WO2019111791A1 - Antisense oligonucleotide capable of cancelling intron retention in dystrophin gene - Google Patents

Antisense oligonucleotide capable of cancelling intron retention in dystrophin gene Download PDF

Info

Publication number
WO2019111791A1
WO2019111791A1 PCT/JP2018/043864 JP2018043864W WO2019111791A1 WO 2019111791 A1 WO2019111791 A1 WO 2019111791A1 JP 2018043864 W JP2018043864 W JP 2018043864W WO 2019111791 A1 WO2019111791 A1 WO 2019111791A1
Authority
WO
WIPO (PCT)
Prior art keywords
antisense oligonucleotide
dystrophin gene
pharmaceutically acceptable
seq
sequence
Prior art date
Application number
PCT/JP2018/043864
Other languages
French (fr)
Japanese (ja)
Inventor
雅文 松尾
小泉 誠
Original Assignee
第一三共株式会社
学校法人神戸学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社, 学校法人神戸学院 filed Critical 第一三共株式会社
Publication of WO2019111791A1 publication Critical patent/WO2019111791A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7125Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to antisense oligonucleotides that eliminate intron retention of the dystrophin gene.
  • Treatment of solid tumors in children generally involves chemotherapy in addition to surgical removal of the tumor. Although there is a case that the tumor can be resolved successfully in response to such treatment, there are not a few cases where the enlargement of the tumor is seen despite the administration of various chemotherapeutic agents.
  • Rhabdomyosarcoma (Rhabdomyosarcoma: RMS) is one of the typical malignancies that develop in children. Improvements in therapy have resulted in tumor regression in many cases, but the rest are resistant to current therapies and have high mortality rates.
  • Neuroblastoma is also one of the typical malignancies of children of sympathetic origin. Chemotherapy is performed in addition to surgical resection as well as RMS. However, there are examples showing treatment resistance, and the mortality rate is high. For such treatment-resistant solid tumors, development of novel and novel therapeutic methods is urgently required.
  • the dystrophin gene is the largest human gene of 4200 kb and encodes a 14 kb transcript consisting of 79 exons. There are at least eight promoters within the gene, each of which produces a tissue specific dystrophin isoform.
  • Dystrophin Dp71 is the smallest isoform produced from the promoter in intron 62 and is expressed in many tissues. Some of the 78 introns of the dystrophin gene are as large as several hundred kb, but the 11 introns are smaller than 1000 bp and smaller than the other introns.
  • the dystrophin gene is expressed in skeletal muscle and produces dystrophin. This dystrophin gene abnormality results in the onset of muscular dystrophy. Skeletal muscle dystrophin mRNA has been considered to be only mature mRNA for expressing dystrophin. However, analysis of splicing of 11 small introns for skeletal muscle dystrophy mRNA revealed that immature mRNA was unexpectedly present in skeletal muscle (Nishida A, Minegishi M, Takeuchi A, Niba ET, Awano H, Lee T, Iijima K, Takeshima Y, Matsuo M. Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA. J Hum Genet.
  • Non-patent Document 1 2015 Jun; 60 (6) : 323-33 (Non-patent Document 1)). That is, when primers for the region of intron 40 are designed on the exons on both sides and RT-PCR is performed, the retained mRNA left behind as it is without being cut off is a part of the amplification product. was detected. In this sequence, a stop codon is generated within the amino acid open reading frame of dystrophin mRNA, and this mRNA was mRNA without dystrophin-producing ability.
  • SH-SY5Y cells are neuroblastoma-derived cells and are widely used as a model of neural cells.
  • the intron 40 region of dystrophin mRNA was analyzed by RT-PCR in this cell, and three products were obtained (Nishida A, Minegishi M, Takeuchi A, Awano H, Niba ET, Matsuo M.
  • Neuronal SH-SY5Y cells use of C-dystrophin promoter coupled with exon 78 skipping and display multiple patterns of alternative splicing involving two intronic insertion events. Hum Genet. 2015 Sep; 134 (9): 993-1001 (non-patent document 2)).
  • An object of the present invention is to provide a compound capable of eliminating intron retention of the dystrophin gene and promoting the expression of dystrophin.
  • the present inventors assumed that by using this antisense oligonucleotide, the expression of dystrophin can be promoted if this intron retention is eliminated.
  • LESE large exon splicing enhancer
  • the gist of the present invention is as follows.
  • a therapeutic agent for a disease having intron retention of a dystrophin gene which comprises an antisense oligonucleotide capable of eliminating intron retention of a dystrophin gene, a pharmaceutically acceptable salt or solvate thereof.
  • the therapeutic agent according to (1), wherein the intron is intron 40.
  • the antisense oligonucleotide which can eliminate intron retention of the dystrophin gene is described in (1) or (2) which contains a sequence complementary to all or part of the following sequences present in the exon 41e of the dystrophin gene Therapeutic agent.
  • the sequence of the antisense oligonucleotide includes all or part of 3 'tccctgttgtc 5' (SEQ ID NO: 8) (however, t in the sequence may be u) of (1) to (4)
  • the therapeutic agent according to any one of (7) to (9), wherein the modification of the phosphodiester bond is phosphorothioate.
  • the disease having intron retention of dystrophin gene is at least one selected from the group consisting of neuroblastoma, rhabdomyosarcoma, mesothelioma, gastric cancer and brain tumor (1) to (10) Therapeutic agent described in.
  • Antisense oligonucleotide capable of eliminating intron retention of dystrophin gene, pharmaceutically acceptable salt or solvate thereof.
  • the sequence of the antisense oligonucleotide contains all or part of 3 'tccctgttgtc 5' (SEQ ID NO: 8) (provided that t in the sequence may be u) (12) to (14) The antisense oligonucleotide, pharmaceutically acceptable salt or solvate thereof according to any of the foregoing.
  • a pharmaceutical composition comprising the antisense oligonucleotide according to any of (12) to (16), a pharmaceutically acceptable salt or solvate thereof.
  • a preparation for oral or parenteral administration which comprises an antisense oligonucleotide capable of eliminating intron retention of a dystrophin gene, a pharmaceutically acceptable salt or solvate thereof.
  • the present invention provides an antisense oligonucleotide that eliminates intron retention of the dystrophin gene.
  • the present specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2017-235359, which is the basis of the priority of the present application.
  • the result of the cell transfer experiment of AO41E-LESE is shown.
  • the cell introduction experiment result of AO88 is shown.
  • transduction to CRL2061 cell is shown.
  • transduced cell is shown.
  • the result of a scratch test (test example 4) is shown.
  • the results of cell migration and invasion assay (Test Example 5) are shown.
  • the result of a soft agar colony formation assay (Test Example 6) is shown.
  • the results of the plate colony formation assay (Test Example 7) are shown.
  • the cell-introduction experiment result of AO41 E- LESE, 3, 4, and 5 is shown (cancellation of intron 40 retention).
  • the present invention provides a therapeutic agent for a disease having intron retention of a dystrophin gene, which comprises an antisense oligonucleotide capable of eliminating intron retention of the dystrophin gene, a pharmaceutically acceptable salt or solvate thereof.
  • intron retention refers to the fact that all or part of an intron sequence remains in mature mRNA without being cut off during splicing.
  • Intron retention of the dystrophin gene was reported to occur in intron 40 (Non-patent Document 1). It is then clarified that the intron 31 or 70 is also present.
  • Such retention of intron 40 is also detected in Rhabdomyosarcoma-derived cells (Niba ETE, Yamanaka R, Rani AQM, Awano H, Matsumoto M, Nishio H, et al: DMD transcripts in CRL-2061 rhabdomyosarcoma cells Cancer cell Int 2017, 17: 58.).
  • Diseases having intron retention of the dystrophin gene include neuroblastoma, rhabdomyosarcoma, mesothelioma, stomach cancer, brain tumor and the like, and the present invention can treat these diseases, but is limited thereto. It does not mean that
  • the therapeutic agent of the present invention comprises, as an active ingredient, an antisense oligonucleotide capable of eliminating intron retention of the dystrophin gene, a pharmaceutically acceptable salt or solvate thereof.
  • an antisense oligonucleotide capable of eliminating intron retention of the dystrophin gene one comprising a sequence complementary to all or part of the following sequences present in the exon 41 e of the dystrophin gene can be exemplified.
  • 5 'ggatgacaata aagg gacaaca gcctttgaaattttgagag 3' The nucleotide sequence of SEQ ID NO: 1 is deduced to be a sequence comprising LESE (large exon splicing enhancer).
  • a large exon splicing enhancer is considered to be a sequence that aids in the recognition of very large size exons.
  • Antisense oligonucleotides capable of eliminating intron retention of the dystrophin gene are the second g to the 34th (counting from the 3 'end 8th) counting from the 5' end of the sequence of SEQ ID NO: 1
  • a sequence complementary to a sequence consisting of a plurality of consecutive nucleotides in the nucleotide sequence up to t may be included.
  • the number of bases of the antisense oligonucleotide is suitably 15 to 30, preferably 15 to 21, and more preferably 16 to 20.
  • a part of the sequence is usually 80% or more of the whole sequence, preferably 85%, more preferably 90%, most preferably 94%. It is.
  • SEQ ID Nos: 2-5 are the nucleotide sequences of 41E-LESE-1, 41E-LESE-3, 41E-LESE-4 and 41E-LESE-5 (see Examples below), respectively.
  • the nucleotides constituting the antisense oligonucleotide may be either naturally occurring DNA, naturally occurring RNA, or modified forms thereof, but it is preferable that at least one is a modified nucleotide.
  • Modified nucleotides include those in which sugar is modified (for example, those in which D-ribofuranose is 2'-O-alkylated, those in which D-ribofuranose is 2'-O, 4'-C-alkylenated) And phosphodiester bond modified (eg, thioated), base modified, and combinations thereof can be exemplified.
  • At least one D-ribofuranose constituting an antisense oligonucleotide that is 2'-O-alkylated or 2'-O, 4'-C-alkylenated has high avidity to RNA
  • higher therapeutic effects can be expected than natural nucleotides (ie, oligo DNAs, oligo RNAs).
  • those in which at least one phosphodiester bond constituting an oligonucleotide is thioated are expected to have a higher therapeutic effect than natural nucleotides (ie, oligo DNAs, oligo RNAs) because they are highly resistant to nucleases. it can.
  • Oligonucleotides containing both the modified sugar and the modified phosphate as described above can be expected to have a higher therapeutic effect because they are more resistant to nucleases.
  • examples of sugar modifications include modification of the hydroxyl group at the 2'-position, eg, 2'-O-alkylation of D-ribofuranose (eg, 2'-O-methylation, 2'- O-aminoethylated, 2'-O-propylated, 2'-O-allylated, 2'-O-methoxyethylated, 2'-O-butylated, 2'-O-pentylated, 2'- O-propargylation, etc.), 2′-O, 4′-C-alkylenation of D-ribofuranose (eg, 2′-O, 4′-C-ethylenation, 2′-O, 4′-C- Methyleneation, 2'-O, 4'-C-Propylation, 2'-O, 4'-C-Tetramethylenation, 2'-O, 4'-C-Pentamethyleneation etc.), D-ribof
  • examples of modification of phosphodiester bond can include phosphorothioate bond, methylphosphonate bond, methylthiophosphonate bond, phosphorodithioate bond, phosphoroamidate bond and the like.
  • Examples of base modification include 5-methylation, 5-fluorination, 5-bromination, 5-iodination, N4-methylation, 5-demethylation of thymine (uracil), 5-fluorination, 5-bromination, 5-iodination, N6-methylation of adenine, 8-bromination, N2-methylation of guanine, 8-bromination and the like can be mentioned.
  • Antisense oligonucleotides can be prepared according to the method described in the literature (Nucleic Acids Research, 12, 4539 (1984)) using a commercially available synthesizer (for example, model 392 according to the phosphoramidite method of Perkin-Elmer). Can be synthesized.
  • the phosphoroamidite reagent used in that case includes naturally occurring nucleosides and 2′-O-methyl nucleosides (ie, 2′-O-methyl guanosine, 2′-O-methyl adenosine, 2′-O-methyl cytidine, For 2′-O-methyluridine), commercially available reagents can be used.
  • the 2'-O-alkyl guanosine having 2 to 6 carbon atoms in the alkyl group, adenosine, cytidine and uridine are as follows.
  • 2'-O-aminoethyl guanosine, adenosine, cytidine, uridine can be synthesized according to the literature (Blommers et al. Biochemistry (1998), 37, 17714-17725.).
  • 2'-O-propyl guanosine, adenosine, cytidine, uridine can be synthesized according to the literature (Lesnik, E. A. et al. Biochemistry (1993), 32, 7832-7838.).
  • 2′-O-methoxyethyl guanosine, adenosine, cytidine, uridine can be synthesized according to the patent (US Pat. No. 6,261,840) or the literature (Martin, P. Helv. Chim. Acta. (1995) 78, 486-504.).
  • 2'-O-butyl guanosine, adenosine, cytidine, uridine can be synthesized according to the literature (Lesnik, E. A. et al. Biochemistry (1993), 32, 7832-7838.).
  • 2'-O-pentyl guanosine, adenosine, cytidine, uridine can be synthesized according to the literature (Lesnik, E. A. et al. Biochemistry (1993), 32, 7832-7838.).
  • 2'-O 4'-C-methylene guanosine, adenosine, cytidine, 5-methyl cytidine and thymidine, 2'-O having 2 to 5 carbon atoms in the alkylene group according to the method described in WO 99/14226.
  • the 4, 4′-C-alkylene anosine, adenosine, cytidine, 5-methyl cytidine and thymidine can be prepared according to the method described in WO 00/47599.
  • a 2'-deoxy-2'-C, 4'-C-methyleneoxymethyleneated nucleoside of D-ribofuranose is synthesized according to the literature (Wang, G. et al. Tetrahedron (1999), 55, 7707-7724 it can.
  • S-cEt (constrained ethyl) can be synthesized according to the literature (Seth, P.P. et al. J. Org. Chem (2010), 75, 1569-1581.).
  • AmNA can be synthesized according to the literature (Yahara, A. et al. ChemBioChem (2012), 13, 2513-2516.) Or WO 2014/109384.
  • uracil (U) and thymine (T) are compatible. Both uracil (U) and thymine (T) can be used for base pairing with the complementary strand adenine (A).
  • Antisense having a phosphorothioate bond by coupling a phosphoroamidite reagent and then reacting a reagent such as sulfur, tetraethylthiuram disulfide (TETD, Applied Biosystems), Beaucage reagent (Glen Research), or xanthan hydride or the like Oligonucleotides can be synthesized (Tetrahedron Letters, 32, 3005 (1991), J. Am. Chem. Soc. 112, 1253 (1990), PCT / WO 98/54198).
  • CPG controlled pore glass
  • 2′-O-methyl nucleosides are linked
  • 2'-O, 4'-C-methylene guanosine, adenosine, 5-methyl cytidine and thymidine 2'-O having 2 to 5 carbon atoms in the alkylene group according to the method described in WO 99/14226.
  • nucleosides prepared according to the method described in WO 00/47599 are described according to the literature (Oligonucleotide Synthesis, Edited by MJ Gait, Oxford University Press, 1984), It can bind to CPG.
  • modified CPG described in Example 12b of JP-A-7-87982
  • Antisense oligonucleotides may be used in the form of pharmaceutically acceptable salts.
  • “Pharmaceutically acceptable salt” refers to a salt of an antisense oligonucleotide, such as sodium salt, potassium salt, alkali metal salt such as lithium salt, calcium salt, magnesium salt and the like Alkaline earth metal salts, aluminum salts, iron salts, zinc salts, copper salts, nickel salts, metal salts such as cobalt salts; inorganic salts such as ammonium salts, t-octylamine salts, dibenzylamine salts, morpholine salts Glucosamine salt, phenylglycine alkyl ester salt, ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt, chloroprocaine salt, procaine salt,
  • the antisense oligonucleotide and its pharmaceutically acceptable salt may also exist as a solvate (eg, hydrate), and may be such a solvate.
  • Antisense oligonucleotide, pharmaceutically acceptable salt or solvate thereof is mixed with itself or a suitable pharmaceutically acceptable excipient, diluent, etc., and is tablet, capsule, granule, powder Alternatively, they can be administered orally by syrup or the like, or parenterally by injection, suppository, patch or external preparation.
  • excipients for example, sugar derivatives such as lactose, sucrose, sucrose, mannitol and sorbitol; starch derivatives such as corn starch, potato starch, alpha starch and dextrin; and cellulose derivatives such as crystalline cellulose Gum arabic; dextran; organic excipients such as pullulan; light anhydrous silicic acid, synthetic aluminum silicate, calcium silicate, silicate derivatives such as magnesium metasilicate aluminium; phosphate such as calcium hydrogen phosphate; calcium carbonate Carbonates; inorganic excipients such as sulfates such as calcium sulfate), lubricants (eg stearic acid; calcium stearate, metal salts of stearic acid such as magnesium stearate; talc; colloidal silica Bead wax, wax like gay wax Abasic acid, adipic acid, sulfuric acid salt such as sodium sulfate, glycol, fumaric acid, sodium
  • Anionic surfactants cationic surfactants such as benzalkonium chloride; polyoxyethylene alkyl ethers, polyoxyethylene sorbitan fatty acid esters, nonionic surfactants such as sucrose fatty acid esters, etc.), stabilizers (P-hydroxybenzoic acid esters such as methylparaben and propylparaben; alcohols such as chlorobutanol, benzyl alcohol and phenylethyl alcohol; benzalkonium chloride; phenols such as phenol and cresol; thimerosers ; Dehydroacetic acid; and sorbic acid), corrigents (e.g., sweeteners commonly used, acidulant, flavor, etc.), are prepared in a known manner by using additives such as diluents.
  • cationic surfactants such as benzalkonium chloride
  • polyoxyethylene alkyl ethers polyoxyethylene sorbitan fatty acid esters
  • nonionic surfactants such as sucrose
  • the therapeutic agent of the present invention may contain 0.1 to 250 ⁇ moles / ml of antisense oligonucleotide, a pharmaceutically acceptable salt or solvate thereof, preferably 0.2 to 150 ⁇ moles / ml of antisense.
  • An oligonucleotide, or a pharmaceutically acceptable salt or solvate thereof more preferably an antisense oligonucleotide of 0.5 to 100 ⁇ moles / ml, a pharmaceutically acceptable salt or solvate thereof, Even more preferably, 1 to 50 ⁇ moles / ml of an antisense oligonucleotide, a pharmaceutically acceptable salt or solvate thereof, 0.02 to 10% w / v carbohydrate or polyhydric alcohol and 0.01 to 0.4% w
  • a pharmaceutically acceptable surfactant of / v may be included.
  • carbohydrate monosaccharides and / or disaccharides are particularly preferable.
  • these carbohydrates and polyhydric alcohols include glucose, galactose, mannose, lactose, maltose, mannitol and sorbitol. These may be used alone or in combination.
  • Preferred examples of the surfactant include polyoxyethylene sorbitan mono- to tri-ester, alkylphenyl polyoxyethylene, sodium taurocholate, sodium cholate, and polyhydric alcohol ester.
  • polyoxyethylene sorbitan mono- to tri-esters are particularly preferred, and as ester here, oleate, laurate, stearate and palmitate are particularly preferred. These may be used alone or in combination.
  • the therapeutic agent of the present invention may further preferably contain 0.03 to 0.09 M of a pharmaceutically acceptable neutral salt such as sodium chloride, potassium chloride and / or calcium chloride.
  • the therapeutic agent of the present invention can more preferably contain 0.002 to 0.05 M of a pharmaceutically acceptable buffer.
  • a pharmaceutically acceptable buffer examples include sodium citrate, sodium glycinate, sodium phosphate, tris (hydroxymethyl) aminomethane. These buffers may be used alone or in combination.
  • the above therapeutic agents may be supplied in solution.
  • it is usually preferable to freeze it for a certain period of time, etc. It may be used as reconstituted (ie, in distilled water for injection), that is, in a liquid state to be administered. Therefore, the therapeutic agent of the present invention also includes those in a lyophilised state for reconstitution with a solution so that each component is in a predetermined concentration range.
  • amino acids such as albumin and glycine may be further contained.
  • the antisense oligonucleotide, or a pharmaceutically acceptable salt or solvate thereof is administered to humans, for example, about 0.01 to 100 mg / kg of body weight per adult, preferably 0.1 to 100 mg / day.
  • the dose of 20 mg / kg (body weight) may be injected once or divided into subcutaneous injection, intravenous drip infusion, or intravenous injection, but the dosage and frequency of administration may depend on the type of disease, symptoms, age, It may be changed as appropriate depending on the administration method and the like.
  • Administration of the antisense oligonucleotide, a pharmaceutically acceptable salt or solvate thereof to a patient can be performed, for example, as follows. That is, an antisense oligonucleotide, or a pharmaceutically acceptable salt or solvate thereof is produced by a method well known to those skilled in the art and sterilized by a conventional method to prepare, for example, a 125 mg / ml solution for injection. . This solution is instilled, for example in the form of an infusion, in a patient vein such that the dose of antisense oligonucleotide is, for example, 10 mg / kg of body weight. Administration is performed, for example, at intervals of one week, and thereafter this treatment is repeated as appropriate while confirming the therapeutic effect. Other than intravenous administration, direct injection into a tumor or injection into an artery flowing into a tumor may be used.
  • the therapeutic agent of the present invention may be used in combination with other therapeutic agents.
  • the present invention also provides an antisense oligonucleotide, pharmaceutically acceptable salt or solvate thereof which can eliminate intron retention of the dystrophin gene.
  • the antisense oligonucleotides of the present invention, pharmaceutically acceptable salts or solvates thereof are useful because they can be used as medicaments such as therapeutic agents for diseases with intron retention of the dystrophin gene.
  • the present invention also provides a pharmaceutical composition comprising an antisense oligonucleotide capable of eliminating intron retention of a dystrophin gene, a pharmaceutically acceptable salt or solvate thereof.
  • Example 1 HO-T e2s -U m1s -T e2s -C m1s -A e2s -A m1s -A e2s -G m1s -G e2s -C m1s -T e2s -G m1s -T e2s -U m1s -G e2s -U m1s - C e2s -C m1s -C e2s -U m1t -H
  • a 200 nmol RNA program was performed using an automatic nucleic acid synthesizer (MerMade 192X manufactured by BioAutomation).
  • the concentration of solvent, reagent and phosphoramidite in each synthesis cycle is the same as in the case of natural oligonucleotide synthesis, and the solvent, reagent and phosphoramidite of 2'-O-Me nucleoside (adenosine product product No. ANP-5751, The cytidine body product No. ANP-5752, the guanosine body product No. ANP-5753, the uridine body product No. ANP-5754) was from ChemGenes.
  • Example 14 The non-natural type phosphoroamidite is disclosed in Example 14 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-6-N-benzoyladenosine-3'-O- of JP-A-2000-297097).
  • Example 27 (2-cyanoethyl N, N-diisopropyl) phosphoroamidite),
  • Example 27 (5′-O-dimethoxytrityl-2′-O, 4′-C-ethylene-N-isobutyryl guanosine-3′-O -(2-Cyanoethyl N, N-diisopropyl) phosphoroamidite)
  • Example 22 (5'-O-Dimethoxytrityl-2'-O, 4'-C-ethylene-4-N-benzoyl-5-methylcytidine -3'-O- (2-cyanoethyl N, N-diisopropyl) phosphoroamidite)
  • Example 9 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-5-methyluridine-
  • the compound of 3'-O- (2-cyanoethyl N, N-diisopropyl) phosphoroamidite) was used
  • the protecting group cyanoethyl group on the phosphorus atom and the protecting group on the nucleic acid base were removed.
  • the mixed solution of oligomers was mixed with 300 uL of Clarity QSP DNA Loading Buffer (manufactured by Phenomenex), and charged on a Clarity SPE 96 well plate (manufactured by Phenomenex).
  • TEAB triethylammonium bicarbonate
  • DCA dichloroacetic acid
  • the compound was identified by negative ion ESI mass spectrometry (calculated: 7066.7733, found: 7066.7759)
  • the nucleotide sequence of the present compound is a sequence complementary to nucleotide number 1002224-1002243 of Homo sapiens dystrophin (DMD) gene (NCBI-GenBank accession No. NG_012232).
  • Example 2 HO-T e2s -U m1s -U m1s -C e2s -A m1s -A m1s -A e2s -G m1s -G m1s -C e2s -U m1s -G m1s -T e2s -U m1s -G m1s -T e2s - C m1s -C m1s -C e2s -U m1t -H
  • the title compound was synthesized in the same manner as in Example 1.
  • the protecting group cyanoethyl group on the phosphorus atom and the protecting group on the nucleic acid base were removed.
  • the mixed solution of oligomers was mixed with 300 uL of Clarity QSP DNA Loading Buffer (manufactured by Phenomenex), and charged on a Clarity SPE 96 well plate (manufactured by Phenomenex).
  • TEAB triethylammonium bicarbonate
  • DCA dichloroacetic acid
  • the compound was identified by negative ion ESI mass spectrometry (calculated: 7030.7733, found: 7030.7767)
  • the nucleotide sequence of the present compound is a sequence complementary to nucleotide number 1002224-1002243 of Homo sapiens dystrophin (DMD) gene (NCBI-GenBank accession No. NG_012232).
  • Example 3 HO-C e2s -A m1s -A e2s -A m1s -G e2s -G m1s -C e2s -U m1s -G e2s -U m1s -T e2s -G m1s -T e2s -C m1s -C 2s -C m1s - Te 2s -U m1s -Te 2s -A m1t -H
  • the title compound was synthesized in the same manner as in Example 1.
  • the compound was identified by negative ion ESI mass spectrometry (calculated: 7103.8161, found: 7103.8156)
  • the base sequence of the present compound is a sequence complementary to nucleotide number 1002221-1002240 of Homo sapiens dystrophin (DMD) gene (NCBI-GenBank accession No. NG_012232).
  • Example 4 HO-A e2s -G m1s -G e2s -C m1s -T e2s -G m1s -T e2s -U m1s -G e2s -U m1s -C e2s -C m1s -C e2s -U m1s -T e2s -U m1s - A e2s -U m1s -T e2s -G m1t -H
  • the title compound was synthesized in the same manner as in Example 1.
  • the compound was identified by negative ion ESI mass spectrometry (calculated: 7083.7522, found: 7083.748)
  • the base sequence of the present compound is a sequence complementary to nucleotide numbers 1002218-1002237 of Homo sapiens dystrophin (DMD) gene (NCBI-GenBank accession No. NG_012232).
  • Example 5 HO-C e2s -U m1s -G e2s -U m1s -T e2s -G m1s -T e2s -C m1s -C 2s -C m1s -T e2s -U m1s -T e2s -A m1s -T e2s -U m1s- G e2s -U m1s -C e2s -A m1t -H
  • the title compound was synthesized in the same manner as in Example 1.
  • the compound was identified by negative ion ESI mass spectrometry (calculated: 7032.7552, found: 7032.7396)
  • the base sequence of the present compound is a sequence complementary to nucleotide number 1002215-1002234 of Homo sapiens dystrophin (DMD) gene (NCBI-GenBank accession No. NG_012232).
  • Test Example 1 Intron 40 Retention Release of Dystrophin Gene in SH-SY5Y Cells by Example Compounds SH-SY5Y cells are purchased from ATCC, and the cells are cultured in 5% CO 2 in air at 37 ° C. Used for the test.
  • the compound AO41E-LESE prepared in the example was transfected into SH-SY5Y cells as follows. 1. Compounds prepared in the example (10 ⁇ g in milli Q) in 100 ⁇ l of Opti-MEM (GIBCO-BRL) 200 pmol was dissolved. 6 ⁇ l plus reagent (GIBCO-BRL) was added to the solution of 2.1 and left at room temperature for 15 minutes. 3. In another tube, 8 ⁇ l Lipofectamine (GIBCO-BRL) was dissolved in 100 ⁇ l Opti-MEM. After the treatment of 4.2, 3 was added to the treatment solution and left at room temperature for 15 minutes. 5.
  • Opti-MEM Opti-MEM
  • the myoblasts on day 4 after induction of differentiation were washed once with PBS, and then 800 ⁇ l of Opti-MEM was added. After the treatment of 6.4, the treatment solution was added to 5. After culturing the cells of 7.6 at 37 ° C. in 5% CO 2 in air for 3 hours, 500 ⁇ l of DMEM (containing 6% HS) was added to each well. 8. The culture was further continued.
  • RNA extraction RNA extraction was performed as follows. 1. The cells transfected with the compounds prepared in the examples were cultured for 1 day, then washed once with PBS, and 500 ⁇ l of ISOGEN (Nippon Gene) was added to the cells. After standing at room temperature for 2.5 minutes, the ISOGEN in the wells was collected in a tube. 3. RNA was extracted according to the ISOGEN (Nippon Gene) protocol. 4. Finally, RNA was dissolved in 20 ⁇ l of DEPW.
  • Reverse transcription reaction was performed as follows. 1. To 2 ⁇ g of RNA, DEPW (sterile water treated with diethyl pyrocarbonate) was added to make 6 ⁇ l. To the solution of 2.1, 2 ⁇ l of random hexamer (20 ⁇ l diluted with 3 ⁇ g / ⁇ l of Invitrogen) was added. Heated at 3.65 ° C. for 10 minutes. 4. Cooled on ice for 2 minutes. 5.
  • DEPW sterile water treated with diethyl pyrocarbonate
  • PCR reaction was performed as follows. 1. After mixing the following components, the mixture was heated at 94 ° C. for 4 minutes. Reverse transcription reaction product 3 ⁇ l, forward primer (10 pmol / ⁇ l) 1 ⁇ l, reverse primer (10 pmol / ⁇ l) 1 ⁇ l, dNTP (attached to TAKARA Ex Taq) 2 ⁇ l, buffer (attached to TAKARA Ex Taq) 2 ⁇ l, Ex Taq (TAKARA) 0.1 ⁇ l, 11 ⁇ l of sterile water. After treatment at 2.94 ° C. for 4 minutes, 35 cycles of treatment at 94 ° C. for 1 minute, 60 ° C. for 1 minute and 72 ° C. for 3 minutes were performed.
  • the base sequences of the forward and reverse primers used in the PCR reaction for detecting the cancellation of the retention of intron 40 are as follows.
  • Forward primer Dys-ex40f 5'- CTGAGCCCAGAGTGAAAAGG-3 '(exon 40) (SEQ ID NO: 6)
  • Reverse primer c41r 5'-TGCGGCCCCCATCCTC AGACAA-3 '(exon 41) (SEQ ID NO: 7) 4.
  • Analysis of PCR reactions was performed using an Agilent Bioanalyzer. After electrophoretic separation, the amount of each band was quantified.
  • Sequence amplification products of the reaction products of the PCR reaction were analyzed by 2% agarose gel electrophoresis. The band of the amplification product is excised from the electrophoresed gel, and the PCR product is subcloned into pT7 Blue-T vector (Novagen), and Thermo SequenqseTM II dye terminator cyc ABI PRISM 310 Genet using le sequencing kit (Amersham Pharmacia Biotec) The sequencing reaction was performed by ic analyzer (Applied Biosystems) to confirm the nucleotide sequence. The reaction procedure followed the attached manual.
  • CCL-136 cells were purchased from ATCC. CCL-136 cells were seeded on a 60 mm culture plate (manufactured by Iwaki) so as to be 2 ⁇ 10 5 cells, and cultured at 37 ° C. under 5.0% carbon dioxide gas for 24 hours (Panasonic Health Care). The compounds of Examples were transfected in the same manner as in Test Example 1, and after 1, 3, 5 and 7 days, the number of cultured cells was manually counted. Trypan blue was used to remove dead cells and cell counts were counted using a hemocytometer.
  • CCL-136 cells were purchased from ATCC. CCL-136 cells were seeded at 2 ⁇ 10 5 on a 6 mm culture plate (manufactured by Iwaki) and cultured at 37 ° C. under 5.0% carbon dioxide gas for 24 hours (Panasonic Health Care). After 24 hours, the example compounds were transfected in the same manner as in Test Example 1.
  • the 6 mm culture plate was cultured in an incubation chamber at 37 ° C. under 5.0% carbon dioxide gas under a time-lapse microscope (cellSens, manufactured by Olympus). Images were taken every 30 minutes for 5 days at 100 ⁇ magnification and analyzed using cellSens software (Olympus) to observe temporal changes in cell morphology.
  • AO41E-LESE of Example 1 was introduced into SH-SY5Y cells, and 24 hours later, mRNA was analyzed by RT-PCR. Before the introduction, two intron 40 retention products were detected as amplification products of the intron 40 region of dystrophin, in addition to the normal splicing product band. That is, a full-length retention band and a band corresponding to exon 40e.
  • FIG. 1a A schematic diagram of the relationship between intron 40 and AO41E-LESE is shown in FIG. 1a.
  • Introduction of AO41E-LESE (50 ⁇ M) of Example 1 caused a large change in RT-PCR products, and the concentration of the bands of the two products containing the intron 40 sequence was reduced.
  • CRL-2061 and CCL-136 were purchased from ATCC as two types of cells derived from RMS, and cultured using the same culture method as in Test Example 1.
  • the AO41E-LESE of Example 1 was introduced into these cultured cells in the same manner as in Test Example 1.
  • AO was introduced into both cells at a concentration of 50 ⁇ M, and dystrophin mRNA produced after 24 hours was analyzed.
  • retention of intron 40 and a band corresponding to exon 41e were amplified in cells not introduced.
  • such intron retention bands disappeared, and only bands corresponding to normal mRNAs (FIG. 4).
  • AO88 the compound of Example 30 described in International Patent No.
  • WO 2004/048570 complementary to the sequence of exon 45 of the dystrophin gene was introduced into CCL-136 cells, and the same analysis was performed. With the introduction of AO88, intron 40 retention and elimination of exon 41e were not observed (FIG. 4). These results indicate sequence specific intron retention of antisense oligonucleotides.
  • Test Example 3 Inhibition of Cell Growth in Rhabdomyosarcoma (RMS) by Example Compounds
  • the AO 41 E-LESE of Example 1 was introduced into CCL-1361 cells in the same manner as in Test Example 2, and the number of cells was measured over 7 days. Change was observed. As a result, the AO41E-LESE non-transfected cells of Example 1 proliferated, and the number of cells linearly increased (FIG. 5). On the other hand, the proliferation of the AO41E-LESE-introduced cells of Example 1 was suppressed and the number of cells was hardly increased.
  • Test Example 5 Cell Migration and Invasion Assay (FIG. 7) Migration / invasion ability was analyzed using CytoSelect 24-well migration and invasion assay kit. The cells migrated into the wells were measured at an absorbance of 570 mm. Both migration ability and infiltration ability decreased in AO41E-LESE transfected cells. In the colony formation reaction, the number of colonies increased to 300 or more with non-administration and AO88 administration, but remained at 80 with AO41E-LESR administration, and a significant colony growth inhibitory effect was observed. Also, in the infiltration analysis, there were many infiltrating cells in the non-administered cases and in the AO88-administered cases. However, significant suppression was observed in patients treated with AO41E-LESE. There were significant differences between the two groups.
  • the present invention can be used to treat diseases having intron retention of the dystrophin gene.
  • ⁇ SEQ ID NO: 1> A sequence presumed to be LESE (large exon splicing enhancer) present in exon 41e of dystrophin gene. 5 'ggatgacaata aagg gacaaca gcc ttt gaaatttt gagag 3' ⁇ SEQ ID NO: 2> This shows the nucleotide sequence of the antisense oligonucleotide (41E-LESE-1) produced in Examples 1 and 2. 3 'tccctgttgtcggaaacttt 5' ⁇ SEQ ID NO: 3> This shows the nucleotide sequence of the antisense oligonucleotide (41E-LESE-3) produced in Example 3.
  • LESE large exon splicing enhancer
  • 3'atttccctgttgtcggaac 5 ' ⁇ SEQ ID NO: 4> This shows the nucleotide sequence of the antisense oligonucleotide (41E-LESE-4) produced in Example 4.
  • 3'gttatttccctgttgtcgga 5 ' ⁇ SEQ ID NO: 5> This shows the nucleotide sequence of the antisense oligonucleotide (41E-LESE-5) produced in Example 5.
  • 3 'actgttatttccctgttgtc 5' ⁇ SEQ ID NO: 6> This shows the nucleotide sequence of forward primer Dys-ex40f used in Test Example 1.
  • nucleotides constituting the antisense oligonucleotides of SEQ ID NOs: 2 to 5 and 8 may be any of natural DNA, natural RNA, DNA / RNA chimera, and modified forms thereof, but at least one of them is a modified nucleotide. Is preferred.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Provided is a compound which can cancel the intron retention in dystrophin gene to promote the expression of dystrophin. An antisense oligonucleotide capable of cancelling the intron retention in dystrophin gene, or a pharmaceutically acceptable salt or solvate thereof. A pharmaceutical composition containing the antisense oligonucleotide or a pharmaceutically acceptable salt or solvate thereof. A therapeutic agent for a disease in which the intron retention in dystrophin gene occurs, which comprises the antisense oligonucleotide or a pharmaceutically acceptable salt or solvate thereof.

Description

ジストロフィン遺伝子のイントロンリテンションを解消するアンチセンスオリゴヌクレオチドAntisense oligonucleotides that eliminate intron retention of dystrophin gene
 本発明は、ジストロフィン遺伝子のイントロンリテンションを解消するアンチセンスオリゴヌクレオチドに関する。 The present invention relates to antisense oligonucleotides that eliminate intron retention of the dystrophin gene.
 小児の固形腫瘍の治療は、腫瘍の外科的摘出に加えて化学療法を行うのが一般的である。こうした治療にうまく反応して腫瘍の消退がはかられる場合もあるが、各種の化学療法剤の投与にもかかわらず、腫瘍の拡大を見る例が少なからず存在する。横紋筋肉腫 (Rhabdomyosarcoma: RMS)は小児に発症する代表的な悪性腫瘍の1つである。治療法の改善により、多くで腫瘍の消退を見るが、残りは現在の治療法に抵抗性を示し、高い致死率となっている。また、神経芽腫は、交感神経起源の小児の代表的な悪性腫瘍の1つである。これもRMSと同様に外科的切除に加え、化学療法が実施される。しかし、治療抵抗性を示す例が存在し、高い致死率となっている。こうした治療抵抗性の固形腫瘍に対しては、従来にない新規の治療法の開発が急がれる。 Treatment of solid tumors in children generally involves chemotherapy in addition to surgical removal of the tumor. Although there is a case that the tumor can be resolved successfully in response to such treatment, there are not a few cases where the enlargement of the tumor is seen despite the administration of various chemotherapeutic agents. Rhabdomyosarcoma (Rhabdomyosarcoma: RMS) is one of the typical malignancies that develop in children. Improvements in therapy have resulted in tumor regression in many cases, but the rest are resistant to current therapies and have high mortality rates. Neuroblastoma is also one of the typical malignancies of children of sympathetic origin. Chemotherapy is performed in addition to surgical resection as well as RMS. However, there are examples showing treatment resistance, and the mortality rate is high. For such treatment-resistant solid tumors, development of novel and novel therapeutic methods is urgently required.
 ジストロフィン遺伝子はヒト最大の遺伝子で4200 kbあり、79ヶのエクソンからなる14 kbのtranscript をコードしている。遺伝子内には少なくとも8カ所のプロモーターがあり、それぞれから組織特異的なジストロフィンアイソフォームが産生される。ジストロフィンDp71は、イントロン62内にあるプロモーターから産生される1番小さなアイソフォームで、多くの組織で発現している。ジストロフィン遺伝子の78個のイントロンの中には、数百kbにも及ぶ巨大なものあるが、11個のイントロンは1000 bp以下とほかのイントロンに比して小さい。 The dystrophin gene is the largest human gene of 4200 kb and encodes a 14 kb transcript consisting of 79 exons. There are at least eight promoters within the gene, each of which produces a tissue specific dystrophin isoform. Dystrophin Dp71 is the smallest isoform produced from the promoter in intron 62 and is expressed in many tissues. Some of the 78 introns of the dystrophin gene are as large as several hundred kb, but the 11 introns are smaller than 1000 bp and smaller than the other introns.
 ジストロフィン遺伝子は骨格筋において発現しており、ジストロフィンを産生させている。このジストロフィン遺伝子の異常は、筋ジストロフィーの発症をもたらす。骨格筋のジストロフィンmRNAは、ジストロフィンを発現させるために成熟したmRNAのみであると考えられてきた。しかし、骨格筋のジストロフィーのmRNA を対象として、サイズの小さな11のイントロンのスプライシングについて解析したところ、予想外にも未成熟のmRNAが骨格筋に存在していることを明らかにした(Nishida A, Minegishi M, Takeuchi A, Niba ET, Awano H, Lee T, Iijima K, Takeshima Y, Matsuo M. Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA. J Hum Genet. 2015 Jun;60(6):327-33.(非特許文献1))。すなわち、イントロン40の領域を両側のエクソン上にプライマーを設計してRT-PCRを行うと、配列が切り除かれずにそのままmRNAに取り残されたリテンションされているmRNAが、増幅産物の一部で検出された。この配列中には、ジストロフィンmRNAのアミノ酸読み取り枠内にストップコドンが生じており、このmRNAはジストロフィン産生能を有しない mRNAであった。 The dystrophin gene is expressed in skeletal muscle and produces dystrophin. This dystrophin gene abnormality results in the onset of muscular dystrophy. Skeletal muscle dystrophin mRNA has been considered to be only mature mRNA for expressing dystrophin. However, analysis of splicing of 11 small introns for skeletal muscle dystrophy mRNA revealed that immature mRNA was unexpectedly present in skeletal muscle (Nishida A, Minegishi M, Takeuchi A, Niba ET, Awano H, Lee T, Iijima K, Takeshima Y, Matsuo M. Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA. J Hum Genet. 2015 Jun; 60 (6) : 323-33 (Non-patent Document 1)). That is, when primers for the region of intron 40 are designed on the exons on both sides and RT-PCR is performed, the retained mRNA left behind as it is without being cut off is a part of the amplification product. was detected. In this sequence, a stop codon is generated within the amino acid open reading frame of dystrophin mRNA, and this mRNA was mRNA without dystrophin-producing ability.
 SH-SY5Y細胞は神経芽細胞腫由来の細胞で、神経細胞のモデルとして多用されている。この細胞でジストロフィンmRNAのイントロン40領域をRT-PCR法で解析したところ、3種類の産物を得た(Nishida A, Minegishi M, Takeuchi A, Awano H, Niba ET, Matsuo M. Neuronal SH-SY5Y cells use the C-dystrophin promoter coupled with exon 78 skipping and display multiple patterns of alternative splicing including two intronic insertion events. Hum Genet. 2015 Sep;134(9):993-1001(非特許文献2))。1つは、正常のスプライシング産物でエクソン40と41の配列からなっていた。さらに、これよりサイズの大きな2つのバンドが増幅された。一番大きなバンドは、イントロン40の全長が取り残された全イントロン配列のリテンションであった。もう1種の産物は、イントロン40リテンションよりサイズが小さかった。これは、イントロン40内の潜在的スプライシング部位が活性化され、イントロン40の途中のスプライシングアクセプターサイトを利用して一部のイントロン40の配列がmRNA内にとり残され、エクソン41と一体化したエクソン41eを形成していることを見出した。これら2種のイントロンリテンションを有するmRNAでは、ジストロフィンmRNAのアミノ酸読み取り枠内にストップコドンが出現し、ジストロフィン産生能は消失していた。 SH-SY5Y cells are neuroblastoma-derived cells and are widely used as a model of neural cells. The intron 40 region of dystrophin mRNA was analyzed by RT-PCR in this cell, and three products were obtained (Nishida A, Minegishi M, Takeuchi A, Awano H, Niba ET, Matsuo M. Neuronal SH-SY5Y cells use of C-dystrophin promoter coupled with exon 78 skipping and display multiple patterns of alternative splicing involving two intronic insertion events. Hum Genet. 2015 Sep; 134 (9): 993-1001 (non-patent document 2)). One was a normal splicing product consisting of the sequences of exons 40 and 41. In addition, two larger sized bands were amplified. The largest band was the retention of all intron sequences left full length of intron 40. Another product was smaller in size than intron 40 retention. This is due to the activation of a potential splicing site in intron 40 and the use of a splicing acceptor site in the middle of intron 40 so that the sequence of part of intron 40 is retained in mRNA and integrated with exon 41 It has been found that it forms 41e. In the mRNAs having these two types of intron retention, the stop codon appeared in the amino acid reading frame of dystrophin mRNA, and the dystrophin producing ability was lost.
 本発明は、ジストロフィン遺伝子のイントロンリテンションを解消し、ジストロフィンの発現を促進することができる化合物を提供することを目的とする。 An object of the present invention is to provide a compound capable of eliminating intron retention of the dystrophin gene and promoting the expression of dystrophin.
 本発明者らは、アンチセンスオリゴヌクレオチドを用いることにより、このイントロンリテンションを解消すれば、ジストロフィンの発現を促進することができると想定した。先に明らかにしたエクソン41e内にはLESE(large exon splicing enhancer)と考えられる配列があり、このLESEの機能をアンチセンスオリゴヌクレオチドで阻害することにより、イントロンリテンションを解消し、ジストロフィンの発現を促進することを見出した。 The present inventors assumed that by using this antisense oligonucleotide, the expression of dystrophin can be promoted if this intron retention is eliminated. There is a sequence considered to be LESE (large exon splicing enhancer) in the exon 41e which was previously clarified, and intron retention is eliminated by inhibiting the function of this LESE with an antisense oligonucleotide to promote dystrophin expression I found it to be.
 本発明の要旨は以下の通りである。
(1)ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物を含有する、ジストロフィン遺伝子のイントロンリテンションを持つ疾患の治療薬。
(2)イントロンがイントロン40である(1)記載の治療薬。
(3)ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチドが、ジストロフィン遺伝子のエクソン41e内に存在する下記の配列の全部又は一部に相補的な配列を含む(1)又は(2)に記載の治療薬。
5’ ggatgacaataaagggacaacagcctttgaaattttgagag 3’(配列番号1)
(4)アンチセンスオリゴヌクレオチドが塩基数15~30である(1)~(3)のいずれかに記載の治療薬。
(5)アンチセンスオリゴヌクレオチドの配列が下記のいずれかの配列の全部又は一部を含む(1)~(4)のいずれかに記載の治療薬。
3’ tccctgttgtcggaaacttt 5’ (配列番号2)
3’atttccctgttgtcggaaac 5’ (配列番号3)
3’gttatttccctgttgtcgga 5’ (配列番号4)
3’actgttatttccctgttgtc 5’ (配列番号5)
(但し、配列中のtはuであってもよい)
(6)アンチセンスオリゴヌクレオチドの配列が3’ tccctgttgtc 5’(配列番号8)(但し、配列中のtはuであってもよい)の全部又は一部を含む(1)~(4)のいずれかに記載の治療薬。
(7)アンチセンスオリゴヌクレオチドを構成する糖及び/又はリン酸ジエステル結合の少なくとも1個が修飾されている(1)~(6)のいずれかに記載の治療薬。
(8)アンチセンスオリゴヌクレオチドを構成する糖がD-リボフラノースであり、糖の修飾がD-リボフラノースの2’位の水酸基の修飾である(7)記載の治療薬。
(9)糖の修飾がD-リボフラノースの2’-O-アルキル化及び/又は2’-O, 4’-C-アルキレン化である(8)記載の治療薬。
(10)リン酸ジエステル結合の修飾がホスホロチオエートである(7)~(9)のいずれかに記載の治療薬。
(11)ジストロフィン遺伝子のイントロンリテンションを持つ疾患が、神経芽腫、横紋筋肉腫、中皮腫、胃がん及び脳腫瘍からなる群より選択される少なくとも1つである(1)~(10)のいずれかに記載の治療薬。
(12)ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。
(13)アンチセンスオリゴヌクレオチドの配列が、ジストロフィン遺伝子のエクソン41e内に存在する下記の配列の全部又は一部に相補的な配列を含む(12)記載のアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。
5’ ggatgacaataaagggacaacagcctttgaaattttgagag 3’(配列番号1)
(14)アンチセンスオリゴヌクレオチドが塩基数15~30である(12)又は(13)に記載のアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。
(15)アンチセンスオリゴヌクレオチドの配列が下記のいずれかの配列の全部又は一部を含む(12)~(14)のいずれかに記載のアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。
3’ tccctgttgtcggaaacttt 5’ (配列番号2)
3’atttccctgttgtcggaaac 5’ (配列番号3)
3’gttatttccctgttgtcgga 5’ (配列番号4)
3’actgttatttccctgttgtc 5’ (配列番号5)
(但し、配列中のtはuであってもよい)
(16)アンチセンスオリゴヌクレオチドの配列が3’ tccctgttgtc 5’(配列番号8)(但し、配列中のtはuであってもよい)の全部又は一部を含む(12)~(14)のいずれかに記載のアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。
(17)(12)~(16)のいずれかに記載のアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物を含有する、医薬組成物。
(18)ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物を医薬的に有効な量で被験者に投与することを含む、ジストロフィン遺伝子のイントロンリテンションを持つ疾患の治療方法。
(19)ジストロフィン遺伝子のイントロンリテンションを持つ疾患を治療する方法に使用するための、ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。
(20)ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物を含有する、経口又は非経口で投与するための配合物。
(21)医薬として使用するための、ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。
The gist of the present invention is as follows.
(1) A therapeutic agent for a disease having intron retention of a dystrophin gene, which comprises an antisense oligonucleotide capable of eliminating intron retention of a dystrophin gene, a pharmaceutically acceptable salt or solvate thereof.
(2) The therapeutic agent according to (1), wherein the intron is intron 40.
(3) The antisense oligonucleotide which can eliminate intron retention of the dystrophin gene is described in (1) or (2) which contains a sequence complementary to all or part of the following sequences present in the exon 41e of the dystrophin gene Therapeutic agent.
5 'ggatgacaata aagg gacaaca gcctttgaaattttgagag 3' (SEQ ID NO: 1)
(4) The therapeutic agent according to any one of (1) to (3), wherein the antisense oligonucleotide has 15 to 30 bases.
(5) The therapeutic agent according to any one of (1) to (4), wherein the sequence of the antisense oligonucleotide comprises all or a part of any of the following sequences:
3 'tccctgttgtcggaaacttt 5' (SEQ ID NO: 2)
3'atttccctgttgtcggaaac 5 '(SEQ ID NO: 3)
3'gttatttccctgttgtcgga 5 '(SEQ ID NO: 4)
3 'actgttatttccctgttgtc 5' (SEQ ID NO: 5)
(However, t in the sequence may be u)
(6) The sequence of the antisense oligonucleotide includes all or part of 3 'tccctgttgtc 5' (SEQ ID NO: 8) (however, t in the sequence may be u) of (1) to (4) The therapeutic agent as described in any one.
(7) The therapeutic agent according to any one of (1) to (6), wherein at least one of the sugar and / or phosphodiester bond constituting the antisense oligonucleotide is modified.
(8) The therapeutic agent according to (7), wherein the sugar constituting the antisense oligonucleotide is D-ribofuranose, and the sugar modification is modification of the hydroxyl group at the 2 'position of D-ribofuranose.
(9) The therapeutic agent according to (8), wherein the sugar modification is 2′-O-alkylation of D-ribofuranose and / or 2′-O, 4′-C-alkylenation.
(10) The therapeutic agent according to any one of (7) to (9), wherein the modification of the phosphodiester bond is phosphorothioate.
(11) The disease having intron retention of dystrophin gene is at least one selected from the group consisting of neuroblastoma, rhabdomyosarcoma, mesothelioma, gastric cancer and brain tumor (1) to (10) Therapeutic agent described in.
(12) Antisense oligonucleotide capable of eliminating intron retention of dystrophin gene, pharmaceutically acceptable salt or solvate thereof.
(13) The antisense oligonucleotide according to (12), wherein the sequence of the antisense oligonucleotide comprises a sequence complementary to all or part of the following sequences present in the exon 41e of the dystrophin gene: Salts or solvates.
5 'ggatgacaata aagg gacaaca gcctttgaaattttgagag 3' (SEQ ID NO: 1)
(14) The antisense oligonucleotide or pharmaceutically acceptable salt or solvate thereof according to (12) or (13), wherein the antisense oligonucleotide has 15 to 30 bases.
(15) The antisense oligonucleotide according to any one of (12) to (14), a pharmaceutically acceptable salt or solvent thereof according to any one of (12) to (14), wherein the sequence of the antisense oligonucleotide comprises all or a part of any of the following sequences: Hydrate.
3 'tccctgttgtcggaaacttt 5' (SEQ ID NO: 2)
3'atttccctgttgtcggaaac 5 '(SEQ ID NO: 3)
3'gttatttccctgttgtcgga 5 '(SEQ ID NO: 4)
3 'actgttatttccctgttgtc 5' (SEQ ID NO: 5)
(However, t in the sequence may be u)
(16) The sequence of the antisense oligonucleotide contains all or part of 3 'tccctgttgtc 5' (SEQ ID NO: 8) (provided that t in the sequence may be u) (12) to (14) The antisense oligonucleotide, pharmaceutically acceptable salt or solvate thereof according to any of the foregoing.
(17) A pharmaceutical composition comprising the antisense oligonucleotide according to any of (12) to (16), a pharmaceutically acceptable salt or solvate thereof.
(18) Having intron retention of the dystrophin gene, comprising administering to the subject a pharmaceutically effective amount of an antisense oligonucleotide capable of eliminating intron retention of the dystrophin gene, or a pharmaceutically acceptable salt or solvate thereof How to treat the disease.
(19) An antisense oligonucleotide capable of eliminating intron retention of a dystrophin gene, a pharmaceutically acceptable salt or solvate thereof, for use in a method of treating a disease having intron retention of a dystrophin gene.
(20) A preparation for oral or parenteral administration, which comprises an antisense oligonucleotide capable of eliminating intron retention of a dystrophin gene, a pharmaceutically acceptable salt or solvate thereof.
(21) An antisense oligonucleotide capable of eliminating intron retention of a dystrophin gene, a pharmaceutically acceptable salt or solvate thereof, for use as a medicament.
 本発明により、ジストロフィン遺伝子のイントロンリテンションを解消するアンチセンスオリゴヌクレオチドが提供される。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2017-235359の明細書および/または図面に記載される内容を包含する。
The present invention provides an antisense oligonucleotide that eliminates intron retention of the dystrophin gene.
The present specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2017-235359, which is the basis of the priority of the present application.
AO41E-LESEの細胞導入実験の結果を示す。a. イントロン40とAO41E-LESEの関係模式図。b. AO41E-LESE導入によるイントロン40リテンションの解消。The result of the cell transfer experiment of AO41E-LESE is shown. a. Relationship between Intron 40 and AO 41 E-LESE. b. Elimination of intron 40 retention by AO 41 E-LESE introduction. AO88の細胞導入実験結果を示す。The cell introduction experiment result of AO88 is shown. AO41E-LESE導入細胞の顕微鏡写真。Photomicrograph of AO41E-LESE transfected cells. CRL2061細胞への導入実験結果を示す。The experimental result of the introduction | transduction to CRL2061 cell is shown. AO41E-LESE導入細胞の増殖数の解析結果を示す。The analysis result of the proliferation number of AO41E- LESE introduce | transduced cell is shown. スクラッチ試験(試験例4)の結果を示す。The result of a scratch test (test example 4) is shown. 細胞遊走及び浸潤アッセイ(試験例5)の結果を示す。The results of cell migration and invasion assay (Test Example 5) are shown. 軟寒天コロニー形成アッセイ(試験例6)の結果を示す。The result of a soft agar colony formation assay (Test Example 6) is shown. 平板コロニー形成アッセイ(試験例7)の結果を示す。The results of the plate colony formation assay (Test Example 7) are shown. AO41E-LESE, 3, 4, 5の細胞導入実験結果を示す(イントロン40リテンションの解消)。The cell-introduction experiment result of AO41 E- LESE, 3, 4, and 5 is shown (cancellation of intron 40 retention).
 以下、本発明の実施の形態についてより詳細に説明する。 Hereinafter, embodiments of the present invention will be described in more detail.
 本発明は、ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物を含有する、ジストロフィン遺伝子のイントロンリテンションを持つ疾患の治療薬を提供する。 The present invention provides a therapeutic agent for a disease having intron retention of a dystrophin gene, which comprises an antisense oligonucleotide capable of eliminating intron retention of the dystrophin gene, a pharmaceutically acceptable salt or solvate thereof.
 本発明において、イントロンリテンションとは、イントロン配列の全部あるいは1部がスプライシング時に切り取られることなく、成熟したmRNAに残存していることを指す。 In the present invention, intron retention refers to the fact that all or part of an intron sequence remains in mature mRNA without being cut off during splicing.
 ジストロフィン遺伝子のイントロンリテンションは、イントロン40に生じると報告された(非特許文献1)。その後イントロン31あるいは70にもあることが明らかにされている。イントロン40のリテンションは、全配列が残る型(非特許文献2)と1部の配列が残り、エクソン41eを形成する型(非特許文献2)の2つの型がある。この様なイントロン40のリテンションは、横紋筋肉腫由来細胞でも検出されている(Niba ETE, Yamanaka R, Rani AQM, Awano H, Matsumoto M, Nishio H, et al: DMD transcripts in CRL-2061 rhabdomyosarcoma cells show high levels of intron retention by intron-specific PCR amplification. Cancer Cell Int 2017, 17:58.)。この細胞では、イントロン40の他にイントロン58、70にもリテンションがあることが明らかにされている。 Intron retention of the dystrophin gene was reported to occur in intron 40 (Non-patent Document 1). It is then clarified that the intron 31 or 70 is also present. There are two types of retention of intron 40: a type in which the entire sequence remains (Non-patent Document 2) and a type in which a part of the sequence remains and which forms exon 41 e (Non-patent document 2). Such retention of intron 40 is also detected in Rhabdomyosarcoma-derived cells (Niba ETE, Yamanaka R, Rani AQM, Awano H, Matsumoto M, Nishio H, et al: DMD transcripts in CRL-2061 rhabdomyosarcoma cells Cancer cell Int 2017, 17: 58.). high level of intron retention by intron-specific PCR amplification. In this cell, it is revealed that introns 58 and 70 as well as intron 40 have retention.
 ジストロフィン遺伝子のイントロンリテンションを持つ疾患としては、神経芽腫、横紋筋肉腫、中皮腫、胃がん、脳腫瘍などがあり、本発明は、これらの疾患を治療の対象としうるが、これらに限定されるわけではない。 Diseases having intron retention of the dystrophin gene include neuroblastoma, rhabdomyosarcoma, mesothelioma, stomach cancer, brain tumor and the like, and the present invention can treat these diseases, but is limited thereto. It does not mean that
 本発明の治療薬は、ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物を有効成分として含有する。 The therapeutic agent of the present invention comprises, as an active ingredient, an antisense oligonucleotide capable of eliminating intron retention of the dystrophin gene, a pharmaceutically acceptable salt or solvate thereof.
 ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチドとして、ジストロフィン遺伝子のエクソン41e内に存在する下記の配列の全部又は一部に相補的な配列を含むものを例示することができる。
5’ ggatgacaataaagggacaacagcctttgaaattttgagag 3’(配列番号1)
 配列番号1のヌクレオチド配列は、LESE(large exon splicing enhancer)を含む配列と推定されている。large exon splicing enhancerとは、非常に大きなサイズのエクソンの認識を助ける配列とされている。
As an antisense oligonucleotide capable of eliminating intron retention of the dystrophin gene, one comprising a sequence complementary to all or part of the following sequences present in the exon 41 e of the dystrophin gene can be exemplified.
5 'ggatgacaata aagg gacaaca gcctttgaaattttgagag 3' (SEQ ID NO: 1)
The nucleotide sequence of SEQ ID NO: 1 is deduced to be a sequence comprising LESE (large exon splicing enhancer). A large exon splicing enhancer is considered to be a sequence that aids in the recognition of very large size exons.
 ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチドは、配列番号1の配列の5’末端から数えて2番目のgから5’末端から数えて34番目(3’末端から数えて8番目)のtまでのヌクレオチド配列中の連続する複数個のヌクレオチドからなる配列に相補的な配列を含むとよい。 Antisense oligonucleotides capable of eliminating intron retention of the dystrophin gene are the second g to the 34th (counting from the 3 'end 8th) counting from the 5' end of the sequence of SEQ ID NO: 1 A sequence complementary to a sequence consisting of a plurality of consecutive nucleotides in the nucleotide sequence up to t may be included.
 アンチセンスオリゴヌクレオチドの塩基数は、15~30が適当であり、15~21が好ましく、16~20がより好ましい。 The number of bases of the antisense oligonucleotide is suitably 15 to 30, preferably 15 to 21, and more preferably 16 to 20.
 ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチドとしては、下記のいずれかの配列の全部又は一部を含むものを例示することができる。本発明において「配列の一部」とは、通常、当該配列全体の80%以上であり、好適には、85%であり、さらに好適には、90%であり、最も好適には、94%である。
3’ tccctgttgtcggaaacttt 5’ (配列番号2)
3’atttccctgttgtcggaaac 5’ (配列番号3)
3’gttatttccctgttgtcgga 5’ (配列番号4)
3’actgttatttccctgttgtc 5’ (配列番号5)
3’ tccctgttgtc 5’(配列番号8)
(但し、配列中のtはuであってもよい)
 本明細書において、配列中のtは5-メチル-uと同義である。
As an antisense oligonucleotide which can eliminate intron retention of the dystrophin gene, one including all or part of any of the following sequences can be exemplified. In the present invention, "a part of the sequence" is usually 80% or more of the whole sequence, preferably 85%, more preferably 90%, most preferably 94%. It is.
3 'tccctgttgtcggaaacttt 5' (SEQ ID NO: 2)
3'atttccctgttgtcggaaac 5 '(SEQ ID NO: 3)
3'gttatttccctgttgtcgga 5 '(SEQ ID NO: 4)
3 'actgttatttccctgttgtc 5' (SEQ ID NO: 5)
3 'tccctgttgtc 5' (SEQ ID NO: 8)
(However, t in the sequence may be u)
As used herein, t in the sequences is as defined for 5-methyl-u.
 配列番号2~5は、それぞれ、41E-LESE-1、41E-LESE-3、41E-LESE-4及び41E-LESE-5(後述の実施例参照)のヌクレオチド配列である。 SEQ ID NOs: 2-5 are the nucleotide sequences of 41E-LESE-1, 41E-LESE-3, 41E-LESE-4 and 41E-LESE-5 (see Examples below), respectively.
 アンチセンスオリゴヌクレオチドを構成するヌクレオチドは、天然型DNA、天然型RNA、これらの修飾体のいずれであってもよいが、少なくとも1つが修飾ヌクレオチドであることが好ましい。 The nucleotides constituting the antisense oligonucleotide may be either naturally occurring DNA, naturally occurring RNA, or modified forms thereof, but it is preferable that at least one is a modified nucleotide.
 修飾ヌクレオチドとしては、糖が修飾されたもの(例えば、D-リボフラノースが2'-O-アルキル化されたもの、D-リボフラノースが2'-O, 4'-C-アルキレン化されたもの)、リン酸ジエステル結合が修飾(例えば、チオエート化)されたもの、塩基が修飾されたもの、それらを組み合わせたものなどを例示することができる。アンチセンスオリゴヌクレオチドを構成する少なくとも1個のD-リボフラノースが2'-O-アルキル化されたものや2'-O, 4'-C-アルキレン化されたものは、RNAに対する結合力が高いこと、ヌクレアーゼに対する耐性が高いことから、天然型のヌクレオチド(すなわち、オリゴDNA、オリゴRNA)より高い治療効果が期待できる。また、オリゴヌクレオチドを構成する少なくとも1個のリン酸ジエステル結合がチオエート化されたものも、ヌクレアーゼに対する耐性が高いことから、天然型のヌクレオチド(すなわち、オリゴDNA、オリゴRNA)より高い治療効果が期待できる。上記のような修飾された糖と修飾されたリン酸の両者を含むオリゴヌクレオチドは、ヌクレアーゼに対する耐性がより高いことから、さらに高い治療効果が期待できる。 Modified nucleotides include those in which sugar is modified (for example, those in which D-ribofuranose is 2'-O-alkylated, those in which D-ribofuranose is 2'-O, 4'-C-alkylenated) And phosphodiester bond modified (eg, thioated), base modified, and combinations thereof can be exemplified. At least one D-ribofuranose constituting an antisense oligonucleotide that is 2'-O-alkylated or 2'-O, 4'-C-alkylenated has high avidity to RNA In addition, due to the high resistance to nucleases, higher therapeutic effects can be expected than natural nucleotides (ie, oligo DNAs, oligo RNAs). In addition, those in which at least one phosphodiester bond constituting an oligonucleotide is thioated are expected to have a higher therapeutic effect than natural nucleotides (ie, oligo DNAs, oligo RNAs) because they are highly resistant to nucleases. it can. Oligonucleotides containing both the modified sugar and the modified phosphate as described above can be expected to have a higher therapeutic effect because they are more resistant to nucleases.
 アンチセンスオリゴヌクレオチドについて、糖の修飾の例としては、2’位の水酸基の修飾、例えば、D-リボフラノースの2'-O-アルキル化(例えば、2'-O-メチル化、2'-O-アミノエチル化、2'-O-プロピル化、2'-O-アリル化、2'-O-メトキシエチル化、2'-O-ブチル化、2'-O-ペンチル化、2'-O-プロパルギル化など)、D-リボフラノースの2'-O,4'-C-アルキレン化(例えば、2'-O,4'-C-エチレン化、2'-O,4'-C-メチレン化、2'-O,4'-C-プロピレン化、2'-O,4'-C-テトラメチレン化、2'-O,4'-C-ペンタメチレン化など)、D-リボフラノースの2’-deoxy-2’-C,4’-C-メチレンオキシメチレン化、S-cEt(2',4'-constrained ethyl)、AmNA、3'-デオキシ-3'-アミノ-2'-デオキシ-D-リボフラノース、3'-デオキシ-3'-アミノ-2'-デオキシ-2'-フルオロ-D-リボフラノースなどを挙げることができる。 For antisense oligonucleotides, examples of sugar modifications include modification of the hydroxyl group at the 2'-position, eg, 2'-O-alkylation of D-ribofuranose (eg, 2'-O-methylation, 2'- O-aminoethylated, 2'-O-propylated, 2'-O-allylated, 2'-O-methoxyethylated, 2'-O-butylated, 2'-O-pentylated, 2'- O-propargylation, etc.), 2′-O, 4′-C-alkylenation of D-ribofuranose (eg, 2′-O, 4′-C-ethylenation, 2′-O, 4′-C- Methyleneation, 2'-O, 4'-C-Propylation, 2'-O, 4'-C-Tetramethylenation, 2'-O, 4'-C-Pentamethyleneation etc.), D-ribofuranose 2'-deoxy-2'-C, 4'-C-methylene oxymethylene, S-cEt (2 ', 4'-constrained ethyl), AmNA, 3'-deoxy-3'-amino-2'- Deoxy-D-ribofuranose, 3'-deoxy-3'-amino-2'-deoxy-2'-fluoro-D-ribofuranose and the like can be mentioned.
 アンチセンスオリゴヌクレオチドについて、リン酸ジエステル結合の修飾の例としては、ホスホロチオエート結合、メチルホスホネート結合、メチルチオホスホネート結合、ホスホロジチオエート結合、ホスホロアミデート結合などを挙げることができる。 For antisense oligonucleotides, examples of modification of phosphodiester bond can include phosphorothioate bond, methylphosphonate bond, methylthiophosphonate bond, phosphorodithioate bond, phosphoroamidate bond and the like.
 塩基の修飾の例としては、シトシンの5-メチル化、5-フルオロ化、5-ブロモ化、5-ヨード化、N4-メチル化、チミンの5-デメチル化(ウラシル)、5-フルオロ化、5-ブロモ化、5-ヨード化、アデニンのN6-メチル化、8-ブロモ化、グアニンのN2-メチル化、8-ブロモ化などを挙げることができる。 Examples of base modification include 5-methylation, 5-fluorination, 5-bromination, 5-iodination, N4-methylation, 5-demethylation of thymine (uracil), 5-fluorination, 5-bromination, 5-iodination, N6-methylation of adenine, 8-bromination, N2-methylation of guanine, 8-bromination and the like can be mentioned.
 アンチセンスオリゴヌクレオチドは、市販の合成機(例えば、パーキンエルマー社のホスホロアミダイド法によるモデル392)などを用いて、文献(Nucleic Acids Research, 12, 4539 (1984))に記載の方法に準じて合成することができる。その際に用いられるホスホロアミダイト試薬は、天然型のヌクレオシド及び2'-O-メチルヌクレオシド(すなわち、2'-O-メチルグアノシン、2'-O-メチルアデノシン、2'-O-メチルシチジン、2'-O-メチルウリジン)については、市販の試薬を用いることができる。アルキル基の炭素数が2~6個の2'-O-アルキルグアノシン、アデノシン、シチジンおよびウリジンについては、以下の通りである。 Antisense oligonucleotides can be prepared according to the method described in the literature (Nucleic Acids Research, 12, 4539 (1984)) using a commercially available synthesizer (for example, model 392 according to the phosphoramidite method of Perkin-Elmer). Can be synthesized. The phosphoroamidite reagent used in that case includes naturally occurring nucleosides and 2′-O-methyl nucleosides (ie, 2′-O-methyl guanosine, 2′-O-methyl adenosine, 2′-O-methyl cytidine, For 2′-O-methyluridine), commercially available reagents can be used. The 2'-O-alkyl guanosine having 2 to 6 carbon atoms in the alkyl group, adenosine, cytidine and uridine are as follows.
 2'-O-アミノエチルグアノシン、アデノシン、シチジン、ウリジンは、文献(Blommers et al. Biochemistry (1998), 37, 17714-17725.)に従って合成できる。 2'-O-aminoethyl guanosine, adenosine, cytidine, uridine can be synthesized according to the literature (Blommers et al. Biochemistry (1998), 37, 17714-17725.).
 2'-O-プロピルグアノシン、アデノシン、シチジン、ウリジンは、文献(Lesnik,E.A. et al. Biochemistry (1993), 32, 7832-7838.)に従って合成できる。 2'-O-propyl guanosine, adenosine, cytidine, uridine can be synthesized according to the literature (Lesnik, E. A. et al. Biochemistry (1993), 32, 7832-7838.).
 2'-O-アリルグアノシン、アデノシン、シチジン、ウリジンは、市販の試薬を用いることができる。 Commercially available reagents can be used for 2'-O-allyl guanosine, adenosine, cytidine and uridine.
 2'-O-メトキシエチルグアノシン、アデノシン、シチジン、ウリジンは、特許(US6261840)または、文献(Martin, P. Helv. Chim. Acta. (1995) 78, 486-504.に従って合成できる。 2′-O-methoxyethyl guanosine, adenosine, cytidine, uridine can be synthesized according to the patent (US Pat. No. 6,261,840) or the literature (Martin, P. Helv. Chim. Acta. (1995) 78, 486-504.).
 2'-O-ブチルグアノシン、アデノシン、シチジン、ウリジンは、文献(Lesnik,E.A. et al. Biochemistry (1993), 32, 7832-7838.)に従って合成できる。 2'-O-butyl guanosine, adenosine, cytidine, uridine can be synthesized according to the literature (Lesnik, E. A. et al. Biochemistry (1993), 32, 7832-7838.).
 2'-O-ペンチルグアノシン、アデノシン、シチジン、ウリジンは、文献(Lesnik,E.A. et al. Biochemistry (1993), 32, 7832-7838.)に従って合成できる。 2'-O-pentyl guanosine, adenosine, cytidine, uridine can be synthesized according to the literature (Lesnik, E. A. et al. Biochemistry (1993), 32, 7832-7838.).
 2'-O-プロパルギルグアノシン、アデノシン、シチジン、ウリジンは、市販の試薬を用いることができる。 Commercially available reagents can be used for 2'-O-propargyl guanosine, adenosine, cytidine and uridine.
 2'-O, 4'-C-メチレングアノシン、アデノシン、シチジン、5-メチルシチジンおよびチミジンについては、WO99/14226に記載の方法に従って、アルキレン基の炭素数が2~5個の2'-O, 4'-C-アルキレングアノシン、アデノシン、シチジン、5-メチルシチジンおよびチミジンについては、WO00/47599に記載の方法に従って製造することができる。
D-リボフラノースの2’-deoxy-2’-C,4’-C-メチレンオキシメチレン化されたヌクレオシドは、文献(Wang,G. et al. Tetrahedron (1999), 55, 7707-7724に従って合成できる。
As for 2'-O, 4'-C-methylene guanosine, adenosine, cytidine, 5-methyl cytidine and thymidine, 2'-O having 2 to 5 carbon atoms in the alkylene group according to the method described in WO 99/14226. The 4, 4′-C-alkylene anosine, adenosine, cytidine, 5-methyl cytidine and thymidine can be prepared according to the method described in WO 00/47599.
A 2'-deoxy-2'-C, 4'-C-methyleneoxymethyleneated nucleoside of D-ribofuranose is synthesized according to the literature (Wang, G. et al. Tetrahedron (1999), 55, 7707-7724 it can.
 S-cEt(constrained ethyl)は、文献(Seth,P.P. et al. J.Org.Chem (2010), 75, 1569-1581.)に従って合成できる。 S-cEt (constrained ethyl) can be synthesized according to the literature (Seth, P.P. et al. J. Org. Chem (2010), 75, 1569-1581.).
 AmNAは、文献(Yahara,A. et al. ChemBioChem (2012), 13, 2513-2516.)または、WO2014/109384に従って合成できる。 AmNA can be synthesized according to the literature (Yahara, A. et al. ChemBioChem (2012), 13, 2513-2516.) Or WO 2014/109384.
 核酸塩基のうち、ウラシル(U)とチミン(T)は、互換性がある。ウラシル(U)とチミン(T)のどちらも、相補鎖のアデニン(A)との塩基対形成に使うことができる。ホスホロアミダイト試薬をカップリング後、硫黄、テトラエチルチウラムジスルフィド(TETD、アプライドバイオシステム社)、Beaucage試薬(Glen Research社)、または、キサンタンヒドリドなどの試薬を反応させることにより、ホスホロチオエート結合を有するアンチセンスオリゴヌクレオチドを合成することができる(Tetrahedron Letters, 32, 3005 (1991), J. Am. Chem. Soc. 112, 1253 (1990), PCT/WO98/54198)。 Of the nucleobases, uracil (U) and thymine (T) are compatible. Both uracil (U) and thymine (T) can be used for base pairing with the complementary strand adenine (A). Antisense having a phosphorothioate bond by coupling a phosphoroamidite reagent and then reacting a reagent such as sulfur, tetraethylthiuram disulfide (TETD, Applied Biosystems), Beaucage reagent (Glen Research), or xanthan hydride or the like Oligonucleotides can be synthesized (Tetrahedron Letters, 32, 3005 (1991), J. Am. Chem. Soc. 112, 1253 (1990), PCT / WO 98/54198).
 合成機で用いるコントロールド ポア グラス(CPG)としては、2'-O-メチルヌクレオシドの結合したものは、市販のものを利用することができる。また、2'-O, 4'-C-メチレングアノシン、アデノシン、5-メチルシチジンおよびチミジンについては、WO99/14226に記載の方法に従って、アルキレン基の炭素数が2~5個の2'-O, 4'-C-アルキレングアノシン、アデノシン、5-メチルシチジンおよびチミジンについては、WO00/47599に記載の方法に従って製造したヌクレオシドを文献(Oligonucleotide Synthesis, Edited by M.J.Gait, Oxford University Press, 1984)に従って、CPGに結合することができる。修飾されたCPG(特開平7-87982の実施例12bに記載)を用いることにより、3'末端に2-ヒドロキシエチルリン酸基が結合したオリゴヌクレオチドを合成できる。また、3'-amino-Modifier C3 CPG, 3'-amino-Modifier C7 CPG, Glyceryl CPG, (Glen Research), 3'-specer C3 SynBase CPG 1000, 3'-specer C9 SynBase CPG 1000(link technologies)を使えば、3'末端にヒドロキシアルキルリン酸基、または、アミノアルキルリン酸基が結合したオリゴヌクレオチドを合成できる。 As the controlled pore glass (CPG) to be used in the synthesizer, commercially available ones to which 2′-O-methyl nucleosides are linked can be used. In addition, for 2'-O, 4'-C-methylene guanosine, adenosine, 5-methyl cytidine and thymidine, 2'-O having 2 to 5 carbon atoms in the alkylene group according to the method described in WO 99/14226. As for 4,4'-C-alkylene anosine, adenosine, 5-methyl cytidine and thymidine, nucleosides prepared according to the method described in WO 00/47599 are described according to the literature (Oligonucleotide Synthesis, Edited by MJ Gait, Oxford University Press, 1984), It can bind to CPG. By using modified CPG (described in Example 12b of JP-A-7-87982), it is possible to synthesize an oligonucleotide in which a 2-hydroxyethyl phosphate group is bound to the 3 'end. In addition, 3'-amino-Modifier C3 CPG, 3'-amino-Modifier C7 CPG, Glyceryl CPG, (Glen Research), 3'-specer C3 SynBase CPG 1000, 3'-specer C9 SynBase CPG 1000 (link technologies) If used, it is possible to synthesize an oligonucleotide having a hydroxyalkyl phosphate group or an aminoalkyl phosphate group bound to the 3 'end.
 アンチセンスオリゴヌクレオチドは、医薬的に許容できる塩の形態で用いてもよい。「医薬的に許容される塩」とは、アンチセンスオリゴヌクレオチドの塩をいい、そのような塩としては、ナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、コバルト塩などの金属塩;アンモニウム塩のような無機塩、t-オクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジル-フェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩などのアミン塩;弗化水素酸塩、塩酸塩、臭化水素酸塩、沃化水素酸塩のようなハロゲン化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、燐酸塩などの無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のようなアリールスルホン酸塩、酢酸塩、りんご酸塩、フマール酸塩、コハク酸塩、クエン酸塩、酒石酸塩、蓚酸塩、マレイン酸塩などの有機酸塩;グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩などを挙げることができる。これらの塩は、公知の方法で製造することができる。 Antisense oligonucleotides may be used in the form of pharmaceutically acceptable salts. "Pharmaceutically acceptable salt" refers to a salt of an antisense oligonucleotide, such as sodium salt, potassium salt, alkali metal salt such as lithium salt, calcium salt, magnesium salt and the like Alkaline earth metal salts, aluminum salts, iron salts, zinc salts, copper salts, nickel salts, metal salts such as cobalt salts; inorganic salts such as ammonium salts, t-octylamine salts, dibenzylamine salts, morpholine salts Glucosamine salt, phenylglycine alkyl ester salt, ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt, chloroprocaine salt, procaine salt, Diethanolamine salt, N-benzyl-phenethyl amine Amine salts such as salts, piperazine salts, tetramethylammonium salts, organic salts such as tris (hydroxymethyl) aminomethane salts; such as hydrofluorides, hydrochlorides, hydrobromides, hydroiodides Hydrohalides, nitrates, perchlorates, sulfates, phosphates and other inorganic acid salts; methanesulfonates, trifluoromethanesulfonates, lower alkanesulfonates such as ethanesulfonates, benzene Organic acids such as sulfonates, aryl sulfonates such as p-toluenesulfonate, acetates, malates, fumarates, succinates, citrates, tartrates, borates, maleates and the like Salts; glycine salts, lysine salts, arginine salts, ornithine salts, glutamate salts, amino acid salts such as aspartate salts, and the like can be mentioned. These salts can be produced by known methods.
 また、アンチセンスオリゴヌクレオチド及びその医薬的に許容される塩は、溶媒和物(例えば、水和物)としても存在することがあり、そのような溶媒和物であってもよい。 The antisense oligonucleotide and its pharmaceutically acceptable salt may also exist as a solvate (eg, hydrate), and may be such a solvate.
 アンチセンスオリゴヌクレオチド、その医薬的に許容される塩又は溶媒和物は、それ自体あるいは適宜の医薬的に許容される賦形剤、希釈剤などと混合し、錠剤、カプセル剤、顆粒剤、散剤若しくはシロップ剤などにより経口的に、あるいは、注射剤、坐剤、貼付剤若しくは外用剤などにより非経口的に投与することができる。 Antisense oligonucleotide, pharmaceutically acceptable salt or solvate thereof is mixed with itself or a suitable pharmaceutically acceptable excipient, diluent, etc., and is tablet, capsule, granule, powder Alternatively, they can be administered orally by syrup or the like, or parenterally by injection, suppository, patch or external preparation.
 これらの製剤は、賦形剤(例えば、乳糖、白糖、葡萄糖、マンニトール、ソルビトールのような糖誘導体;トウモロコシデンプン、バイレショデンプン、α澱粉、デキストリンのような澱粉誘導体;結晶セルロースのようなセルロース誘導体;アラビアゴム;デキストラン;プルランのような有機系賦形剤;軽質無水珪酸、合成珪酸アルミニウム、珪酸カルシウム、メタ珪酸アルミン酸マグネシウムのような珪酸塩誘導体;燐酸水素カルシウムのような燐酸塩;炭酸カルシウムのような炭酸塩;硫酸カルシウムのような硫酸塩などの無機系賦形剤など)、滑沢剤(例えば、ステアリン酸;ステアリン酸カルシウム、ステアリン酸マグネシウムのようなステアリン酸金属塩;タルク;コロイドシリカ;ビーズワックス、ゲイ蝋のようなワックス類;硼酸;アジピン酸;硫酸ナトリウムのような硫酸塩;グリコール;フマル酸;安息香酸ナトリウム;DLロイシン;ラウリル硫酸ナトリウム、ラウリル硫酸マグネシウムのようなラウリル硫酸塩:無水珪酸、珪酸水和物のような珪酸類;上記澱粉誘導体など)、結合剤(例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、マクロゴール、前記賦形剤と同様の化合物など)、崩壊剤(例えば、低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、内部架橋カルボキシメチルセルロースナトリウムのようなセルロース誘導体;カルボキシメチルスターチ、カルボキシメチルスターチナトリウム、架橋ポリビニルピロリドンのような化学修飾されたデンプン・セルロース類など)、乳化剤(例えば、ベントナイト、ビーガムのようなコロイド性粘土;水酸化マグネシウム、水酸化アルミニウムのような金属水酸化物;ラウリル硫酸ナトリウム、ステアリン酸カルシウムのような陰イオン界面活性剤;塩化ベンザルコニウムのような陽イオン界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ショ糖脂肪酸エステルのような非イオン界面活性剤など)、安定剤(メチルパラベン、プロピルパラベンのようなパラオキシ安息香酸エステル類;クロロブタノール、ベンジルアルコール、フェニルエチルアルコールのようなアルコール類;塩化ベンザルコニウム;フェノール、クレゾールのようなフェノール類;チメロサール;デヒドロ酢酸;ソルビン酸など)、矯味矯臭剤(例えば、通常使用される甘味料、酸味料、香料など)、希釈剤などの添加剤を用いて周知の方法で製造される。 These preparations include excipients (for example, sugar derivatives such as lactose, sucrose, sucrose, mannitol and sorbitol; starch derivatives such as corn starch, potato starch, alpha starch and dextrin; and cellulose derivatives such as crystalline cellulose Gum arabic; dextran; organic excipients such as pullulan; light anhydrous silicic acid, synthetic aluminum silicate, calcium silicate, silicate derivatives such as magnesium metasilicate aluminium; phosphate such as calcium hydrogen phosphate; calcium carbonate Carbonates; inorganic excipients such as sulfates such as calcium sulfate), lubricants (eg stearic acid; calcium stearate, metal salts of stearic acid such as magnesium stearate; talc; colloidal silica Bead wax, wax like gay wax Abasic acid, adipic acid, sulfuric acid salt such as sodium sulfate, glycol, fumaric acid, sodium benzoate, DL leucine, lauryl sulfate such as sodium lauryl sulfate and magnesium lauryl sulfate: like anhydrous silicic acid and silicic acid hydrate Silicic acids; the above-mentioned starch derivatives and the like), binders (for example, hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinyl pyrrolidone, macrogol, compounds similar to the above-mentioned excipients and the like), disintegrants (for example, low substituted hydroxypropyl Cellulose, carboxymethyl cellulose, carboxymethyl cellulose calcium, cellulose derivative such as sodium cross-linked sodium carboxymethyl cellulose; carboxymethyl starch, sodium carboxymethyl starch, crosslinked polyvinyl pyrrolidone Chemically modified starches and celluloses, etc.), emulsifiers (eg bentonite, colloidal clays such as veegum; metal hydroxides such as magnesium hydroxide, aluminum hydroxide; sodium lauryl sulfate, calcium stearate etc. Anionic surfactants; cationic surfactants such as benzalkonium chloride; polyoxyethylene alkyl ethers, polyoxyethylene sorbitan fatty acid esters, nonionic surfactants such as sucrose fatty acid esters, etc.), stabilizers (P-hydroxybenzoic acid esters such as methylparaben and propylparaben; alcohols such as chlorobutanol, benzyl alcohol and phenylethyl alcohol; benzalkonium chloride; phenols such as phenol and cresol; thimerosers ; Dehydroacetic acid; and sorbic acid), corrigents (e.g., sweeteners commonly used, acidulant, flavor, etc.), are prepared in a known manner by using additives such as diluents.
 本発明の治療薬は、0.1~250μmoles/mlのアンチセンスオリゴヌクレオチド、その医薬的に許容される塩又は溶媒和物を含有するとよく、好ましくは、0.2~150μmoles/mlのアンチセンスオリゴヌクレオチド、その医薬的に許容される塩又は溶媒和物であり、より好ましくは、0.5~100μmoles/mlのアンチセンスオリゴヌクレオチド、その医薬的に許容される塩又は溶媒和物であり、更により好ましくは、1~50μmoles/mlのアンチセンスオリゴヌクレオチド、その医薬的に許容される塩又は溶媒和物であり、0.02~10%w/vの炭水化物又は多価アルコール及び0.01~0.4%w/vの医薬的に許容できる界面活性剤を含有させておいてもよい。 The therapeutic agent of the present invention may contain 0.1 to 250 μmoles / ml of antisense oligonucleotide, a pharmaceutically acceptable salt or solvate thereof, preferably 0.2 to 150 μmoles / ml of antisense. An oligonucleotide, or a pharmaceutically acceptable salt or solvate thereof, more preferably an antisense oligonucleotide of 0.5 to 100 μmoles / ml, a pharmaceutically acceptable salt or solvate thereof, Even more preferably, 1 to 50 μmoles / ml of an antisense oligonucleotide, a pharmaceutically acceptable salt or solvate thereof, 0.02 to 10% w / v carbohydrate or polyhydric alcohol and 0.01 to 0.4% w A pharmaceutically acceptable surfactant of / v may be included.
 上記炭水化物としては、単糖類及び/又は2糖類が特に好ましい。これら炭水化物及び多価アルコールの例としては、グルコース、ガラクトース、マンノース、ラクトース、マルトース、マンニトール及びソルビトールが挙げられる。これらは、単独で用いても、併用してもよい。 As the above-mentioned carbohydrate, monosaccharides and / or disaccharides are particularly preferable. Examples of these carbohydrates and polyhydric alcohols include glucose, galactose, mannose, lactose, maltose, mannitol and sorbitol. These may be used alone or in combination.
 また、界面活性剤の好ましい例としては、ポリオキシエチレンソルビタンモノ~トリ-エステル、アルキルフェニルポリオキシエチレン、ナトリウムタウロコラート、ナトリウムコラート、及び多価アルコールエステルが挙げられる。このうち特に好ましいのは、ポリオキシエチレンソルビタンモノ~トリ-エステルであり、ここにおいてエステルとして特に好ましいのは、オレエート、ラウレート、ステアレート及びパルミテートである。これらは単独で用いても、併用してもよい。 Preferred examples of the surfactant include polyoxyethylene sorbitan mono- to tri-ester, alkylphenyl polyoxyethylene, sodium taurocholate, sodium cholate, and polyhydric alcohol ester. Among these, polyoxyethylene sorbitan mono- to tri-esters are particularly preferred, and as ester here, oleate, laurate, stearate and palmitate are particularly preferred. These may be used alone or in combination.
 また、本発明の治療薬は、更に好ましくは、0.03~0.09Mの医薬的に許容できる中性塩、例えば、塩化ナトリウム、塩化カリウム及び/又は塩化カルシウムを含有させておいてもよい。 Furthermore, the therapeutic agent of the present invention may further preferably contain 0.03 to 0.09 M of a pharmaceutically acceptable neutral salt such as sodium chloride, potassium chloride and / or calcium chloride.
 また、本発明の治療薬は、更に好ましくは、0.002~0.05Mの医薬的に許容できる緩衝剤を含有することができる。好ましい緩衝剤の例としては、クエン酸ナトリウム、ナトリウムグリシネート、リン酸ナトリウム、トリス(ヒドロキシメチル)アミノメタンが挙げられる。これらの緩衝剤は、単独で用いても、併用してもよい。 In addition, the therapeutic agent of the present invention can more preferably contain 0.002 to 0.05 M of a pharmaceutically acceptable buffer. Examples of preferred buffers include sodium citrate, sodium glycinate, sodium phosphate, tris (hydroxymethyl) aminomethane. These buffers may be used alone or in combination.
 さらに、上記の治療薬は、溶液状態で供給してもよい。しかし、ある期間保存する必要がある場合等のために、アンチセンスオリゴヌクレオチドを安定化して治療効果の低下を防止する目的で通常は凍結乾燥しておくことが好ましく、その場合は用時に溶解液(注射用蒸留水など)で再構成(reconstruction)して、即ち投与される液体状態にして用いればよい。従って、本発明の治療薬は、各成分が所定の濃度範囲になるよう溶解液で再構成して使用するための、凍結乾燥された状態のものも包含する。凍結乾燥物の溶解性を促進する目的で、アルブミン、グリシン等のアミノ酸を更に含有させておいてもよい。 In addition, the above therapeutic agents may be supplied in solution. However, for the purpose of stabilizing the antisense oligonucleotide and preventing a decrease in the therapeutic effect, it is usually preferable to freeze it for a certain period of time, etc. It may be used as reconstituted (ie, in distilled water for injection), that is, in a liquid state to be administered. Therefore, the therapeutic agent of the present invention also includes those in a lyophilised state for reconstitution with a solution so that each component is in a predetermined concentration range. In order to promote the solubility of the lyophilizate, amino acids such as albumin and glycine may be further contained.
 アンチセンスオリゴヌクレオチド、その医薬的に許容される塩又は溶媒和物をヒトに投与する場合には、例えば、成人1日あたり約0.01~100mg/kg(体重)、好ましくは0.1~20mg/kg(体重)の投与量で、1回または数回に分けて皮下注射、点滴静脈注射、または、静脈注射するとよいが、その投与量や投与回数は、疾患の種類、症状、年齢、投与方法などにより適宜変更しうる。 When the antisense oligonucleotide, or a pharmaceutically acceptable salt or solvate thereof, is administered to humans, for example, about 0.01 to 100 mg / kg of body weight per adult, preferably 0.1 to 100 mg / day. The dose of 20 mg / kg (body weight) may be injected once or divided into subcutaneous injection, intravenous drip infusion, or intravenous injection, but the dosage and frequency of administration may depend on the type of disease, symptoms, age, It may be changed as appropriate depending on the administration method and the like.
 患者へのアンチセンスオリゴヌクレオチド、その医薬的に許容される塩又は溶媒和物の投与は、例えば、以下のようにして行うことができる。すなわち、アンチセンスオリゴヌクレオチド、その医薬的に許容される塩又は溶媒和物を当業者に周知の方法で製造し、これを常法により滅菌処理し、例えば125mg/mlの注射用溶液を調製する。この溶液を、患者静脈内にアンチセンスオリゴヌクレオチドの投与量が体重1kg当たり例えば10mgとなるように、例えば輸液の形で点滴投与する。投与は、例えば1週間の間隔で行い、その後も、治療効果の確認をしながら、適宜この治療を繰り返す。静脈投与以外では、腫瘍への直接注入あるいは腫瘍に流入する動脈内への注入などでもよい。 Administration of the antisense oligonucleotide, a pharmaceutically acceptable salt or solvate thereof to a patient can be performed, for example, as follows. That is, an antisense oligonucleotide, or a pharmaceutically acceptable salt or solvate thereof is produced by a method well known to those skilled in the art and sterilized by a conventional method to prepare, for example, a 125 mg / ml solution for injection. . This solution is instilled, for example in the form of an infusion, in a patient vein such that the dose of antisense oligonucleotide is, for example, 10 mg / kg of body weight. Administration is performed, for example, at intervals of one week, and thereafter this treatment is repeated as appropriate while confirming the therapeutic effect. Other than intravenous administration, direct injection into a tumor or injection into an artery flowing into a tumor may be used.
 本発明の治療薬は、他の治療剤と併用して用いてもよい。 The therapeutic agent of the present invention may be used in combination with other therapeutic agents.
 また、本発明は、ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物を提供する。本発明のアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物は、ジストロフィン遺伝子のイントロンリテンションを持つ疾患の治療薬などの医薬として用いることができるので、有用である。よって、本発明は、ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物を含有する、医薬組成物も提供する。 The present invention also provides an antisense oligonucleotide, pharmaceutically acceptable salt or solvate thereof which can eliminate intron retention of the dystrophin gene. The antisense oligonucleotides of the present invention, pharmaceutically acceptable salts or solvates thereof are useful because they can be used as medicaments such as therapeutic agents for diseases with intron retention of the dystrophin gene. Thus, the present invention also provides a pharmaceutical composition comprising an antisense oligonucleotide capable of eliminating intron retention of a dystrophin gene, a pharmaceutically acceptable salt or solvate thereof.
 ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩及び溶媒和物、それらを医薬として用いる態様については前述した。
Antisense oligonucleotides, pharmaceutically acceptable salts and solvates thereof, which can eliminate intron retention of the dystrophin gene, and embodiments in which they are used as medicaments have been described above.
 以下、本発明を実施例によって具体的に説明する。なお、これらの実施例は、本発明を説明するためのものであって、本発明の範囲を限定するものではない。
(実施例1)
HO-Te2s-Um1s-Te2s-Cm1s-Ae2s-Am1s-Ae2s-Gm1s-Ge2s-Cm1s-Te2s-Gm1s-Te2s-Um1s-Ge2s-Um1s-Ce2s-Cm1s-Ce2s-Um1t-H
 核酸自動合成機(BioAutomation製MerMade 192X)を用い、200 nmolRNAプログラムで行った。各合成サイクルにおける溶媒、試薬、ホスホロアミダイトの濃度は天然オリゴヌクレオチド合成の場合と同じであり、溶媒、試薬、2'-O-Meヌクレオシドのホスホロアミダイト(アデノシン体product No. ANP-5751, シチジン体product No. ANP-5752,グアノシン体product No. ANP-5753, ウリジン体product No. ANP-5754)はChemGenes製のものを用いた。非天然型のホスホロアミダイトは特開2000-297097の実施例14(5'-O-ジメトキシトリチル-2'-O,4'-C-エチレン-6-N-ベンゾイルアデノシン-3'-O-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例27 (5'-O-ジメトキシトリチル-2'-O,4'-C-エチレン-N-イソブチリルグアノシン-3'-O-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例22(5'-O-ジメトキシトリチル-2'-O,4'-C-エチレン-4-N-ベンゾイル-5-メチルシチジン-3'-O-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例9(5'-O-ジメトキシトリチル-2'-O,4'-C-エチレン-5-メチルウリジン-3'-O-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、の化合物を用いた。固相担体として、Glen Unysupport FC 96ウェルフォーマット0.2μmol(GlenResearch製)を用い、表記の化合物を合成した。但し、アミダイト体の縮合に要する時間は、約9分とした。
Hereinafter, the present invention will be specifically described by way of examples. In addition, these Examples are for demonstrating this invention, Comprising: The scope of the present invention is not limited.
Example 1
HO-T e2s -U m1s -T e2s -C m1s -A e2s -A m1s -A e2s -G m1s -G e2s -C m1s -T e2s -G m1s -T e2s -U m1s -G e2s -U m1s - C e2s -C m1s -C e2s -U m1t -H
A 200 nmol RNA program was performed using an automatic nucleic acid synthesizer (MerMade 192X manufactured by BioAutomation). The concentration of solvent, reagent and phosphoramidite in each synthesis cycle is the same as in the case of natural oligonucleotide synthesis, and the solvent, reagent and phosphoramidite of 2'-O-Me nucleoside (adenosine product product No. ANP-5751, The cytidine body product No. ANP-5752, the guanosine body product No. ANP-5753, the uridine body product No. ANP-5754) was from ChemGenes. The non-natural type phosphoroamidite is disclosed in Example 14 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-6-N-benzoyladenosine-3'-O- of JP-A-2000-297097). (2-cyanoethyl N, N-diisopropyl) phosphoroamidite), Example 27 (5′-O-dimethoxytrityl-2′-O, 4′-C-ethylene-N-isobutyryl guanosine-3′-O -(2-Cyanoethyl N, N-diisopropyl) phosphoroamidite), Example 22 (5'-O-Dimethoxytrityl-2'-O, 4'-C-ethylene-4-N-benzoyl-5-methylcytidine -3'-O- (2-cyanoethyl N, N-diisopropyl) phosphoroamidite), Example 9 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-5-methyluridine- The compound of 3'-O- (2-cyanoethyl N, N-diisopropyl) phosphoroamidite) was used. The title compound was synthesized using 0.2 μmol of Glen Unysupport FC 96 well format (Glen Research) as a solid phase carrier. However, the time required for the condensation of the amidite body was about 9 minutes.
 目的配列を有する保護されたオリゴヌクレオチド類縁体を600uLの濃アンモニア水で処理することによってオリゴマーを支持体から切り出すとともに、リン原子上の保護基シアノエチル基と核酸塩基上の保護基をはずした。オリゴマーの混合溶液を、Clarity QSP DNA Loading Buffer(Phenomenex製)300uLを混合し、Clarity SPE 96 well plate(Phenomenex製)上にチャージした。Clarity QSP DNA Loading Buffer:水 = 1:1溶液1mL、0.1 M炭酸水素トリエチルアンモニウム水溶液(TEAB):水 = 8:2溶液1mL、3%ジクロロ酢酸(DCA)水溶液3mL、水2mL、20 mM Tris水溶液1mLの順に添加した後、20 mM Tris水溶液:アセトニトリル = 9:1溶液にて抽出される成分を集めた。溶媒留去後、目的化合物を得た。本化合物は、逆相HPLC(カラム(Phenomenex, Clarity 2.6 μm Oligo-MS 100A (50×2.1 mm))、A溶液:100 mMヘキサフルオロイソプロパノール(HFIP)、8 mMトリエチルアミン水溶液、B溶液:メタノール、B%:10%→ 25%(15min, linear gradient);60℃;0.5 mL/min;260nm)で分析すると、10.0分に溶出された。化合物は負イオンESI質量分析により同定した(計算値:7066.7733、実測値:7066.7759)
 本化合物の塩基配列は、Homo sapiens dystrophin (DMD) gene(NCBI-GenBank accession No. NG_012232)のヌクレオチド番号1002224-1002243に相補的な配列である。
While treating the protected oligonucleotide analogue having the target sequence with 600 uL of concentrated aqueous ammonia to cut out the oligomer from the support, the protecting group cyanoethyl group on the phosphorus atom and the protecting group on the nucleic acid base were removed. The mixed solution of oligomers was mixed with 300 uL of Clarity QSP DNA Loading Buffer (manufactured by Phenomenex), and charged on a Clarity SPE 96 well plate (manufactured by Phenomenex). Clarity QSP DNA Loading Buffer: 1 mL of a 1: 1 solution of 1: 1 water, 0.1 M aqueous triethylammonium bicarbonate (TEAB): 1 mL of a 8: 2 solution of 8: 1 aqueous solution of 3% dichloroacetic acid (DCA), 2 mL of water, 20 mM Tris aqueous solution After sequentially adding 1 mL, the components to be extracted were collected with a 20 mM Tris aqueous solution: acetonitrile = 9: 1 solution. After evaporation of the solvent, the target compound is obtained. The compound was subjected to reverse phase HPLC (column (Phenomenex, Clarity 2.6 μm Oligo-MS 100A (50 × 2.1 mm)), solution A: 100 mM hexafluoroisopropanol (HFIP), 8 mM aqueous triethylamine solution, solution B: methanol, B %: 10% → 25% (15 min, linear gradient); 60 ° C .; 0.5 mL / min; 260 nm) and eluted at 10.0 minutes. The compound was identified by negative ion ESI mass spectrometry (calculated: 7066.7733, found: 7066.7759)
The nucleotide sequence of the present compound is a sequence complementary to nucleotide number 1002224-1002243 of Homo sapiens dystrophin (DMD) gene (NCBI-GenBank accession No. NG_012232).
(実施例2)
HO-Te2s-Um1s-Um1s-Ce2s-Am1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Um1s-Gm1s-Te2s-Um1s-Gm1s-Te2s-Cm1s-Cm1s-Ce2s-Um1t-H
 実施例1と同様の方法で、表記の化合物を合成した。
 目的配列を有する保護されたオリゴヌクレオチド類縁体を600uLの濃アンモニア水で処理することによってオリゴマーを支持体から切り出すとともに、リン原子上の保護基シアノエチル基と核酸塩基上の保護基をはずした。オリゴマーの混合溶液を、Clarity QSP DNA Loading Buffer(Phenomenex製)300uLを混合し、Clarity SPE 96 well plate(Phenomenex製)上にチャージした。Clarity QSP DNA Loading Buffer:水 = 1:1溶液1mL、0.1 M炭酸水素トリエチルアンモニウム水溶液(TEAB):水 = 8:2溶液1mL、3%ジクロロ酢酸(DCA)水溶液3mL、水2mL、20 mM Tris水溶液1mLの順に添加した後、20 mM Tris水溶液:アセトニトリル = 9:1溶液にて抽出される成分を集めた。溶媒留去後、目的化合物を得た。本化合物は、逆相HPLC(カラム(Phenomenex, Clarity 2.6 μm Oligo-MS 100A (50×2.1 mm))、A溶液:100 mMヘキサフルオロイソプロパノール(HFIP)、8 mMトリエチルアミン水溶液、B溶液:メタノール、B%:10%→ 25%(15min, linear gradient);60℃;0.5 mL/min;260nm)で分析すると、10.0分に溶出された。化合物は負イオンESI質量分析により同定した(計算値:7030.7733、実測値:7030.7767)
 本化合物の塩基配列は、Homo sapiens dystrophin (DMD) gene(NCBI-GenBank accession No. NG_012232)のヌクレオチド番号1002224-1002243に相補的な配列である。
(Example 2)
HO-T e2s -U m1s -U m1s -C e2s -A m1s -A m1s -A e2s -G m1s -G m1s -C e2s -U m1s -G m1s -T e2s -U m1s -G m1s -T e2s - C m1s -C m1s -C e2s -U m1t -H
The title compound was synthesized in the same manner as in Example 1.
While treating the protected oligonucleotide analogue having the target sequence with 600 uL of concentrated aqueous ammonia to cut out the oligomer from the support, the protecting group cyanoethyl group on the phosphorus atom and the protecting group on the nucleic acid base were removed. The mixed solution of oligomers was mixed with 300 uL of Clarity QSP DNA Loading Buffer (manufactured by Phenomenex), and charged on a Clarity SPE 96 well plate (manufactured by Phenomenex). Clarity QSP DNA Loading Buffer: 1 mL of a 1: 1 solution of 1: 1 water, 0.1 M aqueous triethylammonium bicarbonate (TEAB): 1 mL of a 8: 2 solution of 8: 1 aqueous solution of 3% dichloroacetic acid (DCA), 2 mL of water, 20 mM Tris aqueous solution After sequentially adding 1 mL, the components to be extracted were collected with a 20 mM Tris aqueous solution: acetonitrile = 9: 1 solution. After evaporation of the solvent, the target compound is obtained. The compound was subjected to reverse phase HPLC (column (Phenomenex, Clarity 2.6 μm Oligo-MS 100A (50 × 2.1 mm)), solution A: 100 mM hexafluoroisopropanol (HFIP), 8 mM aqueous triethylamine solution, solution B: methanol, B %: 10% → 25% (15 min, linear gradient); 60 ° C .; 0.5 mL / min; 260 nm) and eluted at 10.0 minutes. The compound was identified by negative ion ESI mass spectrometry (calculated: 7030.7733, found: 7030.7767)
The nucleotide sequence of the present compound is a sequence complementary to nucleotide number 1002224-1002243 of Homo sapiens dystrophin (DMD) gene (NCBI-GenBank accession No. NG_012232).
(実施例3)
HO-Ce2s-Am1s-Ae2s-Am1s-Ge2s-Gm1s-Ce2s-Um1s-Ge2s-Um1s-Te2s-Gm1s-Te2s-Cm1s-C2s-Cm1s-Te2s-Um1s-Te2s-Am1t-H
 実施例1と同様の方法で、表記の化合物を合成した。
化合物は負イオンESI質量分析により同定した(計算値:7103.8161、実測値:7103.8156)
 本化合物の塩基配列は、Homo sapiens dystrophin (DMD) gene(NCBI-GenBank accession No. NG_012232)のヌクレオチド番号1002221-1002240に相補的な配列である。
(Example 3)
HO-C e2s -A m1s -A e2s -A m1s -G e2s -G m1s -C e2s -U m1s -G e2s -U m1s -T e2s -G m1s -T e2s -C m1s -C 2s -C m1s - Te 2s -U m1s -Te 2s -A m1t -H
The title compound was synthesized in the same manner as in Example 1.
The compound was identified by negative ion ESI mass spectrometry (calculated: 7103.8161, found: 7103.8156)
The base sequence of the present compound is a sequence complementary to nucleotide number 1002221-1002240 of Homo sapiens dystrophin (DMD) gene (NCBI-GenBank accession No. NG_012232).
(実施例4)
HO-Ae2s-Gm1s-Ge2s-Cm1s-Te2s-Gm1s-Te2s-Um1s-Ge2s-Um1s-Ce2s-Cm1s-Ce2s-Um1s-Te2s-Um1s-Ae2s-Um1s-Te2s-Gm1t-H
 実施例1と同様の方法で、表記の化合物を合成した。
化合物は負イオンESI質量分析により同定した(計算値:7083.7522、実測値:7083.748)
 本化合物の塩基配列は、Homo sapiens dystrophin (DMD) gene(NCBI-GenBank accession No. NG_012232)のヌクレオチド番号1002218-1002237に相補的な配列である。
(Example 4)
HO-A e2s -G m1s -G e2s -C m1s -T e2s -G m1s -T e2s -U m1s -G e2s -U m1s -C e2s -C m1s -C e2s -U m1s -T e2s -U m1s - A e2s -U m1s -T e2s -G m1t -H
The title compound was synthesized in the same manner as in Example 1.
The compound was identified by negative ion ESI mass spectrometry (calculated: 7083.7522, found: 7083.748)
The base sequence of the present compound is a sequence complementary to nucleotide numbers 1002218-1002237 of Homo sapiens dystrophin (DMD) gene (NCBI-GenBank accession No. NG_012232).
(実施例5)
HO-Ce2s-Um1s-Ge2s-Um1s-Te2s-Gm1s-Te2s-Cm1s-C2s-Cm1s-Te2s-Um1s-Te2s-Am1s-Te2s-Um1s-Ge2s-Um1s-Ce2s-Am1t-H
 実施例1と同様の方法で、表記の化合物を合成した。
化合物は負イオンESI質量分析により同定した(計算値:7032.7552、実測値:7032.7396)
 本化合物の塩基配列は、Homo sapiens dystrophin (DMD) gene(NCBI-GenBank accession No. NG_012232)のヌクレオチド番号1002215-1002234に相補的な配列である。
(Example 5)
HO-C e2s -U m1s -G e2s -U m1s -T e2s -G m1s -T e2s -C m1s -C 2s -C m1s -T e2s -U m1s -T e2s -A m1s -T e2s -U m1s- G e2s -U m1s -C e2s -A m1t -H
The title compound was synthesized in the same manner as in Example 1.
The compound was identified by negative ion ESI mass spectrometry (calculated: 7032.7552, found: 7032.7396)
The base sequence of the present compound is a sequence complementary to nucleotide number 1002215-1002234 of Homo sapiens dystrophin (DMD) gene (NCBI-GenBank accession No. NG_012232).
 なお、本明細書において、At、Gt、5meCt、Ct、Tt、Ut、Ap、Gp、5meCp、Cp、Tp、Up、As、Gs、5meCs、Cs、Ts、Us、Am1t、Gm1t、Cm1t、5meCm1t、Um1t、Am1p、Gm1p、Cm1p、5meCm1p、Um1p、Am1s、Gm1s、Cm1s、5meCm1s、Um1s、A2t、G2t、C2t、T2t、Ae2p、Ge2p、Ce2p、Te2p、Ae2s、Ge2s、Ce2s、Te2s、A1t、G1t、C1t、T1t、Ae1p、Ge1p、Ce1p、Te1p、Ae1s、Ge1s、Ce1s、Te1s、Am2t、Gm2t、5meCm2t、Tm2t、Am2p、Gm2p、5meCm2p、Tm2p、Am2s、Gm2s、5meCm2s、Tm2sは、下記に示す構造を有する基である。

Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005
In the present specification, A t, G t, 5meC t, C t, T t, U t, A p, G p, 5meC p, C p, T p, U p, A s, G s, 5meC s, C s, T s, U s, A m1t, G m1t, C m1t, 5meC m1t, U m1t, A m1p, G m1p, C m1p, 5meC m1p, U m1p, A m1s, G m1s, C m1s, 5meC m1s, U m1s, A 2t , G 2t, C 2t, T 2t, A e2p, G e2p, C e2p, T e2p, A e2s, G e2s, C e2s, T e2s, A 1t, G 1t, C 1t , T 1t, A e1p, G e1p, C e1p, T e1p, A e1s, G e1s, C e1s, T e1s, A m2t, G m2t, 5meC m2t, T m2t, A m2p, G m2p, 5meC m2p, T m 2 p , Am 2 s , G m 2 s , 5 me C m 2 s , and T m 2 s are groups having the structures shown below.

Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005
(試験例1)実施例化合物によるSH-SY5Y細胞でのジストロフィン遺伝子のイントロン40リテンション解消
 SH-SY5Y細胞はATCCより購入し、細胞を37℃5% CO2 in air中にて培養し、以下の試験に用いた。
Test Example 1 Intron 40 Retention Release of Dystrophin Gene in SH-SY5Y Cells by Example Compounds SH-SY5Y cells are purchased from ATCC, and the cells are cultured in 5% CO 2 in air at 37 ° C. Used for the test.
トランスフェクション
 以下のようにして、実施例で製造した化合物AO41E-LESEをSH-SY5Y細胞にトランスフェクションした。
1.Opti-MEM (GIBCO-BRL)100μlに、実施例で製造した化合物(ミリQで10μg
/20μlとしたもの)200 pmolを溶解した。
2.1の溶液へ6μlのplus reagent(GIBCO-BRL)を加え、15分間室温で放置した。
3.別のチューブでOpti-MEM 100μlに8μl Lipofectamine(GIBCO-BRL)を溶解した。
4.2の処理後、処理液に3を加えさらに15分間室温に放置した。
5.分化誘導後4日目の筋芽細胞をPBSにて1回洗浄した後、Opti-MEM 800μlを加えた。
6.4の処理後、処理液を5に加えた。
7.6の細胞を37℃5% CO2 in air中にて3時間培養した後、DMEM (6%HSを含む) 500μlを各ウエルに加えた。
8.さらに培養を継続した。
Transfection The compound AO41E-LESE prepared in the example was transfected into SH-SY5Y cells as follows.
1. Compounds prepared in the example (10 μg in milli Q) in 100 μl of Opti-MEM (GIBCO-BRL)
200 pmol was dissolved.
6 μl plus reagent (GIBCO-BRL) was added to the solution of 2.1 and left at room temperature for 15 minutes.
3. In another tube, 8 μl Lipofectamine (GIBCO-BRL) was dissolved in 100 μl Opti-MEM.
After the treatment of 4.2, 3 was added to the treatment solution and left at room temperature for 15 minutes.
5. The myoblasts on day 4 after induction of differentiation were washed once with PBS, and then 800 μl of Opti-MEM was added.
After the treatment of 6.4, the treatment solution was added to 5.
After culturing the cells of 7.6 at 37 ° C. in 5% CO 2 in air for 3 hours, 500 μl of DMEM (containing 6% HS) was added to each well.
8. The culture was further continued.
RNA抽出
 以下のようにしてRNAの抽出を行った。
1.実施例で製造した化合物をトランスフェクションした細胞を1日間培養した後、PBSにて1回洗浄し、ISOGEN (ニッポンジーン) 500μlを細胞に添加した。
2.5分間室温に放置した後、ウエル内のISOGENをチューブに回収した。
3.ISOGEN (ニッポンジーン)のプロトコールに従ってRNAを抽出した。
4.最終的にDEPW 20 μlにRNAを溶解した。
RNA extraction RNA extraction was performed as follows.
1. The cells transfected with the compounds prepared in the examples were cultured for 1 day, then washed once with PBS, and 500 μl of ISOGEN (Nippon Gene) was added to the cells.
After standing at room temperature for 2.5 minutes, the ISOGEN in the wells was collected in a tube.
3. RNA was extracted according to the ISOGEN (Nippon Gene) protocol.
4. Finally, RNA was dissolved in 20 μl of DEPW.
逆転写反応
 以下のようにして逆転写反応を行った。
1.RNA 2μgにDEPW(ジエチルピロカーボネートで処理した滅菌水)を加え、6μlとした。
2.1の溶液へrandom hexamer (Invitrogen  3μg/μlを20倍希釈したもの)2μlを加えた。
3.65℃で10分間加熱した。
4.氷上で2分間冷却した。
5.上記の反応液に、MMLV-reverse transcriptase(Invitrogen、 200U/μl)1μl、Human placenta ribonuclease inhibitor(Takara、 40U/μl)1μl、DTT(MMLV-reverse transcriptaseに添付)1μl、バッファー(MMLV-reverse transcriptaseに添付)4μl、dNTPs(Takara Ex Taqに添付)5μlを加えた。
6.37℃に1時間保温し、その後95℃で5分間加熱した。
7.反応後は-80℃で保存した。
Reverse transcription reaction Reverse transcription reaction was performed as follows.
1. To 2 μg of RNA, DEPW (sterile water treated with diethyl pyrocarbonate) was added to make 6 μl.
To the solution of 2.1, 2 μl of random hexamer (20 μl diluted with 3 μg / μl of Invitrogen) was added.
Heated at 3.65 ° C. for 10 minutes.
4. Cooled on ice for 2 minutes.
5. In the above reaction solution, 1 μl of MMLV-reverse transcriptase (Invitrogen, 200 U / μl), 1 μl of human placenta ribonuclease inhibitor (Takara, 40 U / μl), 1 μl of DTT (attached to MMLV-reverse transcriptase), buffer (MMLV-reverse transcriptase) Attached) 4 μl, 5 μl dNTPs (attached to Takara Ex Taq) were added.
6. Incubate at 37 ° C for 1 hour, then heat at 95 ° C for 5 minutes.
7. After the reaction, it was stored at -80 ° C.
PCR反応
 以下のようにしてPCR反応を行った。
1.下記の成分を混和後、94℃で4分間加熱した。
逆転写反応産物3μl、フォワードプライマー(10pmol/μl) 1μl、リバースプライマー(10pmol/μl) 1μl、dNTP(TAKARA Ex Taqに添付) 2μl、バッファー (TAKARA Ex Taqに添付) 2μl、Ex Taq (TAKARA) 0.1 μl、滅菌水 11μl。
2.94℃4分の処理後に、94℃1分・60℃1分・72℃3分の処理を35サイクル行った。
3.72℃で7分間加熱した。
 なお、イントロン40のリテンションを解消することを検出するためのPCR反応に用いたフォワードプライマーとリバースプライマーの塩基配列は以下の通りである。
フォワードプライマーDys-ex40f: 5'- CTGAGCCCAGAGATGAAAGG -3'(exon 40)(配列番号6)
リバースプライマーc41r: 5'- TGCGGCCCCATCCTCAGACAA -3'(exon 41) (配列番号7)
4.PCR反応物の解析は、Agilent Bioanalyzerを用いて行った。泳動分離後、それぞれの、バンドの量を定量した。
PCR reaction The PCR reaction was performed as follows.
1. After mixing the following components, the mixture was heated at 94 ° C. for 4 minutes.
Reverse transcription reaction product 3 μl, forward primer (10 pmol / μl) 1 μl, reverse primer (10 pmol / μl) 1 μl, dNTP (attached to TAKARA Ex Taq) 2 μl, buffer (attached to TAKARA Ex Taq) 2 μl, Ex Taq (TAKARA) 0.1 μl, 11 μl of sterile water.
After treatment at 2.94 ° C. for 4 minutes, 35 cycles of treatment at 94 ° C. for 1 minute, 60 ° C. for 1 minute and 72 ° C. for 3 minutes were performed.
Heated at 3.72 ° C. for 7 minutes.
The base sequences of the forward and reverse primers used in the PCR reaction for detecting the cancellation of the retention of intron 40 are as follows.
Forward primer Dys-ex40f: 5'- CTGAGCCCAGAGTGAAAAGG-3 '(exon 40) (SEQ ID NO: 6)
Reverse primer c41r: 5'-TGCGGCCCCCATCCTC AGACAA-3 '(exon 41) (SEQ ID NO: 7)
4. Analysis of PCR reactions was performed using an Agilent Bioanalyzer. After electrophoretic separation, the amount of each band was quantified.
PCR反応の反応産物のシークエンス
 増幅産物をを2%アガロースゲル電気泳動によって解析した。泳動したゲルから増幅産物のバンドを切り出し、PCR産物をpT7 Blue-T vector(Novagen)にサブクローニングし、Thermo Sequenqse TM II dye terminator cyc
le sequencing kit (Amersham Pharmacia Biotec)を用い、ABI PRISM 310 Genet
ic analyzer(アプライドバイオシステムズ)によってシークエンス反応を行っ
て、塩基配列を確認した。反応手順は添付マニュアルに従った。
Sequence amplification products of the reaction products of the PCR reaction were analyzed by 2% agarose gel electrophoresis. The band of the amplification product is excised from the electrophoresed gel, and the PCR product is subcloned into pT7 Blue-T vector (Novagen), and Thermo SequenqseTM II dye terminator cyc
ABI PRISM 310 Genet using le sequencing kit (Amersham Pharmacia Biotec)
The sequencing reaction was performed by ic analyzer (Applied Biosystems) to confirm the nucleotide sequence. The reaction procedure followed the attached manual.
細胞数のカウント
 CCL-136細胞は、ATCCから購入した。CCL-136細胞を 2x105になるように、60mm培養プレートに播種し(イワキ製)、37℃、5.0%炭酸ガス下で24時間培養した(パナソニックヘルスケア)。試験例1と同様の方法で実施例化合物をトランスフェクトし、1, 3, 5, 7日後に培養細胞数をマニュアルでカウントした。トリパンブルーは、死滅した細胞を除くために用い、血球計算盤を使って、細胞数を数えた。
Cell Count Count CCL-136 cells were purchased from ATCC. CCL-136 cells were seeded on a 60 mm culture plate (manufactured by Iwaki) so as to be 2 × 10 5 cells, and cultured at 37 ° C. under 5.0% carbon dioxide gas for 24 hours (Panasonic Health Care). The compounds of Examples were transfected in the same manner as in Test Example 1, and after 1, 3, 5 and 7 days, the number of cultured cells was manually counted. Trypan blue was used to remove dead cells and cell counts were counted using a hemocytometer.
タイムラップス解析
 CCL-136細胞は、ATCCから購入した。CCL-136細胞を 2x105になるように、6mm培養プレートに播種し(イワキ製)、37℃、5.0%炭酸ガス下で24時間培養した(パナソニックヘルスケア)。24時間後に、試験例1と同様の方法で実施例化合物をトランスフェクトした。6mm培養プレートは、タイムラップス顕微鏡(cellSens, オリンパス製)下、37℃、5.0%炭酸ガス下でインキュベションチャンバー内で培養した。画像は、30分ごとに100x倍率で5日間撮られ、cellSensソフトウエアを使って解析し(オリンパス製)、細胞の形態の時間的変化を観察した。
Timelapse analysis CCL-136 cells were purchased from ATCC. CCL-136 cells were seeded at 2 × 10 5 on a 6 mm culture plate (manufactured by Iwaki) and cultured at 37 ° C. under 5.0% carbon dioxide gas for 24 hours (Panasonic Health Care). After 24 hours, the example compounds were transfected in the same manner as in Test Example 1. The 6 mm culture plate was cultured in an incubation chamber at 37 ° C. under 5.0% carbon dioxide gas under a time-lapse microscope (cellSens, manufactured by Olympus). Images were taken every 30 minutes for 5 days at 100 × magnification and analyzed using cellSens software (Olympus) to observe temporal changes in cell morphology.
[結果]
 実施例1のAO41E-LESEをSH-SY5Y細胞に導入し、24時間後にmRNAをRT-PCR解析した。導入前には、ジストロフィンのイントロン40領域の増幅産物として、正常のスプライシング産物のバンドに加え、2種類のイントロン40リテンション産物が検出された。すなわち、全長がリテンションされたバンドとエクソン40eに相当するバンドである。イントロン40とAO41E-LESEの関係模式図を図1aに示す。実施例1のAO41E-LESE (50μM)の導入により、RT-PCR産物に大きな変化が生じ、イントロン40の配列を含んだ2種の産物のバンドの濃度は薄くなった。同時に、正常のバンドは濃くなった。さらに、実施例1のAO41E-LESEを100 μMにすると、イントロンリテンションに相当するバンドの濃度はさらに薄くなり、ほとんど正常のバンドのみとなった。(図1b)
 一方、実施例1のAO41E-LESEの代わりにジストロフィン遺伝子のエクソン45に相補的なAO88(国際特許番号WO2004/048570記載の実施例30の化合物)を細胞に導入し、同様の解析を行った。この導入ではスプライシングには変化を生じず、ジストロフィンmRNAの3種の増幅産物が得られた。このイントロンリテンションの産物のバンドに濃さにも変化が見られなかった(図2)。また、実施例1のAO41E-LESEを導入したSH-SY5Y細胞を顕微鏡で観察したところ、実施例1のAO41E-LESEを100μMで導入した細胞では、細胞密度の低下が観察された(図3)。
 AO41E-LESE-3.4.5を同様に細胞に導入したところ、イントロンリテンションン解消効果が見られた(図10)。
[result]
AO41E-LESE of Example 1 was introduced into SH-SY5Y cells, and 24 hours later, mRNA was analyzed by RT-PCR. Before the introduction, two intron 40 retention products were detected as amplification products of the intron 40 region of dystrophin, in addition to the normal splicing product band. That is, a full-length retention band and a band corresponding to exon 40e. A schematic diagram of the relationship between intron 40 and AO41E-LESE is shown in FIG. 1a. Introduction of AO41E-LESE (50 μM) of Example 1 caused a large change in RT-PCR products, and the concentration of the bands of the two products containing the intron 40 sequence was reduced. At the same time, the normal band became darker. Furthermore, when AO41E-LESE of Example 1 was made 100 μM, the concentration of the band corresponding to the intron retention was further reduced, and only the almost normal band was obtained. (Figure 1b)
On the other hand, instead of AO41E-LESE of Example 1, AO88 (the compound of Example 30 described in International Patent No. WO 2004/048570) complementary to exon 45 of the dystrophin gene was introduced into cells, and the same analysis was performed. The introduction did not alter splicing, and three amplification products of dystrophin mRNA were obtained. No change was also observed in the band of the product of this intron retention (FIG. 2). In addition, when SH-SY5Y cells into which AO41E-LESE of Example 1 had been introduced were observed under a microscope, reduction of cell density was observed in cells into which AO41E-LESE of Example 1 was introduced at 100 μM (FIG. 3) .
Similarly, when AO41E-LESE-3.4.5 was introduced into the cells, the intron retention effect was observed (FIG. 10).
(試験例2)実施例化合物による横紋筋肉腫(RMS)でのジストロフィン遺伝子のイントロン40リテンション解消
 ジストロフィンの発現している細胞でのAO41E-LESEのスプライシング制御効果が期待された。横紋筋肉腫(RMS)は様々な化学療法剤の開発にもかかわらず、まだ治療成績ははかばかしくない。特に、ほうそう型の予後は極めて悪く、革新的な治療法の確立が望まれている。そこで、有効な治療法のない横紋筋肉腫の治療への応用を検討した。検討に使用したのはRMS由来の2種類の細胞のCRL-2061とCCL-136である。
 RMS由来の2種類の細胞としてCRL-2061とCCL-136をATCCから購入し、試験例1と同様の培養法を用いて培養した。これらの培養細胞に実施例1のAO41E-LESEを試験例1と同様に導入した。両細胞にAOを50μMの濃度で導入し、24時間後に産生されるジストロフィンmRNAを解析した。両細胞において、導入しない細胞ではイントロン40のリテンションとエクソン41eに相当するバンドが増幅された。ところが、AOの導入により、こうしたイントロンリテンションのバンドは消失し、正常のmRNAに相当するバンドのみとなった(図4)。
 一方、CCL-136細胞に ジストロフィン遺伝子のエクソン45の配列に相補的なAO88(国際特許番号WO2004/048570記載の実施例30の化合物)を導入し、同様の解析を行った。このAO88の導入によっては、イントロン40リテンションとエクソン41eの解消は見られなかった(図4)。これらの結果は、アンチセンスオリゴヌクレオチドの配列特異的なイントロンリテンション解消を示している。
Test Example 2 Release of Intron 40 Retention of Dystrophin Gene in Rhabdomyosarcoma (RMS) by Example Compounds The splicing control effect of AO41E-LESE in cells expressing dystrophin was expected. Despite the development of various chemotherapeutic agents, rhabdomyosarcoma (RMS) has not been treated well. In particular, the lupus-type prognosis is extremely poor, and establishment of innovative treatments is desired. Therefore, we examined the application to the treatment of rhabdomyosarcoma without effective treatment. The studies used CRL-2061 and CCL-136 of two RMS-derived cells.
CRL-2061 and CCL-136 were purchased from ATCC as two types of cells derived from RMS, and cultured using the same culture method as in Test Example 1. The AO41E-LESE of Example 1 was introduced into these cultured cells in the same manner as in Test Example 1. AO was introduced into both cells at a concentration of 50 μM, and dystrophin mRNA produced after 24 hours was analyzed. In both cells, retention of intron 40 and a band corresponding to exon 41e were amplified in cells not introduced. However, with the introduction of AO, such intron retention bands disappeared, and only bands corresponding to normal mRNAs (FIG. 4).
On the other hand, AO88 (the compound of Example 30 described in International Patent No. WO 2004/048570) complementary to the sequence of exon 45 of the dystrophin gene was introduced into CCL-136 cells, and the same analysis was performed. With the introduction of AO88, intron 40 retention and elimination of exon 41e were not observed (FIG. 4). These results indicate sequence specific intron retention of antisense oligonucleotides.
(試験例3)実施例化合物による横紋筋肉腫(RMS)での細胞増殖抑制
 実施例1のAO41E-LESEをCCL-1361細胞に試験例2と同様に導入し、7日間に渡って細胞数の変化を観察した。その結果、実施例1のAO41E-LESE非導入細胞は増殖し、細胞数は直線的に増加した(図5)。一方、実施例1のAO41E-LESE導入細胞の増殖は抑制され細胞数はほとんど増えなかった。
Test Example 3 Inhibition of Cell Growth in Rhabdomyosarcoma (RMS) by Example Compounds The AO 41 E-LESE of Example 1 was introduced into CCL-1361 cells in the same manner as in Test Example 2, and the number of cells was measured over 7 days. Change was observed. As a result, the AO41E-LESE non-transfected cells of Example 1 proliferated, and the number of cells linearly increased (FIG. 5). On the other hand, the proliferation of the AO41E-LESE-introduced cells of Example 1 was suppressed and the number of cells was hardly increased.
(試験例4)スクラッチ試験(図6)
 スクラッチテストを行った。12ウェルプレートにCCL-136細胞をコンフルエントまで培養し、黄色ピペットチップでスクラッチを入れた。そして、その後培養を続け、スクラッチを入れた後の細胞間隙を測定した。
 何も処理しない細胞では、培養時間経過とともにその間隙は縮小した。同様にAO88処理した細胞でも、細胞間隙は縮小した。ところが、AO41E-LESEで処理した細胞では、細胞間隙の縮小はあまりみられなかった。スクラッチを入れた時の間隙を100%として、培養により縮小した間隙の割合を求めた。培養36時間の結果をみるとAO41E-LESE処理では約90%であったが、無処理、AO88処理では約20%であった(図6)。
(Test Example 4) Scratch Test (FIG. 6)
I did a scratch test. CCL-136 cells were grown to confluence in 12-well plates and scratched with a yellow pipette tip. Then, the culture was continued and the cell gap after scratching was measured.
In cells that were not treated at all, the gap shrank with the passage of culture time. Similarly, in the cells treated with AO88, the intercellular space was reduced. However, in the cells treated with AO41E-LESE, there was not much reduction in the intercellular space. The percentage of gaps shrunk by culture was determined, with 100% of the gaps at the time of scratching. The results for 36 hours of culture were about 90% with AO41E-LESE treatment, but about 20% with no treatment and AO88 treatment (FIG. 6).
(試験例5)細胞遊走及び浸潤アッセイ(図7)
 CytoSelect 24-well migration and invasionアッセイキットを用いて遊走・浸潤能を解析した。ウェル内に移動した細胞を570mmの吸光度で測定した。遊走能・浸潤能ともにAO41E-LESE導入細胞では低下した。
 コロニー形成反応では、非投与およびAO88投与では、コロニー数が300以上に増加したが、AO41E-LESR投与例では80にとどまり、大幅なコロニー増殖抑制効果がみられた。
 また、浸潤能解析でも非投与、AO88投与例では浸潤細胞が多かった。
 しかし、AO41E-LESE投与例では大幅な抑制が認められた。
 両群間には有意な差が認められた。
Test Example 5 Cell Migration and Invasion Assay (FIG. 7)
Migration / invasion ability was analyzed using CytoSelect 24-well migration and invasion assay kit. The cells migrated into the wells were measured at an absorbance of 570 mm. Both migration ability and infiltration ability decreased in AO41E-LESE transfected cells.
In the colony formation reaction, the number of colonies increased to 300 or more with non-administration and AO88 administration, but remained at 80 with AO41E-LESR administration, and a significant colony growth inhibitory effect was observed.
Also, in the infiltration analysis, there were many infiltrating cells in the non-administered cases and in the AO88-administered cases.
However, significant suppression was observed in patients treated with AO41E-LESE.
There were significant differences between the two groups.
(試験例6)軟寒天コロニー形成アッセイ(図8)
 CytoSelect 96-wellトランスフォーメーションアッセイキットを用いて行った。1.0×106のCCL-136細胞をアガローズマトリックス液に混じて96穴のウェルに注いだ。
 そして、MTTで染色した後570mmで吸光度を測った。AO41E-LESE導入細胞では著明な吸光度の低下がみられた。
(Test Example 6) Soft agar colony formation assay (FIG. 8)
This was done using the CytoSelect 96-well transformation assay kit. 1.0 × 10 6 CCL-136 cells were mixed with agarose matrix solution and poured into 96-well.
Then, after staining with MTT, the absorbance was measured at 570 mm. A marked decrease in absorbance was observed in the AO41E-LESE transfected cells.
(試験例7)平板コロニー形成アッセイ(図9)
 CCL-136細胞を6cm血に播き21日後にクリスタルバイオレッドで染色・コロニー数をカウントした。AO41E-LESE導入細胞で著明コロニー抑制がみられた。

 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
(Test Example 7) Plate colony formation assay (FIG. 9)
CCL-136 cells were seeded in 6 cm, and 21 days later, they were stained with crystal biored and the number of colonies was counted. Remarkable colony suppression was observed in the AO41E-LESE transfected cells.

All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.
 本発明は、ジストロフィン遺伝子のイントロンリテンションを持つ疾患の治療に利用できる。
The present invention can be used to treat diseases having intron retention of the dystrophin gene.
<配列番号1>ジストロフィン遺伝子のエクソン41e内に存在するLESE(large exon splicing enhancer)と推定される配列。5’ ggatgacaataaagggacaacagcctttgaaattttgagag 3’
<配列番号2>実施例1及び2で製造したアンチセンスオリゴヌクレオチド(41E-LESE-1)のヌクレオチド配列を示す。3’ tccctgttgtcggaaacttt 5’
<配列番号3>実施例3で製造したアンチセンスオリゴヌクレオチド(41E-LESE-3)のヌクレオチド配列を示す。3’atttccctgttgtcggaaac 5’
<配列番号4>実施例4で製造したアンチセンスオリゴヌクレオチド(41E-LESE-4)のヌクレオチド配列を示す。3’gttatttccctgttgtcgga 5’
<配列番号5>実施例5で製造したアンチセンスオリゴヌクレオチド(41E-LESE-5)のヌクレオチド配列を示す。3’actgttatttccctgttgtc 5’
<配列番号6>試験例1で使用したフォワードプライマーDys-ex40fのヌクレオチド配列を示す。5'- CTGAGCCCAGAGATGAAAGG -3'
<配列番号7>試験例1で使用したリバースプライマーc41rのヌクレオチド配列を示す。5'- TGCGGCCCCATCCTCAGACAA -3'
<配列番号8>配列番号2~5の共通の配列を示す。3’ tccctgttgtc 5’

 配列番号2~5及び8のアンチセンスオリゴヌクレオチドを構成するヌクレオチドは、天然型DNA、天然型RNA、DNA/RNAのキメラ、これらの修飾体のいずれであってもよいが、少なくとも1つが修飾ヌクレオチドであることが好ましい。
<SEQ ID NO: 1> A sequence presumed to be LESE (large exon splicing enhancer) present in exon 41e of dystrophin gene. 5 'ggatgacaata aagg gacaaca gcc ttt gaaatttt gagag 3'
<SEQ ID NO: 2> This shows the nucleotide sequence of the antisense oligonucleotide (41E-LESE-1) produced in Examples 1 and 2. 3 'tccctgttgtcggaaacttt 5'
<SEQ ID NO: 3> This shows the nucleotide sequence of the antisense oligonucleotide (41E-LESE-3) produced in Example 3. 3'atttccctgttgtcggaaac 5 '
<SEQ ID NO: 4> This shows the nucleotide sequence of the antisense oligonucleotide (41E-LESE-4) produced in Example 4. 3'gttatttccctgttgtcgga 5 '
<SEQ ID NO: 5> This shows the nucleotide sequence of the antisense oligonucleotide (41E-LESE-5) produced in Example 5. 3 'actgttatttccctgttgtc 5'
<SEQ ID NO: 6> This shows the nucleotide sequence of forward primer Dys-ex40f used in Test Example 1. 5'- CTGAGCCCAGAGATGAAGG-3 '
<SEQ ID NO: 7> This shows the nucleotide sequence of reverse primer c41r used in Test Example 1. 5'- TGCGGCCCCCATCCTC AGACAA-3 '
<SEQ ID NO: 8> This shows the common sequence of SEQ ID NOs: 2 to 5. 3 'tccctgttgtc 5'

The nucleotides constituting the antisense oligonucleotides of SEQ ID NOs: 2 to 5 and 8 may be any of natural DNA, natural RNA, DNA / RNA chimera, and modified forms thereof, but at least one of them is a modified nucleotide. Is preferred.

Claims (21)

  1. ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物を含有する、ジストロフィン遺伝子のイントロンリテンションを持つ疾患の治療薬。 A therapeutic agent for a disease having intron retention of a dystrophin gene, which comprises an antisense oligonucleotide capable of eliminating intron retention of a dystrophin gene, a pharmaceutically acceptable salt or solvate thereof.
  2. イントロンがイントロン40である請求項1記載の治療薬。 The therapeutic agent according to claim 1, wherein the intron is intron 40.
  3. ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチドが、ジストロフィン遺伝子のエクソン41e内に存在する下記の配列の全部又は一部に相補的な配列を含む請求項1又は2に記載の治療薬。
    5’ ggatgacaataaagggacaacagcctttgaaattttgagag 3’(配列番号1)
    The therapeutic agent according to claim 1 or 2, wherein the antisense oligonucleotide capable of eliminating intron retention of the dystrophin gene comprises a sequence complementary to all or part of the following sequences present in the exon 41e of the dystrophin gene.
    5 'ggatgacaata aagg gacaaca gcctttgaaattttgagag 3' (SEQ ID NO: 1)
  4. アンチセンスオリゴヌクレオチドが塩基数15~30である請求項1~3のいずれかに記載の治療薬。 The therapeutic agent according to any one of claims 1 to 3, wherein the antisense oligonucleotide has 15 to 30 bases.
  5. アンチセンスオリゴヌクレオチドの配列が下記のいずれかの配列の全部又は一部を含む請求項1~4のいずれかに記載の治療薬。
    3’ tccctgttgtcggaaacttt 5’ (配列番号2)
    3’atttccctgttgtcggaaac 5’ (配列番号3)
    3’gttatttccctgttgtcgga 5’ (配列番号4)
    3’actgttatttccctgttgtc 5’ (配列番号5)
    (但し、配列中のtはuであってもよい)
    The therapeutic agent according to any one of claims 1 to 4, wherein the sequence of the antisense oligonucleotide comprises all or a part of any of the following sequences.
    3 'tccctgttgtcggaaacttt 5' (SEQ ID NO: 2)
    3'atttccctgttgtcggaaac 5 '(SEQ ID NO: 3)
    3'gttatttccctgttgtcgga 5 '(SEQ ID NO: 4)
    3 'actgttatttccctgttgtc 5' (SEQ ID NO: 5)
    (However, t in the sequence may be u)
  6. アンチセンスオリゴヌクレオチドの配列が3’ tccctgttgtc 5’(配列番号8)(但し、配列中のtはuであってもよい)の全部又は一部を含む請求項1~4のいずれかに記載の治療薬。 The sequence of the antisense oligonucleotide according to any one of claims 1 to 4, which comprises all or part of 3 'tccctgttgtc 5' (SEQ ID NO: 8) (wherein t in the sequence may be u). Therapeutic agent.
  7. アンチセンスオリゴヌクレオチドを構成する糖及び/又はリン酸ジエステル結合の少なくとも1個が修飾されている請求項1~6のいずれかに記載の治療薬。 The therapeutic agent according to any one of claims 1 to 6, wherein at least one of the sugar and / or phosphodiester bond constituting the antisense oligonucleotide is modified.
  8. アンチセンスオリゴヌクレオチドを構成する糖がD-リボフラノースであり、糖の修飾がD-リボフラノースの2’位の水酸基の修飾である請求項7記載の治療薬。 The therapeutic agent according to claim 7, wherein the sugar constituting the antisense oligonucleotide is D-ribofuranose, and the sugar modification is modification of a hydroxyl group at the 2 'position of D-ribofuranose.
  9. 糖の修飾がD-リボフラノースの2’-O-アルキル化及び/又は2’-O, 4’-C-アルキレン化である請求項8記載の治療薬。 The therapeutic agent according to claim 8, wherein the modification of sugar is 2'-O-alkylation of D-ribofuranose and / or 2'-O, 4'-C-alkylenation.
  10. リン酸ジエステル結合の修飾がホスホロチオエートである請求項7~9のいずれかに記載の治療薬。 The therapeutic agent according to any one of claims 7 to 9, wherein the modification of the phosphodiester bond is phosphorothioate.
  11. ジストロフィン遺伝子のイントロンリテンションを持つ疾患が、神経芽腫、横紋筋肉腫、中皮腫、胃がん及び脳腫瘍からなる群より選択される少なくとも1つである請求項1~10のいずれかに記載の治療薬。 The treatment according to any one of claims 1 to 10, wherein the disease having intron retention of dystrophin gene is at least one selected from the group consisting of neuroblastoma, rhabdomyosarcoma, mesothelioma, gastric cancer and brain tumor. medicine.
  12. ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。 Antisense oligonucleotide which can eliminate intron retention of dystrophin gene, its pharmaceutically acceptable salt or solvate.
  13. アンチセンスオリゴヌクレオチドの配列が、ジストロフィン遺伝子のエクソン41e内に存在する下記の配列の全部又は一部に相補的な配列を含む請求項12記載のアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。
    5’ ggatgacaataaagggacaacagcctttgaaattttgagag 3’(配列番号1)
    The antisense oligonucleotide according to claim 12, the pharmaceutically acceptable salt thereof or the pharmaceutically acceptable salt thereof, wherein the sequence of the antisense oligonucleotide comprises a sequence complementary to all or a part of the following sequence present in the exon 41e of the dystrophin gene: Solvate.
    5 'ggatgacaata aagg gacaaca gcctttgaaattttgagag 3' (SEQ ID NO: 1)
  14. アンチセンスオリゴヌクレオチドが塩基数15~30である請求項12又は13に記載のアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。 The antisense oligonucleotide according to claim 12 or 13, a pharmaceutically acceptable salt or solvate thereof, wherein the antisense oligonucleotide has 15 to 30 bases.
  15. アンチセンスオリゴヌクレオチドの配列が下記のいずれかの配列の全部又は一部を含む請求項12~14のいずれかに記載のアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。
    3’ tccctgttgtcggaaacttt 5’ (配列番号2)
    3’atttccctgttgtcggaaac 5’ (配列番号3)
    3’gttatttccctgttgtcgga 5’ (配列番号4)
    3’actgttatttccctgttgtc 5’ (配列番号5)
    (但し、配列中のtはuであってもよい)
    The antisense oligonucleotide according to any one of claims 12 to 14, its pharmaceutically acceptable salt or solvate, wherein the sequence of the antisense oligonucleotide comprises all or a part of any of the following sequences:
    3 'tccctgttgtcggaaacttt 5' (SEQ ID NO: 2)
    3'atttccctgttgtcggaaac 5 '(SEQ ID NO: 3)
    3'gttatttccctgttgtcgga 5 '(SEQ ID NO: 4)
    3 'actgttatttccctgttgtc 5' (SEQ ID NO: 5)
    (However, t in the sequence may be u)
  16. アンチセンスオリゴヌクレオチドの配列が3’ tccctgttgtc 5’(配列番号8)(但し、配列中のtはuであってもよい)の全部又は一部を含む請求項12~14のいずれかに記載のアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。 The sequence of the antisense oligonucleotide according to any one of claims 12 to 14, which comprises all or part of 3 'tccctgttgtc 5' (SEQ ID NO: 8) (wherein t in the sequence may be u). Antisense oligonucleotide, pharmaceutically acceptable salt or solvate thereof.
  17. 請求項12~16のいずれかに記載のアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物を含有する、医薬組成物。 A pharmaceutical composition comprising the antisense oligonucleotide according to any one of claims 12 to 16, a pharmaceutically acceptable salt or solvate thereof.
  18. ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物を医薬的に有効な量で被験者に投与することを含む、ジストロフィン遺伝子のイントロンリテンションを持つ疾患の治療方法。 Treatment of a disease having intron retention of a dystrophin gene, comprising administering to the subject a pharmaceutically effective amount of an antisense oligonucleotide capable of eliminating intron retention of the dystrophin gene, a pharmaceutically acceptable salt or solvate thereof Method.
  19. ジストロフィン遺伝子のイントロンリテンションを持つ疾患を治療する方法に使用するための、ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。 An antisense oligonucleotide capable of eliminating intron retention of a dystrophin gene, a pharmaceutically acceptable salt or solvate thereof, for use in a method of treating a disease having intron retention of a dystrophin gene.
  20. ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物を含有する、経口又は非経口で投与するための配合物。 A formulation for oral or parenteral administration, which comprises an antisense oligonucleotide capable of eliminating intron retention of a dystrophin gene, a pharmaceutically acceptable salt or solvate thereof.
  21. 医薬として使用するための、ジストロフィン遺伝子のイントロンリテンションを解消できるアンチセンスオリゴヌクレオチド、その医薬的に許容できる塩又は溶媒和物。 Antisense oligonucleotide which can eliminate intron retention of a dystrophin gene, its pharmaceutically acceptable salt or solvate, for use as a pharmaceutical.
PCT/JP2018/043864 2017-12-07 2018-11-28 Antisense oligonucleotide capable of cancelling intron retention in dystrophin gene WO2019111791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-235359 2017-12-07
JP2017235359 2017-12-07

Publications (1)

Publication Number Publication Date
WO2019111791A1 true WO2019111791A1 (en) 2019-06-13

Family

ID=66750234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043864 WO2019111791A1 (en) 2017-12-07 2018-11-28 Antisense oligonucleotide capable of cancelling intron retention in dystrophin gene

Country Status (1)

Country Link
WO (1) WO2019111791A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297097A (en) * 1999-02-12 2000-10-24 Sankyo Co Ltd New nucleoside and oligonucleotide analog
JP2002501534A (en) * 1997-05-30 2002-01-15 ハイブリドン・インコーポレイテッド Novel sulfur transfer reagent for oligonucleotide synthesis
JP2002521310A (en) * 1997-09-12 2002-07-16 エクシコン エ/エス Oligonucleotide analogues
CN101775401A (en) * 2009-01-14 2010-07-14 北京联合大学生物化学工程学院 Rana chensinensis functional gene Rd-RNase3 sequence, construction method and amino acid sequence and application thereof
JP2011032236A (en) * 2009-08-04 2011-02-17 Dainippon Sumitomo Pharma Co Ltd Inhibitor for tumor neovascularization
JP2017519766A (en) * 2014-06-16 2017-07-20 ユニバーシティ・オブ・サザンプトン Reduced intron retention
JP2017522010A (en) * 2014-06-10 2017-08-10 エラスムス ユニバーシティ メディカルセンター ロッテルダムErasmus University Medical Center Rotterdam Antisense oligonucleotides useful for the treatment of Pompe disease

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002501534A (en) * 1997-05-30 2002-01-15 ハイブリドン・インコーポレイテッド Novel sulfur transfer reagent for oligonucleotide synthesis
JP2002521310A (en) * 1997-09-12 2002-07-16 エクシコン エ/エス Oligonucleotide analogues
JP2000297097A (en) * 1999-02-12 2000-10-24 Sankyo Co Ltd New nucleoside and oligonucleotide analog
CN101775401A (en) * 2009-01-14 2010-07-14 北京联合大学生物化学工程学院 Rana chensinensis functional gene Rd-RNase3 sequence, construction method and amino acid sequence and application thereof
JP2011032236A (en) * 2009-08-04 2011-02-17 Dainippon Sumitomo Pharma Co Ltd Inhibitor for tumor neovascularization
JP2017522010A (en) * 2014-06-10 2017-08-10 エラスムス ユニバーシティ メディカルセンター ロッテルダムErasmus University Medical Center Rotterdam Antisense oligonucleotides useful for the treatment of Pompe disease
JP2017519766A (en) * 2014-06-16 2017-07-20 ユニバーシティ・オブ・サザンプトン Reduced intron retention

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE Nucleotide 15 September 2017 (2017-09-15), HERSHBERGER, R.E. ET AL.: "Homo sapiens dystrophin (DMD), RefSeqGene (LRG_199) on chromosome X.", XP055616965, retrieved from NCBI Database accession no. NG_012232.1 *
NIBA ET AL.: "DMD transcripts in CRL-2061 rhabdomyosarcoma cells show high levels of intron retention by intron-specific PCR amplification", CANCER CELL INTERNATIONAL, vol. 17, no. 58, 23 May 2017 (2017-05-23), pages 1 - 10, XP055616958, DOI: 10.1186/s12935-017-0428-4 *
NIBAETE ET AL.: "Cryptic splice activation but not exon skipping is observed in minigene assays of dystrophin c.9361+lG>A mutation identified by NGS", JOURNAL OF HUMAN GENETICS, vol. 62, no. 5, April 2017 (2017-04-01), pages 531 - 537, XP055616967, DOI: 10.1038/jhg.2016.162 *
NISHIDA ET AL.: "Neuronal SH-SY5Y cells use the C-dystrophin promoter coupled with exon 78 skipping and display multiple patterns of alternative splicing including two intronic insertion events", HUMAN GENETICS, vol. 134, no. 9, 2015, pages 993 - 1001, XP035526831, DOI: 10.1007/s00439-015-1581-2 *
NISHIDA ET AL.: "Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA", JOURNAL OF HUMAN GENETICS, vol. 60, no. 6, 2015, pages 327 - 333, XP055616962, ISSN: 1434-5161, DOI: 10.1038/jhg.2015.24 *
SAKABE NJ ET AL.: "Sequence features responsible for intron retention in human", BMC GENOMICS, vol. 8, no. 59, 2007, pages 1 - 14, XP021022365, DOI: 10.1186/1471-2164-8-59 *

Similar Documents

Publication Publication Date Title
EP2386636B1 (en) Ena nucleic acid drugs modifying splicing in mrna precursor
KR100809166B1 (en) 3 antisense oligonucleotide modulation of stat3 expression
JP5763539B2 (en) 5 &#39;and 2&#39; bis-substituted nucleosides and oligomeric compounds produced therefrom
KR100750788B1 (en) 4 MODULATION OF eIF4E EXPRESSION
AU2004270741B2 (en) Gapped oligomeric compounds having linked bicyclic sugar moieties at the termini
US20040014957A1 (en) Oligonucleotides having modified nucleoside units
US20040014108A1 (en) Oligonucleotides having modified nucleoside units
JP2008501693A (en) Double-stranded composition with individually regulated strands for use in gene regulation
JP2002508944A (en) Antisense modification of human MDM2 expression
JP2002541784A (en) Antisense oligonucleotide regulation of STAT3 expression
US20040171566A1 (en) Antisense modulation of p38 mitogen activated protein kinase expression
CN111655851A (en) Antisense oligonucleotides targeting SREBP1
JP2007104971A (en) Antisense oligonucleotide for splicing control of myostatin
WO2019111791A1 (en) Antisense oligonucleotide capable of cancelling intron retention in dystrophin gene
WO2001074136A2 (en) Telomerase inhibitor polynucleotides
EP3998108A1 (en) Antisense oligonucleotide capable of altering splicing of dux4 pre-mrna
WO2019240164A1 (en) Myocardial dysfunction therapeutic agent
US20040171564A1 (en) Antisense oligonucleotide modulation of human serine/threonine protein phosphatase gene expression
JP6536911B2 (en) A nucleic acid drug that induces skipping of variant exons of the CD44 gene and increases expression of normal CD44 mRNA
JP7072748B2 (en) Alport syndrome drug
US20040102393A1 (en) Modulation of heat shock protein 90-alpha expression
EP1631235A2 (en) Compositions and methods for the modulation of the expression of b7 protein
MXPA06008869A (en) Antisense oligonucleotide modulation of stat3 expression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP