculates the outer peripheral area SA and the work target area CA based on the temporal position coordinates of the combine 101 received from the host vehicle position calculation unit 121.
 より具体的には、領域算出部124は、自車位置算出部121から受け取ったコンバイン101の経時的な位置座標に基づいて、圃場の外周側における周回走行でのコンバイン101の走行軌跡を算出する。そして、領域算出部124は、算出されたコンバイン101の走行軌跡に基づいて、コンバイン101が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部124は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 More specifically, the area calculation unit 124 calculates the traveling locus of the combine 101 in the circumferential traveling on the outer circumference side of the field based on the temporal position coordinate of the combine 101 received from the vehicle position calculation unit 121. . And the area | region calculation part 124 calculates the area | region by the side of the outer periphery of the farmland which the combine 101 traveled while harvesting the grain as the outer periphery area SA based on the calculated traveling locus of the combine 101. In addition, the area calculation unit 124 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 また、領域算出部124は、作業対象領域CAの形状を多角形として算出するように構成されている。 In addition, the area calculation unit 124 is configured to calculate the shape of the work target area CA as a polygon.
 例えば、図20においては、圃場の外周側における周回走行のためのコンバイン101の走行経路が矢印で示されている。図20に示す例では、コンバイン101は、3周の周回走行を行う。そして、この走行経路に沿った収穫走行が完了すると、圃場は、図21に示す状態となる。 For example, in FIG. 20, the traveling path of the combine 101 for circumferential traveling on the outer circumference side of the field is indicated by an arrow. In the example shown in FIG. 20, the combine 101 performs three rounds of circular traveling. Then, when the harvest traveling along the traveling route is completed, the field is in the state shown in FIG.
 図21に示すように、領域算出部124は、コンバイン101が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部124は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 As shown in FIG. 21, the area calculation unit 124 calculates an area on the outer circumference side of the field where the combine 101 travels while harvesting the grain as the outer circumference area SA. In addition, the area calculation unit 124 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 尚、図21に示す例では、算出された作業対象領域CAの形状は四角形である。しかしながら、本発明はこれに限定されず、算出された作業対象領域CAの形状は、四角形以外の多角形であっても良い。例えば、図24に示すように、算出された作業対象領域CAの形状は、三角形であっても良い。また、算出された作業対象領域CAの形状は、五角形や六角形であっても良い。 In the example shown in FIG. 21, the shape of the calculated work target area CA is a square. However, the present invention is not limited to this, and the calculated shape of the work target area CA may be a polygon other than a quadrangle. For example, as shown in FIG. 24, the shape of the calculated work target area CA may be a triangle. Further, the shape of the calculated work target area CA may be a pentagon or a hexagon.
 このように、領域決定システムA1は、衛星測位モジュール180により出力された測位データに基づいて、コンバイン101が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出すると共に、外周領域SAの内側を作業対象領域CAとして算出する領域算出部124を備えている。 Thus, based on the positioning data output by the satellite positioning module 180, the area determination system A1 calculates the area on the outer circumference side of the field where the combine 101 travels while harvesting the grain as the outer circumference area SA, and The area calculation unit 124 calculates the inside of the outer peripheral area SA as the work target area CA.
 図19に示すように、領域算出部124による算出結果は、走行経路設定部122、距離算出部125、及び、通信端末104における表示部104aへ送られる。 As shown in FIG. 19, the calculation result by the area calculation unit 124 is sent to the travel route setting unit 122, the distance calculation unit 125, and the display unit 104a in the communication terminal 104.
 図22に示すように、通信端末104における表示部104aは、領域算出部124により算出された外周領域SA及び作業対象領域CAの形状を表示可能に構成されている。これにより、表示部104aは、領域算出部124により算出された外周領域SA及び作業対象領域CAの形状を、作業者に報知する。 As shown in FIG. 22, the display unit 104a in the communication terminal 104 is configured to be able to display the shapes of the outer peripheral area SA and the work target area CA calculated by the area calculation unit 124. As a result, the display unit 104a notifies the worker of the shapes of the outer peripheral area SA and the work target area CA calculated by the area calculation unit 124.
 このように、領域決定システムA1は、領域算出部124により算出された作業対象領域CAの形状を報知する表示部104aを備えている。 As described above, the area determination system A1 includes the display unit 104a that reports the shape of the work target area CA calculated by the area calculation unit 124.
 また、通信端末104における操作入力部104bは、作業者による人為操作入力を受け付けるように構成されている。図19に示すように、操作入力部104bは、人為操作入力に応じた信号を、領域算出部124へ送る。 In addition, the operation input unit 104b in the communication terminal 104 is configured to receive an artificial operation input by the worker. As shown in FIG. 19, the operation input unit 104 b sends a signal corresponding to an artificial operation input to the area calculation unit 124.
 領域算出部124は、操作入力部104bから受け取った信号に基づいて、作業対象領域CAの辺の数を変更する。即ち、上述の通り、作業対象領域CAの形状は、圃場の外周側における周回走行でのコンバイン101の走行軌跡に基づいて、多角形として算出される。その後、この多角形の辺の数は、操作入力部104bに入力された人為操作入力に基づいて変更されることとなる。 The area calculation unit 124 changes the number of sides of the work target area CA based on the signal received from the operation input unit 104 b. That is, as described above, the shape of the work target area CA is calculated as a polygon based on the traveling locus of the combine 101 in the circumferential traveling on the outer peripheral side of the farmland. Thereafter, the number of sides of this polygon is changed based on the artificial operation input inputted to the operation input unit 104b.
 例えば、図22において、領域算出部124により算出された作業対象領域CAの形状は四角形である。この作業対象領域CAの形状は、圃場の外周側における周回走行でのコンバイン101の走行軌跡に基づいて算出されたものである。 For example, in FIG. 22, the shape of the work target area CA calculated by the area calculation unit 124 is a square. The shape of the work target area CA is calculated based on the traveling locus of the combine 101 in the circumferential traveling on the outer circumference side of the farmland.
 そして、図22において、表示部104aには、「領域形状:四角形」と表示されている。この表示は、算出された作業対象領域CAの形状を示している。そして、この表示の上下には、上向きボタンb1及び下向きボタンb2が表示されている。尚、この上向きボタンb1及び下向きボタンb2は、操作入力部104bに含まれている。また、表示部104aはタッチパネルであり、上向きボタンb1及び下向きボタンb2は、表示部104aに表示されるタッチボタンである。 Then, in FIG. 22, “area shape: quadrilateral” is displayed on the display unit 104 a. This display shows the shape of the calculated work target area CA. The upward button b1 and the downward button b2 are displayed above and below this display. The upward button b1 and the downward button b2 are included in the operation input unit 104b. The display unit 104 a is a touch panel, and the upward button b 1 and the downward button b 2 are touch buttons displayed on the display unit 104 a.
 作業者が操作入力部104bに操作入力を行うと、作業対象領域CAの辺の数が変更される。例えば、図22に示す状態において、作業者が上向きボタンb1を押すと、作業対象領域CAの辺の数は増加する。即ち、作業対象領域CAの形状は五角形として領域算出部124により再算出される。これに伴い、表示部104aには、「領域形状:五角形」と表示される。 When the operator inputs an operation to the operation input unit 104b, the number of sides of the work target area CA is changed. For example, in the state shown in FIG. 22, when the worker presses the upward button b1, the number of sides of the work target area CA increases. That is, the shape of the work target area CA is recalculated by the area calculation unit 124 as a pentagon. Along with this, “area shape: pentagon” is displayed on the display unit 104 a.
 また、図22に示す状態において、作業者が下向きボタンb2を押すと、図23に示すように、作業対象領域CAの辺の数は減少する。即ち、作業対象領域CAの形状は三角形として領域算出部124により再算出される。これに伴い、表示部104aには、「領域形状:三角形」と表示される。 Further, in the state shown in FIG. 22, when the worker presses the downward button b2, as shown in FIG. 23, the number of sides of the work target area CA decreases. That is, the shape of the work target area CA is recalculated by the area calculation unit 124 as a triangle. Along with this, "area shape: triangle" is displayed on the display unit 104a.
 このように、領域決定システムA1は、人為操作入力を受け付ける操作入力部104bを備えている。また、領域算出部124は、操作入力部104bに入力された人為操作入力に基づいて、多角形の辺の数を変更する。 As described above, the area determination system A1 includes the operation input unit 104b that receives an artificial operation input. Further, the region calculation unit 124 changes the number of sides of the polygon based on the artificial operation input input to the operation input unit 104 b.
 そして、この構成によれば、作業者は、操作入力部104bに操作入力を行うことにより、作業対象領域CAの形状が実際の未刈領域UAの形状に合致するように、作業対象領域CAの辺の数を増減させることが可能となる。 Then, according to this configuration, the worker performs the operation input to the operation input unit 104b, so that the shape of the work target area CA matches the shape of the actual uncut area UA. It is possible to increase or decrease the number of sides.
 走行経路設定部122は、領域算出部124から受け取った算出結果に基づいて、図24に示すように、作業対象領域CAにおける走行経路である刈取走行経路LIを設定する。尚、図24に示すように、本実施形態においては、刈取走行経路LIは、互いに平行な複数の平行線である。 Based on the calculation result received from the area calculation unit 124, the traveling route setting unit 122 sets a reaper traveling route LI, which is a traveling route in the work target area CA, as shown in FIG. As shown in FIG. 24, in the present embodiment, the cutting traveling path LI is a plurality of parallel lines parallel to one another.
 図19に示すように、走行経路設定部122により算出された刈取走行経路LIは、走行制御部123へ送られる。 As shown in FIG. 19, the reaper traveling route LI calculated by the traveling route setting unit 122 is sent to the traveling control unit 123.
 走行制御部123は、自車位置算出部121から受け取ったコンバイン101の位置座標と、走行経路設定部122から受け取った刈取走行経路LIと、に基づいて、コンバイン101の自動走行を制御する。より具体的には、走行制御部123は、刈取走行経路LIに沿ってコンバイン101が自動走行するように、コンバイン101の走行を制御する。 The traveling control unit 123 controls the automatic traveling of the combine 101 based on the position coordinates of the combine 101 received from the vehicle position calculation unit 121 and the reaper traveling route LI received from the traveling route setting unit 122. More specifically, the traveling control unit 123 controls the traveling of the combine 101 so that the combine 101 automatically travels along the reaper traveling route LI.
 〔領域決定システムを利用した収穫作業の流れ〕
 以下では、領域決定システムA1を利用した収穫作業の例として、コンバイン101が、図20に示す圃場で収穫作業を行う場合の流れについて説明する。
[Flow of harvest work using area determination system]
Hereinafter, as an example of a harvesting operation using the area determination system A1, a flow of the case where the combine 101 performs the harvesting operation in the field shown in FIG. 20 will be described.
 最初に、作業者は、コンバイン101を手動で操作し、図20に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように収穫走行を行う。図20に示す例では、コンバイン101は、3周の周回走行を行う。この周回走行が完了すると、圃場は、図21に示す状態となる。 First, the operator manually operates the combine 101, and performs harvesting and traveling along the border line of the field at the outer peripheral portion in the field as shown in FIG. In the example shown in FIG. 20, the combine 101 performs three rounds of circular traveling. When this round trip is completed, the field is in the state shown in FIG.
 領域算出部124は、自車位置算出部121から受け取ったコンバイン101の経時的な位置座標に基づいて、図20に示す周回走行でのコンバイン101の走行軌跡を算出する。そして、図21に示すように、領域算出部124は、算出されたコンバイン101の走行軌跡に基づいて、コンバイン101が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部124は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 The region calculation unit 124 calculates the traveling locus of the combine 101 in the round trip shown in FIG. 20 based on the temporal position coordinate of the combine 101 received from the host vehicle position calculation unit 121. Then, as shown in FIG. 21, the area calculation unit 124 calculates, based on the calculated traveling locus of the combine 101, an area on the outer peripheral side of the field where the combine 101 travels while harvesting grains as the outer peripheral area SA. Do. In addition, the area calculation unit 124 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 図21においては、このとき算出される外周領域SA及び作業対象領域CAと、実際の未刈領域UAと、を重ね合わせて示している。また、図21においては、実際の圃場の外形を点線で示している。図21に示すように、領域算出部124は、作業対象領域CAを多角形として算出するように構成されている。これにより、実際の未刈領域UAが、多角形によって近似的に算出されることとなる。尚、図21に示す例では、作業対象領域CAの形状は四角形として算出される。 In FIG. 21, the outer peripheral area SA and the work target area CA calculated at this time and the actual uncut area UA are superimposed and shown. Moreover, in FIG. 21, the outline of the actual field is shown by a dotted line. As shown in FIG. 21, the area calculation unit 124 is configured to calculate the work target area CA as a polygon. Thus, the actual uncut area UA is approximately calculated by the polygon. In the example shown in FIG. 21, the shape of the work target area CA is calculated as a quadrangle.
 次に、走行経路設定部122は、領域算出部124から受け取った算出結果に基づいて、図21に示すように、作業対象領域CAにおける刈取走行経路LIを設定する。また、このとき、図22に示すように、算出された作業対象領域CAの形状が、通信端末104の表示部104aに表示される。 Next, based on the calculation result received from the area calculation unit 124, the traveling route setting unit 122 sets the reaper traveling route LI in the work target area CA as shown in FIG. At this time, as shown in FIG. 22, the calculated shape of the work target area CA is displayed on the display unit 104 a of the communication terminal 104.
 作業者は、この時点で、自動走行開始ボタン(図示せず)を押すことにより、刈取走行経路LIに沿った自動走行の開始を指示することができる。しかしながら、この説明においては、この時点で自動走行の開始は指示されないものとする。 At this time, the operator can instruct the start of the automatic traveling along the reaper traveling route LI by pressing the automatic traveling start button (not shown). However, in this description, it is assumed that the start of automatic traveling is not instructed at this point.
 作業者が、表示部104aに表示された作業対象領域CAの形状が不適切であると判断した場合、操作入力部104bを操作すれば、作業対象領域CAの形状を変更することができる。図22に示す状態において、作業者が、操作入力部104bにおける下向きボタンb2を押すと、図23に示すように、作業対象領域CAの辺の数が減少する。即ち、作業対象領域CAの形状は三角形として領域算出部124により再算出される。これに伴い、表示部104aには、「領域形状:三角形」と表示される。 When the worker determines that the shape of the work target area CA displayed on the display unit 104a is inappropriate, the shape of the work target area CA can be changed by operating the operation input unit 104b. In the state shown in FIG. 22, when the worker presses the down button b2 on the operation input unit 104b, as shown in FIG. 23, the number of sides of the work target area CA decreases. That is, the shape of the work target area CA is recalculated by the area calculation unit 124 as a triangle. Along with this, "area shape: triangle" is displayed on the display unit 104a.
 図24においては、このとき再算出される外周領域SA及び作業対象領域CAと、実際の未刈領域UAと、を重ね合わせて示している。また、図24においては、実際の圃場の外形を点線で示している。 In FIG. 24, the outer peripheral area SA and the work target area CA recalculated at this time are superimposed on the actual uncut area UA. Moreover, in FIG. 24, the outline of the actual field is shown by a dotted line.
 次に、走行経路設定部122は、領域算出部124から受け取った再算出結果に基づいて、図24に示すように、作業対象領域CAにおける刈取走行経路LIを改めて設定する。そして、作業者が自動走行開始ボタンを押すことにより、刈取走行経路LIに沿った自動走行が開始される。刈取走行経路LIに沿った自動走行が完了すると、圃場の全体が収穫済みとなる。 Next, based on the recalculation result received from the area calculation unit 124, the traveling route setting unit 122 sets the reaper traveling route LI in the work target area CA again, as shown in FIG. Then, when the operator presses the automatic travel start button, the automatic travel along the reaper traveling path LI is started. When automatic traveling along the reaping traveling route LI is completed, the entire field is harvested.
 ところで、外周領域SAは、作業対象領域CAにおいて収穫走行を行うときに、コンバイン101が方向転換するためのスペースとして利用される。また、外周領域SAは、収穫走行を一旦終えて、穀粒の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用される。 The outer circumferential area SA is used as a space for the combine 101 to change its direction when performing harvest traveling in the work target area CA. Further, the outer peripheral area SA is also used as a space for movement, such as when moving to a discharge place of grain or after moving to a fuel supply place after the harvest traveling is once finished.
 そのため、作業対象領域CAにおける収穫走行に先立ち、外周領域SAの幅をある程度広く確保する必要がある。以下では、領域決定システムA1において、特に、外周領域SAの幅をある程度広く確保するために行われる2つの処理について説明する。 Therefore, prior to harvesting and traveling in the work target area CA, it is necessary to secure the width of the outer peripheral area SA to a certain extent. In the following, in the area determination system A1, particularly, two processes performed to secure the width of the outer peripheral area SA to a certain extent will be described.
 〔辺の増加処理に関する構成〕
 外周領域SAの幅をある程度広く確保するために行われる2つの処理のうちの1つは、辺の増加処理である。以下では、この処理について、主に図25及び図26を参照しながら説明する。尚、図25及び図26においては、算出される外周領域SA及び作業対象領域CAと、実際の未刈領域UAと、を重ね合わせて示している。また、図25及び図26においては、実際の圃場の外形を点線で示している。
[Configuration on edge increase processing]
One of the two processes performed to secure the width of the outer peripheral area SA to a certain extent is an increase process of the side. In the following, this process will be described mainly with reference to FIGS. 25 and 26. In FIG. 25 and FIG. 26, the calculated outer peripheral area SA and the work target area CA and the actual uncut area UA are shown superimposed. Moreover, in FIG. 25 and FIG. 26, the outline of the actual field is shown by a dotted line.
 コンバイン101が圃場内の外周部分における周回走行を行った後、距離算出部125は、領域算出部124から受け取った算出結果に基づいて、図25に示すように、外周領域SAにおける外周側の境界線OBと、外周領域SAにおける内周側の境界線IBと、の間の距離を算出する。図19に示すように、距離算出部125により算出された距離は、領域算出部124へ送られる。 After the combine 101 travels on the outer periphery in the field, the distance calculation unit 125 determines the outer boundary of the outer peripheral area SA as shown in FIG. 25 based on the calculation result received from the area calculation unit 124. The distance between the line OB and the inner boundary IB of the outer peripheral area SA is calculated. As shown in FIG. 19, the distance calculated by the distance calculation unit 125 is sent to the region calculation unit 124.
 尚、距離算出部125は、外周領域SAのうちで最も幅の狭い部位を特定した上で、その部位における外周領域SAの幅を、外周側の境界線OBと内周側の境界線IBとの間の距離として算出するように構成されていても良い。 The distance calculation unit 125 specifies the narrowest part of the outer peripheral area SA, and then sets the width of the outer peripheral area SA at that part to the outer peripheral border line OB and the inner peripheral border line IB. It may be configured to calculate as the distance between
 また、距離算出部125は、外周領域SAにおける複数の部位を選定し、選定された各部位において、外周側の境界線OBと内周側の境界線IBとの間の距離を算出するように構成されていても良い。この場合、各部位において算出された距離のうち、最も短い距離が、距離算出部125による最終的な算出結果として出力されても良い。また、各部位において算出された距離の平均値が、距離算出部125による最終的な算出結果として出力されても良い。 In addition, the distance calculation unit 125 selects a plurality of parts in the outer peripheral area SA, and calculates the distance between the outer peripheral border OB and the inner peripheral border IB at each of the selected sites. It may be configured. In this case, the shortest distance among the distances calculated for each part may be output as a final calculation result by the distance calculation unit 125. In addition, the average value of the distances calculated for each part may be output as a final calculation result by the distance calculation unit 125.
 そして、距離算出部125により算出された距離が所定距離よりも短い場合、領域算出部124は、外周領域SAにおける外周側の境界線OBと、外周領域SAにおける内周側の境界線IBと、の間の距離が長くなるように、作業対象領域CAの辺の数を増加させる。 Then, when the distance calculated by the distance calculation unit 125 is shorter than the predetermined distance, the region calculation unit 124 determines the outer boundary border OB in the outer peripheral region SA and the inner boundary border IB in the outer peripheral region SA, To increase the number of sides of the work area CA.
 尚、この所定距離は、コンバイン101の機種に応じて決められる固定値であっても良いし、作業者によって任意に設定可能であっても良い。 The predetermined distance may be a fixed value determined according to the model of the combine 101, or may be arbitrarily set by the operator.
 例えば、図25に示す外周領域SAの部位P1において、外周側の境界線OBと内周側の境界線IBとの間の距離が、所定距離よりも短いものとする。この場合、図26に示すように、領域算出部124は、作業対象領域CAの辺の数を増加させる。尚、図25に示す例では、作業対象領域CAの形状は三角形である。作業対象領域CAの辺の数が増加することにより、図26に示すように、作業対象領域CAの形状は四角形となる。 For example, in a portion P1 of the outer peripheral area SA shown in FIG. 25, the distance between the outer peripheral border line OB and the inner peripheral border line IB is shorter than a predetermined distance. In this case, as shown in FIG. 26, the area calculation unit 124 increases the number of sides of the work target area CA. In the example shown in FIG. 25, the shape of the work target area CA is a triangle. As the number of sides of the work target area CA increases, as shown in FIG. 26, the shape of the work target area CA becomes a quadrangle.
 即ち、上述の通り、作業対象領域CAの形状は、圃場の外周側における周回走行でのコンバイン101の走行軌跡に基づいて、多角形として算出される。その後、距離算出部125により算出された距離が所定距離よりも短い場合には、この多角形の辺の数は増加することとなる。 That is, as described above, the shape of the work target area CA is calculated as a polygon based on the traveling locus of the combine 101 in the circumferential traveling on the outer peripheral side of the farmland. Thereafter, when the distance calculated by the distance calculation unit 125 is shorter than the predetermined distance, the number of sides of the polygon increases.
 そして、図26に示すように、作業対象領域CAの辺の数が増加することにより、外周領域SAの部位P1において、外周側の境界線OBと内周側の境界線IBとの間の距離が長くなる。これにより、外周領域SAの幅をある程度広く確保することができる。 Then, as shown in FIG. 26, by increasing the number of sides of the work target area CA, in the portion P1 of the outer peripheral area SA, the distance between the boundary OB on the outer peripheral side and the boundary IB on the inner peripheral side Will be longer. Thus, the width of the outer peripheral area SA can be secured to a certain extent.
 このように、領域決定システムA1は、外周領域SAにおける外周側の境界線OBと、外周領域SAにおける内周側の境界線IBと、の間の距離を算出する距離算出部125を備えている。また、距離算出部125により算出された距離が所定距離よりも短い場合、領域算出部124は、多角形の辺の数を増加させる。 Thus, the area determination system A1 includes the distance calculation unit 125 that calculates the distance between the outer peripheral border line OB in the outer peripheral area SA and the inner peripheral border line IB in the outer peripheral area SA. . When the distance calculated by the distance calculation unit 125 is shorter than the predetermined distance, the area calculation unit 124 increases the number of sides of the polygon.
 以上で説明した通り、辺の増加処理によって、外周領域SAの幅をある程度広く確保することができる。 As described above, the width increase of the outer peripheral area SA can be secured to a certain extent by the side increase processing.
 〔警告処理に関する構成〕
 外周領域SAの幅をある程度広く確保するために行われる2つの処理のうちのもう1つは、警告処理である。以下では、この処理について、主に図27から図29を参照しながら説明する。尚、図27及び図29においては、算出される外周領域SA及び作業対象領域CAと、実際の未刈領域UAと、を重ね合わせて示している。また、図27及び図29においては、実際の圃場の外形を点線で示している。
[Configuration related to warning processing]
Another of the two processes performed to secure the width of the outer peripheral area SA to a certain extent is a warning process. Hereinafter, this process will be described mainly with reference to FIGS. 27 to 29. In FIG. 27 and FIG. 29, the calculated outer peripheral area SA and the work target area CA and the actual uncut area UA are shown in an overlapping manner. Moreover, in FIG. 27 and FIG. 29, the outline of the actual field is shown by a dotted line.
 コンバイン101が圃場内の外周部分における周回走行を行った後、距離算出部125は、領域算出部124から受け取った算出結果に基づいて、図27に示すように、外周領域SAにおける外周側の境界線OBと、外周領域SAにおける内周側の境界線IBと、の間の距離を算出する。図19に示すように、距離算出部125により算出された距離は、表示部104aへ送られる。 After the combine 101 travels around the outer periphery in the field, the distance calculation unit 125 determines the outer boundary of the outer peripheral area SA as shown in FIG. 27 based on the calculation result received from the area calculation unit 124. The distance between the line OB and the inner boundary IB of the outer peripheral area SA is calculated. As shown in FIG. 19, the distance calculated by the distance calculation unit 125 is sent to the display unit 104a.
 尚、距離算出部125は、外周領域SAのうちで最も幅の狭い部位を特定した上で、その部位における外周領域SAの幅を、外周側の境界線OBと内周側の境界線IBとの間の距離として算出するように構成されていても良い。 The distance calculation unit 125 specifies the narrowest part of the outer peripheral area SA, and then sets the width of the outer peripheral area SA at that part to the outer peripheral border line OB and the inner peripheral border line IB. It may be configured to calculate as the distance between
 また、距離算出部125は、外周領域SAにおける複数の部位を選定し、選定された各部位において、外周側の境界線OBと内周側の境界線IBとの間の距離を算出するように構成されていても良い。この場合、各部位において算出された距離のうち、最も短い距離が、距離算出部125による最終的な算出結果として出力されても良い。また、各部位において算出された距離の平均値が、距離算出部125による最終的な算出結果として出力されても良い。 In addition, the distance calculation unit 125 selects a plurality of parts in the outer peripheral area SA, and calculates the distance between the outer peripheral border OB and the inner peripheral border IB at each of the selected sites. It may be configured. In this case, the shortest distance among the distances calculated for each part may be output as a final calculation result by the distance calculation unit 125. In addition, the average value of the distances calculated for each part may be output as a final calculation result by the distance calculation unit 125.
 そして、距離算出部125により算出された距離が所定距離よりも短い場合、表示部104aは、圃場の外周側の領域における周回走行を追加で行うように促す警告を表示する。 Then, when the distance calculated by the distance calculation unit 125 is shorter than the predetermined distance, the display unit 104a displays a warning prompting to additionally perform a round trip in the area on the outer circumference side of the field.
 尚、この所定距離は、コンバイン101の機種に応じて決められる固定値であっても良いし、作業者によって任意に設定可能であっても良い。 The predetermined distance may be a fixed value determined according to the model of the combine 101, or may be arbitrarily set by the operator.
 例えば、図27に示す外周領域SAの部位P2において、外周側の境界線OBと内周側の境界線IBとの間の距離が、所定距離よりも短いものとする。この場合、図28に示すように、表示部104aは、圃場の外周側の領域における周回走行を追加で行うように促す警告メッセージa1を表示する。また、このとき、図28に示すように、表示部104aは、外周領域SAにおいて、外周側の境界線OBと内周側の境界線IBとの間の距離が短い部分を強調して表示する。 For example, in a portion P2 of the outer peripheral area SA shown in FIG. 27, the distance between the outer peripheral border line OB and the inner peripheral border line IB is shorter than a predetermined distance. In this case, as shown in FIG. 28, the display unit 104a displays a warning message a1 prompting the user to additionally perform a round trip in the area on the outer periphery of the agricultural field. Further, at this time, as shown in FIG. 28, display portion 104a emphasizes and displays a portion where the distance between boundary line OB on the outer circumference side and boundary line IB on the inner circumference side is short in outer circumference area SA. .
 このように、領域決定システムA1は、距離算出部125により算出された距離が所定距離よりも短い場合に圃場の外周側の領域における周回走行を追加で行うように促す表示部104aを備えている。 As described above, the area determination system A1 includes the display unit 104a that urges additional circumferential travel in the area on the outer periphery of the field when the distance calculated by the distance calculation unit 125 is shorter than the predetermined distance. .
 作業者が、この警告に従って、圃場の外周側の領域における周回走行を追加で行うことにより、外周領域SAが拡張し、圃場は図29に示す状態となる。図29に示すように、外周領域SAが拡張することにより、外周領域SAの部位P2において、外周側の境界線OBと内周側の境界線IBとの間の距離が長くなる。これにより、外周領域SAの幅をある程度広く確保することができる。 When the operator additionally performs circumferential traveling in the area on the outer periphery side of the agricultural field according to the warning, the outer peripheral area SA is expanded, and the agricultural field is in the state shown in FIG. As shown in FIG. 29, by the expansion of the outer peripheral area SA, the distance between the boundary OB on the outer peripheral side and the boundary IB on the inner peripheral side becomes longer at the portion P2 of the outer peripheral area SA. Thus, the width of the outer peripheral area SA can be secured to a certain extent.
 以上で説明した通り、警告処理によって、外周領域SAの幅をある程度広く確保することができる。 As described above, the warning process can ensure the width of the outer peripheral area SA to a certain extent.
 尚、上述した辺の増加処理及び警告処理は、適宜組み合わせて実行されても良い。例えば、辺の増加処理が実行された後で、距離算出部125により算出された距離が依然として所定距離よりも短い場合に、警告処理が行われるように構成されていても良い。 The above-described side increase processing and warning processing may be executed in combination as appropriate. For example, the warning process may be performed when the distance calculated by the distance calculation unit 125 is still shorter than the predetermined distance after the side increase process is performed.
 また、上述した辺の増加処理及び警告処理を、条件に応じて使い分けるように構成されていても良い。例えば、領域算出部124により算出された作業対象領域CAの形状が三角形である場合は辺の増加処理を行い、三角形以外の多角形である場合は警告処理を行うように構成されていても良い。 In addition, the above-described side increase processing and warning processing may be configured to be used according to the conditions. For example, if the shape of the work target area CA calculated by the area calculation unit 124 is a triangle, the process of increasing the side may be performed, and if it is a polygon other than a triangle, a warning process may be performed. .
 また、上述した辺の増加処理及び警告処理のうち、何れか一方のみが実行されるように構成されていても良い。 Further, only one of the side increase processing and the warning processing described above may be configured to be executed.
 以上で説明した構成であれば、作業対象領域CAの形状が多角形として算出される。そのため、作業対象領域CAの形状を比較的単純な形として算出できる。 With the configuration described above, the shape of the work target area CA is calculated as a polygon. Therefore, the shape of the work target area CA can be calculated as a relatively simple form.
[第2実施形態の別実施形態]
 以下、上記した実施形態を変更した別実施形態について説明する。以下の各別実施形態で説明している事項以外は、上記した実施形態で説明している事項と同様である。上記した実施形態及び以下の各別実施形態は、矛盾が生じない範囲で、適宜組み合わせてもよい。なお、本発明の範囲は、上記した実施形態及び以下の各別実施形態に限定されるものではない。
[Another embodiment of the second embodiment]
Hereinafter, another embodiment in which the above-described embodiment is modified will be described. Except for the matters described in the following different embodiments, the matters are the same as the matters described in the above-described embodiment. The above-described embodiment and the other embodiments described below may be combined as appropriate as long as no contradiction arises. Note that the scope of the present invention is not limited to the above-described embodiment and the following different embodiments.
 (1)走行装置111は、ホイール式であっても良いし、セミクローラ式であっても良い。 (1) The traveling device 111 may be a wheel type or a semi crawler type.
 (2)上記実施形態においては、走行経路設定部122により算出される刈取走行経路LIは、互いに平行な複数の平行線であるが、本発明はこれに限定されず、走行経路設定部122により算出される刈取走行経路LIは、互いに平行な複数の平行線でなくても良い。例えば、走行経路設定部122により算出される刈取走行経路LIは、渦巻き状の走行経路であっても良い。 (2) In the above embodiment, the reaping traveling route LI calculated by the traveling route setting unit 122 is a plurality of parallel lines parallel to each other, but the present invention is not limited to this, and the traveling route setting unit 122 The reaper traveling route LI to be calculated may not be a plurality of parallel lines parallel to each other. For example, the reaper traveling route LI calculated by the traveling route setting unit 122 may be a spiral traveling route.
 (3)上記実施形態においては、作業者は、コンバイン101を手動で操作し、図20に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように収穫走行を行う。しかしながら、本発明はこれに限定されず、コンバイン101が自動で走行し、圃場内の外周部分において、圃場の境界線に沿って周回するように収穫走行を行うように構成されていても良い。 (3) In the above embodiment, the operator manually operates the combine 101, and as shown in FIG. 20, the harvesting travels along the border of the field on the outer peripheral portion in the field. . However, the present invention is not limited to this, and the combine 101 may be configured to automatically travel and to perform harvest traveling so as to orbit along the border of the field at the outer peripheral portion in the field.
 (4)自車位置算出部121、走行経路設定部122、走行制御部123、領域算出部124、距離算出部125、表示部104a、操作入力部104bのうち、一部または全てがコンバイン101の外部に備えられていても良いのであって、例えば、コンバイン101の外部に設けられた管理サーバに備えられていても良い。 (4) Of the host vehicle position calculation unit 121, the travel route setting unit 122, the travel control unit 123, the area calculation unit 124, the distance calculation unit 125, the display unit 104a, and the operation input unit 104b It may be provided outside, for example, it may be provided in a management server provided outside the combine 101.
 (5)走行経路設定部122、走行制御部123は、何れも設けられていなくても良い。即ち、本発明に係る「収穫機」は、自動走行が可能なものでなくても良い。 (5) The traveling route setting unit 122 and the traveling control unit 123 may not be provided. That is, the "harvest machine" which concerns on this invention does not need to be what can be drive | worked automatically.
 (6)上記実施形態においては、通信端末104における表示部104aが、本発明に係る「報知部」及び「警告部」に相当する。しかしながら、本発明はこれに限定されず、「報知部」に相当する部材と、「警告部」に相当する部材と、を別々に備えていても良い。 (6) In the above embodiment, the display unit 104 a in the communication terminal 104 corresponds to the “notification unit” and the “warning unit” according to the present invention. However, the present invention is not limited to this, and a member corresponding to the "notification unit" and a member corresponding to the "warning unit" may be separately provided.
 (7)本発明に係る「警告部」として、距離算出部125により算出された距離が所定距離よりも短い場合に圃場の外周側の領域における周回走行を追加で行うように音声によって促すスピーカーが設けられていても良い。 (7) As a "warning unit" according to the present invention, a speaker that urges by voice to additionally perform circumferential traveling in the area on the outer circumference side of the field when the distance calculated by the distance calculation unit 125 is shorter than a predetermined distance It may be provided.
 (8)距離算出部125は設けられていなくても良い。 (8) The distance calculation unit 125 may not be provided.
 (9)表示部104aは設けられていなくても良い。 (9) The display unit 104a may not be provided.
 (10)操作入力部104bは設けられていなくても良い。 (10) The operation input unit 104b may not be provided.
 (11)通信端末104は設けられていなくても良い。 (11) The communication terminal 104 may not be provided.
 (12)刈取走行経路LIは、直線状の経路でも良いし、湾曲した経路でも良い。 (12) The reaping travel path LI may be a straight path or a curved path.
 (13)上記実施形態における各部材の機能をコンピュータに実現させる領域決定プログラムとして構成されていても良い。また、上記実施形態における各部材の機能をコンピュータに実現させる領域決定プログラムが記録された記録媒体として構成されていても良い。また、上記実施形態において各部材により行われることを1つまたは複数のステップにより行う領域決定方法として構成されていても良い。 (13) The program may be configured as a region determination program that causes a computer to realize the function of each member in the above embodiment. In addition, the recording medium may be configured as a recording medium in which a region determination program that causes a computer to realize the function of each member in the above-described embodiment is recorded. Furthermore, the method may be configured as a region determination method in which what is performed by each member in the above embodiment is performed in one or more steps.
[第3実施形態]
 以下、図30~図40を参照しながら、本発明の第3実施形態について説明する。なお、方向についての記載は、特に断りがない限り、図30に示す矢印Fの方向を「前」、矢印Bの方向を「後」とする。また、図30に示す矢印Uの方向を「上」、矢印Dの方向を「下」とする。
Third Embodiment
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. 30 to 40. In the description of the directions, unless otherwise noted, the direction of arrow F shown in FIG. 30 is “front”, and the direction of arrow B is “rear”. Further, the direction of the arrow U shown in FIG. 30 is “up”, and the direction of the arrow D is “down”.
 〔コンバインの全体構成〕
 図30に示すように、普通型のコンバイン201は、クローラ式の走行装置211、運転部212、脱穀装置213、穀粒タンク214、収穫装置H、搬送装置216、穀粒排出装置218、衛星測位モジュール280を備えている。
[Overall configuration of combine]
As shown in FIG. 30, the ordinary type combine 201 includes a crawler type traveling device 211, a driving unit 212, a threshing device 213, a grain tank 214, a harvesting device H, a conveying device 216, a grain discharging device 218, satellite positioning. A module 280 is provided.
 走行装置211は、コンバイン201における下部に備えられている。コンバイン201は、走行装置211によって自走可能である。 The traveling device 211 is provided at the lower part of the combine 201. The combine 201 can be self-propelled by the traveling device 211.
 また、運転部212、脱穀装置213、穀粒タンク214は、走行装置211の上側に備えられている。運転部212には、コンバイン201の作業を監視する作業者が搭乗可能である。尚、作業者は、コンバイン201の機外からコンバイン201の作業を監視していても良い。 In addition, the driving unit 212, the threshing device 213, and the grain tank 214 are provided on the upper side of the traveling device 211. An operator who monitors the operation of the combine 201 can get on the operation unit 212. The worker may monitor the work of the combine 201 from the outside of the combine 201.
 穀粒排出装置218は、穀粒タンク214の上側に設けられている。また、衛星測位モジュール280は、運転部212の上面に取り付けられている。 The grain discharging device 218 is provided on the upper side of the grain tank 214. In addition, the satellite positioning module 280 is attached to the top surface of the driver 212.
 収穫装置Hは、コンバイン201における前部に備えられている。そして、搬送装置216は、収穫装置Hの後側に設けられている。また、収穫装置Hは、刈取装置215及びリール217を有している。 The harvesting device H is provided at the front of the combine 201. The transport device 216 is provided on the rear side of the harvesting device H. The harvesting device H also has a reaper 215 and a reel 217.
 刈取装置215は、圃場の植立穀稈を刈り取る。また、リール217は、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫装置Hは、圃場の穀物を収穫する。そして、コンバイン201は、刈取装置215によって圃場の植立穀稈を刈り取りながら走行装置211によって走行する刈取走行が可能である。 The reaper 215 reaps the field crop of the field. In addition, the reel 217 scrapes the cropping object of harvest while being rotationally driven. With this configuration, the harvester H harvests the grain in the field. And combine 201 can reap travel which runs by traveling device 211, while reaping a crop of a field of a field with reaper 215.
 このように、コンバイン201は、圃場の植立穀稈を刈り取る刈取装置215を有している。 Thus, the combine 201 has a reaper 215 that reaps the field crop of the field.
 刈取装置215により刈り取られた刈取穀稈は、搬送装置216によって脱穀装置213へ搬送される。脱穀装置213において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク214に貯留される。穀粒タンク214に貯留された穀粒は、必要に応じて、穀粒排出装置218によって機外に排出される。 The cropped rice straw which has been cut by the reaper 215 is transported by the transport device 216 to the threshing device 213. In the threshing device 213, the reaping grain is threshed. The grains obtained by the threshing process are stored in a grain tank 214. The grains stored in the grain tank 214 are discharged to the outside by the grain discharging device 218 as needed.
 また、図30に示すように、運転部212には、通信端末204が配置されている。通信端末204は、種々の情報を表示可能に構成されている。本実施形態において、通信端末204は、運転部212に固定されている。しかしながら、本発明はこれに限定されず、通信端末204は、運転部212に対して着脱可能に構成されていても良いし、通信端末204は、コンバイン201の機外に位置していても良い。 Further, as shown in FIG. 30, the communication terminal 204 is disposed in the operation unit 212. The communication terminal 204 is configured to be able to display various information. In the present embodiment, the communication terminal 204 is fixed to the driver 212. However, the present invention is not limited to this. The communication terminal 204 may be configured to be attachable to and detachable from the operation unit 212, and the communication terminal 204 may be located outside the combine 201. .
 ここで、コンバイン201は、図32に示すように圃場における外周側の領域で穀物を収穫しながら周回走行を行った後、図33に示すように圃場における内側の領域で刈取走行を行うことにより、圃場の穀物を収穫するように構成されている。 Here, after the combine 201 performs circulation while harvesting grains in the area on the outer periphery side of the field as shown in FIG. 32, then the combine 201 performs reaping travel in the inner area of the field as shown in FIG. 33. , Are configured to harvest the grain of the field.
 そして、この収穫作業において、コンバイン201は、コンバイン制御システムA2によって制御される。以下では、コンバイン制御システムA2の構成について説明する。 Then, in this harvesting operation, the combine 201 is controlled by the combine control system A2. Hereinafter, the configuration of the combine control system A2 will be described.
 〔コンバイン制御システムの構成〕
 図31に示すように、コンバイン制御システムA2は、衛星測位モジュール280及び制御部220を備えている。尚、制御部220は、コンバイン201に備えられている。また、上述の通り、衛星測位モジュール280も、コンバイン201に備えられている。
[Configuration of combine control system]
As shown in FIG. 31, the combine control system A2 includes a satellite positioning module 280 and a control unit 220. The control unit 220 is included in the combine 201. Further, as described above, the satellite positioning module 280 is also provided in the combine 201.
 制御部220は、自車位置算出部221、経路算出部222、走行制御部223、領域算出部224、距離算出部225、決定部226を備えている。また、走行制御部223は、刈取走行制御部223a及び方向転換制御部223bを有している。 The control unit 220 includes a host vehicle position calculation unit 221, a route calculation unit 222, a travel control unit 223, an area calculation unit 224, a distance calculation unit 225, and a determination unit 226. Further, the traveling control unit 223 includes a reaper traveling control unit 223a and a direction change control unit 223b.
 図30に示すように、衛星測位モジュール280は、GPS(グローバル・ポジショニング・システム)で用いられる人工衛星GSからのGPS信号を受信する。そして、図31に示すように、衛星測位モジュール280は、受信したGPS信号に基づいて、コンバイン201の自車位置を示す測位データを自車位置算出部221へ送る。 As shown in FIG. 30, the satellite positioning module 280 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 31, the satellite positioning module 280 sends positioning data indicating the vehicle position of the combine 201 to the vehicle position calculation unit 221 based on the received GPS signal.
 自車位置算出部221は、衛星測位モジュール280により出力された測位データに基づいて、コンバイン201の位置座標を経時的に算出する。算出されたコンバイン201の経時的な位置座標は、走行制御部223及び領域算出部224へ送られる。 The host vehicle position calculation unit 221 calculates position coordinates of the combine 201 with time based on the positioning data output by the satellite positioning module 280. The calculated position coordinates of the combine 201 over time are sent to the traveling control unit 223 and the area calculation unit 224.
 領域算出部224は、自車位置算出部221から受け取ったコンバイン201の経時的な位置座標に基づいて、図33に示すように、外周領域SA及び作業対象領域CAを算出する。 As shown in FIG. 33, the area calculation unit 224 calculates the outer peripheral area SA and the work target area CA based on the temporal position coordinates of the combine 201 received from the host vehicle position calculation unit 221.
 より具体的には、領域算出部224は、自車位置算出部221から受け取ったコンバイン201の経時的な位置座標に基づいて、圃場の外周側における周回走行でのコンバイン201の走行軌跡を算出する。そして、領域算出部224は、算出されたコンバイン201の走行軌跡に基づいて、コンバイン201が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部224は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 More specifically, the area calculation unit 224 calculates the traveling locus of the combine 201 in the circumferential traveling on the outer periphery side of the field based on the temporal position coordinate of the combine 201 received from the vehicle position calculation unit 221. . And area | region calculation part 224 calculates the area | region by the side of the outer periphery of the farmland which the combine 201 traveled while harvesting the grain as outer periphery area | region SA based on the calculated traveling locus of the combine 201. In addition, the area calculation unit 224 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 例えば、図32においては、圃場の外周側における周回走行のためのコンバイン201の走行経路が矢印で示されている。図32に示す例では、コンバイン201は、3周の周回走行を行う。そして、この走行経路に沿った刈取走行が完了すると、圃場は、図33に示す状態となる。 For example, in FIG. 32, the traveling path of the combine 201 for circumferential traveling on the outer circumference side of the field is indicated by an arrow. In the example shown in FIG. 32, the combine 201 performs three rounds of circular traveling. When the mowing travel along the travel route is completed, the field is in the state shown in FIG.
 図33に示すように、領域算出部224は、コンバイン201が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部224は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 As shown in FIG. 33, the area calculation unit 224 calculates an area on the outer circumference side of the field where the combine 201 travels while harvesting the grain as the outer circumference area SA. In addition, the area calculation unit 224 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 さらに、領域算出部224は、自車位置算出部221から受け取ったコンバイン201の経時的な位置座標に基づいて、図34に示すように、作業対象領域CAにおける未刈領域CA1及び既刈領域CA2を算出する。 Furthermore, as shown in FIG. 34, the area calculation unit 224 uses the uncorrected area CA1 and the cut area CA2 in the work target area CA based on the temporal position coordinates of the combine 201 received from the host vehicle position calculation unit 221. Calculate
 より具体的には、領域算出部224は、自車位置算出部221から受け取ったコンバイン201の経時的な位置座標に基づいて、作業対象領域CAにおける刈取走行でのコンバイン201の走行軌跡を算出する。そして、領域算出部224は、算出されたコンバイン201の走行軌跡に基づいて、コンバイン201が刈取走行した領域を既刈領域CA2として算出する。また、領域算出部224は、作業対象領域CAにおける既刈領域CA2以外の部分を、未刈領域CA1として算出する。 More specifically, the area calculation unit 224 calculates the traveling locus of the combine 201 in the reaping travel in the work target area CA based on the temporal position coordinates of the combine 201 received from the host vehicle position calculation unit 221. . Then, based on the calculated traveling locus of the combine 201, the area calculation unit 224 calculates an area where the combine 201 travels by cutting as the cut area CA2. In addition, the area calculation unit 224 calculates a portion other than the cut area CA2 in the work target area CA as the uncut area CA1.
 そして、図31に示すように、領域算出部224による算出結果は、経路算出部222及び距離算出部225へ送られる。 Then, as shown in FIG. 31, the calculation result by the region calculation unit 224 is sent to the route calculation unit 222 and the distance calculation unit 225.
 経路算出部222は、領域算出部224から受け取った算出結果に基づいて、図33に示すように、作業対象領域CAにおける刈取走行のための走行経路である刈取走行経路LIを算出する。尚、図33に示すように、本実施形態において、刈取走行経路LIは、縦横方向に延びる複数のメッシュ線である。また、複数のメッシュ線は直線でなくても良く、湾曲していても良い。 Based on the calculation result received from the area calculation unit 224, as shown in FIG. 33, the route calculation unit 222 calculates a reaper traveling route LI, which is a traveling route for reaper travel in the work area CA. As shown in FIG. 33, in the present embodiment, the reaper traveling route LI is a plurality of mesh lines extending in the vertical and horizontal directions. The plurality of mesh lines may not be straight, and may be curved.
 図31に示すように、経路算出部222により算出された刈取走行経路LIは、走行制御部223へ送られる。 As shown in FIG. 31, the reaping traveling route LI calculated by the route calculating unit 222 is sent to the traveling control unit 223.
 刈取走行制御部223aは、自車位置算出部221から受け取ったコンバイン201の位置座標と、経路算出部222から受け取った刈取走行経路LIと、に基づいて、コンバイン201の自動走行を制御する。より具体的には、刈取走行制御部223aは、図33に示すように、刈取走行経路LIに沿った自動走行によって刈取走行が行われるように、コンバイン201の走行を制御する。 The reaper traveling control unit 223a controls automatic traveling of the combine 201 based on the position coordinates of the combine 201 received from the host vehicle position calculation unit 221 and the reaper traveling route LI received from the route calculation unit 222. More specifically, as shown in FIG. 33, the reaper traveling control unit 223a controls the traveling of the combine 201 so that reaper traveling is performed by automatic traveling along the reaper traveling route LI.
 また、距離算出部225は、領域算出部224から受け取った算出結果に基づいて、図34に示すように、未刈領域CA1における角部CPと、圃場の境界線OBLと、の間の距離を算出する。 Further, based on the calculation result received from the area calculation unit 224, as shown in FIG. 34, the distance calculation unit 225 determines the distance between the corner CP in the uncut area CA1 and the boundary line OBL of the field. calculate.
 尚、距離算出部225は、角部CPと圃場の境界線OBLとの間において最も幅の狭い部位を特定した上で、その部位における角部CPと圃場の境界線OBLとの間の距離を、距離算出部225による最終的な算出結果として出力するように構成されていても良い。 The distance calculation unit 225 identifies the narrowest portion between the corner CP and the boundary line OBL of the field, and then determines the distance between the corner CP and the boundary line OBL of the field at the portion. Alternatively, the distance calculation unit 225 may be configured to output a final calculation result.
 また、距離算出部225は、角部CPと圃場の境界線OBLとの間における複数の部位を選定し、選定された各部位において、角部CPと圃場の境界線OBLとの間の距離を算出するように構成されていても良い。この場合、各部位において算出された距離のうち、最も短い距離が、距離算出部225による最終的な算出結果として出力されても良い。また、各部位において算出された距離の平均値が、距離算出部225による最終的な算出結果として出力されても良い。 Further, the distance calculation unit 225 selects a plurality of parts between the corner CP and the boundary line OBL of the field, and in each selected part, the distance between the corner CP and the boundary line OBL of the field is It may be configured to calculate. In this case, the shortest distance among the distances calculated for each part may be output as a final calculation result by the distance calculation unit 225. In addition, the average value of the distances calculated at each part may be output as a final calculation result by the distance calculation unit 225.
 そして、図31に示すように、距離算出部225により算出された距離は、決定部226へ送られる。 Then, as shown in FIG. 31, the distance calculated by the distance calculation unit 225 is sent to the determination unit 226.
 決定部226は、距離算出部225により算出された距離に基づいて、コンバイン201の方向転換方法を決定する。 The determination unit 226 determines the direction change method of the combine 201 based on the distance calculated by the distance calculation unit 225.
 詳述すると、決定部226は、角部CPと圃場の境界線OBLとの間の距離が所定距離よりも短い場合には、角部CPの植立穀稈を刈り取るために行われるコンバイン201の方向転換が角部用特別方向転換によって行われることを決定する。 Describing in detail, when the distance between the corner CP and the border line OBL of the field is shorter than a predetermined distance, the determining unit 226 performs combining of the combine 201 performed to harvest the grain crest of the corner CP. It is decided that the turn is made by corner turn.
 尚、この所定距離は、コンバイン201の機種に応じて決められる固定値であっても良いし、作業者によって任意に設定可能であっても良い。 The predetermined distance may be a fixed value determined according to the model of the combine 201, or may be arbitrarily set by the operator.
 また、角部用特別方向転換とは、刈取旋回動作を含む方向転換方法である。また、刈取旋回動作とは、植立穀稈を刈り取りながら旋回する動作である。特に、本実施形態における角部用特別方向転換は、図34に示すように、第1後進動作と、刈取旋回動作と、第2後進動作と、前進動作と、を含んでいる。 Further, the corner special direction change is a direction change method including a reaping and turning operation. In addition, the reaping and turning operation is an operation of turning while reaping the crop of rice plant. In particular, as shown in FIG. 34, the corner-use special direction change in this embodiment includes the first reverse operation, the reaping and turning operation, the second reverse operation, and the forward operation.
 第1後進動作とは、刈取旋回動作に先立って行われる動作であって、方向転換前のコンバイン201の進行方向において角部CPよりも後側の位置まで後進する動作である。また、第2後進動作とは、刈取旋回動作の後に行われる動作であって、方向転換後のコンバイン201の進行方向において角部CPよりも後側の位置まで後進する動作である。また、前進動作とは、第2後進動作の後に行われる動作であって、前進する動作である。 The first reverse operation is an operation performed prior to the reaping and turning operation, and is an operation of moving backward to a position behind the corner CP in the advancing direction of the combine 201 before changing the direction. The second reverse operation is an operation performed after the reaping and turning operation, and is an operation to move backward to a position behind the corner CP in the advancing direction of the combine 201 after the change of direction. Further, the forward movement is an operation performed after the second reverse movement, and is a movement to move forward.
 このように、本実施形態において、角部用特別方向転換は、方向転換前のコンバイン201の進行方向において角部CPよりも後側の位置まで後進する第1後進動作と、第1後進動作の後に行われる刈取旋回動作と、刈取旋回動作の後に行われる動作であって、方向転換後のコンバイン201の進行方向において角部CPよりも後側の位置まで後進する第2後進動作と、第2後進動作の後に行われる前進動作と、を含んでいる。 As described above, in the present embodiment, the corner-use special direction change is performed in the first reverse operation and the first reverse operation for moving backward to a position behind the corner portion CP in the advancing direction of the combine 201 before the direction change. A second reverse operation of moving backward after the reaping turning operation to be performed later and an operation performed after the reaping turning operation, and moving backward to a position behind the corner portion CP in the advancing direction of the combine 201 after changing the direction; And a forward movement to be performed after the reverse movement.
 また、決定部226は、角部CPと圃場の境界線OBLとの間の距離が所定距離以上である場合には、角部CPの植立穀稈を刈り取るために行われるコンバイン201の方向転換が角部用特別方向転換とは異なる方向転換方法によって行われることを決定する。 In addition, when the distance between the corner CP and the border line OBL of the field is equal to or more than a predetermined distance, the determining unit 226 changes the direction of the combine 201 performed to reap the crop of the corner CP. Is determined to be performed by a turning method different from the corner turning.
 このように、コンバイン制御システムA2は、コンバイン201の方向転換方法を決定する決定部226を備えている。 As described above, the combine control system A2 includes the determination unit 226 that determines the direction change method of the combine 201.
 図31に示すように、決定部226による決定内容は、方向転換制御部223bへ送られる。そして、方向転換制御部223bは、決定部226による決定内容に従ってコンバイン201の方向転換を制御するように構成されている。 As shown in FIG. 31, the content of the determination by the determination unit 226 is sent to the direction change control unit 223b. Then, the direction change control unit 223b is configured to control the direction change of the combine 201 according to the content of the determination by the determination unit 226.
 このように、コンバイン制御システムA2は、コンバイン201の方向転換を制御する方向転換制御部223bを備えている。 Thus, the combine control system A2 includes the direction change control unit 223b that controls the change of direction of the combine 201.
 ここで、上述の通り、決定部226は、角部CPと圃場の境界線OBLとの間の距離が所定距離よりも短い場合には、角部CPの植立穀稈を刈り取るために行われるコンバイン201の方向転換が角部用特別方向転換によって行われることを決定する。そして、この場合、方向転換制御部223bは、角部CPの植立穀稈を刈り取るためにコンバイン201が方向転換を行う際、角部用特別方向転換によってコンバイン201の方向転換が行われるようにコンバイン201を制御することとなる。 Here, as described above, when the distance between the corner CP and the border line OBL of the field is shorter than a predetermined distance, the determination unit 226 is performed to reap the crop of the corner CP. It is determined that the turn of combine 201 is to be performed by corner turn. And, in this case, when the combine 201 performs the direction change in order to cut the planted grain of the corner CP, the direction change control unit 223b causes the direction change of the combine 201 to be performed by the special direction change for the corner. The combine 201 is to be controlled.
 このように、圃場の未刈領域CA1における角部CPの植立穀稈を刈り取るためにコンバイン201が方向転換を行う際、方向転換制御部223bは、植立穀稈を刈り取りながら旋回する刈取旋回動作を含む方向転換方法である角部用特別方向転換によってコンバイン201の方向転換が行われるようにコンバイン201を制御する。 As described above, when the combine 201 changes its direction in order to reap the planted grain of the corner CP in the uncrop area CA1 of the field, the direction change control unit 223b performs a reaping turning that turns while harvesting the planted grain. The combine 201 is controlled so that the turn of the combine 201 is performed by the corner directed change which is the turn method including the operation.
 〔コンバイン制御システムを利用した収穫作業の流れ〕
 以下では、コンバイン制御システムA2を利用した収穫作業の例として、コンバイン201が、図32に示す圃場で収穫作業を行う場合の流れについて説明する。
[Flow of harvesting work using combine control system]
In the following, as an example of a harvesting operation using the combine control system A2, a flow when the combine 201 performs the harvesting operation in the field shown in FIG. 32 will be described.
 最初に、作業者は、コンバイン201を手動で操作し、図32に示すように、圃場内の外周部分において、圃場の境界線OBLに沿って周回するように刈取走行を行う。図32に示す例では、コンバイン201は、3周の周回走行を行う。この周回走行が完了すると、圃場は、図33に示す状態となる。 First, the operator manually operates the combine 201, and as shown in FIG. 32, performs mowing travel so as to go around along the boundary line OBL of the field at the outer peripheral portion in the field. In the example shown in FIG. 32, the combine 201 performs three rounds of circular traveling. When this round trip is completed, the field is in the state shown in FIG.
 領域算出部224は、自車位置算出部221から受け取ったコンバイン201の経時的な位置座標に基づいて、図32に示す周回走行でのコンバイン201の走行軌跡を算出する。そして、図33に示すように、領域算出部224は、算出されたコンバイン201の走行軌跡に基づいて、コンバイン201が植立穀稈を刈り取りながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部224は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 The region calculation unit 224 calculates the traveling locus of the combine 201 in the round trip shown in FIG. 32 based on the temporal position coordinate of the combine 201 received from the host vehicle position calculation unit 221. Then, as shown in FIG. 33, based on the calculated traveling locus of the combine 201, the area calculating unit 224 calculates an area on the outer peripheral side of the field where the combine 201 travels while harvesting the cropped rice husk. Calculated as In addition, the area calculation unit 224 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 次に、経路算出部222は、領域算出部224から受け取った算出結果に基づいて、図33に示すように、作業対象領域CAにおける刈取走行経路LIを設定する。 Next, based on the calculation result received from the area calculation unit 224, as shown in FIG. 33, the route calculation unit 222 sets the reaper traveling route LI in the work target area CA.
 そして、作業者が自動走行開始ボタン(図示せず)を押すことにより、図33に示すように、刈取走行経路LIに沿った自動走行が開始される。このとき、刈取走行制御部223aは、刈取走行経路LIに沿った自動走行によって刈取走行が行われるように、コンバイン201の走行を制御する。 Then, when the worker presses an automatic travel start button (not shown), as shown in FIG. 33, automatic travel along the reaper travel path LI is started. At this time, the reaper traveling control unit 223a controls the traveling of the combine 201 so that reaper traveling is performed by automatic traveling along the reaper traveling path LI.
 尚、本実施形態においては、図32及び図33に示すように、圃場外に運搬車CVが駐車している。そして、外周領域SAにおいて、運搬車CVの近傍位置には、停車位置PPが設定されている。 In the present embodiment, as shown in FIGS. 32 and 33, the transport vehicle CV is parked outside the farmland. Then, in the outer peripheral area SA, the stop position PP is set at a position near the transport vehicle CV.
 運搬車CVは、コンバイン201が穀粒排出装置218から排出した穀粒を収集し、運搬することができる。穀粒排出の際、コンバイン201は停車位置PPに停車し、穀粒排出装置218によって穀粒を運搬車CVへ排出する。 The transporter CV can collect and transport the grains discharged by the combine 201 from the grain discharge device 218. When the grain is discharged, the combine 201 stops at the stopping position PP, and discharges the grain to the transport vehicle CV by the grain discharging device 218.
 また、一つの刈取走行経路LIの全体を走行し終えると、コンバイン201は、方向転換を行い、別の刈取走行経路LIに沿った刈取走行を開始する。このとき、コンバイン201の方向転換は、方向転換制御部223bの制御によって自動的に行われる。 Further, when traveling of the entire one reaper traveling route LI is completed, the combine 201 performs direction change and starts reaper traveling along another reaper traveling route LI. At this time, the direction change of the combine 201 is automatically performed by the control of the direction change control unit 223b.
 そして、作業対象領域CAにおける全ての刈取走行経路LIに沿った刈取走行が完了すると、圃場の全体が収穫済みとなる。 Then, when the mowing travel along all the mowing travel paths LI in the work target area CA is completed, the entire field becomes harvested.
 〔コンバインの方向転換について〕
 以下では、コンバイン201の方向転換について説明する。まずは、コンバイン201の方向転換が角部用特別方向転換によって行われる場合の例として、コンバイン201が図34に示す圃場で方向転換を行う場合について説明する。
[On the direction change of combine]
Hereinafter, the change of direction of the combine 201 will be described. First, as an example in which the direction change of the combine 201 is performed by the special direction change for corner, a case where the combine 201 performs the direction change in the field shown in FIG. 34 will be described.
 図34における第1経路LI1及び第2経路LI2は、何れも、刈取走行経路LIである。また、第1経路LI1と第2経路LI2とは互いに直交している。 The first route LI1 and the second route LI2 in FIG. 34 are both reaping travel routes LI. The first route LI1 and the second route LI2 are orthogonal to each other.
 そして、図34では、コンバイン201が第1経路LI1に沿った刈取走行を完了した後、角部CPの植立穀稈を刈り取るために90度の方向転換を行い、第2経路LI2に沿った刈取走行を開始するまでの動作が示されている。 Then, in FIG. 34, after the combine 201 completes the reaping travel along the first route LI1, the direction change of 90 degrees is performed to reap the planted grain of the corner CP, and the second route LI2 is obtained. The operation up to the start of the mowing travel is shown.
 尚、図34においては、コンバイン201の動作を表すために、刈取装置215の前端部における機体左右方向中央部の軌跡を、矢印で示している。 In addition, in FIG. 34, in order to represent the operation of the combine 201, the locus of the center portion in the left-right direction of the fuselage at the front end portion of the reaper 215 is indicated by an arrow.
 最初に、コンバイン201は、第1経路LI1に沿った刈取走行を完了し、位置Q1に位置している。このとき、距離算出部225は、角部CPと、圃場の境界線OBLと、の間の距離を算出する。図34に示すように、このとき算出される距離は、距離DS1である。 First, the combine 201 completes the mowing travel along the first path LI1 and is located at the position Q1. At this time, the distance calculation unit 225 calculates the distance between the corner portion CP and the boundary line OBL of the field. As shown in FIG. 34, the distance calculated at this time is the distance DS1.
 ここで、距離DS1は所定距離よりも短いものとする。そのため、決定部226は、角部CPの植立穀稈を刈り取るために行われるコンバイン201の方向転換が角部用特別方向転換によって行われることを決定する。 Here, the distance DS1 is shorter than a predetermined distance. Therefore, the determination unit 226 determines that the change of direction of the combine 201 performed to harvest the planted rice cake of the corner CP is performed by the special change of direction for the corner.
 これにより、コンバイン201は、位置Q1から、角部用特別方向転換を開始する。まず、コンバイン201は、第1経路LI1に沿って第1後進動作を行う。これにより、図34に示すように、コンバイン201は位置Q2へ移動する。尚、位置Q2は、第1経路LI1に沿った刈取走行の進行方向において角部CPよりも後側の位置である。 Thus, the combine 201 starts corner special direction change from the position Q1. First, the combine 201 performs the first reverse operation along the first path LI1. As a result, as shown in FIG. 34, the combine 201 moves to the position Q2. The position Q2 is a position behind the corner CP in the traveling direction of the cutting along the first path LI1.
 次に、コンバイン201は、刈取旋回動作を行う。これにより、コンバイン201は位置Q3へ移動する。また、この刈取旋回動作により、角部CPの一部である部位CP1の植立穀稈が刈り取られる。 Next, the combine 201 performs a reaping and turning operation. As a result, the combine 201 moves to the position Q3. In addition, by this cutting and turning operation, the planted grain weirs of the portion CP1 which is a part of the corner portion CP are cut off.
 次に、コンバイン201は、第2後進動作を行う。これにより、コンバイン201は位置Q4へ移動する。尚、位置Q4は、第2経路LI2に沿った刈取走行の進行方向において角部CPよりも後側の位置である。 Next, the combine 201 performs a second reverse operation. As a result, the combine 201 moves to the position Q4. The position Q4 is a position behind the corner CP in the traveling direction of the cutting along the second path LI2.
 そして、コンバイン201は、位置Q4から前進動作を行い、方向転換を完了する。 Then, the combine 201 moves forward from the position Q4 to complete the change of direction.
 以上で説明した一連の動作によって、コンバイン201の機体の向きは、第2経路LI2に沿う向きとなる。そして、第2経路LI2に沿った刈取走行が開始され、角部CPの植立穀稈が刈り取られる。 By the series of operations described above, the orientation of the combine 201's airframe is oriented along the second path LI2. Then, the reaping travel along the second path LI2 is started, and the weed of the corner CP is reaped.
 次に、コンバイン201の方向転換が角部用特別方向転換とは異なる方向転換方法によって行われる場合の例として、コンバイン201が図35に示す圃場で方向転換を行う場合について説明する。 Next, as an example of the case where the direction change of the combine 201 is performed by a direction change method different from the corner direction special direction change, the case where the combine 201 performs the direction change in the field shown in FIG. 35 will be described.
 図35における第3経路LI3及び第4経路LI4は、何れも、刈取走行経路LIである。また、第3経路LI3と第4経路LI4とは互いに直交している。 The third route LI3 and the fourth route LI4 in FIG. 35 are both reaping travel routes LI. Also, the third path LI3 and the fourth path LI4 are orthogonal to each other.
 そして、図35では、コンバイン201が第3経路LI3に沿った刈取走行を完了した後、角部CPの植立穀稈を刈り取るために90度の方向転換を行い、第4経路LI4に沿った刈取走行を開始するまでの動作が示されている。 Then, in FIG. 35, after the combine 201 completes the mowing travel along the third path LI3, the direction change of 90 degrees is performed to reap the planted rice cake of the corner CP, and the fourth path LI4 is performed. The operation up to the start of the mowing travel is shown.
 尚、図35においては、コンバイン201の動作を表すために、刈取装置215の前端部における機体左右方向中央部の軌跡を、矢印で示している。 In FIG. 35, in order to show the operation of the combine 201, the locus of the center portion in the left-right direction of the fuselage at the front end of the reaper 215 is indicated by an arrow.
 最初に、コンバイン201は、第3経路LI3に沿った刈取走行を完了し、位置Q5に位置している。このとき、距離算出部225は、角部CPと、圃場の境界線OBLと、の間の距離を算出する。図35に示すように、このとき算出される距離は、距離DS2である。 First, the combine 201 completes the mowing travel along the third path LI3 and is located at the position Q5. At this time, the distance calculation unit 225 calculates the distance between the corner portion CP and the boundary line OBL of the field. As shown in FIG. 35, the distance calculated at this time is the distance DS2.
 ここで、距離DS2は所定距離以上であるものとする。そのため、決定部226は、角部CPの植立穀稈を刈り取るために行われるコンバイン201の方向転換が角部用特別方向転換とは異なる方向転換方法によって行われることを決定する。 Here, it is assumed that the distance DS2 is equal to or greater than a predetermined distance. Therefore, the determination unit 226 determines that the change in direction of the combine 201 performed to harvest the planted rice cake of the corner CP is performed by a different method of change from the special direction change for corner.
 このとき、決定部226は、角部CPの植立穀稈を刈り取るために行われるコンバイン201の方向転換が、通常αターンによって行われることを決定する。尚、通常αターンとは、図35に示すように、植立穀稈を刈り取らずに旋回する通常旋回動作を行った後、後進動作を行い、その後、前進動作を行う方向転換方法である。また、通常αターンは、角部用特別方向転換に比べて、迅速に方向転換が可能な方法である。 At this time, the determination unit 226 determines that the change in direction of the combine 201 performed to harvest the planted rice cake of the corner CP is normally performed by an α turn. In addition, as shown in FIG. 35, the normal α-turn is a direction changing method in which a reverse operation is performed after performing a normal turning operation of turning without cutting off the built-up rice husk, and then an advancing operation is performed thereafter. Also, normally, the α-turn is a method capable of quick change of direction as compared to the corner specific change of direction.
 これにより、コンバイン201は、位置Q5から、通常αターンを開始する。まず、コンバイン201は、通常旋回動作を行う。これにより、コンバイン201は位置Q6へ移動する。 As a result, the combine 201 starts the normal α turn from the position Q5. First, the combine 201 performs a normal turning operation. Thereby, the combine 201 moves to the position Q6.
 次に、コンバイン201は、後進動作を行う。これにより、コンバイン201は位置Q7へ移動する。尚、位置Q7は、第4経路LI4に沿った刈取走行の進行方向において角部CPよりも後側の位置である。 Next, the combine 201 performs a reverse operation. As a result, the combine 201 moves to the position Q7. The position Q7 is a position behind the corner CP in the traveling direction of the cutting along the fourth route LI4.
 そして、コンバイン201は、位置Q7から前進動作を行い、方向転換を完了する。 Then, the combine 201 moves forward from the position Q7 to complete the change of direction.
 以上で説明した一連の動作によって、コンバイン201の機体の向きは、第4経路LI4に沿う向きとなる。そして、第4経路LI4に沿った刈取走行が開始され、角部CPの植立穀稈が刈り取られる。 By the series of operations described above, the orientation of the combine 201's airframe is oriented along the fourth path LI4. Then, the reaping travel along the fourth path LI4 is started, and the weed of the corner CP is reaped.
 以上で説明した構成であれば、圃場の未刈領域CA1における角部CPの植立穀稈を刈り取るためにコンバイン201が方向転換を行う際、コンバイン201は、角部用特別方向転換によって方向転換を行うように制御される。そして、この角部用特別方向転換には、植立穀稈を刈り取りながら旋回する刈取旋回動作が含まれている。 With the configuration described above, when the combine 201 changes its direction in order to reap the planted rice cake of the corner CP in the uncrop area CA1 of the field, the combine 201 changes its direction by the special direction change for the corner Is controlled to do And this cutting direction special direction change includes a reaping and turning operation which is turned while reaping the crop.
 従って、以上で説明した構成であれば、方向転換において、刈取旋回動作によりコンバイン201が未刈領域CA1に入る。即ち、方向転換において、コンバイン201が植立穀稈を刈り取りながら未刈領域CA1に入るため、コンバイン201が未刈領域CA1の植立穀稈を踏み付けてしまうことを回避できる。 Therefore, with the configuration described above, in the direction change, the combine 201 enters the uncut area CA1 by the reaping and turning operation. That is, in the change of direction, since the combine 201 enters the uncut area CA1 while harvesting the built-up cereal weir, it is possible to prevent the combine 201 from stepping on the built-up cereal in the uncut area CA1.
 しかも、方向転換の際にコンバイン201が未刈領域CA1に入らないようにコンバイン201を制御する場合に比べて、方向転換のために利用可能なスペースが広くなる。これにより、コンバイン201の方向転換を円滑に行いやすい。 Furthermore, as compared with the case where the combine 201 is controlled so that the combine 201 does not enter the uncut area CA1 at the time of the direction change, the space available for the direction change is wider. Thereby, it is easy to smoothly change the direction of the combine 201.
 即ち、以上で説明した構成であれば、コンバイン201が未刈領域CA1の植立穀稈を踏み付けてしまうことを回避できると共に、コンバイン201の方向転換を円滑に行いやすい。 That is, with the configuration described above, it is possible to prevent the combine 201 from stepping on the uncut area cage of the uncut area CA1, and it is easy to smoothly change the direction of the combine 201.
 〔圃場の鋭角部分における方向転換について〕
 図34及び図35を参照して説明した通り、本実施形態においては、圃場の未刈領域CA1における角部CPの植立穀稈を刈り取るためにコンバイン201が方向転換を行う際、コンバイン201は、角部用特別方向転換または通常αターンによって方向転換を行うように制御される。
[On the change of direction in the acute angle part of the field]
As described with reference to FIG. 34 and FIG. 35, in the present embodiment, when the combine 201 changes its direction in order to reap the erected grain of the corner CP in the uncut area CA1 of the field, the combine 201 It is controlled to perform a turn by a special turn for the corner or by an alpha turn.
 ここで、図36に示すように、圃場の鋭角部分においてコンバイン201が方向転換を行う場合には、コンバイン201は、鋭角部用特別αターンによって方向転換を行うように制御される。尚、鋭角部用特別αターンとは、図36に示すように、第1後進動作を行った後、植立穀稈を刈り取らずに旋回する通常旋回動作を行い、通常旋回動作の後に第2後進動作を行い、その後、前進動作を行う方向転換方法である。 Here, as shown in FIG. 36, when the combine 201 changes its direction in the acute angle part of the field, the combine 201 is controlled to change direction by the special alpha turn for the acute angle part. In addition, as shown in FIG. 36, after performing the first reverse movement, the special α-turn for acute-angled part performs a normal turning operation that turns without cutting off the built-up rice husk, and the second turning after the normal turning operation. It is a direction change method in which reverse movement is performed and then forward movement is performed.
 以下では、コンバイン201の方向転換が鋭角部用特別αターンによって行われる場合の例として、コンバイン201が図36に示す圃場で方向転換を行う場合について説明する。 In the following, as an example in which the direction change of the combine 201 is performed by the special α-turn for the acute-angled portion, the case where the combine 201 performs the direction change in the field shown in FIG. 36 will be described.
 図36における第5経路LI5及び第6経路LI6は、何れも、刈取走行経路LIである。そして、図36では、圃場の鋭角部分において、コンバイン201が第5経路LI5に沿った刈取走行を完了した後、角部CPの植立穀稈を刈り取るために方向転換を行い、第6経路LI6に沿った刈取走行を開始するまでの動作が示されている。 The fifth route LI5 and the sixth route LI6 in FIG. 36 are both reaping travel routes LI. Then, in FIG. 36, after the combine 201 completes the mowing travel along the fifth route LI 5 in the acute angle part of the field, the direction is changed to harvest the planted rice cake of the corner CP, and the sixth route LI 6 The operation up to the start of the reaping travel along is shown.
 尚、図36においては、コンバイン201の動作を表すために、刈取装置215の前端部における機体左右方向中央部の軌跡を、矢印で示している。 Incidentally, in FIG. 36, in order to show the operation of the combine 201, the locus of the center portion in the left-right direction of the fuselage at the front end portion of the reaper 215 is indicated by an arrow.
 最初に、コンバイン201は、第5経路LI5に沿った刈取走行を完了し、位置Q8に位置している。そして、コンバイン201が圃場の鋭角部分に位置していることから、決定部226は、角部CPの植立穀稈を刈り取るために行われるコンバイン201の方向転換が鋭角部用特別αターンによって行われることを決定する。 First, the combine 201 completes the mowing travel along the fifth route LI5 and is located at the position Q8. Then, since the combine 201 is located at the acute angle portion of the field, the determination unit 226 determines that the change of direction of the combine 201 performed for cutting off the erected grain of the corner portion CP is performed by the special alpha turn for acute portion. Decide to be.
 これにより、コンバイン201は、位置Q8から、鋭角部用特別αターンを開始する。まず、コンバイン201は、第5経路LI5に沿って第1後進動作を行う。これにより、図36に示すように、コンバイン201は位置Q9へ移動する。 As a result, the combine 201 starts the special alpha turn for sharp corners from the position Q8. First, the combine 201 performs the first reverse operation along the fifth route LI5. As a result, as shown in FIG. 36, the combine 201 moves to the position Q9.
 次に、コンバイン201は、通常旋回動作を行う。これにより、コンバイン201は位置Q10へ移動する。次に、コンバイン201は、第2後進動作を行う。これにより、コンバイン201は位置Q11へ移動する。そして、コンバイン201は、位置Q11から前進動作を行い、方向転換を完了する。 Next, the combine 201 performs a normal turning operation. As a result, the combine 201 moves to the position Q10. Next, the combine 201 performs a second reverse operation. As a result, the combine 201 moves to the position Q11. Then, the combine 201 moves forward from the position Q11 to complete the change of direction.
 以上で説明した一連の動作によって、コンバイン201の機体の向きは、第6経路LI6に沿う向きとなる。そして、第6経路LI6に沿った刈取走行が開始され、角部CPの植立穀稈が刈り取られる。 By the series of operations described above, the orientation of the combine 201's airframe is oriented along the sixth path LI6. Then, the reaping travel along the sixth path LI6 is started, and the weeds of the corner CP are reaped.
 また、以上で説明した鋭角部用特別αターンによれば、通常旋回動作に先立って、第1後進動作が行われる。これにより、圃場の鋭角部分においてコンバイン201が方向転換を行う場合に、コンバイン201が通常旋回動作によって圃場の境界線OBLを越えてしまう事態を回避しやすい。 Moreover, according to the special α-turn for sharp corners described above, the first reverse operation is performed prior to the normal turning operation. As a result, when the combine 201 changes its direction at the acute angle portion of the field, it is possible to avoid the situation where the combine 201 usually crosses the boundary line OBL of the field by turning operation.
[第3実施形態の別実施形態]
 以下、上記した実施形態を変更した別実施形態について説明する。以下の各別実施形態で説明している事項以外は、上記した実施形態で説明している事項と同様である。上記した実施形態及び以下の各別実施形態は、矛盾が生じない範囲で、適宜組み合わせてもよい。なお、本発明の範囲は、上記した実施形態及び以下の各別実施形態に限定されるものではない。
[Another Embodiment of the Third Embodiment]
Hereinafter, another embodiment in which the above-described embodiment is modified will be described. Except for the matters described in the following different embodiments, the matters are the same as the matters described in the above-described embodiment. The above-described embodiment and the other embodiments described below may be combined as appropriate as long as no contradiction arises. Note that the scope of the present invention is not limited to the above-described embodiment and the following different embodiments.
 〔第1別実施形態〕
 上記実施形態において、角部用特別方向転換は、図34に示すように、第1後進動作と、刈取旋回動作と、第2後進動作と、前進動作と、を含んでいる。
First Embodiment
In the above embodiment, as shown in FIG. 34, the corner special direction change includes the first reverse operation, the reaping and turning operation, the second reverse operation, and the forward operation.
 しかしながら、本発明はこれに限定されない。角部用特別方向転換は、第1後進動作と、第2後進動作と、前進動作と、のうちの一部または全てを含んでいなくても良い。 However, the present invention is not limited to this. The corner redirection may not include some or all of the first reverse motion, the second reverse motion, and the forward motion.
 以下では、第3実施形態の第1別実施形態について、上記実施形態とは異なる点を中心に説明する。以下で説明している部分以外の構成は、上記実施形態と同様である。また、上記実施形態と同様の構成については、同じ符号を付している。 Hereinafter, a first alternative embodiment of the third embodiment will be described focusing on differences from the above embodiment. The configuration other than the parts described below is the same as that of the above embodiment. The same reference numerals are given to the same components as those in the above embodiment.
 図37は、第3実施形態の第1別実施形態においてコンバイン201の方向転換が角部用特別方向転換によって行われる場合の例を示す図である。この第1別実施形態において、角部用特別方向転換は、刈取旋回動作に先立つ第1後進動作を含んでいない。 FIG. 37 is a view showing an example in which the direction change of the combine 201 is performed by the corner special direction change in the first alternative embodiment of the third embodiment. In this first alternative embodiment, the corner special direction change does not include the first reverse movement prior to the reaping movement.
 図37における第7経路LI7は、刈取走行経路LIである。そして、図37では、コンバイン201が外周領域SAを走行しているときに、角部CPの植立穀稈を刈り取るために90度の方向転換を行い、第7経路LI7に沿った刈取走行を開始するまでの動作が示されている。 The seventh route LI7 in FIG. 37 is a reaper traveling route LI. Then, in FIG. 37, when the combine 201 travels in the outer peripheral area SA, a direction change of 90 degrees is performed to reap the planted grain weir of the corner portion CP, and the reaping travel along the seventh route LI7 The operation to start is shown.
 尚、図37においては、コンバイン201の動作を表すために、刈取装置215の前端部における機体左右方向中央部の軌跡を、矢印で示している。 In FIG. 37, in order to show the operation of the combine 201, the locus of the center portion in the left-right direction of the fuselage at the front end of the reaper 215 is indicated by an arrow.
 最初に、コンバイン201は、外周領域SAを走行しており、位置Q12に位置している。このとき、距離算出部225は、角部CPと、圃場の境界線OBLと、の間の距離を算出する。図37に示すように、このとき算出される距離は、距離DS3である。 First, the combine 201 travels in the outer peripheral area SA and is located at the position Q12. At this time, the distance calculation unit 225 calculates the distance between the corner portion CP and the boundary line OBL of the field. As shown in FIG. 37, the distance calculated at this time is the distance DS3.
 ここで、距離DS3は所定距離よりも短いものとする。そのため、決定部226は、角部CPの植立穀稈を刈り取るために行われるコンバイン201の方向転換が角部用特別方向転換によって行われることを決定する。 Here, the distance DS3 is shorter than a predetermined distance. Therefore, the determination unit 226 determines that the change of direction of the combine 201 performed to harvest the planted rice cake of the corner CP is performed by the special change of direction for the corner.
 これにより、コンバイン201は、位置Q12から、角部用特別方向転換を開始する。まず、コンバイン201は、刈取旋回動作を行う。これにより、コンバイン201は位置Q13へ移動する。また、この刈取旋回動作により、角部CPの一部である部位CP2の植立穀稈が刈り取られる。 Thereby, the combine 201 starts corner special direction change from position Q12. First, the combine 201 performs a reaping and turning operation. As a result, the combine 201 moves to the position Q13. In addition, by this reaping and turning operation, the planted grain weirs of the portion CP2 which is a part of the corner portion CP are reaped.
 次に、コンバイン201は、後進動作を行う。これにより、コンバイン201は位置Q14へ移動する。尚、位置Q14は、第7経路LI7に沿った刈取走行の進行方向において角部CPよりも後側の位置である。 Next, the combine 201 performs a reverse operation. Thereby, the combine 201 moves to the position Q14. The position Q14 is a position behind the corner CP in the traveling direction of the cutting along the seventh route LI7.
 そして、コンバイン201は、位置Q14から前進動作を行い、方向転換を完了する。 Then, the combine 201 moves forward from the position Q14 to complete the change of direction.
 以上で説明した一連の動作によって、コンバイン201の機体の向きは、第7経路LI7に沿う向きとなる。そして、第7経路LI7に沿った刈取走行が開始され、角部CPの植立穀稈が刈り取られる。 By the series of operations described above, the orientation of the airframe of the combine 201 becomes the orientation along the seventh path LI7. Then, the reaping travel along the seventh path LI7 is started, and the weeds of the corner CP are reaped.
 次に、この第1別実施形態において、コンバイン201の方向転換が角部用特別方向転換とは異なる方向転換方法によって行われる場合の例として、コンバイン201が図38に示す圃場で方向転換を行う場合について説明する。 Next, in the first alternative embodiment, the combine 201 performs the direction change in the field shown in FIG. 38 as an example where the direction change of the combine 201 is performed by a direction change method different from the corner direction special direction change. The case will be described.
 図38における第8経路LI8は、刈取走行経路LIである。そして、図38では、コンバイン201が外周領域SAを走行しているときに、角部CPの植立穀稈を刈り取るために90度の方向転換を行い、第8経路LI8に沿った刈取走行を開始するまでの動作が示されている。 The eighth route LI8 in FIG. 38 is a reaper traveling route LI. Then, in FIG. 38, when the combine 201 travels in the outer peripheral area SA, a direction change of 90 degrees is performed to reap the planted grain weir of the corner portion CP, and the reaping travel along the eighth route LI8 The operation to start is shown.
 尚、図38においては、コンバイン201の動作を表すために、刈取装置215の前端部における機体左右方向中央部の軌跡を、矢印で示している。 In FIG. 38, in order to show the operation of the combine 201, the locus of the center portion in the left-right direction of the fuselage at the front end of the reaper 215 is indicated by an arrow.
 最初に、コンバイン201は、外周領域SAを走行しており、位置Q15に位置している。このとき、距離算出部225は、角部CPと、圃場の境界線OBLと、の間の距離を算出する。図38に示すように、このとき算出される距離は、距離DS4である。 First, the combine 201 travels in the outer peripheral area SA and is located at the position Q15. At this time, the distance calculation unit 225 calculates the distance between the corner portion CP and the boundary line OBL of the field. As shown in FIG. 38, the distance calculated at this time is the distance DS4.
 ここで、距離DS4は所定距離以上であるものとする。そのため、決定部226は、角部CPの植立穀稈を刈り取るために行われるコンバイン201の方向転換が角部用特別方向転換とは異なる方向転換方法によって行われることを決定する。 Here, it is assumed that the distance DS4 is equal to or greater than a predetermined distance. Therefore, the determination unit 226 determines that the change in direction of the combine 201 performed to harvest the planted rice cake of the corner CP is performed by a different method of change from the special direction change for corner.
 このとき、決定部226は、角部CPの植立穀稈を刈り取るために行われるコンバイン201の方向転換が、通常旋回によって行われることを決定する。尚、通常旋回とは、図38に示すように、植立穀稈を刈り取らずに旋回する通常旋回動作のみによって方向転換を行う方向転換方法である。 At this time, the determination unit 226 determines that the change of direction of the combine 201 performed to harvest the planted rice cake of the corner CP is normally performed by turning. In addition, as shown in FIG. 38, the normal turning is a direction changing method in which the turning is performed only by the normal turning operation in which the turning is performed without cutting off the potted rice husk.
 これにより、コンバイン201は、位置Q15から、通常旋回を開始する。即ち、コンバイン201は、位置Q15から通常旋回動作を行い、方向転換を完了する。 As a result, the combine 201 starts normal turning from the position Q15. That is, the combine 201 performs the normal turning operation from the position Q15, and completes the direction change.
 この通常旋回動作によって、コンバイン201の機体の向きは、第8経路LI8に沿う向きとなる。そして、第8経路LI8に沿った刈取走行が開始され、角部CPの植立穀稈が刈り取られる。 By this normal turning operation, the orientation of the airframe of the combine 201 becomes an orientation along the eighth path LI8. Then, the mowing travel along the eighth route LI8 is started, and the weed of the corner CP is reaped.
 〔第2別実施形態〕
 上記実施形態において、角部用特別方向転換は、図34に示すように、第1後進動作、刈取旋回動作、第2後進動作、前進動作の4つの動作のみから構成される。
Second alternative embodiment
In the above embodiment, as shown in FIG. 34, the corner-use special direction change includes only four operations of the first reverse operation, the reaping and turning operation, the second reverse operation, and the forward operation.
 しかしながら、本発明はこれに限定されない。角部用特別方向転換は、第1後進動作、刈取旋回動作、第2後進動作、前進動作に加えて、別の動作を含んでいても良い。 However, the present invention is not limited to this. The corner portion special direction change may include another operation in addition to the first reverse operation, the reaping and turning operation, the second reverse operation, and the forward operation.
 以下では、第3実施形態の第2別実施形態について、上記実施形態とは異なる点を中心に説明する。以下で説明している部分以外の構成は、上記実施形態と同様である。また、上記実施形態と同様の構成については、同じ符号を付している。 Hereinafter, a second alternative embodiment of the third embodiment will be described focusing on differences from the above embodiment. The configuration other than the parts described below is the same as that of the above embodiment. The same reference numerals are given to the same components as those in the above embodiment.
 図39は、第3実施形態の第2別実施形態においてコンバイン201の方向転換が角部用特別方向転換によって行われる場合の例を示す図である。この第1別実施形態において、角部用特別方向転換は、第1後進動作、第1刈取旋回動作(本発明に係る「刈取旋回動作」に相当)、第2後進動作、第2刈取旋回動作(本発明に係る「刈取旋回動作」に相当)、第3後進動作、前進動作の6つの動作を含んでいる。 FIG. 39 is a view showing an example in which the direction change of the combine 201 is performed by the corner special direction change in the second different embodiment of the third embodiment. In the first alternative embodiment, the corner special direction change is a first reverse operation, a first reaping and turning operation (corresponding to the "removing and turning operation" according to the present invention, a second reverse operation, and a second reaping turning operation. It includes six operations (corresponding to “the reaping and turning operation” according to the present invention), the third reverse operation, and the forward operation.
 図39における第9経路LI9及び第10経路LI10は、何れも、刈取走行経路LIである。また、第9経路LI9と第10経路LI10とは互いに直交している。 The ninth route LI9 and the tenth route LI10 in FIG. 39 are both reaping travel routes LI. The ninth route LI9 and the tenth route LI10 are orthogonal to each other.
 そして、図39では、コンバイン201が第9経路LI9に沿った刈取走行を完了した後、角部CPの植立穀稈を刈り取るために90度の方向転換を行い、第10経路LI10に沿った刈取走行を開始するまでの動作が示されている。 Then, in FIG. 39, after the combine 201 completes the reaping travel along the ninth path LI9, the direction change of 90 degrees is performed to reap the planted grain of the corner CP, and the tenth path LI10 is obtained. The operation up to the start of the mowing travel is shown.
 尚、図39においては、コンバイン201の動作を表すために、刈取装置215の前端部における機体左右方向中央部の軌跡を、矢印で示している。 Incidentally, in FIG. 39, in order to show the operation of the combine 201, the locus of the center portion in the left-right direction of the fuselage at the front end portion of the reaper 215 is indicated by an arrow.
 最初に、コンバイン201は、第9経路LI9に沿った刈取走行を完了し、位置Q16に位置している。このとき、距離算出部225は、角部CPと、圃場の境界線OBLと、の間の距離を算出する。図39に示すように、このとき算出される距離は、距離DS5である。 First, the combine 201 completes the mowing travel along the ninth path LI9 and is located at the position Q16. At this time, the distance calculation unit 225 calculates the distance between the corner portion CP and the boundary line OBL of the field. As shown in FIG. 39, the distance calculated at this time is the distance DS5.
 ここで、距離DS5は所定距離よりも短いものとする。そのため、決定部226は、角部CPの植立穀稈を刈り取るために行われるコンバイン201の方向転換が角部用特別方向転換によって行われることを決定する。 Here, the distance DS5 is shorter than a predetermined distance. Therefore, the determination unit 226 determines that the change of direction of the combine 201 performed to harvest the planted rice cake of the corner CP is performed by the special change of direction for the corner.
 これにより、コンバイン201は、位置Q16から、角部用特別方向転換を開始する。まず、コンバイン201は、第9経路LI9に沿って第1後進動作を行う。これにより、図39に示すように、コンバイン201は位置Q17へ移動する。尚、位置Q17は、第9経路LI9に沿った刈取走行の進行方向において角部CPよりも後側の位置である。 Thereby, the combine 201 starts corner special direction change from position Q16. First, the combine 201 performs the first reverse operation along the ninth route LI9. Thereby, as shown in FIG. 39, the combine 201 moves to the position Q17. The position Q17 is a position on the rear side of the corner portion CP in the traveling direction of the mowing travel along the ninth route LI9.
 次に、コンバイン201は、第1刈取旋回動作を行う。これにより、コンバイン201は位置Q18へ移動する。また、この第1刈取旋回動作により、角部CPの一部である部位CP3の植立穀稈が刈り取られる。 Next, the combine 201 performs a first reaping and turning operation. As a result, the combine 201 moves to the position Q18. In addition, by this first reaping and turning operation, the weeds of the erected grain of the portion CP3 which is a part of the corner portion CP are reaped.
 次に、コンバイン201は、第2後進動作を行う。これにより、コンバイン201は位置Q19へ移動する。尚、位置Q19は、第10経路LI10に沿った刈取走行の進行方向において角部CPよりも後側の位置である。 Next, the combine 201 performs a second reverse operation. As a result, the combine 201 moves to the position Q19. The position Q19 is a position behind the corner CP in the traveling direction of the cutting travel along the tenth path LI10.
 次に、コンバイン201は、第2刈取旋回動作を行う。これにより、コンバイン201は位置Q20へ移動する。また、この第2刈取旋回動作により、角部CPの一部である部位CP4の植立穀稈が刈り取られる。 Next, the combine 201 performs a second reaping and turning operation. As a result, the combine 201 moves to the position Q20. In addition, by this second reaping and turning operation, the weeds of the erected grain of the portion CP4 which is a part of the corner portion CP are reaped.
 次に、コンバイン201は、第3後進動作を行う。これにより、コンバイン201は位置Q21へ移動する。尚、位置Q21は、第10経路LI10に沿った刈取走行の進行方向において角部CPよりも後側の位置である。 Next, the combine 201 performs a third reverse operation. As a result, the combine 201 moves to the position Q21. The position Q21 is a position on the rear side of the corner portion CP in the traveling direction of the mowing travel along the tenth route LI10.
 そして、コンバイン201は、位置Q21から前進動作を行い、方向転換を完了する。 Then, the combine 201 moves forward from the position Q21 to complete the change of direction.
 以上で説明した一連の動作によって、コンバイン201の機体の向きは、第10経路LI10に沿う向きとなる。そして、第10経路LI10に沿った刈取走行が開始され、角部CPの植立穀稈が刈り取られる。 By the series of operations described above, the orientation of the combine 201's airframe is oriented along the tenth path LI10. Then, the reaping travel along the tenth path LI10 is started, and the weed of the corner CP is reaped.
 〔第3別実施形態〕
 上記実施形態においては、刈取旋回動作により、角部CPの一部における植立穀稈が刈り取られる。
Third Embodiment
In the above embodiment, the replanting and turning operation reaps the built-in grain weir at a part of the corner portion CP.
 しかしながら、本発明はこれに限定されない。本発明に係る「刈取旋回動作」によって刈り取られる植立穀稈は、角部CPの植立穀稈でなくても良い。 However, the present invention is not limited to this. It is not necessary for the planted cereal weed to be harvested by the "harvest turning motion" according to the present invention to be the planted cereal for corner CP.
 以下では、第3実施形態の第3別実施形態について、上記実施形態とは異なる点を中心に説明する。以下で説明している部分以外の構成は、上記実施形態と同様である。また、上記実施形態と同様の構成については、同じ符号を付している。 Below, 3rd another embodiment of 3rd Embodiment is described focusing on a different point from the said embodiment. The configuration other than the parts described below is the same as that of the above embodiment. The same reference numerals are given to the same components as those in the above embodiment.
 図40は、第3実施形態の第3別実施形態においてコンバイン201の方向転換が角部用特別方向転換によって行われる場合の例を示す図である。 FIG. 40 is a view showing an example in the case where the direction change of the combine 201 is performed by the corner special direction change in the third alternate embodiment of the third embodiment.
 図40における第11経路LI11及び第12経路LI12は、何れも、刈取走行経路LIである。また、第11経路LI11と第12経路LI12とは互いに直交している。 Each of the eleventh route LI11 and the twelfth route LI12 in FIG. 40 is a reaper traveling route LI. Further, the eleventh route LI11 and the twelfth route LI12 are orthogonal to each other.
 そして、図40では、コンバイン201が第11経路LI11に沿った刈取走行を完了した後、角部CPの植立穀稈を刈り取るために90度の方向転換を行い、第12経路LI12に沿った刈取走行を開始するまでの動作が2通り示されている。 Then, in FIG. 40, after the combine 201 completes the reaping travel along the eleventh route LI11, a direction change of 90 degrees is performed to reap the planted grain of the corner CP, and the twelfth route LI12 is obtained. Two operations are shown until the start of the mowing travel.
 尚、図40においては、コンバイン201の動作を表すために、刈取装置215の前端部における機体左右方向中央部の軌跡を、矢印で示している。 In FIG. 40, in order to show the operation of the combine 201, the locus of the center portion in the left-right direction of the fuselage at the front end of the reaper 215 is indicated by an arrow.
 コンバイン201は、図40に示す位置から、2通りの方向転換方法によって方向転換を行うことができる。 The combine 201 can perform turning by two ways of turning from the position shown in FIG.
 2通りの方向転換方法のうちの1つ目は、図34において説明したものと同様である。即ち、図40に示す1つ目の方向転換方法は、第1後進動作、刈取旋回動作、第2後進動作、前進動作の4つの動作により構成される。そして、この4つの動作のうちの刈取旋回動作では、角部CPの一部である部位CP5の植立穀稈が刈り取られる。 The first of the two ways of turning is similar to that described in FIG. That is, the first direction change method shown in FIG. 40 includes four operations of a first reverse operation, a reaping and turning operation, a second reverse operation, and an advance operation. Then, in the reaping and turning operation of the four operations, the cropped weir of the portion CP5 which is a part of the corner portion CP is reaped.
 2通りの方向転換方法のうちの2つ目は、刈取旋回動作、後進動作、前進動作の3つの動作により構成される。そして、この3つの動作のうちの刈取旋回動作では、角部CP以外の部分における植立穀稈が刈り取られる。 The second of the two ways of turning is constituted by three operations of the reaper turning operation, the reverse operation and the forward operation. Then, in the reaping and turning operation of the three operations, the cropped weirs in portions other than the corner portion CP are reaped.
 詳述すると、図40に示す圃場には、2つの未刈領域CA1が存在する。2つの未刈領域CA1のうちの一方には、角部CPが含まれていると共に、第12経路LI12が設定されている。また、2つの未刈領域CA1のうちの他方は、方向転換前のコンバイン201の進行方向における前方に位置している。 Specifically, in the field shown in FIG. 40, there are two uncut areas CA1. The corner CP is included in one of the two uncut areas CA1, and the twelfth route LI12 is set. Further, the other of the two uncut areas CA1 is located forward in the traveling direction of the combine 201 before turning.
 そして、図40に示す2つ目の方向転換方法における刈取旋回動作では、2つの未刈領域CA1のうちの他方にコンバイン201が進入する。このとき、2つの未刈領域CA1のうちの他方における一部の植立穀稈が刈り取られる。その後、コンバイン201は後進動作及び前進動作を行い、方向転換を完了する。 Then, in the reaping and turning operation in the second direction changing method shown in FIG. 40, the combine 201 enters the other of the two uncut areas CA1. At this time, a part of the planted rice straw in the other of the two uncut areas CA1 is harvested. Thereafter, the combine 201 performs reverse movement and forward movement to complete the change of direction.
 尚、図40に示す2通りの方向転換方法は、何れも、本発明に係る「角部用特別方向転換」に相当する。 Both of the two direction changing methods shown in FIG. 40 correspond to the “special direction change for corner” according to the present invention.
 〔その他の実施形態〕
 (1)走行装置211は、ホイール式であっても良いし、セミクローラ式であっても良い。
Other Embodiments
(1) The traveling device 211 may be a wheel type or a semi crawler type.
 (2)上記実施形態においては、経路算出部222により算出される刈取走行経路LIは、縦横方向に延びる複数のメッシュ線である。しかしながら、本発明はこれに限定されず、経路算出部222により算出される刈取走行経路LIは、縦横方向に延びる複数のメッシュ線でなくても良い。例えば、経路算出部222により算出される刈取走行経路LIは、渦巻き状の走行経路であっても良い。また、刈取走行経路LIは、別の刈取走行経路LIと直交していなくても良い。 (2) In the above embodiment, the reaping travel route LI calculated by the route calculation unit 222 is a plurality of mesh lines extending in the vertical and horizontal directions. However, the present invention is not limited to this, and the reaping travel route LI calculated by the route calculation unit 222 may not be a plurality of mesh lines extending in the vertical and horizontal directions. For example, the reaping traveling route LI calculated by the route calculating unit 222 may be a spiral traveling route. In addition, the reaper traveling route LI may not be orthogonal to another reaper traveling route LI.
 (3)上記実施形態においては、作業者は、コンバイン201を手動で操作し、図32に示すように、圃場内の外周部分において、圃場の境界線OBLに沿って周回するように刈取走行を行う。しかしながら、本発明はこれに限定されず、コンバイン201が自動で走行し、圃場内の外周部分において、圃場の境界線OBLに沿って周回するように刈取走行を行うように構成されていても良い。 (3) In the above embodiment, the operator manually operates the combine 201, and as shown in FIG. 32, the mowing travel is performed along the border line OBL of the field in the outer peripheral portion in the field. Do. However, the present invention is not limited to this, and the combine 201 may travel automatically, and may be configured to perform reaping travel along the border line OBL of the field at the outer peripheral portion in the field. .
 (4)図34、図35、図37、図38、図39、図40に示した例では、コンバイン201は、90度の方向転換を行っている。しかしながら、本発明はこれに限定されない。即ち、方向転換制御部223bの制御により、コンバイン201が90度以外の角度の方向転換を行う構成であっても良い。特に、本発明に係る「角部用特別方向転換」は、90度の方向転換方法に限定されず、90度以外の角度の方向転換方法であっても良い。 (4) In the examples shown in FIG. 34, FIG. 35, FIG. 37, FIG. 38, FIG. 39 and FIG. However, the present invention is not limited to this. That is, the combine 201 may be configured to perform a direction change of an angle other than 90 degrees under the control of the direction change control unit 223b. In particular, the “special direction change for corner” according to the present invention is not limited to the 90 ° direction change method, and may be an angle change method other than 90 °.
 (5)上記実施形態において、決定部226がコンバイン201の方向転換方法を決定するタイミングは、コンバイン201が方向転換を行う直前である。しかしながら、本発明はこれに限定されず、決定部226がコンバイン201の方向転換方法を決定するタイミングは、どの時点であっても良い。例えば、決定部226がコンバイン201の方向転換方法を決定するタイミングは、領域算出部224が外周領域SA及び作業対象領域CAを算出した時点であっても良い。 (5) In the above embodiment, the timing at which the determination unit 226 determines the direction change method of the combine 201 is immediately before the combine 201 performs the direction change. However, the present invention is not limited to this, and the timing when the determination unit 226 determines the turning method of the combine 201 may be at any time. For example, the timing at which the determination unit 226 determines the direction changing method of the combine 201 may be when the area calculation unit 224 calculates the outer peripheral area SA and the work target area CA.
 (6)刈取走行制御部223aは設けられていなくても良い。即ち、刈取走行経路LIに沿った刈取走行は、作業者がコンバイン201を手動操作することによって行われても良い。 (6) The reaper travel control unit 223a may not be provided. That is, the reaping travel along the reaping travel path LI may be performed by the operator manually operating the combine 201.
 (7)自車位置算出部221、経路算出部222、走行制御部223、領域算出部224、距離算出部225、決定部226のうち、一部または全てがコンバイン201の外部に備えられていても良いのであって、例えば、コンバイン201の外部に設けられた管理サーバに備えられていても良い。 (7) Some or all of the host vehicle position calculation unit 221, the route calculation unit 222, the travel control unit 223, the area calculation unit 224, the distance calculation unit 225, and the determination unit 226 are provided outside the combine 201 It may be provided, for example, in a management server provided outside the combine 201.
 (8)決定部226は設けられていなくても良い。 (8) The determination unit 226 may not be provided.
 (9)距離算出部225は設けられていなくても良い。 (9) The distance calculation unit 225 may not be provided.
 (10)通信端末204は設けられていなくても良い。 (10) The communication terminal 204 may not be provided.
 (11)図32に示すように、上記実施形態における圃場の外形は四角形である。しかしながら、本発明はこれに限定されず、圃場の外形は四角形以外の形状であっても良い。例えば、圃場の外形は五角形や三角形であっても良い。 (11) As shown in FIG. 32, the external shape of the field in the above embodiment is a square. However, the present invention is not limited to this, and the external shape of the field may be a shape other than a square. For example, the outer shape of the field may be pentagon or triangle.
 (12)刈取走行経路LIは、直線状の経路でも良いし、湾曲した経路でも良い。 (12) The reaping travel path LI may be a straight path or a curved path.
 (13)上記実施形態における各部材の機能をコンピュータに実現させるコンバイン制御プログラムとして構成されていても良い。また、上記実施形態における各部材の機能をコンピュータに実現させるコンバイン制御プログラムが記録された記録媒体として構成されていても良い。また、上記実施形態において各部材により行われることを1つまたは複数のステップにより行うコンバイン制御方法として構成されていても良い。 (13) The present invention may be configured as a combine control program that causes a computer to realize the function of each member in the above embodiment. Further, the present invention may be configured as a recording medium on which a combine control program that causes a computer to realize the function of each member in the above embodiment is recorded. Moreover, you may be comprised as a combine control method which performs what is performed by each member in the said embodiment by one or several steps.
 本発明は、普通型のコンバインだけでなく、自脱型のコンバインにも利用可能である。また、トウモロコシ収穫機、ジャガイモ収穫機、ニンジン収穫機、サトウキビ収穫機等の種々の収穫機にも利用できる。 The present invention can be used not only for ordinary type combine but also for self-release type combine. Moreover, it can utilize also for various harvest machines, such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
 (第1実施形態)
 1   コンバイン(収穫機)
 2   管理サーバ
 4   通信端末(表示装置)
 21  データ取得部
 22  外形判定部
 24  領域設定部
 25  内周走行経路算出部
 26  走行制御部
 27  第1走行情報生成部
 A   自動走行システム
 G1  第1穀物圃場(圃場)
 G2  第2穀物圃場(圃場)
 LIC 内周走行経路
 P   凹入部
 Pt  頂点部分
 Q   外周部分
 R1  第1領域
 R2  第2領域
 W   作業車
First Embodiment
1 Combine harvester
2 Management server 4 Communication terminal (display device)
21 data acquisition unit 22 external shape determination unit 24 area setting unit 25 inner circumference traveling route calculation unit 26 traveling control unit 27 first traveling information generation unit A automatic traveling system G1 first cereal field (field)
G2 second grain field (field)
LIC Inner circumference travel path P recessed part Pt peak part Q outer peripheral part R1 first area R2 second area W work vehicle
 (第2実施形態)
 101   コンバイン(収穫機)
 104a  表示部(報知部、警告部)
 104b  操作入力部
 124   領域算出部
 125   距離算出部
 180   衛星測位モジュール
 A1    領域決定システム
 CA    作業対象領域
 IB    内周側の境界線
 OB    外周側の境界線
 SA    外周領域
Second Embodiment
101 combine harvesters
104a Display unit (notification unit, warning unit)
104b operation input unit 124 area calculation unit 125 distance calculation unit 180 satellite positioning module A1 area determination system CA work target area IB inner peripheral border OB outer peripheral border SA outer peripheral area
 (第3実施形態)
 201   コンバイン
 215   刈取装置
 220   制御部
 223b  方向転換制御部
 226   決定部
 A2    コンバイン制御システム
 CA1   未刈領域
 CP    角部
 OBL   圃場の境界線
 
Third Embodiment
201 combine 215 reaper 220 control part 223 b direction change control part 226 determination part A2 combine control system CA1 uncut area CP corner part OBL field boundary line

Claims (22)

  1.  圃場における外周部分での収穫走行を含む第1収穫走行と、前記第1収穫走行の後に行われる第2収穫走行と、によって圃場の農作物を収穫する収穫機の自動走行を管理する自動走行システムであって、
     前記第1収穫走行により収穫済みとなった領域である第1領域の内側を第2領域として設定する領域設定部と、
     前記領域設定部により設定された前記第2領域における走行経路である内周走行経路を算出する内周走行経路算出部と、
     前記内周走行経路に基づいた自動走行によって前記第2収穫走行が行われるように前記収穫機の走行を制御する走行制御部と、
     圃場の外形を示すデータである圃場外形データを取得するデータ取得部と、
     前記データ取得部により取得された前記圃場外形データに基づいて、前記第1収穫走行のための走行経路または走行位置を示す情報である第1走行情報を生成する第1走行情報生成部と、を備え、
     前記第1走行情報生成部により生成される前記第1走行情報に、中割走行のための走行経路または走行位置を示す情報である中割走行情報が含まれている自動走行システム。
    An automatic travel system that manages automatic travel of a harvester that harvests crops in a field by a first harvest run including a harvest run on the outer periphery of the field and a second harvest run performed after the first harvest run There,
    An area setting unit configured to set an inner side of the first area, which is an area that has been harvested by the first harvest traveling, as a second area;
    An inner circumference traveling route calculation unit which calculates an inner circumference traveling route which is a traveling route in the second area set by the area setting unit;
    A traveling control unit configured to control traveling of the harvester so that the second harvest traveling is performed by automatic traveling based on the inner circumferential traveling route;
    A data acquisition unit for acquiring field outline data, which is data indicating the outline of the field;
    A first travel information generation unit for generating first travel information which is information indicating a travel route or travel position for the first harvest traveling based on the field external shape data acquired by the data acquisition unit; Equipped
    The automatic travel system according to claim 1, wherein the first travel information generated by the first travel information generation unit includes center travel information which is information indicating a travel route or travel position for middle travel.
  2.  前記走行制御部は、前記第1収穫走行において、自動走行によって前記中割走行が行われるように、前記中割走行情報に基づいて前記収穫機の走行を制御する請求項1に記載の自動走行システム。 The automatic traveling according to claim 1, wherein the traveling control unit controls traveling of the harvester based on the middle traveling information so that the middle traveling is performed by automatic traveling in the first harvest traveling. system.
  3.  前記中割走行情報に基づいて、前記中割走行のための走行経路または走行位置を表示する表示装置を備える請求項1または2に記載の自動走行システム。 The automatic travel system according to claim 1 or 2, further comprising a display device that displays a travel route or travel position for the split travel based on the split travel information.
  4.  前記データ取得部は、前記収穫機とは別の作業車から前記圃場外形データを取得する請求項1から3の何れか一項に記載の自動走行システム。 The automatic traveling system according to any one of claims 1 to 3, wherein the data acquisition unit acquires the field external shape data from a work vehicle different from the harvester.
  5.  前記圃場外形データを格納する管理サーバを備え、
     前記データ取得部は、前記管理サーバから前記圃場外形データを取得する請求項1から4の何れか一項に記載の自動走行システム。
    A management server for storing the field external shape data;
    The automatic traveling system according to any one of claims 1 to 4, wherein the data acquisition unit acquires the field external shape data from the management server.
  6.  前記データ取得部により取得された前記圃場外形データに基づいて、圃場の外形が、圃場の外周側から内周側に向かって凹入する凹入部を有する形状であるか否かを判定する外形判定部を備え、
     前記外形判定部により圃場の外形が前記凹入部を有する形状であると判定された場合、前記第1走行情報生成部は、前記中割走行のための走行経路または走行位置に前記凹入部の頂点部分が含まれるように前記第1走行情報を生成する請求項1から5の何れか一項に記載の自動走行システム。
    An external shape determination to determine whether or not the external shape of the field is a shape having a recessed portion recessed from the outer periphery side to the inner peripheral side of the field based on the field external shape data acquired by the data acquisition unit Equipped with
    When it is determined by the external shape determination unit that the external shape of the field is a shape having the indented portion, the first travel information generation unit is configured to determine the traveling route or traveling position for the half-division travel at the apex of the recessed portion. The automatic travel system according to any one of claims 1 to 5, wherein the first travel information is generated to include a part.
  7.  圃場における外周部分での収穫走行を含む第1収穫走行と、前記第1収穫走行の後に行われる第2収穫走行と、によって圃場の農作物を収穫する収穫機の自動走行を管理する自動走行管理プログラムであって、
     前記第1収穫走行により収穫済みとなった領域である第1領域の内側を第2領域として設定する領域設定機能と、
     前記領域設定機能により設定された前記第2領域における走行経路である内周走行経路を算出する内周走行経路算出機能と、
     前記内周走行経路に基づいた自動走行によって前記第2収穫走行が行われるように前記収穫機の走行を制御する走行制御機能と、
     圃場の外形を示すデータである圃場外形データを取得するデータ取得機能と、
     前記データ取得機能により取得された前記圃場外形データに基づいて、前記第1収穫走行のための走行経路または走行位置を示す情報である第1走行情報を生成する第1走行情報生成機能と、をコンピュータに実現させるように構成されており、
     前記第1走行情報生成機能により生成される前記第1走行情報に、中割走行のための走行経路または走行位置を示す情報である中割走行情報が含まれている自動走行管理プログラム。
    Automatic run management program for managing automatic running of a harvester harvesting crops in a field by a first harvest run including a harvest run on the outer periphery of the field, and a second harvest run performed after the first harvest run And
    An area setting function of setting an inner side of a first area which is an area which has been harvested by the first harvest traveling as a second area;
    An inner circumference traveling route calculation function of calculating an inner circumference traveling route which is a traveling route in the second area set by the area setting function;
    A traveling control function of controlling traveling of the harvester so that the second harvest traveling is performed by automatic traveling based on the inner circumferential traveling route;
    A data acquisition function of acquiring field outline data, which is data indicating the outline of a field;
    A first travel information generation function for generating first travel information which is information indicating a travel route or travel position for the first harvest traveling based on the field outline data acquired by the data acquisition function; Configured to run on a computer,
    The automatic travel management program according to claim 1, wherein the first travel information generated by the first travel information generation function includes mid-travel information that is information indicating a travel route or travel position for mid-division travel.
  8.  圃場における外周部分での収穫走行を含む第1収穫走行と、前記第1収穫走行の後に行われる第2収穫走行と、によって圃場の農作物を収穫する収穫機の自動走行を管理する自動走行管理プログラムを記録した記録媒体であって、
     前記自動走行管理プログラムは、
     前記第1収穫走行により収穫済みとなった領域である第1領域の内側を第2領域として設定する領域設定機能と、
     前記領域設定機能により設定された前記第2領域における走行経路である内周走行経路を算出する内周走行経路算出機能と、
     前記内周走行経路に基づいた自動走行によって前記第2収穫走行が行われるように前記収穫機の走行を制御する走行制御機能と、
     圃場の外形を示すデータである圃場外形データを取得するデータ取得機能と、
     前記データ取得機能により取得された前記圃場外形データに基づいて、前記第1収穫走行のための走行経路または走行位置を示す情報である第1走行情報を生成する第1走行情報生成機能と、をコンピュータに実現させるように構成されており、
     前記第1走行情報生成機能により生成される前記第1走行情報に、中割走行のための走行経路または走行位置を示す情報である中割走行情報が含まれている自動走行管理プログラムを記録した記録媒体。
    Automatic run management program for managing automatic running of a harvester harvesting crops in a field by a first harvest run including a harvest run on the outer periphery of the field, and a second harvest run performed after the first harvest run A recording medium on which the
    The automatic travel management program
    An area setting function of setting an inner side of a first area which is an area which has been harvested by the first harvest traveling as a second area;
    An inner circumference traveling route calculation function of calculating an inner circumference traveling route which is a traveling route in the second area set by the area setting function;
    A traveling control function of controlling traveling of the harvester so that the second harvest traveling is performed by automatic traveling based on the inner circumferential traveling route;
    A data acquisition function of acquiring field outline data, which is data indicating the outline of a field;
    A first travel information generation function for generating first travel information which is information indicating a travel route or travel position for the first harvest traveling based on the field outline data acquired by the data acquisition function; Configured to run on a computer,
    An automatic travel management program is recorded in which the first travel information generated by the first travel information generation function includes a travel route for traveling in a middle or a travel position indicating travel position. recoding media.
  9.  圃場における外周部分での収穫走行を含む第1収穫走行と、前記第1収穫走行の後に行われる第2収穫走行と、によって圃場の農作物を収穫する収穫機の自動走行を管理する自動走行管理方法であって、
     前記第1収穫走行により収穫済みとなった領域である第1領域の内側を第2領域として設定する領域設定ステップと、
     前記領域設定ステップにより設定された前記第2領域における走行経路である内周走行経路を算出する内周走行経路算出ステップと、
     前記内周走行経路に基づいた自動走行によって前記第2収穫走行が行われるように前記収穫機の走行を制御する走行制御ステップと、
     圃場の外形を示すデータである圃場外形データを取得するデータ取得ステップと、
     前記データ取得ステップにより取得された前記圃場外形データに基づいて、前記第1収穫走行のための走行経路または走行位置を示す情報である第1走行情報を生成する第1走行情報生成ステップと、を備え、
     前記第1走行情報生成ステップにより生成される前記第1走行情報に、中割走行のための走行経路または走行位置を示す情報である中割走行情報が含まれている自動走行管理方法。
    Automatic run management method for managing automatic running of a harvester for harvesting crops in a field by a first harvest run including a harvest run on the outer periphery of a field, and a second harvest run performed after the first harvest run And
    An area setting step of setting an inner side of the first area which is an area which has been harvested by the first harvest traveling as the second area;
    An inner circumferential traveling route calculating step of calculating an inner circumferential traveling route which is a traveling route in the second region set in the region setting step;
    A traveling control step of controlling traveling of the harvester so that the second harvest traveling is performed by automatic traveling based on the inner circumferential traveling route;
    A data acquisition step of acquiring field outline data, which is data indicating an outline of a field;
    A first travel information generation step of generating first travel information which is information indicating a travel route or travel position for the first harvest traveling based on the field external shape data acquired in the data acquisition step; Equipped
    The automatic travel management method according to claim 1, wherein the first travel information generated in the first travel information generation step includes center travel information which is information indicating a travel route or travel position for middle travel.
  10.  収穫機の自車位置を示す測位データを出力する衛星測位モジュールと、
     前記衛星測位モジュールにより出力された前記測位データに基づいて、前記収穫機が農作物を収穫しながら周回走行した圃場の外周側の領域を外周領域として算出すると共に、前記外周領域の内側を作業対象領域として算出する領域算出部と、を備え、
     前記領域算出部は、前記作業対象領域の形状を多角形として算出するように構成されている領域決定システム。
    A satellite positioning module that outputs positioning data indicating the vehicle position of the harvester;
    Based on the positioning data output by the satellite positioning module, the harvester calculates the area on the outer periphery side of the field where the crop traveled while harvesting crops as the outer periphery area, and the inside of the outer periphery area is the work target area And an area calculation unit to calculate
    The area determination system, wherein the area calculation unit is configured to calculate the shape of the work target area as a polygon.
  11.  前記領域算出部により算出された前記作業対象領域の形状を報知する報知部と、
     人為操作入力を受け付ける操作入力部と、を備え、
     前記領域算出部は、前記操作入力部に入力された前記人為操作入力に基づいて、前記多角形の辺の数を変更する請求項10に記載の領域決定システム。
    A notification unit that notifies the shape of the work target area calculated by the area calculation unit;
    And an operation input unit that receives an artificial operation input,
    The area determination system according to claim 10, wherein the area calculation unit changes the number of sides of the polygon based on the artificial operation input input to the operation input unit.
  12.  前記外周領域における外周側の境界線と、前記外周領域における内周側の境界線と、の間の距離を算出する距離算出部を備え、
     前記距離算出部により算出された距離が所定距離よりも短い場合、前記領域算出部は、前記多角形の辺の数を増加させる請求項10または11に記載の領域決定システム。
    A distance calculation unit configured to calculate a distance between an outer peripheral boundary of the outer peripheral region and an inner peripheral boundary of the outer peripheral region;
    The area determination system according to claim 10, wherein the area calculation unit increases the number of sides of the polygon when the distance calculated by the distance calculation unit is shorter than a predetermined distance.
  13.  前記外周領域における外周側の境界線と、前記外周領域における内周側の境界線と、の間の距離を算出する距離算出部と、
     前記距離算出部により算出された距離が所定距離よりも短い場合に圃場の外周側の領域における周回走行を追加で行うように促す警告部と、を備える請求項10から12の何れか一項に記載の領域決定システム。
    A distance calculation unit configured to calculate a distance between an outer peripheral boundary of the outer peripheral region and an inner peripheral boundary of the outer peripheral region;
    13. A warning unit for prompting to additionally perform circumferential traveling in a region on the outer circumference side of a field when the distance calculated by the distance calculation unit is shorter than a predetermined distance. Region determination system as described.
  14.  収穫機の自車位置を示す測位データを出力する衛星測位モジュールにより出力された前記測位データに基づいて、前記収穫機が農作物を収穫しながら周回走行した圃場の外周側の領域を外周領域として算出すると共に、前記外周領域の内側を作業対象領域として算出する領域算出機能をコンピュータに実現させるように構成されており、
     前記領域算出機能は、前記作業対象領域の形状を多角形として算出する領域決定プログラム。
    Based on the positioning data output by the satellite positioning module that outputs positioning data indicating the vehicle position of the harvester, an area on the outer circumference side of the field where the harvester traveled while harvesting crops was calculated as the outer circumference area And the computer is configured to realize an area calculation function of calculating the inside of the outer peripheral area as a work target area,
    An area determination program, wherein the area calculation function calculates the shape of the work target area as a polygon.
  15.  収穫機の自車位置を示す測位データを出力する衛星測位モジュールにより出力された前記測位データに基づいて、前記収穫機が農作物を収穫しながら周回走行した圃場の外周側の領域を外周領域として算出すると共に、前記外周領域の内側を作業対象領域として算出する領域算出機能をコンピュータに実現させる領域決定プログラムを記録した記録媒体であって、
     前記領域算出機能は、前記作業対象領域の形状を多角形として算出する領域決定プログラムを記録した記録媒体。
    Based on the positioning data output by the satellite positioning module that outputs positioning data indicating the vehicle position of the harvester, an area on the outer circumference side of the field where the harvester traveled while harvesting crops was calculated as the outer circumference area And a recording medium storing an area determination program for causing a computer to realize an area calculation function of calculating the inside of the outer peripheral area as a work target area,
    The recording medium storing an area determination program for calculating the shape of the work target area as a polygon, in the area calculation function.
  16.  収穫機の自車位置を示す測位データを出力する衛星測位モジュールにより出力された前記測位データに基づいて、前記収穫機が農作物を収穫しながら周回走行した圃場の外周側の領域を外周領域として算出すると共に、前記外周領域の内側を作業対象領域として算出する領域算出ステップを備え、
     前記領域算出ステップにおいて、前記作業対象領域の形状を多角形として算出する領域決定方法。
    Based on the positioning data output by the satellite positioning module that outputs positioning data indicating the vehicle position of the harvester, an area on the outer circumference side of the field where the harvester traveled while harvesting crops was calculated as the outer circumference area And an area calculating step of calculating the inside of the outer peripheral area as a work target area,
    An area determination method for calculating the shape of the work target area as a polygon in the area calculation step.
  17.  圃場の植立穀稈を刈り取る刈取装置を有するコンバインを制御するコンバイン制御システムであって、
     前記コンバインの方向転換を制御する方向転換制御部を備え、
     圃場の未刈領域における角部の植立穀稈を刈り取るために前記コンバインが方向転換を行う際、前記方向転換制御部は、植立穀稈を刈り取りながら旋回する刈取旋回動作を含む方向転換方法である角部用特別方向転換によって前記コンバインの方向転換が行われるように前記コンバインを制御するコンバイン制御システム。
    A combine control system for controlling a combine having a reaping device for reaping a field crop in a field, comprising:
    A direction change control unit for controlling the direction change of the combine;
    When the combine performs a direction change in order to reap the grain casserole of the corner in the unharvested area of the field, the direction change control unit includes a reaping and turning motion including reaping and turning while harvesting the replanted grain reed. The combine control system which controls the combine so that direction change of the said combine is performed by the corner part special direction change.
  18.  前記角部用特別方向転換は、
     方向転換前の前記コンバインの進行方向において前記角部よりも後側の位置まで後進する第1後進動作と、
     前記第1後進動作の後に行われる前記刈取旋回動作と、
     前記刈取旋回動作の後に行われる動作であって、方向転換後の前記コンバインの進行方向において前記角部よりも後側の位置まで後進する第2後進動作と、
     前記第2後進動作の後に行われる前進動作と、を含んでいる請求項17に記載のコンバイン制御システム。
    The corner special direction change is
    A first reverse operation of moving backward to a position behind the corner in the advancing direction of the combine before turning;
    The reaping and turning operation performed after the first reverse operation;
    A second reverse motion which is a motion performed after the reaping and turning motion and which travels backward to a position behind the corner in the advancing direction of the combine after turning;
    The combine control system according to claim 17, further comprising: an advancing operation performed after the second reverse operation.
  19.  前記コンバインの方向転換方法を決定する決定部を備え、
     前記方向転換制御部は、前記決定部による決定内容に従って前記コンバインの方向転換を制御するように構成されており、
     前記決定部は、前記角部と圃場の境界線との間の距離が所定距離よりも短い場合には、前記角部の植立穀稈を刈り取るために行われる前記コンバインの方向転換が前記角部用特別方向転換によって行われることを決定し、
     前記決定部は、前記角部と圃場の境界線との間の距離が前記所定距離以上である場合には、前記角部の植立穀稈を刈り取るために行われる前記コンバインの方向転換が前記角部用特別方向転換とは異なる方向転換方法によって行われることを決定する請求項17または18に記載のコンバイン制御システム。
    And a determination unit that determines how to combine turning.
    The direction change control unit is configured to control the direction change of the combine according to the content of determination by the determination unit,
    When the distance between the corner and the border line of the field is shorter than a predetermined distance, the determining unit changes the direction of the combine performed to reap the planted rice straw at the corner. Decide what will be done by the departmental special direction change,
    When the distance between the corner and the boundary of the field is equal to or more than the predetermined distance, the determining unit changes the direction of the combine performed to reap the crop in the corner. The combine control system according to claim 17 or 18, wherein it is determined to be performed by a turning method different from the corner directed turning.
  20.  圃場の植立穀稈を刈り取る刈取装置を有するコンバインを制御するコンバイン制御プログラムであって、
     前記コンバインの方向転換を制御する方向転換制御機能をコンピュータに実現させるように構成されており、
     圃場の未刈領域における角部の植立穀稈を刈り取るために前記コンバインが方向転換を行う際、前記方向転換制御機能は、植立穀稈を刈り取りながら旋回する刈取旋回動作を含む方向転換方法である角部用特別方向転換によって前記コンバインの方向転換が行われるように前記コンバインを制御するコンバイン制御プログラム。
    A combine control program for controlling a combine having a reaper for reaping a field crop in a field, comprising:
    The computer is configured to cause a computer to implement a direction change control function that controls the direction change of the combine;
    When the combine performs a direction change in order to reap the crop in the corner of the field in the unharvested area, the direction change control function includes a reaping and turning motion including reaping while reaping the replanted crop. The combine control program which controls the said combine so that the turn of the said combine is performed by the corner | angular part special direction change.
  21.  圃場の植立穀稈を刈り取る刈取装置を有するコンバインを制御するコンバイン制御プログラムを記録した記録媒体であって、
     前記コンバイン制御プログラムは、前記コンバインの方向転換を制御する方向転換制御機能をコンピュータに実現させるように構成されており、
     圃場の未刈領域における角部の植立穀稈を刈り取るために前記コンバインが方向転換を行う際、前記方向転換制御機能は、植立穀稈を刈り取りながら旋回する刈取旋回動作を含む方向転換方法である角部用特別方向転換によって前記コンバインの方向転換が行われるように前記コンバインを制御するコンバイン制御プログラムを記録した記録媒体。
    A recording medium recording a combine control program for controlling a combine having a reaper for reaping a field crop in a field, comprising:
    The combine control program is configured to cause a computer to implement a direction change control function that controls the direction change of the combine.
    When the combine performs a direction change in order to reap the crop in the corner of the field in the unharvested area, the direction change control function includes a reaping and turning motion including reaping while reaping the replanted crop. The recording medium which recorded the combine control program which controls the said combine so that the direction change of the said combine is performed by the special direction change for corners which is.
  22.  圃場の植立穀稈を刈り取る刈取装置を有するコンバインを制御するコンバイン制御方法であって、
     前記コンバインの方向転換を制御する方向転換制御ステップを備え、
     圃場の未刈領域における角部の植立穀稈を刈り取るために前記コンバインが方向転換を行う際、前記方向転換制御ステップにおいて、植立穀稈を刈り取りながら旋回する刈取旋回動作を含む方向転換方法である角部用特別方向転換によって前記コンバインの方向転換が行われるように前記コンバインを制御するコンバイン制御方法。
    A combine control method for controlling a combine having a reaping device for reaping a field crop in a field, comprising:
    Providing a turning control step of controlling the turning of the combine;
    When the combine performs a direction change in order to reap the crop in the corner of the field in the uncut area, the direction change control step includes a reaping turning operation including reaping and turning while harvesting the replanted rice yard The combine control method which controls said combine so that direction change of the said combine is performed by the corner part special direction change.
PCT/JP2018/046182 2017-12-18 2018-12-14 Automatic traveling system, automatic traveling management system, recording medium having automatic traveling management program recorded therein, automatic traveling management method, region determination system, region determination program, recording medium having region determination program recorded therein, region determination method, combine harvester control system, combine harvester control program, recording medium having combine harvester control program recorded therein, and combine harvester control method WO2019124273A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207013203A KR20200096497A (en) 2017-12-18 2018-12-14 Automatic driving system, automatic driving management program, recording medium recording the automatic driving management program, automatic driving management method, area determining system, area determining program, recording medium recording area determining program, area determining method, combine control system, combine control program , A recording medium recording the combine control program, and a combine control method
CN201880074148.6A CN111386030B (en) 2017-12-18 2018-12-14 Automatic travel system, automatic travel management program and method, and recording medium

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017242047A JP6824149B2 (en) 2017-12-18 2017-12-18 Autonomous driving system
JP2017-242048 2017-12-18
JP2017242048A JP6910283B2 (en) 2017-12-18 2017-12-18 Area determination system
JP2017-242047 2017-12-18
JP2017-245310 2017-12-21
JP2017245310A JP6937681B2 (en) 2017-12-21 2017-12-21 Combine control system

Publications (1)

Publication Number Publication Date
WO2019124273A1 true WO2019124273A1 (en) 2019-06-27

Family

ID=66993378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046182 WO2019124273A1 (en) 2017-12-18 2018-12-14 Automatic traveling system, automatic traveling management system, recording medium having automatic traveling management program recorded therein, automatic traveling management method, region determination system, region determination program, recording medium having region determination program recorded therein, region determination method, combine harvester control system, combine harvester control program, recording medium having combine harvester control program recorded therein, and combine harvester control method

Country Status (3)

Country Link
KR (1) KR20200096497A (en)
CN (1) CN111386030B (en)
WO (1) WO2019124273A1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112868369A (en) * 2019-11-29 2021-06-01 株式会社久保田 Automatic traveling system and harvester
WO2021128773A1 (en) * 2019-12-24 2021-07-01 江苏大学 Right-angled turning method and system for crawler-type driverless combine harvester
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
CN114364249A (en) * 2019-09-13 2022-04-15 株式会社久保田 Job management system, job management program, recording medium for recording job management program, and job management method
WO2022118570A1 (en) * 2020-12-02 2022-06-09 ヤンマーホールディングス株式会社 Combine and method for generating travel route
WO2022138071A1 (en) * 2020-12-22 2022-06-30 ヤンマーホールディングス株式会社 Route setting method, autonomous traveling method, route setting device, autonomous traveling system, and storage medium
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
WO2023211775A1 (en) * 2022-04-29 2023-11-02 Carbon Autonomous Robotic Systems Inc. System and method for autonomous field navigation
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115088463A (en) * 2022-07-06 2022-09-23 松灵机器人(深圳)有限公司 Mowing method, mowing device, mowing robot and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441985B2 (en) * 1984-10-30 1992-07-10 Mitsubishi Agricult Mach
JPH1066406A (en) * 1996-08-28 1998-03-10 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Unmanned working of rice paddy working vehicle
JP3498495B2 (en) * 1996-09-25 2004-02-16 ミノルタ株式会社 Autonomous vehicles
EP1915894A2 (en) * 2006-10-27 2008-04-30 CNH Belgium N.V. Method and apparatus for creating curved swath patterns for farm machinery
JP2009245001A (en) * 2008-03-28 2009-10-22 Kubota Corp Travel controller for working vehicle
JP2015170223A (en) * 2014-03-07 2015-09-28 ヤンマー株式会社 Crop harvester
WO2017159615A1 (en) * 2016-03-16 2017-09-21 ヤンマー株式会社 Route generation device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706676B2 (en) 1988-10-15 1998-01-28 株式会社フジクラ Tilt monitoring system
JP2001069836A (en) 1999-09-02 2001-03-21 Iseki & Co Ltd Automatic traveling apparatus for combine
KR101203897B1 (en) * 2011-02-25 2012-11-23 동국대학교 산학협력단 Apparatus and method of cell-based path planning for a mobile body
US9516806B2 (en) * 2014-10-10 2016-12-13 Irobot Corporation Robotic lawn mowing boundary determination
CN106708060B (en) * 2017-02-21 2020-01-10 昂海松 Automatic and orderly mowing method of mower without external navigation information
CN106998592A (en) * 2017-03-13 2017-08-01 信阳农林学院 A kind of fishery Intelligent pesticide application method based on radio sensing network

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441985B2 (en) * 1984-10-30 1992-07-10 Mitsubishi Agricult Mach
JPH1066406A (en) * 1996-08-28 1998-03-10 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Unmanned working of rice paddy working vehicle
JP3498495B2 (en) * 1996-09-25 2004-02-16 ミノルタ株式会社 Autonomous vehicles
EP1915894A2 (en) * 2006-10-27 2008-04-30 CNH Belgium N.V. Method and apparatus for creating curved swath patterns for farm machinery
JP2009245001A (en) * 2008-03-28 2009-10-22 Kubota Corp Travel controller for working vehicle
JP2015170223A (en) * 2014-03-07 2015-09-28 ヤンマー株式会社 Crop harvester
WO2017159615A1 (en) * 2016-03-16 2017-09-21 ヤンマー株式会社 Route generation device

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
CN114364249B (en) * 2019-09-13 2023-10-27 株式会社久保田 Job management system, job management program, recording medium recording job management program, and job management method
CN114364249A (en) * 2019-09-13 2022-04-15 株式会社久保田 Job management system, job management program, recording medium for recording job management program, and job management method
CN112868369A (en) * 2019-11-29 2021-06-01 株式会社久保田 Automatic traveling system and harvester
WO2021128773A1 (en) * 2019-12-24 2021-07-01 江苏大学 Right-angled turning method and system for crawler-type driverless combine harvester
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
WO2022118570A1 (en) * 2020-12-02 2022-06-09 ヤンマーホールディングス株式会社 Combine and method for generating travel route
WO2022138071A1 (en) * 2020-12-22 2022-06-30 ヤンマーホールディングス株式会社 Route setting method, autonomous traveling method, route setting device, autonomous traveling system, and storage medium
JP7487093B2 (en) 2020-12-22 2024-05-20 ヤンマーホールディングス株式会社 Route setting method, autonomous driving method, route setting device, autonomous driving system, and route setting program
WO2023211775A1 (en) * 2022-04-29 2023-11-02 Carbon Autonomous Robotic Systems Inc. System and method for autonomous field navigation

Also Published As

Publication number Publication date
CN111386030A (en) 2020-07-07
CN111386030B (en) 2023-01-31
KR20200096497A (en) 2020-08-12

Similar Documents

Publication Publication Date Title
WO2019124273A1 (en) Automatic traveling system, automatic traveling management system, recording medium having automatic traveling management program recorded therein, automatic traveling management method, region determination system, region determination program, recording medium having region determination program recorded therein, region determination method, combine harvester control system, combine harvester control program, recording medium having combine harvester control program recorded therein, and combine harvester control method
JP7101488B2 (en) Work vehicle management system
WO2017047181A1 (en) Work vehicle support system
WO2019124174A1 (en) Combine control system, combine control program, recording medium with combine control program recorded therein, combine control method, harvester control system, harvester control program, recording medium with harvester control program recorded therein, and harvester control method
US7742860B2 (en) Route planning system and method for agricultural working machines
JP6749448B2 (en) Work vehicle support system
JP7068961B2 (en) External shape calculation system and external shape calculation method
JP6824149B2 (en) Autonomous driving system
JP6910283B2 (en) Area determination system
JP7155096B2 (en) Automatic driving route generation system
JP2019110781A (en) Harvester control system
JP7113726B2 (en) agricultural machine
JP7136623B2 (en) Work management system and work management method
US20220382278A1 (en) Autonomous Operation Method, Work Vehicle, And Autonomous Operation System
JP2022191350A (en) Automatic travel control system
JP7275012B2 (en) Automatic travel control system and combine
JP7201572B2 (en) automatic driving system
KR20210067925A (en) Automatic traveling system and harvester
JP7466276B2 (en) Work vehicle coordination system
KR20210067924A (en) Automatic traveling control system, combine and harvester
JP2021185842A (en) Travelling route management system
JP2019110783A (en) Combine control system
JP2020039273A (en) Harvesting machine
JP7241666B2 (en) automatic driving system
JP7403397B2 (en) agricultural machinery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890011

Country of ref document: EP

Kind code of ref document: A1