WO2019123607A1 - Energy treatment tool and method for manufacturing energy treatment tool - Google Patents

Energy treatment tool and method for manufacturing energy treatment tool Download PDF

Info

Publication number
WO2019123607A1
WO2019123607A1 PCT/JP2017/045937 JP2017045937W WO2019123607A1 WO 2019123607 A1 WO2019123607 A1 WO 2019123607A1 JP 2017045937 W JP2017045937 W JP 2017045937W WO 2019123607 A1 WO2019123607 A1 WO 2019123607A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
base material
treatment
organic layer
treatment tool
Prior art date
Application number
PCT/JP2017/045937
Other languages
French (fr)
Japanese (ja)
Inventor
庸高 銅
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/045937 priority Critical patent/WO2019123607A1/en
Publication of WO2019123607A1 publication Critical patent/WO2019123607A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor

Definitions

  • the present invention relates to an energy treatment tool that treats a treatment target using treatment energy, and a method of manufacturing the energy treatment tool.
  • US2016 / 0144204A1 discloses an energy treatment tool for treating a treatment target such as a living tissue using ultrasonic vibration.
  • This energy treatment tool includes a vibration transmission member (ultrasound probe) to which ultrasonic vibration generated by the ultrasonic transducer is transmitted.
  • the vibration transfer member forms a treatment surface of the end effector.
  • the treatment of the treatment target is performed by applying the ultrasonic vibration transmitted to the vibration transmission member to the treatment target from the treatment surface.
  • a coating layer is formed on the back surface of the end effector by a coating having heat insulation and electrical insulation.
  • a coating layer By providing the coating layer, heat invasion to the unintended biological tissue from the back surface is suppressed.
  • the adhesion strength of the coating layer to the end effector may affect the treatment performance and durability of the energy treatment device.
  • the present invention has been made in view of the above problems, and an object of the present invention is an energy treatment tool in which the adhesion strength to the end effector of the heat insulating coating having the heat insulating property and the electric insulating property is secured, An object of the present invention is to provide a method of manufacturing an energy treatment tool.
  • an energy treatment tool is formed of metal and provided on a surface of a base material provided with a treatment surface for treating an object to be treated;
  • a base material provided with a treatment surface for treating a treatment target is formed of metal, and a coupling structure of a coupling agent is bonded to the surface of the base material Forming an organic layer on the surface of the matrix and bonding a coating agent to the surface of the organic layer, thereby forming a coating layer having thermal insulation and electrical insulation on the surface of the matrix And forming the adhesion strength between the coating layer and the surface of the base material by raising the temperature of the base material.
  • FIG. 1A is a view schematically showing an energy treatment tool according to a first embodiment.
  • FIG. 1B is a schematic view of the first grip piece according to the first embodiment as viewed from the treatment surface side.
  • FIG. 2 is a view schematically showing the end effector according to the first embodiment in a cross section intersecting a longitudinal axis.
  • FIG. 3 is a view schematically showing how an organic layer is formed on the treatment surface according to the first embodiment.
  • FIG. 4 is a view schematically showing a state in which the organic layer and the coating layer are formed on the treatment surface according to the first embodiment.
  • FIG. 5 is a view showing a sticking state of the coating layer before the oscillation of the ultrasonic vibration in an example of the evaluation of the adhesion strength of the coating layer according to the comparative example of the first embodiment.
  • FIG. 6 is a view showing a sticking state of the coating layer when ultrasonic vibration is oscillated for 30 minutes in one example of evaluation of the adhesion strength of the coating layer according to the comparative example of the first embodiment.
  • FIG. 7 is a view showing a sticking state of the coating layer before the oscillation of the ultrasonic vibration in an example of the evaluation of the adhesion strength of the coating layer according to the first embodiment.
  • FIG. 6 is a view showing a sticking state of the coating layer when ultrasonic vibration is oscillated for 30 minutes in one example of evaluation of the adhesion strength of the coating layer according to the comparative example of the first embodiment.
  • FIG. 7 is a view showing a sticking state of the coating layer before the oscillation of the ultrasonic vibration in an example of the evaluation of the adhesion
  • FIG. 8 is a view showing a sticking state of the coating layer when ultrasonic vibration is oscillated for 120 minutes in an example of evaluation of adhesion strength of the coating layer according to the first embodiment.
  • FIG. 9 is a view schematically showing an end effector according to a second embodiment in a cross section intersecting a longitudinal axis.
  • FIG. 1A is a view showing a treatment tool 1 which is an energy treatment tool of the present embodiment.
  • the treatment instrument 1 includes a housing 4 and a cylindrical shaft 5 connected to the housing 4.
  • the housing 4 can be held.
  • One end of a cable 7 is connected to the housing 4.
  • the other end of the cable 7 is detachably connected to the power supply 3.
  • the shaft 5 defines a longitudinal axis L.
  • the direction along the longitudinal axis L is taken as the longitudinal direction.
  • One side in the longitudinal direction is the tip side (arrow L1 side in FIG. 1A), and the side opposite to the tip side is the proximal side (arrow L2 side in FIG. 1A).
  • the shaft 5 is extended from the proximal end side to the distal end side along the longitudinal axis L and is connected to the distal end side of the housing 4.
  • the end effector 6 is provided at the tip of the shaft 5.
  • the end effector 6 includes a first gripping piece 13 and a second gripping piece 14. Between the first grip piece 13 and the second grip piece 14 can be opened and closed.
  • the first gripping piece 13 is supported by the shaft 5, and the second gripping piece 14 is rotatably attached to the shaft 5 with respect to the first gripping piece 13.
  • the first grip piece 13 is provided with a treatment surface (facing surface) 17 that faces the second grip piece 14 and applies treatment energy to the treatment target.
  • the second gripping piece 14 is provided with a treatment surface (facing surface) 18 that faces the treatment surface 17 of the first gripping piece 13 and applies treatment energy to the treatment target.
  • the open / close direction of the end effector 6 intersects (is perpendicular or substantially perpendicular) to the longitudinal axis L.
  • the side in which the second gripping piece 14 opens with respect to the first gripping piece 13 is the opening direction (arrow Y1) of the second gripping piece 14, and the second gripping piece 14 is The side closed with respect to the first gripping piece 13 is taken as the closing direction (arrow Y2) of the second gripping piece 14.
  • a direction intersecting (perpendicularly or substantially perpendicular) to the longitudinal axis L and intersecting (perpendicular or nearly perpendicular) to the opening / closing direction of the end effector 6 is The width direction (arrows B1 and B2).
  • the first grip piece 13 includes a bending portion 25.
  • the bending portion 25 is provided at the tip of the first grip piece 13 and is curved to one side in the width direction of the end effector 6 with respect to the longitudinal axis L.
  • the housing 4 includes a housing body 10 and a grip (fixed handle) 11.
  • the housing body 10 extends along the longitudinal axis L.
  • the grip 11 is extended from the housing body 10 in a direction away from the longitudinal axis L.
  • the shaft 5 is connected to the housing body 10 from the tip side.
  • a movable handle 12 is rotatably attached to the housing body 10.
  • the movable handle 12 is located on the side where the grip 11 is located with respect to the longitudinal axis L, and is located on the distal side with respect to the grip 11 in the present embodiment.
  • the movable handle 12 rotates with respect to the housing body 10
  • the movable handle 12 opens or closes with respect to the grip 11.
  • an operation for opening or closing the end effector 6 as described above is input at the movable handle 12. That is, the movable handle 12 is an open / close operation input unit.
  • the movable handle 12 and the second grip piece 14 are connected via the movable member 16.
  • the movable member 16 is extended along the longitudinal axis L inside the shaft 5.
  • the movable member 16 moves along the longitudinal axis L with respect to the shaft 5 and the housing 4, and the second grip piece 14 rotates with respect to the shaft 5 Do.
  • the holding pieces 13 and 14 are opened or closed.
  • the treatment target is held between the holding pieces 13 and 14 by closing between the holding pieces 13 and 14.
  • the movable handle 12 is proximal to the grip 11. In another embodiment, the movable handle 12 is located on the opposite side of the longitudinal axis L to the side where the grip 11 is located, and intersects the longitudinal axis L in the opening operation and the closing operation. Vertically or nearly vertically).
  • the power supply device 3 includes a high frequency power supply and an ultrasonic power supply.
  • the high frequency power supply includes a waveform generator, a conversion circuit, a transformer, and the like, and converts power from a battery power supply or an outlet power supply to high frequency power.
  • each of the first grip piece 13 and the second grip piece 14 is at least partially formed of a conductive material.
  • the high frequency power source is electrically connected to the conductive material of each of the first gripping piece 13 and the second gripping piece 14 through an electrical path provided through the inside of the cable 7, the inside of the housing 4 and the inside of the shaft 5. Connected to The high frequency power supply outputs the converted high frequency power through the aforementioned electric path, and supplies the first holding piece 13 and the second holding piece 14 with high frequency power as electric energy.
  • the ultrasonic power source includes a waveform generator, a conversion circuit, a transformer, and the like, and converts power from a battery power source or an outlet power source to AC power. Further, inside the housing main body 10, an ultrasonic transducer 9 and a vibration transmitting member (ultrasonic probe) 8 connected to the ultrasonic transducer 9 from the tip side are provided.
  • the ultrasound power source is electrically connected to the ultrasound transducer 9 via an electrical path provided through the interior of the cable 7 and the interior of the housing 4.
  • the supply of electric energy (AC power) from the ultrasonic power supply generates ultrasonic vibration in the ultrasonic transducer 9.
  • the ultrasonic vibration generated by the ultrasonic transducer 9 is transmitted to the vibration transmitting member 8.
  • the vibration transmitting member 8 is extended from the inside of the housing body 10 to the tip side, passes through the inside of the shaft 5, and protrudes from the tip of the shaft 5 to the tip side. And the 1st holding piece 13 is formed of the protrusion part from the shaft 5 of the vibration transmission member 8 to the front end side.
  • the ultrasonic vibration generated by the ultrasonic transducer 9 is transmitted to the tip of the vibration transmitting member 8 forming the first gripping piece 13. Thereby, ultrasonic vibration is transmitted to the 1st holding piece 13 as treatment energy.
  • the vibration transfer member 8 is preferably made of a material having conductivity and high vibration transferability.
  • the vibration transfer member 8 is formed of a titanium alloy which is compatible with living tissue.
  • the vibration transfer member 8 may be formed of a metal material other than a titanium alloy such as duralmin or stainless steel.
  • the shape and material including the length and the diameter are appropriately set so that the vibration transfer member 8 vibrates at the resonance frequency of the ultrasonic transducer 9 and the frequency at the output of the ultrasonic power source.
  • the total length of the vibrator including the ultrasonic transducer 9 and the vibration transmitting member 8 is preferably, for example, a length that is an integral multiple of a half wavelength of the ultrasonic vibration to be transmitted.
  • the half wavelength of the ultrasonic vibration is determined by the resonance frequency of the vibrator including the ultrasonic transducer 9 and the vibration transmitting member 8.
  • the vibrator including the ultrasonic transducer 9 and the vibration transfer member 8 vibrates at any resonance frequency of, for example, 46 kHz to 48 kHz, and vibrates at any resonance frequency of 46.5 kHz to 47.5 kHz. It is preferable to do.
  • the tip end of the first gripping piece 13 becomes an antinode A1 of vibration. Further, inside the distal end portion of the shaft 5, the vibration transfer member 8 is supported by the shaft 5 at the position of the node of vibration.
  • the housing main body 10 is provided with an operation button 15.
  • the operation button 15 is an energy operation input unit. In the state where the treatment object is held between the holding pieces 13 and 14, by inputting an operation with the operation button 15, for example, electric energy is supplied to the treatment tool 1 from each of the high frequency power supply and the ultrasonic power supply. . Then, high frequency current and ultrasonic vibration are applied as treatment energy to the grasped treatment target.
  • a foot switch electrically connected to the power supply device 3 is provided separately from the treatment tool 1 instead of or in addition to the operation button 15.
  • the housing body 10 is provided with a plurality of operation buttons 15.
  • a high frequency current is given to the treatment target as treatment energy.
  • an operation with another one of the plurality of operation buttons 15, for example, high frequency current and ultrasonic vibration can be used as treatment energy in the treatment object Granted.
  • an operating member such as a rotation knob is attached to the housing body 10.
  • the shaft 5 and the end effector 6 together with the operating member rotate about the longitudinal axis L relative to the housing 4 .
  • FIG. 2 is a view showing the end effector 6 in a cross section (vertical or substantially vertical) intersecting the longitudinal axis L.
  • the first grip piece 13 has conductivity.
  • the first grip piece 13 is formed of, for example, metal.
  • the first gripping piece 13 is formed by a projecting portion of the vibration transmitting member 8 from the shaft 5 to the tip side, and is formed of a titanium alloy.
  • the first gripping piece 13 includes a treatment surface 17, a back surface 19 facing the treatment surface 17, and a pair of side surfaces 20 facing outward in the width direction of the end effector 6.
  • the vibration transfer member 8 is a base material having conductivity and forming the treatment surface 17. Further, in the present embodiment, the first grip piece 13 is formed of a base material.
  • the vibration transfer member 8 is connected to one end of an electrical path formed of an electrical wiring or the like inside the housing main body 10. This electrical path extends through the interior of the housing 4 and the interior of the cable 7, and the other end is connected to the high frequency power supply of the power supply 3.
  • the vibration transfer member 8 and the high frequency power source are electrically connected via this electrical path. Thereby, high frequency power can be supplied from the high frequency power source to the first gripping piece 13.
  • the first grip piece 13 functions as a first electrode by being supplied with high frequency power.
  • the second gripping piece (gripping member) 14 comprises a support (jaw) 21.
  • the support 21 is rotatably connected to the shaft 5.
  • the support 21 has conductivity.
  • the support (conductive member) 21 is made of, for example, metal or the like.
  • the support 21 forms part of the treatment surface 18.
  • the support 21 is connected to one end of an electrical path formed of an electrical wiring or the like. This electrical path extends through the interior of the shaft 5, the interior of the housing 4 and the interior of the cable 7, and the other end is connected to the high frequency power supply of the power supply 3.
  • the support 21 and the high frequency power source are electrically connected via this electrical path. Thereby, high frequency power can be supplied from the high frequency power source to the support 21.
  • the support 21 functions as a second electrode different from the first electrode by being supplied with high frequency power.
  • the second grip piece 14 includes a short circuit preventing member (pad member) 23.
  • the short circuit preventing member 23 is attached to the support 21 from the side of the gripping piece 13.
  • the short circuit preventing member 23 is disposed at the central portion of the gripping piece 14 in the width direction, and forms a central portion of the treatment surface 18.
  • the short circuit prevention member 23 has electrical insulation.
  • the short circuit prevention member 23 is formed of, for example, a resin material.
  • the short circuit preventing member 23 of the gripping piece 14 abuts on the treatment surface 17 of the gripping piece 13. In this state, a gap is formed between the support 21 and the treatment surface 17 of the gripping piece 13, and the treatment surface 17 of the gripping piece 13 does not contact the support 21. Therefore, in a state where the support 21 and the grip piece 13 function as electrodes, a short circuit in an electric circuit in which high frequency power is output from the power supply device 3 to the support 21 and the grip piece 13 is effectively prevented.
  • an organic layer 41 and a coating layer 51 are formed on the surface of the first grip piece 13.
  • the coating layer 51 is exposed to the outside on the surface of the first grip piece 13.
  • the first gripping piece 13 is covered by the coating layer 51 in a region (first region) where the coating layer 51 is provided.
  • the first grip piece 13 is exposed to the outside in a region (second region) in which the coating layer 51 is not provided.
  • the organic layer 41 is provided between the coating layer 51 and the surface of the first gripping piece 13.
  • the organic layer 41 is a monomolecular film formed on the surface of the first gripping piece 13 by a surface modifier.
  • the organic layer 41 adheres the first gripping piece 13 to the coating layer 51 by bonding with the surface of the first gripping piece 13 and each of the coating layer 51.
  • the coating layer 51 has electrical insulation and thermal insulation.
  • the coating agent forming the coating layer 51 is formed of an organic material such as a resin material.
  • the coating layer 51 is formed of PEEK (polyether ether ketone) resin which is highly biocompatible.
  • the coating layer 51 is preferably formed of a material containing PEEK resin.
  • the coating layer 51 does not have to be formed of only PEEK resin, and is preferably formed of a composite material containing PEEK resin.
  • the organic layer 41 and the coating layer 51 are formed on the surface of the first grip piece 13 in a region including the back surface 19 around an axis (peripheral surface) around the longitudinal axis L.
  • the organic layer 41 and the coating layer 51 pass through the back surface 19 from a part of the side surface 20 on one side about the axis (outer peripheral surface) centered on the longitudinal axis L in the outer peripheral surface of the first grip piece 13 It is provided continuously over the range to a part of the side of the other side.
  • the organic layer 41 and the coating layer 51 are provided over the entire first gripping piece 13 in the longitudinal direction. Therefore, the organic layer 41 and the coating layer 51 are formed in the first gripping piece 13 in a range including the bending portion 25 and the position of the antinode A1 of the vibration when the ultrasonic vibration is transmitted.
  • the organic layer 41 and the coating layer 51 will be described using FIGS. 3 to 4.
  • the surface of the first grip piece 13 is covered with hydroxyl group (hydroxyl group) OH by the metal group M reacting with oxygen and moisture in the air.
  • the metal group M is titanium.
  • the organic layer 41 is formed of a material containing a titanate coupling agent.
  • the titanate coupling agent of the present embodiment comprises a titanium atom Ti, one or more hydrolyzable groups OR, and an organic functional group Y.
  • the titanium atom Ti and the three hydrolyzable groups OR form a coupling structure of a titanate coupling agent.
  • Each of the hydrolysable groups OR is chemically bonded to the titanium atom Ti.
  • the hydrolyzable group OR is a reactive group which is chemically bonded to the inorganic material by hydrolysis or the like, and is, for example, an alkoxy group such as a methoxy group or an ethoxy group.
  • the organic functional group Y is chemically bonded to the titanium atom Ti.
  • the organic functional group Y is a functional group to be bonded to an organic material, and is, for example, a vinyl group, an epoxy group, an amino group, a methacryl group, a mercapto group or the like.
  • an amino group (amine-based reactive group) is used as the organic functional group Y.
  • OC2H4NHC2H4NH2 is used as the organic functional group Y, for example.
  • the coupling structure of the titanate coupling agent and the surface of the first grip piece 13 are coupled. Then, the coupling structure of the titanate coupling agent and the surface of the first grip piece 13 are combined to form the organic layer 41 on the surface of the first grip piece 13.
  • the bond between the coupling structure of the titanate coupling agent and the surface of the first gripping piece 13 is the hydrolyzable group OR of the titanate coupling agent and the hydroxyl group OH of the surface of the first gripping piece 13 Chemical bonds (hydrolysis), bonds by chemisorption, bonds by intermolecular force, bonds by other interactions, and the like. Further, in the organic layer 41, the hydrolyzable group OR of the coupling structure is chemically bonded to the hydrolyzable group OR of another coupling structure by hydrolysis.
  • a modified surface 42 is formed on the surface of the first grip piece 13 by the organic functional group Y of the titanate coupling agent.
  • the modified surface 42 is formed of an organic functional group Y such as an amino group.
  • the coating layer 51 formed of an organic material and an organic functional group Y (for example, an amino group) forming the modified surface 42 of the organic layer 41 are bonded.
  • the coating layer 51 formed of an organic material and the organic layer 41 are bonded to each other, whereby the coating layer 51 is formed on the surface of the first grip piece 13 via the organic layer 41.
  • the bonding between the coating layer 51 and the modified surface 42 of the organic layer 41 includes bonding by chemisorption, bonding by intermolecular force, bonding by other interaction, and the like.
  • the worker first makes the surface roughness by sand blast in the area on the surface of the first gripping piece 13 where the coating layer 51 is to be formed.
  • Surface treatment blasting treatment
  • the oxide film is removed, and the surface is formed in a concavo-convex shape.
  • the worker applies a titanate coupling agent to the area on the surface of the first grip piece 13 where the coating layer 51 is to be formed (see FIG. 3).
  • the titanate coupling agent is bonded to the surface of the first grip piece 13 to form the organic layer 41.
  • the modified surface 42 is formed on the surface of the first grip piece 13 by the organic layer 41.
  • the operator applies a liquid coating agent that forms the coating layer 51 on the modified surface 42 formed on the surface of the first grip piece 13.
  • the coupling structure of the silane coupling agent is bonded to the modified surface 42 of the organic layer 41 to form the coating layer 51 (see FIG. 4).
  • the organic layer 41 and the coating layer 51 include a part of the side surface 20 and the back surface 19 on the outer peripheral surface of the first gripping piece 13 centered on the extension axis of the first gripping piece 13 It is formed in the area (see FIG. 2).
  • the organic layer 41 and the coating layer 51 for example, by applying mask processing to portions other than the portions where the organic layer 41 and the coating layer 51 are desired to be formed, the organic layer is formed on the desired area 41 and the coating layer 51 are formed.
  • the end effector 6 When performing treatment using the treatment tool 1, first, the end effector 6 is inserted into a body cavity such as the abdominal cavity. Then, a treatment target such as a blood vessel is disposed between the pair of grasping pieces 13 and 14, and the end effector 6 is closed. Thereby, the treatment target is gripped between the gripping pieces 13 and 14. In the state where the treatment object is gripped between the gripping pieces 13 and 14, an operation input for supplying electric energy from the power supply device 3 to the treatment tool 1 is performed, whereby the high frequency current and the ultrasonic vibration are generated as described above. At least one of them is given as treatment energy to the grasped treatment object.
  • the first grip piece 13 and the vibration transfer member 8 are formed of a titanium alloy having good vibration transferability. For this reason, the vibration generated by the ultrasonic transducer is effectively transmitted to the treatment surface 17 via the vibration transfer member 8 and the first grip piece 13.
  • the coating layer 51 is provided in a region including the back surface 19 in the first grip piece 13. As described above, the coating layer 51 has thermal insulation and electrical insulation. For this reason, by providing the coating layer 51, the heat invasion from the part in which the coating layer 51 was provided in the surface of the 1st holding piece 13 is suppressed. This prevents the heat generated due to the treatment from affecting unintended body tissue.
  • an organic layer 41 is provided between the coating layer 51 and the surface of the first grip piece 13.
  • the organic layer 41 bonds the coating layer 51 to the surface of the first gripping piece 13 by bonding to each of the coating layer 51 and the surface of the first gripping piece 13.
  • the surface of the first grip piece 13 is the modified surface of the organic layer 41 with the organic functional group Y. 42 are formed.
  • organic materials such as PEEK resin are known to have better bonding to organic materials than to titanium. Therefore, a coating agent formed of an organic material such as PEEK resin is directly bonded to the surface of the first gripping piece 13 by forming the modified surface 42 with the organic layer 41 on the surface of the first gripping piece 13
  • the adhesion structure of the coating layer 51 to the surface of the first grip piece 13 is improved, and the adhesion strength (adhesive strength) of the coating layer 51 to the surface of the first grip piece 13 is improved.
  • the adhesion strength of the coating layer 51 to the surface of the first grip piece 13 is improved, the coating layer 51 is less likely to be peeled off, and the deterioration rate of the coating layer 51 due to friction and heat during treatment is reduced.
  • the adhesion strength of the coating layer 51 to the surface of the first grip piece 13 is improved, whereby the water tightness between the coating layer 51 and the surface of the first grip piece 13 is improved.
  • the interface between the coating layer 51 and the organic layer 41, and the organic layer 41 and the first gripping piece 13 The penetration of liquid from the interface with the surface is prevented. Thereby, peeling from the surface of the 1st holding piece 13 of the coating layer 51 is prevented, and the durability of the treatment tool 1 improves.
  • an amino group is used as the organic functional group Y possessed by the titanate coupling agent. Therefore, the durability of the coating layer 51 is improved as compared with the case where another functional group is used as the organic functional group Y.
  • the organic layer 41 is formed of a titanate coupling agent.
  • the first grip piece 13 is formed of a titanium alloy.
  • the titanate coupling agent has better bonding to titanium than a coating agent formed of an organic material such as PEEK resin. Therefore, by providing the organic layer 41 between the coating layer 51 and the surface of the first gripping piece 13, a coating agent formed of an organic material such as PEEK resin is directly applied to the surface of the first gripping piece 13.
  • the adhesion strength of the coating layer 51 formed of an organic material such as PEEK resin to the surface of the first grip piece 13 is improved as compared with the case of bonding.
  • the adhesion strength of the coating layer 51 to the surface of the grip piece 13 is likely to decrease due to the transmission of ultrasonic vibration or the like.
  • the organic layer 41 is provided in a region including the curved portion 25 of the first grip piece 13. For this reason, the water resistance and durability of the treatment instrument 1 can be effectively improved by providing the organic layer 41 for improving the adhesion strength of the coating layer 51 in the region where the adhesion strength tends to decrease. .
  • the organic layer 41 is provided on the surface of the gripping piece 13 in a region including the antinode position A1 of the vibration. For this reason, by providing the organic layer 41 for improving the adhesion strength of the coating layer 51 in the region where the adhesion strength is likely to be reduced, the vibration followability to the first grip piece 13 of the coating layer 51 is improved. The water resistance and durability of the treatment instrument 1 can be effectively improved.
  • the organic layer 41 and the coating layer 51 are in close contact with the surface of the first gripping piece 13 in a state along the uneven shape formed on the surface of the first gripping piece 13 by blast processing. Therefore, an anchor effect acts between the surface of the first grip piece 13 and the organic layer 41 and the coating layer 51. Due to this anchor effect, the adhesion strength of the organic layer 41 and the coating layer 51 to the surface of the first gripping piece 13 is increased.
  • the adhesion structure between the coating layer 51 and the surface of the first gripping piece 13 is improved, whereby the adhesion strength of the coating layer 51 to the surface of the first gripping piece 13 is improved.
  • the water tightness between the coating layer 51 and the surface of the first gripping piece 13 is improved.
  • the first gripping piece 13 is cooled using dry ice, carbon dioxide gas, liquid nitrogen or the like until the temperature of the first gripping piece 13 becomes 0 ° C. or less (eg, ⁇ 80 ° C.) Do.
  • the temperature of the first gripping piece 13 is rapidly raised by putting the cooled first gripping piece 13 into water such as hot water.
  • the temperature of the first gripping piece 13 is raised, for example, from 0 ° C. or less to 0 ° C. or more, and the first gripping piece 13 is continued until the temperature increase of the first gripping piece 13 reaches 100 ° C.
  • the space between the coating layer 51 and the surface of the first gripping piece 13 is obtained.
  • Water tightness is improved.
  • the coating layer 51 and the first gripping piece 13 even when the first gripping piece 13 is introduced into a liquid such as water, the coating layer 51 and the first gripping The entry of liquid to the surface of the piece 13 is suppressed. This makes it possible to perform the above-mentioned subzero processing on the first gripping piece 13 on which the coating layer 51 is provided. As a result, the adhesion strength between the surface of the first grip piece 13 and the coating layer 51 is further improved.
  • an operation input for transmitting ultrasonic vibration to the first grip piece 13 is performed by an operation input, and the treatment tool 1 is oscillated.
  • ultrasonic vibration of a predetermined resonance frequency and a predetermined vibration velocity was transmitted to the first grip piece 13.
  • the vibration velocity is calculated by the formula 2 ⁇ ⁇ ⁇ resonance frequency ⁇ amplitude (half amplitude).
  • the predetermined resonance frequency is 20 to 100 kHz.
  • the predetermined vibration velocity is 3 m / s to 15 m / s.
  • the resonant frequency is 47 kHz and the amplitude (half amplitude) is 80 ⁇ m.
  • the vibration velocity is 11.8 m / s.
  • the occurrence of blisters (air vesicles) in the portion where the coating layer 51 was provided was observed over time.
  • the liquid that has entered between the coating layer 51 and the surface of the gripping piece 13 volatilizes or evaporates, and the coating layer 51 swells with respect to the surface of the gripping piece 13, whereby the surfaces of the coating layer 51 and the gripping piece 13 And an air layer formed between them.
  • the occurrence of blisters between the coating layer 51 and the surface of the gripping piece 13 may reduce the adhesion strength of the coating layer 51 and affect the treatment performance using the treatment tool 1. For this reason, the water resistance and durability of the treatment tool 1 can be evaluated by observing the blister.
  • the coating layer 51 is directly applied to the surface of the first gripping piece 13, that is, the coating layer 51 is formed on the surface of the first gripping piece 13 without the organic layer 41 of this embodiment.
  • the state of FIG. 6 is obtained by oscillating the treatment tool 1 in water for 30 minutes.
  • blisters 60 were observed after the treatment instrument 1 oscillated in water for 30 minutes.
  • Second Embodiment A second embodiment of the present invention will be described with reference to FIG.
  • the second embodiment is a modification of the configuration of the first embodiment as follows.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the coating layer 51 is one of the side surfaces 20 on one side about the axis (peripheral surface) centered on the longitudinal axis L on the surface of the first gripping piece 13. It is provided continuously from the part through the back surface 19 to a part of the other side surface.
  • the organic layer 41 may not be provided over the entire region where the coating layer 51 is formed around the axis (peripheral surface) around the longitudinal axis L. As shown in FIG. 9, the organic layer 41 is provided on the surface of the first gripping piece 13 with at least a region (first surface) in which the coating layer 51 is provided around an axis (peripheral surface) centered on the longitudinal axis L. It may be provided at the boundary portion (interface) between the region) and the region (second region) where the coating layer 51 is not provided.
  • both ends of the coating layer 51 are located on each of the side surfaces 20 about an axis (peripheral surface) around the longitudinal axis L. Therefore, on the surface of the first gripping piece 13, the boundary between the area where the coating layer 51 is provided and the area where the coating layer 51 is not provided is located on each of the side surfaces 20.
  • the organic layer 41 is provided only at both ends of the region where the coating layer 51 is provided around each of the side surfaces 20 of the first gripping piece 13 about an axis (peripheral surface) around the longitudinal axis L. There is.
  • the coating layer 51 is bonded to the surface of the first gripping piece 13 via the organic layer 41 at the boundary between the region where the coating layer 51 is provided and the region where the coating layer 51 is not provided.
  • the adhesion strength of the coating layer 51 to the surface of the first gripping piece 13 is improved. This effectively prevents liquid or the like from invading between the coating layer 51 and the first gripping piece 13 from the interface between the coating layer 51 and the first gripping piece 13, and the coating layer 51 and the first gripping piece 13
  • the water tightness with the grip piece 13 is improved.
  • the durability of the treatment tool 1 is improved.
  • the adhesion strength of the coating layer 51 to the surface of the first gripping piece 13 can be achieved by performing the aforementioned subzero treatment or the like. It can be further improved.
  • the bipolar energy treatment tool (1) having the pair of gripping pieces (13, 14) and in which the electrodes are provided on each of the gripping pieces (13, 14) has been described.
  • the structure which concerns on embodiment of invention etc is applicable also to a monopolar energy treatment tool.
  • the energy treatment device includes a base material to which ultrasonic vibration is transmitted from the ultrasonic transducer, and the base material forms an end effector having a treatment surface and a back surface.
  • the above-mentioned organic layer (41) and a coating layer (51) are provided in the field which includes the back at least in the surface of a base material.
  • the energy treatment tool (1) is formed of metal and provided on a surface of the base material (8, 13) provided with a treatment surface (17) for treating the treatment target, and the surface of the base material (8, 13).
  • an organic layer (41) having thermal insulating properties and electrical insulating properties
  • the present invention is not limited to the above embodiment, and can be variously modified in the implementation stage without departing from the scope of the invention.
  • the embodiments may be implemented in combination as appropriate as possible, in which case the combined effect is obtained.
  • the above embodiments include inventions of various stages, and various inventions can be extracted by an appropriate combination of a plurality of disclosed configuration requirements.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Surgical Instruments (AREA)

Abstract

This energy treatment tool is provided with: a base material that is formed from metal and that is provided with a treatment surface for treating a to-be-treated object thereon; a coating layer that is disposed on the surface of the base material and that has thermal insulation properties and electrical insulation properties; and an organic layer that is disposed between the surface of the base material and the coating layer, that includes a coupling agent, and that adheres the coating layer to the surface of the base material by the coupling agent bonding to the surface of the base material and to the coating layer.

Description

エネルギー処置具及びエネルギー処置具の製造方法Energy treatment tool and method of manufacturing energy treatment tool
 本発明は、処置エネルギーを用いて処置対象を処置するエネルギー処置具、及び、このエネルギー処置具の製造方法に関する。 The present invention relates to an energy treatment tool that treats a treatment target using treatment energy, and a method of manufacturing the energy treatment tool.
 US2016/0144204A1には、超音波振動を用いて生体組織等の処置対象を処置するエネルギー処置具が開示されている。このエネルギー処置具は、超音波トランスデューサで発生する超音波振動が伝達される振動伝達部材(超音波プローブ)を備える。振動伝達部材は、エンドエフェクタの処置面を形成する。振動伝達部材に伝達された超音波振動が処置面から処置対象に付与されることにより、処置対象の処置が行われる。 US2016 / 0144204A1 discloses an energy treatment tool for treating a treatment target such as a living tissue using ultrasonic vibration. This energy treatment tool includes a vibration transmission member (ultrasound probe) to which ultrasonic vibration generated by the ultrasonic transducer is transmitted. The vibration transfer member forms a treatment surface of the end effector. The treatment of the treatment target is performed by applying the ultrasonic vibration transmitted to the vibration transmission member to the treatment target from the treatment surface.
 US2016/0144204A1のエネルギー処置具では、エンドエフェクタの背面には、断熱性及び電気的絶縁性を有するコーティング剤によってコーティング層が形成されている。コーティング層が設けられることにより、背面から意図しない生体組織への熱侵襲が抑制される。コーティング層が設けられたエネルギー処置具では、コーティング層のエンドエフェクタに対する密着強度が、エネルギー処置具の処置性能及び耐久性に影響を及ぼすことがある。 In the energy treatment device of US2016 / 0144204A1, a coating layer is formed on the back surface of the end effector by a coating having heat insulation and electrical insulation. By providing the coating layer, heat invasion to the unintended biological tissue from the back surface is suppressed. In an energy treatment device provided with a coating layer, the adhesion strength of the coating layer to the end effector may affect the treatment performance and durability of the energy treatment device.
 本発明は前記課題に着目してなされたものであり、その目的とするところは、断熱性及び電気的絶縁性を備える断熱コーティングのエンドエフェクタに対する密着強度が確保されたエネルギー処置具、及び、このエネルギー処置具の製造方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is an energy treatment tool in which the adhesion strength to the end effector of the heat insulating coating having the heat insulating property and the electric insulating property is secured, An object of the present invention is to provide a method of manufacturing an energy treatment tool.
 前記目的を達成するため、本発明のある態様のエネルギー処置具は、金属によって形成されるとともに、処置対象を処置する処置面を備える母材と、前記母材の表面に設けられ、断熱性及び電気的絶縁性を有するコーティング層と、前記母材の前記表面と前記コーティング層との間に設けられ、カップリング剤を含み、前記カップリング剤が前記母材の前記表面及び前記コーティング層のそれぞれに結合することにより、前記コーティング層を前記母材の前記表面に接着する、有機層と、を備える。 In order to achieve the above object, an energy treatment tool according to an aspect of the present invention is formed of metal and provided on a surface of a base material provided with a treatment surface for treating an object to be treated; A coating layer having an electrical insulating property, and provided between the surface of the base material and the coating layer, and containing a coupling agent, the coupling agent comprising each of the surface of the base material and the coating layer And bonding the coating layer to the surface of the matrix by bonding to the organic layer.
 本発明のある態様のエネルギー処置具の製造方法は、処置対象を処置する処置面を備える母材を金属から形成することと、カップリング剤のカップリング構造を前記母材の表面に結合させることにより、前記母材の前記表面に有機層を形成することと、前記有機層の表面にコーティング剤を結合させることにより、前記母材の前記表面に断熱性及び電気的絶縁性を有するコーティング層を形成することと、前記母材の温度を上昇させることにより、前記コーティング層と前記母材の前記表面との間の密着強度を上昇させることと、を含む。 In a method of manufacturing an energy treatment device according to an aspect of the present invention, a base material provided with a treatment surface for treating a treatment target is formed of metal, and a coupling structure of a coupling agent is bonded to the surface of the base material Forming an organic layer on the surface of the matrix and bonding a coating agent to the surface of the organic layer, thereby forming a coating layer having thermal insulation and electrical insulation on the surface of the matrix And forming the adhesion strength between the coating layer and the surface of the base material by raising the temperature of the base material.
図1Aは、第1の実施形態に係るエネルギー処置具を概略的に示す図である。FIG. 1A is a view schematically showing an energy treatment tool according to a first embodiment. 図1Bは、第1の実施形態に係る第1の把持片を処置面側から視た概略図である。FIG. 1B is a schematic view of the first grip piece according to the first embodiment as viewed from the treatment surface side. 図2は、第1の実施形態に係るエンドエフェクタを長手軸に交差する断面で概略的に示す図である。FIG. 2 is a view schematically showing the end effector according to the first embodiment in a cross section intersecting a longitudinal axis. 図3は、第1の実施形態に係る処置面に有機層が形成される様子を概略的に示す図である。FIG. 3 is a view schematically showing how an organic layer is formed on the treatment surface according to the first embodiment. 図4は、第1の実施形態に係る処置面に有機層及びコーティング層が形成された状態を概略的に示す図である。FIG. 4 is a view schematically showing a state in which the organic layer and the coating layer are formed on the treatment surface according to the first embodiment. 図5は、第1の実施形態の比較例に係るコーティング層の密着強度の評価の一例において、超音波振動の発振前の時点でのコーティング層の貼り付き状態を示す図である。FIG. 5 is a view showing a sticking state of the coating layer before the oscillation of the ultrasonic vibration in an example of the evaluation of the adhesion strength of the coating layer according to the comparative example of the first embodiment. 図6は、第1の実施形態の比較例に係るコーティング層の密着強度の評価の一例において、超音波振動を30分間発振させた時点でのコーティング層の貼り付き状態を示す図である。FIG. 6 is a view showing a sticking state of the coating layer when ultrasonic vibration is oscillated for 30 minutes in one example of evaluation of the adhesion strength of the coating layer according to the comparative example of the first embodiment. 図7は、第1の実施形態に係るコーティング層の密着強度の評価の一例において、超音波振動の発振前の時点でのコーティング層の貼り付き状態を示す図である。FIG. 7 is a view showing a sticking state of the coating layer before the oscillation of the ultrasonic vibration in an example of the evaluation of the adhesion strength of the coating layer according to the first embodiment. 図8は、第1の実施形態に係るコーティング層の密着強度の評価の一例において、超音波振動を120分間発振させた時点でのコーティング層の貼り付き状態を示す図である。FIG. 8 is a view showing a sticking state of the coating layer when ultrasonic vibration is oscillated for 120 minutes in an example of evaluation of adhesion strength of the coating layer according to the first embodiment. 図9は、第2の実施形態に係るエンドエフェクタを長手軸に交差する断面で概略的に示す図である。FIG. 9 is a view schematically showing an end effector according to a second embodiment in a cross section intersecting a longitudinal axis.
 (第1の実施形態) 
 本発明の第1の実施形態について、図1A乃至図5を参照して説明する。
First Embodiment
A first embodiment of the present invention will be described with reference to FIGS. 1A-5.
 図1Aは、本実施形態のエネルギー処置具である処置具1を示す図である。図1Aに示すように、処置具1は、ハウジング4と、ハウジング4に連結される筒状のシャフト5と、を備える。ハウジング4は、保持可能である。ハウジング4には、ケーブル7の一端が接続されている。ケーブル7の他端は、電源装置3に着脱可能に接続される。 FIG. 1A is a view showing a treatment tool 1 which is an energy treatment tool of the present embodiment. As shown in FIG. 1A, the treatment instrument 1 includes a housing 4 and a cylindrical shaft 5 connected to the housing 4. The housing 4 can be held. One end of a cable 7 is connected to the housing 4. The other end of the cable 7 is detachably connected to the power supply 3.
 シャフト5は、長手軸Lを規定する。ここで、長手軸Lに沿う方向を長手方向とする。長手方向の一方側を先端側(図1Aの矢印L1側)とし、先端側とは反対側を基端側(図1Aの矢印L2側)とする。シャフト5は、基端側から先端側へ長手軸Lに沿って延設され、ハウジング4の先端側に連結されている。 The shaft 5 defines a longitudinal axis L. Here, the direction along the longitudinal axis L is taken as the longitudinal direction. One side in the longitudinal direction is the tip side (arrow L1 side in FIG. 1A), and the side opposite to the tip side is the proximal side (arrow L2 side in FIG. 1A). The shaft 5 is extended from the proximal end side to the distal end side along the longitudinal axis L and is connected to the distal end side of the housing 4.
 シャフト5の先端部には、エンドエフェクタ6が設けられている。エンドエフェクタ6は、第1の把持片13と、第2の把持片14とを備える。第1の把持片13と第2の把持片14との間は、開閉可能である。本実施形態では、第1の把持片13は、シャフト5に支持され、第2の把持片14は、第1の把持片13に対して回動可能にシャフト5に取付けられている。 An end effector 6 is provided at the tip of the shaft 5. The end effector 6 includes a first gripping piece 13 and a second gripping piece 14. Between the first grip piece 13 and the second grip piece 14 can be opened and closed. In the present embodiment, the first gripping piece 13 is supported by the shaft 5, and the second gripping piece 14 is rotatably attached to the shaft 5 with respect to the first gripping piece 13.
 第1の把持片13は、第2の把持片14に対して対向し、処置対象に処置エネルギーを付与する処置面(対向面)17を備える。第2の把持片14は、第1の把持片13の処置面17に対して対向し、処置対象に処置エネルギーを付与する処置面(対向面)18を備える。 The first grip piece 13 is provided with a treatment surface (facing surface) 17 that faces the second grip piece 14 and applies treatment energy to the treatment target. The second gripping piece 14 is provided with a treatment surface (facing surface) 18 that faces the treatment surface 17 of the first gripping piece 13 and applies treatment energy to the treatment target.
 エンドエフェクタ6の開閉方向は、長手軸Lに対して交差する(垂直又は略垂直となる)。エンドエフェクタ6の開閉方向のうち、第2の把持片14が第1の把持片13に対して開く側を第2の把持片14の開方向(矢印Y1)とし、第2の把持片14が第1の把持片13に対して閉じる側を第2の把持片14の閉方向(矢印Y2)とする。 The open / close direction of the end effector 6 intersects (is perpendicular or substantially perpendicular) to the longitudinal axis L. Of the opening and closing directions of the end effector 6, the side in which the second gripping piece 14 opens with respect to the first gripping piece 13 is the opening direction (arrow Y1) of the second gripping piece 14, and the second gripping piece 14 is The side closed with respect to the first gripping piece 13 is taken as the closing direction (arrow Y2) of the second gripping piece 14.
 図1Bに示すように、長手軸Lに対して交差し(垂直又は略垂直で)、かつ、エンドエフェクタ6の開閉方向に対して交差する(垂直又は略垂直な)方向を、エンドエフェクタ6の幅方向(矢印B1及び矢印B2)とする。 As shown in FIG. 1B, a direction intersecting (perpendicularly or substantially perpendicular) to the longitudinal axis L and intersecting (perpendicular or nearly perpendicular) to the opening / closing direction of the end effector 6 is The width direction (arrows B1 and B2).
 第1の把持片13は、湾曲部25を備える。湾曲部25は、第1の把持片13の先端部に設けられ、長手軸Lに対してエンドエフェクタ6の幅方向の一方側に湾曲している。 The first grip piece 13 includes a bending portion 25. The bending portion 25 is provided at the tip of the first grip piece 13 and is curved to one side in the width direction of the end effector 6 with respect to the longitudinal axis L.
 図1Aに示すように、ハウジング4は、ハウジング本体10と、グリップ(固定ハンドル)11とを備える。ハウジング本体10は、長手軸Lに沿って延設されている。グリップ11は、長手軸Lから離れる側へ向かってハウジング本体10から延設されている。シャフト5は、ハウジング本体10に先端側から連結されている。 As shown in FIG. 1A, the housing 4 includes a housing body 10 and a grip (fixed handle) 11. The housing body 10 extends along the longitudinal axis L. The grip 11 is extended from the housing body 10 in a direction away from the longitudinal axis L. The shaft 5 is connected to the housing body 10 from the tip side.
 ハウジング本体10には、可動ハンドル12が回動可能に取付けられている。可動ハンドル12は、長手軸Lに対してグリップ11が位置する側に位置し、本実施形態ではグリップ11に対して先端側に位置している。可動ハンドル12がハウジング本体10に対して回動することにより、可動ハンドル12がグリップ11に対して開く又は閉じる。可動ハンドル12がグリップ11に対して開く又は閉じることにより、エンドエフェクタ6を前述のように開動作又は閉動作させる操作が、可動ハンドル12において、入力される。すなわち、可動ハンドル12は、開閉操作入力部である。 A movable handle 12 is rotatably attached to the housing body 10. The movable handle 12 is located on the side where the grip 11 is located with respect to the longitudinal axis L, and is located on the distal side with respect to the grip 11 in the present embodiment. When the movable handle 12 rotates with respect to the housing body 10, the movable handle 12 opens or closes with respect to the grip 11. When the movable handle 12 opens or closes with respect to the grip 11, an operation for opening or closing the end effector 6 as described above is input at the movable handle 12. That is, the movable handle 12 is an open / close operation input unit.
 可動ハンドル12と第2の把持片14との間は、可動部材16を介して、連結されている。可動部材16は、シャフト5の内部において長手軸Lに沿って延設されている。可動ハンドル12をグリップ11に対して開く又は閉じることにより、可動部材16がシャフト5及びハウジング4に対して長手軸Lに沿って移動し、第2の把持片14がシャフト5に対して回動する。これにより、把持片13,14の間が開く又は閉じる。把持片13、14の間に処置対象が配置された状態で把持片13、14の間が閉じることにより、把持片13、14の間で処置対象が把持される。 The movable handle 12 and the second grip piece 14 are connected via the movable member 16. The movable member 16 is extended along the longitudinal axis L inside the shaft 5. By opening or closing the movable handle 12 with respect to the grip 11, the movable member 16 moves along the longitudinal axis L with respect to the shaft 5 and the housing 4, and the second grip piece 14 rotates with respect to the shaft 5 Do. Thereby, the holding pieces 13 and 14 are opened or closed. When the treatment target is disposed between the holding pieces 13 and 14, the treatment target is held between the holding pieces 13 and 14 by closing between the holding pieces 13 and 14.
 ある実施例では、可動ハンドル12は、グリップ11に対して基端側に位置する。また、別のある実施例では、可動ハンドル12は、長手軸Lに対してグリップ11が位置する側とは反対側に位置し、開動作及び閉動作において、長手軸Lに対して交差する(垂直又は略垂直な)方向に移動する。 In one embodiment, the movable handle 12 is proximal to the grip 11. In another embodiment, the movable handle 12 is located on the opposite side of the longitudinal axis L to the side where the grip 11 is located, and intersects the longitudinal axis L in the opening operation and the closing operation. Vertically or nearly vertically).
 電源装置3は、高周波電源と超音波電源とを備える。高周波電源は、波形生成器、変換回路及び変圧器等を備え、バッテリー電源又はコンセント電源等からの電力を高周波電力に変換する。また、後述するように、第1の把持片13及び第2の把持片14のそれぞれは、少なくとも一部が導電材料によって形成される。高周波電源は、ケーブル7の内部、ハウジング4の内部及びシャフト5の内部を通って設けられる電気経路を介して、第1の把持片13及び第2の把持片14のそれぞれの導電材料に電気的に接続される。高周波電源は、変換した高周波電力を前述の電気経路を通して出力し、第1の把持片13及び第2の把持片14に高周波電力を電気エネルギーとして供給する。 The power supply device 3 includes a high frequency power supply and an ultrasonic power supply. The high frequency power supply includes a waveform generator, a conversion circuit, a transformer, and the like, and converts power from a battery power supply or an outlet power supply to high frequency power. Further, as described later, each of the first grip piece 13 and the second grip piece 14 is at least partially formed of a conductive material. The high frequency power source is electrically connected to the conductive material of each of the first gripping piece 13 and the second gripping piece 14 through an electrical path provided through the inside of the cable 7, the inside of the housing 4 and the inside of the shaft 5. Connected to The high frequency power supply outputs the converted high frequency power through the aforementioned electric path, and supplies the first holding piece 13 and the second holding piece 14 with high frequency power as electric energy.
 超音波電源は、波形生成器、変換回路及び変圧器等を備え、バッテリー電源又はコンセント電源等からの電力を交流電力に変換する。また、ハウジング本体10の内部には、超音波トランスデューサ9と、超音波トランスデューサ9に先端側から接続される振動伝達部材(超音波プローブ)8とが設けられている。超音波電源は、ケーブル7の内部及びハウジング4の内部を通って設けられる電気経路を介して、超音波トランスデューサ9に電気的に接続される。超音波電源から電気エネルギー(交流電力)が供給されることにより、超音波トランスデューサ9において、超音波振動が発生する。超音波トランスデューサ9で発生した超音波振動は、振動伝達部材8に伝達される。 The ultrasonic power source includes a waveform generator, a conversion circuit, a transformer, and the like, and converts power from a battery power source or an outlet power source to AC power. Further, inside the housing main body 10, an ultrasonic transducer 9 and a vibration transmitting member (ultrasonic probe) 8 connected to the ultrasonic transducer 9 from the tip side are provided. The ultrasound power source is electrically connected to the ultrasound transducer 9 via an electrical path provided through the interior of the cable 7 and the interior of the housing 4. The supply of electric energy (AC power) from the ultrasonic power supply generates ultrasonic vibration in the ultrasonic transducer 9. The ultrasonic vibration generated by the ultrasonic transducer 9 is transmitted to the vibration transmitting member 8.
 振動伝達部材8は、ハウジング本体10の内部から先端側へ延設され、シャフト5の内部を通って、シャフト5の先端から先端側へ突出している。そして、振動伝達部材8のシャフト5から先端側への突出部分によって、第1の把持片13が形成される。超音波トランスデューサ9で発生した超音波振動は、第1の把持片13を形成する振動伝達部材8の先端部まで伝達される。これにより、超音波振動が処置エネルギーとして第1の把持片13に伝達される。振動伝達部材8は、導電性を有し、かつ、振動伝達性の高い材料から形成されることが好ましい。本実施形態では、振動伝達部材8は、生体組織に対して相性の良いチタン合金で形成されている。振動伝達部材8は、ジュラルミンやステンレス等のチタン合金以外の金属材料で形成されていてもよい。 The vibration transmitting member 8 is extended from the inside of the housing body 10 to the tip side, passes through the inside of the shaft 5, and protrudes from the tip of the shaft 5 to the tip side. And the 1st holding piece 13 is formed of the protrusion part from the shaft 5 of the vibration transmission member 8 to the front end side. The ultrasonic vibration generated by the ultrasonic transducer 9 is transmitted to the tip of the vibration transmitting member 8 forming the first gripping piece 13. Thereby, ultrasonic vibration is transmitted to the 1st holding piece 13 as treatment energy. The vibration transfer member 8 is preferably made of a material having conductivity and high vibration transferability. In the present embodiment, the vibration transfer member 8 is formed of a titanium alloy which is compatible with living tissue. The vibration transfer member 8 may be formed of a metal material other than a titanium alloy such as duralmin or stainless steel.
 振動伝達部材8は、超音波トランスデューサ9の共振周波数及び超音波電源の出力における周波数で振動するように、長さ、径を含む形状や素材が適宜に設定される。超音波トランスデューサ9及び振動伝達部材8を含む振動体の全長は、例えば、伝達される超音波振動の半波長の整数倍の長さであることが好適である。超音波振動の半波長は、超音波トランスデューサ9及び振動伝達部材8を含む振動体の共振周波数によって決定される。ある実施例では、超音波トランスデューサ9及び振動伝達部材8を含む振動体は、例えば、46kHz~48kHzのいずれかの共振周波数で振動し、46.5kHz~47.5kHzのいずれかの共振周波数で振動することが好ましい。 The shape and material including the length and the diameter are appropriately set so that the vibration transfer member 8 vibrates at the resonance frequency of the ultrasonic transducer 9 and the frequency at the output of the ultrasonic power source. The total length of the vibrator including the ultrasonic transducer 9 and the vibration transmitting member 8 is preferably, for example, a length that is an integral multiple of a half wavelength of the ultrasonic vibration to be transmitted. The half wavelength of the ultrasonic vibration is determined by the resonance frequency of the vibrator including the ultrasonic transducer 9 and the vibration transmitting member 8. In one embodiment, the vibrator including the ultrasonic transducer 9 and the vibration transfer member 8 vibrates at any resonance frequency of, for example, 46 kHz to 48 kHz, and vibrates at any resonance frequency of 46.5 kHz to 47.5 kHz. It is preferable to do.
 図1Bに示すように、振動伝達部材8によって形成される第1の把持片13まで超音波振動が伝達された状態では、第1の把持片13の先端は、振動の腹A1となる。また、シャフト5の先端部の内部では、振動伝達部材8は、振動の節の位置において、シャフト5に支持されている。 As shown in FIG. 1B, in the state where ultrasonic vibration is transmitted to the first gripping piece 13 formed by the vibration transmitting member 8, the tip end of the first gripping piece 13 becomes an antinode A1 of vibration. Further, inside the distal end portion of the shaft 5, the vibration transfer member 8 is supported by the shaft 5 at the position of the node of vibration.
 ハウジング本体10には、操作ボタン15が設けられている。操作ボタン15は、エネルギー操作入力部である。把持片13,14の間で処置対象が把持された状態で、操作ボタン15で操作が入力されることにより、例えば、高周波電源及び超音波電源のそれぞれから処置具1に電気エネルギーが供給される。そして、把持された処置対象に高周波電流及び超音波振動が処置エネルギーとして付与される。なお、ある実施例では、操作ボタン15の代わりに、又は、操作ボタン15に加えて、電源装置3に電気的に接続されるフットスイッチが、処置具1とは別体で設けられる。 The housing main body 10 is provided with an operation button 15. The operation button 15 is an energy operation input unit. In the state where the treatment object is held between the holding pieces 13 and 14, by inputting an operation with the operation button 15, for example, electric energy is supplied to the treatment tool 1 from each of the high frequency power supply and the ultrasonic power supply. . Then, high frequency current and ultrasonic vibration are applied as treatment energy to the grasped treatment target. In one embodiment, a foot switch electrically connected to the power supply device 3 is provided separately from the treatment tool 1 instead of or in addition to the operation button 15.
 ある実施例では、ハウジング本体10に複数の操作ボタン15が設けられる。処置対象が把持された状態で、複数の操作ボタン15のうちのある1つで操作が入力されることにより、例えば、高周波電流のみが、処置エネルギーとして処置対象に付与される。また、処置対象が把持された状態で、複数の操作ボタン15のうちの別のある1つで操作が入力されることにより、例えば、高周波電流と超音波振動とが、処置エネルギーとして処置対象に付与される。 In one embodiment, the housing body 10 is provided with a plurality of operation buttons 15. In the state where the treatment target is held, by inputting an operation with one of the plurality of operation buttons 15, for example, only a high frequency current is given to the treatment target as treatment energy. In addition, in the state where the treatment object is held, by inputting an operation with another one of the plurality of operation buttons 15, for example, high frequency current and ultrasonic vibration can be used as treatment energy in the treatment object Granted.
 また、別のある実施例では、ハウジング本体10に回転ノブ等の操作部材が取付けられる。この場合、操作部材をハウジング4に対して長手軸Lの軸回りに回転することにより、シャフト5及びエンドエフェクタ6が操作部材と一緒に、ハウジング4に対して長手軸Lの軸回りに回転する。 In another embodiment, an operating member such as a rotation knob is attached to the housing body 10. In this case, by rotating the operating member relative to the housing 4 about the longitudinal axis L, the shaft 5 and the end effector 6 together with the operating member rotate about the longitudinal axis L relative to the housing 4 .
 図2は、エンドエフェクタ6を長手軸Lに交差する(垂直又は略垂直な)断面で示す図である。第1の把持片13は、導電性を有する。第1の把持片13は、例えば、金属によって形成される。本実施形態では、第1の把持片13は、振動伝達部材8のシャフト5から先端側への突出部分によって形成され、チタン合金で形成されている。第1の把持片13は、処置面17と、処置面17とは反対側を向く背面19と、エンドエフェクタ6の幅方向の外側を向く一対の側面20とを備える。 FIG. 2 is a view showing the end effector 6 in a cross section (vertical or substantially vertical) intersecting the longitudinal axis L. As shown in FIG. The first grip piece 13 has conductivity. The first grip piece 13 is formed of, for example, metal. In the present embodiment, the first gripping piece 13 is formed by a projecting portion of the vibration transmitting member 8 from the shaft 5 to the tip side, and is formed of a titanium alloy. The first gripping piece 13 includes a treatment surface 17, a back surface 19 facing the treatment surface 17, and a pair of side surfaces 20 facing outward in the width direction of the end effector 6.
 本実施形態では、振動伝達部材8は、導電性を有し、処置面17を形成する母材である。また、本実施形態では、第1の把持片13は、母材によって形成される。 In the present embodiment, the vibration transfer member 8 is a base material having conductivity and forming the treatment surface 17. Further, in the present embodiment, the first grip piece 13 is formed of a base material.
 振動伝達部材8には、ハウジング本体10の内部において、電気配線等から形成される電気経路の一端が接続される。この電気経路は、ハウジング4の内部及びケーブル7の内部を通って延設され、他端が電源装置3の高周波電源に接続される。この電気経路を介して、振動伝達部材8と高周波電源とが電気的に接続される。これにより、高周波電源から第1の把持片13へ、高周波電力を供給可能になる。第1の把持片13は、高周波電力が供給されることにより、第1の電極として機能する。 The vibration transfer member 8 is connected to one end of an electrical path formed of an electrical wiring or the like inside the housing main body 10. This electrical path extends through the interior of the housing 4 and the interior of the cable 7, and the other end is connected to the high frequency power supply of the power supply 3. The vibration transfer member 8 and the high frequency power source are electrically connected via this electrical path. Thereby, high frequency power can be supplied from the high frequency power source to the first gripping piece 13. The first grip piece 13 functions as a first electrode by being supplied with high frequency power.
 第2の把持片(把持部材)14は、支持体(ジョー)21を備える。支持体21は、シャフト5に対して回動可能に連結される。支持体21は、導電性を有する。支持体(導電部材)21は、例えば、金属等から形成される。支持体21は、処置面18の一部を形成している。 The second gripping piece (gripping member) 14 comprises a support (jaw) 21. The support 21 is rotatably connected to the shaft 5. The support 21 has conductivity. The support (conductive member) 21 is made of, for example, metal or the like. The support 21 forms part of the treatment surface 18.
 支持体21には、電気配線等から形成される電気経路の一端が接続される。この電気経路は、シャフト5の内部、ハウジング4の内部及びケーブル7の内部を通って延設され、他端が電源装置3の高周波電源に接続される。支持体21と高周波電源とは、この電気経路を介して、電気的に接続される。これにより、高周波電源から支持体21へ高周波電力を供給可能になる。支持体21は、高周波電力が供給されることにより、第1の電極とは異なる第2の電極として機能する。 The support 21 is connected to one end of an electrical path formed of an electrical wiring or the like. This electrical path extends through the interior of the shaft 5, the interior of the housing 4 and the interior of the cable 7, and the other end is connected to the high frequency power supply of the power supply 3. The support 21 and the high frequency power source are electrically connected via this electrical path. Thereby, high frequency power can be supplied from the high frequency power source to the support 21. The support 21 functions as a second electrode different from the first electrode by being supplied with high frequency power.
 第2の把持片14は、短絡防止部材(パッド部材)23を備える。短絡防止部材23は、把持片13側から支持体21に取付けられている。短絡防止部材23は、幅方向について把持片14の中央部に配置され、処置面18の中央部分を形成している。短絡防止部材23は、電気的絶縁性を有する。短絡防止部材23は、例えば、樹脂材料で形成される。 The second grip piece 14 includes a short circuit preventing member (pad member) 23. The short circuit preventing member 23 is attached to the support 21 from the side of the gripping piece 13. The short circuit preventing member 23 is disposed at the central portion of the gripping piece 14 in the width direction, and forms a central portion of the treatment surface 18. The short circuit prevention member 23 has electrical insulation. The short circuit prevention member 23 is formed of, for example, a resin material.
 把持片13,14の間が閉じた状態では、把持片14の短絡防止部材23が、把持片13の処置面17に当接する。この状態では、支持体21と把持片13の処置面17との間に隙間が形成され、把持片13の処置面17は、支持体21と接触しない。このため、支持体21及び把持片13が電極として機能する状態において、電源装置3から支持体21及び把持片13に高周波電力が出力される電気回路での短絡が、有効に防止される。 In a state where the gap between the gripping pieces 13 and 14 is closed, the short circuit preventing member 23 of the gripping piece 14 abuts on the treatment surface 17 of the gripping piece 13. In this state, a gap is formed between the support 21 and the treatment surface 17 of the gripping piece 13, and the treatment surface 17 of the gripping piece 13 does not contact the support 21. Therefore, in a state where the support 21 and the grip piece 13 function as electrodes, a short circuit in an electric circuit in which high frequency power is output from the power supply device 3 to the support 21 and the grip piece 13 is effectively prevented.
 図2に示すように、第1の把持片13の表面には、有機層41とコーティング層51とが形成されている。コーティング層51は、第1の把持片13の表面において、外部に露出している。第1の把持片13は、コーティング層51が設けられる領域(第1の領域)では、コーティング層51によって覆われている。また、第1の把持片13は、コーティング層51が設けられない領域(第2の領域)では、外部に対して露出している。 As shown in FIG. 2, an organic layer 41 and a coating layer 51 are formed on the surface of the first grip piece 13. The coating layer 51 is exposed to the outside on the surface of the first grip piece 13. The first gripping piece 13 is covered by the coating layer 51 in a region (first region) where the coating layer 51 is provided. The first grip piece 13 is exposed to the outside in a region (second region) in which the coating layer 51 is not provided.
 有機層41は、コーティング層51と第1の把持片13の表面の間に設けられている。有機層41は、表面改質剤によって第1の把持片13の表面に形成される単分子膜である。有機層41は、第1の把持片13の表面及びコーティング層51のそれぞれと結合することにより、第1の把持片13とコーティング層51とを密着させている。 The organic layer 41 is provided between the coating layer 51 and the surface of the first gripping piece 13. The organic layer 41 is a monomolecular film formed on the surface of the first gripping piece 13 by a surface modifier. The organic layer 41 adheres the first gripping piece 13 to the coating layer 51 by bonding with the surface of the first gripping piece 13 and each of the coating layer 51.
 コーティング層51は、電気的絶縁性及び断熱性を有する。コーティング層51を形成するコーティング剤は、樹脂材料等の有機材料から形成される。本実施形態では、コーティング層51は、生体適合性が高いPEEK(ポリエーテルエーテルケトン)樹脂から形成されている。コーティング層51は、PEEK樹脂を含む材料によって形成されることが好ましい。なお、コーティング層51は、PEEK樹脂のみによって形成される必要はなく、PEEK樹脂を含む複合材料により形成されることも好ましい。 The coating layer 51 has electrical insulation and thermal insulation. The coating agent forming the coating layer 51 is formed of an organic material such as a resin material. In the present embodiment, the coating layer 51 is formed of PEEK (polyether ether ketone) resin which is highly biocompatible. The coating layer 51 is preferably formed of a material containing PEEK resin. The coating layer 51 does not have to be formed of only PEEK resin, and is preferably formed of a composite material containing PEEK resin.
 有機層41及びコーティング層51は、第1の把持片13の表面において、長手軸Lを中心とする軸回り(外周面)について背面19を含む領域に形成されている。有機層41及びコーティング層51は、第1の把持片13の外周面において長手軸Lを中心とする軸回り(外周面)について、一方側の側面20の一部から、背面19を通って、他方側の側面の一部までの範囲に渡って、連続して設けられている。 The organic layer 41 and the coating layer 51 are formed on the surface of the first grip piece 13 in a region including the back surface 19 around an axis (peripheral surface) around the longitudinal axis L. The organic layer 41 and the coating layer 51 pass through the back surface 19 from a part of the side surface 20 on one side about the axis (outer peripheral surface) centered on the longitudinal axis L in the outer peripheral surface of the first grip piece 13 It is provided continuously over the range to a part of the side of the other side.
 本実施形態では、有機層41及びコーティング層51は、長手方向について第1の把持片13の全体に渡って設けられている。したがって、有機層41及びコーティング層51は、第1の把持片13において、湾曲部25、及び、超音波振動が伝達された際の振動の腹A1の位置を含む範囲に、形成されている。 In the present embodiment, the organic layer 41 and the coating layer 51 are provided over the entire first gripping piece 13 in the longitudinal direction. Therefore, the organic layer 41 and the coating layer 51 are formed in the first gripping piece 13 in a range including the bending portion 25 and the position of the antinode A1 of the vibration when the ultrasonic vibration is transmitted.
 図3乃至図4を用いて、有機層41及びコーティング層51について説明する。図3に示すように、第1の把持片13の表面は、金属基Mが大気中の酸素及び水分と反応することにより、水酸基(ヒドロキシル基)OHによって覆われている。本実施形態では、金属基Mは、チタンである。 The organic layer 41 and the coating layer 51 will be described using FIGS. 3 to 4. As shown in FIG. 3, the surface of the first grip piece 13 is covered with hydroxyl group (hydroxyl group) OH by the metal group M reacting with oxygen and moisture in the air. In the present embodiment, the metal group M is titanium.
 有機層41は、チタネート系カップリング剤を含む材料によって形成されている。本実施形態のチタネート系カップリング剤は、チタン原子Tiと、1つ以上の加水分解性基ORと、有機官能基Yとを備える。チタン原子Tiと3つの加水分解性基ORとによって、チタネート系カップリング剤のカップリング構造が形成される。 The organic layer 41 is formed of a material containing a titanate coupling agent. The titanate coupling agent of the present embodiment comprises a titanium atom Ti, one or more hydrolyzable groups OR, and an organic functional group Y. The titanium atom Ti and the three hydrolyzable groups OR form a coupling structure of a titanate coupling agent.
 加水分解性基ORのそれぞれは、チタン原子Tiと化学結合している。加水分解性基ORは、加水分解等により無機材料と化学結合する反応基であり、例えば、メトキシ基、エトキシ基等のアルコキシ基である。有機官能基Yは、チタン原子Tiと化学結合している。有機官能基Yは、有機材料と結合する官能基であり、例えば、ビニル基、エポキシ基、アミノ基、メタクリル基、メルカプト基等である。ある実施例では、有機官能基Yとして、例えば、アミノ基(アミン系反応基)が用いられる。この場合、有機官能基Yとして、例えば、OC2H4NHC2H4NH2が用いられる。 Each of the hydrolysable groups OR is chemically bonded to the titanium atom Ti. The hydrolyzable group OR is a reactive group which is chemically bonded to the inorganic material by hydrolysis or the like, and is, for example, an alkoxy group such as a methoxy group or an ethoxy group. The organic functional group Y is chemically bonded to the titanium atom Ti. The organic functional group Y is a functional group to be bonded to an organic material, and is, for example, a vinyl group, an epoxy group, an amino group, a methacryl group, a mercapto group or the like. In one embodiment, for example, an amino group (amine-based reactive group) is used as the organic functional group Y. In this case, OC2H4NHC2H4NH2 is used as the organic functional group Y, for example.
 図4に示すように、第1の把持片13の表面では、チタネート系カップリング剤のカップリング構造と第1の把持片13の表面とが結合している。そして、チタネート系カップリング剤のカップリング構造と第1の把持片13の表面とが結合することにより、第1の把持片13の表面に有機層41が形成される。 As shown in FIG. 4, on the surface of the first grip piece 13, the coupling structure of the titanate coupling agent and the surface of the first grip piece 13 are coupled. Then, the coupling structure of the titanate coupling agent and the surface of the first grip piece 13 are combined to form the organic layer 41 on the surface of the first grip piece 13.
 ここで、チタネート系カップリング剤のカップリング構造と第1の把持片13の表面との結合は、チタネート系カップリング剤の加水分解性基ORと第1の把持片13の表面の水酸基OHとの化学結合(加水分解)、化学吸着による結合、分子間力による結合、及び、その他の相互作用による結合等を含む。また、有機層41では、カップリング構造の加水分解性基ORが、別のカップリング構造の加水分解性基ORと加水分解によって化学結合する。 Here, the bond between the coupling structure of the titanate coupling agent and the surface of the first gripping piece 13 is the hydrolyzable group OR of the titanate coupling agent and the hydroxyl group OH of the surface of the first gripping piece 13 Chemical bonds (hydrolysis), bonds by chemisorption, bonds by intermolecular force, bonds by other interactions, and the like. Further, in the organic layer 41, the hydrolyzable group OR of the coupling structure is chemically bonded to the hydrolyzable group OR of another coupling structure by hydrolysis.
 このとき、第1の把持片13の表面には、チタネート系カップリング剤の有機官能基Yによって改質表面42が形成される。本実施形態では、改質表面42は、アミノ基等の有機官能基Yによって形成されている。 At this time, a modified surface 42 is formed on the surface of the first grip piece 13 by the organic functional group Y of the titanate coupling agent. In the present embodiment, the modified surface 42 is formed of an organic functional group Y such as an amino group.
 第1の把持片13の表面では、有機材料によって形成されたコーティング層51と、有機層41の改質表面42を形成する有機官能基Y(例えばアミノ基)とが、結合している。そして、有機材料によって形成されたコーティング層51と有機層41とが結合することにより、第1の把持片13の表面に、有機層41を介して、コーティング層51が形成される。 On the surface of the first gripping piece 13, the coating layer 51 formed of an organic material and an organic functional group Y (for example, an amino group) forming the modified surface 42 of the organic layer 41 are bonded. The coating layer 51 formed of an organic material and the organic layer 41 are bonded to each other, whereby the coating layer 51 is formed on the surface of the first grip piece 13 via the organic layer 41.
 ここで、コーティング層51と有機層41の改質表面42との結合は、化学吸着による結合、分子間力による結合、及び、その他の相互作用による結合等を含む。 Here, the bonding between the coating layer 51 and the modified surface 42 of the organic layer 41 includes bonding by chemisorption, bonding by intermolecular force, bonding by other interaction, and the like.
 次に、処置具1の製造時において、背面19を含む第1の把持片13の表面に、有機層41及びコーティング層51を形成する工程を説明する。背面19に有機層41及びコーティング層51を形成する際には、作業者は、まず、第1の把持片13の表面においてコーティング層51を形成する領域に、サンドブラスト(sand blast)によって表面粗さを高くする表面処理(ブラスト加工処理)を行う。第1の把持片13の表面においてブラスト加工処理が行われた領域では、酸化膜が除去され、表面が凸凹形状に形成される。 Next, a process of forming the organic layer 41 and the coating layer 51 on the surface of the first grip piece 13 including the back surface 19 when manufacturing the treatment tool 1 will be described. When forming the organic layer 41 and the coating layer 51 on the back surface 19, the worker first makes the surface roughness by sand blast in the area on the surface of the first gripping piece 13 where the coating layer 51 is to be formed. Surface treatment (blasting treatment) to increase the In the area where the blast processing is performed on the surface of the first gripping piece 13, the oxide film is removed, and the surface is formed in a concavo-convex shape.
 次に、作業者は、第1の把持片13の表面においてコーティング層51を形成する領域に、チタネート系カップリング剤を塗布する(図3参照)。これにより、前述のようにして、チタネート系カップリング剤が第1の把持片13の表面に結合し、有機層41が形成される。そして、有機層41によって、第1の把持片13の表面に改質表面42が形成される。 Next, the worker applies a titanate coupling agent to the area on the surface of the first grip piece 13 where the coating layer 51 is to be formed (see FIG. 3). As a result, as described above, the titanate coupling agent is bonded to the surface of the first grip piece 13 to form the organic layer 41. Then, the modified surface 42 is formed on the surface of the first grip piece 13 by the organic layer 41.
 次に、作業者は、第1の把持片13の表面に形成された改質表面42上に、コーティング層51を形成する液状のコーティング剤を塗布する。これにより、前述のようにして、シランカップリング剤のカップリング構造が有機層41の改質表面42と結合し、コーティング層51が形成される(図4参照)。 Next, the operator applies a liquid coating agent that forms the coating layer 51 on the modified surface 42 formed on the surface of the first grip piece 13. Thereby, as described above, the coupling structure of the silane coupling agent is bonded to the modified surface 42 of the organic layer 41 to form the coating layer 51 (see FIG. 4).
 前述のように、有機層41及びコーティング層51は、第1の把持片13の延設軸を中心とする第1の把持片13の外周面において、側面20の一部と背面19とを含む領域に形成される(図2参照)。有機層41及びコーティング層51を形成する工程では、例えば、有機層41及びコーティング層51を形成したい部分以外にマスク処理を施すことにより、第1の把持片13の表面において所望の領域に有機層41及びコーティング層51を形成する。 As described above, the organic layer 41 and the coating layer 51 include a part of the side surface 20 and the back surface 19 on the outer peripheral surface of the first gripping piece 13 centered on the extension axis of the first gripping piece 13 It is formed in the area (see FIG. 2). In the step of forming the organic layer 41 and the coating layer 51, for example, by applying mask processing to portions other than the portions where the organic layer 41 and the coating layer 51 are desired to be formed, the organic layer is formed on the desired area 41 and the coating layer 51 are formed.
 次に、本実施形態の処置具1の作用及び効果について説明する。処置具1を用いて処置を行う際には、まず、腹腔等の体腔内にエンドエフェクタ6を挿入する。そして、血管等の処置対象を一対の把持片13,14の間に配置し、エンドエフェクタ6を閉動作させる。これにより、把持片13,14の間で処置対象が把持される。処置対象が把持片13,14の間で把持された状態で、電源装置3から処置具1に電気エネルギーを供給させる操作入力が行われることにより、前述のようにして、高周波電流と超音波振動のうち少なくとも一方が、把持された処置対象に処置エネルギーとして付与される。 Next, the operation and effects of the treatment tool 1 of the present embodiment will be described. When performing treatment using the treatment tool 1, first, the end effector 6 is inserted into a body cavity such as the abdominal cavity. Then, a treatment target such as a blood vessel is disposed between the pair of grasping pieces 13 and 14, and the end effector 6 is closed. Thereby, the treatment target is gripped between the gripping pieces 13 and 14. In the state where the treatment object is gripped between the gripping pieces 13 and 14, an operation input for supplying electric energy from the power supply device 3 to the treatment tool 1 is performed, whereby the high frequency current and the ultrasonic vibration are generated as described above. At least one of them is given as treatment energy to the grasped treatment object.
 また、本実施形態では、第1の把持片13及び振動伝達部材8は、振動伝達性の良いチタン合金によって形成されている。このため、超音波振動子で発生した振動が、振動伝達部材8及び第1の把持片13を介して、処置面17に効果的に伝達される。 Further, in the present embodiment, the first grip piece 13 and the vibration transfer member 8 are formed of a titanium alloy having good vibration transferability. For this reason, the vibration generated by the ultrasonic transducer is effectively transmitted to the treatment surface 17 via the vibration transfer member 8 and the first grip piece 13.
 また、本実施形態では、第1の把持片13において背面19を含む領域には、コーティング層51が設けられている。前述のように、コーティング層51は、断熱性及び電気的絶縁性を有する。このため、コーティング層51が設けられることにより、第1の把持片13の表面においてコーティング層51が設けられた部分からの熱侵襲が抑制される。これにより、処置に起因して生じる熱が意図しない生体組織に影響を与えることが抑制される。 Further, in the present embodiment, the coating layer 51 is provided in a region including the back surface 19 in the first grip piece 13. As described above, the coating layer 51 has thermal insulation and electrical insulation. For this reason, by providing the coating layer 51, the heat invasion from the part in which the coating layer 51 was provided in the surface of the 1st holding piece 13 is suppressed. This prevents the heat generated due to the treatment from affecting unintended body tissue.
 また、本実施形態では、コーティング層51と第1の把持片13の表面の間には、有機層41が設けられている。有機層41は、コーティング層51及び第1の把持片13の表面のそれぞれと結合することにより、コーティング層51を第1の把持片13の表面に接着している。 Further, in the present embodiment, an organic layer 41 is provided between the coating layer 51 and the surface of the first grip piece 13. The organic layer 41 bonds the coating layer 51 to the surface of the first gripping piece 13 by bonding to each of the coating layer 51 and the surface of the first gripping piece 13.
 また、本実施形態では、第1の把持片13の表面にチタネート系カップリング剤を塗布する工程において、第1の把持片13の表面には、有機層41の有機官能基Yによる改質表面42が形成される。一般的に、PEEK樹脂等の有機材料は、チタンに対する結合性よりも有機材料に対する結合性の方が良いことが知られている。このため、有機層41による改質表面42を第1の把持片13の表面に形成することにより、PEEK樹脂等の有機材料によって形成されるコーティング剤を第1の把持片13の表面に直接結合する場合に比べて、コーティング層51の第1の把持片13の表面に対する密着構造が改善し、コーティング層51の第1の把持片13の表面に対する密着強度(接着強度)が向上する。コーティング層51の第1の把持片13の表面に対する密着強度が向上することにより、コーティング層51が剥がれにくくなり、処置中の摩擦や熱に起因するコーティング層51の劣化速度が低減される。 Further, in the present embodiment, in the step of applying the titanate coupling agent to the surface of the first grip piece 13, the surface of the first grip piece 13 is the modified surface of the organic layer 41 with the organic functional group Y. 42 are formed. In general, organic materials such as PEEK resin are known to have better bonding to organic materials than to titanium. Therefore, a coating agent formed of an organic material such as PEEK resin is directly bonded to the surface of the first gripping piece 13 by forming the modified surface 42 with the organic layer 41 on the surface of the first gripping piece 13 The adhesion structure of the coating layer 51 to the surface of the first grip piece 13 is improved, and the adhesion strength (adhesive strength) of the coating layer 51 to the surface of the first grip piece 13 is improved. As the adhesion strength of the coating layer 51 to the surface of the first grip piece 13 is improved, the coating layer 51 is less likely to be peeled off, and the deterioration rate of the coating layer 51 due to friction and heat during treatment is reduced.
 また、コーティング層51の第1の把持片13の表面に対する密着強度が向上することにより、コーティング層51と第1の把持片13の表面との間の水密性が向上する。コーティング層51と第1の把持片13の表面との間の水密性が向上することにより、コーティング層51と有機層41との間の界面、及び、有機層41と第1の把持片13の表面との間の界面からの液体の侵入が防止される。これにより、コーティング層51の第1の把持片13の表面からの剥離が防止され、処置具1の耐久性が向上する。 Further, the adhesion strength of the coating layer 51 to the surface of the first grip piece 13 is improved, whereby the water tightness between the coating layer 51 and the surface of the first grip piece 13 is improved. By improving the water tightness between the coating layer 51 and the surface of the first gripping piece 13, the interface between the coating layer 51 and the organic layer 41, and the organic layer 41 and the first gripping piece 13. The penetration of liquid from the interface with the surface is prevented. Thereby, peeling from the surface of the 1st holding piece 13 of the coating layer 51 is prevented, and the durability of the treatment tool 1 improves.
 また、本実施形態では、チタネート系カップリング剤が有する有機官能基Yとして、アミノ基が用いられている。このため、他の官能基が有機官能基Yとして用いられた場合に比べて、コーティング層51の耐久性が向上する。 Moreover, in the present embodiment, an amino group is used as the organic functional group Y possessed by the titanate coupling agent. Therefore, the durability of the coating layer 51 is improved as compared with the case where another functional group is used as the organic functional group Y.
 また、本実施形態では、有機層41は、チタネート系カップリング剤によって形成されている。また、本実施形態では、第1の把持片13は、チタン合金によって形成されている。ここで、チタネート系カップリング剤は、PEEK樹脂等の有機材料によって形成されるコーティング剤に比べて、チタンに対する結合性が良いことが知られている。このため、有機層41をコーティング層51と第1の把持片13の表面との間に設けることにより、PEEK樹脂等の有機材料によって形成されるコーティング剤を第1の把持片13の表面に直接結合する場合に比べて、PEEK樹脂等の有機材料によって形成されるコーティング層51の第1の把持片13の表面に対する密着強度が向上する。 Further, in the present embodiment, the organic layer 41 is formed of a titanate coupling agent. Further, in the present embodiment, the first grip piece 13 is formed of a titanium alloy. Here, it is known that the titanate coupling agent has better bonding to titanium than a coating agent formed of an organic material such as PEEK resin. Therefore, by providing the organic layer 41 between the coating layer 51 and the surface of the first gripping piece 13, a coating agent formed of an organic material such as PEEK resin is directly applied to the surface of the first gripping piece 13. The adhesion strength of the coating layer 51 formed of an organic material such as PEEK resin to the surface of the first grip piece 13 is improved as compared with the case of bonding.
 また、一般的に、湾曲部25では、超音波振動が伝達されること等によってコーティング層51の把持片13の表面に対する密着強度が低下しやすい。本実施形態では、有機層41は、第1の把持片13の湾曲部25を含む領域に設けられている。このため、密着強度が低下しやすい領域において、コーティング層51の密着強度を向上させる有機層41が設けられていることにより、処置具1の耐水性及び耐久性を効果的に向上させることができる。 Also, in general, in the curved portion 25, the adhesion strength of the coating layer 51 to the surface of the grip piece 13 is likely to decrease due to the transmission of ultrasonic vibration or the like. In the present embodiment, the organic layer 41 is provided in a region including the curved portion 25 of the first grip piece 13. For this reason, the water resistance and durability of the treatment instrument 1 can be effectively improved by providing the organic layer 41 for improving the adhesion strength of the coating layer 51 in the region where the adhesion strength tends to decrease. .
 また、一般的に、第1の把持片13に所定の共振周波数の超音波振動が伝達された状態における振動の腹位置では、超音波振動による変位により、コーティング層51の把持片13の表面に対する密着強度が低下しやすい。本実施形態では、有機層41は、把持片13の表面において、振動の腹の位置A1を含む領域に設けられている。このため、密着強度が低下しやすい領域において、コーティング層51の密着強度を向上させる有機層41が設けられていることにより、コーティング層51の第1の把持片13に対する振動追随性が良くなり、処置具1の耐水性及び耐久性を効果的に向上させることができる。 Also, in general, at an antinode position of vibration in a state where ultrasonic vibration of a predetermined resonance frequency is transmitted to the first grip piece 13, displacement of the coating layer 51 with respect to the surface of the grip piece 13 due to ultrasonic vibration. Adhesion strength is likely to decrease. In the present embodiment, the organic layer 41 is provided on the surface of the gripping piece 13 in a region including the antinode position A1 of the vibration. For this reason, by providing the organic layer 41 for improving the adhesion strength of the coating layer 51 in the region where the adhesion strength is likely to be reduced, the vibration followability to the first grip piece 13 of the coating layer 51 is improved. The water resistance and durability of the treatment instrument 1 can be effectively improved.
 また、有機層41及びコーティング層51は、ブラスト加工処理によって第1の把持片13の表面に形成された凸凹形状に沿う状態で、第1の把持片13の表面に密着する。このため、第1の把持片13の表面と有機層41及びコーティング層51との間には、アンカー効果が作用する。このアンカー効果によって、第1の把持片13の表面への有機層41及びコーティング層51の密着強度が高くなる。 The organic layer 41 and the coating layer 51 are in close contact with the surface of the first gripping piece 13 in a state along the uneven shape formed on the surface of the first gripping piece 13 by blast processing. Therefore, an anchor effect acts between the surface of the first grip piece 13 and the organic layer 41 and the coating layer 51. Due to this anchor effect, the adhesion strength of the organic layer 41 and the coating layer 51 to the surface of the first gripping piece 13 is increased.
 また、本実施形態の構成によれば、コーティング層51と第1の把持片13の表面との密着構造が改善することにより、コーティング層51の第1の把持片13の表面に対する密着強度が向上し、コーティング層51と第1の把持片13の表面との間の水密性が向上する。コーティング層51と第1の把持片13の表面との間の水密性が向上することにより、チタン合金等によって形成される第1の把持片13に対して、サブゼロ処理等の熱処理を用いて、残留応力の解放処理を行うことが容易になる。 Further, according to the configuration of the present embodiment, the adhesion structure between the coating layer 51 and the surface of the first gripping piece 13 is improved, whereby the adhesion strength of the coating layer 51 to the surface of the first gripping piece 13 is improved. Thus, the water tightness between the coating layer 51 and the surface of the first gripping piece 13 is improved. By improving the water tightness between the coating layer 51 and the surface of the first gripping piece 13, the first gripping piece 13 formed of a titanium alloy or the like is subjected to a heat treatment such as a subzero treatment or the like. It becomes easy to carry out the release process of the residual stress.
 ここで、本実施形態の処置具1にサブゼロ処理を行う方法の一例を説明する。サブゼロ処理の一例では、まず、ドライアイス、炭酸ガス、液体窒素等を用いて、第1の把持片13の温度が0℃以下(例えば-80℃)になるまで第1の把持片13を冷却する。次に、冷却された第1の把持片13をお湯などの水中に投入することにより、第1の把持片13の温度を急激に上昇させる。このとき、第1の把持片13の温度を、例えば0℃以下から0℃以上まで上昇させ、第1の把持片13の温度の上昇幅が100℃以上になるまで、第1の把持片13の温度を急上昇させる。この処理により、第1の把持片13に温度が上昇する側への温度衝撃が発生し、第1の把持片13を形成するチタン合金の残留応力が解放される。第1の把持片13を形成するチタン合金の残留応力が解放されることにより、ブラスト加工処理が施された第1の把持片13の表面と有機層41及びコーティング層51との間の密着強度がさらに向上する。そして、第1の把持片13の冷却処理及び温度上昇処理を含む工程を1回以上行うことにより、所望の密着強度を得ることができる。 Here, an example of a method of performing subzero processing on the treatment tool 1 of the present embodiment will be described. In an example of the subzero treatment, first, the first gripping piece 13 is cooled using dry ice, carbon dioxide gas, liquid nitrogen or the like until the temperature of the first gripping piece 13 becomes 0 ° C. or less (eg, −80 ° C.) Do. Next, the temperature of the first gripping piece 13 is rapidly raised by putting the cooled first gripping piece 13 into water such as hot water. At this time, the temperature of the first gripping piece 13 is raised, for example, from 0 ° C. or less to 0 ° C. or more, and the first gripping piece 13 is continued until the temperature increase of the first gripping piece 13 reaches 100 ° C. or more. Soar the temperature of By this processing, a temperature impact to the side where the temperature rises in the first gripping piece 13 is generated, and the residual stress of the titanium alloy forming the first gripping piece 13 is released. Adhesion strength between the surface of the first gripping piece 13 subjected to the blasting process and the organic layer 41 and the coating layer 51 by releasing the residual stress of the titanium alloy forming the first gripping piece 13 Will be further improved. And the desired adhesion strength can be obtained by performing the process including the cooling process and the temperature rising process of the first holding piece 13 one or more times.
 前述のように、本実施形態では、有機層41を介してコーティング層51を第1の把持片13の表面に接着することにより、コーティング層51と第1の把持片13の表面との間の水密性が向上する。コーティング層51と第1の把持片13の表面との間の水密性が向上することにより、第1の把持片13を水等の液体中に投入した場合でも、コーティング層51と第1の把持片13の表面との間への液体の侵入が抑制される。これにより、コーティング層51が設けられた第1の把持片13に対して、前述のサブゼロ処理を行うことが可能になる。これにより、第1の把持片13の表面とコーティング層51との間の密着強度がさらに向上する。 As described above, in the present embodiment, by adhering the coating layer 51 to the surface of the first gripping piece 13 via the organic layer 41, the space between the coating layer 51 and the surface of the first gripping piece 13 is obtained. Water tightness is improved. By improving the water tightness between the coating layer 51 and the surface of the first gripping piece 13, even when the first gripping piece 13 is introduced into a liquid such as water, the coating layer 51 and the first gripping The entry of liquid to the surface of the piece 13 is suppressed. This makes it possible to perform the above-mentioned subzero processing on the first gripping piece 13 on which the coating layer 51 is provided. As a result, the adhesion strength between the surface of the first grip piece 13 and the coating layer 51 is further improved.
 また、コーティング層51の第1の把持片13の表面に対する密着強度の評価方法の一例について説明する。コーティング層51の第1の把持片13に対する密着強度の評価では、本実施形態のように有機層41及びコーティング層51が形成された第1の把持片13、及び、比較例として、有機層41が設けられず、表面に直接コーティング層51が塗布された第1の把持片13について、評価を行った。密着強度の評価では、まず、コーティング層51が形成された第1の把持片13を、水中に挿入させた。次に、第1の把持片13が水中に位置する状態で、操作入力によって第1の把持片13まで超音波振動を伝達させる操作入力を行い、処置具1を発振させた。このとき、第1の把持片13には、所定の共振周波数及び所定の振動速度の超音波振動が伝達された。振動速度は、2×π×共振周波数×振幅(片振幅)の式で算出される。所定の共振周波数は、20~100kHzである。所定の振動速度は、3m/s~15m/sである。好ましくは、共振周波数は、47kHzであり、振幅(片振幅)は、80μmである。このとき、振動速度は、11.8m/sである。 In addition, an example of a method of evaluating the adhesion strength of the coating layer 51 to the surface of the first grip piece 13 will be described. In the evaluation of the adhesion strength of the coating layer 51 to the first gripping piece 13, the first gripping piece 13 on which the organic layer 41 and the coating layer 51 are formed as in the present embodiment, and the organic layer 41 as a comparative example. The evaluation was performed on the first gripping piece 13 in which the coating layer 51 was directly applied to the surface without being provided. In the evaluation of adhesion strength, first, the first gripping piece 13 on which the coating layer 51 was formed was inserted into water. Next, in a state where the first grip piece 13 is located in water, an operation input for transmitting ultrasonic vibration to the first grip piece 13 is performed by an operation input, and the treatment tool 1 is oscillated. At this time, ultrasonic vibration of a predetermined resonance frequency and a predetermined vibration velocity was transmitted to the first grip piece 13. The vibration velocity is calculated by the formula 2 × π × resonance frequency × amplitude (half amplitude). The predetermined resonance frequency is 20 to 100 kHz. The predetermined vibration velocity is 3 m / s to 15 m / s. Preferably, the resonant frequency is 47 kHz and the amplitude (half amplitude) is 80 μm. At this time, the vibration velocity is 11.8 m / s.
 次に、コーティング層51が設けられた部分におけるブリスター(空気胞)の発生を、継時的に観察した。ブリスターは、コーティング層51と把持片13の表面との間に浸入した液体が揮発又は蒸発し、コーティング層51が把持片13の表面に対して膨れることにより、コーティング層51と把持片13の表面との間に形成される空気層である。コーティング層51と把持片13の表面との間にブリスターが発生することにより、コーティング層51の密着強度が低下し、処置具1を用いた処置性能に影響を及ぼす可能性がある。このため、ブリスターの観察を行うことにより、処置具1の耐水性及び耐久性を評価することができる。 Next, the occurrence of blisters (air vesicles) in the portion where the coating layer 51 was provided was observed over time. In the blister, the liquid that has entered between the coating layer 51 and the surface of the gripping piece 13 volatilizes or evaporates, and the coating layer 51 swells with respect to the surface of the gripping piece 13, whereby the surfaces of the coating layer 51 and the gripping piece 13 And an air layer formed between them. The occurrence of blisters between the coating layer 51 and the surface of the gripping piece 13 may reduce the adhesion strength of the coating layer 51 and affect the treatment performance using the treatment tool 1. For this reason, the water resistance and durability of the treatment tool 1 can be evaluated by observing the blister.
 例えば、第1の把持片13の表面にコーティング層51を直接塗布した場合、すなわち、本実施形態の有機層41を介さずに、コーティング層51を第1の把持片13の表面に形成した比較例では、発振する前の図5の状態から、水中での処置具1の発振を30分間行うことにより、図6の状態になった。図6に示すように、比較例の構成では、水中での処置具1の発振を30分間行った後において、ブリスター60が観察された。 For example, in the case where the coating layer 51 is directly applied to the surface of the first gripping piece 13, that is, the coating layer 51 is formed on the surface of the first gripping piece 13 without the organic layer 41 of this embodiment. In the example, from the state of FIG. 5 before oscillation, the state of FIG. 6 is obtained by oscillating the treatment tool 1 in water for 30 minutes. As shown in FIG. 6, in the configuration of the comparative example, blisters 60 were observed after the treatment instrument 1 oscillated in water for 30 minutes.
 一方、例えば、本実施形態の有機層41を介してコーティング層51を第1の把持片13の表面に接着し、前述のサブゼロ処理を行った場合、発振する前の図7の状態から、水中での処置具1の発振を120分間行うことにより、図8の状態になった。図8に示すように、本実施形態の構成では、水中での処置具1の発振を120分間行った後においても、ブリスターは観察されなかった。これにより、本実施形態の構成によれば、処置具1の耐水性及び耐久性が向上することが確認された。 On the other hand, for example, when the coating layer 51 is adhered to the surface of the first grip piece 13 through the organic layer 41 of the present embodiment and the above-mentioned subzero treatment is performed, underwater from the state of FIG. By performing the oscillation of the treatment tool 1 for 120 minutes, the state of FIG. 8 is obtained. As shown in FIG. 8, in the configuration of the present embodiment, no blister was observed even after oscillating the treatment tool 1 in water for 120 minutes. Thereby, according to the composition of this embodiment, it was checked that the water resistance and endurance of treatment implement 1 improve.
 (第2の実施形態) 
 本発明の第2の実施形態について、図9を参照して説明する。第2の実施形態は、第1の実施形態の構成を次の通り変形したものである。なお、第1の実施形態と同一の部分については同一の符号を付して、その説明は省略する。
Second Embodiment
A second embodiment of the present invention will be described with reference to FIG. The second embodiment is a modification of the configuration of the first embodiment as follows. The same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図9に示すように、本実施形態においても、コーティング層51は、第1の把持片13の表面において、長手軸Lを中心とする軸回り(外周面)について、一方側の側面20の一部から、背面19を通って、他方側の側面の一部までの範囲に渡って、連続して設けられている。 As shown in FIG. 9, also in the present embodiment, the coating layer 51 is one of the side surfaces 20 on one side about the axis (peripheral surface) centered on the longitudinal axis L on the surface of the first gripping piece 13. It is provided continuously from the part through the back surface 19 to a part of the other side surface.
 有機層41は、長手軸Lを中心とする軸回り(外周面)について、コーティング層51が形成される領域の全体に渡って設けられなくてもよい。有機層41は、図9に示すように、第1の把持片13の表面において、長手軸Lを中心とする軸回り(外周面)について、少なくとも、コーティング層51が設けられる領域(第1の領域)とコーティング層51が設けられない領域(第2の領域)との境界部分(界面)に設けられればよい。 The organic layer 41 may not be provided over the entire region where the coating layer 51 is formed around the axis (peripheral surface) around the longitudinal axis L. As shown in FIG. 9, the organic layer 41 is provided on the surface of the first gripping piece 13 with at least a region (first surface) in which the coating layer 51 is provided around an axis (peripheral surface) centered on the longitudinal axis L. It may be provided at the boundary portion (interface) between the region) and the region (second region) where the coating layer 51 is not provided.
 本実施形態では、長手軸Lを中心とする軸回り(外周面)について、コーティング層51の両端部は、側面20のそれぞれに位置する。したがって、第1の把持片13の表面において、コーティング層51が設けられる領域とコーティング層51が設けられない領域との境界部分は、側面20のそれぞれに位置する。また、有機層41は、第1の把持片13の側面20のそれぞれにおいて、長手軸Lを中心とする軸回り(外周面)について、コーティング層51が設けられる領域の両端部にのみ設けられている。 In the present embodiment, both ends of the coating layer 51 are located on each of the side surfaces 20 about an axis (peripheral surface) around the longitudinal axis L. Therefore, on the surface of the first gripping piece 13, the boundary between the area where the coating layer 51 is provided and the area where the coating layer 51 is not provided is located on each of the side surfaces 20. In addition, the organic layer 41 is provided only at both ends of the region where the coating layer 51 is provided around each of the side surfaces 20 of the first gripping piece 13 about an axis (peripheral surface) around the longitudinal axis L. There is.
 本実施形態においても、コーティング層51が設けられる領域とコーティング層51が設けられない領域との境界部分では、有機層41を介してコーティング層51が第1の把持片13の表面に接着されることにより、第1の把持片13の表面に対するコーティング層51の密着強度が向上する。これにより、コーティング層51と第1の把持片13との界面から、コーティング層51と第1の把持片13との間に液体等が侵入することが有効に防止され、コーティング層51と第1の把持片13との間の水密性が向上する。コーティング層51と第1の把持片13との間の水密性が向上することにより、処置具1の耐久性が向上する。また、コーティング層51と第1の把持片13との間の水密性が向上することにより、前述のサブゼロ処理などを行うことにより、第1の把持片13の表面に対するコーティング層51の密着強度をさらに向上させることができる。 Also in the present embodiment, the coating layer 51 is bonded to the surface of the first gripping piece 13 via the organic layer 41 at the boundary between the region where the coating layer 51 is provided and the region where the coating layer 51 is not provided. Thereby, the adhesion strength of the coating layer 51 to the surface of the first gripping piece 13 is improved. This effectively prevents liquid or the like from invading between the coating layer 51 and the first gripping piece 13 from the interface between the coating layer 51 and the first gripping piece 13, and the coating layer 51 and the first gripping piece 13 The water tightness with the grip piece 13 is improved. By improving the water tightness between the coating layer 51 and the first grip piece 13, the durability of the treatment tool 1 is improved. Further, by improving the water tightness between the coating layer 51 and the first gripping piece 13, the adhesion strength of the coating layer 51 to the surface of the first gripping piece 13 can be achieved by performing the aforementioned subzero treatment or the like. It can be further improved.
 また、前述の実施形態等では、一対の把持片(13、14)を有し、把持片(13、14)のそれぞれに電極が設けられるバイポーラのエネルギー処置具(1)について説明したが、本発明の実施形態等に係る構成は、モノポーラのエネルギー処置具にも適用可能である。この場合、エネルギー処置具は、超音波トランスデューサから超音波振動が伝達される母材を備え、母材によって処置面及び背面を有するエンドエフェクタが形成される。そして、母材の表面において少なくとも背面を含む領域に、前述の有機層(41)及びコーティング層(51)が設けられる。 Further, in the above-described embodiment and the like, the bipolar energy treatment tool (1) having the pair of gripping pieces (13, 14) and in which the electrodes are provided on each of the gripping pieces (13, 14) has been described. The structure which concerns on embodiment of invention etc is applicable also to a monopolar energy treatment tool. In this case, the energy treatment device includes a base material to which ultrasonic vibration is transmitted from the ultrasonic transducer, and the base material forms an end effector having a treatment surface and a back surface. And the above-mentioned organic layer (41) and a coating layer (51) are provided in the field which includes the back at least in the surface of a base material.
 (実施形態等の共通構成) 
 エネルギー処置具(1)は、金属によって形成されるとともに、処置対象を処置する処置面(17)を備える母材(8、13)と、前記母材(8、13)の表面に設けられ、断熱性及び電気的絶縁性を有するコーティング層(51)と、前記母材(8、13)の前記表面と前記コーティング層(51)との間に設けられ、カップリング剤を含み、前記カップリング剤が前記母材(8、13)の前記表面及び前記コーティング層(51)のそれぞれに結合することにより、前記コーティング層(51)を前記母材(8、13)の前記表面に接着する、有機層(41)とを備える。
(Common configuration of the embodiment etc.)
The energy treatment tool (1) is formed of metal and provided on a surface of the base material (8, 13) provided with a treatment surface (17) for treating the treatment target, and the surface of the base material (8, 13). A coating layer (51) having thermal insulating properties and electrical insulating properties, provided between the surface of the base material (8, 13) and the coating layer (51), containing a coupling agent, the coupling Bonding the coating layer (51) to the surface of the matrix (8, 13) by bonding an agent to the surface of the matrix (8, 13) and the coating layer (51), respectively And an organic layer (41).
 なお、本願発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適当な組み合わせにより種々の発明が抽出され得る。 The present invention is not limited to the above embodiment, and can be variously modified in the implementation stage without departing from the scope of the invention. In addition, the embodiments may be implemented in combination as appropriate as possible, in which case the combined effect is obtained. Furthermore, the above embodiments include inventions of various stages, and various inventions can be extracted by an appropriate combination of a plurality of disclosed configuration requirements.

Claims (13)

  1.  金属によって形成されるとともに、処置対象を処置する処置面を備える母材と、
     前記母材の表面に設けられ、断熱性及び電気的絶縁性を有するコーティング層と、
     前記母材の前記表面と前記コーティング層との間に設けられ、カップリング剤を含み、前記カップリング剤が前記母材の前記表面及び前記コーティング層のそれぞれに結合することにより、前記コーティング層を前記母材の前記表面に接着する、有機層と、
    を備える、エネルギー処置具。
    A base material provided with a treatment surface which is formed of metal and which treats the treatment target;
    A coating layer provided on the surface of the base material and having heat insulation and electrical insulation;
    The coating layer is provided between the surface of the base material and the coating layer and includes a coupling agent, and the coupling agent is bonded to the surface of the base material and the coating layer, respectively. An organic layer adhered to the surface of the matrix;
    An energy treatment tool comprising:
  2.  前記母材は、チタン合金から形成され、
     前記カップリング剤は、チタネート系カップリング剤であり、
     前記チタネート系カップリング剤の加水分解性基は、前記母材の前記表面と結合する、
    請求項1のエネルギー処置具。
    The base material is formed of a titanium alloy.
    The coupling agent is a titanate coupling agent,
    The hydrolyzable group of the titanate coupling agent is bonded to the surface of the matrix.
    The energy treatment tool of claim 1.
  3.  前記カップリング剤は、アミン系反応基を有し、
     前記有機層は、前記母材の前記表面にアミン系反応基から形成される改質表面を形成し、
     前記改質表面は、前記コーティング層と結合する、
    請求項1に記載のエネルギー処置具。
    The coupling agent has an amine reactive group,
    The organic layer forms a modified surface formed from an amine-based reactive group on the surface of the matrix;
    The modified surface bonds with the coating layer,
    The energy treatment tool according to claim 1.
  4.  前記コーティング層は、PEEK樹脂を含む材料によって形成されている、請求項1に記載のエネルギー処置具。 The energy treatment device according to claim 1, wherein the coating layer is formed of a material containing PEEK resin.
  5.  前記母材は、前記コーティング層によって覆われた第1の領域と、外部に露出する第2の領域と、前記第1の領域と前記第2の領域との間に形成される境界部分と、を有し、
     前記有機層は、前記母材の前記表面において少なくとも前記境界部分に設けられている、請求項1に記載のエネルギー処置具。
    The base material includes a first area covered by the coating layer, a second area exposed to the outside, and a boundary portion formed between the first area and the second area. Have
    The energy treatment device according to claim 1, wherein the organic layer is provided at least at the boundary portion on the surface of the base material.
  6.  前記母材に対して開閉可能で、前記母材の前記処置面との間で処置対象を把持可能な把持部材をさらに備える、請求項1に記載のエネルギー処置具。 The energy treatment tool according to claim 1, further comprising a gripping member that can be opened and closed with respect to the base material and that can hold a treatment target with the treatment surface of the base material.
  7.  前記母材及び前記把持部材は、電気エネルギーが供給されることにより、前記処置面と前記把持部材との間に高周波電流が流す、請求項6のエネルギー処置具。 The energy treatment tool according to claim 6, wherein the base material and the holding member are supplied with electric energy so that a high frequency current flows between the treatment surface and the holding member.
  8.  電気エネルギーが供給されることにより超音波振動を発生させるとともに、前記超音波振動を前記母材に伝達する超音波トランスデューサをさらに備える、請求項1のエネルギー処置具。 The energy treatment tool according to claim 1, further comprising an ultrasonic transducer that generates ultrasonic vibration by supplying electric energy and transmits the ultrasonic vibration to the base material.
  9.  前記母材は、長手軸に対して湾曲する湾曲部を備え、
     前記コーティング層及び前記有機層は、前記湾曲部を含む領域に設けられている、請求項8のエネルギー処置具。
    The base material includes a curved portion curved with respect to a longitudinal axis,
    The energy treatment device according to claim 8, wherein the coating layer and the organic layer are provided in an area including the curved portion.
  10.  前記コーティング層及び前記有機層は、前記超音波振動の腹位置を含む領域に設けられている、請求項8のエネルギー処置具。 The energy treatment tool according to claim 8, wherein the coating layer and the organic layer are provided in a region including an antinode position of the ultrasonic vibration.
  11.  前記母材に対して開閉可能で、前記母材の前記処置面との間で生体組織を把持可能な把持部材をさらに備え、
     前記母材及び前記把持部材は、電気エネルギーが供給されることにより、前記処置面と前記把持部材との間に高周波電流が流す、請求項8のエネルギー処置具。
    It further comprises a grasping member which can be opened and closed with respect to the base material and can hold a living tissue with the treatment surface of the base material,
    The energy treatment tool according to claim 8, wherein the base material and the holding member are supplied with electric energy so that a high frequency current flows between the treatment surface and the holding member.
  12.  処置対象を処置する処置面を備える母材を金属から形成することと、
     カップリング剤のカップリング構造を前記母材の表面に結合させることにより、前記母材の前記表面に有機層を形成することと、
     前記有機層の表面にコーティング剤を結合させることにより、前記母材の前記表面に断熱性及び電気的絶縁性を有するコーティング層を形成することと、
     前記母材の温度を上昇させることにより、前記コーティング層と前記母材の前記表面との間の密着強度を上昇させることと、
     を含むエネルギー処置具の製造方法。
    Forming a base material provided with a treatment surface for treating a treatment target from metal;
    Forming an organic layer on the surface of the matrix by bonding a coupling structure of a coupling agent to the surface of the matrix;
    Forming a coating layer having heat insulation and electrical insulation on the surface of the base material by bonding a coating agent to the surface of the organic layer;
    Raising the adhesion strength between the coating layer and the surface of the base material by raising the temperature of the base material;
    A method of manufacturing an energy treatment tool including:
  13.  前記母材を形成することは、前記母材の前記表面を凸凹形状にすることをさらに含む、請求項12に記載のエネルギー処置具の製造方法。 The method of manufacturing an energy treatment device according to claim 12, wherein forming the base material further includes making the surface of the base material uneven.
PCT/JP2017/045937 2017-12-21 2017-12-21 Energy treatment tool and method for manufacturing energy treatment tool WO2019123607A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045937 WO2019123607A1 (en) 2017-12-21 2017-12-21 Energy treatment tool and method for manufacturing energy treatment tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045937 WO2019123607A1 (en) 2017-12-21 2017-12-21 Energy treatment tool and method for manufacturing energy treatment tool

Publications (1)

Publication Number Publication Date
WO2019123607A1 true WO2019123607A1 (en) 2019-06-27

Family

ID=66993171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045937 WO2019123607A1 (en) 2017-12-21 2017-12-21 Energy treatment tool and method for manufacturing energy treatment tool

Country Status (1)

Country Link
WO (1) WO2019123607A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022003810A1 (en) * 2020-06-30 2022-01-06 オリンパス株式会社 Vibration transmission member, ultrasonic treatment instrument, and vibration transmission member production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380320A (en) * 1993-11-08 1995-01-10 Advanced Surgical Materials, Inc. Electrosurgical instrument having a parylene coating
JP2004520906A (en) * 2000-12-29 2004-07-15 チーム メディカル エル.エル.シー. Improved electrosurgical instrument
US20060259032A1 (en) * 2005-05-12 2006-11-16 Bruce Nesbitt Electrosurgical electrode and method of manufacturing same
JP2010082144A (en) * 2008-09-30 2010-04-15 Terumo Corp Medical implement and method of manufacturing the same
US20120029514A1 (en) * 2009-04-10 2012-02-02 Fairbourn David C Silane coating for medical devices and associated methods
WO2017126051A1 (en) * 2016-01-20 2017-07-27 オリンパス株式会社 Surgical instrument

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380320A (en) * 1993-11-08 1995-01-10 Advanced Surgical Materials, Inc. Electrosurgical instrument having a parylene coating
JP2004520906A (en) * 2000-12-29 2004-07-15 チーム メディカル エル.エル.シー. Improved electrosurgical instrument
US20060259032A1 (en) * 2005-05-12 2006-11-16 Bruce Nesbitt Electrosurgical electrode and method of manufacturing same
JP2010082144A (en) * 2008-09-30 2010-04-15 Terumo Corp Medical implement and method of manufacturing the same
US20120029514A1 (en) * 2009-04-10 2012-02-02 Fairbourn David C Silane coating for medical devices and associated methods
WO2017126051A1 (en) * 2016-01-20 2017-07-27 オリンパス株式会社 Surgical instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022003810A1 (en) * 2020-06-30 2022-01-06 オリンパス株式会社 Vibration transmission member, ultrasonic treatment instrument, and vibration transmission member production method

Similar Documents

Publication Publication Date Title
US20220110673A1 (en) Structured tissue contact surface for energy-based surgical instrument
CN103561672B (en) Surgical instruments and the surgical device including the surgical instruments
CN105934209B (en) Ultrasonic surgical instrument with stage clamping
JP6307669B1 (en) High frequency treatment tool
WO2015020147A1 (en) Ultrasonic probe and ultrasonic treatment device
JPH11128238A (en) Ultrasonic therapy device
JP2013545537A (en) Surgical instrument with charging device
WO2004012615A1 (en) Ultrasonic treatment apparatus
JPH0595955A (en) Ultrasonic therapeutic apparatus
WO2019097608A1 (en) Medical device
JP2019519265A (en) Life Cycle Monitoring Function for Surgical Instruments
WO2019123607A1 (en) Energy treatment tool and method for manufacturing energy treatment tool
US10874419B2 (en) Surgical instrument
JP2002085420A (en) Apparatus and method for ultrasonic coagulating and incising
CN111511301B (en) Energy treatment tool and method for manufacturing energy treatment tool
KR102238751B1 (en) Scissors Type Ultrasonic Energy Device
WO2017203720A1 (en) Gripping treatment instrument
US9662513B2 (en) Ultrasonic vibration treatment device
JP6271084B2 (en) Medical device and method for manufacturing coating on metal member
JP6639683B2 (en) Surgical treatment tools
JP2001017385A (en) Surgical instrument
US20220355364A1 (en) Method of manufacturing ultrasonic treatment tool
JP5932192B1 (en) Ultrasonic treatment device
JP4248884B2 (en) Ultrasonic treatment device
WO2016190072A1 (en) Bipolar treatment tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP