WO2019124080A1 - Authentication device and authentication method - Google Patents

Authentication device and authentication method Download PDF

Info

Publication number
WO2019124080A1
WO2019124080A1 PCT/JP2018/044803 JP2018044803W WO2019124080A1 WO 2019124080 A1 WO2019124080 A1 WO 2019124080A1 JP 2018044803 W JP2018044803 W JP 2018044803W WO 2019124080 A1 WO2019124080 A1 WO 2019124080A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
iris
authentication
living body
image
Prior art date
Application number
PCT/JP2018/044803
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 本田
貴司 中野
信夫 山崎
幸夫 玉井
足立 佳久
莉絵子 小川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2019124080A1 publication Critical patent/WO2019124080A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • One aspect of the present disclosure relates to an authentication device that performs iris authentication, and an authentication method.
  • an authentication device that authenticates an individual from an image of an iris of a human eye is known.
  • these authentication devices for example, in order to prevent false authentication due to so-called "spoofing" using an artificial object such as a artificial iris, a biological detection function is provided to identify whether the iris is an artificial object or a living thing. (See, for example, Patent Document 1).
  • an image of the user's face is acquired, and using the acquired image, pulse waves among a plurality of parts of the face area such as the user's lips, cheeks, forehead, and hair Whether or not the face area is a living body is determined by comparing the amplitudes of the waveforms.
  • an authentication device combining personal authentication with the iris of the eye and living body detection with the pulse wave of the face, it is possible to forge the combination of an artificial object such as an iris picture and the face of another person who is a living body. It was difficult to prevent false authentication due to so-called impersonation.
  • One aspect of the present disclosure is made in view of the above-described circumstances, and an object of the present disclosure is to provide an authentication device capable of performing personal authentication with high accuracy.
  • an authentication device includes an image acquisition unit that acquires an image including an iris region of a subject's eye, and presence or absence of pulse wave detection in the iris region of the image.
  • the authentication device includes an image acquisition unit that acquires an image including an iris region of an eye of a subject, and analyzing the image.
  • a determination unit that determines whether biological detection can be performed using pupil contraction according to the acquired pupil opening degree, and the determination unit performs biological detection using pupil contraction
  • the first living body detection unit performs living body detection using the presence or absence of pulse wave detection in the iris region of the image when it is determined that it can not be performed, and the judgment unit can perform living body detection using pupil contraction.
  • a second living body detection unit that performs living body detection using pupil contraction generated by irradiating visible light to the eyes of the subject, and an authentication unit that performs iris authentication of the image.
  • the authentication unit includes the first living body detection Or a detection result by the second biological detection portion, with reference to the iris authentication result by the authentication unit is configured to output the authentication result.
  • an authentication method includes an image acquisition step of acquiring an image including an iris region of an eye of a subject, and pulse wave detection in the iris region of the image.
  • personal identification can be performed with high accuracy.
  • FIG. 1 is a block diagram showing a schematic configuration of an authentication device 100 according to a first embodiment. Is a diagram showing an oxyhemoglobin (HbO 2) and the wavelength dependence of the absorbance of melanin. It is a figure which shows typically the iris area
  • HbO 2 oxyhemoglobin
  • FIG. 7 is a block diagram showing a schematic configuration of an authentication device according to a second embodiment.
  • FIG. 7 is a block diagram showing a schematic configuration of an authentication device according to a third embodiment.
  • FIG. 16 is a block diagram showing a schematic configuration of an authentication device 400 according to a fourth embodiment. It is a figure which shows the waveform of an acceleration pulse wave.
  • FIG. 1 is a block diagram showing a schematic configuration of the authentication device 100 according to the first embodiment.
  • the authentication device 100 authenticates the target person by the iris authentication technology using the iris image of the eye of the authentication target person, and detects the pulse wave in the iris region, It is determined whether or not the subject is a living body.
  • the authentication apparatus 100 may be configured to perform authentication using images of the irises of both eyes of the authentication target person, or may be configured to perform authentication using the image of the iris of one eye of the authentication target person. Good.
  • the authentication device 100 includes an image acquisition unit 120, a living body detection unit 130, and an authentication unit 140.
  • the authentication device 100 further includes an imaging unit 110.
  • the image acquisition unit 120, the living body detection unit 130, the authentication unit 140, and the imaging unit 110 are not limited to the configuration integrally provided in the authentication device 100, but may be separate from the authentication device 100. May be In the configuration in which the image acquisition unit 120, the living body detection unit 130, the authentication unit 140, and the imaging unit 110 are separate from the authentication device 100, for example, the configuration may be configured to communicate with the authentication device 100 via wireless communication.
  • the image acquisition unit 120 acquires an image including the iris area of the eye of the authentication target person captured by the imaging unit 110.
  • the imaging unit 110 is provided with a filter suitable for observing increase / decrease in blood volume in the artery, that is, change in concentration information of oxygenated hemoglobin.
  • FIG. 2 shows the absorbance wavelength dependence of oxygenated hemoglobin (HbO 2 ) and melanin.
  • the wavelength selection of the filter it is desirable to select a wavelength at which the sensor sensitivity is high and the absorbance of oxyhemoglobin is relatively high with respect to the absorbance of melanin.
  • the imaging unit 110 is preferably, for example, a camera having sensitivity to a wavelength of 500 to 600 nm.
  • the imaging unit 110 may be, for example, a general silicon sensor camera provided with an RGB filter.
  • the RGB filter included in the imaging unit 110 has, for example, a configuration in which the G pixel has sensitivity to a wavelength of 500 nm to 600 nm, the R pixel has sensitivity to a wavelength of 600 nm to 700 nm, and the B pixel has sensitivity to a wavelength of 400 nm to 500 nm can do.
  • the imaging unit 110 continuously captures an image including the iris area of the subject's eye at a predetermined time interval (frame rate) based on the intensity of light transmitted through each of the RGB filters.
  • the frame rate of the imaging unit 110 can be, for example, 30 fps.
  • the image acquisition unit 120 acquires a plurality of captured images that are continuously captured by the imaging unit 110 and that include the iris region of the subject's eyes.
  • the image acquisition unit 120 supplies the acquired plurality of captured images to the living body detection unit 130.
  • the living body detection unit 130 analyzes the plurality of captured images acquired by the image acquisition unit 120 to confirm the presence or absence of pulse wave detection in the iris region of the subject's eye, and determines whether the subject is a living body or not. judge.
  • the living body detection unit 130 provides the authentication unit 140 with an image including the iris area of the eye of the subject, along with the determination result as to whether the subject is a living body.
  • the living body detection unit 130 may not be configured to provide the authentication unit 140 with an image including the iris region of the eye of the subject when it is determined that the subject is not a living body.
  • the living body detection unit 130 includes a detection area setting unit 131, a pixel value calculation unit 132, a pulse wave detection unit 133, and a living body determination unit 134.
  • the detection area setting unit 131 sets a detection area for detecting a pulse wave in each of a plurality of captured images including the iris area of the subject's eyes.
  • the detection area setting unit 131 detects the iris area of the eye of the subject in the captured image acquired by the image acquisition unit 120 for each frame.
  • FIG. 3 is a diagram showing an eye including the iris area of the subject detected by the detection area setting unit 131 from the captured image.
  • the iris region is a doughnut-shaped band region whose outer edge is the outer edge of the pupil 5 and whose outer edge is the boundary with the sclera (white eyes).
  • the detection area setting unit 131 further detects an area including the crimped ring 15 present at the boundary between the large iris ring and the small iris ring with respect to the iris area detected from the captured image. Set as.
  • FIG. 4A is a diagram showing the configuration of the iris region of the human eye, and the diagram shown in the lower part is a cross-sectional view taken along line II of the diagram shown in the upper part, showing the iris and the lens 30 in cross section. Is shown.
  • FIG. 4 (b) is a view schematically showing the formation of blood vessels in the iris region.
  • the iris 10 of the human eye includes a small iris ring 12 which is a concentric narrow band having a pupil 5 as an inner edge, and a large iris ring 11 which is a band surrounding the outside thereof. I am divided.
  • the small iris ring 12 has a pupil sphincter, and the large iris ring 11 has a pupil dilated muscle.
  • a crimped ring 15 having an irregular ring-like protuberance is present.
  • the detection area setting unit 131 detects an area including the crimped ring 15 present at the boundary between the large iris ring 11 and the small iris ring 12 based on, for example, the difference in the shape of the shading.
  • the arterial blood vessel 20 runs between the sclera and the choroid to reach the ciliary body, forming the large iris arterial ring 21.
  • the large iris artery ring 21 is present at the junction of the iris 10 and the ciliary body.
  • a large number of blood vessels enter the iris 10 radially from the large iris arterial ring 21.
  • the anastomosing produces a small iris artery ring 25. That is, the small iris arterial ring 25 is a blood vessel region in which blood vessels are concentrated and formed.
  • the small iris arterial ring 25 is present at the boundary between the large iris ring 11 and the small iris ring 12.
  • a very thin capillary runs from the small iris ring 25 to the tip of the iris 10 and leads to a vein (not shown).
  • the detection area setting unit 131 sets an area including the crimp ring 15 at the boundary between the large iris ring 11 and the small iris ring 12 in which the small iris artery ring 25 in which blood vessels are concentrated is formed. , It sets as a detection area which detects a pulse wave.
  • FIG. 5 (a) shows an image including an iris 10 provided with a rectangular section
  • FIG. 5 (b) shows a frequency power spectrum in a rectangular section area including the crimp ring 15.
  • c) shows the frequency power spectrum in a rectangular segmented region containing only skin.
  • the frequency power spectrum in the rectangular section area including the crimp ring 15 has a peak at a frequency of 1.3 Hz.
  • the frequency power spectrum in the rectangular section area including only the skin also has a peak at a frequency of 1.3 Hz. From this, it is understood that the peak of the frequency of the pulse wave is 1.3 Hz, and it is understood that the pulse wave can be detected with high accuracy in the region including the crimp ring 15 of the iris 10.
  • FIG. 5D is a diagram showing the relationship between the extraction place where the pulse wave extraction process has been performed and the detection accuracy of the pulse wave extracted at each extraction place, and the distance between the center of the rectangular section including the pupil 5 is 0. And, it shows the pulse wave detection accuracy distance dependency which is a relationship between the distance of the extraction location from there and the pulse wave detection accuracy.
  • SNR signal to noise ratio
  • SNR is defined using a value obtained by dividing the area of the peak signal by the area of the noise signal from the power spectrum of the frequency.
  • a rectangular section partially including the pupil, white eyes, skin, and eyebrows is excluded from the section for pulse wave extraction processing, and includes only the iris. Pulse wave extraction processing is performed using only the classification.
  • FIG. 6 is an image diagram showing a schematic configuration of human eyes. As shown in FIG. 6, for example, when there are eyelashes in the pulse wave detection area, the pulse wave detection accuracy in the area is lowered. In addition, a part of the iris 10 may be hidden by the upper and lower eyelids. Therefore, it is desirable for the detection area setting unit 131 to set the left and right areas of the iris as the detection area for the pupil 5.
  • the pulse wave detection accuracy has dependency on the extraction location in the iris, and shows a maximum value in the region including the crimp ring 15. Further, it was found that the pulse wave detection accuracy was the highest in the region including the crimp ring 15. From these results, the detection area setting unit 131 can accurately detect an iris pulse wave by setting an area including the crimped ring 15 as a detection area.
  • the shape of the detection area set by the detection area setting unit 131 may be set as long as an area including the crimp ring 15 can be set, and may be a rectangular shape illustrated in FIG. It may be a donut shape including the reduced ring 15 and the vicinity thereof.
  • the pixel value calculation unit 132 sets the pixel value (tone value of each color for expressing each pixel included in the captured image in the detection area which is the area including the crimp ring 15 set by the detection area setting unit 131.
  • the calculated value of the pixel value of each color in a predetermined detection area is calculated using.
  • Each color for expressing each pixel contained in a captured image is R, G, B, for example.
  • the operation value of the pixel value of each color is a value obtained by performing a predetermined operation on the pixel values of a plurality of pixels included in the detection area in the captured image, and the calculated value of the pixels included in the detection area It is a value reflecting the size of the pixel value.
  • the pixel value calculation unit 132 may calculate, for example, an average pixel value which is an average of pixel values of respective colors in the detection area as a calculation value of pixel values in the detection area.
  • the pixel value calculation unit 132 is, for example, a statistic calculated by increasing the weighting of pixel values of pixels close to the crimping wheel 15 and reducing the weighting of pixel values of pixels away from the crimping wheel 15. The value may be calculated as an operation value of the pixel value in the detection area. In the following description, it is assumed that the pixel value calculation unit 132 calculates the average pixel value of each color in the detection area as an operation value of the pixel value in the detection area.
  • the pixel value calculation unit 132 calculates an average pixel value for a frame corresponding to a predetermined time (for example, 30 seconds) in the captured image in order to obtain a time change of the average pixel value.
  • the pixel value calculation unit 132 outputs the calculated average pixel value of each color to the pulse wave detection unit 133.
  • the pulse wave detection unit 133 calculates a pulse wave of a living body by detecting a change in the calculated value of each color in the detection area calculated by the pixel value calculation unit 132.
  • the pulse wave is a change in pressure and a change in volume in the peripheral blood vessel associated with the beating of the heart, and the pulse wave can be detected by measuring the time change of the concentration of oxyhemoglobin in blood.
  • the pulse wave detection unit 133 detects the pulse wave of the living body by detecting the temporal change of the average pixel value of each color calculated by the pixel value calculation unit 132.
  • FIG. 7 is a flowchart illustrating an example of the flow of pulse wave detection processing by the pulse wave detection unit 133. An example of the flow of pulse wave detection processing by the pulse wave detection unit 133 will be described using FIG. 7.
  • Step S1 The pulse wave detection unit 133 first performs independent component analysis on the average pixel value of each color in the detection area calculated by the pixel value calculation unit 132, and the number is equal to the number of colors (ie, R, G, G, B Take out 4) independent components.
  • Step S2 the pulse wave detection unit 133 removes low frequency components and high frequency components from the four independent components taken out, for example, using a digital band pass filter of 0.75 to 4.0 Hz.
  • Step S3 the pulse wave detection unit 133 performs fast Fourier transform on the four independent components from which the low frequency component and the high frequency component have been removed, and calculates the power spectrum of the frequency of each independent component.
  • Step S4 the pulse wave detection unit 133 calculates the peak value at 0.75 to 4.0 Hz of the power spectrum of the calculated frequency of each independent component.
  • Step S5 the pulse wave detection unit 133 detects an independent component having a peak with the largest peak value among the calculated peak values of each independent component as a pulse wave.
  • the pulse wave detection unit 133 outputs the detected pulse wave to the living body determination unit 134.
  • the pulse wave detection by the pulse wave detection unit 133 is not limited to the method of detecting an independent component having a peak with the largest peak value among the peak values of the independent components as a pulse wave.
  • the pulse wave detection unit 133 may calculate the SNR of the peak from the power spectrum, and detect the independent component having the peak with the largest SNR as a pulse wave.
  • the pulse wave detection unit 133 may first perform trend removal on the average pixel value of each color (IEEE Trans Biomed Eng, 2002 Feb; 49 (2): 172-175). Then, the pulse wave detection unit 133 may perform the independent component analysis on the average pixel value of each color after removing the above-mentioned fluctuation by performing the trend removal.
  • the living body determination unit 134 determines whether the waveform detected by the pulse wave detection unit 133 is a pulse wave.
  • FIG. 8 is a flowchart showing an example of the flow of the living body determination processing by the living body determination unit 134. An example of the flow of the living body determination processing by the living body determination unit 134 will be described using FIG. 8.
  • Step S11 The living body determination unit 134 determines whether the waveform detected by the pulse wave detection unit 133 is a pulse wave. When the living body determination unit 134 determines that the waveform detected by the pulse wave detection unit 133 is a pulse wave, the living body determination unit 134 determines that the subject is a living body. When the living body determination unit 134 determines that the subject is a living body, the process proceeds to step S12. When the living body determination unit 134 determines that the subject is a living body, the living body determination unit 134 may output a signal indicating that a living body has been detected to the authentication unit 140.
  • the living body determination unit 134 determines that the waveform detected by the pulse wave detection unit 133 is not a pulse wave, it determines that the target person is not a living body, that is, the target person is a forgery. If the living body determination unit 134 determines that the target person is not a living body, the process ends without outputting an image including the iris region of the target person to the authentication unit 140.
  • the biometric determination unit 134 may be configured to perform non-authentication processing such as notifying the user that the target person can not be authenticated, for example, when determining that the target person is not a living body.
  • the living body determination unit 134 may output a signal indicating that the living body is not detected to the authentication unit 140.
  • Step S12 The living body determination unit 134 outputs an image including the iris area of the subject to the authentication unit 140.
  • the living body determination unit 134 may determine whether the waveform detected by the pulse wave detection unit 133 is a pulse wave using any known means. For example, the living body determination unit 134 confirms the periodicity of the waveform detected by the pulse wave detection unit 133, and determines that the pulse wave is generated when the waveform cycle is 0.75 to 3.0 Hz.
  • the living body determination unit 134 determines whether the waveform is a pulse wave depending on whether the peak value of the power spectrum of the frequency after fast Fourier transform by the pulse wave detection unit 133 or the value of the SNR is equal to or greater than a preset threshold. It may be determined whether or not. In this case, even if at least one of the power spectrum peak value of the frequency and the value of the SNR is input to the living body determination unit 134 instead of the waveform detected by the pulse wave detection unit 133 and used for determination. good.
  • the living body detection unit 130 detects a setting area including the crimped ring 15 existing at the boundary between the large iris ring 11 and the small iris ring 12 from the iris area of the subject in the image. Determine the presence or absence of pulse wave detection. As described above, since the pulse wave can be detected with high detection accuracy in the area including the crimped ring 15, the presence or absence of pulse wave detection is determined with the area including the crimped ring 15 as a setting area. It is possible to accurately determine whether the subject is a living body.
  • the authentication unit 140 When the pulse wave of the subject is detected from the image including the iris area by the living body detection unit 130 and the living body is detected, the authentication unit 140 is provided with the image including the iris area of the subject and the iris authentication is performed.
  • the authentication unit 140 may be provided with a signal indicating that the living body detection is successful, together with the image including the iris area of the subject.
  • the living body detection unit 130 does not detect a pulse wave in the iris region, that is, when the living body detection unit 130 does not detect a living body
  • the authentication unit 140 determines not to perform iris authentication of the image.
  • the authentication unit 140 determines to perform iris authentication of the image.
  • the authentication unit 140 performs personal authentication based on an image including the iris area of the subject. For example, the authentication unit 140 first collates an iris image registered in advance in the authentication DB 150 with an image including an iris area obtained at the time of authentication. Then, the authentication unit 140 determines whether the mismatch rate by iris authentication between the iris image registered in advance as a result of the collation and the image including the iris area obtained at the time of authentication is less than a predetermined threshold. The identity is determined by authentication.
  • the authentication unit 140 determines that the user is the person if, for example, the mismatch rate by iris authentication between the iris image registered in advance and the image including the iris region obtained at the time of authentication is less than a threshold, It may be determined that the other person is when the value of L is equal to or greater than the threshold.
  • the authentication unit 140 includes an iris code creation unit 141 and a collation unit 142.
  • the iris code creation unit 141 obtains an image including the iris area of the subject output from the living body determination unit 134, and creates an iris code used to perform iris authentication based on the image.
  • a well-known method can be used suitably for preparation of the iris code in the iris code preparation part 141. FIG.
  • the collation unit 142 collates the registered iris code registered in advance in the authentication DB 150 with the iris code created based on the image including the iris area of the subject output by the biometric determination unit 134.
  • a well-known method can be used suitably for collation with a registration iris code and an iris code.
  • the matching unit 142 may score similarity or non-similarity and perform matching based on the score.
  • the Hamming distance HD between the registration iris code and the iris code may be calculated, and the matching may be performed based on the Hamming distance HD.
  • the matching unit 142 determines that the matching degree between the registered iris code and the iris code is within a predetermined range. In this case, the matching unit 142 determines that the iris authentication for the subject H has succeeded. On the other hand, when the matching degree is out of the predetermined range (when the hamming distance HD is larger than the hamming distance threshold HDth), the matching unit 142 determines that the iris authentication has failed. That is, if the Hamming distance HD is less than or equal to the Hamming distance threshold HDth, the degree of coincidence is high, and if the Hamming distance HD is larger than the Hamming distance threshold HDth, the degree of coincidence is low.
  • the authentication DB 150 may be integrated with the authentication device 100 or may be separate from the authentication device 100. In a configuration in which the authentication DB 150 is separate from the authentication device 100, the authentication DB 150 may communicate with the authentication device 100 via, for example, wireless communication, and supply the registered iris code to the collation unit 142.
  • the authentication DB 150 may have a configuration in which registration iris codes of a plurality of registrants are stored, and the collation unit 142 collates each of the plurality of registration iris codes with the iris code. It is also good. Then, the matching unit 142 may determine that the authentication is successful for the registrant whose matching degree between the registration iris code and the iris code is within a predetermined range and the hamming distance HD is the smallest.
  • the authentication device 100 acquires an image including the iris region of the subject's eye, determines the presence or absence of pulse wave detection in the iris region of the acquired image, and does not detect the pulse wave in the iris region. Make a decision not to perform iris recognition of the image. That is, the authentication unit 140 outputs an authentication result with reference to the determination result by the living body detection unit 130 that determines the presence or absence of pulse wave detection in the iris region and the iris authentication result by the authentication unit 140.
  • forgery authentication by combination of an artificial object such as an iris picture and the face of another person who is a living body becomes impossible. Therefore, false authentication due to so-called spoofing can be prevented, and human authentication can be performed with high accuracy.
  • FIG. 9 is a block diagram showing a schematic configuration of the authentication device 200 according to the second embodiment. As shown in FIG. 9, the authentication device 200 is different from the authentication device 100 of the first embodiment in that the authentication device 200 further includes a reflection removal unit 260.
  • the reflection removal unit 260 is provided between the image acquisition unit 120 and the living body detection unit 130.
  • the reflection removal unit 260 performs reflection removal processing on the image including the iris area of the subject's eye acquired by the image acquisition unit 120, and the image subjected to the reflection removal processing is transmitted to the living body detection unit 130. Supply.
  • the reflection removal unit 260 removes the reflection component by the ambient light specularly reflected on the corneal surface from the image including the iris area of the eye of the subject acquired by the image acquisition unit 120. As described above, by performing reflection removal of ambient light from the image by the reflection removal unit 260, it is possible to accurately perform iris authentication based on the image including the iris region. Therefore, the success rate of living body detection and iris recognition in a highly reflective outdoor environment can be improved.
  • a reflection removal method by the reflection removal unit 260 As a reflection removal method by the reflection removal unit 260, a conventionally known method can be used. For example, the reflection removal method using color characteristics disclosed in ““ The Measurement of Highlights in Color Images ”, GUDRUN J. KLINKER, STEVEN A. SHAFER, AND TAKEO KANADE” may be used.
  • the reflection removal unit 260 may remove the reflection of ambient light from the image using the following method. For example, the reflection removal unit 260 removes at least a part of the luminance value indicating a specularly reflected light component from the luminance value indicated by the image information of the image including the iris area of the eye of the subject acquired by the image acquisition unit 120 Therefore, ambient light may be reflected and removed from the image.
  • the reflection removal unit 260 may use the reflection removal method disclosed in “Japanese Patent No. 3955616”.
  • the imaging unit 110 includes an imaging element and a polarizing element, and changes the angle of the main axis of the polarizing element by rotating the polarizing element.
  • the reflection removal unit 260 is configured, based on the normal vector of the subject and the line-of-sight vector, for each pixel in the pixel group in which specular reflection occurs in a plurality of images obtained by the imaging device and having different principal axes of the polarizing element. Identify the plane of incidence and the angle of incidence. Then, the reflection removal unit 260 clusters pixels in which both the incident surface and the incident angle are similar to form a pixel set, and the probability between the diffuse reflection component and the specular reflection component in the pixel set. It separates the reflected components on the assumption of dynamic independence. Thereby, the reflection removal unit 260 can remove the specular reflection component from the image.
  • the reflection removing unit 260 may be one in which one pixel unit in which the image pickup device is associated with a plurality of polarization elements different in principal axis direction is two-dimensionally arrayed. In this case, the reflection removal unit 260 calculates or estimates the minimum value of luminance (minimum luminance value) for each of the pixel units corresponding to the eyeballs included in the image, and based on the minimum luminance value, At least a portion of the specularly reflected light component at the surface may be removed.
  • minimum luminance minimum luminance value
  • the reflection removal unit 260 may remove at least a part of the specularly reflected light component by performing an independent component analysis (ICA) process.
  • ICA independent component analysis
  • FIG. 10 is a block diagram showing a schematic configuration of the authentication device 300 according to the third embodiment.
  • the authentication device 300 differs from the authentication device 100 of the first embodiment in that the authentication device 300 further includes a pupil opening degree calculation unit (determination unit) 370 and a second living body detection unit 380.
  • the first living body detection unit 330 of the third embodiment and the living body detection unit 130 of the first embodiment have the same configuration, and the detailed description thereof will be omitted.
  • the pupil opening degree calculation unit 370 is provided between the image acquisition unit 120 and the living body detection units 330 and 380.
  • the pupil opening degree calculating unit 370 calculates the pupil opening degree of the subject by analyzing the image including the iris area of the subject acquired from the image acquiring unit 120. Then, the pupil opening degree calculation unit 370 determines whether or not the living body detection can be performed using the pupil contraction in accordance with the calculated pupil opening degree of the subject. When it is determined that the living body detection can be performed using the pupil contraction, the pupil opening degree calculation unit 370 provides the second living body detection unit 380 with an image including the iris area of the target person.
  • the pupil opening degree calculation unit 370 performs the biological body detection using the presence or absence of pulse wave detection in the iris region of the image.
  • the living body detection unit 330 provides an image including the iris area of the subject.
  • the pupil opening degree calculation unit 370 may calculate the pupil diameter by analyzing an image including the iris region of the subject, and may set the pupil diameter to the pupil opening degree.
  • the pupil opening degree calculation unit 370 also calculates the pupil diameter and the iris diameter by analyzing the image including the iris region of the subject, and uses the ratio of the pupil diameter and the iris diameter as the pupil opening degree. good.
  • the pupil diameter D1 and the iris diameter D2 can be calculated by circle fitting to the pupil outer edge and the iris outer edge, respectively. Also, by using the method of setting the ratio of the pupil diameter to the iris diameter as the pupillary opening degree, it is difficult to keep the size of the iris constant due to the fluctuation of the photographing distance between the subject and the imaging unit 110. Even if there is, the pupil opening degree can be calculated more accurately than when only the pupil diameter is used.
  • the pupil opening degree calculation unit 370 may calculate the pupil diameter not with a circle but with an ellipse (long axis or short axis). In addition, the pupil opening degree calculating unit 370 may be configured to use any conventionally known means as a method for calculating the pupil opening degree.
  • the pupil opening degree calculating unit 370 compares the calculated pupil opening degree with a predetermined pupil opening degree threshold value set in advance. Then, the pupil opening degree calculation unit 370 provides the first living body detection unit 330 with an image including the iris area of the subject when the pupil opening degree is less than the threshold. Further, the pupil opening degree calculation unit 370 provides the second living body detection unit 380 with an image including the iris area of the subject when the pupil opening degree is equal to or more than the threshold.
  • FIG. 12 is a diagram showing the relationship between the ratio of the pupil diameter to the iris diameter and the illuminance.
  • the ratio of pupil diameter to iris diameter depends on the illuminance. For example, when the ratio of the pupil diameter to the iris diameter is used as the pupil opening degree, the ratio of the pupil diameter to the iris diameter is 0.2 at an illuminance of 4000 lux. Then, the ratio 0.2 of the pupil diameter to the iris diameter in the case of the illuminance 4000 lux can be used as the threshold of the pupil opening degree.
  • the pupil opening degree calculation unit 370 determines that the living body detection can not be performed using the pupil contraction. Then, the pupil opening degree calculation unit 370 outputs an image including the iris area of the target person to the first living body detection unit that performs living body detection using the presence or absence of pulse wave detection in the iris area of the image.
  • the pupil opening degree is 0.2 or more, which is a threshold.
  • the pupil opening degree becomes equal to or more than the threshold value when the image including the iris area of the eye of the subject is captured in the illumination environment where the pupil contraction occurs by irradiating the eye with the visible light source. Therefore, when the pupil opening degree is equal to or more than the threshold, the pupil opening degree calculating unit 370 determines that the living body detection can be performed using the pupil contraction. Then, the pupil opening degree calculation unit 370 generates an image including the iris region of the subject with respect to the second living body detection unit that performs living body detection using pupil contraction generated by irradiating the eye of the subject with visible light.
  • the second living body detection unit 380 includes an irradiation unit 381, a pupil contraction detection unit 382, and a living body determination unit 383.
  • the size of the pupil changes in size in response to the intensity of ambient light.
  • the second living body detection unit 380 irradiates light to the pupil and detects contraction of the pupil with respect to the irradiated light to determine whether the target person is a living body.
  • the irradiation part 381 can be set as the structure which has a light source which irradiates the light of visible light toward a subject's eyeball, and a light adjustment part which adjusts the intensity
  • the irradiating unit 381 irradiates the light of the light source to the eyeball of the subject at the brightness according to the pupil opening calculated by the pupil opening calculating unit 370, for example.
  • the pupil contraction detection unit 382 detects the pupil contraction of the eye of the subject by referring to the image including the iris area of the subject acquired via the pupil opening degree calculation unit 370.
  • the living body determination unit 383 determines whether the target person is a living body based on the irradiation timing and intensity of the irradiation light by the irradiation unit 381, and the timing and degree of contraction of the pupil detected by the pupil contraction detection unit 382. Do.
  • the second living body detection unit 380 detects the presence or absence of the pupil contraction. Perform biological detection by In addition, in an environment where the intensity of ambient light is high, such as when the sky is fine, and significant pupil contraction can not be expected even when the visible light source is irradiated to the eye, that is, when the pupil opening degree is less than the threshold, The living body detection unit 330 performs living body detection by detecting a pulse wave in the iris region.
  • the method of performing living body detection by detecting the pulse wave in the iris region by the first living body detection unit 330 it is necessary to capture images of a plurality of frames for at least one second for pulse wave detection.
  • the method of detecting the living body by using the pupil contraction with respect to visible light by the second living body detection unit 380 only needs to capture images of a plurality of frames for about 0.1 to 0.2 seconds, There is an advantage that living body detection and personal identification can be performed in a shorter time. Therefore, in the third embodiment, the pupil opening degree of the object person is calculated by the function of the pupil opening degree calculating unit 370, and it is more accurate by using it when the living body detection can be performed using pupil contraction. It is possible to perform living body detection.
  • the authentication unit 140 determines not to perform iris authentication of the image.
  • the authentication unit 140 refers to the detection result by the first living body detection unit 330 or the second living body detection unit 380 and the iris authentication result by the authentication unit 140, and outputs the authentication result. .
  • impersonation in which an artificial object such as an iris photo and the face of another person who is a living body are combined, and personal authentication can be performed with high accuracy.
  • the pupil opening degree calculation unit 370 determines that biological detection can not be performed using pupil contraction, but the present invention is limited thereto. is not.
  • the pupil opening degree calculation unit 370 is configured to be able to refer to the output of an illuminance meter that measures the illuminance of the surrounding environment, and when the illuminance of the surrounding environment measured by the illuminance meter is equal to or more than a predetermined threshold, An image including the iris area of the subject may be output to the first living body detection unit.
  • the threshold of the illuminance may be, for example, 10,000 lux, and when the illuminance measured by the illuminance meter is 10,000 lux or more, the configuration may be such that the living body detection is performed using the first biological detection unit.
  • Embodiment 4 The fourth embodiment of the present disclosure will be described below.
  • symbol is appended and the description is not repeated.
  • FIG. 13 is a block diagram showing a schematic configuration of the authentication device 400 according to the fourth embodiment. As shown in FIG. 13, the authentication device 400 differs in configuration from the authentication device 100 of the first embodiment in that the health information management unit 490 is further provided.
  • the health information management unit 490 receives the pulse wave of the subject detected by the pulse wave detection unit 133 of the living body detection unit 130.
  • the health information management unit 490 manages and stores the pulse wave of the subject detected by the pulse wave detection unit 133 as health information in association with the subject.
  • the health information management unit 490 can output health information of the subject in response to a request from the external device, for example, to an external device (not shown) connected communicably with the authentication device 400. It is also good.
  • the health information management unit 490 can output the health information of the subject to the external device. Good.
  • the health information management unit 490 may be able to manage and store, for example, information including a pulse wave and health information calculated or estimated from the pulse wave as health information of the subject person, and output the information to an external device.
  • the health information of the subject may be, for example, pulse, blood pressure, stress information and the like.
  • the health information management unit 490 may calculate the pulse rate, the blood pressure, the stress state, and the like from the pulse wave of the subject detected by the pulse wave detection unit 133 using any method known in the related art. For example, the health information management unit 490 can detect the pulse rate as the biological information by counting the number of peaks of the pulse wave.
  • the following method may be used to calculate the blood pressure from the pulse wave.
  • FIG. 14 is a diagram showing a waveform of an acceleration pulse wave obtained by differentiating the pulse wave twice in time.
  • a to e indicate amplitudes
  • x / x (x is a to e) indicate ratios of respective amplitudes
  • Tx-x indicates time intervals between peaks.
  • the health information management unit 490 in order to calculate the blood pressure from the pulse wave, the health information management unit 490 first differentiates the pulse wave twice to obtain feature amounts a, b, c, d, e, f, b. / A, c / a, d / a, e / a, Ta-a, Ta-b, Ta-c, Ta-d, and Ta-e are derived. It is known that these feature quantities change according to the pulse wave velocity, and the pulse wave velocity and the blood pressure value have a correlation.
  • the health information management unit 490 has an estimation formula created by performing, for example, multiple regression analysis using these feature quantities and blood pressure value data acquired in advance. Then, the health information management unit 490 can obtain the estimated value of the blood pressure by applying the feature quantity obtained from the pulse wave of the subject detected by the pulse wave detection unit 133 to the estimation formula.
  • the following method is available as a method of calculating stress information from pulse waves.
  • the health information management unit 490 detects the peak of the pulse wave of the subject detected by the pulse wave detection unit 133, performs fast Fourier transform (FFT) on the time interval between the peaks, and calculates the power spectrum of the frequency.
  • FFT fast Fourier transform
  • the integrated value of the power spectrum of 0.04-0.15 Hz is LF
  • the integrated value of the power spectrum of 0.15-0.4 Hz is HF
  • the stress level value LF / HF can be calculated.
  • the frequencies of LF and HF may have a width around the above (see: http://hclab.sakura.ne.jp/stress_novice_LFHF.html).
  • the health information management unit 490 may have a function of controlling whether or not authentication by the authentication unit 140 is based on the health information of the target person. For example, the health information management unit 490 records a predetermined threshold or an allowable range set in advance for the health information of the subject.
  • the health information management unit 490 compares the health information of the target person obtained from the pulse wave of the target person detected by the pulse wave detection unit 133 with a predetermined threshold or tolerance set in advance.
  • the health information management unit 490 outputs an authentication OK even when authentication is enabled by the authentication unit 140 when the health information of the subject is out of a predetermined threshold or tolerance set in advance. May have a function to prevent
  • the health information management unit 490 has a function of permitting the authentication unit 140 to output an authentication OK only when the values such as the target patient's pulse, blood pressure, and an index indicating a stress state are within an appropriate range. It may be
  • the function of the health information management unit 490 can be suitably used.
  • the health information management unit 490 is a case where the driver is authenticated by the authentication unit 140 when the blood pressure value calculated from the pulse wave of the subject is out of the appropriate range, that is, an abnormal state. Can also be used in applications such as not releasing the vehicle's travel start lock.
  • the imaging unit 110 continuously generates an image including the iris area of the subject's eye at a predetermined time interval (frame rate) based on the intensity of light transmitted through each of the RGB filters.
  • frame rate a predetermined time interval
  • the imaging unit 110 preferably includes a pixel having sensitivity to the G wavelength (500 to 600 nm).
  • the imaging unit 110 in order to obtain iris information for authentication, it is desirable to employ an imaging unit having pixels having sensitivity in the IR region (750 to 950 nm).
  • the imaging unit 110 is provided with RGBIR filters, and based on the intensities of light transmitted through the R, G, B, and IR filters, an image including the iris area of the subject's eyes is continuously formed at predetermined time intervals.
  • the configuration may be such that the image is taken in a targeted manner.
  • acquisition of a pulse wave and acquisition of iris information can be performed with high sensitivity from an image including the iris region of the subject's eyes, and personal authentication can be performed with high accuracy.
  • the imaging part 110 demonstrated the structure provided with the filter of RGBIR.
  • the imaging unit 110 picks up an image including the iris area of the subject's eye using two sensors, an RGB sensor provided with a filter of RGGB and an IR sensor provided with a filter of IR. It may be a configuration.
  • the authentication device 100 acquires an image including the iris area of the subject's eye, determines the presence or absence of pulse wave detection in the iris area of the acquired image, and detects the pulse wave in the iris area. If not, it is determined that the iris authentication of the image is not performed.
  • the configuration of the present disclosure is not limited to this, and living body detection by the living body detection unit 130 and iris authentication by the authentication unit 140 may be processed in parallel.
  • the image including the iris region of the subject's eye acquired by the image acquisition unit 120 is sent to the living body detection unit 130 that determines presence / absence of pulse wave detection in the iris region of the image and the authentication unit 140 that performs iris authentication of the image. Supplied.
  • the authentication unit 140 If the result of iris authentication by the authentication unit 140 is determined to be another person, for example, before the determination by the living body detection unit 130 is finished, the authentication unit 140 immediately outputs the authentication result indicating the authentication NG. . In addition, when the result of iris authentication by the authentication unit 140 is determined to be the person prior to the determination by the living body detection unit 130 ending, the authentication unit 140 waits for the determination result of the living body detection unit 130, Only when the determination result by the living body detection unit 130 is a living body, an authentication result indicating authentication OK is output.
  • the processing time can be shortened compared to sequentially performing the living body detection and the iris authentication. be able to.
  • the authentication unit 140 refers to the determination result by the living body detection unit 130 and the iris authentication result by the authentication unit 140 to obtain an authentication result. Since the output is performed, false authentication due to so-called impersonation can be prevented, and personal authentication can be performed with high accuracy.
  • control blocks in particular, the image acquisition unit 120, the living body detection units 130, 330, 380, and the authentication unit 140 of the authentication device 100, 200, 300, 400 are logic circuits (hardware) formed in an integrated circuit (IC chip) or the like. And may be realized by software.
  • the authentication device 100, 200, 300, 400 includes a computer that executes instructions of a program that is software that implements each function.
  • the computer includes, for example, at least one processor (control device) and at least one computer readable storage medium storing the program. Then, in the computer, the processor reads the program from the recording medium and executes the program to achieve the object of the present disclosure.
  • a CPU Central Processing Unit
  • the processor reads the program from the recording medium and executes the program to achieve the object of the present disclosure.
  • a CPU Central Processing Unit
  • the processor can be used as the processor.
  • a recording medium a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used besides “a non-temporary tangible medium”, for example, a ROM (Read Only Memory).
  • a RAM Random Access Memory
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • any transmission medium communication network, broadcast wave, etc.
  • one aspect of the present disclosure may also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • the authentication device may be realized by a computer, and in this case, the computer is realized as each component (software element) included in the authentication device to realize the authentication device by the computer.
  • a control program of an authentication device and a computer readable recording medium recording the same also fall within the scope of the present disclosure.

Abstract

Provided are an authentication device and authentication method with which it is possible to accurately authenticate an individual. This authentication device is provided with: an image acquisition unit (120) for acquiring an image including an iris area of a subject's eye; a living body detection unit (130) for determining whether or not a pulse wave is detected in the iris area in the image; and an authentication unit (140) for performing iris authentication for the image. The authentication unit (140) refers to the result of determination by the living body detection unit (130) and the result of iris authentication by the iris authentication unit (140) and outputs an authentication result.

Description

認証装置、および認証方法Authentication device and authentication method
 本開示の一様態は、虹彩認証を行う認証装置、および認証方法に関する。 One aspect of the present disclosure relates to an authentication device that performs iris authentication, and an authentication method.
 従来、人の目の虹彩の画像から個人を認証する認証装置が知られている。これらの認証装置では、例えば人口虹彩等の人工物を用いた所謂「なりすまし」による誤認証を防ぐために、虹彩が人工物であるか、生体のものであるかを識別する生体検知機能を備えているものがある(例えば、特許文献1参照)。 BACKGROUND Conventionally, an authentication device that authenticates an individual from an image of an iris of a human eye is known. In these authentication devices, for example, in order to prevent false authentication due to so-called "spoofing" using an artificial object such as a artificial iris, a biological detection function is provided to identify whether the iris is an artificial object or a living thing. (See, for example, Patent Document 1).
 特許文献1に記載の認証装置では、利用者の顔の画像を取得し、取得した画像を用いて、利用者の唇、頬、額、髪等の顔領域の複数の部位間での脈波波形の振幅を比較することによって、顔領域が生体か否かを判定している。 In the authentication device described in Patent Document 1, an image of the user's face is acquired, and using the acquired image, pulse waves among a plurality of parts of the face area such as the user's lips, cheeks, forehead, and hair Whether or not the face area is a living body is determined by comparing the amplitudes of the waveforms.
日本国特許公報「特開2014-184002号公報(2014年10月2日公開)」Japanese patent publication "Japanese Patent Laid-Open No. 2014-184002 (October 2, 2014 published)"
 しかしながら、目の虹彩による個人認証と、顔の脈波による生体検知と、を組み合わせた認証装置では、虹彩写真等の人工物と、生体である他人の顔との組み合わせで偽造が可能であり、所謂なりすましによる誤認証を防ぐのは困難であった。 However, with an authentication device combining personal authentication with the iris of the eye and living body detection with the pulse wave of the face, it is possible to forge the combination of an artificial object such as an iris picture and the face of another person who is a living body. It was difficult to prevent false authentication due to so-called impersonation.
 本開示の一態様は、上述した事情に鑑みてなされたものであり、個人認証を高精度で行うことができる認証装置を提供することを目的とする。 One aspect of the present disclosure is made in view of the above-described circumstances, and an object of the present disclosure is to provide an authentication device capable of performing personal authentication with high accuracy.
 上記の課題を解決するために、本開示の一態様に係る認証装置は、対象者の目の虹彩領域を含む画像を取得する画像取得部と、上記画像の虹彩領域における脈波検出の有無を判定する生体検知部と、上記画像の虹彩認証を行う認証部と、を備え、上記認証部は、上記生体検知部による判定結果と、上記認証部による虹彩認証結果とを参照して認証結果を出力する構成である。 In order to solve the above problems, an authentication device according to an aspect of the present disclosure includes an image acquisition unit that acquires an image including an iris region of a subject's eye, and presence or absence of pulse wave detection in the iris region of the image. A biometric detection unit to be determined, and an authentication unit for performing iris authentication of the image, the authentication unit refers to the determination result by the biometric detection unit and the iris authentication result by the authentication unit. It is the structure to output.
 また、上記の課題を解決するために、本開示の一態様に係る認証装置は、対象者の目の虹彩領域を含む画像を取得する画像取得部と、上記画像を解析することにより瞳孔開度を取得し、取得した瞳孔開度に応じて、瞳孔収縮を用いて生体検知を行うことができるか否かを判定する判定部と、上記判定部が瞳孔収縮を用いて生体検知を行うことができないと判定した場合に、上記画像の虹彩領域における脈波検出の有無を利用して生体検知を行う第1の生体検知部と、上記判定部が瞳孔収縮を用いて生体検知を行うことができると判定した場合に、可視光を上記対象者の目に照射することにより生じる瞳孔収縮を利用して生体検知を行う第2の生体検知部と、上記画像の虹彩認証を行う認証部と、を備え、上記認証部は、上記第1の生体検知部または上記第2の生体検知部による検知結果と、上記認証部による虹彩認証結果とを参照して、認証結果を出力する構成である。 Moreover, in order to solve the above-mentioned subject, the authentication device according to an aspect of the present disclosure includes an image acquisition unit that acquires an image including an iris region of an eye of a subject, and analyzing the image. A determination unit that determines whether biological detection can be performed using pupil contraction according to the acquired pupil opening degree, and the determination unit performs biological detection using pupil contraction The first living body detection unit performs living body detection using the presence or absence of pulse wave detection in the iris region of the image when it is determined that it can not be performed, and the judgment unit can perform living body detection using pupil contraction. And a second living body detection unit that performs living body detection using pupil contraction generated by irradiating visible light to the eyes of the subject, and an authentication unit that performs iris authentication of the image. The authentication unit includes the first living body detection Or a detection result by the second biological detection portion, with reference to the iris authentication result by the authentication unit is configured to output the authentication result.
 また、上記の課題を解決するために、本開示の一態様に係る認証方法は、対象者の目の虹彩領域を含む画像を取得する画像取得ステップと、上記画像の虹彩領域における脈波検出の有無を判定する生体検知ステップと、上記画像の虹彩認証を行う認証ステップと、を含み、上記生体検知ステップにおける判定結果と、上記認証ステップにおける虹彩認証結果とを参照して認証結果を出力する方法である。 Further, in order to solve the above-described problem, an authentication method according to an aspect of the present disclosure includes an image acquisition step of acquiring an image including an iris region of an eye of a subject, and pulse wave detection in the iris region of the image. A method of outputting an authentication result with reference to a judgment result in the living body detection step and an iris authentication result in the authentication step, including a living body detection step for determining presence / absence and an authentication step for iris authentication of the image. It is.
 本開示の一態様によれば、個人認証を高精度で行うことができる。 According to one aspect of the present disclosure, personal identification can be performed with high accuracy.
実施形態1に係る認証装置100の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an authentication device 100 according to a first embodiment. 酸化ヘモグロビン(HbO)とメラニンの吸光度の波長依存性を示す図である。Is a diagram showing an oxyhemoglobin (HbO 2) and the wavelength dependence of the absorbance of melanin. 対象者の目の虹彩領域を模式的に示す図である。It is a figure which shows typically the iris area | region of a subject's eye. (a)は、虹彩領域の構成を模式的に示す図であり、(b)は、虹彩領域における血管の形成態様を模式的に示した図である。(A) is a figure which shows typically the structure of an iris area | region, (b) is a figure which showed the formation aspect of the blood vessel in an iris area | region typically. (a)は、矩形区分を示す図であり、(b)は、捲縮輪15を含む矩形区分領域での周波数パワースペクトルを示し、(c)は、肌のみを含む矩形区分領域での周波数パワースペクトルを示し、(d)は、脈波の抽出場所と脈波の検出精度との関係を示す図である。(A) is a figure showing a rectangular section, (b) shows a frequency power spectrum in a rectangular section area including the crimp wheel 15, (c) is a frequency in a rectangular section area including only skin A power spectrum is shown, and (d) is a figure showing a relation between a pulse wave extraction place and a pulse wave detection accuracy. 人の目の構成を模式的に示す図である。It is a figure which shows the structure of a human eye typically. 脈波検出処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a pulse wave detection process. 生体判定処理の流れを示すフローチャートである。It is a flow chart which shows a flow of living body determination processing. 実施形態2に係る認証装置の概略構成を示すブロック図である。FIG. 7 is a block diagram showing a schematic configuration of an authentication device according to a second embodiment. 実施形態3に係る認証装置の概略構成を示すブロック図である。FIG. 7 is a block diagram showing a schematic configuration of an authentication device according to a third embodiment. 瞳孔開度の算出方法について説明するための図である。It is a figure for demonstrating the calculation method of pupil opening degree. 瞳孔径と虹彩径との比と、照度との関係を示す図である。It is a figure which shows the relationship between the ratio of a pupil diameter and an iris diameter, and illumination intensity. 実施形態4に係る認証装置400の概略構成を示すブロック図である。FIG. 16 is a block diagram showing a schematic configuration of an authentication device 400 according to a fourth embodiment. 加速度脈波の波形を示す図である。It is a figure which shows the waveform of an acceleration pulse wave.
 〔実施形態1〕
 以下、本開示の実施形態1について、詳細に説明する。図1は、実施形態1に係る認証装置100の概略構成を示すブロック図である。以下に詳述するように、認証装置100は、認証対象者の目の虹彩の画像を用いて、虹彩認証技術により対象者を認証するとともに、虹彩領域における脈波を検出することにより、対象者が生体であるか否かを判定する。なお、認証装置100は、認証対象者の両目の虹彩の画像を用いて認証を行う構成であってもよいし、認証対象者の片目の虹彩の画像を用いて認証を行う構成であってもよい。
Embodiment 1
The first embodiment of the present disclosure will be described in detail below. FIG. 1 is a block diagram showing a schematic configuration of the authentication device 100 according to the first embodiment. As will be described in detail below, the authentication device 100 authenticates the target person by the iris authentication technology using the iris image of the eye of the authentication target person, and detects the pulse wave in the iris region, It is determined whether or not the subject is a living body. The authentication apparatus 100 may be configured to perform authentication using images of the irises of both eyes of the authentication target person, or may be configured to perform authentication using the image of the iris of one eye of the authentication target person. Good.
 図1に示すように、認証装置100は、画像取得部120と、生体検知部130と、認証部140と、を含んでいる。また、認証装置100は、撮像部110を備えている。なお、画像取得部120、生体検知部130、認証部140、及び撮像部110はそれぞれ、認証装置100に一体に備えられている構成に限らず、認証装置100とは別体である構成であってもよい。画像取得部120、生体検知部130、認証部140、及び撮像部110は、認証装置100と別体である構成では、例えば無線通信を介して認証装置100と通信する構成であってもよい。 As shown in FIG. 1, the authentication device 100 includes an image acquisition unit 120, a living body detection unit 130, and an authentication unit 140. The authentication device 100 further includes an imaging unit 110. The image acquisition unit 120, the living body detection unit 130, the authentication unit 140, and the imaging unit 110 are not limited to the configuration integrally provided in the authentication device 100, but may be separate from the authentication device 100. May be In the configuration in which the image acquisition unit 120, the living body detection unit 130, the authentication unit 140, and the imaging unit 110 are separate from the authentication device 100, for example, the configuration may be configured to communicate with the authentication device 100 via wireless communication.
 (画像取得部120の構成)
 画像取得部120は、撮像部110によって撮像された認証対象者の目の虹彩領域を含む画像を取得する。撮像部110は、動脈中血液量の増減、即ち酸化ヘモグロビンの濃淡情報変化を見るのに適したフィルタを備えている。図2は、酸化ヘモグロビン(HbO)とメラニンの吸光度波長依存性を示す。フィルタの波長選択としては、センサ感度が高く、メラニンの吸光度に対して相対的に酸化ヘモグロビンの吸光度が高くなる波長を選択することが望ましい。撮像部110は、例えば、波長500~600nmに感度を有したカメラであることが望ましい。
(Configuration of image acquisition unit 120)
The image acquisition unit 120 acquires an image including the iris area of the eye of the authentication target person captured by the imaging unit 110. The imaging unit 110 is provided with a filter suitable for observing increase / decrease in blood volume in the artery, that is, change in concentration information of oxygenated hemoglobin. FIG. 2 shows the absorbance wavelength dependence of oxygenated hemoglobin (HbO 2 ) and melanin. As for the wavelength selection of the filter, it is desirable to select a wavelength at which the sensor sensitivity is high and the absorbance of oxyhemoglobin is relatively high with respect to the absorbance of melanin. The imaging unit 110 is preferably, for example, a camera having sensitivity to a wavelength of 500 to 600 nm.
 撮像部110は、例えば、RGBのフィルタを備えた一般的なシリコンセンサーカメラであってもよい。撮像部110が備えるRGBフィルタは、例えば、G画素が波長500nm~600nmに感度を有し、R画素が波長600nm~700nmに感度を有し、B画素が波長400nm~500nmに感度を有する構成とすることができる。 The imaging unit 110 may be, for example, a general silicon sensor camera provided with an RGB filter. The RGB filter included in the imaging unit 110 has, for example, a configuration in which the G pixel has sensitivity to a wavelength of 500 nm to 600 nm, the R pixel has sensitivity to a wavelength of 600 nm to 700 nm, and the B pixel has sensitivity to a wavelength of 400 nm to 500 nm can do.
 撮像部110は、RGBのそれぞれのフィルタを透過した光の強度に基づいて、所定の時間間隔(フレームレート)で対象者の目の虹彩領域を含む画像を連続的に撮像する。撮像部110のフレームレートは、例えば、30fpsとすることができる。 The imaging unit 110 continuously captures an image including the iris area of the subject's eye at a predetermined time interval (frame rate) based on the intensity of light transmitted through each of the RGB filters. The frame rate of the imaging unit 110 can be, for example, 30 fps.
 画像取得部120は、撮像部110によって連続的に撮像された、対象者の目の虹彩領域を含む複数の撮像画像を取得する。画像取得部120は、取得した複数の撮像画像を生体検知部130に供給する。 The image acquisition unit 120 acquires a plurality of captured images that are continuously captured by the imaging unit 110 and that include the iris region of the subject's eyes. The image acquisition unit 120 supplies the acquired plurality of captured images to the living body detection unit 130.
 (生体検知部130の構成)
 生体検知部130は、画像取得部120が取得した複数の撮像画像を解析することにより、対象者の目の虹彩領域における脈波検出の有無を確認し、対象者が生体で有るか否かを判定する。生体検知部130は、対象者が生体であるか否かの判定結果と共に、対象者の目の虹彩領域を含む画像を認証部140に提供する。なお、生体検知部130は、対象者が生体ではないと判定した場合には、認証部140に対象者の目の虹彩領域を含む画像を提供しない構成であってもよい。
(Configuration of living body detection unit 130)
The living body detection unit 130 analyzes the plurality of captured images acquired by the image acquisition unit 120 to confirm the presence or absence of pulse wave detection in the iris region of the subject's eye, and determines whether the subject is a living body or not. judge. The living body detection unit 130 provides the authentication unit 140 with an image including the iris area of the eye of the subject, along with the determination result as to whether the subject is a living body. The living body detection unit 130 may not be configured to provide the authentication unit 140 with an image including the iris region of the eye of the subject when it is determined that the subject is not a living body.
 生体検知部130は、検出領域設定部131、画素値算出部132、脈波検出部133、および生体判定部134を含んでいる。 The living body detection unit 130 includes a detection area setting unit 131, a pixel value calculation unit 132, a pulse wave detection unit 133, and a living body determination unit 134.
 検出領域設定部131は、対象者の目の虹彩領域を含む複数の撮像画像のそれぞれにおいて、脈波を検出する検出領域を設定する。検出領域設定部131は、画像取得部120が取得した撮像画像における対象者の目の虹彩領域を、フレーム毎に検出する。図3は、検出領域設定部131によって撮像画像から検出された対象者の虹彩領域を含んだ目を示す図である。虹彩領域は瞳孔5の外縁を内縁とし、強膜(白目)との境界を外縁としたドーナツ状の帯領域である。図3に示すように、検出領域設定部131は、さらに、撮像画像から検出した虹彩領域に対して、大虹彩輪と小虹彩輪との境界に存在する捲縮輪15を含む領域を検出領域として設定する。 The detection area setting unit 131 sets a detection area for detecting a pulse wave in each of a plurality of captured images including the iris area of the subject's eyes. The detection area setting unit 131 detects the iris area of the eye of the subject in the captured image acquired by the image acquisition unit 120 for each frame. FIG. 3 is a diagram showing an eye including the iris area of the subject detected by the detection area setting unit 131 from the captured image. The iris region is a doughnut-shaped band region whose outer edge is the outer edge of the pupil 5 and whose outer edge is the boundary with the sclera (white eyes). As shown in FIG. 3, the detection area setting unit 131 further detects an area including the crimped ring 15 present at the boundary between the large iris ring and the small iris ring with respect to the iris area detected from the captured image. Set as.
 図4(a)は、人の目の虹彩領域の構成を示す図であり、下部に示した図は、上部に示した図のI-I断面図であり、虹彩と、水晶体30との断面を示している。図4(b)は、虹彩領域における血管の形成態様を模式的に示した図である。図4(a)に示すように、人の目の虹彩10は、瞳孔5を内縁とした同心円状の細い帯である小虹彩輪12と、その外方を取り巻く帯である大虹彩輪11とにわかれている。 FIG. 4A is a diagram showing the configuration of the iris region of the human eye, and the diagram shown in the lower part is a cross-sectional view taken along line II of the diagram shown in the upper part, showing the iris and the lens 30 in cross section. Is shown. FIG. 4 (b) is a view schematically showing the formation of blood vessels in the iris region. As shown in FIG. 4 (a), the iris 10 of the human eye includes a small iris ring 12 which is a concentric narrow band having a pupil 5 as an inner edge, and a large iris ring 11 which is a band surrounding the outside thereof. I am divided.
 小虹彩輪12は瞳孔括約筋を有し、大虹彩輪11は瞳孔散大筋を有している。虹彩10の表面には虹彩紋理とよばれる組織の隆起、溝、窪みが存在し、これらの組織の違いから小虹彩輪12には放射状の紋理、大虹彩輪11には輪状の紋理が存在する。また、大虹彩輪11と小虹彩輪12の境界に、不規則な輪状隆起を有する捲縮輪15が存在する。 The small iris ring 12 has a pupil sphincter, and the large iris ring 11 has a pupil dilated muscle. On the surface of the iris 10 there are elevations, grooves and depressions of tissues called iris fringes, and from the difference of these tissues, radial fringes in the small iris ring 12 and annular fringes in the large iris ring 11 . In addition, at the boundary between the large iris ring 11 and the small iris ring 12, a crimped ring 15 having an irregular ring-like protuberance is present.
 検出領域設定部131は、例えば、紋理形状の違いによって、大虹彩輪11と小虹彩輪12の境界に存在する捲縮輪15を含む領域を検出する。 The detection area setting unit 131 detects an area including the crimped ring 15 present at the boundary between the large iris ring 11 and the small iris ring 12 based on, for example, the difference in the shape of the shading.
 図4(a)および(b)に示すように、人の目の虹彩において、動脈血管20は、強膜と脈絡膜の間を走って毛様体に至り、大虹彩動脈輪21をつくる。大虹彩動脈輪21は虹彩10と毛様体の接合部に存在する。続いて大虹彩動脈輪21から放射状に多数の血管が虹彩10に入る。その吻合によって小虹彩動脈輪25が生じる。即ち小虹彩動脈輪25は血管が集中して集合形成されている血管領域である。上記小虹彩動脈輪25は、大虹彩輪11と小虹彩輪12の境界に存在する。小虹彩動脈輪25から虹彩10の先端までは非常に細い毛細血管が走っており、不図示の静脈へと繋がる。 As shown in FIGS. 4 (a) and 4 (b), in the iris of the human eye, the arterial blood vessel 20 runs between the sclera and the choroid to reach the ciliary body, forming the large iris arterial ring 21. The large iris artery ring 21 is present at the junction of the iris 10 and the ciliary body. Subsequently, a large number of blood vessels enter the iris 10 radially from the large iris arterial ring 21. The anastomosing produces a small iris artery ring 25. That is, the small iris arterial ring 25 is a blood vessel region in which blood vessels are concentrated and formed. The small iris arterial ring 25 is present at the boundary between the large iris ring 11 and the small iris ring 12. A very thin capillary runs from the small iris ring 25 to the tip of the iris 10 and leads to a vein (not shown).
 このように、検出領域設定部131は、血管が集中して集合形成されている小虹彩動脈輪25が存在する大虹彩輪11と小虹彩輪12との境界の捲縮輪15を含む領域を、脈波を検出する検出領域として設定する。 As described above, the detection area setting unit 131 sets an area including the crimp ring 15 at the boundary between the large iris ring 11 and the small iris ring 12 in which the small iris artery ring 25 in which blood vessels are concentrated is formed. , It sets as a detection area which detects a pulse wave.
 図5(a)は、矩形区分を設けた虹彩10を含む画像を示す図であり、図5(b)は、捲縮輪15を含む矩形区分領域での周波数パワースペクトルを示し、図5(c)は、肌のみを含む矩形区分領域での周波数パワースペクトルを示している。図5(a)~(c)に示すように、捲縮輪15を含む矩形区分領域での周波数パワースペクトルは、周波数1.3Hzにピークを有している。 FIG. 5 (a) shows an image including an iris 10 provided with a rectangular section, and FIG. 5 (b) shows a frequency power spectrum in a rectangular section area including the crimp ring 15. c) shows the frequency power spectrum in a rectangular segmented region containing only skin. As shown in FIGS. 5 (a) to 5 (c), the frequency power spectrum in the rectangular section area including the crimp ring 15 has a peak at a frequency of 1.3 Hz.
 また、肌のみを含む矩形区分領域での周波数パワースペクトルも、周波数1.3Hzにピークを有している。このことから、脈波の周波数のピークは1.3Hzであることがわかり、虹彩10の捲縮輪15を含む領域では、精度良く脈波を検出することができることがわかる。 In addition, the frequency power spectrum in the rectangular section area including only the skin also has a peak at a frequency of 1.3 Hz. From this, it is understood that the peak of the frequency of the pulse wave is 1.3 Hz, and it is understood that the pulse wave can be detected with high accuracy in the region including the crimp ring 15 of the iris 10.
 図5(d)は、脈波の抽出処理を行った抽出場所と、各抽出場所で抽出された脈波の検出精度との関係を示す図であり、瞳孔5を含む矩形区分中心を距離0とし、そこからの抽出場所の距離と、脈波検出精度と、の関係である脈波検出精度距離依存性を示している。 FIG. 5D is a diagram showing the relationship between the extraction place where the pulse wave extraction process has been performed and the detection accuracy of the pulse wave extracted at each extraction place, and the distance between the center of the rectangular section including the pupil 5 is 0. And, it shows the pulse wave detection accuracy distance dependency which is a relationship between the distance of the extraction location from there and the pulse wave detection accuracy.
 なお、抽出された脈波の検出精度の指標としては、SNR(signal to noise ratio)を用いている。また、ここでのSNRは、周波数のパワースペクトルからピークシグナルの面積をノイズシグナルの面積で除する数値を用いて定義している。なお、脈波検出精度と、抽出場所との関係を示すために、瞳孔、白目、肌、睫毛を一部含む矩形区分については脈波の抽出処理を行う区分から除外し、虹彩のみを含む矩形区分のみを用いて脈波の抽出処理を行っている。 As an index of detection accuracy of the extracted pulse wave, SNR (signal to noise ratio) is used. Also, SNR here is defined using a value obtained by dividing the area of the peak signal by the area of the noise signal from the power spectrum of the frequency. In order to show the relationship between the pulse wave detection accuracy and the extraction location, a rectangular section partially including the pupil, white eyes, skin, and eyebrows is excluded from the section for pulse wave extraction processing, and includes only the iris. Pulse wave extraction processing is performed using only the classification.
 図6は、人の目の概略構成を示すイメージ図である。図6に示すように、例えば、脈波検出領域に睫毛が存在する場合、当該領域における脈波検出精度が低下する。また、上下瞼によって虹彩10の一部が隠れる場合がある。よって、検出領域設定部131は、瞳孔5に対して、虹彩の左右領域を検出領域として設定するのが望ましい。 FIG. 6 is an image diagram showing a schematic configuration of human eyes. As shown in FIG. 6, for example, when there are eyelashes in the pulse wave detection area, the pulse wave detection accuracy in the area is lowered. In addition, a part of the iris 10 may be hidden by the upper and lower eyelids. Therefore, it is desirable for the detection area setting unit 131 to set the left and right areas of the iris as the detection area for the pupil 5.
 例えば、瞳孔から右方向に延びる水平線をθ0=0度として、虹彩の右領域のθ2=-40度からθ1=15度の範囲、および虹彩の左領域のθ3=165度からθ4=220度の範囲から検出領域を設定するのが望ましい。 For example, assuming that a horizontal line extending rightward from the pupil is θ0 = 0 degrees, the range from θ2 = -40 degrees to θ1 = 15 degrees in the right area of the iris and θ3 = 165 degrees to θ4 = 220 degrees in the left area of the iris It is desirable to set the detection area from the range.
 また、図5(d)に示すように、脈波検出精度は虹彩における抽出場所に対する依存性を有し、捲縮輪15を含む領域で極大値を示す。また、脈波検出精度は、捲縮輪15を含む領域において最も高いことがわかった。これらの結果から、検出領域設定部131は、捲縮輪15を含む領域を検出領域として設定することによって、虹彩脈波を精度よく検出することができる。 Further, as shown in FIG. 5D, the pulse wave detection accuracy has dependency on the extraction location in the iris, and shows a maximum value in the region including the crimp ring 15. Further, it was found that the pulse wave detection accuracy was the highest in the region including the crimp ring 15. From these results, the detection area setting unit 131 can accurately detect an iris pulse wave by setting an area including the crimped ring 15 as a detection area.
 なお、検出領域設定部131によって設定される検出領域の形状は、捲縮輪15を含む領域が設定することができれば良く、図5(a)に例示した矩形形状であってもよいし、捲縮輪15とその近傍を含むドーナツ状であってもよい。 The shape of the detection area set by the detection area setting unit 131 may be set as long as an area including the crimp ring 15 can be set, and may be a rectangular shape illustrated in FIG. It may be a donut shape including the reduced ring 15 and the vicinity thereof.
 画素値算出部132は、検出領域設定部131によって設定された、捲縮輪15を含む領域である検出領域において、撮像画像に含まれる各画素を表現するための各色の画素値(階調値)を用いて、所定の検出領域における各色の画素値の演算値を算出する。撮像画像に含まれる各画素を表現するための各色は、例えば、R、G、Bである。また、各色の画素値の演算値とは、撮像画像における検出領域に含まれる複数の画素の画素値に対して所定の演算を行うことによって得られる値であり、当該検出領域に含まれる画素の画素値の大きさを反映した値である。 The pixel value calculation unit 132 sets the pixel value (tone value of each color for expressing each pixel included in the captured image in the detection area which is the area including the crimp ring 15 set by the detection area setting unit 131. The calculated value of the pixel value of each color in a predetermined detection area is calculated using. Each color for expressing each pixel contained in a captured image is R, G, B, for example. Further, the operation value of the pixel value of each color is a value obtained by performing a predetermined operation on the pixel values of a plurality of pixels included in the detection area in the captured image, and the calculated value of the pixels included in the detection area It is a value reflecting the size of the pixel value.
 画素値算出部132は、例えば、検出領域における各色の画素値の平均である平均画素値を、検出領域における画素値の演算値として算出してもよい。また、画素値算出部132は、例えば、捲縮輪15に近い画素の画素値の重みづけを大きくし、捲縮輪15から離れた画素の画素値の重みづけを小さくして算出された統計値を、検出領域における画素値の演算値として算出してもよい。以降の説明では、画素値算出部132が、検出領域における各色の平均画素値を、検出領域における画素値の演算値として算出するものとして説明する。 The pixel value calculation unit 132 may calculate, for example, an average pixel value which is an average of pixel values of respective colors in the detection area as a calculation value of pixel values in the detection area. In addition, the pixel value calculation unit 132 is, for example, a statistic calculated by increasing the weighting of pixel values of pixels close to the crimping wheel 15 and reducing the weighting of pixel values of pixels away from the crimping wheel 15. The value may be calculated as an operation value of the pixel value in the detection area. In the following description, it is assumed that the pixel value calculation unit 132 calculates the average pixel value of each color in the detection area as an operation value of the pixel value in the detection area.
 画素値算出部132は、平均画素値の時間変化を取得するため、上記撮像画像における所定の時間(例えば、30秒間)分のフレームについて平均画素値の算出を行う。画素値算出部132は、算出した各色の平均画素値を脈波検出部133へ出力する。 The pixel value calculation unit 132 calculates an average pixel value for a frame corresponding to a predetermined time (for example, 30 seconds) in the captured image in order to obtain a time change of the average pixel value. The pixel value calculation unit 132 outputs the calculated average pixel value of each color to the pulse wave detection unit 133.
 脈波検出部133は、画素値算出部132が算出した検出領域における各色の演算値の変化を検出することにより生体の脈波を算出する。ところで、脈波とは、心臓の拍動に伴う末梢血管内の圧変化、および容積変化であり、脈波は、血中酸化ヘモグロビンの濃度時間変化を測定することで検出することができる。脈波検出部133は、画素値算出部132が算出した各色の平均画素値の時間変化を検出することにより生体の脈波を検出する。 The pulse wave detection unit 133 calculates a pulse wave of a living body by detecting a change in the calculated value of each color in the detection area calculated by the pixel value calculation unit 132. The pulse wave is a change in pressure and a change in volume in the peripheral blood vessel associated with the beating of the heart, and the pulse wave can be detected by measuring the time change of the concentration of oxyhemoglobin in blood. The pulse wave detection unit 133 detects the pulse wave of the living body by detecting the temporal change of the average pixel value of each color calculated by the pixel value calculation unit 132.
 図7は、脈波検出部133による脈波検出処理の流れの一例を示すフローチャートである。図7を用いて、脈波検出部133による脈波検出処理の流れの一例について説明する。 FIG. 7 is a flowchart illustrating an example of the flow of pulse wave detection processing by the pulse wave detection unit 133. An example of the flow of pulse wave detection processing by the pulse wave detection unit 133 will be described using FIG. 7.
 (ステップS1)
 脈波検出部133は、まず、画素値算出部132が算出した検出領域における各色の平均画素値に対して独立成分分析を行い、色数と同じ数(すなわち、R、G、G、Bの4つ)の独立成分を取り出す。
(Step S1)
The pulse wave detection unit 133 first performs independent component analysis on the average pixel value of each color in the detection area calculated by the pixel value calculation unit 132, and the number is equal to the number of colors (ie, R, G, G, B Take out 4) independent components.
 (ステップS2)
 次に、脈波検出部133は、取り出した4つの独立成分に対して、例えば0.75~4.0Hzのデジタルバンドパスフィルタを用いて、低周波成分および高周波成分をそれぞれ除去する。
(Step S2)
Next, the pulse wave detection unit 133 removes low frequency components and high frequency components from the four independent components taken out, for example, using a digital band pass filter of 0.75 to 4.0 Hz.
 (ステップS3)
 次に、脈波検出部133は、低周波成分および高周波成分を除去した4つの独立成分に対して、高速フーリエ変換を行い、各独立成分の周波数のパワースペクトルを算出する。
(Step S3)
Next, the pulse wave detection unit 133 performs fast Fourier transform on the four independent components from which the low frequency component and the high frequency component have been removed, and calculates the power spectrum of the frequency of each independent component.
 (ステップS4)
 次に、脈波検出部133は、算出した各独立成分の周波数のパワースペクトルの0.75~4.0Hzにおけるピーク値を算出する。
(Step S4)
Next, the pulse wave detection unit 133 calculates the peak value at 0.75 to 4.0 Hz of the power spectrum of the calculated frequency of each independent component.
 (ステップS5)
 そして、脈波検出部133は、算出した、各独立成分のピーク値のうち最もピーク値の大きいピークを有する独立成分を脈波として検出する。
(Step S5)
Then, the pulse wave detection unit 133 detects an independent component having a peak with the largest peak value among the calculated peak values of each independent component as a pulse wave.
 脈波検出部133は、検出した脈波を生体判定部134へ出力する。 The pulse wave detection unit 133 outputs the detected pulse wave to the living body determination unit 134.
 なお、脈波検出部133による脈波検出は、各独立成分のピーク値のうち最もピーク値の大きいピークを有する独立成分を脈波として検出する方法に限られるものではない。脈波検出部133は、パワースペクトルからピークのSNRを算出し、最もSNRが大きいピークを有する独立成分を脈波として検出してもよい。 The pulse wave detection by the pulse wave detection unit 133 is not limited to the method of detecting an independent component having a peak with the largest peak value among the peak values of the independent components as a pulse wave. The pulse wave detection unit 133 may calculate the SNR of the peak from the power spectrum, and detect the independent component having the peak with the largest SNR as a pulse wave.
 また、画素値算出部132が算出した平均画素値の時間に対する変動が大きい場合、脈波検出部133は、まず、各色の平均画素値に対してそれぞれトレンド除去を行ってもよい(IEEE Trans Biomed Eng, 2002 Feb;49(2):172-175参照)。そして、脈波検出部133は、トレンド除去を行うことにより上記変動を除去した後の各色の平均画素値に対して、独立成分分析を行ってもよい。 In addition, when the fluctuation with time of the average pixel value calculated by the pixel value calculation unit 132 is large, the pulse wave detection unit 133 may first perform trend removal on the average pixel value of each color (IEEE Trans Biomed Eng, 2002 Feb; 49 (2): 172-175). Then, the pulse wave detection unit 133 may perform the independent component analysis on the average pixel value of each color after removing the above-mentioned fluctuation by performing the trend removal.
 生体判定部134は、脈波検出部133において検出された波形が脈波で有るか否かを判定する。 The living body determination unit 134 determines whether the waveform detected by the pulse wave detection unit 133 is a pulse wave.
 図8は、生体判定部134による生体判定処理の流れの一例を示すフローチャートである。図8を用いて、生体判定部134による生体判定処理の流れの一例について説明する。 FIG. 8 is a flowchart showing an example of the flow of the living body determination processing by the living body determination unit 134. An example of the flow of the living body determination processing by the living body determination unit 134 will be described using FIG. 8.
 (ステップS11)
 生体判定部134は、脈波検出部133において検出された波形が脈波で有るか否かを判定する。生体判定部134は、脈波検出部133において検出された波形が脈波で有ると判定した場合は、対象者は生体であると判定する。生体判定部134は、対象者は生体であると判定するとステップS12に進む。なお、生体判定部134は、対象者は生体であると判定した場合に、生体を検知したことを示す信号を認証部140に出力してもよい。
(Step S11)
The living body determination unit 134 determines whether the waveform detected by the pulse wave detection unit 133 is a pulse wave. When the living body determination unit 134 determines that the waveform detected by the pulse wave detection unit 133 is a pulse wave, the living body determination unit 134 determines that the subject is a living body. When the living body determination unit 134 determines that the subject is a living body, the process proceeds to step S12. When the living body determination unit 134 determines that the subject is a living body, the living body determination unit 134 may output a signal indicating that a living body has been detected to the authentication unit 140.
 一方で生体判定部134は、脈波検出部133において検出された波形が脈波ではないと判定した場合は、対象者は生体ではない、即ち対象者は偽造物であると判定する。生体判定部134は、対象者は生体ではないと判定すると、認証部140に対象者の虹彩領域を含む画像を出力せずに処理を終了する。なお、生体判定部134は、対象者は生体ではないと判定した場合に、例えば、対象者を認証することができない旨をユーザに報知するなどの非認証処理を行う構成であってもよい。また、生体判定部134は、対象者は生体ではないと判定した場合に、生体が非検知であることを示す信号を認証部140に出力してもよい。 On the other hand, when the living body determination unit 134 determines that the waveform detected by the pulse wave detection unit 133 is not a pulse wave, it determines that the target person is not a living body, that is, the target person is a forgery. If the living body determination unit 134 determines that the target person is not a living body, the process ends without outputting an image including the iris region of the target person to the authentication unit 140. The biometric determination unit 134 may be configured to perform non-authentication processing such as notifying the user that the target person can not be authenticated, for example, when determining that the target person is not a living body. In addition, when it is determined that the subject is not a living body, the living body determination unit 134 may output a signal indicating that the living body is not detected to the authentication unit 140.
 (ステップS12)
 生体判定部134は、認証部140に対象者の虹彩領域を含む画像を出力する。
(Step S12)
The living body determination unit 134 outputs an image including the iris area of the subject to the authentication unit 140.
 なお、生体判定部134は、公知のいかなる手段を用いて、脈波検出部133において検出された波形が脈波であるか否かの判定を行ってもよい。生体判定部134は、例えば、脈波検出部133において検出された波形の周期性を確認し、波形周期が0.75~3.0Hzである場合に脈波であると判定する。 The living body determination unit 134 may determine whether the waveform detected by the pulse wave detection unit 133 is a pulse wave using any known means. For example, the living body determination unit 134 confirms the periodicity of the waveform detected by the pulse wave detection unit 133, and determines that the pulse wave is generated when the waveform cycle is 0.75 to 3.0 Hz.
 また、生体判定部134は、脈波検出部133による高速フーリエ変換後の周波数のパワースペクトルのピーク値、あるいはSNRの値が、予め設定された閾値以上であるか否かによって、波形が脈波であるか否かを判定しても良い。この場合は、生体判定部134には、脈波検出部133において検出された波形の代わりに、周波数のパワースペクトルピーク値、およびSNRの値の少なくとも何れか一方が入力され判定に用いられても良い。 Further, the living body determination unit 134 determines whether the waveform is a pulse wave depending on whether the peak value of the power spectrum of the frequency after fast Fourier transform by the pulse wave detection unit 133 or the value of the SNR is equal to or greater than a preset threshold. It may be determined whether or not. In this case, even if at least one of the power spectrum peak value of the frequency and the value of the SNR is input to the living body determination unit 134 instead of the waveform detected by the pulse wave detection unit 133 and used for determination. good.
 このように、生体検知部130は、画像中の対象者の虹彩領域から大虹彩輪11と小虹彩輪12との境界に存在する捲縮輪15を含む設定領域を検出し、当該設定領域における脈波検出の有無を判定する。上述したように、捲縮輪15を含む領域では、高い検出精度で脈波を検出することができるため、この捲縮輪15を含む領域を設定領域として脈波検出の有無を判定することで、精度良く、対象者が生体であるか否かを判定することができる。 As described above, the living body detection unit 130 detects a setting area including the crimped ring 15 existing at the boundary between the large iris ring 11 and the small iris ring 12 from the iris area of the subject in the image. Determine the presence or absence of pulse wave detection. As described above, since the pulse wave can be detected with high detection accuracy in the area including the crimped ring 15, the presence or absence of pulse wave detection is determined with the area including the crimped ring 15 as a setting area. It is possible to accurately determine whether the subject is a living body.
 (認証部140の構成)
 生体検知部130によって対象者の脈波が虹彩領域を含む画像から検出され、生体検知された場合、認証部140には、対象者の虹彩領域を含む画像が提供され虹彩認証がおこなわれる。なお、認証部140には、対象者の虹彩領域を含む画像と共に生体検知に成功した旨の信号が提供されてもよい。認証部140は、生体検知部130が虹彩領域における脈波を検出しなかった場合、つまり、生体検知をしなかった場合に、画像の虹彩認証を行わない決定を行う。
(Configuration of authentication unit 140)
When the pulse wave of the subject is detected from the image including the iris area by the living body detection unit 130 and the living body is detected, the authentication unit 140 is provided with the image including the iris area of the subject and the iris authentication is performed. The authentication unit 140 may be provided with a signal indicating that the living body detection is successful, together with the image including the iris area of the subject. When the living body detection unit 130 does not detect a pulse wave in the iris region, that is, when the living body detection unit 130 does not detect a living body, the authentication unit 140 determines not to perform iris authentication of the image.
 また、認証部140は、生体検知部130が虹彩領域における脈波を検出した場合、つまり、生体検知をした場合に、画像の虹彩認証を行う決定を行う。 In addition, when the living body detection unit 130 detects a pulse wave in the iris region, that is, when the living body detection is performed, the authentication unit 140 determines to perform iris authentication of the image.
 認証部140は、対象者の虹彩領域を含む画像を元に個人認証を行う。例えば、認証部140は、まず、予め認証DB150に登録されている虹彩画像と、認証時に得られた虹彩領域を含む画像とを照合する。そして、認証部140は、照合の結果、予め登録されている虹彩画像と、認証時に得られた虹彩領域を含む画像との虹彩認証による不一致率が一定の閾値未満であるか否かで個人を認証することにより、本人判定を行う。 The authentication unit 140 performs personal authentication based on an image including the iris area of the subject. For example, the authentication unit 140 first collates an iris image registered in advance in the authentication DB 150 with an image including an iris area obtained at the time of authentication. Then, the authentication unit 140 determines whether the mismatch rate by iris authentication between the iris image registered in advance as a result of the collation and the image including the iris area obtained at the time of authentication is less than a predetermined threshold. The identity is determined by authentication.
 認証部140は、例えば、予め登録されている虹彩画像と、認証時に得られた虹彩領域を含む画像と、の虹彩認証による不一致率が閾値未満である場合に本人であると判定し、不一致率が閾値以上である場合に他人であると判定してもよい。 The authentication unit 140 determines that the user is the person if, for example, the mismatch rate by iris authentication between the iris image registered in advance and the image including the iris region obtained at the time of authentication is less than a threshold, It may be determined that the other person is when the value of L is equal to or greater than the threshold.
 認証部140は、虹彩コード作成部141と、照合部142と、を含んでいる。 The authentication unit 140 includes an iris code creation unit 141 and a collation unit 142.
 虹彩コード作成部141は、生体判定部134が出力した対象者の虹彩領域を含む画像を取得し、当該画像に基づいて、虹彩認証を行うために用いられる虹彩コードを作成する。虹彩コード作成部141における虹彩コードの作成には、公知の手法を適宜に用いることができる。 The iris code creation unit 141 obtains an image including the iris area of the subject output from the living body determination unit 134, and creates an iris code used to perform iris authentication based on the image. A well-known method can be used suitably for preparation of the iris code in the iris code preparation part 141. FIG.
 照合部142は、認証DB150に予め登録されている登録虹彩コードと、生体判定部134が出力した対象者の虹彩領域を含む画像に基づいて作成した虹彩コードと、を照合する。なお、登録虹彩コードと、虹彩コードと、の照合には、公知の手法を適宜に用いることができる。例えば、照合部142は、類似性、或は非類似性をスコア化し、スコアに基づいて照合を行ってよい。例えば、登録虹彩コードと虹彩コードとのハミングディスタンス(Hamming distance)HDを算出し、当該ハミングディスタンスHDに基づいて照合を行ってよい。 The collation unit 142 collates the registered iris code registered in advance in the authentication DB 150 with the iris code created based on the image including the iris area of the subject output by the biometric determination unit 134. A well-known method can be used suitably for collation with a registration iris code and an iris code. For example, the matching unit 142 may score similarity or non-similarity and perform matching based on the score. For example, the Hamming distance HD between the registration iris code and the iris code may be calculated, and the matching may be performed based on the Hamming distance HD.
 具体的には、照合部142は、ハミングディスタンスHDが所定のハミングディスタンス閾値HDth以下である場合に、登録虹彩コードと虹彩コードとの一致度が所定範囲内であると判定する。この場合、照合部142は、被写体Hに対する虹彩認証に成功したと判定する。一方、照合部142は、上記一致度が所定範囲外である場合(ハミングディスタンスHDがハミングディスタンス閾値HDthよりも大きい場合)には、虹彩認証に失敗したと判定する。つまり、ハミングディスタンスHDがハミングディスタンス閾値HDth以下であれば上記一致度が高いといえ、ハミングディスタンスHDがハミングディスタンス閾値HDthより大きければ上記一致度が低いといえる。 Specifically, when the hamming distance HD is equal to or less than a predetermined hamming distance threshold HDth, the matching unit 142 determines that the matching degree between the registered iris code and the iris code is within a predetermined range. In this case, the matching unit 142 determines that the iris authentication for the subject H has succeeded. On the other hand, when the matching degree is out of the predetermined range (when the hamming distance HD is larger than the hamming distance threshold HDth), the matching unit 142 determines that the iris authentication has failed. That is, if the Hamming distance HD is less than or equal to the Hamming distance threshold HDth, the degree of coincidence is high, and if the Hamming distance HD is larger than the Hamming distance threshold HDth, the degree of coincidence is low.
 なお、認証DB150は、認証装置100に一体に備えられている構成であってもよいし、認証装置100とは別体である構成であってもよい。認証DB150が認証装置100と別体である構成では、認証DB150は、認証装置100と例えば無線通信を介して通信し、登録虹彩コードを照合部142に供給する構成であってもよい。 The authentication DB 150 may be integrated with the authentication device 100 or may be separate from the authentication device 100. In a configuration in which the authentication DB 150 is separate from the authentication device 100, the authentication DB 150 may communicate with the authentication device 100 via, for example, wireless communication, and supply the registered iris code to the collation unit 142.
 認証DB150には、複数の登録者のそれぞれの登録虹彩コードが記憶されている構成であってもよく、照合部142は、複数の登録虹彩コードのそれぞれと、虹彩コードと、の照合を行ってもよい。そして、照合部142は、登録虹彩コードと虹彩コードとの一致度が所定範囲内であり、且つ、ハミングディスタンスHDが最も小さい登録者について認証が成功したと判定してもよい。 The authentication DB 150 may have a configuration in which registration iris codes of a plurality of registrants are stored, and the collation unit 142 collates each of the plurality of registration iris codes with the iris code. It is also good. Then, the matching unit 142 may determine that the authentication is successful for the registrant whose matching degree between the registration iris code and the iris code is within a predetermined range and the hamming distance HD is the smallest.
 このように、認証装置100は、対象者の目の虹彩領域を含む画像を取得し、取得した画像の虹彩領域における脈波検出の有無を判定し、虹彩領域における脈波を検出しなかった場合に、画像の虹彩認証を行わない決定を行う。つまり、認証部140は、虹彩領域における脈波検出の有無を判定する生体検知部130による判定結果と、認証部140による虹彩認証結果とを参照して認証結果を出力する。これにより、虹彩写真等の人工物と、生体である他人の顔との組み合わせによる偽造による認証が不可能となる。よって、所謂なりすましによる誤認証を防ぐことができ、人認証を高精度で行うことができる。 As described above, the authentication device 100 acquires an image including the iris region of the subject's eye, determines the presence or absence of pulse wave detection in the iris region of the acquired image, and does not detect the pulse wave in the iris region. Make a decision not to perform iris recognition of the image. That is, the authentication unit 140 outputs an authentication result with reference to the determination result by the living body detection unit 130 that determines the presence or absence of pulse wave detection in the iris region and the iris authentication result by the authentication unit 140. As a result, forgery authentication by combination of an artificial object such as an iris picture and the face of another person who is a living body becomes impossible. Therefore, false authentication due to so-called spoofing can be prevented, and human authentication can be performed with high accuracy.
 〔実施形態2〕
 本開示の実施形態2について、以下に説明する。なお、説明の便宜上、上記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
Second Embodiment
Embodiment 2 of the present disclosure will be described below. In addition, about the member which has the same function as the member demonstrated in the said Embodiment 1 for convenience of explanation, the same code | symbol is appended and the description is not repeated.
 図9は、実施形態2に係る認証装置200の概略構成を示すブロック図である。図9に示すように、認証装置200は、映り込み除去部260をさらに備える点で、実施形態1の認証装置100と構成を異にする。 FIG. 9 is a block diagram showing a schematic configuration of the authentication device 200 according to the second embodiment. As shown in FIG. 9, the authentication device 200 is different from the authentication device 100 of the first embodiment in that the authentication device 200 further includes a reflection removal unit 260.
 映り込み除去部260は、画像取得部120と、生体検知部130との間に設けられている。映り込み除去部260は、画像取得部120が取得した対象者の目の虹彩領域を含む画像に対して、映り込み除去処理を行って、映り込み除去処理を施した画像を生体検知部130に供給する。 The reflection removal unit 260 is provided between the image acquisition unit 120 and the living body detection unit 130. The reflection removal unit 260 performs reflection removal processing on the image including the iris area of the subject's eye acquired by the image acquisition unit 120, and the image subjected to the reflection removal processing is transmitted to the living body detection unit 130. Supply.
 映り込み除去部260は、角膜表面で鏡面反射された環境光による映り込み成分を画像取得部120が取得した対象者の目の虹彩領域を含む画像から取り除く。このように、映り込み除去部260によって、画像から環境光の映り込み除去を行うことで、虹彩領域を含む画像に基づいた虹彩認証を正確に行うことができる。よって、映り込みの激しい屋外環境における生体検知、および虹彩認証の成功率を向上することができる。 The reflection removal unit 260 removes the reflection component by the ambient light specularly reflected on the corneal surface from the image including the iris area of the eye of the subject acquired by the image acquisition unit 120. As described above, by performing reflection removal of ambient light from the image by the reflection removal unit 260, it is possible to accurately perform iris authentication based on the image including the iris region. Therefore, the success rate of living body detection and iris recognition in a highly reflective outdoor environment can be improved.
 映り込み除去部260による映り込み除去方法については、従来公知の方法を用いることができる。例えば「“The Measurement of Highlights in Color Images”, GUDRUN J. KLINKER, STEVEN A. SHAFER, AND TAKEO KANADE」に開示された、色特性を利用した映り込み除去手法が用いられてもよい。 As a reflection removal method by the reflection removal unit 260, a conventionally known method can be used. For example, the reflection removal method using color characteristics disclosed in ““ The Measurement of Highlights in Color Images ”, GUDRUN J. KLINKER, STEVEN A. SHAFER, AND TAKEO KANADE” may be used.
 また、映り込み除去部260は、以下の手法を用いて、画像から環境光の映り込みを除去してもよい。例えば、映り込み除去部260は、画像取得部120が取得した対象者の目の虹彩領域を含む画像の画像情報が示す輝度値から、正反射光成分を示す輝度値の少なくとも一部を除去することで、画像から環境光の映り込み除去してもよい。 Also, the reflection removal unit 260 may remove the reflection of ambient light from the image using the following method. For example, the reflection removal unit 260 removes at least a part of the luminance value indicating a specularly reflected light component from the luminance value indicated by the image information of the image including the iris area of the eye of the subject acquired by the image acquisition unit 120 Therefore, ambient light may be reflected and removed from the image.
 また、映り込み除去部260は、「特許第3955616号公報」に開示された映り込み除去手法が用いてもよい。この場合、撮像部110は撮像素子と偏光素子とを含み、偏光素子を回転させることにより、当該偏光素子の主軸の角度を変化させる。 In addition, the reflection removal unit 260 may use the reflection removal method disclosed in “Japanese Patent No. 3955616”. In this case, the imaging unit 110 includes an imaging element and a polarizing element, and changes the angle of the main axis of the polarizing element by rotating the polarizing element.
 映り込み除去部260は、撮像素子が取得した、偏光素子の主軸が互いに異なる複数の画像の、鏡面反射が生じている画素群について、画素毎に、対象者の法線ベクトルと視線ベクトルとから入射面および入射角を特定する。そして、映り込み除去部260は、入射面及び入射角の両方が類似している画素同士をクラスタリングして画素集合を形成し、当該画素集合において、拡散反射成分と鏡面反射成分との間の確率的独立性を仮定して反射成分を分離する。これにより、映り込み除去部260は、画像から鏡面反射成分を除去することができる。 The reflection removal unit 260 is configured, based on the normal vector of the subject and the line-of-sight vector, for each pixel in the pixel group in which specular reflection occurs in a plurality of images obtained by the imaging device and having different principal axes of the polarizing element. Identify the plane of incidence and the angle of incidence. Then, the reflection removal unit 260 clusters pixels in which both the incident surface and the incident angle are similar to form a pixel set, and the probability between the diffuse reflection component and the specular reflection component in the pixel set. It separates the reflected components on the assumption of dynamic independence. Thereby, the reflection removal unit 260 can remove the specular reflection component from the image.
 また、映り込み除去部260は、上記撮像素子が、主軸方向が互いに異なる複数の偏光素子と対応付けられた1つの画素ユニットが二次元的に配列されたものであってもよい。この場合、映り込み除去部260は、画像に含まれる眼球に対応する画素ユニットのそれぞれについて、輝度の最小値(最小輝度値)を算出または推定し、最小輝度値に基づいて、画像の眼球の表面における正反射光成分の少なくとも一部を除去してもよい。 Further, the reflection removing unit 260 may be one in which one pixel unit in which the image pickup device is associated with a plurality of polarization elements different in principal axis direction is two-dimensionally arrayed. In this case, the reflection removal unit 260 calculates or estimates the minimum value of luminance (minimum luminance value) for each of the pixel units corresponding to the eyeballs included in the image, and based on the minimum luminance value, At least a portion of the specularly reflected light component at the surface may be removed.
 また、映り込み除去部260は、独立成分分析(Independent Component Analysis ; ICA)処理を行うことで、正反射光成分の少なくとも一部を除去してもよい。 In addition, the reflection removal unit 260 may remove at least a part of the specularly reflected light component by performing an independent component analysis (ICA) process.
 〔実施形態3〕
 本開示の実施形態3について、以下に説明する。なお、説明の便宜上、上記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
Third Embodiment
Embodiment 3 of the present disclosure will be described below. In addition, about the member which has the same function as the member demonstrated in the said Embodiment 1 for convenience of explanation, the same code | symbol is appended and the description is not repeated.
 図10は、実施形態3に係る認証装置300の概略構成を示すブロック図である。図10に示すように、認証装置300は、瞳孔開度算出部(判定部)370、および第2の生体検知部380をさらに備える点で、実施形態1の認証装置100と構成を異にする。なお、実施形態3の第1の生体検知部330と、実施形態1の生体検知部130とは、同様の構成を有するものであり、その詳細説明を省略する。 FIG. 10 is a block diagram showing a schematic configuration of the authentication device 300 according to the third embodiment. As shown in FIG. 10, the authentication device 300 differs from the authentication device 100 of the first embodiment in that the authentication device 300 further includes a pupil opening degree calculation unit (determination unit) 370 and a second living body detection unit 380. . The first living body detection unit 330 of the third embodiment and the living body detection unit 130 of the first embodiment have the same configuration, and the detailed description thereof will be omitted.
 瞳孔開度算出部370は、画像取得部120と、生体検知部330,380との間に設けられている。瞳孔開度算出部370は、画像取得部120から取得した対象者の虹彩領域を含む画像を解析することにより、対象者の瞳孔開度を算出する。そして、瞳孔開度算出部370は、算出した対象者の瞳孔開度に応じて、瞳孔収縮を用いて生体検知を行うことができるか否かを判定する。瞳孔開度算出部370は、瞳孔収縮を用いて生体検知を行うことができると判定した場合には、第2の生体検知部380に対象者の虹彩領域を含む画像を提供する。一方で、瞳孔収縮を用いて生体検知を行うことがでないと判定した場合には、瞳孔開度算出部370は、画像の虹彩領域における脈波検出の有無を利用して生体検知を行う第1の生体検知部330に対象者の虹彩領域を含む画像を提供する。 The pupil opening degree calculation unit 370 is provided between the image acquisition unit 120 and the living body detection units 330 and 380. The pupil opening degree calculating unit 370 calculates the pupil opening degree of the subject by analyzing the image including the iris area of the subject acquired from the image acquiring unit 120. Then, the pupil opening degree calculation unit 370 determines whether or not the living body detection can be performed using the pupil contraction in accordance with the calculated pupil opening degree of the subject. When it is determined that the living body detection can be performed using the pupil contraction, the pupil opening degree calculation unit 370 provides the second living body detection unit 380 with an image including the iris area of the target person. On the other hand, when it is determined that the biological body detection is not to be performed using pupil contraction, the pupil opening degree calculation unit 370 performs the biological body detection using the presence or absence of pulse wave detection in the iris region of the image. The living body detection unit 330 provides an image including the iris area of the subject.
 瞳孔開度算出部370は、例えば、対象者の虹彩領域を含む画像を解析することにより、瞳孔径を算出し、当該瞳孔径を瞳孔開度としてもよい。また、瞳孔開度算出部370は、対象者の虹彩領域を含む画像を解析することにより、瞳孔径と虹彩径とを算出し、瞳孔径と虹彩径との比を瞳孔開度として用いても良い。 For example, the pupil opening degree calculation unit 370 may calculate the pupil diameter by analyzing an image including the iris region of the subject, and may set the pupil diameter to the pupil opening degree. The pupil opening degree calculation unit 370 also calculates the pupil diameter and the iris diameter by analyzing the image including the iris region of the subject, and uses the ratio of the pupil diameter and the iris diameter as the pupil opening degree. good.
 図11は、瞳孔開度の算出方法について説明するための図である。図11に示すように、瞳孔径D1と虹彩径D2との比を用いて、瞳孔開度を算出する場合、瞳孔開度は「瞳孔開度=虹彩内径(瞳孔径D1)/虹彩外径(虹彩径D2)」の式を用いて算出される。 FIG. 11 is a diagram for explaining a method of calculating the pupil opening degree. As shown in FIG. 11, when the pupil opening degree is calculated using the ratio between the pupil diameter D1 and the iris diameter D2, the pupil opening degree is “pupil opening degree = iris inside diameter (pupil diameter D1) / iris outside diameter ( It is calculated using the formula of "iris diameter D2)".
 瞳孔径D1、および虹彩径D2は、それぞれ瞳孔外縁、および虹彩外縁に対して円フィッティングすることで算出することができる。また、瞳孔径と虹彩径との比を瞳孔開度とする方法を用いることにより、対象者と、撮像部110と、の撮影距離の変動で虹彩の大きさが一定に保つことが難しい場合であっても、瞳孔径のみを用いる場合に比べて正確に瞳孔開度を算出することができる。なお、瞳孔開度算出部370は、瞳孔径を、円ではなく楕円で算出(長軸or短軸)してもよい。また、瞳孔開度算出部370は、瞳孔開度を算出する方法として、従来公知のいかなる手段を用いる構成であってもよい。 The pupil diameter D1 and the iris diameter D2 can be calculated by circle fitting to the pupil outer edge and the iris outer edge, respectively. Also, by using the method of setting the ratio of the pupil diameter to the iris diameter as the pupillary opening degree, it is difficult to keep the size of the iris constant due to the fluctuation of the photographing distance between the subject and the imaging unit 110. Even if there is, the pupil opening degree can be calculated more accurately than when only the pupil diameter is used. The pupil opening degree calculation unit 370 may calculate the pupil diameter not with a circle but with an ellipse (long axis or short axis). In addition, the pupil opening degree calculating unit 370 may be configured to use any conventionally known means as a method for calculating the pupil opening degree.
 瞳孔開度算出部370は、算出した瞳孔開度と、予め設定されている所定の瞳孔開度閾値とを比較する。そして、瞳孔開度算出部370は、瞳孔開度が閾値未満の場合は第1の生体検知部330に対象者の虹彩領域を含む画像を提供する。また、瞳孔開度算出部370は、瞳孔開度が閾値以上の場合は第2の生体検知部380に対象者の虹彩領域を含む画像を提供する。 The pupil opening degree calculating unit 370 compares the calculated pupil opening degree with a predetermined pupil opening degree threshold value set in advance. Then, the pupil opening degree calculation unit 370 provides the first living body detection unit 330 with an image including the iris area of the subject when the pupil opening degree is less than the threshold. Further, the pupil opening degree calculation unit 370 provides the second living body detection unit 380 with an image including the iris area of the subject when the pupil opening degree is equal to or more than the threshold.
 図12は、瞳孔径と虹彩径との比と、照度との関係を示す図である。図12に示すように、瞳孔径と虹彩径との比は、照度に対して依存する。例えば、瞳孔径と虹彩径との比を瞳孔開度として用いた場合、照度4000luxでは、瞳孔径と虹彩径との比は0.2となる。そして、この、照度4000luxの場合の瞳孔径と虹彩径との比である0.2を瞳孔開度の閾値とすることができる。例えば、瞳孔開度の閾値である0.2に対して、瞳孔開度算出部370で算出された瞳孔径D1と虹彩径D2との比が0.1の場合(100,000lux相当)には、瞳孔開度が閾値である0.2未満である。このように、瞳孔開度が閾値未満となるのは、屋外環境、特に晴天時など環境光の強度が強く、可視光光源を眼球に照射しても有意な瞳孔収縮が期待できない環境で対象者の目の虹彩領域を含む画像が撮像された場合である。よって、瞳孔開度算出部370は、瞳孔開度が閾値未満の場合、瞳孔収縮を用いて生体検知を行うことができないと判定する。そして、瞳孔開度算出部370は、画像の虹彩領域における脈波検出の有無を利用して生体検知を行う第1の生体検知部に対して対象者の虹彩領域を含む画像を出力する。 FIG. 12 is a diagram showing the relationship between the ratio of the pupil diameter to the iris diameter and the illuminance. As shown in FIG. 12, the ratio of pupil diameter to iris diameter depends on the illuminance. For example, when the ratio of the pupil diameter to the iris diameter is used as the pupil opening degree, the ratio of the pupil diameter to the iris diameter is 0.2 at an illuminance of 4000 lux. Then, the ratio 0.2 of the pupil diameter to the iris diameter in the case of the illuminance 4000 lux can be used as the threshold of the pupil opening degree. For example, when the ratio of the pupil diameter D1 to the iris diameter D2 calculated by the pupil opening degree calculation unit 370 is 0.1 (corresponding to 100,000 lux) with respect to 0.2 which is the threshold value of the pupil opening degree. And the pupil opening degree is less than 0.2 which is a threshold value. As described above, the pupil opening degree is less than the threshold because the subject is in an environment such as an outdoor environment, especially in fine weather, where the intensity of environmental light is high and significant pupil contraction can not be expected even when the visible light source is irradiated to the eye This is a case where an image including the iris region of the eye is captured. Therefore, when the pupil opening degree is less than the threshold, the pupil opening degree calculation unit 370 determines that the living body detection can not be performed using the pupil contraction. Then, the pupil opening degree calculation unit 370 outputs an image including the iris area of the target person to the first living body detection unit that performs living body detection using the presence or absence of pulse wave detection in the iris area of the image.
 また、瞳孔開度算出部370で算出された瞳孔径と虹彩径との比が、例えば0.35の場合には、瞳孔開度が閾値である0.2以上である。このように、瞳孔開度が閾値以上となるのは、可視光光源を眼球に照射することで瞳孔収縮が生じる照度環境で対象者の目の虹彩領域を含む画像が撮像された場合である。よって、瞳孔開度算出部370は、瞳孔開度が閾値以上の場合、瞳孔収縮を用いて生体検知を行うことができると判定する。そして、瞳孔開度算出部370は、可視光を対象者の目に照射することにより生じる瞳孔収縮を利用して生体検知を行う第2の生体検知部に対して対象者の虹彩領域を含む画像を出力する。 When the ratio of the pupil diameter to the iris diameter calculated by the pupil opening degree calculation unit 370 is, for example, 0.35, the pupil opening degree is 0.2 or more, which is a threshold. As described above, the pupil opening degree becomes equal to or more than the threshold value when the image including the iris area of the eye of the subject is captured in the illumination environment where the pupil contraction occurs by irradiating the eye with the visible light source. Therefore, when the pupil opening degree is equal to or more than the threshold, the pupil opening degree calculating unit 370 determines that the living body detection can be performed using the pupil contraction. Then, the pupil opening degree calculation unit 370 generates an image including the iris region of the subject with respect to the second living body detection unit that performs living body detection using pupil contraction generated by irradiating the eye of the subject with visible light. Output
 第2の生体検知部380は、照射部381、瞳孔収縮検出部382、および生体判定部383を含んでいる。瞳孔の大きさは、環境光の強弱に応答して大きさが変化する。第2の生体検知部380は、瞳孔に光を照射して、照射した光に対する瞳孔の縮小を検知することによって、対象者が生体であるか否かを判定する。 The second living body detection unit 380 includes an irradiation unit 381, a pupil contraction detection unit 382, and a living body determination unit 383. The size of the pupil changes in size in response to the intensity of ambient light. The second living body detection unit 380 irradiates light to the pupil and detects contraction of the pupil with respect to the irradiated light to determine whether the target person is a living body.
 照射部381は、対象者の眼球に向けて可視光の光を照射する光源と、当該光源からの光の強度を調整する光調整部とを有している構成とすることができる。照射部381は、例えば、瞳孔開度算出部370で算出された瞳孔開度に応じた明るさで対象者の眼球に光源の光を照射する。 The irradiation part 381 can be set as the structure which has a light source which irradiates the light of visible light toward a subject's eyeball, and a light adjustment part which adjusts the intensity | strength of the light from the said light source. The irradiating unit 381 irradiates the light of the light source to the eyeball of the subject at the brightness according to the pupil opening calculated by the pupil opening calculating unit 370, for example.
 瞳孔収縮検出部382は、瞳孔開度算出部370を介して取得した対象者の虹彩領域を含む画像を参照して、対象者の目の瞳孔収縮を検出する。 The pupil contraction detection unit 382 detects the pupil contraction of the eye of the subject by referring to the image including the iris area of the subject acquired via the pupil opening degree calculation unit 370.
 生体判定部383は、照射部381による照射タイミングおよび照射光の強度と、瞳孔収縮検出部382によって検出された瞳孔収縮のタイミングおよび収縮程度と、に基づいて、対象者が生体か否かを判定する。 The living body determination unit 383 determines whether the target person is a living body based on the irradiation timing and intensity of the irradiation light by the irradiation unit 381, and the timing and degree of contraction of the pupil detected by the pupil contraction detection unit 382. Do.
 これらの構成によれば、可視光光源を眼球に照射することで瞳孔収縮が生じる照度環境、つまり瞳孔開度が閾値以上である場合には、第2の生体検知部380により、瞳孔収縮の有無による生体検知を行う。また、屋外環境、特に晴天時など環境光の強度が強く、可視光光源を眼球に照射しても有意な瞳孔収縮が期待できない環境では、つまり瞳孔開度が閾値未満である場合には、第1の生体検知部330により、虹彩領域の脈波を検知することにより生体検知を行う。 According to these configurations, when the illumination environment in which the pupil contraction is caused by irradiating the eye with a visible light source, that is, the pupil opening degree is equal to or more than the threshold, the second living body detection unit 380 detects the presence or absence of the pupil contraction. Perform biological detection by In addition, in an environment where the intensity of ambient light is high, such as when the sky is fine, and significant pupil contraction can not be expected even when the visible light source is irradiated to the eye, that is, when the pupil opening degree is less than the threshold, The living body detection unit 330 performs living body detection by detecting a pulse wave in the iris region.
 なお、第1の生体検知部330により、虹彩領域の脈波を検知することにより生体検知を行う手法は、脈波検出のために少なくとも1秒間は、複数フレームの画像を撮影する必要がある。一方、第2の生体検知部380により、可視光に対する瞳孔収縮を用いて生体検知を行う方法は、0.1~0.2秒程度の間、複数フレームの画像を撮影するだけで良いため、より短時間で生体検知及び個人認証を行うことができるというメリットがある。そこで、本実施形態3では、瞳孔開度算出部370の機能により対象者の瞳孔開度を算出し、瞳孔収縮を用いて生体検知を行うことができる場合には利用することで、より早く正確に生体検知を行うことができる。 In the method of performing living body detection by detecting the pulse wave in the iris region by the first living body detection unit 330, it is necessary to capture images of a plurality of frames for at least one second for pulse wave detection. On the other hand, the method of detecting the living body by using the pupil contraction with respect to visible light by the second living body detection unit 380 only needs to capture images of a plurality of frames for about 0.1 to 0.2 seconds, There is an advantage that living body detection and personal identification can be performed in a shorter time. Therefore, in the third embodiment, the pupil opening degree of the object person is calculated by the function of the pupil opening degree calculating unit 370, and it is more accurate by using it when the living body detection can be performed using pupil contraction. It is possible to perform living body detection.
 このように、生体検知を行った第1の生体検知部330または第2の生体検知部380が生体を検知しなかった場合に、認証部140は、画像の虹彩認証を行わない決定を行う。 As described above, when the first living body detection unit 330 or the second living body detection unit 380 that has performed living body detection does not detect a living body, the authentication unit 140 determines not to perform iris authentication of the image.
 これらの構成によれば、認証部140は、第1の生体検知部330または第2の生体検知部380による検知結果と、認証部140による虹彩認証結果とを参照して、認証結果を出力する。これにより、虹彩写真等の人工物と、生体である他人の顔等とを組み合わせた所謂なりすましによる誤認証を防ぐことができ、個人認証を高精度で行うことができる。 According to these configurations, the authentication unit 140 refers to the detection result by the first living body detection unit 330 or the second living body detection unit 380 and the iris authentication result by the authentication unit 140, and outputs the authentication result. . As a result, it is possible to prevent false authentication due to so-called impersonation in which an artificial object such as an iris photo and the face of another person who is a living body are combined, and personal authentication can be performed with high accuracy.
 なお、本実施形態では、瞳孔開度が閾値未満の場合に、瞳孔開度算出部370は、瞳孔収縮を用いて生体検知を行うことができないと判定する構成としたが、これに限られるものではない。例えば、瞳孔開度算出部370は、周囲環境の照度を計る照度計の出力を参照可能に構成されており、当該照度計によって測定された周囲環境の照度が所定の閾値以上の場合には、第1の生体検知部に対して対象者の虹彩領域を含む画像を出力してもよい。照度の閾値は、例えば10,000luxとすることができ、照度計で測定した照度が10,000lux以上の場合には第1の生体検知部を用いて生体検知を行う構成であってもよい。 In the present embodiment, when the pupil opening degree is less than the threshold value, the pupil opening degree calculation unit 370 determines that biological detection can not be performed using pupil contraction, but the present invention is limited thereto. is not. For example, the pupil opening degree calculation unit 370 is configured to be able to refer to the output of an illuminance meter that measures the illuminance of the surrounding environment, and when the illuminance of the surrounding environment measured by the illuminance meter is equal to or more than a predetermined threshold, An image including the iris area of the subject may be output to the first living body detection unit. The threshold of the illuminance may be, for example, 10,000 lux, and when the illuminance measured by the illuminance meter is 10,000 lux or more, the configuration may be such that the living body detection is performed using the first biological detection unit.
 〔実施形態4〕
 本開示の実施形態4について、以下に説明する。なお、説明の便宜上、上記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
Embodiment 4
The fourth embodiment of the present disclosure will be described below. In addition, about the member which has the same function as the member demonstrated in the said Embodiment 1 for convenience of explanation, the same code | symbol is appended and the description is not repeated.
 図13は、実施形態4に係る認証装置400の概略構成を示すブロック図である。図13に示すように、認証装置400は、健康情報管理部490をさらに備える点で、実施形態1の認証装置100と構成を異にする。 FIG. 13 is a block diagram showing a schematic configuration of the authentication device 400 according to the fourth embodiment. As shown in FIG. 13, the authentication device 400 differs in configuration from the authentication device 100 of the first embodiment in that the health information management unit 490 is further provided.
 健康情報管理部490には、生体検知部130の脈波検出部133において検出された対象者の脈波が入力される。健康情報管理部490は、脈波検出部133において検出された対象者の脈波を健康情報として、対象者と関連付けて管理保管する。 The health information management unit 490 receives the pulse wave of the subject detected by the pulse wave detection unit 133 of the living body detection unit 130. The health information management unit 490 manages and stores the pulse wave of the subject detected by the pulse wave detection unit 133 as health information in association with the subject.
 また、健康情報管理部490は、例えば認証装置400と通信可能に接続された不図示の外部機器に対して、外部機器からのリクエストに応じて、対象者の健康情報を出力することができてもよい。 In addition, the health information management unit 490 can output health information of the subject in response to a request from the external device, for example, to an external device (not shown) connected communicably with the authentication device 400. It is also good.
 また、健康情報管理部490は、対象者の脈波が所定の健康状態を示す脈波であることを検出した場合に、外部機器に対して対象者の健康情報を出力することができてもよい。 In addition, even if the health information management unit 490 detects that the pulse wave of the subject is a pulse wave indicating a predetermined health condition, it can output the health information of the subject to the external device. Good.
 健康情報管理部490は、対象者の健康情報として、例えば、脈波を含む情報や、脈波から算出または推定される健康情報を管理保管するとともに、外部機器に出力することができてもよい。対象者の健康情報は、例えば脈拍、血圧、ストレス情報等であってもよい。 The health information management unit 490 may be able to manage and store, for example, information including a pulse wave and health information calculated or estimated from the pulse wave as health information of the subject person, and output the information to an external device. . The health information of the subject may be, for example, pulse, blood pressure, stress information and the like.
 健康情報管理部490は、従来公知のいかなる方法を用いて、脈波検出部133において検出された対象者の脈波から、脈拍、血圧、およびストレス状態等を算出してもよい。例えば、健康情報管理部490は、脈波のピークの数をカウントすることで、生体情報として、脈拍数を検出することができる。 The health information management unit 490 may calculate the pulse rate, the blood pressure, the stress state, and the like from the pulse wave of the subject detected by the pulse wave detection unit 133 using any method known in the related art. For example, the health information management unit 490 can detect the pulse rate as the biological information by counting the number of peaks of the pulse wave.
 脈波からの血圧算出方法については例えば下記方法がある。 For example, the following method may be used to calculate the blood pressure from the pulse wave.
 図14は、脈波を時間で2回微分して得られる加速度脈波の波形を示す図である。図14において、a~eは振幅を示し、x/x(xはa~e)は各振幅の比を示し、Tx-xはピーク間の時間間隔を示している。図14に示すように、健康情報管理部490は、脈波から血圧を算出するために、まず、脈波を2回微分することにより特徴量a,b,c,d,e,f,b/a,c/a,d/a,e/a,Ta-a,Ta-b,Ta-c,Ta-d,Ta-eを導出する。これらの特徴量は、脈波伝搬速度により変化し、脈波伝搬速度と血圧値は相関を持つことが知られている。 FIG. 14 is a diagram showing a waveform of an acceleration pulse wave obtained by differentiating the pulse wave twice in time. In FIG. 14, a to e indicate amplitudes, x / x (x is a to e) indicate ratios of respective amplitudes, and Tx-x indicates time intervals between peaks. As shown in FIG. 14, in order to calculate the blood pressure from the pulse wave, the health information management unit 490 first differentiates the pulse wave twice to obtain feature amounts a, b, c, d, e, f, b. / A, c / a, d / a, e / a, Ta-a, Ta-b, Ta-c, Ta-d, and Ta-e are derived. It is known that these feature quantities change according to the pulse wave velocity, and the pulse wave velocity and the blood pressure value have a correlation.
 健康情報管理部490は、あらかじめ取得されたこれらの特徴量と血圧値のデータとを用いて、例えば、重回帰分析などを行うことで、作成された推定式を有する。そして、健康情報管理部490は、脈波検出部133において検出された対象者の脈波から得られた特徴量を、推定式に当てはめることにより、血圧の推定値を求めることができる。 The health information management unit 490 has an estimation formula created by performing, for example, multiple regression analysis using these feature quantities and blood pressure value data acquired in advance. Then, the health information management unit 490 can obtain the estimated value of the blood pressure by applying the feature quantity obtained from the pulse wave of the subject detected by the pulse wave detection unit 133 to the estimation formula.
 脈波からのストレス情報算出方法については例えば下記方法がある。 For example, the following method is available as a method of calculating stress information from pulse waves.
 健康情報管理部490は、脈波検出部133において検出された対象者の脈波のピークを検出し、ピーク間の時間間隔に高速フーリエ変換(FFT)を行って周波数のパワースペクトルを算出する。そして、0.04-0.15Hzのパワースペクトルの積分値をLF、0.15-0.4Hzのパワースペクトルの積分値をHFとし、ストレスレベル値LF/HFを算出することができる。なお、LFとHFの周波数は、上記の周辺で幅を持たせても良い(参照:http://hclab.sakura.ne.jp/stress_novice_LFHF.html)。 The health information management unit 490 detects the peak of the pulse wave of the subject detected by the pulse wave detection unit 133, performs fast Fourier transform (FFT) on the time interval between the peaks, and calculates the power spectrum of the frequency. The integrated value of the power spectrum of 0.04-0.15 Hz is LF, and the integrated value of the power spectrum of 0.15-0.4 Hz is HF, and the stress level value LF / HF can be calculated. In addition, the frequencies of LF and HF may have a width around the above (see: http://hclab.sakura.ne.jp/stress_novice_LFHF.html).
 また、健康情報管理部490は、対象者の健康情報に基づいて、認証部140による認証の可否を制御する機能を備えていてもよい。例えば、健康情報管理部490は、対象者の健康情報について予め設定された所定の閾値や許容範囲を記録している。 In addition, the health information management unit 490 may have a function of controlling whether or not authentication by the authentication unit 140 is based on the health information of the target person. For example, the health information management unit 490 records a predetermined threshold or an allowable range set in advance for the health information of the subject.
 健康情報管理部490は、脈波検出部133において検出された対象者の脈波から得られる対象者の健康情報と、予め設定された所定の閾値や許容範囲とを比較する。健康情報管理部490は、対象者の健康情報が予め設定された所定の閾値や許容範囲から外れている場合には、認証部140によって認証可能とされた場合であっても、認証OKの出力を妨げる機能を有していてもよい。 The health information management unit 490 compares the health information of the target person obtained from the pulse wave of the target person detected by the pulse wave detection unit 133 with a predetermined threshold or tolerance set in advance. The health information management unit 490 outputs an authentication OK even when authentication is enabled by the authentication unit 140 when the health information of the subject is out of a predetermined threshold or tolerance set in advance. May have a function to prevent
 また、健康情報管理部490は、対象者の脈拍、血圧、及びストレス状態を示す指標等の値が適正な範囲内にある場合のみ、認証部140による認証OKの出力を許可する機能を有していてもよい。 In addition, the health information management unit 490 has a function of permitting the authentication unit 140 to output an authentication OK only when the values such as the target patient's pulse, blood pressure, and an index indicating a stress state are within an appropriate range. It may be
 例えば、認証装置400を、車の走行始動ロックとして用いる場合に、健康情報管理部490の機能を好適に用いることができる。健康情報管理部490は、対象者の脈波から算出される血圧値が適正な範囲から外れている、つまり、異常状態である場合に、認証部140によって運転者が認証された場合であっても、車の走行始動ロックを解除しないといった用途で用いることができる。 For example, when the authentication device 400 is used as a travel start lock of a car, the function of the health information management unit 490 can be suitably used. The health information management unit 490 is a case where the driver is authenticated by the authentication unit 140 when the blood pressure value calculated from the pulse wave of the subject is out of the appropriate range, that is, an abnormal state. Can also be used in applications such as not releasing the vehicle's travel start lock.
 〔変形例1〕
 本開示の変形例1について、以下に説明する。
[Modification 1]
Modification 1 of the present disclosure will be described below.
 上記実施形態1~4では、撮像部110は、RGBのそれぞれのフィルタを透過した光の強度に基づいて、所定の時間間隔(フレームレート)で対象者の目の虹彩領域を含む画像を連続的に撮像する場合について説明した。対象者の目の虹彩領域を含む画像から脈波を取得するためには、撮像部110は、G波長(500~600nm)に感度を有する画素を備えていることが望ましい。一方で、認証のための虹彩情報を取得するためには、IR領域(750~950nm)に感度を有す画素を有する撮像部を採用するのが望ましい。 In the first to fourth embodiments, the imaging unit 110 continuously generates an image including the iris area of the subject's eye at a predetermined time interval (frame rate) based on the intensity of light transmitted through each of the RGB filters. Has been described. In order to acquire a pulse wave from an image including the iris region of the subject's eye, the imaging unit 110 preferably includes a pixel having sensitivity to the G wavelength (500 to 600 nm). On the other hand, in order to obtain iris information for authentication, it is desirable to employ an imaging unit having pixels having sensitivity in the IR region (750 to 950 nm).
 そこで、撮像部110は、RGBIRのフィルタを備え、R、G、B、IRそれぞれのフィルタを透過した光の強度に基づいて、所定の時間間隔で対象者の目の虹彩領域を含む画像を連続的に撮像する構成であってもよい。 Therefore, the imaging unit 110 is provided with RGBIR filters, and based on the intensities of light transmitted through the R, G, B, and IR filters, an image including the iris area of the subject's eyes is continuously formed at predetermined time intervals. The configuration may be such that the image is taken in a targeted manner.
 この構成によれば、対象者の目の虹彩領域を含む画像から脈波の取得、及び虹彩情報の取得を高感度に行うことができ、個人認証を高精度で行うことができる。 According to this configuration, acquisition of a pulse wave and acquisition of iris information can be performed with high sensitivity from an image including the iris region of the subject's eyes, and personal authentication can be performed with high accuracy.
 〔変形例2〕
 本開示の変形例2について、以下に説明する。
[Modification 2]
A second modification of the present disclosure will be described below.
 上述の変形例1では、撮像部110は、RGBIRのフィルタを備えている構成について説明した。撮像部110は、これに限らず、RGGBのフィルタを備えたRGBセンサと、IRのフィルタを備えたIRセンサとの2つのセンサを用いて、対象者の目の虹彩領域を含む画像を撮像する構成であってもよい。 In the above-mentioned modification 1, the imaging part 110 demonstrated the structure provided with the filter of RGBIR. The imaging unit 110 picks up an image including the iris area of the subject's eye using two sensors, an RGB sensor provided with a filter of RGGB and an IR sensor provided with a filter of IR. It may be a configuration.
 〔変形例3〕
 本開示の変形例3について、以下に説明する。
[Modification 3]
A third modification of the present disclosure will be described below.
 上記実施形態1~4では、認証装置100は、対象者の目の虹彩領域を含む画像を取得し、取得した画像の虹彩領域における脈波検出の有無を判定し、虹彩領域における脈波を検出しなかった場合に、画像の虹彩認証を行わない決定を行う構成であった。しかしながら、本開示の構成はこれに限らず、生体検知部130による生体検知と、認証部140による虹彩認証とが、並列処理されてもよい。 In the first to fourth embodiments, the authentication device 100 acquires an image including the iris area of the subject's eye, determines the presence or absence of pulse wave detection in the iris area of the acquired image, and detects the pulse wave in the iris area. If not, it is determined that the iris authentication of the image is not performed. However, the configuration of the present disclosure is not limited to this, and living body detection by the living body detection unit 130 and iris authentication by the authentication unit 140 may be processed in parallel.
 画像取得部120によって取得された対象者の目の虹彩領域を含む画像は、画像の虹彩領域における脈波検出の有無を判定する生体検知部130と、画像の虹彩認証を行う認証部140とに供給される。 The image including the iris region of the subject's eye acquired by the image acquisition unit 120 is sent to the living body detection unit 130 that determines presence / absence of pulse wave detection in the iris region of the image and the authentication unit 140 that performs iris authentication of the image. Supplied.
 生体検知部130による判定が終了するのに先立って、認証部140による虹彩認証の結果が、例えば他人と判定されれば、認証部140は、即時に認証NGの旨の認証結果の出力を行う。また、生体検知部130による判定が終了するのに先立って、認証部140による虹彩認証の結果が、本人と判定された場合は、認証部140は、生体検知部130の判定結果を待って、生体検知部130による判定結果が生体である場合にはじめて認証OKの旨の認証結果を出力する。 If the result of iris authentication by the authentication unit 140 is determined to be another person, for example, before the determination by the living body detection unit 130 is finished, the authentication unit 140 immediately outputs the authentication result indicating the authentication NG. . In addition, when the result of iris authentication by the authentication unit 140 is determined to be the person prior to the determination by the living body detection unit 130 ending, the authentication unit 140 waits for the determination result of the living body detection unit 130, Only when the determination result by the living body detection unit 130 is a living body, an authentication result indicating authentication OK is output.
 このように、生体検知部130による生体検知と、認証部140による虹彩認証とを、並列処理で行う構成とすることで、生体検知と、虹彩認証と、を順に行うよりも処理時間を短縮することができる。 As described above, by performing the living body detection by the living body detection unit 130 and the iris authentication by the authentication unit 140 in parallel processing, the processing time can be shortened compared to sequentially performing the living body detection and the iris authentication. be able to.
 なお、実施形態1~4の構成においても、変形例3の構成においても、認証部140は、生体検知部130による判定結果と、認証部140による虹彩認証結果とを参照して、認証結果を出力するため、所謂なりすましによる誤認証を防ぐことができ、個人認証を高精度で行うことができる。 In the configurations of the first to fourth embodiments as well as in the configuration of the third modification, the authentication unit 140 refers to the determination result by the living body detection unit 130 and the iris authentication result by the authentication unit 140 to obtain an authentication result. Since the output is performed, false authentication due to so-called impersonation can be prevented, and personal authentication can be performed with high accuracy.
 〔ソフトウェアによる実現例〕
 認証装置100,200,300,400の制御ブロック(特に画像取得部120、生体検知部130,330,380、認証部140)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of software implementation]
The control blocks (in particular, the image acquisition unit 120, the living body detection units 130, 330, 380, and the authentication unit 140) of the authentication device 100, 200, 300, 400 are logic circuits (hardware) formed in an integrated circuit (IC chip) or the like. And may be realized by software.
 後者の場合、認証装置100,200,300,400は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば少なくとも1つのプロセッサ(制御装置)を備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な少なくとも1つの記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本開示の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本開示の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the authentication device 100, 200, 300, 400 includes a computer that executes instructions of a program that is software that implements each function. The computer includes, for example, at least one processor (control device) and at least one computer readable storage medium storing the program. Then, in the computer, the processor reads the program from the recording medium and executes the program to achieve the object of the present disclosure. For example, a CPU (Central Processing Unit) can be used as the processor. As the above-mentioned recording medium, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used besides “a non-temporary tangible medium”, for example, a ROM (Read Only Memory). In addition, a RAM (Random Access Memory) or the like for developing the program may be further provided. The program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. Note that one aspect of the present disclosure may also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
 本開示の各態様に係る認証装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記認証装置が備える各部(ソフトウェア要素)として動作させることにより上記認証装置をコンピュータにて実現させる認証装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本開示の範疇に入る。 The authentication device according to each aspect of the present disclosure may be realized by a computer, and in this case, the computer is realized as each component (software element) included in the authentication device to realize the authentication device by the computer. A control program of an authentication device and a computer readable recording medium recording the same also fall within the scope of the present disclosure.
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present disclosure is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present disclosure. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
 (関連出願の相互参照)
 本出願は、2017年12月20日に出願された日本国特許出願:特願2017-243979に対して優先権の利益を主張するものであり、それを参照することにより、その内容の全てが本書に含まれる。
(Cross-reference to related applications)
This application claims the benefit of priority to Japanese Patent Application filed on Dec. 20, 2017: Japanese Patent Application No. 2017-243979, the entire contents of which are hereby incorporated by reference. Included in this book.
10 虹彩
15 捲縮輪
110 撮像部
100、200、300、400 認証装置
120 画像取得部
130 生体検知部
131 検出領域設定部
132 画素値算出部
133 脈波検出部
134 生体判定部
140 認証部
142 照合部
260 映り込み除去部
330 第1の生体検知部
370 瞳孔開度算出部(判定部)
380 第2の生体検知部
490 健康情報管理部
10 iris 15 crimp ring 110 imaging unit 100, 200, 300, 400 authentication unit 120 image acquisition unit 130 living body detection unit 131 detection area setting unit 132 pixel value calculation unit 133 pulse wave detection unit 134 living body determination unit 140 authentication unit 142 verification Part 260 Reflection removal part 330 First living body detection part 370 Pupil opening degree calculation part (determination part)
380 Second vital sign detection unit 490 Health information management unit

Claims (6)

  1.  対象者の目の虹彩領域を含む画像を取得する画像取得部と、
     上記画像の虹彩領域における脈波検出の有無を判定する生体検知部と、
     上記画像の虹彩認証を行う認証部と、を備え、
     上記認証部は、上記生体検知部による判定結果と、上記認証部による虹彩認証結果とを参照して認証結果を出力する
    ことを特徴とする認証装置。
    An image acquisition unit that acquires an image including an iris area of the subject's eyes;
    A biological detection unit that determines presence or absence of pulse wave detection in an iris region of the image;
    An authentication unit that performs iris authentication on the image;
    An authentication unit that outputs an authentication result with reference to a determination result by the living body detection unit and an iris authentication result by the authentication unit.
  2.  上記生体検知部は、上記画像の上記虹彩領域から大虹彩輪と小虹彩輪との境界に存在する捲縮輪を含む設定領域を検出し、上記設定領域における脈波検出の有無を判定することを特徴とする請求項1に記載の認証装置。 The living body detection unit detects a setting area including a crimped ring existing at a boundary between a large iris ring and a small iris ring from the iris area of the image to determine presence / absence of pulse wave detection in the setting area. The authentication device according to claim 1, characterized in that
  3.  角膜表面で鏡面反射された環境光による映り込み成分を、虹彩領域を含む上記画像から取り除く映り込み除去部を備えたことを特徴とする請求項1または2に記載の認証装置。 The authentication apparatus according to claim 1, further comprising a reflection removal unit that removes a reflection component due to ambient light specularly reflected on the cornea surface from the image including the iris region.
  4.  上記生体検知部は、検出した脈波を含む対象者の健康情報を管理する健康情報管理部を備えたことを特徴とする請求項1から3のいずれか1項に記載の認証装置。 The authentication apparatus according to any one of claims 1 to 3, wherein the living body detection unit includes a health information management unit that manages health information of the subject including the detected pulse wave.
  5.  対象者の目の虹彩領域を含む画像を取得する画像取得部と、
     上記画像を解析することにより瞳孔開度を取得し、取得した瞳孔開度に応じて、瞳孔収縮を用いて生体検知を行うことができるか否かを判定する判定部と、
     上記判定部が瞳孔収縮を用いて生体検知を行うことができないと判定した場合に、上記画像の虹彩領域における脈波検出の有無を利用して生体検知を行う第1の生体検知部と、
     上記判定部が瞳孔収縮を用いて生体検知を行うことができると判定した場合に、可視光を上記対象者の目に照射することにより生じる瞳孔収縮を利用して生体検知を行う第2の生体検知部と、
     上記画像の虹彩認証を行う認証部と、を備え、
     上記認証部は、上記第1の生体検知部または上記第2の生体検知部による検知結果と、上記認証部による虹彩認証結果とを参照して、認証結果を出力する
    ことを特徴とする認証装置。
    An image acquisition unit that acquires an image including an iris area of the subject's eyes;
    A determination unit that acquires a pupillary opening degree by analyzing the image, and determines whether biological detection can be performed using pupil contraction according to the acquired pupillary opening degree;
    A first living body detection unit that performs living body detection using presence or absence of pulse wave detection in an iris region of the image, when the determination unit determines that living body detection can not be performed using pupil contraction;
    The second living body performs living body detection using pupil contraction generated by irradiating visible light to the eyes of the target person when it is determined that the determination unit can perform living body detection using pupil contraction. A detection unit,
    An authentication unit that performs iris authentication on the image;
    An authentication apparatus characterized in that the authentication unit refers to the detection result by the first living body detection unit or the second living body detection unit and the iris authentication result by the authentication unit, and outputs an authentication result. .
  6.  対象者の目の虹彩領域を含む画像を取得する画像取得ステップと、
     上記画像の虹彩領域における脈波検出の有無を判定する生体検知ステップと、
     上記画像の虹彩認証を行う認証ステップと、を含み、
     上記生体検知ステップにおける判定結果と、上記認証ステップにおける虹彩認証ステップとを参照して認証結果を出力する
    ことを特徴とする認証方法。
    An image acquisition step of acquiring an image including an iris area of the subject's eyes;
    A biological detection step of determining presence or absence of pulse wave detection in an iris region of the image;
    And d) authenticating the iris image of the image.
    An authentication method comprising: outputting an authentication result with reference to a determination result in the living body detection step and an iris authentication step in the authentication step.
PCT/JP2018/044803 2017-12-20 2018-12-05 Authentication device and authentication method WO2019124080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-243979 2017-12-20
JP2017243979 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019124080A1 true WO2019124080A1 (en) 2019-06-27

Family

ID=66992786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044803 WO2019124080A1 (en) 2017-12-20 2018-12-05 Authentication device and authentication method

Country Status (1)

Country Link
WO (1) WO2019124080A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003310560A (en) * 2002-04-19 2003-11-05 Yamatake Corp Health information management system and management method therefor
WO2004042658A1 (en) * 2002-11-07 2004-05-21 Matsushita Electric Industrial Co., Ltd. Method for cerficating individual, iris registering device, system for certificating iris, and program for cerficating individual
JP2006130308A (en) * 2004-10-08 2006-05-25 Matsushita Electric Ind Co Ltd Instrument and method for living eye discrimination and living eye discrimination program
JP2006323611A (en) * 2005-05-18 2006-11-30 Canon Inc Image-photographing device and its control method, computer program, and storage medium
WO2007029446A1 (en) * 2005-09-01 2007-03-15 Matsushita Electric Industrial Co., Ltd. Image processing method, image processing device, and image processing program
JP2017041199A (en) * 2015-08-21 2017-02-23 日本電信電話株式会社 Authenticity guarantee device, and authenticity guarantee system
JP2017191374A (en) * 2016-04-11 2017-10-19 シャープ株式会社 Organism determination device, terminal apparatus, control method of organism determination device, and control program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003310560A (en) * 2002-04-19 2003-11-05 Yamatake Corp Health information management system and management method therefor
WO2004042658A1 (en) * 2002-11-07 2004-05-21 Matsushita Electric Industrial Co., Ltd. Method for cerficating individual, iris registering device, system for certificating iris, and program for cerficating individual
JP2006130308A (en) * 2004-10-08 2006-05-25 Matsushita Electric Ind Co Ltd Instrument and method for living eye discrimination and living eye discrimination program
JP2006323611A (en) * 2005-05-18 2006-11-30 Canon Inc Image-photographing device and its control method, computer program, and storage medium
WO2007029446A1 (en) * 2005-09-01 2007-03-15 Matsushita Electric Industrial Co., Ltd. Image processing method, image processing device, and image processing program
JP2017041199A (en) * 2015-08-21 2017-02-23 日本電信電話株式会社 Authenticity guarantee device, and authenticity guarantee system
JP2017191374A (en) * 2016-04-11 2017-10-19 シャープ株式会社 Organism determination device, terminal apparatus, control method of organism determination device, and control program

Similar Documents

Publication Publication Date Title
US7614745B2 (en) System for analyzing eye responses to automatically determine impairment of a subject
US8644562B2 (en) Multimodal ocular biometric system and methods
Nowara et al. Ppgsecure: Biometric presentation attack detection using photopletysmograms
Czajka Pupil dynamics for iris liveness detection
US7798643B2 (en) System for analyzing eye responses to automatically track size, location, and movement of the pupil
US9971920B2 (en) Spoof detection for biometric authentication
US9808154B2 (en) Biometric identification via retina scanning with liveness detection
KR102322029B1 (en) Method and Apparatus for acquiring a biometric information
WO2016159150A1 (en) Pulse wave detection device and pulse wave detection program
JP2002056394A (en) Eye position detecting method and eye position detector
CN105787420A (en) Method and device for biometric authentication, and biometric authentication system
JP2004005167A (en) Eye position specification method and device
US20160366317A1 (en) Apparatuses and methods for image based biometric recognition
Borgen et al. Visible-spectrum biometric retina recognition
KR100376415B1 (en) Pupil acquisition method using eye image
WO2019124080A1 (en) Authentication device and authentication method
JP3848953B2 (en) Living body eye determination method and living body eye determination device
CN111582145A (en) Biometric identification method, electronic device, and computer-readable storage medium
KR101794727B1 (en) Method for verificaing iris
JP4527088B2 (en) Living body eye determination method and living body eye determination device
Akhade et al. Automatic optic disc detection in digital fundus images using image processing techniques
KR20060105272A (en) Interpretation method of eyeball image using adaboost algorithm
JP2006130308A (en) Instrument and method for living eye discrimination and living eye discrimination program
WO2017062189A1 (en) Biometric identification via retina scanning with liveness detection
US11690509B2 (en) System and method for obtaining a pupil response profile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP