WO2019111883A1 - Ground surveying method and bladed cone - Google Patents

Ground surveying method and bladed cone Download PDF

Info

Publication number
WO2019111883A1
WO2019111883A1 PCT/JP2018/044533 JP2018044533W WO2019111883A1 WO 2019111883 A1 WO2019111883 A1 WO 2019111883A1 JP 2018044533 W JP2018044533 W JP 2018044533W WO 2019111883 A1 WO2019111883 A1 WO 2019111883A1
Authority
WO
WIPO (PCT)
Prior art keywords
cone
penetration
acting
blade
bladed
Prior art date
Application number
PCT/JP2018/044533
Other languages
French (fr)
Japanese (ja)
Inventor
英一郎 佐伯
孝次 時松
秋男 阿部
Original Assignee
株式会社東京ソイルリサーチ
英一郎 佐伯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東京ソイルリサーチ, 英一郎 佐伯 filed Critical 株式会社東京ソイルリサーチ
Priority to JP2019514321A priority Critical patent/JP6532637B1/en
Priority to CN201880069368.XA priority patent/CN111263839B/en
Publication of WO2019111883A1 publication Critical patent/WO2019111883A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness

Definitions

  • the present invention belongs to the technical field of a ground survey method using torque required for rotational penetration and a bladed cone suitable for implementation of the ground survey method.
  • Patent Document 1 relating to Patent No. 379 8281: “When rotating a rod having a cutting blade at its tip into a ground, the rotational load and the depth of the tip of the rod are continuously measured.
  • the standard penetration test (A) is time-consuming and costly because it requires replacing the tip device to perform the standard penetration test, in addition to the cost and time for boring. Although this is a dynamic penetration test, a large construction machine is not required, but the N value can be obtained only for every 1 m as the number of falling of the hammer, not a continuous value. There is also a problem that the dynamic penetration resistance has large variations.
  • the cone penetration test of (B) requires a dynamic clear value because it is a penetration test using only static vertical load, but a large pushing force is required and it is impossible to investigate a deep and hard ground. Deep ground investigation is also difficult because of the large friction on the surface of the rod.
  • the Swedish sounding (C) uses vertical force and load torque on the cone and is suitable for soft ground investigations, but it does not have a large impetus and can not investigate deep hard ground. In addition, penetration resistance can be obtained only every 0.25 m as the number of rotations, etc., and it is not a continuous value.
  • the rotary sounding of (D) uses a load vertical force and a load torque, but is a “cutting in” by applying the load vertical force and has no propulsive force. Moreover, since the shape of the tip is not simple, there is no means for evaluating the cone penetration resistance, the N value, etc. from the load vertical force and torque. Moreover, the cost is high and not widespread.
  • the object of the present invention is that by using a bladed cone, it is possible to penetrate into a solid and deep ground even with a small load vertical force by a large blade driving force due to a blade reaction force generated in the ground (ground to be surveyed) by a small load torque.
  • An object of the present invention is to provide a low-cost ground survey method and a bladed cone capable of continuously determining the penetration resistance of the ground with high accuracy and speed by a lightweight and small construction machine.
  • the next object of the present invention is that the action torque and the action vertical force acting on the bladed cone based on the action torque and the action vertical force acting on the bladed cone or per rotation of the bladed cone It is an object of the present invention to provide a ground investigation method and a bladed cone which make it possible to easily evaluate the cone penetration resistance and the N value based on the penetration amount of
  • the ground survey method according to the invention described in claim 1 is provided with a cone portion 2 which is reduced in diameter in the penetration direction, and an outer peripheral surface 2 a of the cone portion 2 and a tip 4 And a rod 7 for attaching the bladed cone 1 to the lower end 5, and the load torque and load vertical force applied to the upper portion 6 of the rod 7
  • the bladed cone 1 is made to penetrate into the ground 9 to be surveyed, and the acting torque and the acting vertical force acting on the bladed cone 1 based on the acting torque and the acting vertical force acting on the bladed cone 1
  • the penetration resistance of the ground 9 to be surveyed is evaluated based on the penetration amount per one rotation of the bladed cone 1.
  • the invention described in claim 2 is the ground survey method according to claim 1, When evaluating the penetration resistance of the survey target ground 9 based on the acting torque acting on the bladed cone 1 and the acting vertical force: It is characterized in that the cone penetration resistance and the standard penetration test N value (hereinafter abbreviated as N value) are evaluated by the following formula.
  • the invention described in claim 3 is the ground survey method according to claim 1,
  • the acting vertical force, and the penetration amount per one rotation of the winged cone 1 When the vertical penetration amount (s) per one rotation of the bladed cone is equal to or smaller than the blade pitch (P), The cone penetration resistance and the N value are evaluated by the following equation from the acting torque, the acting vertical force, and the penetration amount per one rotation of the bladed cone.
  • the bladed cone 1 according to the invention described in claim 5 is the above-mentioned bladed cone used in the ground survey method according to any one of claims 1 to 4, and a cone portion which reduces in diameter toward the tip 4 2 and a spiral blade 3 provided on the outer peripheral surface 2a of the cone 2 and having a narrower width toward the tip 4.
  • the invention described in claim 6 is characterized in that, in the bladed cone 1 described in claim 5, the blade pitch of the bladed cone is 0.5 to 1.5 times the outermost diameter of the cone. .
  • the ground investigation method according to the present invention uses a bladed cone provided with a spiral blade whose width is narrowed toward the tip to the tip cone whose outer diameter decreases toward the tip, penetration resistance of the tip portion is small. Therefore, the bladed cone can be penetrated into the ground with a small load torque and load vertical force. In addition, since this shape has good penetration and penetrates more than the blade pitch per rotation, the balance between the force acting on the bladed cone and the resistance becomes clear, and the ground resistance (strength) with high accuracy can be calculated by the evaluation formula described later. It is possible to predict. In addition, since there is a large blade driving force at the tip, penetration into a deep and hard ground can be made vertically without tilting.
  • the ground survey method according to claim 2, 3 or 4 can accurately convert the acting torque and the acting vertical force into the cone penetration resistance value and the N value used in practice.
  • this investigation method can obtain continuous data on penetration resistance, not discrete data of 1 m per N value.
  • the bladed cone according to claim 6 has an optimum shape that achieves the minimum torque when the blade pitch is 0.5 to 1.5 times (especially 0.5 to 1.0 times) the outermost diameter of the cone. Ru.
  • the right figure is a graph of q c -depth relationship determined from the ground survey, and the left figure is a graph of q c -depth relationship determined by a conventional cone penetration test.
  • the right figure is a graph of the N value-depth relationship determined from the ground survey, and the left figure is a graph of the N value-depth relationship determined by the conventional standard penetration test. It is the graph which showed the relationship between the action torque of a bladed cone, and a blade pitch rate.
  • the bladed cone according to this embodiment shown in FIG. 4 is a ground survey carried out by inserting the bladed cone 1 into the ground 9 by applying a load torque and a load vertical force to the upper portion 6 of the rod 7 (see FIG. 1). Used in the method. Vaned cone in this embodiment the maximum cone diameter D o is 40 mm, the maximum blade diameter D w is 60 mm, total length at 208 mm, and the cone portion 2 whose diameter decreases toward the penetration direction of the distal end 4, the cone portion 2
  • the outer peripheral surface 2 a is configured to include a spiral blade portion 3 formed in a blade shape in which the width narrows toward the tip 4 and spirals. The optimal shape of the spiral blade 3 will be described later. In addition, it should be noted that each of the dimensions is just an example.
  • the bladed cone 1 is attached to the lower end 5 of the rod 7 as illustrated in FIG. 1, and the upper end 6 of the rod 7 operates (the driving device of) the construction machine 8 to load torque and load vertical force. It is rotationally penetrated to the ground 9 by adding. The penetration resistance of the ground 9 can be evaluated based on the value of the load torque and the load vertical force at that time.
  • the “action torque” and the “action vertical force” act on the bladed cone 1.
  • the loading torque and the applied vertical force are the acting torque and the acting vertical force.
  • the action torque and the action vertical force are obtained by subtracting the influence of the surface friction of the rod 7 from the load torque and the load vertical force.
  • the force and torque generated in the bladed cone 1 by the action torque and the action vertical force are the four values of “vertical penetration resistance force”, “penetration friction resistance torque”, “vane propulsion force”, and “vane friction resistance torque”. is there.
  • the loading method includes a displacement control method in which the penetration amount s is controlled to be equal to the blade pitch P and a load control method in which the loading vertical force is controlled to be constant.
  • the load control method there are the following two cases of penetration amount per one rotation.
  • (1) In the case of s ⁇ P (when there is a blade propelling force) When the vertical penetration resistance is larger than the acting vertical force in a hard ground or the like, blade propelling force is generated, and in general, the amount of penetration per one rotation is equal to the blade pitch. When the ground strength rapidly increases (hardens rapidly), the amount of penetration per one rotation may be smaller than the blade pitch.
  • s> P when the blade propelling force is zero
  • the vertical penetration resistance is smaller than the acting vertical force in a soft ground or the like, the blade propelling force becomes zero, and the amount of penetration per one rotation becomes larger than the blade pitch.
  • Vertical penetration resistance force “piercing frictional resistance torque”, “vane propulsion force”, “vane frictional resistance torque” acting on the bladed cone at the time of rotational penetration, and the balance of the forces will be described in detail.
  • Vertical penetration resistance Vertical penetration resistance
  • Vertical penetration resistance R p of the bladed cone shown in FIG. 3 is an index having the same characteristics as the cone penetration resistance q c, it is considered an indicator of the high correlation rigidity and strength and earth removal volume of soil. Therefore, attention is paid to “the total volume V w of the blade and the shaft portion of the largest diameter portion of the bladed cone for discharging per one rotation when the bladed cone is penetrating at a penetration amount s per rotation.
  • V w can be expressed by the following two equations depending on the difference in penetration amount.
  • a cone similar to the tip cone and having a base radius r e is considered as an “equivalent cone”, and the balance of forces of the “equivalent cone” is considered.
  • Normal stress acting on the conical peripheral surface in extreme equilibrium in the ground (the surface pressure) was assumed to be uniformly distributed, the normal stress level per unit area and p p.
  • the circle on which the resultant force F ⁇ p of the frictional force acts to convert it into torque is called the equivalent action circle, and the radius thereof is called the equivalent action radius.
  • the equivalent action radius and the equivalent inclination angle of the circumferentially acting force such as the frictional force by the blade driving force can be determined as follows.
  • blade outer and inner diameters of the blade rotation angle is [psi helical blade when there n Zhou, the maximum outer radius to the maximum radius of r w blade cone shaft and r o, the polar coordinates (r- ⁇ ) It can be expressed as follows.
  • r w ' is a constant value regardless of n
  • the equivalent action radius r w1 ' 2 (r w 3- r o ) of the donut-shaped ring shown in the following (Supplementary) 3 ) / (3 (r w 2- r o 2 )) 3/4 of the value.
  • FIG. 5 is a diagram showing the balance of forces in the vertical (Z-axis) direction and the horizontal ( ⁇ axis) direction when the rod axis is in the horizontal (x) direction and the rod friction is ignored. The explanation of the symbols is given below.
  • H t is a value T b / r w 'obtained by replacing the acting torque T b acting on the bladed cone with a horizontal force on the "equivalent acting circle”.
  • L b is the acting vertical force acting on the bladed cone.
  • PA w Sum of projected area of the blade with a bladed blade
  • F w is a sum of circumferential component forces of the blade friction stress degree generated by the blade driving force with the blade friction resistance ⁇ P w acting on “the equivalent action circle of blade friction resistance torque”.
  • R p is the vertical penetration resistance.
  • is the ratio of the equivalent action radius (r e ′) of penetration friction resistance torque to the equivalent action radius (r w ′) of blade friction resistance torque.
  • R p (T b C 2 / r w '+ L b C 1 ) / (C 1 + C 2 ⁇ / C 3 ) (5-5)
  • the vertical penetration resistance force (R p ) of the bladed cone can be expressed by a loading torque (T b ) and a loading vertical force (L b ).
  • the vertical penetration resistance R p of the winged cone can also be expressed from the balance of energy and is shown below.
  • E i L b s + 2 ⁇ T b (6-1)
  • E c E s + E ⁇ E s : energy consumed per revolution by vertical penetration
  • E ⁇ energy consumed per rotation friction
  • the energy E ⁇ consumed by rotation friction can be expressed by the following equation.
  • E ⁇ E ⁇ p + E ⁇ a
  • E ⁇ p Energy consumed per rotation due to penetration friction with rotation
  • E ⁇ a Energy consumed per rotation due to blade friction with rotation (7-1.
  • Energy E s consumed by vertical penetration) E s can be expressed by the following equation.
  • E s R p s (7-1) (7-2.
  • Energy E ⁇ p consumed per rotation due to penetration friction with rotation) E ⁇ p can be expressed by the following equation.
  • E ⁇ a (R p -L b ) / C 2
  • P w (R p -L b ) / C 2
  • R p ⁇ q c A e (9-1) ⁇ : coefficient determined from the relationship between q c and R p , q c : cone penetration resistance A e : equivalent penetration cross section of bladed cone There is the following relationship between N value and cone penetration resistance.
  • the vertical penetration amount (s) per one rotation is the blade pitch (P) according to the equations (9-1), (9-2) and (8-1) based on the "balance of energy” described in claim 3.
  • Cone penetration resistance (q c ) (2 ⁇ T b + L b s + 2 ⁇ w w 'L b / (C 2 cos ⁇ )) / (s + 2 ⁇ ⁇ re ′ / C 3 + 2 ⁇ r w ′ / (C 2 cos ⁇ )) / ( ⁇ A e )
  • N value (2 ⁇ T b + L b s + 2 ⁇ r w 'L b / C 2 cos ⁇ ) / (s + 2 ⁇ r e' / C 3 + 2 ⁇ r w '/ (C 2 cos ⁇ )) / ( ⁇ A e)
  • C 2 cos ⁇ - ⁇ sin ⁇
  • C 3 sin ⁇ + ⁇ cos ⁇ According to (Equation 9), (9-2) and
  • Cone penetration resistance (q c ) (2 ⁇ T b + L b s) / (s + 2 ⁇ r e '/ C 3 ) / ( ⁇ A e )
  • 1.
  • R p of the cone penetration resistance and bladed cone is approximately the same value.
  • the cone penetration test was interrupted at two points at a depth of about 17m and interrupted, but this survey method could investigate up to a depth of about 25m without problems.
  • the "N value" according to the present invention can be obtained as continuous data as shown.
  • the blade pitch ratio is 0.5 to 1.5, the acting torque is small. Therefore, when the blade pitch of the bladed cone is 0.5 to 1.5 of the maximum diameter of the cone, it is efficient with a small acting torque. It turns out that it can penetrate.

Abstract

Provided are a low-cost ground surveying method and a bladed cone, with which it is possible to continuously determine the penetration resistance of ground quickly and with high precision using a light and small construction machine, in order to be capable of penetrating hard and deep ground even with a low load vertical force using a high blade propulsion force due to the blade reaction force generated in the earth by a low load torque. The present invention comprises: a bladed cone 1 having a cone part 2 that has a diameter that decreases in the penetration direction, and a spiral blade part 3 provided on the outer peripheral surface 2a of the cone part 2, the width of the spiral blade part 3 decreasing toward a tip end 4; and a rod 7 attached to a lower end 5 of the bladed cone 1; the bladed cone 1 being caused to penetrate ground 9 to be surveyed using load torque and load vertical force applied to an upper part 6 of the rod 7, and the penetration resistance of the ground 9 to be surveyed being evaluated on the basis of action torque and action vertical force acting on the bladed cone 1, or on the basis of the action torque and the action vertical force acting on the bladed cone 1 and the penetration amount per rotation of the bladed cone 1.

Description

地盤調査方法と羽根付きコーンGround survey method and bladed cone
 この発明は、回転貫入に要するトルクを用いた地盤調査方法と、同地盤調査方法の実施に好適な羽根付きコーンの技術分野に属する。 The present invention belongs to the technical field of a ground survey method using torque required for rotational penetration and a bladed cone suitable for implementation of the ground survey method.
 従来、地盤調査方法として、図6に概要を示した(A)標準貫入試験や(B)コーン貫入試験、(C)スウェーデン式サウンディングがある。その他、(D)ロータリーサウンディングが周知であるほか、(E)回転貫入杭のトルクを用いて支持層確認をするもの等がある。
 また、(F)特許第3798281号にかかる特許文献1には、「先端部に掘削羽根を備えたロッドを地盤に回転圧入するときの、回転負荷およびロッドの先端深度を連続的に測定するようにしてなる地盤調査方法において、ロッド頭部で圧入時の回転負荷を測定し、かつ逆回転して引き抜くときの回転負荷を測定することにより、ロッド軸部に作用する回転負荷を分離し、ロッド先端部に作用する回転負荷のみを算出することを特徴とする地盤調査方法」が開示されている(同特許文献1の請求項1参照)。
Conventionally, as ground investigation methods, there are (A) standard penetration test, (B) cone penetration test, and (C) Swedish-type sounding which are schematically shown in FIG. In addition to that, (D) rotary sounding is well known, and (E) there is one that carries out support layer confirmation using torque of a rotary penetration pile.
(F) Patent Document 1 relating to Patent No. 379 8281: “When rotating a rod having a cutting blade at its tip into a ground, the rotational load and the depth of the tip of the rod are continuously measured. In the ground investigation method, the rotational load at the time of press-in with the rod head is measured, and the rotational load at the time of reverse rotation and withdrawal is measured to separate the rotational load acting on the rod shaft, A ground investigation method characterized by calculating only a rotational load acting on the tip portion is disclosed (see claim 1 of the patent document 1).
特許第3798281号公報Patent No. 379 8281
 前記(A)の標準貫入試験は、ボーリングする費用と時間がかかることに加えて、標準貫入試験を行うに当たり先端器具を取り換える必要があるため時間とコストがかかる。動的貫入試験であるため大型の施工機械は必要としないが、N値がハンマーの落下回数として1mごとにしか求められず、連続的な値ではない。また動的貫入抵抗はバラツキが大きいという問題もある。
 (B)のコーン貫入試験は、静的な鉛直荷重のみによる貫入試験のため、力学的に明快な値が求められるが、大きな押し込み力が必要で深くて固い地盤の調査は不可能である。ロッドの周面摩擦が大きいため深い地盤調査も難しい。
 (C)のスウェーデン式サウンディングは、コーン部に鉛直力と載荷トルクを用い、柔らかい表層地盤の調査に適するが、大きな推進力を有さず、深くて固い地盤の調査は不可能である。また貫入抵抗が回転回数などとして0.25mごとにしか求められず、連続的な値ではない。
 (D)のロータリーサウンディングは、載荷鉛直力と載荷トルクを用いるが、載荷鉛直力をかけた「削り貫入」であり、推進力は有さない。しかも先端形状が単純でないため、載荷鉛直力とトルクから、コーン貫入抵抗やN値などを評価する手段がない。しかも、コストが高く普及していない。
 (E)の回転貫入杭のトルクを用いて支持層確認をするものは、地盤調査に用いるとコストが高い。しかも先端形状が単純でないため、載荷鉛直力と載荷トルクから、コーン貫入抵抗、N値など評価する手段がない。
 (F)の特許文献1にかかる地盤調査方法は、貫入トルクと逆回転による引き上げトルクの差がポイントである。先端部の貫入抵抗力が大きいため、大きな載荷トルクを必要とし、施工機械が大きくなる。そのためコストが高くなり、使用できる場所が限られるといった問題点がある。
The standard penetration test (A) is time-consuming and costly because it requires replacing the tip device to perform the standard penetration test, in addition to the cost and time for boring. Although this is a dynamic penetration test, a large construction machine is not required, but the N value can be obtained only for every 1 m as the number of falling of the hammer, not a continuous value. There is also a problem that the dynamic penetration resistance has large variations.
The cone penetration test of (B) requires a dynamic clear value because it is a penetration test using only static vertical load, but a large pushing force is required and it is impossible to investigate a deep and hard ground. Deep ground investigation is also difficult because of the large friction on the surface of the rod.
The Swedish sounding (C) uses vertical force and load torque on the cone and is suitable for soft ground investigations, but it does not have a large impetus and can not investigate deep hard ground. In addition, penetration resistance can be obtained only every 0.25 m as the number of rotations, etc., and it is not a continuous value.
The rotary sounding of (D) uses a load vertical force and a load torque, but is a “cutting in” by applying the load vertical force and has no propulsive force. Moreover, since the shape of the tip is not simple, there is no means for evaluating the cone penetration resistance, the N value, etc. from the load vertical force and torque. Moreover, the cost is high and not widespread.
Those that perform support layer confirmation using the torque of the rotating penetration pile of (E) are expensive when used for ground surveys. Moreover, since the shape of the tip is not simple, there is no means for evaluating the cone penetration resistance, the N value, etc. from the load vertical force and the load torque.
In the ground investigation method according to Patent Document 1 of (F), the difference between the penetration torque and the pulling-up torque by reverse rotation is a point. Because the penetration resistance of the tip portion is large, a large loading torque is required, and the construction machine becomes large. Therefore, there is a problem that the cost is high and the place where it can be used is limited.
 本発明の目的は、羽根付きコーンを用いることで、小さな載荷トルクによって地盤(調査対象地盤)内に生じる羽根反力による大きな羽根推進力により、小さな載荷鉛直力でも固くて深い地盤へ貫入できるため、軽量かつ小型の施工機械で、高精度かつ迅速に地盤の貫入抵抗を連続して求めることができる低コストの地盤調査方法と羽根付きコーンを提供することにある。
 また、本発明の次の目的は、前記羽根付きコーンに作用する作用トルクと作用鉛直力に基づいて、又は前記羽根付きコーンに作用する作用トルクと作用鉛直力と前記羽根付きコーンの1回転あたりの貫入量に基づいて、コーン貫入抵抗、N値を容易に評価することを可能とする地盤調査方法と羽根付きコーンを提供することにある。
The object of the present invention is that by using a bladed cone, it is possible to penetrate into a solid and deep ground even with a small load vertical force by a large blade driving force due to a blade reaction force generated in the ground (ground to be surveyed) by a small load torque. An object of the present invention is to provide a low-cost ground survey method and a bladed cone capable of continuously determining the penetration resistance of the ground with high accuracy and speed by a lightweight and small construction machine.
Further, the next object of the present invention is that the action torque and the action vertical force acting on the bladed cone based on the action torque and the action vertical force acting on the bladed cone or per rotation of the bladed cone It is an object of the present invention to provide a ground investigation method and a bladed cone which make it possible to easily evaluate the cone penetration resistance and the N value based on the penetration amount of
 上記課題を解決するための手段として、請求項1に記載した発明に係る地盤調査方法は、貫入方向に向けて縮径するコーン部2と、前記コーン部2の外周面2aに設けられ先端4に向かって幅が狭くなる螺旋羽根部3とを有する羽根付きコーン1と、前記羽根付きコーン1を下端5に取り付けるロッド7とを備え、前記ロッド7の上部6に与える載荷トルクと載荷鉛直力により前記羽根付きコーン1を調査対象地盤9に貫入させ、前記羽根付きコーン1に作用する作用トルクと作用鉛直力に基づいて、又は前記羽根付きコーン1に作用する作用トルクと作用鉛直力と前記羽根付きコーン1の1回転あたりの貫入量に基づいて、前記調査対象地盤9の貫入抵抗を評価することを特徴とする。 As means for solving the above problems, the ground survey method according to the invention described in claim 1 is provided with a cone portion 2 which is reduced in diameter in the penetration direction, and an outer peripheral surface 2 a of the cone portion 2 and a tip 4 And a rod 7 for attaching the bladed cone 1 to the lower end 5, and the load torque and load vertical force applied to the upper portion 6 of the rod 7 The bladed cone 1 is made to penetrate into the ground 9 to be surveyed, and the acting torque and the acting vertical force acting on the bladed cone 1 based on the acting torque and the acting vertical force acting on the bladed cone 1 The penetration resistance of the ground 9 to be surveyed is evaluated based on the penetration amount per one rotation of the bladed cone 1.
[規則91に基づく訂正 28.12.2018] 
 請求項2に記載した発明は、請求項1に記載した地盤調査方法において、
 前記羽根付きコーン1に作用する作用トルクと作用鉛直力に基づいて前記調査対象地盤9の貫入抵抗を評価する場合、
 コーン貫入抵抗と標準貫入試験N値(以下N値と略す。)を下式によって評価することを特徴とする。
コーン貫入抵抗(qc)=(Tb C2/rw’+ LbC1)/(C1+C2μη/C3)/(αAe
N値=(Tb C2/rw’+ LbC1)/(C1+C2μη/C3)/(αβAe
C1=sinθ+μcosθ、C2=cosθ-μsinθ、C3=sinω+μcosω
Tb 羽根付きコーンに作用する作用トルク
Lb 羽根付きコーンに作用する作用鉛直力
’ 羽根摩擦抵抗トルクの等価作用半径
η 貫入摩擦抵抗トルクの等価作用半径(re’)と羽根摩擦抵抗トルクの等価作用半径(r’)の比
μ 地盤と羽根の摩擦係数
ω コーン先端の中心軸からの角度
θ 羽根の等価傾斜角
Ae 羽根付きコーンの等価貫入断面積
α qとRp(鉛直貫入抵抗)の関係から決まる係数
β qとN値の関係から決まる係数
[Correction based on rule 91 28.12. 2018]
The invention described in claim 2 is the ground survey method according to claim 1,
When evaluating the penetration resistance of the survey target ground 9 based on the acting torque acting on the bladed cone 1 and the acting vertical force:
It is characterized in that the cone penetration resistance and the standard penetration test N value (hereinafter abbreviated as N value) are evaluated by the following formula.
Cone penetration resistance (q c ) = (T b C 2 / r w ′ + L b C 1 ) / (C 1 + C 2 μη / C 3 ) / (α A e )
N value = (T b C 2 / r w '+ L b C 1) / (C 1 + C 2 μη / C 3) / (αβA e)
C 1 = sin θ + μ cos θ, C 2 = cos θ−μ sin θ, C 3 = sin ω + μ cos ω
Action torque acting on T b bladed cone
L b Vertical force acting on the bladed cone r w 'Equivalent operating radius of blade frictional resistance torque η Equivalent operating radius of penetrating frictional resistance torque (r e ') and equivalent operating radius of blade frictional resistance torque (r w ') Ratio of friction coefficient of friction between ground and blade ω angle from center axis of cone tip θ equivalent inclination angle of blade
A e Determined from the relationship between the equivalent penetration cross section α q c of the cone with a blade and R p (vertical penetration resistance) Coefficient determined from the relationship between β q c and N value
 請求項3に記載した発明は、請求項1に記載した地盤調査方法において、
 前記羽根付きコーン1に作用する作用トルクと作用鉛直力と前記羽根付きコーン1の1回転あたりの貫入量に基づいて前記調査対象地盤9の貫入抵抗を評価する場合、
 前記羽根付きコーンの1回転あたりの鉛直貫入量(s)が羽根ピッチ(P)と等しいか小さいとき、
 前記作用トルクと前記作用鉛直力と前記羽根付きコーンの1回転あたりの貫入量から、コーン貫入抵抗とN値を下式によって評価することを特徴とする。
コーン貫入抵抗(q)=(2πTb+Lbs+2πμrw’Lb/(C2cosθ))/(s+2πμre'/C3+ 2πμrw’/(C2cosθ))/(αAe
N値=(2πTb+Lbs+2πμrw’Lb/C2cosθ)/(s+2πμre'/C3+2πμrw’/(C2cosθ))/(αβAe
C2=cosθ-μsinθ、C3=sinω+μcosω
Tb 羽根付きコーンに作用する作用トルク
Lb 羽根付きコーンに作用する作用鉛直力
s 1回転当たりの鉛直貫入量
’ 羽根摩擦抵抗トルクの等価作用半径
e’ 貫入摩擦抵抗トルクの等価作用半径
μ 地盤と羽根の摩擦係数
ω コーン先端の中心軸からの角度
θ 羽根の等価傾斜角
Ae 羽根付きコーンの等価貫入断面積
α qとRp(鉛直貫入抵抗)の関係から決まる係数
β qとN値の関係から決まる係数
The invention described in claim 3 is the ground survey method according to claim 1,
In the case of evaluating the penetration resistance of the ground 9 under investigation based on the acting torque acting on the winged cone 1, the acting vertical force, and the penetration amount per one rotation of the winged cone 1:
When the vertical penetration amount (s) per one rotation of the bladed cone is equal to or smaller than the blade pitch (P),
The cone penetration resistance and the N value are evaluated by the following equation from the acting torque, the acting vertical force, and the penetration amount per one rotation of the bladed cone.
Cone penetration resistance (q c ) = (2πT b + L b s + 2πμw w 'L b / (C 2 cos θ)) / (s + 2π μr e ' / C 3 + 2π μr w '/ (C 2 cos θ)) / (ΑA e )
N value = (2πT b + L b s + 2πμr w 'L b / C 2 cosθ) / (s + 2πμr e' / C 3 + 2πμr w '/ (C 2 cosθ)) / (αβA e)
C 2 = cosθ-μsinθ, C 3 = sinω + μcosω
Action torque acting on T b bladed cone
L b Vertical force acting on a bladed cone s Vertical penetration amount r w 'per one rotation Equivalent radius of blade friction torque r e ' Penetration frictional resistance torque equivalent radius of action μ Ground and blade friction coefficient ω cone Angle θ from the center axis of the tip Equivalent inclination angle of the blade
A e Determined from the relationship between the equivalent penetration cross section α q c of the cone with a blade and R p (vertical penetration resistance) Coefficient determined from the relationship between β q c and N value
 請求項4に記載した発明は、請求項1に記載した地盤調査方法において、
 前記羽根付きコーン1に作用する作用トルクと作用鉛直力と前記羽根付きコーン1の1回転あたりの貫入量に基づいて前記調査対象地盤9の貫入抵抗を評価する場合、
 前記羽根付きコーンの1回転あたりの鉛直貫入量(s)が羽根ピッチ(P)より大きいとき、
 前記作用トルクと前記作用鉛直力と前記羽根付きコーンの1回転あたりの貫入量から、コーン貫入抵抗とN値を下式によって評価することを特徴とする。
コーン貫入抵抗(q)=(2πTb + Lbs)/(s+2πμre' /C3)/(αAe
N値=(2πTb + Lbs)/(s+2πμre'/C3)/(αβAe
C3=sinω+μcosω
Tb 羽根付きコーンに作用する作用トルク
Lb 羽根付きコーンに作用する作用鉛直力
s 1回転当たりの鉛直貫入量
e’ 貫入摩擦抵抗トルクの等価作用半径
μ 地盤と羽根の摩擦係数
ω コーン先端の中心軸からの角度
Ae 羽根付きコーンの等価貫入断面積
α qとRp(鉛直貫入抵抗力)の関係から決まる係数
β qとN値の関係から決まる係数
According to the invention described in claim 4, in the ground survey method described in claim 1,
In the case of evaluating the penetration resistance of the ground 9 under investigation based on the acting torque acting on the winged cone 1, the acting vertical force, and the penetration amount per one rotation of the winged cone 1:
When the vertical penetration amount (s) per one rotation of the bladed cone is larger than the blade pitch (P),
The cone penetration resistance and the N value are evaluated by the following equation from the acting torque, the acting vertical force, and the penetration amount per one rotation of the bladed cone.
Cone penetration resistance (q c ) = (2πT b + L b s) / (s + 2πμ r e '/ C 3 ) / (α A e )
N value = (2πT b + L b s) / (s + 2πμr e '/ C 3 ) / (αβA e )
C 3 = sin ω + μ cos ω
Action torque acting on T b bladed cone
L b Vertical force acting on the bladed cone s Vertical penetration amount per rotation r e 'Equivalent friction radius of penetration friction torque Torque coefficient of friction between ground and blade ω Angle from central axis of cone tip
A e Coefficient determined from the relationship between the equivalent penetration cross section α q c of the cone with a blade and R p (vertical penetration resistance) Coefficient determined from the relationship between β q c and the N value
 請求項5に記載した発明に係る羽根付きコーン1は、請求項1~4のいずれかに記載した地盤調査方法に用いられる前記羽根付きコーンであって、先端4に向けて縮径するコーン部2と、前記コーン部2の外周面2aに設けられ先端4に向かって幅が狭くなる螺旋羽根部3とから構成されていることを特徴とする。 The bladed cone 1 according to the invention described in claim 5 is the above-mentioned bladed cone used in the ground survey method according to any one of claims 1 to 4, and a cone portion which reduces in diameter toward the tip 4 2 and a spiral blade 3 provided on the outer peripheral surface 2a of the cone 2 and having a narrower width toward the tip 4.
 請求項6に記載した発明は、請求項5に記載した羽根付きコーン1において、前記羽根付きコーンの羽根ピッチが、コーン最外径の0.5~1.5倍であることを特徴とする。 The invention described in claim 6 is characterized in that, in the bladed cone 1 described in claim 5, the blade pitch of the bladed cone is 0.5 to 1.5 times the outermost diameter of the cone. .
 本発明にかかる地盤調査方法は、先端に向かって外径が小さくなる先端コーンに先端に向かって幅が狭くなる螺旋羽根を設けた羽根付きコーンを用いるので、先端部の貫入抵抗が小さい。そのため小さな載荷トルクと載荷鉛直力で、羽根付きコーンを地盤に貫入することができる。また本形状は貫入性が良いため一回転当たり羽根ピッチ以上貫入するため、羽根付きコーンに作用する力と抵抗力のつり合いが明快となり、後述する評価式によって精度の良い地盤抵抗力(強度)を予測することが可能となる。また、先端に大きな羽根推進力があるために傾斜せずに鉛直に、深くて固い地盤への貫入が可能となる。よって、大きな押し込み力を必要としないだけでなく、直進性が高く先端位置の精度が高い貫入が可能となる。
 回転によってロッド周面の地盤の強度が低下するため、ロッドに働く周面摩擦力が非常に小さくなり、効率よく載荷トルクと載荷鉛直力をロッド下端に伝達できる。したがってロッド上部の「載荷トルクと載荷鉛直力」とロッド下端の羽根付きコーンに作用する「作用トルクと作用鉛直力」の差が小さく、精度の高い先端地盤の貫入抵抗の評価が可能となる。その結果、請求項2、3、又は4記載の地盤調査方法は作用トルクと作用鉛直力を実務で用いられているコーン貫入抵抗値やN値に精度良く換算できる。
 また、本調査方法はN値のような1m毎の離散的データではなく、貫入抵抗に関する連続的なデータが取得できる。
 請求項6記載の羽根付きコーンは羽根ピッチがコーン最外径の0.5~1.5倍(特には0.5~1.0倍)のときに最小のトルクになる最適形状が実現される。その結果サイズと能力が小さい施工機械で調査できるためコストダウンを図ることができると共に、狭隘な道路や敷地における地盤調査も可能となる。
 また削孔せず調査ができること及び回転数を速くすることによりさらに迅速な調査ができることは大幅な調査工期の短縮を可能とする。
Since the ground investigation method according to the present invention uses a bladed cone provided with a spiral blade whose width is narrowed toward the tip to the tip cone whose outer diameter decreases toward the tip, penetration resistance of the tip portion is small. Therefore, the bladed cone can be penetrated into the ground with a small load torque and load vertical force. In addition, since this shape has good penetration and penetrates more than the blade pitch per rotation, the balance between the force acting on the bladed cone and the resistance becomes clear, and the ground resistance (strength) with high accuracy can be calculated by the evaluation formula described later. It is possible to predict. In addition, since there is a large blade driving force at the tip, penetration into a deep and hard ground can be made vertically without tilting. Therefore, not only a large pressing force is required, but also penetration can be achieved with high straightness and high accuracy of the tip position.
Since the strength of the ground on the circumferential surface of the rod is reduced by the rotation, the circumferential friction force acting on the rod becomes very small, and the loading torque and the loading vertical force can be efficiently transmitted to the lower end of the rod. Therefore, the difference between the "load torque and load vertical force" at the top of the rod and the "action torque and vertical force acting on the bladed cone at the lower end of the rod" is small, making it possible to evaluate the penetration resistance of the tip ground with high accuracy. As a result, the ground survey method according to claim 2, 3 or 4 can accurately convert the acting torque and the acting vertical force into the cone penetration resistance value and the N value used in practice.
In addition, this investigation method can obtain continuous data on penetration resistance, not discrete data of 1 m per N value.
The bladed cone according to claim 6 has an optimum shape that achieves the minimum torque when the blade pitch is 0.5 to 1.5 times (especially 0.5 to 1.0 times) the outermost diameter of the cone. Ru. As a result, since it can investigate with construction machinery with small size and ability, cost reduction can be aimed at, and ground investigation in narrow roads and sites becomes possible.
In addition, the ability to conduct surveys without drilling and the possibility of more rapid surveys by increasing the number of revolutions enables a significant reduction in the construction period.
本発明の地盤調査方法の典型的な施工法を示した説明図である。It is explanatory drawing which showed the typical construction method of the ground investigation method of this invention. 本発明の地盤調査で生じる力とトルクの説明図である。It is explanatory drawing of the force and torque which arise in the ground investigation of this invention. 本発明の地盤調査方法に用いる羽根付きコーンの先端形状とそれに作用する応力度及び等価作用円の説明図である。It is explanatory drawing of the front-end | tip shape of the bladed cone used for the ground investigation method of this invention, the stress degree which acts on it, and an equivalent action circle. 等価円錐と等価円柱の関係、及び等価円錐に働く応力度と鉛直貫入抵抗力の関係を示した説明図である。It is explanatory drawing which showed the relationship between the equivalent cone and the equivalent cylinder, and the relationship between the stress degree which acts on an equivalent cone, and a vertical penetration resistance force. 羽根付きコーンにおける「羽根摩擦抵抗トルクの等価作用円」上の力のつり合いを示した模式図である。It is the schematic diagram which showed balance of the force on "the equivalent action circle of blade friction resistance torque" in a bladed cone. 従来の地盤調査方法と本発明との比較表である。It is a comparison table with the conventional ground investigation method and this invention. 右図は、本地盤調査より求めたqc-深度関係のグラフであり、左図は、従来のコーン貫入試験により求めたqc-深度関係のグラフである。The right figure is a graph of q c -depth relationship determined from the ground survey, and the left figure is a graph of q c -depth relationship determined by a conventional cone penetration test. 右図は、本地盤調査より求めたN値-深度関係のグラフであり、左図は、従来の標準貫入試験により求めたN値-深度関係のグラフである。The right figure is a graph of the N value-depth relationship determined from the ground survey, and the left figure is a graph of the N value-depth relationship determined by the conventional standard penetration test. 羽根付きコーンの作用トルクと羽根ピッチ率の関係を示したグラフである。It is the graph which showed the relationship between the action torque of a bladed cone, and a blade pitch rate.
 本発明の地盤調査方法とその地盤調査方法に用いる羽根付きコーンの好適な実施形態を、以下図面にしたがって説明する。 Hereinafter, preferred embodiments of the ground survey method of the present invention and the bladed cone used in the ground survey method will be described according to the drawings.
 図4に示した本実施形態の羽根付きコーンは、ロッド7(図1参照)の上部6に載荷トルクと載荷鉛直力を加えることにより、羽根付きコーン1を地盤9に貫入して行う地盤調査方法に用いられる。本実施形態の羽根付きコーンは最大コーン直径Doが40mm、最大羽根径Dwが60mm、全長が208mmで、貫入方向の先端4に向けて縮径するコーン部2と、前記コーン部2の外周面2aに、先端4に向かって幅が狭くなりつつ螺旋する羽根状に形成された螺旋羽根部3からなる構成である。その螺旋羽根部3の最適形状については後述する。なお、前記各寸法は、あくまでも一例に過ぎないことを念のため特記しておく。 The bladed cone according to this embodiment shown in FIG. 4 is a ground survey carried out by inserting the bladed cone 1 into the ground 9 by applying a load torque and a load vertical force to the upper portion 6 of the rod 7 (see FIG. 1). Used in the method. Vaned cone in this embodiment the maximum cone diameter D o is 40 mm, the maximum blade diameter D w is 60 mm, total length at 208 mm, and the cone portion 2 whose diameter decreases toward the penetration direction of the distal end 4, the cone portion 2 The outer peripheral surface 2 a is configured to include a spiral blade portion 3 formed in a blade shape in which the width narrows toward the tip 4 and spirals. The optimal shape of the spiral blade 3 will be described later. In addition, it should be noted that each of the dimensions is just an example.
 前記羽根付きコーン1は、図1に例示したように、ロッド7の下端5に取り付けられ、前記ロッド7の上端6に施工機械8(の駆動装置)を作動させて載荷トルクと載荷鉛直力を加えることにより地盤9に回転貫入される。そのときの載荷トルクと載荷鉛直力の値に基づいて地盤9の貫入抵抗を評価することができる。 The bladed cone 1 is attached to the lower end 5 of the rod 7 as illustrated in FIG. 1, and the upper end 6 of the rod 7 operates (the driving device of) the construction machine 8 to load torque and load vertical force. It is rotationally penetrated to the ground 9 by adding. The penetration resistance of the ground 9 can be evaluated based on the value of the load torque and the load vertical force at that time.
 本調査方法において、ロッド7の上部に、「載荷トルク」と「載荷鉛直力」を与えたとき、羽根付きコーン1に、「作用トルク」、「作用鉛直力」が働く。ロッド7の周面摩擦の影響(「ロッド周面摩擦トルク」と「ロッド周面摩擦抵抗力」)が無視できる場合は、前記載荷トルクと載荷鉛直力が作用トルクと作用鉛直力である。
 一方、ロッド7の周面摩擦の影響が無視できない場合は、載荷トルクと載荷鉛直力からそれぞれロッド7の周面摩擦の影響を差し引いたものが作用トルクと作用鉛直力である。前記作用トルクと作用鉛直力により羽根付きコーン1に生じる力とトルクは、「鉛直貫入抵抗力」、「貫入摩擦抵抗トルク」、「羽根推進力」、及び「羽根摩擦抵抗トルク」の4つである。
In the examination method, when the “loading torque” and the “loading vertical force” are applied to the upper portion of the rod 7, the “action torque” and the “action vertical force” act on the bladed cone 1. When the influence of the circumferential friction of the rod 7 (“rod circumferential friction torque” and “rod circumferential frictional resistance”) can be ignored, the loading torque and the applied vertical force are the acting torque and the acting vertical force.
On the other hand, when the influence of the surface friction of the rod 7 can not be ignored, the action torque and the action vertical force are obtained by subtracting the influence of the surface friction of the rod 7 from the load torque and the load vertical force. The force and torque generated in the bladed cone 1 by the action torque and the action vertical force are the four values of “vertical penetration resistance force”, “penetration friction resistance torque”, “vane propulsion force”, and “vane friction resistance torque”. is there.
 載荷方法は貫入量sを羽根ピッチPに等しくなるように制御する変位制御方式と載荷鉛直力を一定に制御する荷重制御方式がある。荷重制御方式の場合、一回転当たりの貫入量は下記の2ケースがある。
 (1)s≦Pの場合(羽根推進力がある場合)
 硬質地盤などで鉛直貫入抵抗力が作用鉛直力より大きい場合、羽根推進力が発生し、一般的には一回転あたりの貫入量は羽根ピッチと等しくなる。地盤強度が急増する(急に固くなる)場合は一回転当たりの貫入量が羽根ピッチより小さくなる場合がある。
 (2)s>Pの場合(羽根推進力がゼロの場合)
 軟弱地盤などで鉛直貫入抵抗力が作用鉛直力より小さい場合、羽根推進力がゼロとなり、一回転当たりの貫入量は羽根ピッチより大きくなる。
The loading method includes a displacement control method in which the penetration amount s is controlled to be equal to the blade pitch P and a load control method in which the loading vertical force is controlled to be constant. In the case of the load control method, there are the following two cases of penetration amount per one rotation.
(1) In the case of s ≦ P (when there is a blade propelling force)
When the vertical penetration resistance is larger than the acting vertical force in a hard ground or the like, blade propelling force is generated, and in general, the amount of penetration per one rotation is equal to the blade pitch. When the ground strength rapidly increases (hardens rapidly), the amount of penetration per one rotation may be smaller than the blade pitch.
(2) In the case of s> P (when the blade propelling force is zero)
When the vertical penetration resistance is smaller than the acting vertical force in a soft ground or the like, the blade propelling force becomes zero, and the amount of penetration per one rotation becomes larger than the blade pitch.
 以下、回転貫入時に羽根付きコーンに作用する「鉛直貫入抵抗力」、「貫入摩擦抵抗トルク」、「羽根推進力」、「羽根摩擦抵抗トルク」及びその力のつり合いについて詳述する。
(1.鉛直貫入抵抗力)
 図3に示す羽根付きコーンの鉛直貫入抵抗力Rpはコーン貫入抵抗qcと同じ特性を有する指標であり、地盤の剛性と強度及び排土体積に高い相関がある指標と考えられる。したがって、羽根付きコーンが一回転当たり貫入量sで貫入している場合の「一回転当たりに羽根付きコーンの最大径部の羽根と軸部が排土する総体積Vw」に着目する。Vwは貫入量の違いにより以下の2式で表すことができる。
s≦Pのとき
    Vw=t( rw-ro )ls/P+Ao
s>Pのとき
    Vw=t( rw-ro )l+Aos+Aw(s-P)
    t:羽根厚さ、rw:羽根の最大半径、
    ro:羽根の最大内径及びコーン軸部の最大半径、Ao:コーンの最大断面積、
    l:羽根コーン軸部1回転当たりの羽根中央部の螺旋長さ(=√(P2+(2π(rw+ro)/2)2)Vwと同じ体積で高さPの円柱を等価円柱と定義し、その断面積を等価貫入断面積Ae、その半径をreとすると、
    Ae=Vw/s 、 re=√(Ae/π)
である。
 先端コーンと相似で底面の半径がreである円錐を「等価円錐」とし、「等価円錐」の力のつり合いを考える。地盤中の極限平衡状態において円錐周面に作用する垂直応力(面圧)を等分布であると仮定し、その単位面積あたりの垂直応力度をppとする。鉛直貫入抵抗力Rpはppの軸方向成分と円錐周面に働く摩擦応力度μppの軸方向成分の和に等価円錐の周面積Ac(=πre2/sinω)をかけたものであるので、
    Rp=pp (sinω+μcosω)Ac
     =pp C3Ac    (1-1)
       C3=sinω+μcosω
       μ:摩擦係数、ω:コーン先端の中心軸からの角度
である。
Hereinafter, “vertical penetration resistance force”, “piercing frictional resistance torque”, “vane propulsion force”, “vane frictional resistance torque” acting on the bladed cone at the time of rotational penetration, and the balance of the forces will be described in detail.
(1. Vertical penetration resistance)
Vertical penetration resistance R p of the bladed cone shown in FIG. 3 is an index having the same characteristics as the cone penetration resistance q c, it is considered an indicator of the high correlation rigidity and strength and earth removal volume of soil. Therefore, attention is paid to “the total volume V w of the blade and the shaft portion of the largest diameter portion of the bladed cone for discharging per one rotation when the bladed cone is penetrating at a penetration amount s per rotation. V w can be expressed by the following two equations depending on the difference in penetration amount.
When s ≦ P V w = t (r w -r o ) ls / P + A o s
When s> P V w = t (r w -r o ) l + A o s + A w (sP)
t: blade thickness, r w : maximum radius of the blade,
r o : maximum inner diameter of blade and maximum radius of cone shaft, A o : maximum cross-sectional area of cone,
l: A spiral length of the center of the blade per rotation of the blade cone shaft (== (P 2 + (2π (r w + r o ) / 2) 2 ) V w A cylinder of the same volume and height P as w If we define an equivalent cylinder and let its cross section be the equivalent penetration cross section A e and its radius be r e
A e = V w / s, r e = √ (A e / π)
It is.
A cone similar to the tip cone and having a base radius r e is considered as an “equivalent cone”, and the balance of forces of the “equivalent cone” is considered. Normal stress acting on the conical peripheral surface in extreme equilibrium in the ground (the surface pressure) was assumed to be uniformly distributed, the normal stress level per unit area and p p. Those vertical penetration resistance force R p is multiplied by the equivalent conical circumferential area A c (= πre 2 / sinω ) to the sum of the axial component of the frictional stresses .mu.p p acting in the axial direction component and the conical circumferential surface of the p p Because there is
R p = p p (sin ω + μ cos ω) A c
= p p C 3 A c (1-1)
C 3 = sin ω + μ cos ω
μ: coefficient of friction, ω: angle from the central axis of the cone tip.
(2.貫入摩擦抵抗トルク)
 図3に示すように鉛直貫入に伴う回転により等価円錐の円周方向に摩擦応力度μppが生じる。等価円錐の中心軸よりrの位置の円錐周面の微小幅drの表面積は2πr・dr/sinωであるので、その表面積に作用する摩擦力は2πr・dr/sinω・μppであり、円周方向摩擦抵抗力(摩擦力の合力)Fμpはこれを0からreまで積分した値で
 Fμp =∫2πμpp/sinω rdr =πμpp re 2 /sinω=πre 2 /sinωμpp=μppAc
となる。
 円周方向の貫入摩擦抵抗トルクTpは2πr・dr/sinω・μppに円錐各位置の半径rをかけた2πr2・dr/sinω・μppを0からreまで積分した値で
   Tp=∫2πμpp/sinωr2dr =2/3πμpp re /sinω=2/3 reμppAc
    =2/3 re Fμp=re’Fμp
となる。
 トルクに変換するために摩擦力の合力Fμpが作用する円を等価作用円、その半径を等価作用半径と称す。上記「re’」は等価作用半径であり、断面1次極モーメントを面積で割った値(∫2πr2dr/(πre 2)=2/3 re )でもある。
(2-1)式よりpp = Rp /( C3 Ac) であるので
   Fμp=μRp / C3 (2-1)
と表すことができる。
 したがって、鉛直貫入抵抗力に伴う周方向の貫入摩擦抵抗トルクTpは、
   Tp =Fμpre'=μRp re' / C3  (2-2)
と表すことができる。
(2. Penetration friction resistance torque)
As shown in FIG. 3, the rotation caused by the vertical penetration generates a frictional stress degree μp p in the circumferential direction of the equivalent cone. Since the surface area of the small width dr of the cone peripheral surface at the position r from the central axis of the equivalent cone is 2πr · dr / sinω, the friction force acting on the surface area is 2πr · dr / sinω · μp p Directional frictional force (total force of frictional force) Fμp is a value obtained by integrating this from 0 to re: F μp = ∫2πμp p / sin ω rdr = πμp p r e 2 / sin ω = π r e 2 / sin ωμp p = μ p p A c
It becomes.
T p penetration friction torque T p in the circumferential direction in the integrated value of the 2πr 2 · dr / sinω · μp p multiplied by the radius r of the cone each located 2πr · dr / sinω · μp p from 0 to r e = ∫ 2πμp p / sin ωr 2 dr = 2 / 3π μp p r e 3 / sin ω = 2/3 r e μp p A c
= 2/3 r e F μ p = r e 'F μ p
It becomes.
The circle on which the resultant force F μp of the frictional force acts to convert it into torque is called the equivalent action circle, and the radius thereof is called the equivalent action radius. The above “r e ′” is an equivalent action radius, and is also a value (∫2πr 2 dr / (πr e 2 ) = 2/3 r e ) obtained by dividing the first polar moment of area by the area.
Since p p = R p / (C 3 A c ) from the equation (2-1), F μp = μR p / C 3 (2-1)
It can be expressed as.
Therefore, the circumferential penetration friction resistance torque T p associated with the vertical penetration resistance is
T p = F μp r e '= μR p r e r / C 3 (2-2)
It can be expressed as.
(3.羽根推進力)
 羽根付きコーンが回転貫入するときにクサビ効果により羽根に作用する力は、図4に示すように、羽根の上面に直角に作用する羽根推進応力度paとその推進応力度によって発生する回転方向の羽根摩擦応力度μpaから成り、それぞれ等分布であると仮定する。
 羽根推進力Pは、P =pa(1/cosθ) pAwで近似できる。(pAw:羽根付きコーンの羽根の投影面積の総和)
 推進圧力による鉛直方向の分力(羽根推進力)や摩擦力の回転方向の分力を計算するためには羽根の円周に沿った鉛直方向の傾斜角と摩擦力の等価作用半径が必要となる。羽根がn周ある場合の羽根の傾斜角及びその等価作用円はその位置によって異なる。したがって、羽根付きコーンの力のつり合いを考えるとき、以下に示す等価傾斜角と等価作用半径を用いる。
(3. Blade propulsion)
The force acting on the blade by the wedge effect when the bladed cone rotates and penetrates, as shown in FIG. 4, is a direction of rotation generated by the blade driving stress degree p a acting perpendicularly to the upper surface of the blade and the driving stress degree. consists of vanes friction stresses .mu.p a, assumed to be respectively like distribution.
Blade thrust P w can be approximated by P w = p a (1 / cosθ) pA w. (PA w : Sum of projected area of the blade with a bladed blade)
In order to calculate the component of the vertical direction (vane propulsion) due to the propulsion pressure or the rotational component of the frictional force, the vertical inclination angle along the circumference of the vane and the equivalent action radius of the frictional force are required. Become. The angle of inclination of the blade and its equivalent working circle when there are n blades of the blade differ depending on the position. Therefore, when considering the balance of force of the winged cone, the equivalent inclination angle and the equivalent action radius shown below are used.
(4.羽根摩擦抵抗トルクとその等価作用半径と等価傾斜角)
 羽根推進力による摩擦力のように円周方向に働く力の等価作用半径と等価傾斜角は以下のようにして求めることができる。
 羽根がn周ある場合の螺旋羽根の回転角がψである羽根の外径及び内径は、最大外半径をrw羽根コーン軸部の最大半径をroとすると、極座標(r-ψ)を用い下記のようにあらわすことができる。
   外半径:r=rwψ/(2nπ)
   内半径:r=roψ/(2nπ)
回転角ψの位置の微小回転角dψの羽根の「扇台形」の微小投影面積dApw
   dApw= (1/2)(rwψ/(2nπ))2 dψ- (1/2)(roψ/(2nπ))2 dψ
     =(1/2)(( rwψ/2nπ)2- (roψ/2nπ)2)dψ=( rw 2- ro 2)/(8π22 )ψ2
である。微小羽根面積dAwは等価作用円上の傾斜角をδ(ψに反比例する値)とすると
   dAw= d pAw /cosδ=( rw 2- ro 2)/(8π22 )/cosδdψ
であるので、微小羽根面積dAwに作用する羽根摩擦応力度の円周方向分力dFw
   dFw =μpa dAwcosδ=μpa ( rw 2- ro 2)/(8π22 )/cosδcosδψ2
     =μpa ( rw 2- ro 2)/(8π22 )ψ2
である。
 羽根推進力により生じる羽根摩擦応力度の円周方向の総和Fwは上式を0→2nπで積分することにより
   Fw=∫μpa ( rw 2- ro 2)/(8π22 )ψ2dψ =μpa ( rw 2- ro 2)/(8π22 )( 8n3π3/3)
    =μpa nπ( rw 2- ro 2) /3
となる。
外径rwψ/(2nπ)、内径roψ/(2nπ)のリングの等価作用半径rwd’は
   rwd’=2((ψrw/(2nπ))3-(ψro /(2nπ))3)/( 3((ψrw/(2nπ))-(ψro/(2nπ))2))
であるので((補足)参照)、微小羽根面積dAwに作用する羽根摩擦抵抗トルクdTwは、
   dTw=dFwrwd’=μpa ( rw 2- ro 2)/(8π22 )ψ2dψ(2((ψrw/(2nπ))3-(ψro /(2n π))3)/( 3((ψrw/(2nπ))2-(ψro/(2nπ))2)))
     =μpa ( rw 2- ro 2)/(8π22 ) 2(rw 3-ro 3)/ (2nπ)/( 3(rw 2-ro 2))ψ3
     =μpa (rw 3-ro 3)/(24π33 )ψ3
である。その総和である羽根摩擦抵抗トルクTwは上式を0→2nπで積分することにより、
   Tw=∫μpa (rw 3-ro 3)/(24π33 )ψ3dψ=μpa (rw 3-ro 3)/(24π33 )(2nπ)4/4
    =μpa (rw 3-ro 3)/(24π33 )(2nπ)4/4
    =μpa nπ(rw 3-ro 3) /6
である。
羽根摩擦抵抗トルクの等価作用半径rw’はTw / Fwであるので、
   rw’= Tw/ Fw =(μpa nπ(rw 3-ro 3) /6)/( μpnπ( rw 2- ro 2) /3)
     =(rw 3-ro 3) /( 2( rw 2- ro 2) ) (4-1)
である。
本形状の場合、rw’はnによらず一定値で、下記(補足)の(補-1)式に示すドーナツ状のリングの等価作用半径rw1’=2(rw 3-ro 3)/( 3(rw 2-ro 2))の3/4の値となる。
これより等価傾斜角θは
   θ=P/(2πrw’)=P(rw 2-ro 2) /( π( rw 3- ro 3) ) (4-2)
となる。
(4. Blade frictional resistance torque and its equivalent action radius and equivalent inclination angle)
The equivalent action radius and the equivalent inclination angle of the circumferentially acting force such as the frictional force by the blade driving force can be determined as follows.
When blade outer and inner diameters of the blade rotation angle is [psi helical blade when there n Zhou, the maximum outer radius to the maximum radius of r w blade cone shaft and r o, the polar coordinates (r-ψ) It can be expressed as follows.
Outer radius: r = r w ψ / (2 n π)
Inner radius: r = r o ψ / (2 n π)
The small projected area dA pw of the "fan-shaped" blade of the small rotation angle d 角 at the position of the rotation angle d is dA pw = (1/2) (r w ψ / (2nπ)) 2 d ψ-(1/2) ( r o ψ / ( 2 n π)) 2
= (1/2) ((r w ψ / 2nπ) 2- (r o ψ / 2nπ) 2 ) d ψ = (r w 2 -r o 2 ) / (8π 2 n 2 ) ψ 2 d ψ
It is. Assuming that the inclination angle on the equivalent action circle is δ (a value inversely proportional to ψ), the minute blade area dA w is dA w = d pA w / cos δ = (r w 2 -r o 2 ) / (8π 2 n 2 ) / cos δdψ
Therefore, the circumferential component force dF w of the blade friction stress acting on the minute blade area dA w is dF w = μ p a d A w cos δ = μ p a (r w 2 -r o 2 ) / (8π 2 n 2 ) / cos δ cos δ ψ 2 d ψ
= μ p a (r w 2 -r o 2 ) / (8π 2 n 2 ) ψ 2
It is.
The circumferential summation F w of the blade friction stress degree generated by the blade driving force is obtained by integrating the above equation by 0 → 2 nπ F w = ∫μ p a (r w 2 − r o 2 ) / (8 π 2 n 2 ) ψ 2 dψ = μp a ( r w 2 - r o 2) / (8π 2 n 2) (8n 3 π 3/3)
= μ p a n π (r w 2 -r o 2 ) / 3
It becomes.
The equivalent action radius r wd 'of the ring of outer diameter rwψ / (2nπ) and inner diameter roψ / (2nπ) is r wd ' = 2 ((ψr w / (2nπ)) 3- (ψ r o / (2 nπ)) 3 ) / (3 ((ψ r w / ( 2 n π)) 2- (ψ r o / (2 n π) 2 ))
Since it is ((Supplement)), the vane frictional resistance torque dT w acting on the small wing area dA w is
dT w = dF w r wd ' = μp a (r w 2 - r o 2) / (8π 2 n 2) ψ 2 dψ (2 ((ψr w / (2nπ)) 3 - (ψr o / (2n π )) 3 ) / (3 ((ψ r w / ( 2 n π)) 2- (ψ r o / (2 n π) 2 )))
= μ p a (r w 2 -r o 2 ) / (8 π 2 n 2 ) 2 (r w 3- r o 3 ) / ( 2 n π) / (3 (r w 2- r o 2 )) ψ 3 d ψ
= μ p a (r w 3- r o 3 ) / (24π 3 n 3 ) ψ 3
It is. The blade friction resistance torque T w which is the sum thereof is obtained by integrating the above equation by 0 → 2 nπ,
T w = ∫μp a (r w 3 -r o 3) / (24π 3 n 3) ψ 3 dψ = μp a (r w 3 -r o 3) / (24π 3 n 3) (2nπ) 4/4
= μp a (r w 3 -r o 3) / (24π 3 n 3) (2nπ) 4/4
= μ p a n π (r w 3- r o 3 ) / 6
It is.
Since the equivalent action radius r w 'of blade friction resistance torque is T w / F w ,
r w '= T w / F w = (μ p a n π (r w 3- r o 3 ) / 6) / (p p a n π (r w 2 -r o 2 ) / 3)
= (r w 3- r o 3 ) / (2 (r w 2 -r o 2 )) (4-1)
It is.
In the case of this shape, r w 'is a constant value regardless of n, and the equivalent action radius r w1 ' = 2 (r w 3- r o ) of the donut-shaped ring shown in the following (Supplementary) 3 ) / (3 (r w 2- r o 2 )) 3/4 of the value.
From this, the equivalent inclination angle θ is θ = P / (2πr w ') = P (r w 2 −r o 2 ) / (π (r w 3 −r o 3 )) (4-2)
It becomes.
<補足>羽根が1周のドーナツ状のリングの場合の等価作用半径
羽根を外径rw、内径roのドーナツ状のリングに円周方向に等分布摩擦応力τが作用する場合、その総和である羽根摩擦抵抗トルクの等価作用半径rw1’は
   rw1’=2(rw 3-ro 3)/( 3(rw 2-ro 2)) (補-1)
である。
<Supplement> When the blade has a donut-shaped ring of one turn, when the equally distributed friction stress τ acts on the doughnut-shaped ring with an outer diameter r w and an inner diameter r o in the circumferential direction, the total sum The equivalent action radius r w1 'of the blade friction resistance torque is r w1 ' = 2 (r w 3 -r o 3 ) / (3 (r w 2 -r o 2 )) (Supplementary -1)
It is.
(5.力のつり合い)
 羽根ピッチ通りに貫入している場合の羽根付きコーンに作用するトルクと力のつり合いを、等価作用半径がrw’、等価傾斜角がθである螺旋羽根モデルの等価作用円上の力のつり合いに変換して検討する。
 図4に示すように「羽根摩擦抵抗トルクの等価作用円」の円周方向をΨ軸とする。図5はΨ軸を水平(x)方向とし、ロッド摩擦を無視した場合の鉛直(Z軸)方向と水平(Ψ軸)方向の力のつり合いを表した図である。記号の説明を以下に記す。
・Htは羽根付きコーンに作用する作用トルクTbを「等価作用円」上の水平力に置き換えた値Tb/ rw’である。
・Lbは羽根付きコーンに作用する作用鉛直力である。
・羽根推進力Pwは羽根推進応力度paの合力で、Pw=pa(1/cosθ) pAwで近似できる。
(pAw:羽根付きコーンの羽根の投影面積の総和)
・Fwは「羽根摩擦抵抗トルクの等価作用円」に作用する羽根摩擦抵抗力μPwで羽根推進力により生じる羽根摩擦応力度の円周方向分力の総和である。
・Rpは鉛直貫入抵抗力である。
・ηは貫入摩擦抵抗トルクの等価作用半径(re’)と羽根摩擦抵抗トルクの等価作用半径(rw’)の比である。
・Fpは鉛直貫入抵抗によって発生する円周方向の貫入摩擦抵抗力Fμpを羽根摩擦抵抗力Fwの等価作用半径rw’上の摩擦力に換算した値でFp=ηFμp=μηRp / C3である。
力のつり合いを以下に示す
・水平(Ψ軸)方向のつり合い
    Ht= Tb /rw’=μηRp/ C3+Pwsinθ+μPwcosθ (5-1)
・鉛直(Z軸)方向のつり合い
    Rp=Pwcosθ+Lb-μPwsinθ (5-2)
Pwに着目すると以下を得る。
    Pw=(Ht-μηRp/ C3)/(sinθ+μcosθ) (5-3)
    Pw=(Rp-Lb)/(cosθ-μsinθ)             (5-4)
Pwを消去して、C1=sinθ+μcosθ、C2=cosθ-μsinθと置くと、以下の関係式を得る。
    Rp=(Tb C2/rw’+ LbC1)/(C1+C2μη/ C3) (5-5)
羽根付きコーンの鉛直貫入抵抗力(Rp)を載荷トルク(Tb)と載荷鉛直力(Lb)で表すことができる。
(5. Balance of power)
The balance of torque and force acting on the bladed cone when the blade pitch is penetrated, the balance of force on the equivalent operating circle of the spiral blade model having the equivalent operating radius r w 'and the equivalent inclination angle θ Convert to
As shown in FIG. 4, the circumferential direction of “the equivalent action circle of the blade friction resistance torque” is taken as the weir axis. FIG. 5 is a diagram showing the balance of forces in the vertical (Z-axis) direction and the horizontal (Ψ axis) direction when the rod axis is in the horizontal (x) direction and the rod friction is ignored. The explanation of the symbols is given below.
H t is a value T b / r w 'obtained by replacing the acting torque T b acting on the bladed cone with a horizontal force on the "equivalent acting circle".
L b is the acting vertical force acting on the bladed cone.
· Wings propulsion P w is a resultant force of the wings promote stress the degree of p a, it can be approximated by P w = p a (1 / cosθ) pA w.
(PA w : Sum of projected area of the blade with a bladed blade)
F w is a sum of circumferential component forces of the blade friction stress degree generated by the blade driving force with the blade friction resistance μP w acting on “the equivalent action circle of blade friction resistance torque”.
R p is the vertical penetration resistance.
Η is the ratio of the equivalent action radius (r e ′) of penetration friction resistance torque to the equivalent action radius (r w ′) of blade friction resistance torque.
· F p is F a value obtained by converting the circumferential penetration frictional resistance force F .mu.p the frictional force of the equivalent action radius r w 'of the vane frictional resistance force F w generated by the vertical penetration resistance p = ηF μp = μηR a p / C 3.
The balance of force is shown below. Balance in the horizontal (Ψ axis) direction H t = T b / r w '= μη R p / C 3 + P w sin θ + μP w cos θ (5-1)
・ Balance in the vertical (Z-axis) direction R p = P w cos θ + L b- μ P w sin θ (5-2)
Focusing on P w we get
P w = (H t −μη R p / C 3 ) / (sin θ + μ cos θ) (5-3)
P w = (R p -L b ) / (cos θ-μ sin θ) (5-4)
If P w is eliminated and C 1 = sin θ + μ cos θ and C 2 = cos θ−μ sin θ, the following relational expression is obtained.
R p = (T b C 2 / r w '+ L b C 1 ) / (C 1 + C 2 μη / C 3 ) (5-5)
The vertical penetration resistance force (R p ) of the bladed cone can be expressed by a loading torque (T b ) and a loading vertical force (L b ).
 羽根付きコーンの鉛直貫入抵抗力Rpはエネルギーのつり合いからも表すことができ以下にそれを示す。
 羽根付きコーンはトルクと鉛直力を加えることにより貫入させることができる。そのとき一回転当たりの入力エネルギーEiと貫入により消費されるエネルギーEcは等しく、Ei=Ecとなる。
The vertical penetration resistance R p of the winged cone can also be expressed from the balance of energy and is shown below.
The bladed cone can be penetrated by applying torque and vertical force. Then equal energy E c which is consumed by the input energy E i and penetration per revolution, and E i = E c.
(6.一回転当たりの入力エネルギーEi
Eiは下式で表すことができる。
    Ei=Lbs+2πTb (6-1)
(7.一回転当たりの貫入により消費されるエネルギーEc)
Ecは下式で表すことができる。
    Ec= Es + Eμ
Es:鉛直貫入により1回転当たりに消費されるエネルギー
Eμ:回転摩擦により1回転当たりに消費されるエネルギー
回転摩擦により消費されるエネルギーEμは下式で表すことができる。
Eμ=Eμp+Eμa
  Eμp:回転に伴う貫入摩擦により1回転当たりに消費されるエネルギー
  Eμa:回転に伴う羽根摩擦により1回転当たりに消費されるエネルギー
 
(7-1. 鉛直貫入により消費されるエネルギーEs )
Esは下式で表すことができる。
Es=Rps (7-1)
(7-2. 回転に伴う貫入摩擦により1回転当たりに消費されるエネルギー Eμp )
Eμpは下式で表すことができる。
    Eμp=2πTp
    (3-2)式よりTp=Fμpre'=μRp re' /C3なので
    Eμp=2πre'μRp / C3 (7-2)
(2-3. 回転に伴う羽根摩擦により1回転当たりに消費されるエネルギーEμa )
Eμaは以下の2ケースについて考える
s≦Pのとき
回転に伴う羽根摩擦により1回転当たりに消費されるエネルギーEμaは、1回転当たりの摩擦面の変位量は2πrw’(1/cosθ)であるので
Eμa=Fw・2πrw’(1/cosθ)= 2πrw’μPw (1/cosθ)
(9)式よりPw=(Rp-Lb)/ C2なので
    Eμa = 2πrw’μ(Rp-Lb)/ C2 (1/cosθ)
      = 2πrw’μ(Rp-Lb)/C2 /cosθ (7-3)
s>Pのとき
Pw=0なので、Eμa=0である。
(6. Input energy E i per rotation)
E i can be expressed by the following expression.
E i = L b s + 2πT b (6-1)
(7. Energy E c consumed by penetration per revolution)
E c can be expressed by the following formula.
E c = E s + E μ
E s : energy consumed per revolution by vertical penetration
E μ : energy consumed per rotation friction The energy E μ consumed by rotation friction can be expressed by the following equation.
E μ = E μp + E μa
E μp : Energy consumed per rotation due to penetration friction with rotation E μa : Energy consumed per rotation due to blade friction with rotation
(7-1. Energy E s consumed by vertical penetration)
E s can be expressed by the following equation.
E s = R p s (7-1)
(7-2. Energy E μp consumed per rotation due to penetration friction with rotation)
E μp can be expressed by the following equation.
E μp = 2πT p
From equation (3-2), T p = F μp r e '= μR p r e ' / C 3 so that E μp = 2π r e 'μR p / C 3 (7-2)
(2-3. Energy E μa consumed per rotation due to blade friction accompanying rotation)
E μa considers the following two cases
The energy E μa consumed per rotation due to blade friction accompanying rotation when s ≦ P is because the displacement amount of the friction surface per rotation is 2πr w ′ (1 / cos θ)
E μa = F w · 2πr w '(1 / cos θ) = 2πr w ' μP w (1 / cos θ)
From equation (9), P w = (R p -L b ) / C 2, so E μa = 2πr w 'μ (R p -L b ) / C 2 (1 / cos θ)
= 2πr w 'μ (R p- L b ) / C 2 / cos θ (7-3)
When s> P
Since P w = 0, E μa = 0.
(8.エネルギーのつり合い)
(8-1. s≦Pのとき)
エネルギーのつり合いEi=Ecより
Lbs+2πTb
=Rs+2πre'μRp / C3+2πrw’μ(Rp-Lb)/C2 /cosθ
=R(s+2πre'μ / C3+2πrw’μ/ (C2 cosθ))-2πrw’μ Lb/ C2 cosθ
上記より
R=(2πTb+Lbs+2πμrw’Lb/C2cosθ)/(s+2πμre'/C3+2πμrw’/(C2cosθ)) (8-1)
   C2=cosθ-μsinθ、C3=sinω+μcosω
を得る。
(8. Balance of energy)
(When 8. の P)
From energy balance E i = E c
L b s + 2πT b
= R p s + 2πr e ' μR p / C 3 + 2πr w' μ (R p -L b) / C 2 / cosθ
= R p (s + 2 π r e 'μ / C 3 + 2 π r w ' μ / (C 2 cos θ))- 2 π r w 'μ L b / C 2 cos θ
From above
R p = (2πT b + L b s + 2πμw w 'L b / C 2 cos θ) / (s + 2π μr e ' / C 3 + 2π μr w '/ (C 2 cos θ)) (8-1)
C 2 = cosθ-μsinθ, C 3 = sinω + μcosω
Get
(8-2. s>Pのとき)
エネルギーのつり合いEi=Ecより
Lbs+2πTb=Rs+2πμRp / C3 re'
  =R(s+2πμ/ C3 re')
上記より
R=(2πTb + Lbs)/(s+2πμ re'/C3)   (8-2)
  C3=sinω+μcosω
を得る。
(When 8-2. S> P)
From energy balance E i = E c
L b s + 2πT b = R p s + 2πμR p / C 3 r e '
= R p (s + 2πμ / C 3 r e ')
From above
R p = (2πT b + L b s) / (s + 2πμ r e '/ C 3 ) (8-2)
C 3 = sin ω + μ cos ω
Get
(9.N値とqcとRp
Rpは地盤の鉛直貫入抵抗であるためコーン貫入抵抗qcとほぼ同じ性質のものであり、次のような関係を有すと考えられる。
   Rp=αqc Ae (9-1)
   α:qcとRpの関係から決まる係数、qc:コーン貫入抵抗
   Ae:羽根付きコーンの等価貫入断面積
N値とコーン貫入抵抗には次のような関係がある。
   qc/N=β
      N:N値、β:qcとN値の関係
よって、
      Rp=αβN Ae  (9-2)
となりN値とRpも関係づけることができる。
(9. N value and q c and R p )
Since R p is the vertical penetration resistance of the ground, it has almost the same property as the cone penetration resistance q c and is considered to have the following relationship.
R p = αq c A e (9-1)
α: coefficient determined from the relationship between q c and R p , q c : cone penetration resistance A e : equivalent penetration cross section of bladed cone
There is the following relationship between N value and cone penetration resistance.
q c / N = β
N: N value, β: By the relationship between q c and N value,
R p = αβ N A e (9-2)
N value and R p can also be related.
[規則91に基づく訂正 28.12.2018] 
 したがって、請求項2に記す「力のつり合い」による評価式は (9-1)式, (9-2)式と(5-5)式より、
コーン貫入抵抗(qc)=(Tb C2/rw’+ LbC1)/(C1+C2μη/C3)/(αAe
N値=(Tb C2/rw’+ LbC1)/(C1+C2μη/C3)/(αβAe
C1=sinθ+μcosθ、C2=cosθ-μsinθ、C3=sinω+μcosω
となる。
[Correction based on rule 91 28.12. 2018]
Therefore, the evaluation equation by “balance of forces” described in claim 2 can be obtained from the equations (9-1), (9-2) and (5-5)
Cone penetration resistance (q c ) = (T b C 2 / r w ′ + L b C 1 ) / (C 1 + C 2 μη / C 3 ) / (α A e )
N value = (T b C 2 / r w '+ L b C 1) / (C 1 + C 2 μη / C 3) / (αβA e)
C 1 = sin θ + μ cos θ, C 2 = cos θ−μ sin θ, C 3 = sin ω + μ cos ω
It becomes.
 請求項3に記す「エネルギーのつり合い」による評価式は(9-1)式, (9-2)式と(8-1)式より
1回転あたりの鉛直貫入量(s)が羽根ピッチ(P)と等しい場合(請求項3記載の発明)
コーン貫入抵抗(qc)=(2πTb+Lbs+2πμrw’Lb/(C2cosθ))/(s+2πμre'/C3+2πμ rw’/(C2cosθ))/(αAe
N値=(2πTb+Lbs+2πμrw’Lb/C2cosθ)/(s+2πμre'/C3+2πμrw’/(C2cosθ))/(αβAe
C2=cosθ-μsinθ、C3=sinω+μcosω
 請求項4に記す「エネルギーのつり合い」による評価式は(9-1)式, (9-2)式と(8-2)式より
1回転あたりの鉛直貫入量(s)が羽根ピッチ(P)より大きい場合(請求項4記載の発明)
コーン貫入抵抗(qc)=(2πTb + Lbs)/(s+2πμre' /C3)/(αAe
N値=(2πTb + Lbs)/(s+2πμre'/C3)/(αβAe
C3=sinω+μcosω
となる。
The vertical penetration amount (s) per one rotation is the blade pitch (P) according to the equations (9-1), (9-2) and (8-1) based on the "balance of energy" described in claim 3. In the case of (the invention according to claim 3)
Cone penetration resistance (q c ) = (2πT b + L b s + 2πμw w 'L b / (C 2 cos θ)) / (s + 2π μre ′ / C 3 + 2πμ r w ′ / (C 2 cos θ)) / (ΑA e )
N value = (2πT b + L b s + 2πμr w 'L b / C 2 cosθ) / (s + 2πμr e' / C 3 + 2πμr w '/ (C 2 cosθ)) / (αβA e)
C 2 = cosθ-μsinθ, C 3 = sinω + μcosω
According to (Equation 9), (9-2) and (8-2), the vertical penetration amount (s) per rotation is the blade pitch (P). When larger than (the invention according to claim 4)
Cone penetration resistance (q c ) = (2πT b + L b s) / (s + 2πμ r e '/ C 3 ) / (α A e )
N value = (2πT b + L b s) / (s + 2πμr e '/ C 3 ) / (αβA e )
C 3 = sin ω + μ cos ω
It becomes.
(調査結果の例)
 本調査方法で実施した調査結果の1例を図7及び図8に示す。
 図7は本調査位置の近傍2か所で行ったコーン貫入試験結果(左図)とμ=0.5、α=1の場合の「エネルギーのつり合い」による評価式から求めたq-深度関係(右図)を示す。
 図7によれば、α=1で良い相関があることが分かる。このことはコーン貫入抵抗と羽根付きコーンの鉛直貫入抵抗Rpがほぼ同じ値であることが分かる。コーン貫入試験は深度約17mで二か所とも貫入不可能となり中断したが、本調査方法は問題なく深度約25mまで調査をすることができた。
(Example of survey results)
One example of the survey result implemented by this survey method is shown in FIG. 7 and FIG.
Figure 7 shows the results of the cone penetration test (left figure) conducted at two locations near the survey position and the q c -depth relationship (from the energy balance equation for μ = 0.5, α = 1) Right).
According to FIG. 7, it can be seen that there is a good correlation with α = 1. This is can be seen that the vertical penetration resistance R p of the cone penetration resistance and bladed cone is approximately the same value. The cone penetration test was interrupted at two points at a depth of about 17m and interrupted, but this survey method could investigate up to a depth of about 25m without problems.
 図8に同じく近傍の標準貫入試験結果(左図)とμ=0.5、α=1、β=600kPaの場合の「力のつり合い」による評価式より求めたN値-深度関係(右図)を示す。こちらもよい相関がある。β=600kPaはN値とqの相関関係に関する既往の研究結果と矛盾しない。また本発明による「N値」は図示するような連続データとして得ることができる。 Similarly, FIG. 8 shows the standard penetration test results in the vicinity (left figure) and the N value-depth relationship (right figure) obtained from the evaluation equation by “force balance” in the case of μ = 0.5, α = 1, β = 600 kP a Indicates This also has a good correlation. β = 600 kP a is consistent with previous research results on the correlation between N value and q c . The "N value" according to the present invention can be obtained as continuous data as shown.
(最適な羽根ピッチ率)
 図9は、Do=48mm、Dw=60、72、96mmの3種類のケースについて、それぞれt=3、4、6mmの場合の羽根ピッチ率(P/Do)と作用トルクの関係を求めたものである。羽根ピッチ率が0.5-1.5の時、作用トルクが小さくなることから、羽根付きコーンの羽根ピッチがコーンの最大径の0.5-1.5の時、小さな作用トルクで効率よく貫入できることが分かる。
(Optimum blade pitch rate)
FIG. 9 shows the relationship between the blade pitch ratio (P / D o ) and the acting torque in the case of t = 3, 4 and 6 mm for three cases of D o = 48 mm and D w = 60, 72 and 96 mm, respectively. It is what I asked for. When the blade pitch ratio is 0.5 to 1.5, the acting torque is small. Therefore, when the blade pitch of the bladed cone is 0.5 to 1.5 of the maximum diameter of the cone, it is efficient with a small acting torque. It turns out that it can penetrate.
<上記数式中の記号の説明>
Ao コーンの最大径部の断面積(ロッド部の面積、最大羽根部の内面積)
Ac 等価円錐の周面積
A  羽根付きコーンの等価貫入断面積
A  ロッド面積と最大の羽根の見附(投影)面積の和
Aw    羽根付きコーンの羽根面積の総和
dAw   羽根付きコーンの羽根の微小面積
Apw    羽根付きコーンの羽根の投影面積の総和
dApw   羽根付きコーンの羽根の微小投影面積
D   ロッドの直径(コーンの最大径)
D   最大羽根の直径
E   1回転当たりの貫入により入力されるエネルギー
E   1回転転当たりの貫入により消費されるエネルギー
E   鉛直貫入により1回転当たりに消費されるエネルギー
Eμ   回転摩擦により1回転当たりに消費されるエネルギー
Eμp  回転に伴う貫入摩擦により1回転当たりに消費されるエネルギー
Eμa  回転に伴う羽根摩擦により1回転当たりに消費されるエネルギー
F   貫入摩擦抵抗トルクT(等価作用半径r’)を羽根摩擦抵抗力F
    等価作用半径r’での摩擦力に換算した値
F   羽根摩擦抵抗力
dFw   羽根により生じる羽根摩擦応力度の円周方向分力
Fμp   鉛直貫入抵抗によって発生する円周方向の貫入摩擦抵抗力(摩擦力の合力)
H  羽根付きコーンに作用する作用トルクを羽根推進力の等価作用円上の水平力に置き換えた値=T/r'
l    1回転当たりの羽根の中央部の螺旋長さ
L   作用鉛直力
N    N値
P    羽根ピッチ(羽根が1周する間にZ方向に移動する量)
P   羽根推進力
Pa    クサビ効果により羽根上面に作用する羽根推進応力度
p   貫入抵抗として円錐周面に作用する垂直応力度
c     コーン貫入抵抗
   コーン軸部の最大半径(ロッドの半径、羽根の最大内径)
  羽根付きコーンの等価貫入半径
'   貫入摩擦抵抗トルクの等価作用半径
   羽根の最大半径
'   羽根摩擦抵抗トルクの等価作用半径
w1' ドーナツ状の螺旋羽根1周の場合の等価作用半径
wd' 外径rwψ/(2nπ)、内径roψ/(2nπ)のリングの等価作用半径
R  鉛直貫入抵抗力
s    1回転当たりの鉛直貫入量
t     羽根の平均厚さ
T   作用トルク
T   ドーナツ状の羽根1枚の場合の羽根推進力による羽根摩擦抵抗トルク
T   鉛直貫入抵抗力によって発生する貫入摩擦抵抗トルク
T   羽根推進力によって発生する羽根摩擦抵抗トルク
dT  微小要素の羽根推進力によって発生する羽根摩擦抵抗トルク
V   羽根による一回転当たりの排土体積とコーンの排土体積の和
Z    鉛直方向座標軸
α    qcとRの関係から決まる係数
β    qcとN値の関係から決まる係数
δ    羽根の微小要素の傾斜角
ψ    極座標の回転角
μ    地盤と羽根の摩擦係数
τ    円周方向の摩擦応力度
θ    羽根の等価傾斜角
ω    コーン先端の中心軸からの角度
Ψ    羽根摩擦抵抗トルクの等価作用円の円周方向の座標軸
η   貫入摩擦抵抗トルクの等価作用半径(r')と羽根摩擦抵抗トルクの等価作用半径(r')の比
<Description of symbols in the above equation>
Cross-sectional area of maximum diameter of A o cone (area of rod, area of maximum blade)
A c perimeter area of equivalent cone
A e Equivalent penetration cross section of a bladed cone
The sum of Mitsuke (projected) area of the A t rod area and a maximum of feathers
A w A total of the blade area of the cone with a blade
dA w The small area of the blade of the cone with a blade
A pw summation of the projected area of the vanes with a vane
Small projection area of dA pw bladed cone blade
D o rod diameter (maximum diameter of cone)
D w Maximum blade diameter
Energy input by penetration per E i rotation
E c Energy consumed by penetration per revolution
Energy consumed per revolution by E s vertical penetration
Energy consumed per revolution due to E μ rotational friction
Energy consumed per revolution due to penetration friction associated with E μp rotation
Energy consumed per rotation due to blade friction accompanying E μa rotation
A value obtained by converting F p penetration friction resistance torque T b (equivalent working radius r e ') into friction force at blade working resistance f w equivalent working radius r w '
F w Blade friction resistance
dF w circumferential component of blade friction stress caused by blade
F μp Perpendicular friction force generated by vertical penetration resistance (total force of friction)
The value obtained by replacing the acting torque acting on the H t bladed cone with the horizontal force on the equivalent acting circle of the blade propulsion force = T b / r w '
l Spiral length of the central part of the blade per rotation
L b action vertical force
N N value
P blade pitch (the amount of movement in the Z direction while the blade makes one revolution)
P w blade propulsion
P a wedge effect by the maximum radius of the vertical stress intensity q c cone penetration resistance r o cone shaft which acts on the conical peripheral surface as the blade propulsion Stress p p penetration resistance acting on the wing upper surface (the radius of the rod, the maximum inner diameter of the blade )
r e Equivalent penetration radius r e 'of the bladed cone equivalent operating radius r w maximum radius r w of the blade equivalent operating radius r w ' of the blade frictional torque r w 1 'in the case of one donut-shaped spiral blade Equivalent action radius r wd 'Equivalent action radius of ring with outer diameter r w ψ / (2 n π), inner diameter r o ψ / (2 n π)
R p vertical penetration resistance
s Vertical penetration amount per rotation
t Average thickness of the blade
T b acting torque
Blade friction resistance torque by blade driving force in the case of one T d donut shaped blade
Penetration frictional resistance torque generated by T p vertical penetration resistance
Wings frictional resistance torque generated by the T w wings propulsion
Blade friction resistance torque generated by blade thrust of dT w minute element
The sum of earth removal volume and cone earth removal volume per rotation by V w blades
Z vertical axis alpha q c and R factor beta q c and friction coefficient τ circumferential direction of the rotation angle μ ground and the blade inclination angle ψ polar microelements coefficient δ blade determined by the relationship between the N value determined by the relationship p Friction stress degree θ Equivalent inclination angle of blade ω Angle from center axis of cone tip 羽 根 Equivalent force of blade friction resistance torque Coordinate axis of circumferential direction η Equivalent action radius of penetration friction resistance torque (r e ') and blade Ratio of equivalent action radius (r w ') of frictional resistance torque
 以上に本発明の実施例を図面及び数式に基づいて説明したが、本発明は、図示例の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更、応用のバリエーションの範囲を含むことを念のために言及する。 Although the embodiments of the present invention have been described above with reference to the drawings and formulas, the present invention is not limited to the illustrated examples, and design changes and applications normally made by those skilled in the art without departing from the technical concept thereof. It is mentioned just to include the range of variation.
1   羽根付きコーン
2   コーン部
2a  コーン外周面
3   螺旋羽根部
4   コーン先端
5   ロッド下端
6   ロッド上部
7   ロッド
8   施工機械
9   地盤(調査対象地盤)
DESCRIPTION OF SYMBOLS 1 bladed cone 2 cone part 2a cone outer peripheral surface 3 spiral blade part 4 cone tip 5 rod lower end 6 rod upper part 7 rod 8 construction machine 9 ground (ground to be surveyed)

Claims (6)

  1.  貫入方向に向けて縮径するコーン部と前記コーン部の外周面に設けられ先端に向かって幅が狭くなる螺旋羽根部とを有する羽根付きコーンと、前記羽根付きコーンを下端に取り付けるロッドとを備え、前記ロッドの上部に与える載荷トルクと載荷鉛直力により前記羽根付きコーンを調査対象地盤に貫入させ、前記羽根付きコーンに作用する作用トルクと作用鉛直力に基づいて、又は前記羽根付きコーンに作用する作用トルクと作用鉛直力と前記羽根付きコーンの1回転あたりの貫入量に基づいて、前記調査対象地盤の貫入抵抗を評価することを特徴とする、地盤調査方法。 A bladed cone having a cone portion decreasing in diameter toward the penetration direction and a spiral blade portion provided on the outer peripheral surface of the cone portion and having a width narrowed toward the tip; and a rod for attaching the bladed cone to the lower end The bladed cone is made to penetrate the ground to be surveyed by the load torque applied to the upper portion of the rod and the load vertical force, and based on the acting torque and the applied vertical force acting on the bladed cone, or to the bladed cone A ground investigation method, characterized in that the penetration resistance of the ground to be investigated is evaluated based on the acting torque, the acting vertical force, and the penetration amount per one rotation of the bladed cone.
  2. [規則91に基づく訂正 28.12.2018] 
     前記羽根付きコーンに作用する作用トルクと作用鉛直力に基づいて前記調査対象地盤の貫入抵抗を評価する場合、
     コーン貫入抵抗と標準貫入試験N値(以下N値と略す。)を下式によって評価することを特徴とする、請求項1に記載した地盤調査方法。
    コーン貫入抵抗(qc)=(T C2/r'+LC1)/(C1+C2μη/C3)/(αA
    N値=(T C2/r'+LC1)/(C1+C2μη/C3)/(αβA
    C1=sinθ+μcosθ、C2=cosθ-μsinθ、C3=sinω+μcosω
    T 羽根付きコーンに作用する作用トルク
    L 羽根付きコーンに作用する作用鉛直力
    ' 羽根摩擦抵抗トルクの等価作用半径
    η 貫入摩擦抵抗トルクの等価作用半径(r')と羽根摩擦抵抗トルクの等価作用半径(r')の比
    μ 地盤と羽根の摩擦係数
    ω コーン先端の中心軸からの角度
    θ 羽根の等価傾斜角
    A 羽根付きコーンの等価貫入断面積
    α qcとR(鉛直貫入抵抗)の関係から決まる係数
    β qcとN値の関係から決まる係数
    [Correction based on rule 91 28.12. 2018]
    In the case of evaluating the penetration resistance of the surveyed ground based on the acting torque acting on the bladed cone and the acting vertical force:
    The ground investigation method according to claim 1, wherein the cone penetration resistance and the standard penetration test N value (hereinafter abbreviated as N value) are evaluated by the following formula.
    Cone penetration resistance (q c ) = (T b C 2 / r w ′ + L b C 1 ) / (C 1 + C 2 μη / C 3 ) / (α A e )
    N value = (T b C 2 / r w '+ L b C 1) / (C 1 + C 2 μη / C 3) / (αβA e)
    C 1 = sin θ + μ cos θ, C 2 = cos θ−μ sin θ, C 3 = sin ω + μ cos ω
    Action torque acting on T b bladed cone
    L b Vertical force acting on the bladed cone r w 'Equivalent operating radius of blade frictional resistance torque η Equivalent operating radius of penetrating frictional resistance torque (r e ') and equivalent operating radius of blade frictional resistance torque (r w ') Ratio of friction coefficient of friction between ground and blade ω angle from center axis of cone tip θ equivalent inclination angle of blade
    A e Determined from the relationship between the equivalent penetration cross section α q c of the cone with a blade and R p (vertical penetration resistance) Coefficient determined from the relationship between β q c and N value
  3.  前記羽根付きコーンに作用する作用トルクと作用鉛直力と前記羽根付きコーンの1回転あたりの貫入量に基づいて前記調査対象地盤の貫入抵抗を評価する場合、
     前記羽根付きコーンの1回転あたりの鉛直貫入量(s)が羽根ピッチ(P)と等しいか小さいとき、
     前記作用トルクと前記作用鉛直力と前記羽根付きコーンの1回転あたりの貫入量から、コーン貫入抵抗とN値を下式によって評価することを特徴とする、請求項1に記載した地盤調査方法。
    コーン貫入抵抗(qc)=(2πT+Ls+2πμr'L/(C2cosθ))/(s+2πμ
          r'/C3+2πμr' /(C2cosθ))/(αA
    N値=(2πT+Ls+2πμr'L/C2cosθ)/(s+2πμr'/C3+2πμr' /(C2cosθ))/(αβA
    C2=cosθ-μsinθ、C3=sinω+μcosω
    T 羽根付きコーンに作用する作用トルク
    L 羽根付きコーンに作用する作用鉛直力
    s 1回転当たりの鉛直貫入量
    ' 羽根摩擦抵抗トルクの等価作用半径
    ’ 貫入摩擦抵抗トルクの等価作用半径
    μ 地盤と羽根の摩擦係数
    ω コーン先端の中心軸からの角度
    θ 羽根の等価傾斜角
    A 羽根付きコーンの等価貫入断面積
    α qcとR(鉛直貫入抵抗)の関係から決まる係数
    β qcとN値の関係から決まる係数
    In the case of evaluating the penetration resistance of the ground under investigation based on the acting torque acting on the winged cone, the acting vertical force, and the penetration amount per one rotation of the winged cone:
    When the vertical penetration amount (s) per one rotation of the bladed cone is equal to or smaller than the blade pitch (P),
    The ground investigation method according to claim 1, characterized in that the cone penetration resistance and the N value are evaluated by the following equation from the acting torque, the acting vertical force, and the amount of penetration per one rotation of the bladed cone.
    Cone penetration resistance (q c ) = (2πT b + L b s + 2π μ w w L b / (C 2 cos θ)) / (s + 2πμ
    r e ′ / C 3 + 2πμ r w ′ / (C 2 cos θ)) / (αA e )
    N value = (2πT b + L b s + 2πμr w 'L b / C 2 cosθ) / (s + 2πμr e' / C 3 + 2πμr w '/ (C 2 cosθ)) / (αβA e)
    C 2 = cosθ-μsinθ, C 3 = sinω + μcosω
    Action torque acting on T b bladed cone
    L b Vertical force acting on a bladed cone
    s Vertical penetration amount r w 'per equivalent rotation radius Equivalent radius of action of blade friction torque r e ' Equivalent friction radius of penetration friction torque μ Friction coefficient of ground and blades ω Angle from center axis of cone tip θ equivalent of blades Angle of inclination
    A e Determined from the relationship between the equivalent penetration cross section α q c of the cone with a blade and R p (vertical penetration resistance) Coefficient determined from the relationship between β q c and N value
  4.  前記羽根付きコーンに作用する作用トルクと作用鉛直力と前記羽根付きコーンの1回転あたりの貫入量に基づいて前記調査対象地盤の貫入抵抗を評価する場合、
     前記羽根付きコーンの1回転あたりの鉛直貫入量(s)が羽根ピッチ(P)より大きいとき、
     前記作用トルクと前記作用鉛直力と前記羽根付きコーンの1回転あたりの貫入量から、コーン貫入抵抗とN値を下式によって評価することを特徴とする、請求項1に記載した地盤調査方法。
    コーン貫入抵抗(qc)=(2πT+Ls)/(s+2πμr’/C3)/(αA
    N値=(2πT+Ls)/(s+2πμr’/C3)/(αβA
    C3=sinω+μcosω
    T 羽根付きコーンに作用する作用トルク
    L 羽根付きコーンに作用する作用鉛直力
    s  1回転当たりの鉛直貫入量
    ’ 貫入摩擦抵抗トルクの等価作用半径
    μ 地盤と羽根の摩擦係数
    ω コーン先端の中心軸からの角度
    θ 羽根の等価傾斜角
    A 羽根付きコーンの等価貫入断面積
    α qcとR(鉛直貫入抵抗力)の関係から決まる係数
    β qcとN値の関係から決まる係数
    In the case of evaluating the penetration resistance of the ground under investigation based on the acting torque acting on the winged cone, the acting vertical force, and the penetration amount per one rotation of the winged cone:
    When the vertical penetration amount (s) per one rotation of the bladed cone is larger than the blade pitch (P),
    The ground investigation method according to claim 1, characterized in that the cone penetration resistance and the N value are evaluated by the following equation from the acting torque, the acting vertical force, and the amount of penetration per one rotation of the bladed cone.
    Cone penetration resistance (q c ) = (2πT b + L b s) / (s + 2π μ r e '/ C 3 ) / (α A e )
    N value = (2πT b + L b s) / (s + 2π μ r e '/ C 3 ) / (αβ A e )
    C 3 = sin ω + μ cos ω
    Action torque acting on T b bladed cone
    L b Vertical force acting on a bladed cone
    s Vertical penetration amount per rotation r e 'Penetration friction resistance torque equivalent action radius μ Coefficient of friction between ground and blade ω Angle from the center axis of cone tip θ Angle tilt angle of blade
    A e Coefficient determined from the relationship between the equivalent penetration cross section α q c of the cone with a blade and R p (vertical penetration resistance) Coefficient determined from the relationship between β q c and the N value
  5.  請求項1~4のいずれかに記載した地盤調査方法に用いられる前記羽根付きコーンであって、先端に向けて縮径するコーン部と、前記コーン部の外周面に設けられ先端に向かって幅が狭くなる螺旋羽根部とから構成されていることを特徴とする、羽根付きコーン。 The bladed cone used in the ground survey method according to any one of claims 1 to 4, wherein the cone portion reduces in diameter toward the tip, and the outer periphery of the cone portion is provided with a width toward the tip A bladed cone characterized by comprising:
  6.  前記羽根付きコーンの羽根ピッチが、コーン最外径の0.5~1.5倍であることを特徴とする、請求項5に記載した羽根付きコーン。 The bladed cone according to claim 5, wherein a blade pitch of the bladed cone is 0.5 to 1.5 times the outermost diameter of the cone.
PCT/JP2018/044533 2017-12-06 2018-12-04 Ground surveying method and bladed cone WO2019111883A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019514321A JP6532637B1 (en) 2017-12-06 2018-12-04 Ground survey method and bladed cone
CN201880069368.XA CN111263839B (en) 2017-12-06 2018-12-04 Land surveying method and cone with blades

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017234080 2017-12-06
JP2017-234080 2017-12-06

Publications (1)

Publication Number Publication Date
WO2019111883A1 true WO2019111883A1 (en) 2019-06-13

Family

ID=66751612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044533 WO2019111883A1 (en) 2017-12-06 2018-12-04 Ground surveying method and bladed cone

Country Status (3)

Country Link
JP (1) JP6532637B1 (en)
CN (1) CN111263839B (en)
WO (1) WO2019111883A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798281B2 (en) * 2000-12-27 2006-07-19 新日本製鐵株式会社 Ground survey method
JP2007192626A (en) * 2006-01-18 2007-08-02 Japan Health Science Foundation Penetration type pipe strain meter
JP2007239444A (en) * 2006-02-08 2007-09-20 Yoshito Maeda Investigation method for obtaining ground information

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2519290Y (en) * 2001-05-23 2002-10-30 梁军 Injection device of self press type static contact search apparatus
CN102644269A (en) * 2012-05-04 2012-08-22 朱建新 Non-earth-borrowing composite pile and construction method thereof
JP6159089B2 (en) * 2013-01-11 2017-07-05 日東精工株式会社 Soil judgment method
CN104005415B (en) * 2014-02-18 2015-12-02 中铁十六局集团北京轨道交通工程建设有限公司 The efficient forming construction method thereof of diaphram wall in light weathered granite
CN105510163B (en) * 2016-01-24 2018-03-27 吉林大学 A kind of soil penetration resistance measurement apparatus
CN106223331B (en) * 2016-09-06 2018-06-12 王继忠 A kind of construction method for creeping into the construction equipment and foundation that spray stirring of vibrating
CN106483018B (en) * 2016-11-08 2019-07-12 中国水利水电科学研究院 Consider the method that structure effect in situ determines the fatigue resistance parameter of the deep covering layer soil body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798281B2 (en) * 2000-12-27 2006-07-19 新日本製鐵株式会社 Ground survey method
JP2007192626A (en) * 2006-01-18 2007-08-02 Japan Health Science Foundation Penetration type pipe strain meter
JP2007239444A (en) * 2006-02-08 2007-09-20 Yoshito Maeda Investigation method for obtaining ground information

Also Published As

Publication number Publication date
JPWO2019111883A1 (en) 2019-12-12
CN111263839B (en) 2021-07-23
CN111263839A (en) 2020-06-09
JP6532637B1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
Diemer et al. Effect of pitch length on the behavior of rotary triple helix root canal instruments
US8347713B2 (en) Apparatus and method for measuring dynamic rigidity of a main shaft of a machine tool
Matsuzaki et al. Theoretical and experimental study on rifling mark generating phenomena in BTA deep hole drilling process (generating mechanism and countermeasure)
US20140028293A1 (en) Measuring speed of rotation of a downhole motor
JP2007255012A (en) Vane shear testing device of ground in situ
CN101881602B (en) Assembly accuracy detection method of large complicated blade parts
RU2009148817A (en) ROTATING DRILLING BIT WITH CALIBRATING AREAS, HAVING AN INCREASED CONTROL AND REDUCED WEAR
KR20120113227A (en) Torque calculation method for four-pont contact ball bearing, calculation device, and calculation program
JP6532637B1 (en) Ground survey method and bladed cone
JP6138729B2 (en) Resistance estimation method and estimation system for rotary press-fit piles
WO2011155619A1 (en) Foundation pile group
US10962460B2 (en) Free fall ball penetrometer with a booster
Marenya Performance characteristics of a deep tilling rotavator
KR101559881B1 (en) Apparatus for testing drilling apparatus
CN110546345B (en) Earth-boring tools with reduced vibrational response and related methods
EP0178709B1 (en) Stabilizer
Presas et al. Natural frequencies of rotating disk-like structures submerged viewed from the stationary frame
RU2006560C1 (en) Method of control of well shaft trajectory (its variants )
SU1008353A1 (en) Method for determining strength properties of soil and apparatus for determining strength properties of soil
Andresen et al. An inspection vane
JPH07311133A (en) Method and instrument for measuring hardness of ground
CN217421146U (en) Drilling inclination angle measuring device
JP6656724B2 (en) Liquefaction determination method
JP2005113612A (en) Method for construction management of rotary press-in steel pipe pile
WO2019186660A1 (en) Method for estimating end bearing capacity of rotary press-in pile, end bearing capacity management system, construction management method, and program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019514321

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885578

Country of ref document: EP

Kind code of ref document: A1