WO2019124225A1 - Agricultural vehicle, work vehicle collision warning system, and work vehicle - Google Patents

Agricultural vehicle, work vehicle collision warning system, and work vehicle Download PDF

Info

Publication number
WO2019124225A1
WO2019124225A1 PCT/JP2018/045946 JP2018045946W WO2019124225A1 WO 2019124225 A1 WO2019124225 A1 WO 2019124225A1 JP 2018045946 W JP2018045946 W JP 2018045946W WO 2019124225 A1 WO2019124225 A1 WO 2019124225A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
work
traveling
distance
separation distance
Prior art date
Application number
PCT/JP2018/045946
Other languages
French (fr)
Japanese (ja)
Inventor
阪口和央
佐野友彦
吉田脩
中林隆志
川畑翔太郎
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017242051A external-priority patent/JP7080042B2/en
Priority claimed from JP2018222817A external-priority patent/JP7174484B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN201880073463.7A priority Critical patent/CN111343853B/en
Priority to KR1020207012549A priority patent/KR20200096491A/en
Publication of WO2019124225A1 publication Critical patent/WO2019124225A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0289Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling with means for avoiding collisions between vehicles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track

Definitions

  • the present invention relates to an agricultural work vehicle, a work vehicle collision warning system, and a work vehicle.
  • the farmland is bounded by the weirs and the like to the outer area, and inside the border line various agricultural operations are carried out by agricultural vehicles.
  • various agricultural operations are carried out by agricultural vehicles.
  • not only manual traveling but also automatic traveling has been adopted in recent years.
  • direction change, refueling, discharge of agricultural products, delivery of materials for agricultural work, etc. are performed at the very front.
  • agricultural vehicles Since the boat is located higher than the boat scene, agricultural vehicles may come into contact with the boat, and special care must be taken when traveling. Care must be taken that the agricultural vehicle does not come into contact with the demarcation members, even if the field is not a fence and is bounded by demarcation members such as fences and plants.
  • the work vehicle according to Patent Document 1 is a positioning vehicle unit that outputs positioning data indicating a vehicle position, a traveling vehicle body that travels the inside of a field while changing direction in a farthest area, a field work device that performs work on the field, and And have.
  • the work vehicle travels between the start point and the end point of the work travel route set leaving the front region, makes a U-turn in the front region, and carries out the next work travel with an interval equal to the work width. Work travel between the start point and the end point of the route. Field work is carried out by repeating such traveling.
  • the position of the vehicle calculated by the positioning unit and the position of the end point of the work travel route are compared, so before the work vehicle enters the frontage area, or Immediately after entering the immediate area, it is possible to decelerate or stop.
  • the automatic traveling work vehicle includes position calculating means for measuring the position of the vehicle body using a satellite positioning system, a control device for controlling automatic operation traveling along the set traveling route, and an obstacle around the vehicle.
  • An obstacle detection means is provided to detect the presence or absence. Since the obstacle detection means is composed of an infrared sensor or an ultrasonic sensor, the detection capability fluctuates according to the environmental conditions. For this reason, an optical sensor, an outside air temperature sensor, and a rain detection sensor are provided as environment recognition means, and the sensitivity of the obstacle sensor is adjusted according to the signals from those sensors.
  • an obstacle detection means detects an obstacle in front of, side or back of the vehicle body, an alarm is issued to lower the traveling speed of the vehicle body or stop the vehicle body.
  • the work vehicle according to Patent Document 1 needs to switch from automatic travel to manual travel and perform a U-turn before and after the work vehicle enters the immediate area before and after the approach, which is necessary for the driver. At that time, deceleration, warning notification, stopping, etc. are performed. However, since the distance from the work vehicle to the weir is not calculated, the avoidance control for preventing the work vehicle from coming in contact with the weir is not performed. In order to perform efficient agricultural work, it is also necessary to bring the work vehicle as close to the weir as possible, but contact between the work vehicle and the weir should be avoided.
  • the agricultural working vehicle includes a boundary data management unit that manages boundary data indicating a map position of a field boundary, a vehicle position detection module that acquires positioning data using satellite navigation, and the positioning data.
  • a boundary data management unit that manages boundary data indicating a map position of a field boundary
  • a vehicle position detection module that acquires positioning data using satellite navigation, and the positioning data.
  • a traveling direction calculation unit that calculates the traveling direction of the vehicle body from the own vehicle position, and in the traveling direction based on the traveling direction and the outer shape of the vehicle body
  • a separation distance calculation unit that calculates a vertical separation distance from the vehicle body to the boundary as a separation distance
  • a vehicle speed management unit that manages the vehicle speed according to the separation distance.
  • the distance between the field border and the vehicle body managed by the border line data managing unit The separation distance of the At that time, satellite radio waves are more advantageous than laser radars and ultrasonic sensors because they are hardly affected by agricultural crops, utility poles, etc. existing between the work vehicle and the boundary line (such as a weir). Since the vehicle speed management unit manages the vehicle speed according to the calculated separation distance, a warning for decelerating or stopping before the work vehicle reaches the boundary line, or the vehicle is forcibly decelerated or stopped It can be performed. In this way, the agricultural vehicle can travel while avoiding contact with or forming a boundary line, or crossing the boundary line.
  • the boundary line data management unit generates the boundary line data based on the traveling locus obtained from the vehicle position calculating unit during round trip along the boundary line.
  • the boundary line data used for calculating the separation distance is generated based on the travel locus obtained during the round trip along the boundary line actually performed by the agricultural vehicle. That is, the vehicle position used to calculate the travel locus and the vehicle position used also when calculating the separation distance are calculated by the same vehicle position detection module and the same vehicle position calculation unit.
  • the vehicle position calculated by the vehicle position calculation unit deviates from the absolute map coordinate position There is.
  • the coordinate position and the coordinate position of the own vehicle position while traveling are calculated by using the same device because of boundary data, such an error can be ignored, and as a result, Accurate separation distance is obtained.
  • the traveling travel is work travel, and a travel route for working the work target area left inside the existing work area by the work travel is automatically generated.
  • a travel route generation unit is provided.
  • the work is also performed in the round trip to generate the boundary line data, and therefore, the work efficiency is higher than the case where the round trip is performed by the free running.
  • the travel route appropriate for the shape is generated. Created by the department. In this way, wasteful field work is realized.
  • the area in which the work is performed (existing work area) and the area in which the work is not performed (unworked area) are clearly distinguished.
  • existing work area for the purpose of stopping the work temporarily for refueling and discharge of the harvest, leaving travel for heading to the temporary stopping position set at the time of the end, and return traveling starting again from the temporary stopping position.
  • the vehicle body Used for In traveling of the work vehicle in the already-worked area, it is necessary to avoid that the vehicle body interferes with the heel and enters the unworked area.
  • the boundary data management unit manages work boundary data indicating a position of a work boundary between the unworked area and the already-worked area in the field.
  • the separation distance calculation unit is a lateral separation distance from the vehicle body to at least one of the boundary line and the work boundary line in a vehicle body transverse direction orthogonal to the traveling direction based on the traveling direction and the outer shape of the vehicle body. Is calculated as the separation distance.
  • Boundary line data can be generated from map data indicating the field outline or field outline data used in the previous work.
  • the separation distance is calculated using boundary line data (referred to as reference boundary line data here) provided in advance, so that contact with a field boundary line such as straw etc. It can be avoided.
  • the separation distance can be calculated using boundary line data generated by itself (herein referred to as actual boundary line data).
  • actual boundary line data generated by itself
  • the boundary line data management unit manages, as reference boundary line data, data indicating the boundary line of the field, which is given in advance.
  • the boundary line data calculated through traveling is managed as actual boundary line data, and the separation distance is calculated based on the reference boundary line data during the lap traveling, and the separation distance is calculated based on the actual boundary line data during the automatic traveling. The distance is calculated.
  • the vehicle speed management unit outputs a vehicle speed limitation command for limiting the vehicle speed according to the separation distance.
  • Specific vehicle speed limit commands are deceleration of the vehicle body and stop of the vehicle body. Therefore, in one of the specific embodiments of the agricultural working vehicle, the vehicle speed management unit decelerates the vehicle body when the separation distance enters a preset deceleration start distance range. In another one of the specific embodiments, the vehicle speed management unit stops the vehicle body when the separation distance enters a preset stop distance range. The behavior of the vehicle due to deceleration and braking differs depending on the vehicle speed at that time. From this, it is preferable that the deceleration start distance range and the stop distance range be changed according to the current vehicle speed.
  • this agricultural vehicle has an automatic travel control unit and automatic travel is possible, it is preferable to forcibly stop automatic travel in an emergency where a vehicle speed limit command is output. Therefore, in one of the preferred embodiments of the present invention, an automatic travel control unit is provided, and during automatic travel, the vehicle speed management is performed when the separated distance falls within a preset automatic travel prohibited distance range. Department prohibits automatic running.
  • the automatic travel prohibited distance range is set shorter than the stop distance range, and the stop distance range is set shorter than the deceleration start distance range.
  • the separation distance calculation unit calculates the distance between the front end of the vehicle body and the boundary line during forward traveling as the separation distance, and the rear of the vehicle body during reverse traveling. The distance between the end and the boundary is calculated as the separation distance.
  • the recommended vehicle speed is different between work travel and non-work travel. From this, in one of the preferred embodiments of the present invention, the vehicle speed is controlled by the vehicle speed management unit according to the separation distance at least at the separation distance within a predetermined range, the vehicle body performs work It is different at the time of work traveling running while doing, and at the time of non-work traveling running non-work
  • a work vehicle collision warning system for a plurality of work vehicles traveling on the same work site includes a first position calculation unit that calculates a first position, which is a coordinate position of the first work vehicle, by satellite positioning; A second position calculation unit that calculates a second position, which is a coordinate position of a second work vehicle, by the satellite positioning, and the first work vehicle and the second work vehicle based on the first position and the second position And an emergency stop signal for stopping the first work vehicle and / or the second work vehicle when the separation distance falls within the collision warning distance range. And a collision warning unit that outputs the The first work vehicle and the second work vehicle represent a plurality of work vehicles, and the present invention is not limited to two work vehicles, and the same applies to three or more work vehicles. The present invention applies to
  • control for avoiding collisions between the work vehicles is performed. That is, based on the vehicle position of each work vehicle, the mutual separation distance is calculated, and when the separation distance falls within the collision warning distance range, an emergency stop of the work vehicle necessary for avoiding a collision is commanded Be done. For this reason, it becomes possible to detect the existence of each other's work vehicle correctly, and to avoid the collision of work vehicles.
  • the obstacle detection device is an infrared sensor, ultrasonic sensor, laser radar, etc.
  • the crops are detected as obstacles (collision objects) It is difficult to avoid false positive detection.
  • satellite positioning is used in the present invention, such a problem can be avoided. For this reason, regardless of the state of the work site, it becomes possible to accurately detect the presence of each other's work vehicles and to avoid a collision between the work vehicles.
  • a satellite positioning device is provided as a component of a car navigation system or as a component for detecting a vehicle position for automatic traveling, a device for satellite positioning is prepared. Because it is not necessary, the equipment cost for implementing the present invention is reduced.
  • the collision occurs when the first work vehicle and the second work vehicle travel in the same direction and the second work vehicle precedes the first work vehicle.
  • the alert distance range changes according to the vehicle speed of the first work vehicle, and the collision alert distance range is configured to be longer as the vehicle speed is higher. If the vehicle speed of the work vehicle behind is high, not only the possibility that the work vehicle behind will catch up with the work vehicle in a short time will be high, but also the braking performance will deteriorate, so the collision warning distance range should be extended. Is preferred. In the case where the work vehicle behind is traveling at a high speed, the reliability of collision avoidance between work vehicles is improved by extending the collision warning distance range. On the contrary, when the work vehicle behind is traveling at a low speed, by shortening the collision warning distance range, excessive emergency stop of the work vehicle behind can be avoided and work travel can be smoothly performed. .
  • the collision occurs when the first work vehicle and the second work vehicle travel in the same direction and the second work vehicle precedes the first work vehicle.
  • the warning distance range is configured such that the collision warning distance range becomes longer as the vehicle speed of the first work vehicle is higher than the vehicle speed of the second work vehicle.
  • the vehicle speed of the preceding work vehicle is lower than the vehicle speed of the following work vehicle, the distance between the two vehicles decreases, so the possibility of a collision is reduced by increasing the collision warning distance range.
  • a vehicle shape management unit for managing vehicle shape data indicating the shapes of the first work vehicle and the second work vehicle is provided, and the separation distance calculation unit A separation distance between the first work vehicle and the second work vehicle is calculated based on one position, the second position, and the vehicle shape data.
  • control for avoiding a collision between the work vehicles is performed. That is, since the separation distance is calculated based on the vehicle position of each work vehicle and the vehicle shape data of each work vehicle, the separation relationship between the work vehicles with each other is accurate regardless of the vehicle shape. Can be detected to avoid collisions between work vehicles.
  • the own vehicle position calculated based on the satellite positioning is basically the position of the satellite antenna, and the shortest distance between the working vehicles can be obtained by calculating from the antenna position using the vehicle shape data.
  • the vehicle shape data is not always updated, and there is also a possibility that work tools and the like may be attached to the vehicle body in a state of protruding outside the vehicle body. In order to cope with such a situation, it is preferable to slightly inflate the shape defined by the vehicle shape data. For this reason, in one of the preferred embodiments of the present invention, the separation distance calculation unit is based on the virtual shape set larger at least on the traveling direction side than the shape defined by the vehicle shape data. Calculate the separation distance.
  • the separated distance calculation unit and the collision alert unit are capable of exchanging data with the first work vehicle and the second work vehicle via a wireless data communication network.
  • the collision alert unit is configured to transmit the emergency stop signal to a travel control unit of the corresponding work vehicle.
  • each work vehicle has a function of acquiring the position of another work vehicle and calculating the separation distance using the vehicle shape data of the work vehicle and the vehicle shape data of the own vehicle. Since it is not necessary, in a system in which several or more working vehicles are coordinated to perform work, it is advantageous in cost.
  • the car shape data may be recorded in advance by the management computer, or each work vehicle may be transmitted to the management computer.
  • a work vehicle incorporating the work vehicle collision warning system described above is also an object of the present invention.
  • the work vehicle that automatically travels the same work place with other vehicles according to the present invention includes a traveling control unit that controls traveling and a vehicle position calculation unit that calculates the vehicle position, which is the coordinate position of the vehicle, by satellite positioning.
  • the other vehicle position acquiring unit for acquiring the other vehicle position acquiring unit which is the coordinate position of the other vehicle calculated by the satellite positioning, the own vehicle position and the other vehicle position based on the own vehicle position and the other vehicle position Collision that outputs an emergency stop signal to stop the vehicle or the other vehicle or both when the separation distance is within the collision warning distance range and the separation distance calculation unit that calculates the separation distance between It is equipped with a warning unit.
  • the work vehicle according to the present invention can, of course, adopt the various embodiments of the work vehicle collision warning system described above, and the same effects can be obtained.
  • the collision alert distance range is It fluctuates according to the vehicle speed of the vehicle, and the collision alert distance range is controlled to be longer as the vehicle speed is higher.
  • the collision alert distance range becomes longer as the vehicle speed of the own vehicle is higher than the vehicle speed of the other vehicle. To be controlled. Thereby, the collision of the working vehicles is prevented with high reliability.
  • a vehicle shape management unit is provided to manage vehicle shape data indicating the shapes of the vehicle and the other vehicle
  • the separation distance calculation unit is configured to determine the vehicle position and the other vehicle. A separation distance between the vehicle and the other vehicle is calculated based on the position and the vehicle shape data. Therefore, regardless of the vehicle body shape, the separation distance between the own vehicle and the other vehicle is accurately calculated, and it is possible to avoid the collision between the working vehicles.
  • FIG. 8 It is a figure which shows 1st Embodiment (following, it is the same to FIG. 8), and is a side view of the combine as an example of a farm work vehicle. It is a figure showing an outline of automatic travel of a combine. It is a figure showing the run course in automatic run. It is a functional block diagram which shows the structure of the control system of a combine. It is a control-information flowchart which shows the flow of the control information in the vehicle speed management based on the separation distance between heels and driving mode management. It is a schematic diagram which shows the relationship between separation distance (vertical separation distance), a vehicle speed limit command, and an automatic travel prohibition command.
  • front means front in the vehicle longitudinal direction (traveling direction) unless otherwise noted
  • rear arrow B shown in FIG. 1
  • Direction means the rear in the longitudinal direction of the vehicle body (traveling direction).
  • the lateral direction or the lateral direction means a transverse direction of the vehicle (vehicle width direction) orthogonal to the longitudinal direction of the vehicle.
  • Up (direction of arrow U shown in FIG. 1) and “down” (direction of arrow D shown in FIG. 1) are positional relationships in the vertical direction (vertical direction) of the vehicle body, Show.
  • the combine has a car body 10, a traveling device 11 of a crawler type, an operation unit 12, a threshing device 13, a grain tank 14, a harvesting part H, a conveying device 16, a grain discharging device 18, and an own vehicle.
  • a position detection module 80 is provided.
  • the traveling device 11 is provided at the lower part of the vehicle body 10.
  • the combine is configured to be self-propelled by the traveling device 11.
  • the driving unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11 and constitute an upper portion of the vehicle body 10.
  • a driver who operates the combine and a supervisor who monitors the combine operation can ride on the driving unit 12. Usually, the driver and the supervisor are combined. When the driver and the monitor are different persons, the monitor may monitor the combine operation from the outside of the combine.
  • the grain discharging device 18 is connected to the rear lower portion of the grain tank 14.
  • the vehicle position detection module 80 is attached to the front upper portion of the driving unit 12.
  • the harvester H is provided at the front of the combine. Then, the transport device 16 is connected to the rear side of the harvesting unit H.
  • the harvester H also has a cutting mechanism 15 and a reel 17.
  • the cutting mechanism 15 reaps the crop of the field in the field.
  • the reel 17 scrapes the cropped cereals to be harvested while being rotationally driven.
  • the harvesting unit H harvests cereal grains (a kind of crop) in the field.
  • a combine traveling can carry out work traveling which travels with run device 11 while harvesting the grain of a field by harvesting part H.
  • the cropped rice straw which has been cut by the cutting mechanism 15 is transported by the transport device 16 to the threshing device 13.
  • the reaping grain is threshed.
  • the grains obtained by the threshing process are stored in a grain tank 14.
  • the grains stored in the grain tank 14 are discharged to the outside by the grain discharging device 18.
  • the communication terminal 4 is disposed in the operation unit 12.
  • the communication terminal 4 is fixed to the operation unit 12.
  • the present invention is not limited to this, and the communication terminal 4 may be configured to be attachable to and detachable from the driving unit 12, or may be located outside the vehicle of the combine.
  • the vehicle position detection module 80 includes a satellite positioning module 81 and an inertial measurement module 82.
  • the satellite positioning module 81 receives GNSS (global navigation satellite system) signals (including GPS signals) transmitted from the artificial satellite GS, and outputs positioning data for calculating the position of the vehicle.
  • GNSS global navigation satellite system
  • the inertial measurement module 82 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction.
  • the inertia measurement module 82 is also used to supplement the vehicle position calculation by the satellite positioning module 81.
  • the inertial measurement module 82 can be omitted. That is, the vehicle position detection module 80 acquires positioning data using at least satellite navigation.
  • combine is an agricultural work vehicle that harvests crops in the field
  • using laser radar or ultrasonic sensors to detect the position of the vehicle causes the crop to be in the way and the detection accuracy of field boundaries such as straw etc. It may fall.
  • the vehicle position detection module 80 is used to detect the vehicle position, it is hardly affected by agricultural products, utility poles, and the like.
  • the map position of a boundary such as a field boundary or the like is calculated in advance, it is possible to calculate the distance between the boundary and the boundary with high accuracy.
  • the driver / supervisor manually operates the combine, and as shown in FIG. 2, in the outer peripheral portion in the field, the traveling traveling is performed so as to go around along the boundary line of the field.
  • the combine carries out harvest work at the same time as traveling around.
  • region) by this is set as outer periphery area
  • the area left as the uncut area (unworked area) inside the outer peripheral area SA is set as the work target area CA.
  • the harvester H is brought close to the edge, so from the locus of the harvester H corresponding to the traveling locus at that time, boundary line data indicating the map position of the boundary between the inside of the field and the straw is generated be able to.
  • work boundary line data indicating a work boundary (a work area and a non-work area) between the outer peripheral area SA and the work target area CA can also be generated.
  • the driver travels the combine 2-3 turns.
  • the width of the outer peripheral area SA is expanded by the work width of the combine each time the combine makes one revolution.
  • the width of the outer peripheral area SA becomes about 2 to 3 times the working width of the combine.
  • the outer peripheral area SA is used as a space for the combine to turn when the harvest traveling is performed in the work target area CA. Further, the outer peripheral area SA is also used as a space for movement, such as when moving to a discharge place of grain or after moving to a fuel supply place after the harvest traveling is once finished.
  • the transport vehicle CV shown in FIG. 2 can collect and transport the grain discharged
  • a travel route in the work target area CA is calculated.
  • the calculated traveling route is sequentially set based on the work traveling pattern, and the combine is automatically controlled to travel along the set traveling route.
  • control is performed to avoid contact with the weir (field border).
  • control to avoid entering the work target area CA during non-operation travel, such as grain discharge, is also performed.
  • the control system of the combine is shown in FIG.
  • the control system of the combine comprises a control unit 5 consisting of electronic control units called multiple ECUs, and various input / output devices that perform signal communication (data communication) with the control unit 5 through a wiring network such as an in-vehicle LAN. It is done.
  • the notification device 62 is a device for notifying a driver or the like of a work traveling state and various warnings, and is a buzzer, a lamp, a speaker, a display or the like.
  • the communication unit 66 is used to exchange data between the control computer of the combine and the management computer and the external communication terminal installed at a remote place.
  • This external communication terminal may be a tablet computer operated by an observer standing in a field or an observer (including a driver) who is riding in a combine, a computer installed at home or at a management office, or even outside a car Includes the communication terminal 4 brought out.
  • the control unit 5 is a core element of this control system, and is shown as a collection of a plurality of ECUs. A signal from the own vehicle position detection module 80 is input to the control unit 5 through the in-vehicle LAN.
  • the control unit 5 includes an output processing unit 503 and an input processing unit 502 as an input / output interface.
  • the output processing unit 503 is connected to various operation devices 70 via the device driver 65.
  • the operating devices 70 include a traveling device group 71 which is a driving-related device and a working device group 72 which is a working-related device.
  • the traveling device group 71 includes, for example, an engine control device, a transmission control device, a braking control device, a steering control device, and the like.
  • the working device group 72 includes a power control device and the like in the harvesting unit H, the threshing device 13, the transport device 16, and the grain discharging device 18.
  • a traveling state sensor group 63, a working state sensor group 64, a traveling operation unit 90, and the like are connected to the input processing unit 502.
  • the traveling state sensor group 63 includes a vehicle speed sensor, an engine rotational speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a parking brake detection sensor, a shift position detection sensor, a steering position detection sensor, and the like.
  • the working state sensor group 64 includes a sensor for detecting the driving state of the harvesting work device (harvesting unit H, threshing device 13, transport device 16, grain discharging device 18, see FIG. 1), and the state of grain grazes and grains A sensor is included to detect
  • the travel operation unit 90 is a general term for an operation tool which is manually operated by the driver and whose operation signal is input to the control unit 5.
  • the travel operation unit 90 includes a main shift operation tool, a steering operation tool, a mode operation tool, an automatic start operation tool, and the like.
  • the mode operation tool has a function of transmitting a command for switching between the automatic operation and the manual operation to the control unit 5.
  • the automatic start operating tool has a function of sending a final automatic start command for starting automatic traveling to the control unit 5.
  • the control unit 5 includes an own vehicle position calculation unit 50, a travel control unit 51, a work control unit 52, a travel mode management unit 53, a boundary line data management unit 54, a separation distance calculation unit 55, a travel locus calculation unit 56, and a travel direction.
  • a calculation unit 57, a work area determination unit 58, and a travel route generation unit 59 are provided.
  • the vehicle position calculation unit 50 calculates the vehicle position in the form of map coordinates (or field coordinates) based on the positioning data sequentially sent from the vehicle position detection module 80. At that time, the position of a specific part of the vehicle body 10 (for example, the center of the vehicle body, the end of the harvesting section H, or the like, see FIG. 1) can be set as the vehicle position.
  • the notification unit 501 generates notification data based on an instruction or the like from each functional unit of the control unit 5 and gives the notification data to the notification device 62.
  • the traveling control unit 51 has an engine control function, a steering control function, a vehicle speed control function, and the like, and supplies a traveling control signal to the traveling device group 71.
  • the work control unit 52 sends a work control signal to the work equipment group 72 in order to control the movement of the harvesting work apparatus (the harvester H, the threshing apparatus 13, the transport apparatus 16, the grain discharging apparatus 18, etc. See FIG. 1). give.
  • the traveling control unit 51 includes a manual traveling control unit 511, an automatic traveling control unit 512, a vehicle speed management unit 513, and a traveling route setting unit 514.
  • automatic traveling modes are set, and in order to perform a manual driving, manual traveling modes are set.
  • Such a travel mode is managed by the travel mode management unit 53.
  • the automatic travel control unit 512 controls the traveling device group 71 by generating a control signal for changing the vehicle speed including automatic steering and stop.
  • the control signal related to automatic steering the azimuth deviation and positional deviation between the target travel route set by the travel route setting unit 514 and the own vehicle position calculated by the own vehicle position calculation unit 50 are eliminated Generated on
  • the control signal related to the vehicle speed change is generated based on the preset vehicle speed value.
  • the travel route set by the travel route setting unit 514 is generated by a route calculation algorithm registered in the travel route generation unit 59.
  • the manual travel control unit 511 When the manual travel mode is selected, the manual travel control unit 511 generates a control signal based on the operation by the driver and controls the traveling device group 71 to realize the manual driving.
  • the travel route calculated by the travel route generation unit 59 can be used for guidance for the combine to travel along the travel route, even in the case of manual driving.
  • the work area determination unit 58 determines an already-cut area (peripheral area SA), an uncut area (work target area CA), and the like from the harvesting work performed with a predetermined work width.
  • the boundary line data management unit 54, the separation distance calculation unit 55, the travel locus calculation unit 56, the traveling direction calculation unit 57, and the vehicle speed management unit 513 function to perform control to avoid contact with the straw which is the boundary line of the field. Do.
  • the travel locus calculation unit 56 calculates a travel locus by plotting the vehicle position calculated by the vehicle position calculation unit 50 over time.
  • the traveling direction calculation unit 57 calculates the traveling direction of the vehicle body 10 from the traveling locus (instant traveling locus) in a minute time in the traveling locus calculation unit 56.
  • the traveling direction calculation unit 57 can also calculate the traveling direction based on the direction data included in the output data from the inertia measurement module 82.
  • the boundary line data management unit 54 is a member on the ridge side of the vehicle body 10 (outer end of the harvest area H) obtained when the combine travels along the boundary line between the ridge scene and the ridge (the boundary line of the field).
  • the boundary line data indicating the map position of the field boundary line is generated and managed based on the traveling locus of
  • the boundary line data management unit 54 sets the work boundary line between the already cut area (the outer circumference area SA; the already work area) and the uncut area (the work target area CA; the unworked area) from the traveling locus of the vehicle body 10 on which the work travels. Also generates work boundary data as shown.
  • boundary line data generated through the actual round trip of the combine is referred to as real boundary line data.
  • the boundary line data management unit 54 can also download and manage the boundary line data of the field included in the field information from the management computer and the external communication terminal.
  • the boundary line data thus given in advance is referred to as reference boundary line data.
  • the separation distance calculation unit 55 calculates the separation distance to the border line of the field or the work boundary line from the vehicle position calculated by the vehicle position calculation unit 50 and the traveling direction calculated by the traveling direction calculation unit 57. . This separation distance is used to prevent the combine from touching the weir and to inadvertently enter the uncut area (unworked area). It is necessary to calculate the distance to a specific part. That is, the separation distance calculation unit 55 records the outer shape of the vehicle body 10 (including the devices and devices attached to the vehicle body 10), and in consideration of the outer shape, the boundary or work boundary and the vehicle 10 and The distance between is calculated as the separation distance.
  • the separation distance calculation unit 55 uses actual boundary line data as reference line data in preference to reference boundary line data. Until the actual boundary line data is generated, that is, during the rounding, the separation distance is calculated using the reference boundary line data, and when the actual boundary line data is generated by the rounding, the actual boundary line data is used. Calculate the separation distance.
  • the vehicle speed management unit 513 manages the vehicle speed in accordance with the separation distance calculated by the separation distance calculation unit 55.
  • the vehicle speed management unit 513 has a look-up table for deriving the vehicle speed limit from the separation distance. As the separation distance becomes shorter, the derived vehicle speed limit becomes lower.
  • the vehicle speed manager 513 outputs a deceleration command so that the current vehicle speed becomes the limited vehicle speed. Furthermore, when the separation distance falls below the preset limit distance, the vehicle speed limit becomes zero, and the vehicle speed management unit 513 outputs a vehicle stop command. In other words, the vehicle speed management unit 513 determines the limit vehicle speed when traveling approaching the boundary line.
  • control information flow shown in FIG. 5 will be used to explain the flow of control for avoiding contact with straw and accidental entry into an unworked area (contact with agricultural products).
  • the combine carries out a traveling round of the field by manual operation.
  • the vehicle position calculation unit 50 calculates the vehicle position based on the positioning data output from the vehicle position detection module 80.
  • the traveling locus calculation unit 56 calculates a traveling locus and an instantaneous traveling locus from the vehicle position.
  • the traveling direction calculation unit 57 calculates a traveling direction based on the instantaneous traveling locus from the traveling locus calculation unit 56.
  • the boundary line data management unit 54 calculates boundary line data from the traveling locus when the roundabout traveling on the outermost circumference is completed.
  • the boundary line data management unit 54 also calculates work boundary line data.
  • the work area determination unit 58 determines the outer peripheral area SA and the work target area CA based on the traveling locus in the lap traveling received from the traveling locus calculation unit 56 when the lap traveling is completed.
  • the outermost line of the outer peripheral area SA is the outline of the bird's-eye view, that is, the boundary line of the field, and the inner area defined by the innermost line of the outer peripheral area SA is the work target area CA where work travel is performed automatically.
  • the travel route generation unit 59 generates a travel route for performing automatic travel as shown in FIG. 3 based on the outer peripheral area SA and the work target area CA determined by the work area determination unit 58.
  • the generated travel route is managed by the travel route setting unit 514.
  • the boundary line data management unit 54 updates the operation boundary line data each time the work travel is performed.
  • the distance between the vehicle position calculated by the vehicle position calculation unit 50, the traveling direction calculated by the traveling direction calculation unit 57, the boundary line data and the work boundary line data managed by the boundary line data management unit 54 are calculated. It is sent to the part 55.
  • the separation distance calculation unit 55 sets the vertical separation distance from the vehicle body 10 to the boundary line of the field in the traveling direction as the separation distance based on the vehicle position, the traveling direction, the boundary line data, and the outer shape of the vehicle body 10. calculate. More specifically, the separation distance calculation unit 55 calculates the distance between the front end of the vehicle body 10 and the boundary when traveling forward as the separation distance (vertical separation distance), and the distance between the rear end of the vehicle 10 and the boundary during reverse travel. Is calculated as the separation distance (vertical separation distance).
  • the separated distance calculation unit 55 determines from the vehicle body 10 in the vehicle body transverse direction orthogonal to the traveling direction based on the vehicle position, the traveling direction, the boundary line data, the work boundary line data, and the outer shape of the vehicle body 10. Calculate the lateral separation distance to the boundary or work boundary as the separation distance.
  • the separation distance calculated by the separation distance calculation unit 55 is sent to the vehicle speed management unit 513.
  • the separation distance may be notified to the driver or the supervisor through the notification unit 501 and the notification device 62.
  • the vehicle speed management unit 513 determines that the separation distance falls within the deceleration start distance range, the stop distance range, and the automatic travel prohibition distance range, according to the range that is suitable. It outputs a vehicle speed limit command including a deceleration command or a stop command, and further an automatic travel prohibition command.
  • the traveling control unit 51 decelerates or stops the vehicle body 10, and further, forcibly prohibits automatic traveling, whereby contact with the boat, that is, the vehicle body 10 comes into a field Avoid crossing the boundaries of
  • the separation distance is the vertical separation distance.
  • a first alerting distance L1 defining the stopping distance range and a second alerting distance L2 defining the deceleration start distance range are set in the forward direction of travel direction of the combine.
  • a special warning distance L0 is set which defines an automatic travel prohibited distance range for prohibiting automatic travel.
  • the separation distance is indicated by D.
  • a vehicle speed that decreases as the distance decreases is set as the limited vehicle speed.
  • a deceleration command for limiting the vehicle speed to 1.0 m / s is output. If the calculated separation distance is the first alert distance L1, a deceleration command for limiting the vehicle speed to 0.5 m / s (limit vehicle speed) is output. If the calculated separation distance is smaller than the second warning distance L2 and larger than the first warning distance L1, according to the decreasing function that decreases from 1.0 m / s to 0.5 m / s (speed limit) as the distance decreases. The deceleration command for limiting the vehicle speed to the above value is output. Furthermore, when the separation distance reaches less than the first warning distance L1, a stop command is output as a vehicle speed limit command.
  • the vehicle speed restriction command is not output. If the separation distance is shorter than the special caution distance L0, the automatic travel prohibition command is output, and if the travel mode is the automatic travel mode, the automatic travel mode is canceled and the automatic travel is forcibly prohibited. Therefore, if the separation distance is shorter than the special warning distance L0, the combine is operated manually.
  • the above-mentioned special alerting distance L0, the first alerting distance L1, and the second alerting distance L2 may be fixed values or variable values.
  • the special alert distance L0, the first alert distance L1, and the second alert distance L2 are configured to be changed according to the vehicle speed will be shown below.
  • the special alert distance L0 When traveling at a vehicle speed of 2.0 m / s, the special alert distance L0 is 1.0 m, the first alert distance L1 is 2.0 m, and the second alert distance L2 is 4.0 m. 2) When traveling at a vehicle speed of 1.5 m / s, the special alert distance L0 is 0.7 m, the first alert distance L1 is 1.5 m, and the second alert distance L2 is 2.5 m.
  • the special alert distance L0, the first alert distance L1, and the second alert distance L2 increase as the vehicle speed increases, and the special alert distance L0, the first alert distance L1, and the second alert distance L2 decrease as the vehicle speed decreases.
  • at least one of the special alert distance L0, the first alert distance L1, and the second alert distance L2 may be configured to be changed according to the vehicle speed.
  • the change of the special alert distance L0, the first alert distance L1, and the second alert distance L2 depending on the vehicle speed may be changed stepwise according to the vehicle speed or may be changed steplessly.
  • the separation distance is set so that the restriction (deceleration) of the vehicle speed gradually (steplessly) increases as the separation distance becomes smaller. It may be configured to perform deceleration by
  • FIG. 6 Another form of the relationship between the separation distance and the vehicle speed limit command and the automatic travel prohibition command shown in FIG. 6 is shown in FIG.
  • a special alerting distance L0, a first alerting distance L1, a second alerting distance L2, and a third alerting distance L3 are set in the forward direction of advance of the combine.
  • the separation distance is indicated by D.
  • the vehicle speed limit command is not output.
  • the separation distance is equal to or less than the third warning distance L3 and larger than the second warning distance L2 (this area is referred to as a first deceleration start distance range)
  • the vehicle speed is limited to 1 m / s as a vehicle speed limit command.
  • a deceleration command is output.
  • a vehicle speed of 0.5 m / s as a fixed value is allocated to the distance range between the first alert distance L1 and the second alert distance L2, and the second alert distance L2 is
  • the third embodiment is different from the embodiment of FIG. 6 in that the vehicle speed as a fixed value is assigned 1 m / s to the distance range between the third warning distance L3 and the third warning distance L3.
  • the third alert distance L3 corresponds to the second alert distance L2 in the embodiment of FIG. 6, and the second alert distance L2 is the second alert in the embodiment of FIG. It is an intermediate distance between the distance L2 and the first warning distance L1.
  • the first warning distance L1 and the special warning distance L0 are the same as those in the embodiment of FIG.
  • at least one or all of the special alert distance L0, the first alert distance L1, the second alert distance L2, and the third alert distance L3 described above may be a constant value, or may be changed according to the vehicle speed May be a variable value.
  • a lateral separation distance which is a distance from the vehicle body 10 to the boundary line or the work boundary line in the transverse direction of the vehicle body
  • E a lateral separation distance
  • a first horizontal warning distance M1 a first horizontal warning distance M1
  • a second horizontal warning distance M2 a special horizontal warning distance M0 are set in a region in the vehicle transverse direction from the vehicle body 10.
  • warning distances are set on the left and right sides of the vehicle body 10, but only the warning distance on the left side is shown in FIG.
  • a vehicle speed that decreases as the distance decreases is set as the limited vehicle speed between the first horizontal warning distance M1 and the second horizontal warning distance M2.
  • a deceleration command is output in which the vehicle speed is limited to a speed limit of about 1.0 m / s to 2.0 m / s.
  • a deceleration command for limiting the vehicle speed to a limited vehicle speed of about 0.5 m / s to 0.9 m / s is output.
  • a stop command is output as a vehicle speed limit command. If the separation distance is larger than the second horizontal warning distance M2, the vehicle speed limit command is not output. If the separation distance is shorter than the special horizontal warning distance M0, the automatic travel prohibition command is output, and the automatic travel mode is forcibly canceled. Therefore, if the separation distance is shorter than the special horizontal warning distance M0, the combine will be operated manually.
  • the special horizontal alerting distance M0, the first horizontal alerting distance M1, and the second horizontal alerting distance M2 described above may be constant values, or variable values that are changed according to the vehicle speed. It may be
  • the limitation control using the lateral separation distance and the vehicle speed described above can be divided into control in the work traveling state and control in the non-work traveling state.
  • the work traveling state a state in which the vehicle body 10 travels while harvesting a grain gutter in an unworked region, and an already-worked in order to shift from the unworked region where the vehicle body 10 performed mowing travel to the next unworked region It includes the state of U-turn traveling in the area.
  • the non-operation traveling state includes the state in which the above-described separation traveling and return traveling are performed. In non-work travel, the vehicle body 10 usually travels at a higher speed than work travel.
  • At least one or all of M1 and the second horizontal warning distance M2 may be configured to be large.
  • Each functional unit shown in FIG. 4 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with other functional units or may be divided into a plurality of functional units. Further, among the functional units constructed in the control unit 5, the vehicle speed management unit 513, the traveling mode management unit 53, the boundary line data management unit 54, the separated distance calculation unit 55, the traveling locus calculation unit 56, and the traveling direction calculation unit 57 One of the work area determination unit 58 and the travel route generation unit 59 is built in the portable communication terminal 4 (such as a tablet computer) that can be carried and brought into a combine, and a control unit via wireless or in-vehicle LAN A configuration that exchanges data with 5 may be adopted.
  • the portable communication terminal 4 such as a tablet computer
  • the supervisor manually operates the combine and, as shown in FIG. 2, harvests and travels along the border of the field at the outer peripheral portion in the field, Thereafter, the travel route is calculated and switched to automatic driving.
  • the present invention is not limited to this, and may be an operation method in which the combine is automatically operated from the beginning and switched to the manual operation when a special situation occurs.
  • the straight or substantially straight traveling route may be operated automatically, and the traveling route accompanied by a sharp turn such as turning may be a manually operated driving method.
  • the present invention can be used not only for ordinary type combine but also for self-eliminating type combine. Moreover, it can utilize also for various harvest machines, such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
  • a general-purpose combine will be described as a harvester which is an example of a work vehicle adopting the work vehicle collision warning system of the present invention.
  • “front” (direction of arrow F shown in FIG. 9) means front in the vehicle longitudinal direction (traveling direction) unless otherwise noted
  • “rear” (arrow B shown in FIG. 9) Direction) means the rear in the longitudinal direction (traveling direction) of the vehicle.
  • the lateral direction or the lateral direction means a transverse direction of the vehicle (vehicle width direction) orthogonal to the longitudinal direction of the vehicle.
  • “Up” (direction of arrow U shown in FIG. 9) and “down” (direction of arrow D shown in FIG. 9) are positional relationships in the vertical direction (vertical direction) of the vehicle body, Show.
  • the combine has a car body 210, a traveling device 211 of a crawler type, an operation unit 212, a threshing device 213, a grain tank 214, a harvesting unit H, a conveying device 216, a grain discharging device 218, and an own vehicle.
  • a position detection module 280 is provided.
  • the traveling device 211 is provided at the lower part of the vehicle body 210.
  • the combine is configured to be self-propelled by the traveling device 211.
  • the driving unit 212, the threshing device 213, and the grain tank 214 are provided on the upper side of the traveling device 211 and constitute an upper portion of the vehicle body 210.
  • the driving unit 212 can be used by a driver driving a combine and a supervisor monitoring a combine operation. Usually, the driver and the supervisor are combined. When the driver and the monitor are different persons, the monitor can monitor the combine operation from the outside of the combine.
  • the grain discharging device 218 is connected to the rear lower portion of the grain tank 214.
  • the vehicle position detection module 280 is attached to the front upper portion of the driver 212.
  • the harvester H is provided at the front of the combine. Then, the transport device 216 is connected to the rear side of the harvesting unit H.
  • the harvester H also has a cutting mechanism 215 and a reel 217.
  • the cutting mechanism 215 reaps the field crop of the field.
  • the reel 217 scrapes the cropping object of harvest while being rotationally driven.
  • the harvesting unit H harvests cereal grains (a kind of crop) in the field.
  • a combine traveling can carry out work traveling which travels by traveling device 211, while harvesting the grain of a field by harvesting part H.
  • the cropped rice straw which has been cut by the cutting mechanism 215 is transported by the transport device 216 to the threshing device 213.
  • the reaping grain is threshed.
  • the grains obtained by the threshing process are stored in a grain tank 214.
  • the grains stored in the grain tank 214 are discharged to the outside by the grain discharging device 218.
  • the communication terminal 202 is disposed.
  • the communication terminal 202 is fixed to the driver 212.
  • the present invention is not limited to this, and the communication terminal 202 may be configured to be attachable to and detachable from the operation unit 212, or may be located outside the combine machine.
  • the combine has a function of automatically traveling along the set travel route, and includes a vehicle position detection module 280 to calculate the vehicle position on the map.
  • the host vehicle position detection module 280 includes a satellite navigation module 281 and an inertial navigation module 282 (see FIG. 14).
  • the satellite navigation module 281 receives a global navigation satellite system (GNSS) signal (including a GPS signal) transmitted from the artificial satellite GS, and outputs positioning data for calculating the vehicle position.
  • GNSS global navigation satellite system
  • the inertial navigation module 282 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction.
  • the inertial navigation module 282 is used to supplement the vehicle position calculation by the satellite navigation module 281.
  • the inertial navigation module 282 can also be omitted.
  • the vehicle position detection module 280 acquires positioning data at least using satellite navigation.
  • combine is an agricultural work vehicle that harvests crops in the field
  • using laser radar or ultrasonic sensors to detect the position of the vehicle causes the crop to be in the way and the detection accuracy of field boundaries such as straw etc. It may fall.
  • the vehicle position detection module 280 acquires positioning data using satellite navigation, since it is hardly affected by agricultural products, utility poles, etc. existing between the work vehicle and the boundary (such as a fence). Since it is a thing, it can detect the vehicle position certainly.
  • the driver / watcher In the harvest operation by the combine, the driver / watcher first operates the combine manually, and performs harvest traveling on the perimeter of the field so as to go around along the border of the field. As a result, as shown in FIG. 10, the area which has become the existing area (existing area) is set as the outer peripheral area SA. Then, the area left as the uncut ground (unworked place) inside the outer peripheral area SA is set as the work target area CA.
  • FIG. 10 shows an example of the outer peripheral area SA and the work target area CA.
  • the outer peripheral area SA is used as a space for the combine to turn when the harvest traveling is performed in the work target area CA. Further, the outer peripheral area SA is also used as a space for movement, such as when moving to a discharge place of grain or after moving to a fuel supply place after the harvest traveling is once finished. Therefore, in order to secure the width of the outer peripheral area SA to a certain extent, the driver travels the combine three to four turns. This circular traveling may also be performed by automatic traveling.
  • FIG. 10 shows a mesh line group which is an example of such a travel route.
  • the mesh line group is generated such that the work target area CA is completely filled with mesh lines (mesh travel path), with the work width of the combine as the mesh interval.
  • a travel route is also set in the outer peripheral area SA, and the combine is used when traveling in the outer peripheral area SA.
  • the travel route set in the outer peripheral area SA includes a departure route, a return route, a direction change route, and the like.
  • the leaving path is used for the combine to leave the work area CA and enter the outer circumference area SA.
  • the return path is used for the combine to return from the outer peripheral area SA to work travel in the work target area CA.
  • the direction change path is used when the mesh travel path in the work target area CA leaves the outer circumferential area SA and enters the next mesh travel path. Since the outer peripheral area SA and the work target area CA change with the progress of the harvesting work, the turning path is also moved accordingly.
  • the shape of the work target area CA may be a polygon other than a quadrangle.
  • the mesh line is generated, for example, as a line parallel to the peripheral line of the field.
  • the mesh lines are not limited to straight lines, and may be curved or bent or meandered.
  • FIG. 11 shows how a plurality of combines are automatically working on a field as the same work site.
  • two combine harvesters are taken up and referred to as a first work vehicle and a second work vehicle, respectively.
  • Each work vehicle has a function of calculating the vehicle position (absolute coordinate value in map coordinates or relative coordinate value in field coordinates) based on satellite positioning by the vehicle position detection module 280.
  • the first work vehicle and the second work vehicle also have a function of exchanging the vehicle position through wireless communication.
  • the transport vehicle CV shown in FIG. 11 collects grains discharged from the combine and transports the grains to a drying facility or the like. At the time of grain discharge, the combine moves to the vicinity of the transport vehicle CV and then discharges the grains to the transport vehicle CV by the grain discharge device 218.
  • FIG. 12 shows an example of a traveling pattern in which the first working vehicle and the second working vehicle automatically travel in cooperation with the work target area CA in which the mesh line group shown in FIG. 10 is set.
  • a plurality of work vehicles travel in coordination. For example, a mode of traveling while freely selecting a preset traveling route, a working vehicle which selects and travels a predetermined traveling route in a predetermined order, and a traveling route freely There is a form etc. where a work vehicle is combined. Even if the vehicle travels along a preset travel path, a form in which a manually traveling work vehicle and an automatically traveling work vehicle are combined or a form in which all the work vehicles travel manually is also possible.
  • a mode is also possible in which all the work vehicles travel manually without the travel route being set in advance.
  • the work vehicle collision warning system according to the invention is applicable.
  • the work vehicle collision alert system according to the invention is useful, as all work vehicles have a possibility of work vehicle collisions, unless they travel in a predetermined order and time in a predetermined travel path.
  • the first work vehicle enters the mesh path L11 from near the lower right apex of the deformed rectangle indicating the work object area CA, and turns left at the intersection of the mesh path L11 and the mesh path L21.
  • the mesh route L21 is entered. Furthermore, it turns to the left at the intersection of the mesh path L21 and the mesh path L32 and enters the mesh path L32. In this way, the first work vehicle performs a swirling traveling in a left turn.
  • the second work vehicle enters the mesh path L31 from near the top left corner of the work target area CA, turns left at the intersection of the mesh path L31 and the mesh path L41, and enters the mesh path L41.
  • the second working vehicle performs a swirling traveling in a left turn.
  • the first working vehicle since the coordinated control is performed such that the traveling track of the second working vehicle gets in between the traveling tracks of the first working vehicle, the first working vehicle has its own working width and the second work.
  • the second traveling vehicle has a spiral traveling with a width equal to the combined working width of the first working vehicle and the working width of the first working vehicle. .
  • the travel trajectory of the first work vehicle and the travel trajectory of the second work vehicle create a double spiral.
  • the second working vehicle leaves the mesh route in the work target area CA in the middle of the work travel, travels around the outer circumference area SA, discharges the harvested material to the transport vehicle CV, and again performs the outer circumference
  • the state of traveling around the area SA and returning to the mesh route in the work target area CA is also shown.
  • the second work vehicle leaves at the intersection of the mesh path L41 and the mesh path L12, and the second work vehicle having advanced to the outer peripheral area SA travels to the parking position along the release path of the outer peripheral area SA, The harvest is discharged to the transport vehicle CV at the parking position.
  • the first work vehicle continues the work travel in the work target area CA while the second work vehicle leaves the work travel in the work target area CA and discharges the harvest.
  • the mesh route L12 is ungrounded (not traveling) due to the detachment of the second working vehicle.
  • the first work vehicle stops traveling on the mesh path L13, travels to the intersection of the mesh path L42 and the mesh path L12, turns left there, and travels on the mesh path L12.
  • the second work vehicle finishes discharging the harvested material the second work vehicle travels leftward along the return route from the parking position along the return route, and enters the mesh route L43 from the left end of the mesh route L43 .
  • the first work vehicle and the second work vehicle approach each other near the intersection of the mesh route L33 and the mesh route L44 on which the first work vehicle is traveling.
  • one of the work vehicles is forcibly stopped. This forced stop is performed by the work vehicle collision warning system according to the invention.
  • FIG. 13 shows a first work vehicle traveling on the mesh route La and a second work vehicle traveling on the mesh route Lb.
  • the mesh route La and the mesh route Lb extend at a crossing angle, but this is only an example of a traveling route on which the first work vehicle and the second work vehicle travel.
  • the travel paths traveled by the respective work vehicles may be the same or may not cross each other.
  • the first work vehicle and the second work vehicle travel in the same direction, and the second work vehicle precedes the first work vehicle.
  • the second work vehicle when the second work vehicle is at a stop, or when the vehicle speed of the first work vehicle is higher than the vehicle speed of the second work vehicle, the possibility of a collision comes out, so the first work vehicle and the second work If the distance between the vehicle and the vehicle becomes short, the first working vehicle can be forcibly stopped. This forced stop is also performed by the work vehicle collision warning system.
  • the control system of the first work vehicle is shown in FIG.
  • the control system of the second work vehicle is basically the same.
  • the control system of a work vehicle such as a combine is variously in charge of signal communication (data communication) with a control unit 205 consisting of electronic control units called multiple ECUs and a wiring network such as an in-vehicle LAN with this control unit 205 It consists of input and output devices.
  • the notification device 262 is a device for notifying a driver or the like of a work traveling state and various warnings, and is a buzzer, a lamp, a speaker, a display or the like.
  • the communication unit 266 is used to exchange data with other work vehicles (other vehicles).
  • the communication unit 266 is also used to exchange data between a management computer and an external communication terminal installed at a remote location.
  • This external communication terminal may be a tablet computer operated by an observer standing in a field or an observer (including a driver) who is riding in a combine, a computer installed at home or at a management office, or even outside a car And the communication terminal 202 brought out.
  • the control unit 205 is a core element of this control system, and is shown as a collection of a plurality of ECUs.
  • a signal from the vehicle position detection module 280 is input to the control unit 205 through the in-vehicle LAN.
  • the control unit 205 includes an output processing unit 2503 and an input processing unit 2502 as an input / output interface.
  • the output processing unit 2503 is connected to various operation devices 270 via the device driver 265.
  • the operating devices 270 include a traveling device group 271 which is a traveling-related device and a working device group 272 which is a working-related device.
  • the traveling device group 271 includes, for example, an engine control device, a transmission control device, a braking control device, a steering control device, and the like.
  • the working device group 272 includes a power control device and the like in the harvesting unit H, the threshing device 213, the transport device 216, and the grain discharging device 218.
  • a traveling state sensor group 263, a working state sensor group 264, a traveling operation unit 290, and the like are connected to the input processing unit 2502.
  • the traveling state sensor group 263 includes a vehicle speed sensor, an engine rotational speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a parking brake detection sensor, a shift position detection sensor, a steering position detection sensor, and the like.
  • the work state sensor group 264 includes a sensor that detects the driving state of the harvest work device (the harvester H, the threshing device 213, the transport device 216, and the grain discharging device 218), and a sensor that detects the state of the grain crucible or grain. It is included.
  • the travel operation unit 290 is a general term for an operation tool which is manually operated by the driver and whose operation signal is input to the control unit 205.
  • the travel operation unit 290 includes a main shift operation tool, a steering operation tool, a mode operation tool, an automatic start operation tool, and the like.
  • the mode operation tool has a function of sending a command for switching between the automatic operation and the manual operation to the control unit 205.
  • the automatic start operating tool has a function of sending a final automatic start command for starting automatic traveling to the control unit 205.
  • the control unit 205 includes a vehicle position calculation unit 250, a travel control unit 251, a work control unit 252, a travel mode management unit 253, a travel route generation unit 254, a travel locus calculation unit 255, a work area determination unit 256, and a collision alert module. 204 is provided.
  • the vehicle position calculation unit 250 calculates the vehicle position in the form of map coordinates (or field coordinates) based on the positioning data sequentially sent from the vehicle position detection module 280. At this time, the position of a specific part of the vehicle body 210 (for example, a vehicle reference point such as the center of the vehicle body) can be set as the vehicle position.
  • the notification unit 2501 generates notification data based on an instruction or the like from each functional unit of the control unit 205, and gives the notification data to the notification device 262.
  • the traveling control unit 251 has an engine control function, a steering control function, a vehicle speed control function, and the like, and supplies a traveling control signal to the traveling device group 271.
  • the work control unit 252 provides a work control signal to the work equipment group 272 in order to control the movement of the harvesting work apparatus (the harvesting unit H, the threshing apparatus 213, the transport apparatus 216, the grain discharging apparatus 218, etc.).
  • the travel control unit 251 includes a manual travel control unit 2511, an automatic travel control unit 2512, and a travel route setting unit 2513.
  • automatic traveling modes are set, and in order to perform a manual driving, manual traveling modes are set.
  • Such a travel mode is managed by the travel mode management unit 253.
  • the automatic travel control unit 2512 When the automatic travel mode is set, the automatic travel control unit 2512 generates a control signal of vehicle speed change including automatic steering and stop, and controls the traveling device group 271.
  • the control signal related to the automatic steering is such that the azimuth deviation and positional deviation between the target traveling route set by the traveling route setting unit 2513 and the own vehicle position calculated by the own vehicle position calculation unit 250 are eliminated. It is generated.
  • the control signal related to the vehicle speed change is generated based on the preset vehicle speed value.
  • the travel route set by the travel route setting unit 2513 is read out from the travel route group (for example, mesh route group) stored in the travel route generation unit 254.
  • the travel route generation unit 254 can generate travel route groups by itself using a route calculation algorithm, but can also download and use those generated by the management computer and the external communication terminal.
  • the manual travel control unit 2511 When the manual travel mode is selected, the manual travel control unit 2511 generates a control signal based on the operation by the driver and controls the traveling device group 271 to realize the manual driving.
  • the travel route calculated by the travel route generation unit 254 can be used for guidance for the combine to travel along the travel route, even in the case of manual driving.
  • the traveling locus calculation unit 255 calculates a traveling locus by plotting the vehicle position calculated by the vehicle position calculation unit 250 over time.
  • the work area determination unit 256 determines an already-cut area (outer peripheral area SA), an uncut area (work target area CA), and the like from the harvest operation performed with a predetermined work width.
  • the collision alert module 204 is a component that plays a central role in the work vehicle collision alert system according to the present invention.
  • the collision alert module 204 includes another vehicle position acquisition unit 241, a travel direction determination unit 242, a vehicle shape management unit 243, a separation distance calculation unit 244, and a collision alert unit 245.
  • the other vehicle position acquisition unit 241 receives the other vehicle position which is the own vehicle position calculated by the own vehicle position calculation unit 250 of the other vehicle sent from the second work vehicle (other vehicle) via the communication unit 266. get.
  • the traveling direction determination unit 242 has a function of determining the traveling direction of the vehicle and a function of acquiring the traveling directions of other vehicles.
  • the traveling direction of the own vehicle determines the traveling direction of the vehicle body 210 from the traveling locus (instant traveling locus) in a minute time calculated by the traveling locus calculation unit 255.
  • the traveling direction determination unit 242 can also determine the traveling direction based on the direction data included in the output data from the inertial navigation module 282.
  • the traveling direction determination unit 242 receives the traveling direction determined by the traveling direction determination unit 242 of the other vehicle by wireless communication, and manages it as the traveling direction of the other vehicle.
  • the vehicle shape management unit 243 manages vehicle shape data indicating the shapes of the own vehicle and other vehicles.
  • the vehicle shape data is digitized so that the positional relationship with the specific location of the vehicle body 210 calculated by the vehicle position calculation unit 250 can be understood. Therefore, by combining with the traveling direction, it becomes possible to calculate the outlines of the own vehicle and the other vehicle based on the traveling direction. That is, it is possible to calculate the location where the own vehicle collides with another vehicle.
  • the vehicle shape management unit 243 corrects the virtual shape inflated at least on the traveling direction side more than the shape defined by the vehicle shape data. It also has the function of generating it as selected vehicle shape data.
  • the separation distance calculation unit 244 includes the position of the host vehicle (corresponding to the first position that is the coordinate position of the first work vehicle) and the position of the other vehicle (the second position that is the coordinate position of the second work vehicle).
  • the separation distance is calculated based on the traveling direction of the own vehicle, the traveling direction of the other vehicle, the vehicle shape data of the own vehicle, and the vehicle shape data of the other vehicle.
  • the traveling direction and the vehicle shape data are taken into consideration, when the traveling is continued, the separation distance between the accurate portions where the vehicle and the other vehicle first contact with each other is calculated.
  • the collision warning unit 245 outputs an emergency stop signal to stop the vehicle body 210 when the separation distance calculated by the separation distance calculation unit 244 falls within the collision warning distance range. Furthermore, the collision warning unit 245 also has an adjustment function of changing the collision warning distance range according to the traveling state of the work vehicle having a collision possibility, in particular, the vehicle speed. For example, when the own vehicle and the other vehicle travel in the same direction, and the other vehicle precedes the own vehicle, the collision alert distance range is adjusted to be longer as the vehicle speed of the own vehicle is higher.
  • the collision alert distance range becomes longer as the vehicle speed of the own vehicle is higher than the vehicle speed of the other vehicle. It is also possible to adjust.
  • the vehicle speed of the other vehicle can be easily calculated from the position of the other vehicle over time.
  • the traveling control unit 251 stops the vehicle body 210.
  • the notification unit 2501 notifies the inside of the vehicle and the outside of the vehicle of the emergency stop through the notification device 262.
  • the collision alert unit 245 may decelerate the vehicle body 210 by outputting an emergency deceleration signal instead of the emergency stop signal if there is still a margin until the collision between the work vehicles.
  • a first emergency stop signal and a second emergency stop signal are prepared as emergency stop signals, the vehicle body 210 is decelerated by the first emergency stop signal to be output first, and then the second emergency stop signal is output. Control to stop the vehicle 210 may be employed.
  • the collision warning module 204 is provided for each work vehicle (combine).
  • a management computer 2100 capable of exchanging data with each work vehicle (first work vehicle, second work vehicle,...) Through the wireless data communication network has the same function as the collision alert module 204, A method of centrally managing each work vehicle may be adopted.
  • the management computer 2100 includes a work vehicle position acquisition unit 2410, a traveling direction determination unit 242, a separation distance calculation unit 244, and a collision alert unit 245.
  • the work vehicle position acquisition unit 2410 receives from the vehicle position calculation units 250 (first position calculation unit, second position calculation unit,%) Of all work vehicles traveling on the same work site through the wireless data communication network. Receive your vehicle position.
  • the management computer 2100 is provided with a work vehicle management unit 2101 as a database, and the work vehicle information on all work vehicles adopting this work vehicle collision warning system is managed.
  • the work vehicle information also includes vehicle shape data, so the work vehicle management unit 2101 also functions as a vehicle shape management unit 243. Therefore, on the work vehicle side, the collision warning module 204 shown in FIG. 14 is omitted.
  • each work vehicle When work is started, each work vehicle sends its own vehicle position including the work vehicle ID to the management computer 2100.
  • the first position which is the coordinate position of the first work vehicle
  • the second work vehicle is transmitted from the second work vehicle
  • the second position which is the coordinate position of, is sent together with the work vehicle ID of the second work vehicle.
  • the separation distance calculation unit 244 uses the vehicle position sequentially sent from each work vehicle, the traveling direction calculated from the vehicle position, and the vehicle shape data read from the work vehicle management unit 2101 using the work vehicle ID. And the separation distance of all the work vehicles is calculated.
  • the collision alert unit 245 compares each separation distance with the collision warning distance range, and identifies a combination of work vehicles whose separation distance falls within the collision warning distance range. In this specified combination, an emergency stop signal for stopping the vehicle body 210 is transmitted to the work vehicle traveling in the collision direction.
  • the traveling control unit 251 of the work vehicle that has received the emergency stop signal from the management computer 2100 immediately stops the vehicle body 210.
  • the notification unit 2501 notifies the inside of the vehicle and the outside of the vehicle of the emergency stop via the notification device 262 at the same time when the emergency stop signal is output. Note that this work vehicle collision warning control can be performed not only in automatic travel but also in manual travel.
  • the vehicle body 210 is stopped for the work vehicle (following work vehicle) traveling in the collision direction among the combinations of work vehicles whose separation distance falls within the collision warning distance range
  • Emergency stop signal was sent.
  • the emergency stop signal may be sent to both work vehicle combinations where the separation distance falls within the collision alert range.
  • the emergency stop signal may be transmitted only to the work vehicle.
  • each functional unit shown in FIG. 14 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with other functional units or may be divided into a plurality of functional units.
  • the traveling direction determination unit 242 may be left on the work vehicle side, and may transmit the traveling direction whose traveling direction is determined on the work vehicle side to the management computer 2100 together with the own vehicle position.
  • the vehicle shape management unit 243 may be left on the work vehicle side, and the vehicle shape data may be transmitted to the management computer 2100 from the work vehicle side. This form is particularly effective in the case of a work vehicle whose external profile changes during work travel.
  • a portable communication terminal 202 carried by a supervisor who monitors around the work site, instead of constructing the collision alert module 204 in the management computer 2100 such as the WEB server.
  • a configuration may be adopted that is built in a tablet computer or the like and that exchanges data with each control unit 205 using wireless communication.
  • the travel control unit 251 automatically stops the vehicle body 210 when the collision alert unit 245 outputs an emergency stop signal.
  • the work vehicle collision warning system automatically stops the possibility of a collision even if at least one work vehicle is traveling manually or all the work vehicles are traveling manually. It is useful because However, when respecting the driver's intention in manual traveling, only notification of emergency stop may be performed, and the actual stop may be performed by the driver. In addition, even in the case of automatic driving, if the supervisor is seated at the driver's seat and is in a steerable state, the automatic stop mode is forcibly switched to the manual travel mode by the output of the emergency stop signal to notify emergency stop The actual stopping may be performed by the driver.
  • the present invention is applicable not only to ordinary-type combine but also to self-release-type combine.
  • it can be applied to various harvesters such as corn harvester, potato harvester, carrot harvester and sugarcane harvester, and field work vehicles such as rice transplanter and tractor.
  • field work vehicles such as rice transplanter and tractor.
  • lawn mowers and construction machines can be applied to lawn mowers and construction machines.
  • control unit 50 vehicle position calculation unit 51: traveling control unit 511: manual traveling control unit 512: automatic traveling control unit 513: vehicle speed management unit 514: traveling route setting unit 52: work control unit 53: traveling mode management unit 54: boundary line data management unit 55: separation distance calculation unit 56: travel locus calculation unit 57: travel direction calculation unit 58: work area determination unit 59: travel route generation unit 501: notification unit 62: notification device 80: vehicle position Detection module 81: Satellite positioning module 82: Inertial measurement module CA: Work area SA: Outer peripheral area 210: Vehicle body 204: Collision warning module 241: Other vehicle position acquisition unit 242: Traveling direction determination unit 243: Vehicle shape management unit 244: Distance calculation unit 245: collision warning unit 205: control unit 250: own vehicle position Position calculation unit (first position calculation unit, second position calculation unit) 2501: notification unit 2502: input processing unit 2503: output processing unit 251: traveling control unit 2511: manual traveling control unit 2512: automatic traveling control unit 2513: traveling route setting unit 25

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

Provided is an agricultural vehicle having travel control that enables the agricultural vehicle to approach a farm field demarcation, such as an earthen ridge, while avoiding contact with the demarcation. The agricultural vehicle comprises: a demarcation data management unit 54 that manages demarcation data indicating the map location of a demarcation of a farm field; a vehicle location calculation unit 50 that calculates the location of the host vehicle on the basis of positioning data from a vehicle location detection module; a travel direction calculation unit 57 that calculates, from the host vehicle location, the travel direction of the vehicle body; a clearance calculation unit 55 that calculates, on the basis of the travel direction and the vehicle body exterior shape, the vertical clearance from the demarcation to the vehicle body while oriented in the travel direction as the clearance; and a vehicle speed management unit 513 that manages the vehicle speed in accordance with the clearance.

Description

農作業車、作業車衝突警戒システム及び作業車Farm work vehicle, work vehicle collision warning system and work vehicle
 本発明は、農作業車、作業車衝突警戒システム及び作業車に関する。 The present invention relates to an agricultural work vehicle, a work vehicle collision warning system, and a work vehicle.
 (1)従来、圃場を農作業しながら走行する農作業車がある。 (1) Conventionally, there is an agricultural work vehicle that travels while carrying out farming work in a field.
 圃場は、畦等によって外側の領域と境界付けられており、その境界線の内側で種々の農作業が農作業車によって行われる。その際、近年、手動走行だけでなく、自動走行も採用されている。農作業車による農作業では、畦際で方向転換、燃料補給、農作物の排出、農作業用資材の搬入などが行われる。畦は圃場面より高く位置しているので、農作業車が畦に接触する可能性があり、畦際の走行には、注意が必要となる。圃場が畦ではなく、柵や植木などの境界形成部材で境界付けられている場合でも、農作業車が境界形成部材と接触しないように注意する必要がある。 The farmland is bounded by the weirs and the like to the outer area, and inside the border line various agricultural operations are carried out by agricultural vehicles. At that time, not only manual traveling but also automatic traveling has been adopted in recent years. In agricultural work by agricultural work vehicles, direction change, refueling, discharge of agricultural products, delivery of materials for agricultural work, etc. are performed at the very front. Since the boat is located higher than the boat scene, agricultural vehicles may come into contact with the boat, and special care must be taken when traveling. Care must be taken that the agricultural vehicle does not come into contact with the demarcation members, even if the field is not a fence and is bounded by demarcation members such as fences and plants.
 特許文献1による作業車は、畦際領域で方向転換しながら圃場内を走行する走行車体と、前記圃場に対して作業を行う圃場作業装置と、自車位置を示す測位データを出力する測位ユニットとを備えている。この作業車は、畦際領域を残して設定された作業走行経路の始点と終点との間を作業走行し、畦際領域でUターンを行い、作業幅分だけ間隔をあけた次の作業走行経路の始点と終点との間を作業走行する。このような走行を繰り返すことにより、圃場作業が行われていく。その際、測位ユニットによって算出された自車位置と作業走行経路の終点(畦際領域への進入点)の位置とが比較されるので、作業車が畦際領域への進入する前に、または畦際領域へ進入した直後に、減速や停車を行うことができる。 The work vehicle according to Patent Document 1 is a positioning vehicle unit that outputs positioning data indicating a vehicle position, a traveling vehicle body that travels the inside of a field while changing direction in a farthest area, a field work device that performs work on the field, and And have. The work vehicle travels between the start point and the end point of the work travel route set leaving the front region, makes a U-turn in the front region, and carries out the next work travel with an interval equal to the work width. Work travel between the start point and the end point of the route. Field work is carried out by repeating such traveling. At that time, the position of the vehicle calculated by the positioning unit and the position of the end point of the work travel route (the approach point to the frontage area) are compared, so before the work vehicle enters the frontage area, or Immediately after entering the immediate area, it is possible to decelerate or stop.
 (2)従来、複数台の作業車が同一の作業地を作業走行する際の作業車衝突警戒システム、及びその作業車衝突警戒システムを採用した作業車がある。 (2) Conventionally, there are work vehicle collision warning systems when a plurality of work vehicles travel on the same work site, and work vehicles adopting the work vehicle collision warning system.
 特許文献2による自動走行作業車は、衛星測位システムを利用して車体の位置を測位する位置算出手段と、設定した走行経路に沿った自動作業走行を制御する制御装置と、周囲に障害物が存在しないかどうかを検出する障害物検知手段が備えられている。障害物検知手段は赤外線センサや超音波センサで構成されているので、環境条件に応じて検出能力が変動する。このため、環境認識手段として光センサ、外気温度センサ、降雨検知センサが備えられ、それらのセンサからの信号に応じて障害物センサの感度が調整される。障害物検知手段によって、車体の前方や側方や後方に障害物を検出すると、警報を発し、車体の走行速度を低下させたり、車体を停止させたりする。 The automatic traveling work vehicle according to Patent Document 2 includes position calculating means for measuring the position of the vehicle body using a satellite positioning system, a control device for controlling automatic operation traveling along the set traveling route, and an obstacle around the vehicle. An obstacle detection means is provided to detect the presence or absence. Since the obstacle detection means is composed of an infrared sensor or an ultrasonic sensor, the detection capability fluctuates according to the environmental conditions. For this reason, an optical sensor, an outside air temperature sensor, and a rain detection sensor are provided as environment recognition means, and the sensitivity of the obstacle sensor is adjusted according to the signals from those sensors. When an obstacle detection means detects an obstacle in front of, side or back of the vehicle body, an alarm is issued to lower the traveling speed of the vehicle body or stop the vehicle body.
特開2017-123829号公報JP, 2017-123829, A 特開2015-191592号公報JP, 2015-191592, A
 (1)背景技術(1)に対応する課題は、以下の通りである。 (1) Background Art The problems corresponding to (1) are as follows.
 自動走行から手動走行に切り替えてUターンを行う必要がある畦際領域に作業車が進入する前後の時点は、運転者にとって作業上重要であるので、特許文献1による作業車では、必要に応じて、その時点で、減速、警告報知、停車などが行われる。しかしながら、作業車から畦までの距離は算出されていないので、作業車が畦と接触を防ぐための回避制御は行われない。効率のよい農作業を行うためには、作業車をできる限り畦に接近させることも必要であるが、作業車と畦との接触は回避しなければならない。 The work vehicle according to Patent Document 1 needs to switch from automatic travel to manual travel and perform a U-turn before and after the work vehicle enters the immediate area before and after the approach, which is necessary for the driver. At that time, deceleration, warning notification, stopping, etc. are performed. However, since the distance from the work vehicle to the weir is not calculated, the avoidance control for preventing the work vehicle from coming in contact with the weir is not performed. In order to perform efficient agricultural work, it is also necessary to bring the work vehicle as close to the weir as possible, but contact between the work vehicle and the weir should be avoided.
 このような実情から、畦等の境界線との接触を回避しながらも、その境界線に接近することができる走行制御を有する農作業車が要望されている。 From such a situation, there is a demand for an agricultural vehicle having travel control that can approach the boundary while avoiding contact with the boundary such as a weir.
 (2)背景技術(2)に対応する課題は、以下の通りである。 (2) Background Art The problems corresponding to (2) are as follows.
 複数の作業車が協調して作業を行う場合には、互いの作業車を障害物として検知することで、作業車同士の衝突を回避することができる。しかしながら、人などの障害物に比べ、作業車は大きな反射体となるので、同一の感度で両者を検出しようとすると、感度過剰や感度不足といった問題が生じる可能性がある。その結果、複数の作業車が作業走行を行う際に、誤検出が生じる恐れがある。このため、互いの作業車の存在を正確に検知して作業車同士の衝突を回避させる作業車衝突警戒システムが必要となる。 When a plurality of work vehicles work in cooperation, a collision between the work vehicles can be avoided by detecting the work vehicles as obstacles. However, since the work vehicle becomes a large reflector compared to an obstacle such as a person, there is a possibility that problems such as excessive sensitivity or insufficient sensitivity may occur when detecting both with the same sensitivity. As a result, when a plurality of work vehicles carry out work travel, erroneous detection may occur. For this reason, it is necessary to accurately detect the presence of each other's work vehicles and to avoid a collision between the work vehicles.
 (1)課題(1)に対応する解決手段は、以下の通りである。 (1) The solution means corresponding to the problem (1) is as follows.
 本発明による農作業車は、圃場の境界線の地図位置を示す境界線データを管理する境界線データ管理部と、衛星航法を用いて測位データを取得する自車位置検出モジュールと、前記測位データに基づいて自車位置を算出する自車位置算出部と、前記自車位置から車体の走行方位を算出する走行方位算出部と、前記走行方位と前記車体の外形とに基づいて前記走行方位での前記車体から前記境界線までの縦離間距離を離間距離として算出する離間距離算出部と、前記離間距離に応じて車速を管理する車速管理部とを備える。 The agricultural working vehicle according to the present invention includes a boundary data management unit that manages boundary data indicating a map position of a field boundary, a vehicle position detection module that acquires positioning data using satellite navigation, and the positioning data. Based on the own vehicle position calculation unit that calculates the own vehicle position, a traveling direction calculation unit that calculates the traveling direction of the vehicle body from the own vehicle position, and in the traveling direction based on the traveling direction and the outer shape of the vehicle body A separation distance calculation unit that calculates a vertical separation distance from the vehicle body to the boundary as a separation distance, and a vehicle speed management unit that manages the vehicle speed according to the separation distance.
 この構成によれば、衛星航法に基づいて得られた測位データから算出された走行方位と自車位置とを用いて、境界線データ管理部によって管理されている圃場の境界線と車体との間の離間距離が求められる。その際、衛星電波は、レーザレーダや超音波センサに比べて、作業車と境界線(畦など)との間に存在する農作物や電柱などの影響をほとんど受けないので、有利である。車速管理部が、算出された離間距離に応じて車速を管理しているので、作業車が境界線に達する前に、減速や停車を行うための警告を行うことや、強制的に減速や停車を行うことができる。これにより、農作業車は、境界線を形成している畦などと接触すること、あるいは境界線を超えることを回避しながら、走行することができる。 According to this configuration, using the traveling direction calculated from the positioning data obtained based on satellite navigation and the vehicle position, the distance between the field border and the vehicle body managed by the border line data managing unit The separation distance of the At that time, satellite radio waves are more advantageous than laser radars and ultrasonic sensors because they are hardly affected by agricultural crops, utility poles, etc. existing between the work vehicle and the boundary line (such as a weir). Since the vehicle speed management unit manages the vehicle speed according to the calculated separation distance, a warning for decelerating or stopping before the work vehicle reaches the boundary line, or the vehicle is forcibly decelerated or stopped It can be performed. In this way, the agricultural vehicle can travel while avoiding contact with or forming a boundary line, or crossing the boundary line.
 本発明の好適な実施形態の1つでは、前記境界線データ管理部は、前記境界線に沿った周回走行時に前記自車位置算出部から得られた走行軌跡に基づいて前記境界線データを生成する。この構成では、離間距離の算出のために用いられる境界線データは、農作業車が実際に行った境界線に沿った周回走行時に得られた走行軌跡に基づいて生成される。つまり、この走行軌跡を算出するために用いられた自車位置と、離間距離の算出時にも用いられる自車位置は、同じ自車位置検出モジュール及び同じ自車位置算出部によって算出される。その際、自車位置算出に関連する機器に、固有の癖のような特性があるがゆえに、自車位置算出部によって算出される自車位置が、絶対的な地図座標位置とずれている場合がある。しかしながら、この構成では、境界線データのため座標位置と走行中の自車位置の座標位置とが、同一の機器で用いて算出されるので、そのような誤差を無視することができ、結果的に正確な離間距離が得られる。 In one of the preferred embodiments of the present invention, the boundary line data management unit generates the boundary line data based on the traveling locus obtained from the vehicle position calculating unit during round trip along the boundary line. Do. In this configuration, the boundary line data used for calculating the separation distance is generated based on the travel locus obtained during the round trip along the boundary line actually performed by the agricultural vehicle. That is, the vehicle position used to calculate the travel locus and the vehicle position used also when calculating the separation distance are calculated by the same vehicle position detection module and the same vehicle position calculation unit. At that time, when the device related to the vehicle position calculation has an inherent characteristic such as a habit, the vehicle position calculated by the vehicle position calculation unit deviates from the absolute map coordinate position There is. However, in this configuration, since the coordinate position and the coordinate position of the own vehicle position while traveling are calculated by using the same device because of boundary data, such an error can be ignored, and as a result, Accurate separation distance is obtained.
 本発明の好適な実施形態の1つでは、前記周回走行は作業走行であり、前記作業走行による既作業領域の内側に残された作業対象領域を自動走行で作業するための走行経路を生成する走行経路生成部が備えられている。この構成では、境界線データを生成するための周回走行においても作業が行われるので、空走によって周回走行を行う場合と比較して、作業効率がよい。また、作業を行いながらの周回走行の終了により、残された作業対象領域の形状も自車位置算出部による自車位置に基づいて算出されるので、その形状に適切な走行経路が走行経路生成部によって作成される。これにより、無駄のない圃場作業が実現する。 In one of the preferred embodiments of the present invention, the traveling travel is work travel, and a travel route for working the work target area left inside the existing work area by the work travel is automatically generated. A travel route generation unit is provided. In this configuration, the work is also performed in the round trip to generate the boundary line data, and therefore, the work efficiency is higher than the case where the round trip is performed by the free running. In addition, since the shape of the remaining work target area is also calculated based on the vehicle position by the vehicle position calculation unit at the end of the round trip while working, the travel route appropriate for the shape is generated. Created by the department. In this way, wasteful field work is realized.
 収穫作業や田植作業や施肥作業などの農作業の場合、作業が行われた領域(既作業領域)と、作業が行われてない領域(未作業領域)は、明確に区別される。既作業領域は、給油や収穫物排出などのために一時的に作業を中止して畦際に設定された一時停車位置に向かうための離脱走行や、一時停車位置から再び作業を開始する復帰走行のために利用される。このような作業車の既作業領域での走行においては、車体が畦と干渉したり、未作業領域に入り込んだりすることを避けなくてはならない。特に、速い速度で畦や未作業領域近くを走行する場合には、車速を制限することが好ましい。このことから、本発明の好適な実施形態の1つでは、前記境界線データ管理部は、前記圃場における未作業領域と既作業領域との作業境界線の位置を示す作業境界線データを管理し、前記離間距離算出部は、前記走行方位と前記車体の外形とに基づいて前記走行方位に直交する車体横断方向での前記車体から前記境界線及び前記作業境界線の少なくとも一方までの横離間距離を前記離間距離として算出する。 In the case of agricultural work such as harvest work, rice planting work and fertilization work, the area in which the work is performed (existing work area) and the area in which the work is not performed (unworked area) are clearly distinguished. In the existing work area, for the purpose of stopping the work temporarily for refueling and discharge of the harvest, leaving travel for heading to the temporary stopping position set at the time of the end, and return traveling starting again from the temporary stopping position. Used for In traveling of the work vehicle in the already-worked area, it is necessary to avoid that the vehicle body interferes with the heel and enters the unworked area. In particular, it is preferable to limit the vehicle speed when traveling near a boat or an unworked area at a high speed. From this, in one of the preferred embodiments of the present invention, the boundary data management unit manages work boundary data indicating a position of a work boundary between the unworked area and the already-worked area in the field. The separation distance calculation unit is a lateral separation distance from the vehicle body to at least one of the boundary line and the work boundary line in a vehicle body transverse direction orthogonal to the traveling direction based on the traveling direction and the outer shape of the vehicle body. Is calculated as the separation distance.
 境界線データは、圃場の外形を示す地図データ、あるいは以前の作業で用いられた圃場外形データから生成することができる。農作業車が、最初に行う周回走行では、予め与えられる境界線データ(ここでは参考境界線データと称せられる)を用いて離間距離を算出することで、畦等の圃場の境界線との接触を回避することができる。周回走行が終了すれば、自ら生成した境界線データ(ここでは実境界線データと称せられる)を用いて離間距離を算出することができる。さらに、周回走行によって形成された既作業領域の内周の位置座標から、既作業領域と未作業領域との間の実境界線データを生成することも可能である。このことから、本発明による好適な実施形態の1つでは、前記境界線データ管理部は、予め与えられている前記圃場の前記境界線を示すデータを参考境界線データとして管理するとともに、前記周回走行を通じて算出された前記境界線データを実境界線データとして管理し、前記周回走行時には前記参考境界線データに基づいて前記離間距離が算出され、前記自動走行時には実境界線データに基づいて前記離間距離が算出される。 Boundary line data can be generated from map data indicating the field outline or field outline data used in the previous work. In the first round trips conducted by agricultural vehicles, the separation distance is calculated using boundary line data (referred to as reference boundary line data here) provided in advance, so that contact with a field boundary line such as straw etc. It can be avoided. When the round trip is finished, the separation distance can be calculated using boundary line data generated by itself (herein referred to as actual boundary line data). Furthermore, it is also possible to generate actual boundary line data between the work area and the non-work area from the position coordinates of the inner periphery of the work area formed by the circular traveling. From this, in one of the preferred embodiments according to the present invention, the boundary line data management unit manages, as reference boundary line data, data indicating the boundary line of the field, which is given in advance. The boundary line data calculated through traveling is managed as actual boundary line data, and the separation distance is calculated based on the reference boundary line data during the lap traveling, and the separation distance is calculated based on the actual boundary line data during the automatic traveling. The distance is calculated.
 畦等の圃場の境界線に接近しながらも、境界線との接触を確実に回避するためには、境界線に接近する農作業車の車速が重要となる。高速の場合、制動距離が長くなり、制動が間に合わず、作業車と畦等との接触が回避できない可能性がある。しかし、確実に停車できる速度と距離との関係を、算出された離間距離に当てはめて、緊急停車を含む車速の制限を行うことで、上記問題は解決できる。このことから、本発明の好適な実施形態の1つでは、前記車速管理部は、前記離間距離に応じて車速を制限する車速制限指令を出力する。 In order to reliably avoid contact with the border while approaching the border of a field such as straw, the speed of an agricultural vehicle approaching the border becomes important. In the case of high speed, the braking distance may be long, braking may not be in time, and contact between the work vehicle and the rod may not be avoided. However, the above problem can be solved by applying the relationship between the speed at which the vehicle can reliably stop and the distance to the calculated separation distance to limit the vehicle speed including the emergency stop. From this, in one of the preferred embodiments of the present invention, the vehicle speed management unit outputs a vehicle speed limitation command for limiting the vehicle speed according to the separation distance.
 具体的な車速制限指令は、車体の減速と車体の停止とである。したがって、この農作業車の具体的な実施形態の1つでは、前記車速管理部は、前記離間距離が予め設定された減速開始距離範囲に入ると前記車体の減速を行う。具体的な実施形態の他の1つでは、前記車速管理部は、前記離間距離が予め設定された停車距離範囲に入ると前記車体の停止を行う。減速や制動による機体の挙動は、その時の車速によって異なる。このことから、前記減速開始距離範囲及び前記停車距離範囲は、現車速に応じて変更されることが好ましい。 Specific vehicle speed limit commands are deceleration of the vehicle body and stop of the vehicle body. Therefore, in one of the specific embodiments of the agricultural working vehicle, the vehicle speed management unit decelerates the vehicle body when the separation distance enters a preset deceleration start distance range. In another one of the specific embodiments, the vehicle speed management unit stops the vehicle body when the separation distance enters a preset stop distance range. The behavior of the vehicle due to deceleration and braking differs depending on the vehicle speed at that time. From this, it is preferable that the deceleration start distance range and the stop distance range be changed according to the current vehicle speed.
 この農作業車が自動走行制御部を備え、自動走行が可能な場合、車速制限指令が出力されるような緊急時には、自動走行を強制的に中止することが好ましい。このため、本発明の好適な実施形態の1つでは、自動走行制御部が備えられており、自動走行中において、前記離間距離が予め設定された自動走行禁止距離範囲に入ると、前記車速管理部は自動走行を禁止する。 If this agricultural vehicle has an automatic travel control unit and automatic travel is possible, it is preferable to forcibly stop automatic travel in an emergency where a vehicle speed limit command is output. Therefore, in one of the preferred embodiments of the present invention, an automatic travel control unit is provided, and during automatic travel, the vehicle speed management is performed when the separated distance falls within a preset automatic travel prohibited distance range. Department prohibits automatic running.
 車体が境界線に接近した場合、まずは減速し、その後に制動をかけて停車させることになる。さらに、強制停車に至った状況からリカバリーするためには手動での走行が適している。このことから、本発明の好適な実施形態では、前記自動走行禁止距離範囲は前記停車距離範囲より短く設定され、さらに、前記停車距離範囲は前記減速開始距離範囲より短く設定されている。 When the vehicle body approaches the boundary, it first decelerates and then brakes and stops. Furthermore, manual travel is suitable for recovery from the situation where a forced stop has been reached. From this, in the preferred embodiment of the present invention, the automatic travel prohibited distance range is set shorter than the stop distance range, and the stop distance range is set shorter than the deceleration start distance range.
 農作業車の場合、方向転換などにおいて後進を用いることが少なくない。このため、上述した、離間距離に応じた車速管理や自動走行の中止は、後進時にも適用されることが好ましい。したがって、本発明の好適な実施形態の1つでは、前記離間距離算出部は、前進走行時には前記車体の前端と前記境界線までの距離を前記離間距離として算出し、後進走行時には前記車体の後端と前記境界線までの距離を前記離間距離として算出する。 In the case of agricultural vehicles, it is common to use reverse in direction changes and the like. For this reason, it is preferable that the vehicle speed management according to the separation distance and the suspension of the automatic traveling described above be applied also during reverse travel. Therefore, in one of the preferred embodiments of the present invention, the separation distance calculation unit calculates the distance between the front end of the vehicle body and the boundary line during forward traveling as the separation distance, and the rear of the vehicle body during reverse traveling. The distance between the end and the boundary is calculated as the separation distance.
 農作業車の場合、作業走行時と非作業走行時とでは、推薦される車速が異なる。このことから、本発明の好適な実施形態の1つでは、前記離間距離に応じて前記車速管理部によって管理される前記車速は、少なくとも所定の範囲の前記離間距離においては、前記車体が作業を行いながら走行している作業走行時と、非作業で走行している非作業走行時とでは異なっている In the case of an agricultural work vehicle, the recommended vehicle speed is different between work travel and non-work travel. From this, in one of the preferred embodiments of the present invention, the vehicle speed is controlled by the vehicle speed management unit according to the separation distance at least at the separation distance within a predetermined range, the vehicle body performs work It is different at the time of work traveling running while doing, and at the time of non-work traveling running non-work
 (2)課題(2)に対応する解決手段は、以下の通りである。 (2) The solution means corresponding to the problem (2) is as follows.
 本発明による、同一作業地を作業走行する複数の作業車のための作業車衝突警戒システムは、第1作業車の座標位置である第1位置を衛星測位によって算出する第1位置算出部と、第2作業車の座標位置である第2位置を前記衛星測位によって算出する第2位置算出部と、前記第1位置と前記第2位置とに基づいて前記第1作業車と前記第2作業車との間の離間距離を算出する離間距離算出部と、前記離間距離が衝突警戒距離範囲に入った場合に、前記第1作業車または前記第2作業車、あるいはその両方を停車させる緊急停車信号を出力する衝突警戒部とを備えている。なお、第1作業車と第2作業車とは複数の作業車を代表しており、本発明は2台の作業車に限定されるわけではなく、3台以上の作業車であっても同様に本発明は適用される。 A work vehicle collision warning system for a plurality of work vehicles traveling on the same work site according to the present invention includes a first position calculation unit that calculates a first position, which is a coordinate position of the first work vehicle, by satellite positioning; A second position calculation unit that calculates a second position, which is a coordinate position of a second work vehicle, by the satellite positioning, and the first work vehicle and the second work vehicle based on the first position and the second position And an emergency stop signal for stopping the first work vehicle and / or the second work vehicle when the separation distance falls within the collision warning distance range. And a collision warning unit that outputs the The first work vehicle and the second work vehicle represent a plurality of work vehicles, and the present invention is not limited to two work vehicles, and the same applies to three or more work vehicles. The present invention applies to
 この構成では、各作業車に備えられている衛星測位機能を利用して算出される各作業車の自車位置に基づいて、作業車相互の衝突を回避する制御が行われる。つまり、各作業車の自車位置に基づいて、相互の離間距離が算出され、その離間距離が衝突警戒距離範囲に入った場合に、衝突を回避するために必要な作業車の緊急停車が指令される。このため、互いの作業車の存在を正確に検知して作業車同士の衝突を回避することが可能となる。 In this configuration, based on the vehicle position of each work vehicle calculated using the satellite positioning function provided in each work vehicle, control for avoiding collisions between the work vehicles is performed. That is, based on the vehicle position of each work vehicle, the mutual separation distance is calculated, and when the separation distance falls within the collision warning distance range, an emergency stop of the work vehicle necessary for avoiding a collision is commanded Be done. For this reason, it becomes possible to detect the existence of each other's work vehicle correctly, and to avoid the collision of work vehicles.
 また、農作物が植立しているような圃場が作業地である場合、赤外線センサ、超音波センサ、レーザレーダのような障害物検知デバイスであれば、農作物を障害物(衝突対象物)として検知してしまう誤検出を回避することは難しい。しかしながら、本発明では、衛星測位を用いているので、そのような問題は回避できる。このため、作業地の状態に拘らず、互いの作業車の存在を正確に検知して作業車同士の衝突を回避することが可能となる。 In addition, when the field where crops are planted is a work site, if the obstacle detection device is an infrared sensor, ultrasonic sensor, laser radar, etc., then the crops are detected as obstacles (collision objects) It is difficult to avoid false positive detection. However, since satellite positioning is used in the present invention, such a problem can be avoided. For this reason, regardless of the state of the work site, it becomes possible to accurately detect the presence of each other's work vehicles and to avoid a collision between the work vehicles.
 なお、作業車がカーナビゲーションの構成機器として、あるいは自動走行を行うための自車位置を検出するための構成機器として、衛星測位機器が備えられていれば、わざわざ衛星測位のための機器を準備しなくてもよいので、本発明を実施する装備コストが安くなる。 If a satellite positioning device is provided as a component of a car navigation system or as a component for detecting a vehicle position for automatic traveling, a device for satellite positioning is prepared. Because it is not necessary, the equipment cost for implementing the present invention is reduced.
 本発明の好適な実施形態の1つでは、前記第1作業車及び前記第2作業車が同一方向で走行し、前記第2作業車が前記第1作業車を先行している場合、前記衝突警戒距離範囲は、前記第1作業車の車速に応じて変動し、車速が高いほど前記衝突警戒距離範囲は長くなるように構成されている。後行の作業車の車速が高ければ、後行の作業車が短時間で先行の作業車に追いつく可能性が高くなるだけでなく、制動性も悪くなるので、衝突警戒距離範囲を長くすることが好ましい。後行する作業車が高速で走行している場合には、衝突警戒距離範囲を長くすることで、作業車同士の衝突回避の信頼性が向上する。逆に、後行する作業車が低速で走行している場合には、衝突警戒距離範囲を短くすることで、後行の作業車の過度な緊急停止が回避され、作業走行がスムーズに行われる。 In one of the preferred embodiments of the present invention, the collision occurs when the first work vehicle and the second work vehicle travel in the same direction and the second work vehicle precedes the first work vehicle. The alert distance range changes according to the vehicle speed of the first work vehicle, and the collision alert distance range is configured to be longer as the vehicle speed is higher. If the vehicle speed of the work vehicle behind is high, not only the possibility that the work vehicle behind will catch up with the work vehicle in a short time will be high, but also the braking performance will deteriorate, so the collision warning distance range should be extended. Is preferred. In the case where the work vehicle behind is traveling at a high speed, the reliability of collision avoidance between work vehicles is improved by extending the collision warning distance range. On the contrary, when the work vehicle behind is traveling at a low speed, by shortening the collision warning distance range, excessive emergency stop of the work vehicle behind can be avoided and work travel can be smoothly performed. .
 本発明の好適な実施形態の1つでは、前記第1作業車及び前記第2作業車が同一方向で走行し、前記第2作業車が前記第1作業車を先行している場合、前記衝突警戒距離範囲は、前記第1作業車の車速が前記第2作業車の車速に比べて高いほど前記衝突警戒距離範囲は長くなるように構成されている。先行の作業車の車速が後行の作業車の車速に比べて低い場合、両者車間距離は減少していくので、衝突警戒距離範囲を長くすることで、衝突の可能性が低減される。 In one of the preferred embodiments of the present invention, the collision occurs when the first work vehicle and the second work vehicle travel in the same direction and the second work vehicle precedes the first work vehicle. The warning distance range is configured such that the collision warning distance range becomes longer as the vehicle speed of the first work vehicle is higher than the vehicle speed of the second work vehicle. When the vehicle speed of the preceding work vehicle is lower than the vehicle speed of the following work vehicle, the distance between the two vehicles decreases, so the possibility of a collision is reduced by increasing the collision warning distance range.
 本発明の好適な実施形態の1つでは、前記第1作業車及び前記第2作業車の形状を示す車形状データを管理する車形状管理部が備えられ、前記離間距離算出部は、前記第1位置と前記第2位置と前記車形状データとに基づいて前記第1作業車と前記第2作業車との間の離間距離を算出する。この構成では、各作業車の自車位置と各作業車の車形状データとに基づいて、作業車相互の衝突を回避する制御が行われる。つまり、各作業車の自車位置と各作業車の車形状データとに基づいて相互の離間距離が算出されるので、どのような車体形状であっても、互いの作業車の離間関係を正確に検知して作業車同士の衝突を回避することが可能となる。 In one of the preferred embodiments of the present invention, a vehicle shape management unit for managing vehicle shape data indicating the shapes of the first work vehicle and the second work vehicle is provided, and the separation distance calculation unit A separation distance between the first work vehicle and the second work vehicle is calculated based on one position, the second position, and the vehicle shape data. In this configuration, based on the vehicle position of each work vehicle and the vehicle shape data of each work vehicle, control for avoiding a collision between the work vehicles is performed. That is, since the separation distance is calculated based on the vehicle position of each work vehicle and the vehicle shape data of each work vehicle, the separation relationship between the work vehicles with each other is accurate regardless of the vehicle shape. Can be detected to avoid collisions between work vehicles.
 衛星測位に基づいて算出される自車位置は、基本的には衛星アンテナの位置となり、そのアンテナ位置から車形状データを用いて計算することにより、互いの作業車の最短距離が得られる。しかしながら、車形状データは、常に更新されるとは限られず、また、車体に、車体から外部に突き出す状態で作業機具等が取り付けられる可能性もある。このような事態に対処するためには、車形状データによって規定される形状をやや膨らませておくことが好適である。このため、本発明の好適な実施形態の1つでは、前記離間距離算出部は、前記車形状データによって規定される形状よりも、少なくとも走行方向側において大きく設定された仮想形状に基づいて、前記離間距離を算出する。 The own vehicle position calculated based on the satellite positioning is basically the position of the satellite antenna, and the shortest distance between the working vehicles can be obtained by calculating from the antenna position using the vehicle shape data. However, the vehicle shape data is not always updated, and there is also a possibility that work tools and the like may be attached to the vehicle body in a state of protruding outside the vehicle body. In order to cope with such a situation, it is preferable to slightly inflate the shape defined by the vehicle shape data. For this reason, in one of the preferred embodiments of the present invention, the separation distance calculation unit is based on the virtual shape set larger at least on the traveling direction side than the shape defined by the vehicle shape data. Calculate the separation distance.
 本発明の好適な実施形態の1つでは、前記離間距離算出部及び前記衝突警戒部が、前記第1作業車及び前記第2作業車と無線データ通信網を介してデータ交換可能な管理コンピュータに構築されており、前記衝突警戒部は、対応する前記作業車の走行制御部に前記緊急停車信号を送信するように構成されている。このような構成は、いわゆる、同一圃場で作業走行する全ての作業車を管理コンピュータで集中管理するシステムとなる。これにより、各作業車が、他の作業車の位置を取得して、当該作業車の車形状データと自車の車形状データとを用いて離間距離を算出する機能を備える必要はなくなる。管理コンピュータが管理対象となっている全ての作業車の車形状データを記録していれば、各作業車は、常時、自車の位置を管理コンピュータに送信すれば、自車以外の全ての他車と離間距離が衝突警戒距離範囲に入った段階で、管理コンピュータから緊急停車信号が与えられので、他車との衝突を未然に防ぐことができる。このような集中管理方式では、各作業車が、他の作業車の位置を取得して、当該作業車の車形状データと自車の車形状データとを用いて離間距離を算出する機能を備える必要はないので、数台以上の作業車を協調させて作業を行うようなシステムでは、コスト的に有利となる。なお、車形状データは、管理コンピュータが予め記録しておいてもよいし、各作業車が、管理コンピュータに送信するようにしてもよい。 In one of the preferred embodiments of the present invention, the separated distance calculation unit and the collision alert unit are capable of exchanging data with the first work vehicle and the second work vehicle via a wireless data communication network. The collision alert unit is configured to transmit the emergency stop signal to a travel control unit of the corresponding work vehicle. Such a configuration is a system in which all work vehicles traveling in the same field are centrally managed by a management computer. As a result, there is no need for each work vehicle to have the function of acquiring the position of another work vehicle and calculating the separation distance using the vehicle shape data of the work vehicle and the vehicle shape data of the own vehicle. If the management computer records the vehicle shape data of all the work vehicles being managed, each work vehicle always transmits the position of its own vehicle to the management computer. Since the emergency stop signal is given from the management computer when the distance between the car and the separated vehicle enters the collision warning distance range, it is possible to prevent a collision with another vehicle. In such a centralized management system, each work vehicle has a function of acquiring the position of another work vehicle and calculating the separation distance using the vehicle shape data of the work vehicle and the vehicle shape data of the own vehicle. Since it is not necessary, in a system in which several or more working vehicles are coordinated to perform work, it is advantageous in cost. The car shape data may be recorded in advance by the management computer, or each work vehicle may be transmitted to the management computer.
 上述した作業車衝突警戒システムを組み込んだ作業車も、本発明の対象である。本発明による、他車とともに、同一の作業地を自動走行する作業車は、走行を制御する走行制御部と、自車の座標位置である自車位置を衛星測位によって算出する自車位置算出部と、前記衛星測位によって算出された前記他車の座標位置である他車位置を取得する他車位置取得部と、前記自車位置と前記他車位置とに基づいて前記自車と前記他車との間の離間距離を算出する離間距離算出部と、前記離間距離が衝突警戒距離範囲に入った場合に、前記自車または前記他車、あるいはその両方を停車させる緊急停車信号を出力する衝突警戒部とを備えている。このように構成された複数の作業車が同一作業地を作業走行する際、各作業車が他車の位置を得ることで、互いの作業車との離間距離が算出可能となり、上述したような他車との衝突を回避する制御を行うことができる。 A work vehicle incorporating the work vehicle collision warning system described above is also an object of the present invention. The work vehicle that automatically travels the same work place with other vehicles according to the present invention includes a traveling control unit that controls traveling and a vehicle position calculation unit that calculates the vehicle position, which is the coordinate position of the vehicle, by satellite positioning. And the other vehicle position acquiring unit for acquiring the other vehicle position acquiring unit which is the coordinate position of the other vehicle calculated by the satellite positioning, the own vehicle position and the other vehicle position based on the own vehicle position and the other vehicle position Collision that outputs an emergency stop signal to stop the vehicle or the other vehicle or both when the separation distance is within the collision warning distance range and the separation distance calculation unit that calculates the separation distance between It is equipped with a warning unit. When a plurality of work vehicles configured in this way travel on the same work site, the distance between each work vehicle can be calculated by each work vehicle obtaining the position of the other vehicle, as described above. Control can be performed to avoid a collision with another vehicle.
 本発明による作業車も、もちろん上述した作業車衝突警戒システムにおける種々の実施形態を採用することができ、同様な作用効果が得られる。例えば、好適な実施形態の1つでは、作業車は、前記自車及び前記他車が同一方向で走行し、前記他車が前記自車を先行している場合、前記衝突警戒距離範囲は、前記自車の車速に応じて変動し、前記車速が高いほど前記衝突警戒距離範囲は長くなるように制御される。さらに好ましい形態では、前記他車が前記自車を先行している場合、前記衝突警戒距離範囲は、前記自車の車速が前記他車の車速に比べて高いほど前記衝突警戒距離範囲は長くなるように制御される。これにより、高信頼度で作業車同士の衝突が防止される。さらに好適な実施形態の1つでは、前記自車及び前記他車の形状を示す車形状データを管理する車形状管理部が備えられ、前記離間距離算出部は、前記自車位置と前記他車位置と前記車形状データとに基づいて前記自車と前記他車との間の離間距離を算出する。したがって、どのような車体形状であっても、自車と他車との離間距離が正確に算出され、作業車同士の衝突を回避することが可能となる。 The work vehicle according to the present invention can, of course, adopt the various embodiments of the work vehicle collision warning system described above, and the same effects can be obtained. For example, in one of the preferred embodiments, when the vehicle and the other vehicle travel in the same direction and the other vehicle precedes the vehicle, the collision alert distance range is It fluctuates according to the vehicle speed of the vehicle, and the collision alert distance range is controlled to be longer as the vehicle speed is higher. In a further preferable mode, when the other vehicle precedes the own vehicle, the collision alert distance range becomes longer as the vehicle speed of the own vehicle is higher than the vehicle speed of the other vehicle. To be controlled. Thereby, the collision of the working vehicles is prevented with high reliability. In a further preferred embodiment, a vehicle shape management unit is provided to manage vehicle shape data indicating the shapes of the vehicle and the other vehicle, and the separation distance calculation unit is configured to determine the vehicle position and the other vehicle. A separation distance between the vehicle and the other vehicle is calculated based on the position and the vehicle shape data. Therefore, regardless of the vehicle body shape, the separation distance between the own vehicle and the other vehicle is accurately calculated, and it is possible to avoid the collision between the working vehicles.
第1実施形態を示す図であって(以下、図8まで同じ)、農作業車の一例としてのコンバインの側面図である。It is a figure which shows 1st Embodiment (following, it is the same to FIG. 8), and is a side view of the combine as an example of a farm work vehicle. コンバインの自動走行の概要を示す図である。It is a figure showing an outline of automatic travel of a combine. 自動走行における走行経路を示す図である。It is a figure showing the run course in automatic run. コンバインの制御系の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control system of a combine. 畦との間の離間距離に基づく車速管理と走行モード管理とにおける制御情報の流れを示す制御情報流れ図である。It is a control-information flowchart which shows the flow of the control information in the vehicle speed management based on the separation distance between heels and driving mode management. 離間距離(縦離間距離)と車速制限指令と自動走行禁止指令との関係を示す模式図である。It is a schematic diagram which shows the relationship between separation distance (vertical separation distance), a vehicle speed limit command, and an automatic travel prohibition command. 離間距離(縦離間距離)と車速制限指令と自動走行禁止指令との関係の別実施形態を示す模式図である。It is a schematic diagram which shows another embodiment of the relationship between separation distance (vertical separation distance), a vehicle speed restriction command, and an automatic travel prohibition command. 離間距離(横離間距離)と車速制限指令と自動走行禁止指令との関係を示す模式図である。It is a schematic diagram which shows the relationship between separation distance (horizontal separation distance), a vehicle speed restriction command, and an automatic travel prohibition command. 第2実施形態を示す図であって(以下、図15まで同じ)、作業車の一例としての普通型のコンバインの側面図である。It is a figure which shows 2nd Embodiment (following, it is the same to FIG. 15), and is a side view of the combine of an ordinary type as an example of a work vehicle. コンバインの走行経路であるメッシュ経路を示す模式図である。It is a schematic diagram which shows the mesh route which is a travel route of a combine. 複数台のコンバインによる作業走行を示す模式図である。It is a schematic diagram which shows the operation | work driving | running | working by several combine combine. 複数台のコンバインにより作業走行を示す模式図である。It is a schematic diagram which shows operation travel by several combine. 先行コンバインと後行コンバインとの関係を示す模式図である。It is a schematic diagram which shows the relationship between a leading combine and a trailing combine. コンバインの制御系を示す機能ブロック図である。It is a functional block diagram showing a control system of a combine. 集中管理方式での作業車衝突警戒システムを示す機能ブロック図である。It is a functional block diagram showing a work car collision warning system in a centralized management system.
(第1実施形態)
 次に、本発明による農作業車の一例である収穫機として、普通型のコンバインを取り上げて説明する。なお、本明細書では、特に断りがない限り、「前」(図1に示す矢印Fの方向)は車体前後方向(走行方向)における前方を意味し、「後」(図1に示す矢印Bの方向)は車体前後方向(走行方向)における後方を意味する。また、左右方向または横方向は、車体前後方向に直交する車体横断方向(車体幅方向)を意味する。「上」(図1に示す矢印Uの方向)及び「下」(図1に示す矢印Dの方向)は、車体の鉛直方向(垂直方向)での位置関係であり、地上高さにおける関係を示す。
First Embodiment
Next, as a harvester which is an example of the agricultural work vehicle according to the present invention, a conventional combine will be described. In the present specification, “front” (direction of arrow F shown in FIG. 1) means front in the vehicle longitudinal direction (traveling direction) unless otherwise noted, “rear” (arrow B shown in FIG. 1) Direction) means the rear in the longitudinal direction of the vehicle body (traveling direction). Further, the lateral direction or the lateral direction means a transverse direction of the vehicle (vehicle width direction) orthogonal to the longitudinal direction of the vehicle. “Up” (direction of arrow U shown in FIG. 1) and “down” (direction of arrow D shown in FIG. 1) are positional relationships in the vertical direction (vertical direction) of the vehicle body, Show.
 図1に示すように、このコンバインは、車体10、クローラ式の走行装置11、運転部12、脱穀装置13、穀粒タンク14、収穫部H、搬送装置16、穀粒排出装置18、自車位置検出モジュール80を備えている。 As shown in FIG. 1, the combine has a car body 10, a traveling device 11 of a crawler type, an operation unit 12, a threshing device 13, a grain tank 14, a harvesting part H, a conveying device 16, a grain discharging device 18, and an own vehicle. A position detection module 80 is provided.
 走行装置11は、車体10の下部に備えられている。コンバインは、走行装置11によって自走可能に構成されている。運転部12、脱穀装置13、穀粒タンク14は、走行装置11の上側に備えられ、車体10の上部を構成している。運転部12には、コンバインを運転する運転者やコンバインの作業を監視する監視者が搭乗可能である。通常、運転者と監視者とは兼務される。なお、運転者と監視者とが別人の場合、監視者は、コンバインの機外からコンバインの作業を監視していても良い。 The traveling device 11 is provided at the lower part of the vehicle body 10. The combine is configured to be self-propelled by the traveling device 11. The driving unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11 and constitute an upper portion of the vehicle body 10. A driver who operates the combine and a supervisor who monitors the combine operation can ride on the driving unit 12. Usually, the driver and the supervisor are combined. When the driver and the monitor are different persons, the monitor may monitor the combine operation from the outside of the combine.
 穀粒排出装置18は、穀粒タンク14の後下部に連結されている。また、自車位置検出モジュール80は、運転部12の前上部に取り付けられている。 The grain discharging device 18 is connected to the rear lower portion of the grain tank 14. In addition, the vehicle position detection module 80 is attached to the front upper portion of the driving unit 12.
 収穫部Hは、コンバインにおける前部に備えられている。そして、搬送装置16は、収穫部Hの後側に接続されている。また、収穫部Hは、切断機構15及びリール17を有している。切断機構15は、圃場の植立穀稈を刈り取る。また、リール17は、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫部Hは、圃場の穀物(農作物の一種)を収穫する。そして、コンバインは、収穫部Hによって圃場の穀物を収穫しながら走行装置11によって走行する作業走行が可能である。 The harvester H is provided at the front of the combine. Then, the transport device 16 is connected to the rear side of the harvesting unit H. The harvester H also has a cutting mechanism 15 and a reel 17. The cutting mechanism 15 reaps the crop of the field in the field. In addition, the reel 17 scrapes the cropped cereals to be harvested while being rotationally driven. According to this configuration, the harvesting unit H harvests cereal grains (a kind of crop) in the field. And a combine traveling can carry out work traveling which travels with run device 11 while harvesting the grain of a field by harvesting part H.
 切断機構15により刈り取られた刈取穀稈は、搬送装置16によって脱穀装置13へ搬送される。脱穀装置13において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、穀粒排出装置18によって機外に排出される。 The cropped rice straw which has been cut by the cutting mechanism 15 is transported by the transport device 16 to the threshing device 13. In the threshing device 13, the reaping grain is threshed. The grains obtained by the threshing process are stored in a grain tank 14. The grains stored in the grain tank 14 are discharged to the outside by the grain discharging device 18.
 また、運転部12には、通信端末4が配置されている。本実施形態において、通信端末4は、運転部12に固定されている。しかしながら、本発明はこれに限定されず、通信端末4は、運転部12に対して着脱可能に構成されていても良いし、コンバインの車外に位置していても良い。 In addition, the communication terminal 4 is disposed in the operation unit 12. In the present embodiment, the communication terminal 4 is fixed to the operation unit 12. However, the present invention is not limited to this, and the communication terminal 4 may be configured to be attachable to and detachable from the driving unit 12, or may be located outside the vehicle of the combine.
 図2に示すように、このコンバインは、圃場において設定された走行経路に沿って自動走行する。このためには、自車位置が必要である。自車位置検出モジュール80には、衛星測位モジュール81と慣性計測モジュール82とが含まれている。衛星測位モジュール81は、人工衛星GSから送信されるGNSS(global navigation satellite system)信号(GPS信号を含む)を受信して、自車位置を算出するための測位データを出力する。衛星測位モジュール81には、種々の方式があるが、リアルタイム・キネマティック方式を採用する場合には、図示されていない基地局が圃場の周辺に設置される。慣性計測モジュール82は、ジャイロ加速度センサ及び磁気方位センサを組み込んでおり、瞬時の走行方位を示す位置ベクトルを出力する。慣性計測モジュール82は、衛星測位モジュール81による自車位置算出を補完するためにも用いられる。慣性計測モジュール82は、省略することも可能である。即ち、自車位置検出モジュール80は、少なくとも、衛星航法を用いて測位データを取得するものである。また、コンバインは圃場の作物を収穫する農作業車であるので、自車位置を検出するために、レーザレーダや超音波センサを用いると、作物が邪魔になって畦等の圃場境界の検出精度が落ちることがある。しかし、自車位置検出モジュール80を用いて自車位置を検出すると、農作物や電柱などの影響をほとんど受けない。また、予め圃場境界などの境界線の地図位置を算出しておけば、境界線との間の距離を精度よく算出することが可能である。 As shown in FIG. 2, this combine travels automatically along the travel route set in the field. For this purpose, the vehicle position is required. The vehicle position detection module 80 includes a satellite positioning module 81 and an inertial measurement module 82. The satellite positioning module 81 receives GNSS (global navigation satellite system) signals (including GPS signals) transmitted from the artificial satellite GS, and outputs positioning data for calculating the position of the vehicle. There are various methods for the satellite positioning module 81. However, when the real-time kinematic method is adopted, a base station not shown is installed around the farmland. The inertial measurement module 82 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction. The inertia measurement module 82 is also used to supplement the vehicle position calculation by the satellite positioning module 81. The inertial measurement module 82 can be omitted. That is, the vehicle position detection module 80 acquires positioning data using at least satellite navigation. In addition, because combine is an agricultural work vehicle that harvests crops in the field, using laser radar or ultrasonic sensors to detect the position of the vehicle causes the crop to be in the way and the detection accuracy of field boundaries such as straw etc. It may fall. However, when the vehicle position detection module 80 is used to detect the vehicle position, it is hardly affected by agricultural products, utility poles, and the like. In addition, if the map position of a boundary such as a field boundary or the like is calculated in advance, it is possible to calculate the distance between the boundary and the boundary with high accuracy.
 このコンバインによって圃場での収穫作業を行う場合の手順は、以下に説明する通りである。 The procedure in the case of performing harvest work in the field by this combine is as described below.
 まず、運転者兼監視者は、コンバインを手動で操作し、図2に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように周回走行を行う。コンバインは、周回走行を行いながら、同時に収穫作業も行う。これにより既刈領域(既作業領域)となった領域は、外周領域SAとして設定される。そして、外周領域SAの内側に未刈領域(未作業領域)のまま残された領域は、作業対象領域CAとして設定される。この周回走行では、収穫部Hを畦際まで接近させるので、その際の走行軌跡に対応する収穫部Hの軌跡から、圃場内部と畦との境界線の地図位置を示す境界線データを生成することができる。また、外周領域SAと作業対象領域CAとの間の作業境界線(既作業領域と未作業領域)を示す作業境界線データも生成することができる。 First, the driver / supervisor manually operates the combine, and as shown in FIG. 2, in the outer peripheral portion in the field, the traveling traveling is performed so as to go around along the boundary line of the field. The combine carries out harvest work at the same time as traveling around. The area | region which became an existing area (existing area | region) by this is set as outer periphery area | region SA. Then, the area left as the uncut area (unworked area) inside the outer peripheral area SA is set as the work target area CA. In this round trip, the harvester H is brought close to the edge, so from the locus of the harvester H corresponding to the traveling locus at that time, boundary line data indicating the map position of the boundary between the inside of the field and the straw is generated be able to. In addition, work boundary line data indicating a work boundary (a work area and a non-work area) between the outer peripheral area SA and the work target area CA can also be generated.
 なお、外周領域SAの幅をある程度広く確保するために、運転者は、コンバインを2~3周走行させる。この走行においては、コンバインが1周する毎に、コンバインの作業幅分だけ外周領域SAの幅が拡大する。最初の、2~3周の走行が終わると、外周領域SAの幅は、コンバインの作業幅の2~3倍程度の幅となる。 In order to secure the width of the outer peripheral area SA to a certain extent, the driver travels the combine 2-3 turns. In this traveling, the width of the outer peripheral area SA is expanded by the work width of the combine each time the combine makes one revolution. After the first 2 to 3 rounds of traveling, the width of the outer peripheral area SA becomes about 2 to 3 times the working width of the combine.
 外周領域SAは、作業対象領域CAにおいて収穫走行を行うときに、コンバインが方向転換するためのスペースとして利用される。また、外周領域SAは、収穫走行を一旦終えて、穀粒の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用される。 The outer peripheral area SA is used as a space for the combine to turn when the harvest traveling is performed in the work target area CA. Further, the outer peripheral area SA is also used as a space for movement, such as when moving to a discharge place of grain or after moving to a fuel supply place after the harvest traveling is once finished.
 なお、図2に示す運搬車CVは、コンバインから排出された穀粒を収集し、運搬することができる。穀粒排出の際、コンバインは運搬車CVの近傍へ移動した後、穀粒排出装置18によって穀粒を運搬車CVへ排出する。 In addition, the transport vehicle CV shown in FIG. 2 can collect and transport the grain discharged | emitted from the combine. At the time of grain discharge, the combine moves to the vicinity of the transport vehicle CV and then discharges the grains to the transport vehicle CV by the grain discharge device 18.
 外周領域SA及び作業対象領域CAが設定されると、図3に示すように、作業対象領域CAにおける走行経路が算定される。算定された走行経路は、作業走行のパターンに基づいて順次設定され、設定された走行経路に沿って走行するように、コンバインが自動走行制御される。その際、以下に述べるように、畦(圃場の境界線)との接触を回避する制御が行われる。また、穀粒排出などの、非作業走行時に、作業対象領域CAに入り込むことを回避する制御も行われる。 When the outer peripheral area SA and the work target area CA are set, as shown in FIG. 3, a travel route in the work target area CA is calculated. The calculated traveling route is sequentially set based on the work traveling pattern, and the combine is automatically controlled to travel along the set traveling route. At this time, as described below, control is performed to avoid contact with the weir (field border). In addition, control to avoid entering the work target area CA during non-operation travel, such as grain discharge, is also performed.
 図4に、コンバインの制御系が示されている。コンバインの制御系は、多数のECUと呼ばれる電子制御ユニットからなる制御ユニット5、及びこの制御ユニット5との間で車載LANなどの配線網を通じて信号通信(データ通信)を行う各種入出力機器から構成されている。 The control system of the combine is shown in FIG. The control system of the combine comprises a control unit 5 consisting of electronic control units called multiple ECUs, and various input / output devices that perform signal communication (data communication) with the control unit 5 through a wiring network such as an in-vehicle LAN. It is done.
 報知デバイス62は、運転者等に作業走行状態や種々の警告を報知するためのデバイスであり、ブザー、ランプ、スピーカ、ディスプレイなどである。通信部66は、このコンバインの制御系が、遠隔地に設置されている管理コンピュータ及び外部通信端末との間でデータ交換するために用いられる。この外部通信端末には、圃場に立っている監視者、またはコンバインに乗り込んでいる監視者(運転者も含む)が操作するタブレットコンピュータ、自宅や管理事務所に設置されているコンピュータ、さらには車外に持ち出された通信端末4が含まれる。制御ユニット5は、この制御系の中核要素であり、複数のECUの集合体として示されている。自車位置検出モジュール80からの信号は、車載LANを通じて制御ユニット5に入力される。 The notification device 62 is a device for notifying a driver or the like of a work traveling state and various warnings, and is a buzzer, a lamp, a speaker, a display or the like. The communication unit 66 is used to exchange data between the control computer of the combine and the management computer and the external communication terminal installed at a remote place. This external communication terminal may be a tablet computer operated by an observer standing in a field or an observer (including a driver) who is riding in a combine, a computer installed at home or at a management office, or even outside a car Includes the communication terminal 4 brought out. The control unit 5 is a core element of this control system, and is shown as a collection of a plurality of ECUs. A signal from the own vehicle position detection module 80 is input to the control unit 5 through the in-vehicle LAN.
 制御ユニット5は、入出力インタフェースとして、出力処理部503と入力処理部502とを備えている。出力処理部503は、機器ドライバ65を介して種々の動作機器70と接続している。動作機器70として、走行関係の機器である走行機器群71と作業関係の機器である作業機器群72とがある。走行機器群71には、例えば、エンジン制御機器、変速制御機器、制動制御機器、操舵制御機器などが含まれている。作業機器群72には、収穫部H、脱穀装置13、搬送装置16、穀粒排出装置18における動力制御機器などが含まれている。 The control unit 5 includes an output processing unit 503 and an input processing unit 502 as an input / output interface. The output processing unit 503 is connected to various operation devices 70 via the device driver 65. The operating devices 70 include a traveling device group 71 which is a driving-related device and a working device group 72 which is a working-related device. The traveling device group 71 includes, for example, an engine control device, a transmission control device, a braking control device, a steering control device, and the like. The working device group 72 includes a power control device and the like in the harvesting unit H, the threshing device 13, the transport device 16, and the grain discharging device 18.
 入力処理部502には、走行状態センサ群63、作業状態センサ群64、走行操作ユニット90、などが接続されている。走行状態センサ群63には、車速センサ、エンジン回転数センサ、オーバーヒート検出センサ、ブレーキペダル位置検出センサ、駐車ブレーキ検出センサ、変速位置検出センサ、操舵位置検出センサ、などが含まれている。作業状態センサ群64には、収穫作業装置(収穫部H、脱穀装置13、搬送装置16、穀粒排出装置18、図1参照)の駆動状態を検出するセンサ、及び穀稈や穀粒の状態を検出するセンサが含まれている。 A traveling state sensor group 63, a working state sensor group 64, a traveling operation unit 90, and the like are connected to the input processing unit 502. The traveling state sensor group 63 includes a vehicle speed sensor, an engine rotational speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a parking brake detection sensor, a shift position detection sensor, a steering position detection sensor, and the like. The working state sensor group 64 includes a sensor for detecting the driving state of the harvesting work device (harvesting unit H, threshing device 13, transport device 16, grain discharging device 18, see FIG. 1), and the state of grain grazes and grains A sensor is included to detect
 走行操作ユニット90は、運転者によって手動操作され、その操作信号が制御ユニット5に入力される操作具の総称である。走行操作ユニット90には、主変速操作具、操舵操作具、モード操作具、自動開始操作具などが含まれている。モード操作具は、自動運転と手動運転とを切り替えるための指令を制御ユニット5に送り出す機能を有する。自動開始操作具は、自動走行を開始するための最終的な自動開始指令を制御ユニット5に送る機能を有する。 The travel operation unit 90 is a general term for an operation tool which is manually operated by the driver and whose operation signal is input to the control unit 5. The travel operation unit 90 includes a main shift operation tool, a steering operation tool, a mode operation tool, an automatic start operation tool, and the like. The mode operation tool has a function of transmitting a command for switching between the automatic operation and the manual operation to the control unit 5. The automatic start operating tool has a function of sending a final automatic start command for starting automatic traveling to the control unit 5.
 制御ユニット5には、自車位置算出部50、走行制御部51、作業制御部52、走行モード管理部53、境界線データ管理部54、離間距離算出部55、走行軌跡算出部56、走行方位算出部57、作業領域決定部58、走行経路生成部59が備えられている。自車位置算出部50は、自車位置検出モジュール80から逐次送られてくる測位データに基づいて、自車位置を地図座標(または圃場座標)の形式で算出する。その際、自車位置として、車体10の特定箇所(例えば車体中心や収穫部Hの端部など、図1参照)の位置を設定することができる。報知部501は、制御ユニット5の各機能部からの指令等に基づいて報知データを生成し、報知デバイス62に与える。 The control unit 5 includes an own vehicle position calculation unit 50, a travel control unit 51, a work control unit 52, a travel mode management unit 53, a boundary line data management unit 54, a separation distance calculation unit 55, a travel locus calculation unit 56, and a travel direction. A calculation unit 57, a work area determination unit 58, and a travel route generation unit 59 are provided. The vehicle position calculation unit 50 calculates the vehicle position in the form of map coordinates (or field coordinates) based on the positioning data sequentially sent from the vehicle position detection module 80. At that time, the position of a specific part of the vehicle body 10 (for example, the center of the vehicle body, the end of the harvesting section H, or the like, see FIG. 1) can be set as the vehicle position. The notification unit 501 generates notification data based on an instruction or the like from each functional unit of the control unit 5 and gives the notification data to the notification device 62.
 走行制御部51は、エンジン制御機能、操舵制御機能、車速制御機能などを有し、走行機器群71に走行制御信号を与える。作業制御部52は、収穫作業装置(収穫部H、脱穀装置13、搬送装置16、穀粒排出装置18など、図1参照)の動きを制御するために、作業機器群72に作業制御信号を与える。 The traveling control unit 51 has an engine control function, a steering control function, a vehicle speed control function, and the like, and supplies a traveling control signal to the traveling device group 71. The work control unit 52 sends a work control signal to the work equipment group 72 in order to control the movement of the harvesting work apparatus (the harvester H, the threshing apparatus 13, the transport apparatus 16, the grain discharging apparatus 18, etc. See FIG. 1). give.
 このコンバインは、自動走行で収穫作業を行う自動運転と、手動走行で収穫作業を行う手動運転との両方で走行可能である。このため、走行制御部51には、手動走行制御部511と自動走行制御部512と車速管理部513と走行経路設定部514とが含まれている。なお、自動運転を行うために、自動走行モードが設定され、手動運転を行うためには手動走行モードが設定される。このような走行モードは、走行モード管理部53によって管理される。 The combine can travel in both automatic operation in which harvesting operation is performed automatically and manual operation in which harvesting operation is performed manually. Therefore, the traveling control unit 51 includes a manual traveling control unit 511, an automatic traveling control unit 512, a vehicle speed management unit 513, and a traveling route setting unit 514. In addition, in order to perform an automatic driving | running | working, automatic traveling modes are set, and in order to perform a manual driving, manual traveling modes are set. Such a travel mode is managed by the travel mode management unit 53.
 自動走行モードが設定されている場合、自動走行制御部512は、自動操舵及び停止を含む車速変更の制御信号を生成して、走行機器群71を制御する。自動操舵に関する制御信号は、走行経路設定部514によって設定された目標となる走行経路と、自車位置算出部50によって算出された自車位置との間の方位ずれ及び位置ずれが解消されるように生成される。車速変更に関する制御信号は、前もって設定された車速値に基づいて生成される。走行経路設定部514によって設定される走行経路は、走行経路生成部59に登録されている経路算出アルゴリズムによって生成される。 When the automatic travel mode is set, the automatic travel control unit 512 controls the traveling device group 71 by generating a control signal for changing the vehicle speed including automatic steering and stop. In the control signal related to automatic steering, the azimuth deviation and positional deviation between the target travel route set by the travel route setting unit 514 and the own vehicle position calculated by the own vehicle position calculation unit 50 are eliminated Generated on The control signal related to the vehicle speed change is generated based on the preset vehicle speed value. The travel route set by the travel route setting unit 514 is generated by a route calculation algorithm registered in the travel route generation unit 59.
 手動走行モードが選択されている場合、運転者による操作に基づいて、手動走行制御部511が制御信号を生成し、走行機器群71を制御することで、手動運転が実現する。なお、走行経路生成部59によって算出される走行経路は、手動運転であっても、コンバインが当該走行経路に沿って走行するためのガイダンスのために利用することができる。 When the manual travel mode is selected, the manual travel control unit 511 generates a control signal based on the operation by the driver and controls the traveling device group 71 to realize the manual driving. The travel route calculated by the travel route generation unit 59 can be used for guidance for the combine to travel along the travel route, even in the case of manual driving.
 作業領域決定部58は、所定の作業幅で行われた収穫作業から、既刈領域(外周領域SA)、未刈領域(作業対象領域CA)などを決定する。 The work area determination unit 58 determines an already-cut area (peripheral area SA), an uncut area (work target area CA), and the like from the harvesting work performed with a predetermined work width.
 境界線データ管理部54、離間距離算出部55、走行軌跡算出部56、走行方位算出部57、車速管理部513は、圃場の境界線である畦との接触を回避する制御を行うために機能する。 The boundary line data management unit 54, the separation distance calculation unit 55, the travel locus calculation unit 56, the traveling direction calculation unit 57, and the vehicle speed management unit 513 function to perform control to avoid contact with the straw which is the boundary line of the field. Do.
 走行軌跡算出部56は、自車位置算出部50によって算出された自車位置を経時的にプロットすることで走行軌跡を算出する。走行方位算出部57は、走行軌跡算出部56における微小時間での走行軌跡(瞬間走行軌跡)から車体10の走行方位を算出する。また、走行方位算出部57は、慣性計測モジュール82からの出力データに含まれている方位データに基づいて走行方位を算出することも可能である。 The travel locus calculation unit 56 calculates a travel locus by plotting the vehicle position calculated by the vehicle position calculation unit 50 over time. The traveling direction calculation unit 57 calculates the traveling direction of the vehicle body 10 from the traveling locus (instant traveling locus) in a minute time in the traveling locus calculation unit 56. The traveling direction calculation unit 57 can also calculate the traveling direction based on the direction data included in the output data from the inertia measurement module 82.
 境界線データ管理部54は、コンバインが圃場面と畦との境界線(圃場の境界線)に沿って周回走行する際に得られる、車体10の畦側の部材(収穫部Hの外端部)の走行軌跡に基づいて、圃場の境界線の地図位置を示す境界線データを生成して、管理する。境界線データ管理部54は、作業走行した車体10の走行軌跡から、既刈領域(外周領域SA;既作業領域)と未刈領域(作業対象領域CA;未作業領域)との作業境界線を示す作業境界線データも生成する。このように、コンバインの実際の周回走行を通じて生成された境界線データは実境界線データと称せられる。境界線データ管理部54は、さらに、管理コンピュータ及び外部通信端末から、圃場情報に含まれている圃場の境界線データをダウンロードして、管理することもできる。このように予め与えられた境界線データは参考境界線データと称せられる。 The boundary line data management unit 54 is a member on the ridge side of the vehicle body 10 (outer end of the harvest area H) obtained when the combine travels along the boundary line between the ridge scene and the ridge (the boundary line of the field). The boundary line data indicating the map position of the field boundary line is generated and managed based on the traveling locus of The boundary line data management unit 54 sets the work boundary line between the already cut area (the outer circumference area SA; the already work area) and the uncut area (the work target area CA; the unworked area) from the traveling locus of the vehicle body 10 on which the work travels. Also generates work boundary data as shown. Thus, boundary line data generated through the actual round trip of the combine is referred to as real boundary line data. The boundary line data management unit 54 can also download and manage the boundary line data of the field included in the field information from the management computer and the external communication terminal. The boundary line data thus given in advance is referred to as reference boundary line data.
 離間距離算出部55は、自車位置算出部50によって算出された自車位置と走行方位算出部57によって算出された走行方位とから、圃場の境界線または作業境界線までの離間距離を算出する。この離間距離はコンバインが畦に接触すること、及び、不測に未刈領域(未作業領域)に進入することを回避するために用いられるので、走行方位における、境界線及び作業境界線とコンバインの特定の部位との距離を算出する必要がある。つまり、離間距離算出部55は、車体10(車体10に取り付けられた装置及び機器を含む)の外形を記録しており、この外形を考慮して、境界線または作業境界線と、車体10との間の距離を離間距離として算出する。 The separation distance calculation unit 55 calculates the separation distance to the border line of the field or the work boundary line from the vehicle position calculated by the vehicle position calculation unit 50 and the traveling direction calculated by the traveling direction calculation unit 57. . This separation distance is used to prevent the combine from touching the weir and to inadvertently enter the uncut area (unworked area). It is necessary to calculate the distance to a specific part. That is, the separation distance calculation unit 55 records the outer shape of the vehicle body 10 (including the devices and devices attached to the vehicle body 10), and in consideration of the outer shape, the boundary or work boundary and the vehicle 10 and The distance between is calculated as the separation distance.
 離間距離算出部55は、境界線データとして実境界線データを参考境界線データに優先して用いる。実境界線データが生成されるまでは、つまり、周回走行中は、参考境界線データを用いて離間距離を算出し、周回走行によって実境界線データが生成されると、実境界線データを用いて離間距離を算出する。 The separation distance calculation unit 55 uses actual boundary line data as reference line data in preference to reference boundary line data. Until the actual boundary line data is generated, that is, during the rounding, the separation distance is calculated using the reference boundary line data, and when the actual boundary line data is generated by the rounding, the actual boundary line data is used. Calculate the separation distance.
 車速管理部513は、離間距離算出部55によって算出された離間距離に応じて車速を管理する。車速管理部513は、離間距離から制限車速を導出するルックアップテーブルを有する。離間距離が短くなると導出される制限車速は低くなる。走行状態センサ群63からの検出信号に基づいて算出された現車速が制限車速を超えている場合には、車速管理部513から現車速が制限車速となるように、減速指令が出力される。さらに、離間距離が予め設定された限界距離を下回ると、制限車速はゼロとなり、車速管理部513から停車指令が出力される。言い換えると、車速管理部513は、境界線に接近して走行する際の限界車速を決定する。 The vehicle speed management unit 513 manages the vehicle speed in accordance with the separation distance calculated by the separation distance calculation unit 55. The vehicle speed management unit 513 has a look-up table for deriving the vehicle speed limit from the separation distance. As the separation distance becomes shorter, the derived vehicle speed limit becomes lower. When the current vehicle speed calculated based on the detection signal from the traveling state sensor group 63 exceeds the limited vehicle speed, the vehicle speed manager 513 outputs a deceleration command so that the current vehicle speed becomes the limited vehicle speed. Furthermore, when the separation distance falls below the preset limit distance, the vehicle speed limit becomes zero, and the vehicle speed management unit 513 outputs a vehicle stop command. In other words, the vehicle speed management unit 513 determines the limit vehicle speed when traveling approaching the boundary line.
 次に、図5に示された制御情報流れ図を用いて、畦との接触や、不測の未作業領域への進入(農作物との接触)を回避する制御の流れを説明する。 Next, the control information flow shown in FIG. 5 will be used to explain the flow of control for avoiding contact with straw and accidental entry into an unworked area (contact with agricultural products).
 図5に示すように、コンバインは手動操作による圃場の周回走行を行う。この周回走行においては、自車位置検出モジュール80から出力される測位データに基づいて、自車位置算出部50が自車位置を算出する。走行軌跡算出部56は、自車位置から走行軌跡と瞬間走行軌跡を算出する。走行方位算出部57は、走行軌跡算出部56からの瞬間走行軌跡に基づいて走行方位を算出する。境界線データ管理部54は、最外周の周回走行が終了した時点で、その走行軌跡から境界線データを算出する。境界線データ管理部54は、作業境界線データも算出する。 As shown in FIG. 5, the combine carries out a traveling round of the field by manual operation. In this round trip, the vehicle position calculation unit 50 calculates the vehicle position based on the positioning data output from the vehicle position detection module 80. The traveling locus calculation unit 56 calculates a traveling locus and an instantaneous traveling locus from the vehicle position. The traveling direction calculation unit 57 calculates a traveling direction based on the instantaneous traveling locus from the traveling locus calculation unit 56. The boundary line data management unit 54 calculates boundary line data from the traveling locus when the roundabout traveling on the outermost circumference is completed. The boundary line data management unit 54 also calculates work boundary line data.
 作業領域決定部58は、周回走行が完了した時点で、走行軌跡算出部56から受け取る周回走行における走行軌跡に基づいて、外周領域SAと作業対象領域CAとを決定する。外周領域SAの最外線が圃場面の外形線、つまり圃場の境界線であり、外周領域SAの最内線によって規定される内側領域が、自動で作業走行を行う作業対象領域CAとなる。走行経路生成部59は、作業領域決定部58によって決定された外周領域SAと作業対象領域CAとに基づいて、図3で示すような、自動走行を行うための走行経路を生成する。生成された走行経路は走行経路設定部514によって管理される。さらに、作業走行が行われるごとに、境界線データ管理部54は、作業境界線データを更新する。 The work area determination unit 58 determines the outer peripheral area SA and the work target area CA based on the traveling locus in the lap traveling received from the traveling locus calculation unit 56 when the lap traveling is completed. The outermost line of the outer peripheral area SA is the outline of the bird's-eye view, that is, the boundary line of the field, and the inner area defined by the innermost line of the outer peripheral area SA is the work target area CA where work travel is performed automatically. The travel route generation unit 59 generates a travel route for performing automatic travel as shown in FIG. 3 based on the outer peripheral area SA and the work target area CA determined by the work area determination unit 58. The generated travel route is managed by the travel route setting unit 514. Furthermore, the boundary line data management unit 54 updates the operation boundary line data each time the work travel is performed.
 自車位置算出部50で算出された自車位置、走行方位算出部57で算出された走行方位、境界線データ管理部54で管理されている境界線データおよび作業境界線データは、離間距離算出部55に送られる。離間距離算出部55は、自車位置と、走行方位と、境界線データと、車体10の外形とに基づいて、走行方位での車体10から圃場の境界線までの縦離間距離を離間距離として算出する。より詳しくは、離間距離算出部55は、前進走行時には車体10の前端と境界線までの距離を離間距離(縦離間距離)として算出し、後進走行時には車体10の後端と境界線までの距離を離間距離(縦離間距離)として算出する。さらに、離間距離算出部55は、自車位置と、走行方位と、境界線データと、作業境界線データと、車体10の外形とに基づいて走行方位に直交する車体横断方向での車体10から境界線または作業境界線までの横離間距離を離間距離として算出する。離間距離算出部55で算出された離間距離は、車速管理部513に送られる。なお、この離間距離は、報知部501と報知デバイス62を通じて運転者または監視者に報知してもよい。 The distance between the vehicle position calculated by the vehicle position calculation unit 50, the traveling direction calculated by the traveling direction calculation unit 57, the boundary line data and the work boundary line data managed by the boundary line data management unit 54 are calculated. It is sent to the part 55. The separation distance calculation unit 55 sets the vertical separation distance from the vehicle body 10 to the boundary line of the field in the traveling direction as the separation distance based on the vehicle position, the traveling direction, the boundary line data, and the outer shape of the vehicle body 10. calculate. More specifically, the separation distance calculation unit 55 calculates the distance between the front end of the vehicle body 10 and the boundary when traveling forward as the separation distance (vertical separation distance), and the distance between the rear end of the vehicle 10 and the boundary during reverse travel. Is calculated as the separation distance (vertical separation distance). Furthermore, the separated distance calculation unit 55 determines from the vehicle body 10 in the vehicle body transverse direction orthogonal to the traveling direction based on the vehicle position, the traveling direction, the boundary line data, the work boundary line data, and the outer shape of the vehicle body 10. Calculate the lateral separation distance to the boundary or work boundary as the separation distance. The separation distance calculated by the separation distance calculation unit 55 is sent to the vehicle speed management unit 513. The separation distance may be notified to the driver or the supervisor through the notification unit 501 and the notification device 62.
 車速管理部513は、受け取った離間距離と現在の車速とに基づいて、当該離間距離が減速開始距離範囲、停車距離範囲、自動走行禁止距離範囲に入っていると、適合した範囲に応じて、減速指令または停車指令を含む車速制限指令、さらには自動走行禁止指令を出力する。車体10が畦に接近し過ぎた場合には、走行制御部51は車体10を減速または停車させること、さらには自動走行を強制的に禁止することで、畦との接触、つまり車体10が圃場の境界線を超えることを回避する。 Based on the received separation distance and the current vehicle speed, the vehicle speed management unit 513 determines that the separation distance falls within the deceleration start distance range, the stop distance range, and the automatic travel prohibition distance range, according to the range that is suitable. It outputs a vehicle speed limit command including a deceleration command or a stop command, and further an automatic travel prohibition command. When the vehicle body 10 gets too close to the boat, the traveling control unit 51 decelerates or stops the vehicle body 10, and further, forcibly prohibits automatic traveling, whereby contact with the boat, that is, the vehicle body 10 comes into a field Avoid crossing the boundaries of
 図6を用いて、この実施形態における離間距離と車速制限指令及び自動走行禁止指令との関係を詳しく説明する。なお、ここでは、離間距離は、縦離間距離である。図6の例では、コンバインの進行方向前方領域に、停車距離範囲を規定する第1警戒距離L1と減速開始距離範囲を規定する第2警戒距離L2が設定されている。さらに、自動走行を禁止する自動走行禁止距離範囲を規定する特別警戒距離L0が設定されている。離間距離はDで示されている。第1警戒距離L1と第2警戒距離L2との間には、その距離が小さくなるほど小さくなる車速が制限車速として設定されている。一例として、算出された離間距離が第2警戒距離L2であれば、車速が1.0m/sに制限される減速指令が出力される。
算出された離間距離が第1警戒距離L1であれば、車速が0.5m/s(制限車速)に制限される減速指令が出力される。算出された離間距離が第2警戒距離L2より小さく第1警戒距離L1より大きければ、その距離が小さくなるに従って1.0m/sから0.5m/s(制限車速)に低下する減少関数に応じた値に車速を制限する減速指令が出力される。さらに、離間距離が第1警戒距離L1未満に達すると、車速制限指令として、停車指令が出力される。離間距離が第2警戒距離L2より大きい場合、車速制限指令は出力されない。なお、離間距離が特別警戒距離L0より短くなれば、自動走行禁止指令が出力され、走行モードが自動走行モードであれば、自動走行モードが取り消され、自動走行が強制的に禁止される。従って、離間距離が特別警戒距離L0より短くなれば、コンバインは手動で運転される。なお、ここでは、前進走行している形態で説明しているが、後進走行であっても、同様な離間距離と車速制限指令及び自動走行禁止指令との関係を設定することが可能である。
The relationship between the separation distance, the vehicle speed limit command, and the automatic travel prohibition command in this embodiment will be described in detail with reference to FIG. Here, the separation distance is the vertical separation distance. In the example of FIG. 6, a first alerting distance L1 defining the stopping distance range and a second alerting distance L2 defining the deceleration start distance range are set in the forward direction of travel direction of the combine. Further, a special warning distance L0 is set which defines an automatic travel prohibited distance range for prohibiting automatic travel. The separation distance is indicated by D. Between the first alerting distance L1 and the second alerting distance L2, a vehicle speed that decreases as the distance decreases is set as the limited vehicle speed. As an example, if the calculated separation distance is the second caution distance L2, a deceleration command for limiting the vehicle speed to 1.0 m / s is output.
If the calculated separation distance is the first alert distance L1, a deceleration command for limiting the vehicle speed to 0.5 m / s (limit vehicle speed) is output. If the calculated separation distance is smaller than the second warning distance L2 and larger than the first warning distance L1, according to the decreasing function that decreases from 1.0 m / s to 0.5 m / s (speed limit) as the distance decreases. The deceleration command for limiting the vehicle speed to the above value is output. Furthermore, when the separation distance reaches less than the first warning distance L1, a stop command is output as a vehicle speed limit command. When the separation distance is larger than the second caution distance L2, the vehicle speed restriction command is not output. If the separation distance is shorter than the special caution distance L0, the automatic travel prohibition command is output, and if the travel mode is the automatic travel mode, the automatic travel mode is canceled and the automatic travel is forcibly prohibited. Therefore, if the separation distance is shorter than the special warning distance L0, the combine is operated manually. Here, although a description is given in the form of traveling forward, it is possible to set the same relationship between the separation distance and the vehicle speed restriction command and the automatic traveling prohibition command even in reverse traveling.
 上述の特別警戒距離L0、第1警戒距離L1、第2警戒距離L2は、一定値であってもよいし、可変値であってもよい。例えば、特別警戒距離L0、第1警戒距離L1、第2警戒距離L2が車速によって変更されるように構成した場合の一例を以下に示す。 The above-mentioned special alerting distance L0, the first alerting distance L1, and the second alerting distance L2 may be fixed values or variable values. For example, an example in the case where the special alert distance L0, the first alert distance L1, and the second alert distance L2 are configured to be changed according to the vehicle speed will be shown below.
(1)車速が2.0m/sで走行している時には、特別警戒距離L0は1.0mとなり、第1警戒距離L1は2.0mとなり、第2警戒距離L2は4.0mとなり、(2)車速が1.5m/sで走行している時には、特別警戒距離L0は0.7mとなり、第1警戒距離L1は1.5mとなり、第2警戒距離L2は2.5mとなる。 (1) When traveling at a vehicle speed of 2.0 m / s, the special alert distance L0 is 1.0 m, the first alert distance L1 is 2.0 m, and the second alert distance L2 is 4.0 m. 2) When traveling at a vehicle speed of 1.5 m / s, the special alert distance L0 is 0.7 m, the first alert distance L1 is 1.5 m, and the second alert distance L2 is 2.5 m.
 つまり、車速が大きいほど、特別警戒距離L0、第1警戒距離L1、第2警戒距離L2が大きくなり、車速が小さいほど、特別警戒距離L0、第1警戒距離L1、第2警戒距離L2が小さくなる。なお、特別警戒距離L0、第1警戒距離L1、第2警戒距離L2のうちの少なくとも1つだけが、車速によって変更されるように構成してもよい。また、車速による、特別警戒距離L0、第1警戒距離L1、第2警戒距離L2の変更は、車速に応じて段階的に変更してもいいし、無段階に変更してもよい。 That is, the special alert distance L0, the first alert distance L1, and the second alert distance L2 increase as the vehicle speed increases, and the special alert distance L0, the first alert distance L1, and the second alert distance L2 decrease as the vehicle speed decreases. Become. Note that at least one of the special alert distance L0, the first alert distance L1, and the second alert distance L2 may be configured to be changed according to the vehicle speed. Further, the change of the special alert distance L0, the first alert distance L1, and the second alert distance L2 depending on the vehicle speed may be changed stepwise according to the vehicle speed or may be changed steplessly.
 さらに、第1警戒距離L1と第2警戒距離L2との間の離間距離に対して、離間距離が小さいほど、車速の制限(減速)が徐々に(無段階で)大きくなるように、離間距離による減速が行われるように構成してもよい。 Furthermore, with respect to the separation distance between the first warning distance L1 and the second warning distance L2, the separation distance is set so that the restriction (deceleration) of the vehicle speed gradually (steplessly) increases as the separation distance becomes smaller. It may be configured to perform deceleration by
 車速制限指令により減速または停車、さらには自動走行禁止指令により自動走行の禁止が実行される場合には、その旨が、報知部501と報知デバイス62を通じて運転者または監視者に報知される。なお、この回避制御は、自動走行のみならず手動走行においても実行可能である。 In the case where deceleration of the vehicle or stop of the vehicle is performed by the vehicle speed restriction command, or automatic travel prohibition is performed by the automatic travel prohibition command, the driver or the supervisor is notified via the notification unit 501 and the notification device 62 to that effect. Note that this avoidance control can be executed not only in automatic travel but also in manual travel.
 図6に示された離間距離と車速制限指令及び自動走行禁止指令との関係の別形態が図7に示されている。この別実施形態では、コンバインの進行方向前方領域に、特別警戒距離L0、第1警戒距離L1、第2警戒距離L2、第3警戒距離L3が設定されている。離間距離はDで示されている。離間距離が第3警戒距離L3より大きい場合、車速制限指令は出力されない。一例として、離間距離が第3警戒距離L3以下で第2警戒距離L2より大きい場合(この領域を第1の減速開始距離範囲と称す)、車速制限指令として、車速が1m/sに制限される減速指令が出力される。離間距離が第2警戒距離L2以下で第1警戒距離L1より大きい場合(この領域を第2の減速距離範囲と称す)、車速制限指令として、車速が0.5m/sに制限される減速指令が出力される。さらに、離間距離が第1警戒距離L1以下に達すると、車速制限指令として、停車指令が出力される。離間距離が特別警戒距離L0より短くなれば、自動走行禁止指令が出力される。つまり、この別実施形態では、第1警戒距離L1と第2警戒距離L2との間の距離範囲には、固定値としての車速が0.5m/sが割り当てられており、第2警戒距離L2と第3警戒距離L3との間の距離範囲には、固定値としての車速が1m/sが割り当てられていることで、図6の実施形態と異なっている。なお、この別実施例では、第3警戒距離L3は、図6の実施形態での第2警戒距離L2に対応しており、第2警戒距離L2は、図6の実施形態での第2警戒距離L2と第1警戒距離L1との中間の距離となっている。第1警戒距離L1及び特別警戒距離L0は図6の実施形態のものと同じである。この形態でも、上述の特別警戒距離L0、第1警戒距離L1、第2警戒距離L2、第3警戒距離L3の少なくとも1つまたはそれら全ては、一定値であってもよいし、車速によって変更される可変値であってもよい。 Another form of the relationship between the separation distance and the vehicle speed limit command and the automatic travel prohibition command shown in FIG. 6 is shown in FIG. In this alternative embodiment, a special alerting distance L0, a first alerting distance L1, a second alerting distance L2, and a third alerting distance L3 are set in the forward direction of advance of the combine. The separation distance is indicated by D. When the separation distance is larger than the third caution distance L3, the vehicle speed limit command is not output. As an example, when the separation distance is equal to or less than the third warning distance L3 and larger than the second warning distance L2 (this area is referred to as a first deceleration start distance range), the vehicle speed is limited to 1 m / s as a vehicle speed limit command. A deceleration command is output. When the separation distance is equal to or less than the second warning distance L2 and greater than the first warning distance L1 (this area is referred to as a second deceleration distance range), a deceleration command for limiting the vehicle speed to 0.5 m / s as a vehicle speed limitation command. Is output. Furthermore, when the separation distance reaches the first warning distance L1 or less, a stop command is output as a vehicle speed limit command. If the separation distance is shorter than the special caution distance L0, an automatic travel prohibition command is output. That is, in this alternative embodiment, a vehicle speed of 0.5 m / s as a fixed value is allocated to the distance range between the first alert distance L1 and the second alert distance L2, and the second alert distance L2 is The third embodiment is different from the embodiment of FIG. 6 in that the vehicle speed as a fixed value is assigned 1 m / s to the distance range between the third warning distance L3 and the third warning distance L3. In this alternative embodiment, the third alert distance L3 corresponds to the second alert distance L2 in the embodiment of FIG. 6, and the second alert distance L2 is the second alert in the embodiment of FIG. It is an intermediate distance between the distance L2 and the first warning distance L1. The first warning distance L1 and the special warning distance L0 are the same as those in the embodiment of FIG. Also in this embodiment, at least one or all of the special alert distance L0, the first alert distance L1, the second alert distance L2, and the third alert distance L3 described above may be a constant value, or may be changed according to the vehicle speed May be a variable value.
 次に、図8を用いて、車体10の側方から横方向への離間距離である横離間距離と車速制限指令及び自動走行禁止指令との関係を詳しく説明する。なお、車体横断方向での車体10から境界線または作業境界線までの距離である横離間距離は、ここではEで示されている。図8で示すように、車体10から車体横断方向の領域に、第1横警戒距離M1と第2横警戒距離M2と特別横警戒距離M0が設定されている。実際には、車体10の左右両側に警戒距離が設定されているが、図8では左側の警戒距離だけが示されている。ここでも、第1横警戒距離M1と第2横警戒距離M2との間には、その距離が小さくなるほど小さくなる車速が制限車速として設定されている。一例として、算出された離間距離が第2横警戒距離M2であれば、車速が1.0m/s~2.0m/s程度の制限車速に制限される減速指令が出力される。算出された離間距離が第1横警戒距離M1であれば、車速が0.5m/s~0.9m/s程度の制限車速に制限される減速指令が出力される。そして、算出された離間距離が第2横警戒距離M2と第1横警戒距離M1との間であれば、その距離が小さくなるに従って、第2横警戒距離M2での制限車速から第1横警戒距離M1での制限車速に低下する減少関数に応じた制限車速に車速を制限する減速指令が出力される。 Next, the relationship between the lateral separation distance, which is the separation distance from the side of the vehicle body 10 to the lateral direction, and the vehicle speed limit command and the automatic travel prohibition command will be described in detail with reference to FIG. Here, a lateral separation distance, which is a distance from the vehicle body 10 to the boundary line or the work boundary line in the transverse direction of the vehicle body, is indicated by E here. As shown in FIG. 8, a first horizontal warning distance M1, a second horizontal warning distance M2, and a special horizontal warning distance M0 are set in a region in the vehicle transverse direction from the vehicle body 10. In practice, warning distances are set on the left and right sides of the vehicle body 10, but only the warning distance on the left side is shown in FIG. Here too, a vehicle speed that decreases as the distance decreases is set as the limited vehicle speed between the first horizontal warning distance M1 and the second horizontal warning distance M2. As an example, if the calculated separation distance is the second horizontal alert distance M2, a deceleration command is output in which the vehicle speed is limited to a speed limit of about 1.0 m / s to 2.0 m / s. If the calculated separation distance is the first horizontal caution distance M1, a deceleration command for limiting the vehicle speed to a limited vehicle speed of about 0.5 m / s to 0.9 m / s is output. Then, if the calculated separation distance is between the second horizontal warning distance M2 and the first horizontal warning distance M1, as the distance becomes smaller, the first horizontal warning from the limited vehicle speed at the second horizontal warning distance M2 A deceleration command for limiting the vehicle speed to the limited vehicle speed according to the decreasing function which reduces to the limited vehicle speed at the distance M1 is output.
 さらに、離間距離が第1横警戒距離M1未満に達すると、車速制限指令として、停車指令が出力される。離間距離が第2横警戒距離M2より大きい場合、車速制限指令は出力されない。なお、離間距離が特別横警戒距離M0より短くなれば、自動走行禁止指令が出力され、自動走行モードが強制的に取り消される。従って、離間距離が特別横警戒距離M0より短くなれば、コンバインは手動で運転されることになる。なお、ここでは、前進走行している形態で説明しているが、後進走行であっても、同様な離間距離と車速制限指令及び自動走行禁止指令との関係が設定される。この形態でも、上述の特別横警戒距離M0、第1横警戒距離M1、第2横警戒距離M2の少なくとも1つまたはそれら全ては、一定値であってもよいし、車速によって変更される可変値であってもよい。 Furthermore, when the separation distance reaches less than the first horizontal warning distance M1, a stop command is output as a vehicle speed limit command. If the separation distance is larger than the second horizontal warning distance M2, the vehicle speed limit command is not output. If the separation distance is shorter than the special horizontal warning distance M0, the automatic travel prohibition command is output, and the automatic travel mode is forcibly canceled. Therefore, if the separation distance is shorter than the special horizontal warning distance M0, the combine will be operated manually. Here, although a description is given in the form of forward traveling, the same relationship between the separation distance, the vehicle speed restriction command, and the automatic travel prohibition instruction is set even in reverse travel. Also in this embodiment, at least one or all of the special horizontal alerting distance M0, the first horizontal alerting distance M1, and the second horizontal alerting distance M2 described above may be constant values, or variable values that are changed according to the vehicle speed. It may be
 さらに、上述した横離間距離と車速とを用いた制限制御は、作業走行状態での制御と、非作業走行状態での制御とに分けることができる。作業走行状態には、車体10が未作業領域で穀稈を刈取りながら走行している状態、及び、車体10が刈取り走行を行った未作業領域から次の未作業領域に移行するために既作業領域をUターン走行している状態が含まれる。非作業走行状態には、上述した離脱走行や復帰走行が行われている状態が含まれる。非作業走行では、車体10は、通常、作業走行に比べて高速で走行する。このため、非作業走行時には、作業走行時に比べて、特別警戒距離L0、第1警戒距離L1、第2警戒距離L2、第3警戒距離L3、及び、特別横警戒距離M0、第1横警戒距離M1、第2横警戒距離M2の少なくとも1つまたはそれら全てが大きくなるように構成してもよい。 Furthermore, the limitation control using the lateral separation distance and the vehicle speed described above can be divided into control in the work traveling state and control in the non-work traveling state. In the work traveling state, a state in which the vehicle body 10 travels while harvesting a grain gutter in an unworked region, and an already-worked in order to shift from the unworked region where the vehicle body 10 performed mowing travel to the next unworked region It includes the state of U-turn traveling in the area. The non-operation traveling state includes the state in which the above-described separation traveling and return traveling are performed. In non-work travel, the vehicle body 10 usually travels at a higher speed than work travel. Therefore, during non-operation travel, the special alert distance L0, the first alert distance L1, the second alert distance L2, the third alert distance L3, and the special horizontal alert distance M0, the first horizontal alert distance, as compared to the operation during operation. At least one or all of M1 and the second horizontal warning distance M2 may be configured to be large.
〔第1実施形態の別実施の形態〕
(1)図4で示された各機能部は、主に説明目的で区分けされている。実際には、各機能部は他の機能部と統合してもよいし、または複数の機能部に分けてもよい。さらに、制御ユニット5に構築されている機能部のうち、車速管理部513、走行モード管理部53、境界線データ管理部54、離間距離算出部55、走行軌跡算出部56、走行方位算出部57、作業領域決定部58、走行経路生成部59のいずれかは、持ち運び可能な携帯型の通信端末4(タブレットコンピュータなど)に構築し、コンバインに持ち込んで、無線や車載LANを経由して制御ユニット5とデータ交換するような構成を採用してもよい。
Another Embodiment of the First Embodiment
(1) Each functional unit shown in FIG. 4 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with other functional units or may be divided into a plurality of functional units. Further, among the functional units constructed in the control unit 5, the vehicle speed management unit 513, the traveling mode management unit 53, the boundary line data management unit 54, the separated distance calculation unit 55, the traveling locus calculation unit 56, and the traveling direction calculation unit 57 One of the work area determination unit 58 and the travel route generation unit 59 is built in the portable communication terminal 4 (such as a tablet computer) that can be carried and brought into a combine, and a control unit via wireless or in-vehicle LAN A configuration that exchanges data with 5 may be adopted.
(2)上述の実施形態においては、監視者は、コンバインを手動運転し、図2に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように収穫走行を行い、その後、走行経路を算出して、自動運転に切り替える。しかしながら、本発明はこれに限定されず、最初から、コンバインが自動運転され、特別な事態が発生した際に、手動運転に切り替えられる運転方法でもよい。また、直線状またはほぼ直線状の走行経路は自動運転され、方向転換など急旋回を伴うような走行経路は、手動運転される運転方法でもよい。 (2) In the above-described embodiment, the supervisor manually operates the combine and, as shown in FIG. 2, harvests and travels along the border of the field at the outer peripheral portion in the field, Thereafter, the travel route is calculated and switched to automatic driving. However, the present invention is not limited to this, and may be an operation method in which the combine is automatically operated from the beginning and switched to the manual operation when a special situation occurs. Further, the straight or substantially straight traveling route may be operated automatically, and the traveling route accompanied by a sharp turn such as turning may be a manually operated driving method.
(3)本発明は、普通型のコンバインだけでなく、自脱型のコンバインにも利用可能である。また、トウモロコシ収穫機、ジャガイモ収穫機、ニンジン収穫機、サトウキビ収穫機等の種々の収穫機にも利用できる。 (3) The present invention can be used not only for ordinary type combine but also for self-eliminating type combine. Moreover, it can utilize also for various harvest machines, such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
(第2実施形態)
 次に、本発明の作業車衝突警戒システムを採用した作業車の一例である収穫機として、普通型のコンバインを取り上げて説明する。なお、本明細書では、特に断りがない限り、「前」(図9に示す矢印Fの方向)は車体前後方向(走行方向)における前方を意味し、「後」(図9に示す矢印Bの方向)は車体前後方向(走行方向)における後方を意味する。また、左右方向または横方向は、車体前後方向に直交する車体横断方向(車体幅方向)を意味する。「上」(図9に示す矢印Uの方向)及び「下」(図9に示す矢印Dの方向)は、車体の鉛直方向(垂直方向)での位置関係であり、地上高さにおける関係を示す。
Second Embodiment
Next, a general-purpose combine will be described as a harvester which is an example of a work vehicle adopting the work vehicle collision warning system of the present invention. In the present specification, “front” (direction of arrow F shown in FIG. 9) means front in the vehicle longitudinal direction (traveling direction) unless otherwise noted, “rear” (arrow B shown in FIG. 9) Direction) means the rear in the longitudinal direction (traveling direction) of the vehicle. Further, the lateral direction or the lateral direction means a transverse direction of the vehicle (vehicle width direction) orthogonal to the longitudinal direction of the vehicle. “Up” (direction of arrow U shown in FIG. 9) and “down” (direction of arrow D shown in FIG. 9) are positional relationships in the vertical direction (vertical direction) of the vehicle body, Show.
 図9に示すように、このコンバインは、車体210、クローラ式の走行装置211、運転部212、脱穀装置213、穀粒タンク214、収穫部H、搬送装置216、穀粒排出装置218、自車位置検出モジュール280を備えている。 As shown in FIG. 9, the combine has a car body 210, a traveling device 211 of a crawler type, an operation unit 212, a threshing device 213, a grain tank 214, a harvesting unit H, a conveying device 216, a grain discharging device 218, and an own vehicle. A position detection module 280 is provided.
 走行装置211は、車体210の下部に備えられている。コンバインは、走行装置211によって自走可能に構成されている。運転部212、脱穀装置213、穀粒タンク214は、走行装置211の上側に備えられ、車体210の上部を構成している。運転部212は、コンバインを運転する運転者やコンバインの作業を監視する監視者が搭乗可能である。通常、運転者と監視者とは兼務される。なお、運転者と監視者とが別人の場合、監視者は、コンバインの機外からコンバインの作業を監視することができる。 The traveling device 211 is provided at the lower part of the vehicle body 210. The combine is configured to be self-propelled by the traveling device 211. The driving unit 212, the threshing device 213, and the grain tank 214 are provided on the upper side of the traveling device 211 and constitute an upper portion of the vehicle body 210. The driving unit 212 can be used by a driver driving a combine and a supervisor monitoring a combine operation. Usually, the driver and the supervisor are combined. When the driver and the monitor are different persons, the monitor can monitor the combine operation from the outside of the combine.
 穀粒排出装置218は、穀粒タンク214の後下部に連結されている。また、自車位置検出モジュール280は、運転部212の前上部に取り付けられている。 The grain discharging device 218 is connected to the rear lower portion of the grain tank 214. In addition, the vehicle position detection module 280 is attached to the front upper portion of the driver 212.
 収穫部Hは、コンバインにおける前部に備えられている。そして、搬送装置216は、収穫部Hの後側に接続されている。また、収穫部Hは、切断機構215及びリール217を有している。切断機構215は、圃場の植立穀稈を刈り取る。また、リール217は、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫部Hは、圃場の穀物(農作物の一種)を収穫する。そして、コンバインは、収穫部Hによって圃場の穀物を収穫しながら走行装置211によって走行する作業走行が可能である。 The harvester H is provided at the front of the combine. Then, the transport device 216 is connected to the rear side of the harvesting unit H. The harvester H also has a cutting mechanism 215 and a reel 217. The cutting mechanism 215 reaps the field crop of the field. In addition, the reel 217 scrapes the cropping object of harvest while being rotationally driven. According to this configuration, the harvesting unit H harvests cereal grains (a kind of crop) in the field. And a combine traveling can carry out work traveling which travels by traveling device 211, while harvesting the grain of a field by harvesting part H.
 切断機構215により刈り取られた刈取穀稈は、搬送装置216によって脱穀装置213へ搬送される。脱穀装置213において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク214に貯留される。穀粒タンク214に貯留された穀粒は、穀粒排出装置218によって機外に排出される。 The cropped rice straw which has been cut by the cutting mechanism 215 is transported by the transport device 216 to the threshing device 213. In the threshing device 213, the reaping grain is threshed. The grains obtained by the threshing process are stored in a grain tank 214. The grains stored in the grain tank 214 are discharged to the outside by the grain discharging device 218.
 また、運転部212には、通信端末202が配置されている。本実施形態において、通信端末202は、運転部212に固定されている。しかしながら、本発明はこれに限定されず、通信端末202は、運転部212に対して着脱可能に構成されていても良いし、コンバインの機外に位置していても良い。 In addition, in the operation unit 212, the communication terminal 202 is disposed. In the present embodiment, the communication terminal 202 is fixed to the driver 212. However, the present invention is not limited to this, and the communication terminal 202 may be configured to be attachable to and detachable from the operation unit 212, or may be located outside the combine machine.
 このコンバインは、設定された走行経路に沿って自動走行する機能を有しており、地図上の自車位置を算出するために、自車位置検出モジュール280を備えている。自車位置検出モジュール280には、衛星航法モジュール281と慣性航法モジュール282とが含まれている(図14参照)。衛星航法モジュール281は、人工衛星GSから送信されるGNSS(global navigation satellite system)信号(GPS信号を含む)を受信して、自車位置を算出するための測位データを出力する。慣性航法モジュール282は、ジャイロ加速度センサ及び磁気方位センサを組み込んでおり、瞬時の走行方向を示す位置ベクトルを出力する。慣性航法モジュール282は、衛星航法モジュール281による自車位置算出を補完するために用いられる。慣性航法モジュール282は、省略することも可能である。即ち、自車位置検出モジュール280は、少なくとも、衛星航法を用いて測位データを取得するものである。また、コンバインは圃場の作物を収穫する農作業車であるので、自車位置を検出するために、レーザレーダや超音波センサを用いると、作物が邪魔になって畦等の圃場境界の検出精度が落ちることがある。しかし、本発明では、作業車と境界線(畦など)との間に存在する農作物や電柱などの影響をほとんど受けないので、自車位置検出モジュール280が衛星航法を用いて測位データを取得するものであるため、確実に自車位置を検出できる。 The combine has a function of automatically traveling along the set travel route, and includes a vehicle position detection module 280 to calculate the vehicle position on the map. The host vehicle position detection module 280 includes a satellite navigation module 281 and an inertial navigation module 282 (see FIG. 14). The satellite navigation module 281 receives a global navigation satellite system (GNSS) signal (including a GPS signal) transmitted from the artificial satellite GS, and outputs positioning data for calculating the vehicle position. The inertial navigation module 282 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction. The inertial navigation module 282 is used to supplement the vehicle position calculation by the satellite navigation module 281. The inertial navigation module 282 can also be omitted. That is, the vehicle position detection module 280 acquires positioning data at least using satellite navigation. In addition, because combine is an agricultural work vehicle that harvests crops in the field, using laser radar or ultrasonic sensors to detect the position of the vehicle causes the crop to be in the way and the detection accuracy of field boundaries such as straw etc. It may fall. However, according to the present invention, the vehicle position detection module 280 acquires positioning data using satellite navigation, since it is hardly affected by agricultural products, utility poles, etc. existing between the work vehicle and the boundary (such as a fence). Since it is a thing, it can detect the vehicle position certainly.
 コンバインによる収穫作業では、最初に、運転者兼監視者は、コンバインを手動で操作し、圃場内の外周部分において、圃場の境界線に沿って周回するように収穫走行を行う。
これにより既刈地(既作業地)となった領域は、図10に示すように、外周領域SAとして設定される。そして、外周領域SAの内側に未刈地(未作業地)のまま残された領域は、作業対象領域CAとして設定される。図10は、外周領域SAと作業対象領域CAの一例を示している。
In the harvest operation by the combine, the driver / watcher first operates the combine manually, and performs harvest traveling on the perimeter of the field so as to go around along the border of the field.
As a result, as shown in FIG. 10, the area which has become the existing area (existing area) is set as the outer peripheral area SA. Then, the area left as the uncut ground (unworked place) inside the outer peripheral area SA is set as the work target area CA. FIG. 10 shows an example of the outer peripheral area SA and the work target area CA.
 外周領域SAは、作業対象領域CAにおいて収穫走行を行うときに、コンバインが方向転換するためのスペースとして利用される。また、外周領域SAは、収穫走行を一旦終えて、穀粒の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用される。そのために、外周領域SAの幅をある程度広く確保するために、運転者は、コンバインを3~4周走行させる。この周回走行も、自動走行によって行われても良い。 The outer peripheral area SA is used as a space for the combine to turn when the harvest traveling is performed in the work target area CA. Further, the outer peripheral area SA is also used as a space for movement, such as when moving to a discharge place of grain or after moving to a fuel supply place after the harvest traveling is once finished. Therefore, in order to secure the width of the outer peripheral area SA to a certain extent, the driver travels the combine three to four turns. This circular traveling may also be performed by automatic traveling.
 少なくとも部分的には自動走行によって収穫作業が行われる場合、作業対象領域CAに走行経路が設定される。図10には、そのような走行経路の一例であるメッシュ線群が示されている。メッシュ線群は、コンバインの作業幅をメッシュ間隔として、作業対象領域CAをメッシュ線(メッシュ走行経路)で埋め尽くするように生成される。 When the harvesting work is performed at least partially by the automatic traveling, the traveling route is set in the work target area CA. FIG. 10 shows a mesh line group which is an example of such a travel route. The mesh line group is generated such that the work target area CA is completely filled with mesh lines (mesh travel path), with the work width of the combine as the mesh interval.
 なお、図示されていないが、外周領域SAにも、走行経路が設定され、コンバインが外周領域SAを走行する際に用いられる。外周領域SAに設定される走行経路には、離脱経路、復帰経路、方向転換経路などが含まれる。離脱経路は、コンバインが作業対象領域CAを離脱して外周領域SAに入るために用いられる。復帰経路は、コンバインが外周領域SAから作業対象領域CAでの作業走行に復帰するために用いられる。方向転換経路は、作業対象領域CAにおけるメッシュ走行経路から外周領域SAに出て次のメッシュ走行経路に入る際に用いられる。外周領域SAと作業対象領域CAとは、収穫作業の進行とともに変化するので、それに合わせて方向転換経路も移動される。なお、作業対象領域CAの形状は四角形以外の多角形を採用してもよい。なお、メッシュ線は、例えば、圃場の外周ラインに平行な線として生成される。なお、メッシュ線は、直線に限られず、湾曲や屈曲していたり、蛇行していたりしても良い。 Although not shown, a travel route is also set in the outer peripheral area SA, and the combine is used when traveling in the outer peripheral area SA. The travel route set in the outer peripheral area SA includes a departure route, a return route, a direction change route, and the like. The leaving path is used for the combine to leave the work area CA and enter the outer circumference area SA. The return path is used for the combine to return from the outer peripheral area SA to work travel in the work target area CA. The direction change path is used when the mesh travel path in the work target area CA leaves the outer circumferential area SA and enters the next mesh travel path. Since the outer peripheral area SA and the work target area CA change with the progress of the harvesting work, the turning path is also moved accordingly. The shape of the work target area CA may be a polygon other than a quadrangle. The mesh line is generated, for example, as a line parallel to the peripheral line of the field. The mesh lines are not limited to straight lines, and may be curved or bent or meandered.
 図11は、複数のコンバインが、同一の作業地としての圃場を自動作業走行している様子を示している。ここでは、理解のしやすさのために、2台のコンバインを取り上げ、それぞれ、第1作業車と第2作業車と称する。各作業車は、自車位置検出モジュール280による衛星測位に基づいて、自車位置(地図座標における絶対座標値または圃場座標における相対座標値)を算出する機能を有する。さらに、第1作業車と第2作業車とは、それぞれ無線通信を通じて自車位置を交換する機能も有する。 FIG. 11 shows how a plurality of combines are automatically working on a field as the same work site. Here, for ease of understanding, two combine harvesters are taken up and referred to as a first work vehicle and a second work vehicle, respectively. Each work vehicle has a function of calculating the vehicle position (absolute coordinate value in map coordinates or relative coordinate value in field coordinates) based on satellite positioning by the vehicle position detection module 280. Furthermore, the first work vehicle and the second work vehicle also have a function of exchanging the vehicle position through wireless communication.
 なお、図11に示す運搬車CVは、コンバインから排出された穀粒を収集し、乾燥施設等へ運搬する。穀粒排出の際、コンバインは運搬車CVの近傍へ移動した後、穀粒排出装置218によって穀粒を運搬車CVへ排出する。 The transport vehicle CV shown in FIG. 11 collects grains discharged from the combine and transports the grains to a drying facility or the like. At the time of grain discharge, the combine moves to the vicinity of the transport vehicle CV and then discharges the grains to the transport vehicle CV by the grain discharge device 218.
 図12には、図10で示されたメッシュ線群が設定された作業対象領域CAを、第1作業車と第2作業車とが協調して自動走行する走行パターンの一例が示されている。複数の作業車が協調して走行する形態は、様々である。例えば、予め設定された走行経路を自由に選択しながら走行する形態、予め決められた走行経路を予め決められた順番で選択して走行する作業車と、自由に走行経路を選択して走行する作業車とが組み合わされる形態などがある。予め設定された走行経路に沿って走行するとしても、手動走行する作業車と自動走行する作業車とが組み合われる形態、あるいは、全ての作業車が手動走行する形態も可能である。予め走行経路が設定されずに、全ての作業車が手動走行する形態も可能である。それら全ての形態において、本発明による作業車衝突警戒システムは適用可能である。全ての作業車が、予め設定された走行経路を予め決められた順番と時間で走行しない限り、作業車衝突の可能性があるので、本発明による作業車衝突警戒システムは有益である。  FIG. 12 shows an example of a traveling pattern in which the first working vehicle and the second working vehicle automatically travel in cooperation with the work target area CA in which the mesh line group shown in FIG. 10 is set. . There are various modes in which a plurality of work vehicles travel in coordination. For example, a mode of traveling while freely selecting a preset traveling route, a working vehicle which selects and travels a predetermined traveling route in a predetermined order, and a traveling route freely There is a form etc. where a work vehicle is combined. Even if the vehicle travels along a preset travel path, a form in which a manually traveling work vehicle and an automatically traveling work vehicle are combined or a form in which all the work vehicles travel manually is also possible. A mode is also possible in which all the work vehicles travel manually without the travel route being set in advance. In all these forms, the work vehicle collision warning system according to the invention is applicable. The work vehicle collision alert system according to the invention is useful, as all work vehicles have a possibility of work vehicle collisions, unless they travel in a predetermined order and time in a predetermined travel path.
 図12で示された例では、第1作業車は、作業対象領域CAを示す変形四角形の右下の頂点付近からメッシュ経路L11に入り、メッシュ経路L11とメッシュ経路L21との交点で左旋回してメッシュ経路L21に入る。さらに、メッシュ経路L21とメッシュ経路L32との交点で左旋回してメッシュ経路L32に入る。このようにして、第1作業車は、左旋回の渦巻き走行を行う。これに対して、第2作業車は、作業対象領域CAの左上の頂点付近からメッシュ経路L31に入り、メッシュ経路L31とメッシュ経路L41との交点で左旋回してメッシュ経路L41に入る。さらに、メッシュ経路L41とメッシュ経路L12との交点で左旋回してメッシュ経路L12に入る。このようにして、第2作業車は、左旋回の渦巻き走行を行う。図12から明らかなように、第1作業車の走行軌跡の間に第2作業車の走行軌跡が入り込むような協調制御が行われるので、第1作業車は、自己の作業幅と第2作業車の作業幅とを合わせた幅だけ間隔をあけた渦巻き走行となり、第2作業車は、自己の作業幅と第1作業車の作業幅とを合わせた幅だけ間隔をあけた渦巻き走行となる。第1作業車の走行軌跡と第2作業車の走行軌跡とは、2重渦巻きを作り出している。 In the example shown in FIG. 12, the first work vehicle enters the mesh path L11 from near the lower right apex of the deformed rectangle indicating the work object area CA, and turns left at the intersection of the mesh path L11 and the mesh path L21. The mesh route L21 is entered. Furthermore, it turns to the left at the intersection of the mesh path L21 and the mesh path L32 and enters the mesh path L32. In this way, the first work vehicle performs a swirling traveling in a left turn. On the other hand, the second work vehicle enters the mesh path L31 from near the top left corner of the work target area CA, turns left at the intersection of the mesh path L31 and the mesh path L41, and enters the mesh path L41. Furthermore, it turns to the left at the intersection of the mesh path L41 and the mesh path L12 and enters the mesh path L12. In this way, the second working vehicle performs a swirling traveling in a left turn. As is clear from FIG. 12, since the coordinated control is performed such that the traveling track of the second working vehicle gets in between the traveling tracks of the first working vehicle, the first working vehicle has its own working width and the second work. The second traveling vehicle has a spiral traveling with a width equal to the combined working width of the first working vehicle and the working width of the first working vehicle. . The travel trajectory of the first work vehicle and the travel trajectory of the second work vehicle create a double spiral.
 図12には、第2作業車が、作業走行の途中で、作業対象領域CAでのメッシュ経路から離脱して、外周領域SAを周回走行し、収穫物を運搬車CVに排出し、再び外周領域SAを周回走行し、作業対象領域CAでのメッシュ経路に復帰する様子も示されている。その際、第2作業車はメッシュ経路L41とメッシュ経路L12との交点で離脱して、外周領域SAに進んだ第2作業車は、外周領域SAの離脱経路に沿って駐車位置まで走行し、駐車位置にて運搬車CVに収穫物を排出する。 In FIG. 12, the second working vehicle leaves the mesh route in the work target area CA in the middle of the work travel, travels around the outer circumference area SA, discharges the harvested material to the transport vehicle CV, and again performs the outer circumference The state of traveling around the area SA and returning to the mesh route in the work target area CA is also shown. At that time, the second work vehicle leaves at the intersection of the mesh path L41 and the mesh path L12, and the second work vehicle having advanced to the outer peripheral area SA travels to the parking position along the release path of the outer peripheral area SA, The harvest is discharged to the transport vehicle CV at the parking position.
 第1作業車は、第2作業車が作業対象領域CAでの作業走行を離脱して収穫物の排出を行っている間も、作業対象領域CAでの作業走行を継続する。但し、第1作業車は、メッシュ経路L42の走行中において、第2作業車の離脱によりメッシュ経路L12は未刈地(未走行)となっている。このため、第1作業車は、メッシュ経路L13の走行を取りやめ、メッシュ経路L42とメッシュ経路L12との交点まで走行して、そこで左折して、メッシュ経路L12を走行する。第2作業車が収穫物排出を終えると、第2作業車は、駐車位置から、外周領域SAを、復帰経路に沿って左回りに走行して、メッシュ経路L43の左端からメッシュ経路L43に入る。その際、第1作業車が走行しているメッシュ経路L33とメッシュ経路L44との交点付近で第1作業車と第2作業車とが接近することになる。このような第1作業車と第2作業車との接近による作業車同士の衝突を回避するために、どちらか一方の作業車が強制停止させられる。この強制停止は、本発明による作業車衝突警戒システムによって行われる。 The first work vehicle continues the work travel in the work target area CA while the second work vehicle leaves the work travel in the work target area CA and discharges the harvest. However, while the first working vehicle is traveling on the mesh route L42, the mesh route L12 is ungrounded (not traveling) due to the detachment of the second working vehicle. For this reason, the first work vehicle stops traveling on the mesh path L13, travels to the intersection of the mesh path L42 and the mesh path L12, turns left there, and travels on the mesh path L12. When the second work vehicle finishes discharging the harvested material, the second work vehicle travels leftward along the return route from the parking position along the return route, and enters the mesh route L43 from the left end of the mesh route L43 . At this time, the first work vehicle and the second work vehicle approach each other near the intersection of the mesh route L33 and the mesh route L44 on which the first work vehicle is traveling. In order to avoid the collision of the work vehicles due to the approach between the first work vehicle and the second work vehicle, one of the work vehicles is forcibly stopped. This forced stop is performed by the work vehicle collision warning system according to the invention.
 図13には、メッシュ経路Laを走行している第1作業車と、メッシュ経路Lbを走行している第2作業車が示されている。ここでは、メッシュ経路Laとメッシュ経路Lbとは交差角をもって延びているが、これは、第1作業車と第2作業車とが走行する走行経路の一例に過ぎない。それぞれの作業車が走行する走行経路は、同一であってもよいし、互いに交差していなくてもよい。図13では、第1作業車と第2作業車は同一方向で走行し、第2作業車は第1作業車を先行している。この場合、第2作業車が停車している場合や、第1作業車の車速が第2作業車の車速より高い場合、衝突の可能性が出てくるので、第1作業車と第2作業車との車間距離が短くなれば、第1作業車が強制停止させられる。この強制停止も、作業車衝突警戒システムによって行われる。 FIG. 13 shows a first work vehicle traveling on the mesh route La and a second work vehicle traveling on the mesh route Lb. Here, the mesh route La and the mesh route Lb extend at a crossing angle, but this is only an example of a traveling route on which the first work vehicle and the second work vehicle travel. The travel paths traveled by the respective work vehicles may be the same or may not cross each other. In FIG. 13, the first work vehicle and the second work vehicle travel in the same direction, and the second work vehicle precedes the first work vehicle. In this case, when the second work vehicle is at a stop, or when the vehicle speed of the first work vehicle is higher than the vehicle speed of the second work vehicle, the possibility of a collision comes out, so the first work vehicle and the second work If the distance between the vehicle and the vehicle becomes short, the first working vehicle can be forcibly stopped. This forced stop is also performed by the work vehicle collision warning system.
 図14に、第1作業車の制御系が示されている。第2作業車の制御系も基本的に同一である。コンバインのような作業車の制御系は、多数のECUと呼ばれる電子制御ユニットからなる制御ユニット205、及びこの制御ユニット205との間で車載LANなどの配線網を通じて信号通信(データ通信)を行う各種入出力機器から構成されている。 The control system of the first work vehicle is shown in FIG. The control system of the second work vehicle is basically the same. The control system of a work vehicle such as a combine is variously in charge of signal communication (data communication) with a control unit 205 consisting of electronic control units called multiple ECUs and a wiring network such as an in-vehicle LAN with this control unit 205 It consists of input and output devices.
 報知デバイス262は、運転者等に作業走行状態や種々の警告を報知するためのデバイスであり、ブザー、ランプ、スピーカ、ディスプレイなどである。通信部266は、他の作業車(他車)との間でデータ交換するために用いられる。また、通信部266は、遠隔地に設置されている管理コンピュータ及び外部通信端末との間でデータ交換するためにも用いられる。この外部通信端末には、圃場に立っている監視者、またはコンバインに乗り込んでいる監視者(運転者も含む)が操作するタブレットコンピュータ、自宅や管理事務所に設置されているコンピュータ、さらには車外に持ち出された通信端末202が含まれる。制御ユニット205は、この制御系の中核要素であり、複数のECUの集合体として示されている。自車位置検出モジュール280からの信号は、車載LANを通じて制御ユニット205に入力される。 The notification device 262 is a device for notifying a driver or the like of a work traveling state and various warnings, and is a buzzer, a lamp, a speaker, a display or the like. The communication unit 266 is used to exchange data with other work vehicles (other vehicles). The communication unit 266 is also used to exchange data between a management computer and an external communication terminal installed at a remote location. This external communication terminal may be a tablet computer operated by an observer standing in a field or an observer (including a driver) who is riding in a combine, a computer installed at home or at a management office, or even outside a car And the communication terminal 202 brought out. The control unit 205 is a core element of this control system, and is shown as a collection of a plurality of ECUs. A signal from the vehicle position detection module 280 is input to the control unit 205 through the in-vehicle LAN.
 制御ユニット205は、入出力インタフェースとして、出力処理部2503と入力処理部2502とを備えている。出力処理部2503は、機器ドライバ265を介して種々の動作機器270と接続している。動作機器270として、走行関係の機器である走行機器群271と作業関係の機器である作業機器群272とがある。走行機器群271には、例えば、エンジン制御機器、変速制御機器、制動制御機器、操舵制御機器などが含まれている。作業機器群272には、収穫部H、脱穀装置213、搬送装置216、穀粒排出装置218における動力制御機器などが含まれている。 The control unit 205 includes an output processing unit 2503 and an input processing unit 2502 as an input / output interface. The output processing unit 2503 is connected to various operation devices 270 via the device driver 265. The operating devices 270 include a traveling device group 271 which is a traveling-related device and a working device group 272 which is a working-related device. The traveling device group 271 includes, for example, an engine control device, a transmission control device, a braking control device, a steering control device, and the like. The working device group 272 includes a power control device and the like in the harvesting unit H, the threshing device 213, the transport device 216, and the grain discharging device 218.
 入力処理部2502には、走行状態センサ群263、作業状態センサ群264、走行操作ユニット290、などが接続されている。走行状態センサ群263には、車速センサ、エンジン回転数センサ、オーバーヒート検出センサ、ブレーキペダル位置検出センサ、駐車ブレーキ検出センサ、変速位置検出センサ、操舵位置検出センサ、などが含まれている。作業状態センサ群264には、収穫作業装置(収穫部H、脱穀装置213、搬送装置216、穀粒排出装置218)の駆動状態を検出するセンサ、及び穀稈や穀粒の状態を検出するセンサが含まれている。 A traveling state sensor group 263, a working state sensor group 264, a traveling operation unit 290, and the like are connected to the input processing unit 2502. The traveling state sensor group 263 includes a vehicle speed sensor, an engine rotational speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a parking brake detection sensor, a shift position detection sensor, a steering position detection sensor, and the like. The work state sensor group 264 includes a sensor that detects the driving state of the harvest work device (the harvester H, the threshing device 213, the transport device 216, and the grain discharging device 218), and a sensor that detects the state of the grain crucible or grain. It is included.
 走行操作ユニット290は、運転者によって手動操作され、その操作信号が制御ユニット205に入力される操作具の総称である。走行操作ユニット290には、主変速操作具、操舵操作具、モード操作具、自動開始操作具などが含まれている。モード操作具は、自動運転と手動運転とを切り替えるための指令を制御ユニット205に送り出す機能を有する。自動開始操作具は、自動走行を開始するための最終的な自動開始指令を制御ユニット205に送る機能を有する。 The travel operation unit 290 is a general term for an operation tool which is manually operated by the driver and whose operation signal is input to the control unit 205. The travel operation unit 290 includes a main shift operation tool, a steering operation tool, a mode operation tool, an automatic start operation tool, and the like. The mode operation tool has a function of sending a command for switching between the automatic operation and the manual operation to the control unit 205. The automatic start operating tool has a function of sending a final automatic start command for starting automatic traveling to the control unit 205.
 制御ユニット205には、自車位置算出部250、走行制御部251、作業制御部252、走行モード管理部253、走行経路生成部254、走行軌跡算出部255、作業領域決定部256、衝突警戒モジュール204が備えられている。自車位置算出部250は、自車位置検出モジュール280から逐次送られてくる測位データに基づいて、自車位置を地図座標(または圃場座標)の形式で算出する。その際、自車位置として、車体210の特定箇所(例えば車体中心などの車体基準点など)の位置を設定することができる。報知部2501は、制御ユニット205の各機能部からの指令等に基づいて報知データを生成し、報知デバイス262に与える。 The control unit 205 includes a vehicle position calculation unit 250, a travel control unit 251, a work control unit 252, a travel mode management unit 253, a travel route generation unit 254, a travel locus calculation unit 255, a work area determination unit 256, and a collision alert module. 204 is provided. The vehicle position calculation unit 250 calculates the vehicle position in the form of map coordinates (or field coordinates) based on the positioning data sequentially sent from the vehicle position detection module 280. At this time, the position of a specific part of the vehicle body 210 (for example, a vehicle reference point such as the center of the vehicle body) can be set as the vehicle position. The notification unit 2501 generates notification data based on an instruction or the like from each functional unit of the control unit 205, and gives the notification data to the notification device 262.
 走行制御部251は、エンジン制御機能、操舵制御機能、車速制御機能などを有し、走行機器群271に走行制御信号を与える。作業制御部252は、収穫作業装置(収穫部H、脱穀装置213、搬送装置216、穀粒排出装置218など)の動きを制御するために、作業機器群272に作業制御信号を与える。 The traveling control unit 251 has an engine control function, a steering control function, a vehicle speed control function, and the like, and supplies a traveling control signal to the traveling device group 271. The work control unit 252 provides a work control signal to the work equipment group 272 in order to control the movement of the harvesting work apparatus (the harvesting unit H, the threshing apparatus 213, the transport apparatus 216, the grain discharging apparatus 218, etc.).
 このコンバインは、自動走行で収穫作業を行う自動運転と、手動走行で収穫作業を行う手動運転との両方で走行可能である。このため、走行制御部251には、手動走行制御部2511と自動走行制御部2512と走行経路設定部2513とが含まれている。なお、自動運転を行うために、自動走行モードが設定され、手動運転を行うためには手動走行モードが設定される。このような走行モードは、走行モード管理部253によって管理される。 The combine can travel in both automatic operation in which harvesting operation is performed automatically and manual operation in which harvesting operation is performed manually. For this reason, the travel control unit 251 includes a manual travel control unit 2511, an automatic travel control unit 2512, and a travel route setting unit 2513. In addition, in order to perform an automatic driving | running | working, automatic traveling modes are set, and in order to perform a manual driving, manual traveling modes are set. Such a travel mode is managed by the travel mode management unit 253.
 自動走行モードが設定されている場合、自動走行制御部2512は、自動操舵及び停止を含む車速変更の制御信号を生成して、走行機器群271を制御する。自動操舵に関する制御信号は、走行経路設定部2513によって設定された目標となる走行経路と、自車位置算出部250によって算出された自車位置との間の方位ずれ及び位置ずれを解消するように生成される。車速変更に関する制御信号は、前もって設定された車速値に基づいて生成される。走行経路設定部2513によって設定される走行経路は、走行経路生成部254に格納されている走行経路群(例えばメッシュ経路群)から読み出される。走行経路生成部254は、走行経路群を経路算出アルゴリズムによって自ら生成することもできるが、管理コンピュータ及び外部通信端末で生成されたものをダウンロードして、利用することも可能である。 When the automatic travel mode is set, the automatic travel control unit 2512 generates a control signal of vehicle speed change including automatic steering and stop, and controls the traveling device group 271. The control signal related to the automatic steering is such that the azimuth deviation and positional deviation between the target traveling route set by the traveling route setting unit 2513 and the own vehicle position calculated by the own vehicle position calculation unit 250 are eliminated. It is generated. The control signal related to the vehicle speed change is generated based on the preset vehicle speed value. The travel route set by the travel route setting unit 2513 is read out from the travel route group (for example, mesh route group) stored in the travel route generation unit 254. The travel route generation unit 254 can generate travel route groups by itself using a route calculation algorithm, but can also download and use those generated by the management computer and the external communication terminal.
 手動走行モードが選択されている場合、運転者による操作に基づいて、手動走行制御部2511が制御信号を生成し、走行機器群271を制御することで、手動運転が実現する。なお、走行経路生成部254によって算出された走行経路は、手動運転であっても、コンバインが当該走行経路に沿って走行するためのガイダンスのために利用することができる。 When the manual travel mode is selected, the manual travel control unit 2511 generates a control signal based on the operation by the driver and controls the traveling device group 271 to realize the manual driving. The travel route calculated by the travel route generation unit 254 can be used for guidance for the combine to travel along the travel route, even in the case of manual driving.
 走行軌跡算出部255は、自車位置算出部250によって算出された自車位置を経時的にプロットすることで走行軌跡を算出する。作業領域決定部256は、所定の作業幅で行われた収穫作業から、既刈領域(外周領域SA)、未刈領域(作業対象領域CA)などを決定する。 The traveling locus calculation unit 255 calculates a traveling locus by plotting the vehicle position calculated by the vehicle position calculation unit 250 over time. The work area determination unit 256 determines an already-cut area (outer peripheral area SA), an uncut area (work target area CA), and the like from the harvest operation performed with a predetermined work width.
 衝突警戒モジュール204は、本発明による作業車衝突警戒システムの中心的な役割を果たす構成要素である。衝突警戒モジュール204は、他車位置取得部241、走行方位決定部242、車形状管理部243、離間距離算出部244、衝突警戒部245を備えている。 The collision alert module 204 is a component that plays a central role in the work vehicle collision alert system according to the present invention. The collision alert module 204 includes another vehicle position acquisition unit 241, a travel direction determination unit 242, a vehicle shape management unit 243, a separation distance calculation unit 244, and a collision alert unit 245.
 他車位置取得部241は、通信部266を介して、第2作業車(他車)から送られてくる他車の自車位置算出部250で算出された自車位置である他車位置を取得する。走行方位決定部242は、自車の走行方位を決定する機能と、他車の走行方位を取得する機能とを有する。自車の走行方位は、走行軌跡算出部255で算出された微小時間での走行軌跡(瞬間走行軌跡)から車体210の走行方位を決定する。また、走行方位決定部242は、慣性航法モジュール282からの出力データに含まれている方位データに基づいて走行方位を決定することも可能である。走行方位決定部242は、他車の走行方位決定部242で決定された走行方位を無線通信で受け取り、他車の走行方位として管理する。 The other vehicle position acquisition unit 241 receives the other vehicle position which is the own vehicle position calculated by the own vehicle position calculation unit 250 of the other vehicle sent from the second work vehicle (other vehicle) via the communication unit 266. get. The traveling direction determination unit 242 has a function of determining the traveling direction of the vehicle and a function of acquiring the traveling directions of other vehicles. The traveling direction of the own vehicle determines the traveling direction of the vehicle body 210 from the traveling locus (instant traveling locus) in a minute time calculated by the traveling locus calculation unit 255. In addition, the traveling direction determination unit 242 can also determine the traveling direction based on the direction data included in the output data from the inertial navigation module 282. The traveling direction determination unit 242 receives the traveling direction determined by the traveling direction determination unit 242 of the other vehicle by wireless communication, and manages it as the traveling direction of the other vehicle.
 車形状管理部243は、自車及び他車の形状を示す車形状データを管理する。この車形状データは、自車位置算出部250によって算出される車体210の特定箇所との位置関係が分かるようにデータ化されている。したがって、走行方位と組み合わせることで、走行方向を基準とする自車及び他車の外形輪郭の算出が可能となる。つまり、自車と他車とが衝突する箇所が算出可能となる。さらに、車形状管理部243は、作業車同士の衝突回避の信頼性を向上させるための付加機能として、車形状データによって規定される形状よりも、少なくとも走行方向側において膨らませた仮想形状を、修正された車形状データとして生成する機能も有する。 The vehicle shape management unit 243 manages vehicle shape data indicating the shapes of the own vehicle and other vehicles. The vehicle shape data is digitized so that the positional relationship with the specific location of the vehicle body 210 calculated by the vehicle position calculation unit 250 can be understood. Therefore, by combining with the traveling direction, it becomes possible to calculate the outlines of the own vehicle and the other vehicle based on the traveling direction. That is, it is possible to calculate the location where the own vehicle collides with another vehicle. Furthermore, as an additional function for improving the reliability of collision avoidance between work vehicles, the vehicle shape management unit 243 corrects the virtual shape inflated at least on the traveling direction side more than the shape defined by the vehicle shape data. It also has the function of generating it as selected vehicle shape data.
 この実施形態では、離間距離算出部244は、自車位置(第1作業車の座標位置である第1位置に相当する)と、他車位置(第2作業車の座標位置である第2位置に相当する)と、自車の走行方位と、他車の走行方位と、自車の車形状データと、他車の車形状データとに基づいて、離間距離を算出する。ここでは、走行方位と車形状データとを考慮しているので、走行を続けた場合に自車と他車とが最初に接触する正確な部位同士の間の離間距離が算出される。 In this embodiment, the separation distance calculation unit 244 includes the position of the host vehicle (corresponding to the first position that is the coordinate position of the first work vehicle) and the position of the other vehicle (the second position that is the coordinate position of the second work vehicle). The separation distance is calculated based on the traveling direction of the own vehicle, the traveling direction of the other vehicle, the vehicle shape data of the own vehicle, and the vehicle shape data of the other vehicle. Here, since the traveling direction and the vehicle shape data are taken into consideration, when the traveling is continued, the separation distance between the accurate portions where the vehicle and the other vehicle first contact with each other is calculated.
 衝突警戒部245は、離間距離算出部244によって算出された離間距離が衝突警戒距離範囲に入った場合に、車体210を停車させる緊急停車信号を出力する。さらに、衝突警戒部245は、衝突可能性のある作業車の走行状態、特に車速に応じて衝突警戒距離範囲を変動させる調整機能も有する。例えば、自車及び他車が同一方向で走行し、他車が自車を先行している場合、衝突警戒距離範囲は、自車の車速が高いほど長くなるように調整される。 The collision warning unit 245 outputs an emergency stop signal to stop the vehicle body 210 when the separation distance calculated by the separation distance calculation unit 244 falls within the collision warning distance range. Furthermore, the collision warning unit 245 also has an adjustment function of changing the collision warning distance range according to the traveling state of the work vehicle having a collision possibility, in particular, the vehicle speed. For example, when the own vehicle and the other vehicle travel in the same direction, and the other vehicle precedes the own vehicle, the collision alert distance range is adjusted to be longer as the vehicle speed of the own vehicle is higher.
 また、自車及び他車が同一方向で走行し、他車が自車を先行している場合、自車の車速が他車の車速に比べて高いほど、衝突警戒距離範囲を長くなるように調整することも可能である。他車の車速は、継時的な他車位置から容易に算出することができる。 In addition, when the own vehicle and the other vehicle travel in the same direction, and the other vehicle precedes the own vehicle, the collision alert distance range becomes longer as the vehicle speed of the own vehicle is higher than the vehicle speed of the other vehicle. It is also possible to adjust. The vehicle speed of the other vehicle can be easily calculated from the position of the other vehicle over time.
 衝突警戒部245から緊急停車信号が出力されると、走行制御部251は、車体210を停車させる。緊急停車信号が出力されると同時に、報知部2501は、報知デバイス262を通じて、緊急停車を車内及び車外に報知する。なお、衝突警戒部245は、作業車同士の衝突まで、なお余裕がある場合には、緊急停車信号に代えて、緊急減速信号を出力して、車体210を減速させてもよい。さらには、緊急停車信号として、第1緊急停車信号と第2緊急停車信号とを用意し、最初に出力する第1緊急停車信号で車体210を減速させ、次いで出力する第2緊急停車信号で車体210を停車させるような制御を採用してもよい。 When the emergency stop signal is output from the collision alert unit 245, the traveling control unit 251 stops the vehicle body 210. At the same time as the emergency stop signal is output, the notification unit 2501 notifies the inside of the vehicle and the outside of the vehicle of the emergency stop through the notification device 262. The collision alert unit 245 may decelerate the vehicle body 210 by outputting an emergency deceleration signal instead of the emergency stop signal if there is still a margin until the collision between the work vehicles. Furthermore, a first emergency stop signal and a second emergency stop signal are prepared as emergency stop signals, the vehicle body 210 is decelerated by the first emergency stop signal to be output first, and then the second emergency stop signal is output. Control to stop the vehicle 210 may be employed.
 上述した実施形態では、衝突警戒モジュール204が、各作業車(コンバイン)に備えられていた。これに代えて、無線データ通信網を通じて、各作業車(第1作業車、第2作業車、・・・)とデータ交換可能な管理コンピュータ2100が、衝突警戒モジュール204と同様な機能を備え、各作業車を集中管理する方式を採用してもよい。この集中管理方式では、例えば、図15に示すように、管理コンピュータ2100は、作業車位置取得部2410、走行方位決定部242、離間距離算出部244、衝突警戒部245を備えている。作業車位置取得部2410は、無線データ通信網を通じて、同一作業地を作業走行する全ての作業車の自車位置算出部250(第1位置算出部、第2位置算出部、・・・)からの自車位置を受け取る。さらに、管理コンピュータ2100には、データベースとしての作業車管理部2101が備えられており、この作業車衝突警戒システムを採用している全ての作業車に関する作業車情報が管理されている。その作業車情報には、車形状データも含まれているので、作業車管理部2101は車形状管理部243としても機能する。したがって、作業車側では、図14で示された衝突警戒モジュール204が省略される。 In the embodiment described above, the collision warning module 204 is provided for each work vehicle (combine). Instead of this, a management computer 2100 capable of exchanging data with each work vehicle (first work vehicle, second work vehicle,...) Through the wireless data communication network has the same function as the collision alert module 204, A method of centrally managing each work vehicle may be adopted. In this centralized management method, for example, as shown in FIG. 15, the management computer 2100 includes a work vehicle position acquisition unit 2410, a traveling direction determination unit 242, a separation distance calculation unit 244, and a collision alert unit 245. The work vehicle position acquisition unit 2410 receives from the vehicle position calculation units 250 (first position calculation unit, second position calculation unit,...) Of all work vehicles traveling on the same work site through the wireless data communication network. Receive your vehicle position. Further, the management computer 2100 is provided with a work vehicle management unit 2101 as a database, and the work vehicle information on all work vehicles adopting this work vehicle collision warning system is managed. The work vehicle information also includes vehicle shape data, so the work vehicle management unit 2101 also functions as a vehicle shape management unit 243. Therefore, on the work vehicle side, the collision warning module 204 shown in FIG. 14 is omitted.
 作業が開始されると、各作業車から、作業車IDを含む自車位置が管理コンピュータ2100に送られてくる。例えば、図15に示すように、第1作業車からは第1作業車の座標位置である第1位置が第1作業車の作業車IDとともに送られ、第2作業車からは第2作業車の座標位置である第2位置が第2作業車の作業車IDとともに送られてくる。 When work is started, each work vehicle sends its own vehicle position including the work vehicle ID to the management computer 2100. For example, as shown in FIG. 15, the first position, which is the coordinate position of the first work vehicle, is sent from the first work vehicle together with the work vehicle ID of the first work vehicle, and the second work vehicle is transmitted from the second work vehicle The second position, which is the coordinate position of, is sent together with the work vehicle ID of the second work vehicle.
 離間距離算出部244は、各作業車から逐次送られてくる自車位置と、この自車位置から算出される走行方位と、作業車IDを用いて作業車管理部2101から読み出される車形状データとから、全ての作業車の離間距離を算出する。衝突警戒部245は、それぞれの離間距離と衝突警戒距離範囲とを比較し、離間距離が衝突警戒距離範囲に入る作業車の組み合わせを特定する。この特定された組み合わせにおいて、衝突方向に走行している方の作業車に対して、車体210を停車させる緊急停車信号を送信する。管理コンピュータ2100からの緊急停車信号が受信した作業車の走行制御部251は、直ちに車体210を停車させる。報知部2501は、緊急停車信号が出力されると同時に、報知デバイス262を通じて、緊急停車を車内及び車外に報知する。なお、この作業車衝突警戒制御は、自動走行のみならず手動走行においても実行可能である。 The separation distance calculation unit 244 uses the vehicle position sequentially sent from each work vehicle, the traveling direction calculated from the vehicle position, and the vehicle shape data read from the work vehicle management unit 2101 using the work vehicle ID. And the separation distance of all the work vehicles is calculated. The collision alert unit 245 compares each separation distance with the collision warning distance range, and identifies a combination of work vehicles whose separation distance falls within the collision warning distance range. In this specified combination, an emergency stop signal for stopping the vehicle body 210 is transmitted to the work vehicle traveling in the collision direction. The traveling control unit 251 of the work vehicle that has received the emergency stop signal from the management computer 2100 immediately stops the vehicle body 210. The notification unit 2501 notifies the inside of the vehicle and the outside of the vehicle of the emergency stop via the notification device 262 at the same time when the emergency stop signal is output. Note that this work vehicle collision warning control can be performed not only in automatic travel but also in manual travel.
〔第2実施形態の別実施の形態〕
(1)上述した実施形態では、離間距離が衝突警戒距離範囲に入る作業車の組み合わせのうち、衝突方向に走行している方の作業車(後行作業車)に対して、車体210を停車させる緊急停車信号が送信された。これに代えて、離間距離が衝突警戒距離範囲に入る作業車の組み合わせの両方に対して緊急停車信号が送信されてもよい。また、いずれか一方の作業車を停車させることで、衝突可能性が低下または消失する場合には当該作業車にのみ緊急停車信号を送信してもよい。
Another Embodiment of the Second Embodiment
(1) In the embodiment described above, the vehicle body 210 is stopped for the work vehicle (following work vehicle) traveling in the collision direction among the combinations of work vehicles whose separation distance falls within the collision warning distance range Emergency stop signal was sent. Alternatively, the emergency stop signal may be sent to both work vehicle combinations where the separation distance falls within the collision alert range. In addition, when the possibility of collision decreases or disappears by stopping one of the work vehicles, the emergency stop signal may be transmitted only to the work vehicle.
(2)図14で示された各機能部は、主に説明目的で区分けされている。実際には、各機能部は他の機能部と統合してもよいし、または複数の機能部に分けてもよい。 (2) Each functional unit shown in FIG. 14 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with other functional units or may be divided into a plurality of functional units.
(3)図15に示した集中管理方式の実施形態においては、図14における衝突警戒モジュール204の全て機能が管理コンピュータ2100に構築されている。これに代えて、走行方位決定部242は作業車側に残しておいて、作業車側で走行方位を決定した走行方位を自車位置とともに管理コンピュータ2100に送信してもよい。また、車形状管理部243も作業車側に残しておいて、作業車側から、車形状データを管理コンピュータ2100に送信してもよい。この形態は、作業走行中に外形輪郭が変化するような作業車の場合に特に効果的である。 (3) In the embodiment of the centralized management system shown in FIG. 15, all functions of the collision warning module 204 in FIG. 14 are constructed in the management computer 2100. Instead of this, the traveling direction determination unit 242 may be left on the work vehicle side, and may transmit the traveling direction whose traveling direction is determined on the work vehicle side to the management computer 2100 together with the own vehicle position. Also, the vehicle shape management unit 243 may be left on the work vehicle side, and the vehicle shape data may be transmitted to the management computer 2100 from the work vehicle side. This form is particularly effective in the case of a work vehicle whose external profile changes during work travel.
(4)集中管理方式を採用する場合においても、WEBサーバのような管理コンピュータ2100に衝突警戒モジュール204を構築するのではなく、作業地周辺で監視する監視者が持参する携帯型の通信端末202(タブレットコンピュータなど)に構築され、無線通信を用いて、各制御ユニット205とデータ交換するような構成を採用してもよい。 (4) Even in the case of adopting the centralized management method, a portable communication terminal 202 carried by a supervisor who monitors around the work site, instead of constructing the collision alert module 204 in the management computer 2100 such as the WEB server. A configuration may be adopted that is built in a tablet computer or the like and that exchanges data with each control unit 205 using wireless communication.
(5)上述の実施形態においては、衝突警戒部245が緊急停車信号を出力すると、走行制御部251が車体210を自動的に停車させた。本発明の作業車衝突警戒システムは、少なくとも1台の作業車が手動走行している場合や全ての作業車が手動走行している場合でも、衝突の可能性があれば自動的に停車させることができるので、有益である。但し、手動走行において、運転者の意思を尊重する場合には、緊急停車の報知のみを行い、実際の停車は、運転者によって行われるようにしてもよい。また、自動運転の場合でも、監視者が運転席に着座して、操縦可能な状態であれば、緊急停車信号の出力により自動走行モードから手動走行モードに強制的に切り替えて、緊急停車の報知だけを行ない、実際の停車は、運転者によって行われるようにしてもよい。 (5) In the above embodiment, the travel control unit 251 automatically stops the vehicle body 210 when the collision alert unit 245 outputs an emergency stop signal. The work vehicle collision warning system according to the present invention automatically stops the possibility of a collision even if at least one work vehicle is traveling manually or all the work vehicles are traveling manually. It is useful because However, when respecting the driver's intention in manual traveling, only notification of emergency stop may be performed, and the actual stop may be performed by the driver. In addition, even in the case of automatic driving, if the supervisor is seated at the driver's seat and is in a steerable state, the automatic stop mode is forcibly switched to the manual travel mode by the output of the emergency stop signal to notify emergency stop The actual stopping may be performed by the driver.
(6)本発明は、普通型のコンバインだけでなく、自脱型のコンバインにも適用可能である。また、トウモロコシ収穫機、ジャガイモ収穫機、ニンジン収穫機、サトウキビ収穫機等の種々の収穫機、田植機、トラクタなどの圃場作業車にも適用できる。さらには、芝刈機や建機などにも適用可能である。 (6) The present invention is applicable not only to ordinary-type combine but also to self-release-type combine. In addition, it can be applied to various harvesters such as corn harvester, potato harvester, carrot harvester and sugarcane harvester, and field work vehicles such as rice transplanter and tractor. Furthermore, it can be applied to lawn mowers and construction machines.
 なお、上述の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 Note that the configurations disclosed in the above-described embodiment (including the other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in the other embodiments as long as no contradiction arises. The embodiment disclosed in the present specification is an exemplification, and the embodiment of the present invention is not limited to this, and can be appropriately modified within the scope of the object of the present invention.
 5   :制御ユニット
 50  :自車位置算出部
 51  :走行制御部
 511 :手動走行制御部
 512 :自動走行制御部
 513 :車速管理部
 514 :走行経路設定部
 52  :作業制御部
 53  :走行モード管理部
 54  :境界線データ管理部
 55  :離間距離算出部
 56  :走行軌跡算出部
 57  :走行方位算出部
 58  :作業領域決定部
 59  :走行経路生成部
 501 :報知部
 62  :報知デバイス
 80  :自車位置検出モジュール
 81  :衛星測位モジュール
 82  :慣性計測モジュール
 CA  :作業対象領域
 SA  :外周領域
 210 :車体
 204 :衝突警戒モジュール
 241 :他車位置取得部
 242 :走行方位決定部
 243 :車形状管理部
 244 :離間距離算出部
 245 :衝突警戒部
 205 :制御ユニット
 250 :自車位置算出部(第1位置算出部、第2位置算出部)
 2501:報知部
 2502:入力処理部
 2503:出力処理部
 251 :走行制御部
 2511:手動走行制御部
 2512:自動走行制御部
 2513:走行経路設定部
 252 :作業制御部
 253 :走行モード管理部
 254 :走行経路生成部
 255 :走行軌跡算出部
 256 :作業領域決定部
 280 :自車位置検出モジュール
 281 :衛星航法モジュール
 282 :慣性航法モジュール
 290 :走行操作ユニット
 2100:管理コンピュータ
 2101:作業車管理部
 2410:作業車位置取得部
 
5: control unit 50: vehicle position calculation unit 51: traveling control unit 511: manual traveling control unit 512: automatic traveling control unit 513: vehicle speed management unit 514: traveling route setting unit 52: work control unit 53: traveling mode management unit 54: boundary line data management unit 55: separation distance calculation unit 56: travel locus calculation unit 57: travel direction calculation unit 58: work area determination unit 59: travel route generation unit 501: notification unit 62: notification device 80: vehicle position Detection module 81: Satellite positioning module 82: Inertial measurement module CA: Work area SA: Outer peripheral area 210: Vehicle body 204: Collision warning module 241: Other vehicle position acquisition unit 242: Traveling direction determination unit 243: Vehicle shape management unit 244: Distance calculation unit 245: collision warning unit 205: control unit 250: own vehicle position Position calculation unit (first position calculation unit, second position calculation unit)
2501: notification unit 2502: input processing unit 2503: output processing unit 251: traveling control unit 2511: manual traveling control unit 2512: automatic traveling control unit 2513: traveling route setting unit 252: work control unit 253: traveling mode management unit 254: Travel route generation unit 255: Travel locus calculation unit 256: Work area determination unit 280: Vehicle position detection module 281: Satellite navigation module 282: Inertial navigation module 290: Travel operation unit 2100: Management computer 2101: Work vehicle management unit 2410: Work vehicle position acquisition unit

Claims (26)

  1.  圃場の境界線の地図位置を示す境界線データを管理する境界線データ管理部と、
     衛星航法を用いて測位データを取得する自車位置検出モジュールと、
     前記測位データに基づいて自車位置を算出する自車位置算出部と、
     前記自車位置から車体の走行方位を算出する走行方位算出部と、
     前記走行方位と前記車体の外形とに基づいて前記走行方位での前記車体から前記境界線までの縦離間距離を離間距離として算出する離間距離算出部と、
     前記離間距離に応じて車速を管理する車速管理部と、を備えた農作業車。
    A boundary data management unit that manages boundary line data indicating a map position of a field boundary line;
    A vehicle position detection module that acquires positioning data using satellite navigation;
    A vehicle position calculation unit that calculates a vehicle position based on the positioning data;
    A travel direction calculation unit that calculates a travel direction of the vehicle body from the vehicle position;
    A separation distance calculation unit that calculates a vertical separation distance from the vehicle body to the boundary in the traveling direction as the separation distance based on the traveling direction and the outer shape of the vehicle body;
    An agricultural work vehicle comprising: a vehicle speed management unit configured to manage a vehicle speed according to the separation distance.
  2.  前記境界線データ管理部は、前記境界線に沿った周回走行時に前記自車位置算出部から得られた走行軌跡に基づいて前記境界線データを生成する請求項1に記載の農作業車。 The agricultural working vehicle according to claim 1, wherein the boundary line data management unit generates the boundary line data based on a traveling locus obtained from the vehicle position calculation unit when traveling round the boundary line.
  3.  前記周回走行は作業走行であり、前記作業走行による既作業領域の内側に残された作業対象領域を自動走行で作業するための走行経路を生成する走行経路生成部が備えられている請求項2に記載の農作業車。 The traveling route generation unit is provided which generates a traveling route for working the work target area left inside the existing work area by the work traveling by the automatic traveling. Agricultural work vehicles described in.
  4.  前記境界線データ管理部は、前記圃場における未作業領域と既作業領域との作業境界線の位置を示す作業境界線データを管理し、
     前記離間距離算出部は、前記走行方位と前記車体の外形とに基づいて前記走行方位に直交する車体横断方向での前記車体から前記境界線及び前記作業境界線の少なくとも一方までの横離間距離を前記離間距離として算出する請求項1から3のいずれか一項に記載の農作業車。
    The boundary data management unit manages work boundary data indicating a position of a work boundary between the unworked area and the already-worked area in the field;
    The separation distance calculation unit is configured to calculate a lateral separation distance from the vehicle body to at least one of the boundary line and the work boundary line in a vehicle body transverse direction orthogonal to the traveling direction based on the traveling direction and the outer shape of the vehicle body. The agricultural work vehicle according to any one of claims 1 to 3, which is calculated as the separation distance.
  5.  前記境界線データ管理部は、予め与えられている前記圃場の前記境界線を示すデータを参考境界線データとして管理するとともに、前記周回走行を通じて算出された前記境界線データを実境界線データとして管理し、
     前記周回走行時には前記参考境界線データに基づいて前記離間距離が算出され、自動走行時には前記実境界線データに基づいて前記離間距離が算出される請求項2または3に記載の農作業車。
    The boundary line data management unit manages data indicating the boundary line of the field given in advance as reference boundary line data, and manages the boundary line data calculated through the round trip as actual boundary line data And
    4. The agricultural working vehicle according to claim 2, wherein the separation distance is calculated based on the reference boundary line data at the time of the circumferential traveling, and the separation distance is calculated based on the actual boundary line data at the time of automatic traveling.
  6.  前記車速管理部は、前記離間距離に応じて車速を制限する車速制限指令を出力する請求項1から5のいずれか一項に記載の農作業車。 The agricultural vehicle according to any one of claims 1 to 5, wherein the vehicle speed management unit outputs a vehicle speed restriction command for restricting the vehicle speed according to the separation distance.
  7.  前記車速管理部は、前記離間距離が予め設定された減速開始距離範囲に入ると前記車体の減速を行う請求項6に記載の農作業車。 The agricultural working vehicle according to claim 6, wherein the vehicle speed management unit decelerates the vehicle body when the separated distance enters a preset deceleration start distance range.
  8.  前記減速開始距離範囲は、現車速に応じて変更される請求項7に記載の農作業車。 The agricultural work vehicle according to claim 7, wherein the deceleration start distance range is changed according to the current vehicle speed.
  9.  前記車速管理部は、前記離間距離が予め設定された停車距離範囲に入ると前記車体の停止を行う請求項6から8のいずれか一項に記載の農作業車。 The agricultural work vehicle according to any one of claims 6 to 8, wherein the vehicle speed management unit stops the vehicle body when the separation distance is in a predetermined stop distance range.
  10.  前記停車距離範囲は、現車速に応じて変更される請求項9に記載の農作業車。 The agricultural working vehicle according to claim 9, wherein the stopping distance range is changed according to the current vehicle speed.
  11.  自動走行制御部が備えられており、
     自動走行中において、前記車速管理部は、前記離間距離が予め設定された自動走行禁止距離範囲に入ると自動走行を禁止する請求項6から10のいずれか一項に記載の農作業車。
    An automatic cruise control unit is provided.
    The agricultural work vehicle according to any one of claims 6 to 10, wherein, during automatic traveling, the vehicle speed management unit prohibits automatic traveling when the separated distance enters a preset automatic traveling prohibited distance range.
  12.  前記自動走行禁止距離範囲は、現車速に応じて変更される請求項11に記載の農作業車。 The agricultural work vehicle according to claim 11, wherein the automatic travel prohibited distance range is changed according to a current vehicle speed.
  13.  前記車速管理部は、前記離間距離が予め設定された停車距離範囲に入ると前記車体の停止を行い、
     前記自動走行禁止距離範囲は前記停車距離範囲より短い請求項11または12に記載の農作業車。
    The vehicle speed management unit stops the vehicle body when the separation distance enters a predetermined stop distance range.
    The agricultural work vehicle according to claim 11, wherein the automatic travel prohibited distance range is shorter than the stopping distance range.
  14.  前記車速管理部は、前記離間距離が予め設定された減速開始距離範囲に入ると前記車体の減速を行い、
     前記離間距離が予め設定された停車距離範囲は前記減速開始距離範囲より短い請求項9から13のいずれか一項記載の農作業車。
    The vehicle speed management unit decelerates the vehicle body when the separation distance enters a preset deceleration start distance range,
    The agricultural work vehicle according to any one of claims 9 to 13, wherein a stopping distance range in which the separation distance is preset is shorter than the deceleration start distance range.
  15.  前記離間距離算出部は、前進走行時には前記車体の前端と前記境界線までの距離を前記離間距離として算出し、後進走行時には前記車体の後端と前記境界線までの距離を前記離間距離として算出する請求項1から14のいずれか一項に記載の農作業車。 The separation distance calculation unit calculates the distance between the front end of the vehicle body and the boundary when traveling forward as the separation distance, and calculates the distance between the rear end of the vehicle and the boundary when traveling reversely. The agricultural work vehicle according to any one of claims 1 to 14.
  16.  前記離間距離に応じて前記車速管理部によって管理される前記車速は、少なくとも所定の範囲の前記離間距離においては、前記車体が作業を行いながら走行している作業走行時と、非作業で走行している非作業走行時とでは異なっている請求項1から15のいずれか一項に記載の農作業車。 The vehicle speed managed by the vehicle speed management unit according to the separation distance is at least when the separation distance is within a predetermined range, the vehicle travels while the vehicle is performing work, and does not travel during work travel The agricultural work vehicle according to any one of claims 1 to 15, which is different from the non-working travel time.
  17.  同一作業地を作業走行する複数の作業車のための作業車衝突警戒システムであって、
     第1作業車の座標位置である第1位置を衛星測位によって算出する第1位置算出部と、
     第2作業車の座標位置である第2位置を前記衛星測位によって算出する第2位置算出部と、
     前記第1位置と前記第2位置とに基づいて前記第1作業車と前記第2作業車との間の離間距離を算出する離間距離算出部と、
     前記離間距離が衝突警戒距離範囲に入った場合に、前記第1作業車または前記第2作業車、あるいはその両方を停車させる緊急停車信号を出力する衝突警戒部と、を備えた作業車衝突警戒システム。
    A work vehicle collision warning system for a plurality of work vehicles working on the same work site, comprising:
    A first position calculator configured to calculate a first position, which is a coordinate position of the first work vehicle, by satellite positioning;
    A second position calculation unit that calculates a second position, which is a coordinate position of a second work vehicle, by the satellite positioning;
    A separation distance calculation unit that calculates a separation distance between the first work vehicle and the second work vehicle based on the first position and the second position;
    A work vehicle collision warning comprising: a collision warning unit for outputting an emergency stop signal for stopping the first work vehicle or the second work vehicle or both when the separation distance is in a collision warning distance range system.
  18.  前記第1作業車及び前記第2作業車が同一方向で走行し、前記第2作業車が前記第1作業車を先行している場合、前記衝突警戒距離範囲は、前記第1作業車の車速に応じて変動し、車速が高いほど前記衝突警戒距離範囲は長くなる請求項17に記載の作業車衝突警戒システム。 When the first work vehicle and the second work vehicle travel in the same direction and the second work vehicle precedes the first work vehicle, the collision alert distance range is the vehicle speed of the first work vehicle The work vehicle collision warning system according to claim 17, wherein the collision warning distance range becomes longer as the vehicle speed increases.
  19.  前記第1作業車及び前記第2作業車が同一方向で走行し、前記第2作業車が前記第1作業車を先行している場合、前記衝突警戒距離範囲は、前記第1作業車の車速が前記第2作業車の車速に比べて高いほど前記衝突警戒距離範囲は長くなる請求項17または18に記載の作業車衝突警戒システム。 When the first work vehicle and the second work vehicle travel in the same direction and the second work vehicle precedes the first work vehicle, the collision alert distance range is the vehicle speed of the first work vehicle The work vehicle collision warning system according to claim 17 or 18, wherein the collision warning distance range becomes longer as the vehicle speed of the second work vehicle is higher.
  20.  前記第1作業車及び前記第2作業車の形状を示す車形状データを管理する車形状管理部が備えられ、
     前記離間距離算出部は、前記第1位置と前記第2位置と前記車形状データとに基づいて前記第1作業車と前記第2作業車との間の離間距離を算出する請求項17から19のいずれか一項に記載の作業車衝突警戒システム。
    A car shape management unit configured to manage car shape data indicating shapes of the first work vehicle and the second work vehicle;
    The separation distance calculation unit calculates the separation distance between the first work vehicle and the second work vehicle based on the first position, the second position, and the vehicle shape data. The work vehicle collision warning system according to any one of the preceding claims.
  21.  前記離間距離算出部は、前記車形状データによって規定される形状よりも、少なくとも走行方向側において大きく設定された仮想形状に基づいて、前記離間距離を算出する請求項20に記載の作業車衝突警戒システム。 The work vehicle collision alert according to claim 20, wherein the separation distance calculation unit calculates the separation distance based on a virtual shape set larger at least on the traveling direction side than the shape defined by the vehicle shape data. system.
  22.  前記離間距離算出部及び前記衝突警戒部が、前記第1作業車及び前記第2作業車と無線データ通信網を介してデータ交換可能な管理コンピュータに構築されており、
     前記衝突警戒部は、対応する前記作業車の走行制御部に前記緊急停車信号を送信する請求項17から21のいずれか一項に記載の作業車衝突警戒システム。
    The separated distance calculation unit and the collision warning unit are constructed in a management computer that can exchange data with the first work vehicle and the second work vehicle via a wireless data communication network,
    The work vehicle collision warning system according to any one of claims 17 to 21, wherein the collision warning unit transmits the emergency stop signal to a traveling control unit of the corresponding work vehicle.
  23.  他車とともに同一の作業地を作業走行する作業車であって、
     走行を制御する走行制御部と、
     自車の座標位置である自車位置を衛星測位によって算出する自車位置算出部と、
     前記衛星測位によって算出された前記他車の座標位置である他車位置を取得する他車位置取得部と、
     前記自車位置と前記他車位置とに基づいて前記自車と前記他車との間の離間距離を算出する離間距離算出部と、
     前記離間距離が衝突警戒距離範囲に入った場合に、前記自車または前記他車、あるいはその両方を停車させる緊急停車信号を出力する衝突警戒部と、を備えた作業車。
    A working vehicle that travels the same work place with other vehicles
    A traveling control unit that controls traveling;
    A vehicle position calculation unit that calculates the vehicle position, which is the coordinate position of the vehicle, by satellite positioning;
    Another vehicle position acquisition unit that acquires another vehicle position that is the coordinate position of the other vehicle calculated by the satellite positioning;
    A separation distance calculation unit that calculates a separation distance between the own vehicle and the other vehicle based on the own vehicle position and the other vehicle position;
    A work vehicle comprising: a collision warning unit that outputs an emergency stop signal to stop the vehicle and / or the other vehicle when the separation distance enters a collision warning distance range.
  24.  前記自車及び前記他車が同一方向で走行し、前記他車が前記自車を先行している場合、前記衝突警戒距離範囲は、前記自車の車速に応じて変動し、前記車速が高いほど前記衝突警戒距離範囲は長くなる請求項23に記載の作業車。 When the own vehicle and the other vehicle travel in the same direction and the other vehicle precedes the own vehicle, the collision alert distance range fluctuates according to the vehicle speed of the own vehicle, and the vehicle speed is high. The work vehicle according to claim 23, wherein the collision alert distance range becomes longer as the collision warning distance increases.
  25.  前記自車及び前記他車が同一方向で走行し、前記他車が前記自車を先行している場合、前記衝突警戒距離範囲は、前記自車の車速が前記他車の車速に比べて高いほど前記衝突警戒距離範囲は長くなる請求項23または24に記載の作業車。 When the own vehicle and the other vehicle travel in the same direction, and the other vehicle precedes the own vehicle, the vehicle speed of the own vehicle is higher than the vehicle speed of the other vehicle in the collision alert distance range. The work vehicle according to claim 23 or 24, wherein the collision alert distance range becomes longer as the collision warning distance increases.
  26.  前記自車及び前記他車の形状を示す車形状データを管理する車形状管理部が備えられ、
     前記離間距離算出部は、前記自車位置と前記他車位置と前記車形状データとに基づいて前記自車と前記他車との間の離間距離を算出する請求項23から25のいずれか一項に記載の作業車衝突警戒システム。
     
    A vehicle shape management unit for managing vehicle shape data indicating the shapes of the vehicle and the other vehicle;
    26. The separation distance calculation unit according to any one of claims 23 to 25, wherein the separation distance between the vehicle and the other vehicle is calculated based on the vehicle position, the other vehicle position, and the vehicle shape data. The work vehicle collision warning system described in the paragraph.
PCT/JP2018/045946 2017-12-18 2018-12-13 Agricultural vehicle, work vehicle collision warning system, and work vehicle WO2019124225A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880073463.7A CN111343853B (en) 2017-12-18 2018-12-13 Agricultural operation vehicle, operation vehicle collision warning system and operation vehicle
KR1020207012549A KR20200096491A (en) 2017-12-18 2018-12-13 Agricultural work car, work car collision boundary system and work car

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-242050 2017-12-18
JP2017242051A JP7080042B2 (en) 2017-12-18 2017-12-18 Harvester collision warning system and harvester
JP2017-242051 2017-12-18
JP2017242050 2017-12-18
JP2018-222817 2018-11-28
JP2018222817A JP7174484B2 (en) 2017-12-18 2018-11-28 agricultural vehicle

Publications (1)

Publication Number Publication Date
WO2019124225A1 true WO2019124225A1 (en) 2019-06-27

Family

ID=66994849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045946 WO2019124225A1 (en) 2017-12-18 2018-12-13 Agricultural vehicle, work vehicle collision warning system, and work vehicle

Country Status (1)

Country Link
WO (1) WO2019124225A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200011034A1 (en) * 2018-07-05 2020-01-09 Caterpillar Inc. Engagement Control System and Method
CN110687911A (en) * 2019-10-18 2020-01-14 宿州学院 Intelligent automatic aligning device for agricultural machinery
JPWO2021014586A1 (en) * 2019-07-23 2021-01-28
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
EP4168281A4 (en) * 2020-06-19 2024-05-22 Glydways Inc Braking and signaling schemes for autonomous vehicle system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055673A (en) * 2015-09-14 2017-03-23 株式会社クボタ Work vehicle supporting system
JP2017123829A (en) * 2016-01-15 2017-07-20 株式会社クボタ Field work vehicle
JP2017153438A (en) * 2016-03-03 2017-09-07 株式会社クボタ Field work vehicle
JP2017162373A (en) * 2016-03-11 2017-09-14 ヤンマー株式会社 Work vehicle
JP2017161987A (en) * 2016-03-07 2017-09-14 ヤンマー株式会社 Travel area form registration system of work vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055673A (en) * 2015-09-14 2017-03-23 株式会社クボタ Work vehicle supporting system
JP2017123829A (en) * 2016-01-15 2017-07-20 株式会社クボタ Field work vehicle
JP2017153438A (en) * 2016-03-03 2017-09-07 株式会社クボタ Field work vehicle
JP2017161987A (en) * 2016-03-07 2017-09-14 ヤンマー株式会社 Travel area form registration system of work vehicle
JP2017162373A (en) * 2016-03-11 2017-09-14 ヤンマー株式会社 Work vehicle

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200011034A1 (en) * 2018-07-05 2020-01-09 Caterpillar Inc. Engagement Control System and Method
US11512454B2 (en) * 2018-07-05 2022-11-29 Caterpillar Inc. Engagement control system and method
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
JP7410150B2 (en) 2019-07-23 2024-01-09 本田技研工業株式会社 Autonomous work equipment, control method and program for autonomous work equipment
WO2021014586A1 (en) * 2019-07-23 2021-01-28 本田技研工業株式会社 Autonomous work machine, autonomous work machine control method and program
JPWO2021014586A1 (en) * 2019-07-23 2021-01-28
CN110687911A (en) * 2019-10-18 2020-01-14 宿州学院 Intelligent automatic aligning device for agricultural machinery
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
EP4168281A4 (en) * 2020-06-19 2024-05-22 Glydways Inc Braking and signaling schemes for autonomous vehicle system
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system

Similar Documents

Publication Publication Date Title
WO2019124225A1 (en) Agricultural vehicle, work vehicle collision warning system, and work vehicle
JP6936356B2 (en) Work vehicle automatic driving system
JP7034866B2 (en) Harvester
JP7174484B2 (en) agricultural vehicle
JP6832828B2 (en) Travel route determination device
WO2019124217A1 (en) Work vehicle, travel path selection system for work vehicle, and travel path calculation system
WO2020031473A1 (en) External shape calculation system, external shape calculation method, external shape calculation program, storage medium having external shape calculation program stored therein, farm field map generation system, farm field map generation program, storage medium having farm field map generation program stored therein, and farm field map generation method
JP2020127405A5 (en)
JP7014687B2 (en) Harvester
WO2018116770A1 (en) Work vehicle automatic traveling system
JP6673786B2 (en) Work vehicle automatic traveling system and traveling route management device
CN112752500A (en) Harvester, travel system, travel method, travel program, and storage medium
JP6793625B2 (en) Travel route management system
KR102586896B1 (en) Driving path management system and driving path decision device
JP6920958B2 (en) Travel route generator
JP6920969B2 (en) Travel route management system
JP6920970B2 (en) Travel route determination device
JP6842907B2 (en) Work vehicle automatic driving system
JP2020018236A (en) Harvester
JP6983734B2 (en) Harvester
JP6891097B2 (en) Travel route determination device
JP6745784B2 (en) Work vehicle
JP6789800B2 (en) Work vehicle automatic driving system
JP2018099112A5 (en)
JP6884092B2 (en) Travel route selection system for work vehicles and work vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892395

Country of ref document: EP

Kind code of ref document: A1