WO2019106209A1 - Endoscopio óptico - Google Patents

Endoscopio óptico Download PDF

Info

Publication number
WO2019106209A1
WO2019106209A1 PCT/ES2017/070787 ES2017070787W WO2019106209A1 WO 2019106209 A1 WO2019106209 A1 WO 2019106209A1 ES 2017070787 W ES2017070787 W ES 2017070787W WO 2019106209 A1 WO2019106209 A1 WO 2019106209A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
waveguides
endoscope
block
fiber
Prior art date
Application number
PCT/ES2017/070787
Other languages
English (en)
French (fr)
Inventor
Valerio Pruneri
Robin CAMPHAUSEN
Original Assignee
Fundació Institut De Ciències Fotòniques
Institució Catalana De Recerca I Estudis Avançats
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundació Institut De Ciències Fotòniques, Institució Catalana De Recerca I Estudis Avançats filed Critical Fundació Institut De Ciències Fotòniques
Priority to EP17840589.0A priority Critical patent/EP3719557A1/en
Priority to JP2020547317A priority patent/JP7289845B2/ja
Priority to AU2017441379A priority patent/AU2017441379B2/en
Priority to US16/768,566 priority patent/US20200310103A1/en
Priority to CN201780098202.6A priority patent/CN111788509A/zh
Priority to DE17840589.0T priority patent/DE17840589T1/de
Priority to CA3083870A priority patent/CA3083870A1/en
Priority to PCT/ES2017/070787 priority patent/WO2019106209A1/es
Publication of WO2019106209A1 publication Critical patent/WO2019106209A1/es

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/0011Manufacturing of endoscope parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • A61B1/00167Details of optical fibre bundles, e.g. shape or fibre distribution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • A61B1/0017Details of single optical fibres, e.g. material or cladding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00195Optical arrangements with eyepieces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means

Definitions

  • the invention relates to an optical endoscope comprising an optical fiber element with a proximal end and a distal end.
  • Optical endoscopes are instruments to look inside a volume through a small opening. Endoscopes are typically used in medicine to look inside the human body. However, the use of endoscopes is not restricted to medicine. Endoscopes are also used for visual inspection of workpieces such as motors, turbines or similar. The endoscopes for this technical use are sometimes called “borescope”.
  • endoscope refers to both medical and non-medical use.
  • An endoscope generally comprises a flexible optic that guides light between the so-called “distal end” within the object to be examined up to the so-called “proximal end” outside the object.
  • distal end There are normally, but not always, some miniaturized scanning and / or imaging devices at the distal end, while more elaborate optics, whose purpose includes enlarging the image transmitted on a digital image sensor or a viewfinder, they are at the proximal end.
  • endoscopes obtain a scatter image, however, fluorescent images and optical coherence tomography are also widely used.
  • optical fibers are usually used.
  • fiber bundles can be used, as well as multimode fibers.
  • Multicore fibers have also been commonly used.
  • optical fibers An important limitation that is related to the use of optical fibers is the low numerical opening of the fibers, which translates into a small acceptance angle and, therefore, a small field of vision.
  • a known approach of WO 2017/016663 A1 uses an endoscope with a flexible tubular sheath containing optical fibers.
  • a distal tip is described with multiple optical ports that extend in three dimensions which include flexible waveguides. These guides The waveforms continue to the endoscope body through the same number of fibers or are connected to a multiplexer that is connected to a single optical fiber or to a few fibers that continue to the proximal end of the endoscope.
  • the technology to produce the endoscope with a corresponding distal tip is complicated and expensive.
  • the flexible waveguides that connect the optical ports to the proximal end or the multiplexer present a high possibility of rupture during manufacturing (since they have to undergo strong bending) or during the use of the latter if a package is not used suitable.
  • a multiplexer which includes a cascade of couplers and splitters, significant signal loss occurs. For many applications, this additional optical loss is detrimental, if it does not completely prevent the functionality of the device.
  • the scheme is also difficult to adapt to different fiber geometries, for example, to different multicore fiber geometries.
  • An object of the present invention is, therefore, to provide an improved optical endoscope, which is mechanically more reliable and adaptable in use.
  • the block of optical waveguides comprises a rigid material in which two or more waveguides are formed. optical Since the two or more optical waveguides are formed in a rigid material, the invention allows for long-term stability and greater mechanical reliability compared to known solutions using flexible waveguides.
  • the endoscope may be an endoscope for medical or non-medical purposes.
  • an image optics and / or an image sensor and / or a viewer may be arranged at the proximal end.
  • the image optics can include elements to enlarge the image transmitted in the digital image sensor or the viewfinder.
  • the fiber optic element can be flexible. However, the fiber optic element can also be rigid.
  • the fiber optic element may comprise, in particular, one or more optical fibers, particularly in a common flexible coating.
  • the common flexible coating may be made of a plastic material, particularly an elastomer.
  • the optical waveguide block can be a solid or solid (not hollow) element.
  • the optical waveguide block may not comprise a cavity in which the optical waveguides are arranged.
  • the two or more optical waveguides can be integrated separately into the rigid material of the optical waveguide block.
  • the optical waveguide block may be rigidly coupled to the distal end of the optical fiber element. In this way, the optical waveguide block can be fixed or immobile with respect to the distal end of the optical fiber element.
  • the optical waveguide block may be coupled or fixed to the distal end of the fiber optic element by means of a mechanical, adhesive (chemical) and / or fusion (thermal) fixation.
  • the optical waveguide block may be coupled to the distal end of the fiber optic element so that light is transmitted through the two or more optical waveguides and the fiber optic element at the proximal end of the endoscope. For example, a butt coupling can be performed.
  • the number of optical waveguides in the optical waveguide block is not particularly limited. The actual number depends on the intended application. For many applications, four or more optical waveguides can be used.
  • the two or more optical waveguides can be arranged arbitrarily within the block of optical waveguides, particularly depending on the desired application.
  • the optical waveguides can be arranged particularly in three-dimensional (3-D) manner without crossing.
  • the optical waveguides can also be extended in two dimensions (2-D).
  • One or more of the optical waveguides can be curved.
  • One or more of the optical waveguides can be straight or not curved. If both ends of the waveguides are arranged in a common plane, it is considered that the optical waveguides are in a 2-D distribution, otherwise, in a 3-D distribution.
  • the two or more optical waveguides can be waveguides in a single or multimode mode. It is possible to vary from a waveguide in a single mode to a multimode by increasing the cross section and / or the refractive index difference of the waveguide.
  • the difference in refractive index corresponds to the difference in the refractive index between the waveguide and its surrounding medium (coating).
  • the two or more optical waveguides can be formed integrally with the rigid material of the optical waveguide block.
  • the two or more optical waveguides can be formed by the rigid material itself. In this way, it is not necessary to introduce separate elements in the block of optical waveguides, which results in a simplified structure with high mechanical reliability.
  • the two or more optical waveguides can be formed in particular by parts of the rigid material that have a higher refractive index than the surrounding parts.
  • the optical waveguides in this way, can be formed by a change of positive refractive index in the rigid material.
  • the parts around the rigid material can form the coating of the optical waveguides.
  • the two or more optical waveguides can be obtained in particular by ultra-fast laser engraving through the volume of the optical waveguide block.
  • Ultra-fast laser engraving is preferably performed with laser pulses of less than 1 ps duration.
  • a filter or other optical element in the block of optical waveguides, can be formed.
  • one or more FBG filters fiber with Bragg grid
  • one or more of the optical waveguides may be formed, particularly in one or more of the optical waveguides.
  • the rigid material is optically transparent at the operating wavelength of the optical endoscope. It can also be optically transparent to the laser used for ultra-fast laser engraving.
  • the operating wavelength of the optical endoscope may be less than 2 pM, particularly less than 1.6 pM, for example, between 1.3 pM and 1.55 pM.
  • the optical waveguide block may consist of the rigid material.
  • the rigid material may comprise or consist in particular of a glass, a polymer and / or a semiconductor. Examples of materials are silicate and / or multi-component glasses, perfluorinated polymer, silicon and silicon nitride.
  • Each of the two or more optical waveguides can comprise one end facing the fiber optic element and disposed on a first surface of the optical waveguide block, the so-called coupling end, and one end of the fiber element back. optical and arranged on a second surface of the block of optical waveguides, the so-called end of the object.
  • the end of the object can be found particularly in front of the object when the endoscope is in use.
  • the two or more optical waveguides can form particularly tubes or channels connecting the coupling end and the end of the object. Geometrically, therefore, the two or more optical waveguides look like optical fibers.
  • the coating can be provided by the rigid material surrounding the optical waveguides, as mentioned above.
  • the fiber optic element may comprise a multi-core optical fiber, wherein the two or more optical waveguides are connected to the optical fiber element so that, at the coupling end, the two or more optical waveguides are aligned with multicore fiber optic cores.
  • a butt coupling of the cores of the multi-core fiber with the optical waveguides in the optical waveguide block can be performed.
  • the block of waveguides may be indexed coincident with the fiber optic element. In this way, it is possible to reduce the optical loss.
  • the individual cores of the multi-core optical fiber can be single-mode cores at the operating wavelength.
  • Single-mode waveguides are compatible with coherent imaging techniques such as optical coherence tomography.
  • the fiber optic element may comprise a multimode optical fiber, wherein the two or more optical waveguides are connected to the multimode optical fiber through a photonic flashlight section formed in the rigid material of the optical fiber block. optical waveguides.
  • a photonic flashlight corresponds to an optical element that connects a multimode waveguide to multiple waveguides with fewer modes, particularly single mode.
  • the geometry of the optical waveguide block is not particularly limited. Also, the geometry of the optical waveguides within the rigid material is not particularly limited. Both depend on the desired application.
  • the block of optical waveguides may have rotational symmetry, for example, cylindrical or truncated cone shaped.
  • the optical waveguide block can also have the shape of two or more elements with rotational symmetry joined together, for example, a circular cylinder and a hemisphere.
  • the optical waveguide block may comprise or consist of one or more planar pads.
  • Each planar pad can comprise one or more of the optical waveguides.
  • the optical waveguides can be curved.
  • Each flat chip may also comprise multiplexers and / or dividers formed therein, particularly by ultra-fast laser engraving.
  • "flat bar” refers to a geometric shape whose extension in one direction (thickness) is significantly smaller (at least three times less) than extension in the other two directions (length, width).
  • a flat tablet can be a rectangular plate. More than one flat chip can be connected to each other thus forming a more complex geometry for the optical waveguide block. For example, two flat pads orthogonal to each other can be arranged, particularly so that each of the flat pads is divided in half by the other of the two flat pads.
  • the coupling end may be a polished planar surface perpendicular to the longitudinal axis of the fiber optic element.
  • the end of the object can be a flat surface perpendicular or inclined with respect to the longitudinal axis of the fiber optic element. By using an inclined surface, return reflections can be minimized or eliminated.
  • the two or more optical waveguides in particular, can be fanned from the coupling end towards the end of the object so that the spacing between nuclei at the end of the object is greater than at the coupling end. In this case, it is possible to expand the field of view of the endoscope without varying the solid angle.
  • the end of the object can be flat polished.
  • the end of the object can be curved; in particular, the end of the object may be hemispherical. In this way, it is possible to assign a flat 2-D distribution of waveguide ends present at the coupling end to a 3-D hemisphere. In this way, it is possible to expand the solid angle and consequently also the field of vision.
  • the end of the object can be continuously or discontinuously curved.
  • the end of the object can also be composed of a plurality of flat polished faces, joined together to form a curved surface, particularly hemispherical.
  • the allocation of the spatial distribution of the ends of the two or more optical waveguides at the coupling end to the spatial distribution of the ends of the two or more optical waveguides at the end of the object can be symmetric with respect to a plane extending parallel to the longitudinal axis of the fiber optic element.
  • the optical waveguides in the optical waveguide block can be crossed with a plane extending parallel to the longitudinal axis when extending from the coupling end towards the end of the object.
  • a greater radius of curvature can be realized for the optical waveguides, reducing curvature losses.
  • the optical waveguides that extend from both sides of the plane can be crossed with the plane in different positions, thus avoiding crossing waveguides. In this way a connection between reasonably low waveguides can also be maintained.
  • the plane extending parallel to the longitudinal axis may include an axis of symmetry of the fiber optic element and, therefore, may correspond to a plane of symmetry of the fiber optic element.
  • the plane can also form a plane of symmetry of the optical waveguide block connected to the fiber optic element. If the block of optical waveguides has rotational symmetry, the plane may also include the rotational symmetry axis of the optical waveguide block.
  • the plane can also form a plane of symmetry for the distribution of the optical waveguides in the block of optical waveguides. Instead of the plane of symmetry, it can be used as reference for some embodiments the axis of symmetry of the optical fiber element or the optical waveguide block.
  • optics particularly one or more GRIN (index gradient) lenses and / or one or more micro lenses can be connected to the optical waveguide block.
  • the additional optical elements can be used to focus light, for example.
  • An independent micro-lens can be connected to each end of the optical waveguides at the end of the object of the optical waveguide block, for example.
  • the one or more micro-lenses may be made of fused silica, silicon, or any other transparent material at the operating wavelength of the endoscope.
  • the one or more micro-lenses can be particularly plano-convex lenses.
  • the optical waveguides in the optical waveguide block can be arranged so that the waveguides having ends at the coupling end with a radial distance less than a predefined distance from the longitudinal axis of the optical fiber element are curved towards a lateral part of the end of the object, while the waveguides having ends at the coupling end with a distance radial to the longitudinal axis of the fiber optic element greater than the predefined distance continue towards a part facing forward of the end of the object .
  • This configuration again, allows reducing the loss of curvature since small radii of curvature are omitted for waveguides near a side surface of the optical waveguide block.
  • the predefined distance may be greater than one quarter and less than three quarters of the radial extent of the optical waveguide block at the coupling end.
  • the longitudinal axis of the optical fiber element is considered, in this case, to extend towards the block of optical waveguides to form a reference axis for the optical waveguide block.
  • the longitudinal axis of the optical waveguide block does not necessarily coincide with the longitudinal axis of the optical fiber element. If the optical waveguide block has rotational symmetry, the rotation symmetry axis may coincide with the longitudinal axis of the optical fiber element. In other words, the axis of rotational symmetry of the optical waveguide block can be aligned with the longitudinal axis of the optical fiber element. In this case, the axis of rotational symmetry of the optical waveguide block can be used similarly as a reference axis.
  • a "side portion" of the object end refers to an area of the surface of the optical waveguide block oriented in a direction inclined to the reference axis of the optical waveguide block (which corresponds , for example, to the extension of the longitudinal axis of the fiber optic element) at an angle greater than or equal to 45 ° and less than or equal to 135 °.
  • a "forward-facing part" of the end of the object refers to an area of the surface of the optical waveguide block oriented in an inclined direction with respect to the reference axis of the optical waveguide block in a angle less than 45 ° and a "backward-facing portion" of the end of the object refers to an area of the surface of the optical waveguide block oriented in a direction inclined to the reference axis of the optical waveguide block in An angle greater than 135 °.
  • the reference axis is considered to have an address facing away from the distal end of the fiber optic element.
  • the "forward-facing part" of the end of the object faces away from the distal end of the fiber optic element.
  • the respective angles can be measured between the normal surface of the respective surface area and the reference axis.
  • the normal surface can be considered to have a backward direction to the optical waveguide block.
  • the optical waveguide block may be at least partially covered by an electrically conductive layer.
  • the electrically conductive layer can be electrically connected to another conductor extending to the proximal end of the optical endoscope. Through this conductor and the conductive layer of the optical waveguide block, it is possible to transmit current to the distal end for ablation purposes.
  • the electrically conductive layer covering the optical waveguide block may be particularly transparent or semi-transparent at the operating wavelength of the optical endoscope.
  • the electrically conductive layer can be formed of a transparent or semi-transparent material and / or the electrically conductive layer can have a thickness that allows the passage of a predefined fraction of light at the operating wavelength of the optical endoscope through of the layer, without it dispersing.
  • the predefined fraction can be 50% or more.
  • Possible materials for the electrically conductive layer include broadband semiconductor materials, such as indium tin oxide or zinc oxide doped with aluminum, ultrathin metals, silver nanowires and / or metal meshes.
  • broadband semiconductor materials such as indium tin oxide or zinc oxide doped with aluminum, ultrathin metals, silver nanowires and / or metal meshes.
  • Ultra-fine metals and metal meshes can be combined to obtain a high optical transmission for wavelengths above 1 pm, while maintaining a low electrical resistance (high conductance).
  • the material or at least the outer surface of the electrically conductive layer be compatible with human tissues.
  • gold can be used as the material for the electrically conductive layer or its outer surface.
  • the outer surface refers to the surface of the electrically conductive layer that can be contacted with human tissues when the optical endoscope is being used.
  • the electrically conductive layer may comprise openings for light to enter the two or more optical waveguides.
  • the openings can form optical ports for the two or more optical waveguides.
  • the electrically conductive material covering the optical waveguide block is transparent or semitransparent at the operating wavelength of the optical endoscope, apertures are not necessarily provided for light to enter the two or more optical waveguides. In other words, in this case no such openings or ports are formed. Manufacturing, therefore, can be simplified.
  • the invention also has a block of optical waveguides for an optical endoscope, the block of optical waveguides comprising a rigid material, in which one or more optical waveguides are formed in the rigid material.
  • the optical waveguide block may comprise any one or more of the features described above.
  • the invention further presents a method for manufacturing an optical endoscope comprising the steps of: arranging an optical fiber element with a proximal end and a distal end, arranging a block of optical waveguides comprising a rigid material, forming two or more optical waveguides in the rigid material, and connect the optical waveguide block to the distal end of the fiber optic element.
  • the two or more optical waveguides can be formed in particular by ultra-fast laser engraving.
  • the optical endoscope particularly the optical waveguide block, may comprise any one or more of the features described above.
  • Figure 1 illustrates the basic configuration of an optical endoscope according to the invention in a schematic illustration
  • Figure 2 shows parts of an optical endoscope according to a first embodiment of the invention
  • Figure 3 shows parts of an optical endoscope according to a second embodiment of the invention
  • Figure 4 shows a block of exemplary optical waveguides for an optical endoscope according to the invention
  • Figure 5 shows another exemplary optical waveguide block for an optical endoscope according to the invention
  • Figure 6 shows parts of an optical endoscope according to a third embodiment of the invention.
  • Figure 7 shows another exemplary optical waveguide block for an optical endoscope according to the invention.
  • Figure 8 shows parts of an optical endoscope according to a fourth embodiment of the invention
  • Figures 9a and 9b illustrate a photonic lantern usable in the context of an optical endoscope according to the invention
  • Figure 10 shows parts of an optical endoscope according to a fifth embodiment of the invention.
  • Figure 11 shows parts of an optical endoscope according to a sixth embodiment of the invention.
  • Figure 12 shows another exemplary optical waveguide block for an optical endoscope according to the invention.
  • Figure 13 shows another exemplary optical waveguide block for an optical endoscope according to the invention.
  • FIG. 1 illustrates schematically the basic configuration of an optical endoscope according to the invention.
  • the optical endoscope 1 comprises an optical fiber element 2, which typically includes one or more optical fibers disposed within a flexible sheath material.
  • the fiber optic element 2 has a proximal end 3 and a distal end 4.
  • an optical imaging element 5 is provided at the proximal end 3 .
  • the optical imaging element 5 may comprise an optic to represent the transmitted light through the fiber optic element 2 on, for example, a digital image sensor.
  • the optical imaging element 5 may also comprise an LCD screen for displaying the image obtained from the digital image sensor.
  • the elements arranged at the proximal end 3 of the fiber optic element 2 are standard elements known per se.
  • the optical waveguide block 6 comprises a rigid material in which two or more are formed optical waveguides.
  • This block of optical waveguides 6 allows an improved optical endoscope 1 to be arranged, as will be clear from the specific embodiments described below.
  • the fiber optic element 2 extends along a longitudinal direction, defining the longitudinal axis of the optical endoscope 1. Since the fiber optic element 2 is normally flexible, the direction / longitudinal axis will normally be curved.
  • the fiber optic element 2 is usually cylindrical, with the central axis defining an axis of symmetry of the cylinder.
  • the longitudinal axis of the fiber optic element 2 can be considered to extend beyond its proximal and distal axis, in particular as straight lines perpendicular to the proximal / distal end surface.
  • the longitudinal axis of the fiber optic element 2 is therefore used as a reference axis with respect to which indications such as "lateral” or “radial” should be understood, particularly with respect to the block of optical waveguides 6.
  • FIG. 2 illustrates a first embodiment of the invention.
  • the fiber optic element 2 comprises a multi-core fiber with a plurality of cores 10 coated in a common flexible polymer coating 11. Many types of multi-core fibers are known.
  • the invention is not particularly limited to any specific embodiment for the multi-core fiber or to any specific arrangement of the fibers in the fiber optic element 2.
  • the optical waveguide block 6 has a cuboid shape in this specific embodiment and is made of glass.
  • the optical waveguide block 6 can also be cylindrical or can have any other desired shape.
  • a block of optical waveguides 6 cylindrical would have the same appearance, in the cross-sectional view of figure 2, as that of a cuboid.
  • the invention is not limited to glass as a rigid material for the optical waveguide block 6.
  • the optical waveguide block 6 could be formed of a rigid polymer or a rigid semiconductor, which are particularly optically transparent at the wavelength of operation of the optical endoscope.
  • the optical waveguide block 6 comprises a plurality of optical waveguides recorded by ultra-fast laser 3-D 7 that goes from the coupling end 8 of the optical waveguide block 6 to one end of the object 9.
  • the coupling end 8 lies in front of the fiber optic element while the end of the object 9 faces the object when the optical endoscope is being used, for example, the interior of an organ of the human body.
  • Ultrafast laser engraving is known as such and works as follows: a focused high-intensity femtosecond laser beam is applied to the rigid material in order to induce a change in the permanent positive refractive index through an absorption mechanism multi-photon. Moving the laser focus through the block of rigid material, the trajectory traced by the focus, therefore, it becomes a light guide core due to its resulting high refractive index, with an effective coating provided by the unmodified remainder of the block of rigid material. By performing multiple series of scans, we can write an arbitrary number of waveguides with arbitrary 3-D shapes in a single block of rigid material.
  • the focused laser shape is not the ideal shape of a waveguide core, for example, by using multiple series of scans with a slight displacement between each other and annealing the block of rigid material after an ultra-fast laser engraving by heating.
  • the end of the object 9 is a polished planar surface, perpendicular to the longitudinal axis of the optical fiber element 2.
  • the longitudinal axis of the optical fiber element 2 extends towards the optical waveguide block 6, the end of the object 9 being perpendicular to it.
  • the end of the object 9 at a slight angle with respect to the longitudinal axis in order to eliminate or minimize return reflections. The angle depends on the refractive indices of the block and the surrounding medium. Typically, it varies between a few degrees and ten degrees. Thus, the angle can be more than 1 o and less than 10 °.
  • the coupling end 8 is defined by the surface of the optical waveguide block 6 where the ends of the optical waveguides 7 are disposed opposite the optical fiber element 2, while the end of the object 9 is defined as the surface area of the optical waveguide block 6 in which the ends of the optical waveguides 7 are disposed opposite the object when the optical endoscope is being used or, in other words, with its back to the fiber optic element two.
  • the optical waveguides 7 in the optical waveguide block 6 are fanned from the coupling end 8 towards the end of the object 9, effectively replicating the distribution of the ends of the guides of waves at the coupling end 8, with a greater separation between cores. It increases, therefore, the field of vision at the cost of spatial resolution; however, the acceptance angle remains the same as in a regular multi-core fiber endoscope.
  • Each core 10 of the multi-core fibers of the optical fiber element 2 is butt-coupled, in this example, to one end of an optical waveguide 7 at the coupling end 8 (not illustrated in the figure). In this way, light transmission from the end of the object 9 to the proximal end of the optical endoscope is possible.
  • At least one additional optical element 12 such as a lens or GRIN bar lens or multiple lenses of that type, can be coupled to the end of object 9. If only single mode waveguides are used, this The embodiment is also compatible with coherent imaging techniques such as optical coherence tomography.
  • the end pattern of the object of the optical waveguides 7 is not particularly limited.
  • the distribution could also be one-dimensional, that is, a linear array of waveguides or otherwise different from the distribution of the ends of the waveguide 7 at the coupling end 8.
  • the The end pattern of the object can be one-dimensional or two-dimensional.
  • the totally rigid configuration of the optical waveguide block 6 ensures long-term stability and without degradation of the optical signal.
  • Figure 3 illustrates another embodiment of the invention.
  • the optical waveguide block 6 has one end of the object 9 that is hemispherical.
  • the optical waveguides 7 in the optical waveguide block 6, therefore, allocate the 2-D distribution of the coupling end 8 to the hemisphere 3-D, thereby increasing the solid angle.
  • the optical waveguides 7 also lead to a lateral surface of the optical waveguide block 6 with respect to the longitudinal axis of the optical fiber element 2 as a reference axis. In this way, the solid angle can be increased to 2TT. The maximum solid angle can be even greater in case the optical waveguides 7 are bent backwards.
  • Figures 4 and 5 illustrate possible alternatives to the block of optical waveguides 6 illustrated in Figure 3.
  • a theoretical plane 13 is illustrated which extends parallel to the longitudinal axis of the optical fiber element 2 and which includes the axis of symmetry of the optical fiber element 2.
  • the rotationally symmetric axis of the optical waveguide block 6 can be used as a reference.
  • the waveguides 7 run from a side part of the plane or axis 13 at the coupling end 8 to the other side part of the plane or axis 13 at the end of the object 9. In this way, it is possible to maintain the radius of curvature as far as possible.
  • optical waveguides 7 can be designed at angles and distances from each other so as to minimize interference (see Figure 5). In both alternatives (figure 4 and figure 5) the optical waveguides 7 do not intersect in three dimensions, but only in projection.
  • Figure 5 further shows the alternative of composing the end of the object 9 of a plurality of flat faces 14, which are prismatically joined to each other to cover the end of the object 9.
  • This discontinuous design of the end of the object 9 can used independently of the optical waveguide pattern within the optical waveguide block 6.
  • Figure 6 illustrates a further embodiment of the invention, which basically corresponds to the embodiment described with reference to figure 3.
  • micro-lenses 15 are attached to the ends of the optical waveguides in the end of the object 9 of the optical waveguide block 6.
  • microscopic plano-convex lenses 15 made of fused silica or silicon are used in this example.
  • a hemispherical object space is represented and transmitted through the fiber optic element 2 towards the proximal end.
  • optical coherence tomography can be used, as mentioned above, with the number of pixels equal to the number of waveguides in the block of optical waveguides 6.
  • Figure 7 illustrates an alternative optical waveguide block 6, which can be used to reduce a loss of curvature.
  • optical waveguides 7a that are closer to the plane or axis 13 are assigned to the lateral surface areas of the end of the object, while the optical waveguides 7b closest to the edge of the guide block optical waves 6 are assigned to a surface area facing forward of the end of the object.
  • the surface area facing one side can be a surface Cylindrical, or through the use of micro-lenses with different focal lengths can be modified to better match a hemispherical surface.
  • the forward-facing surface area can be flat, as illustrated in Figure 2 or curved as illustrated, for example, in Figure 3.
  • optical micro-lenses or GRIN lenses are illustrated as additional optical elements.
  • Figure 8 illustrates another embodiment of the invention that uses, instead of multicore fiber for the fiber optic element 2, a multimode fiber 16. All the above embodiments that have been described here can also be used with a multimode fiber. However, with a multimode fiber, coherent imaging techniques, such as optical coherence tomography, can not be implemented. In order to connect the two or more optical waveguides in the optical waveguide block 6 to the multimode fiber 16, a photonic flashlight section 17 is provided, which is also obtained by ultra-fast laser engraving.
  • FIGs 9a and 9b illustrate the so-called "photonic lanterns".
  • Photonic lanterns are optical devices that connect a multimode waveguide to a plurality of waveguides with fewer modes, possibly with a single mode.
  • Figure 9a shows the alternative of assigning a multimode waveguide 19 to a series of single-mode waveguides 18.
  • Figure 9b illustrates the dispersion of a multimode waveguide 19 in a plurality of single-mode waveguides. and then recombining again to a multimode waveguide 20.
  • FBG filters fiber with Bragg grid
  • FBG filters fiber with Bragg grating
  • the optical waveguide block 6 can be included in the optical waveguide block 6, particularly in the single mode waveguides 18 of a photon flashlight section 17.
  • the modes of the multimode fiber 16 are first connected to the individual waveguides in the photon lantern section 17 and then dispersed according to the needs of the specific embodiment.
  • the end of the object 8 is consistent with the example shown in Figure 6. Since endoscopes using a multimode fiber are sensitive to flexion during use, it is necessary to obtain a transfer function for an effective operation, as is known per se in the art.
  • Figure 10 shows another embodiment of an optical endoscope according to the invention.
  • a single mode or multimode fiber 21 can be used.
  • a photon flashlight section 17 is written in the optical waveguide block 6 .
  • the photon flashlight section 17 is implemented from a branched way, that is, with a dispersion from a multimode waveguide to waveguides in fewer modes that occur in multiple stages of fan opening.
  • each branch functions as a divider instead of a fan-opening device. In this way, it is possible to divide the input light into a single mode that propagates towards the end of object 9 and coherently reaches the entire field of view. In this way, the photon flashlight section 17 functions as a multiplexing element.
  • optical endoscopes are intended to be used for radiofrequency ablation of internal tissues.
  • the embodiment of Figure 11 is suitable for such purposes.
  • a conductive tube 22 of a conductive material, such as a metal is provided with an optional insulating sheath 23.
  • the optical waveguide block 6 is integrated in a conductive layer 24, which has suitable openings 25 for optical access to the optical waveguides of the optical waveguide block 6.
  • fiber optic element 2 current can be transmitted to the distal end.
  • several layers of conductive and insulating tubes can surround the fiber optic element 2 to allow annular electrodes for monitoring purposes.
  • the conductor tube 22 is in electrical contact with the conductive layer 24 of the optical waveguide block 6 so that the current can be transmitted to the conductive layer 24 of the optical waveguide block 6. In this way, treatments can be carried out. of ablation.
  • Radiofrequency ablation functionality can be used with any of the above embodiments. If a multimode fiber were to be used for the fiber optic element 2, a photon lantern section can be included in the optical waveguide block as illustrated in FIGS. 8 and 10.
  • the conductive layer 24 may be semitransparent or transparent at the operating wavelength of the optical endoscope. In this case, the openings 25 can be omitted.
  • the conductive layer 24 may be formed in particular from a transparent or semi-transparent material and / or may be thin enough to allow light to pass at least partially through the layer at the operating wavelength of the optical endoscope.
  • Figures 12 and 13 illustrate other alternatives for the optical waveguide block 6, such as can be used for optical endoscopes according to the invention.
  • the optical waveguide block 6 is formed as a planar chip 26 with a 2-D distribution of five exemplary optical waveguides 7 formed therein.
  • the central optical waveguide extends straight or non-curved from the coupling end towards the end of the object, while other waveguides are curved towards a lateral surface of the flat bar 26.
  • the thickness of the flat bar 26 is significantly less than its length and width.
  • the optical waveguide block 6 is formed by two perpendicularly intersecting flat pads 26, 27 each with a 2-D distribution of optical waveguides 7 formed therein.
  • the flat pads 26, 27 are arranged so that each of the flat pads 26, 27 is divided in half by the other respective wafer. In this way, a 3-D distribution of the optical waveguides 7 can be obtained while reducing the amount of rigid material.
  • Each of the flat pads 26, 27 may comprise two or more elements.
  • the flat bar 26 may comprise two halves, each connected to the flat bar 27.
  • the optical waveguides formed in the rigid material of the optical waveguide block 6 can be single or multimode waveguides.
  • the embodiments and examples of the present invention described above have been described separately, it should be understood that some or all of the features described above can also be combined in different ways.
  • the optical waveguide blocks described can be used in combination with different types of fiber optic elements.
  • the optical waveguide block is often shown separated from the distal end of the fiber optic element. This is for illustrative purposes only.
  • the optical waveguide block is actually connected to the distal end of the fiber optic element so that light can be transmitted through the two or more optical waveguides and the fiber optic element towards the proximal end of the endoscope. For example, a butt coupling can be performed.
  • the described embodiments are not intended to be limitations, but serve as examples illustrating features and advantages of the invention.
  • the pattern of the optical waveguides in the optical waveguide block is determined by the desired application.
  • the optical waveguide block may consist of any transparent rigid material with an appropriate refractive index that offers the possibility of housing optical waveguide guides.
  • 3-D optical waves as described.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

La invención se refiere a un endoscopio óptico (1), que comprende un elemento de fibra óptica (2) con un extremo proximal (3) y un extremo distal (4), en el que, en el extremo distal (4) del elemento de fibra óptica (2), hay dispuesto un bloque de guías de ondas ópticas (6), comprendiendo el bloque de guías de ondas ópticas (6) un material rígido con dos o más guías de ondas ópticas (7) formadas en el mismo.

Description

ENDOSCOPIO ÓPTICO
ANTECEDENTES
La invención se refiere a un endoscopio óptico que comprende un elemento de fibra óptica con un extremo proximal y un extremo distal.
Los endoscopios ópticos son instrumentos para mirar dentro de un volumen a través de una pequeña abertura. Los endoscopios se utilizan típicamente en medicina para mirar dentro del cuerpo humano. Sin embargo, el uso de endoscopios no está restringido a medicina. Los endoscopios se utilizan también para inspección visual de piezas de trabajo tales como motores, turbinas o similares. Los endoscopios para este uso técnico se denominan a veces "boroscopio". El término "endoscopio", tal como se utiliza aquí, se refiere tanto a uso médico como no médico.
Un endoscopio generalmente comprende una óptica flexible que guía la luz entre el denominado "extremo distal" dentro del objeto a examinar hasta el denominado "extremo proximal" fuera del objeto. Existen normalmente, pero no siempre, algunos aparatos miniaturizados de exploración y/o de formación de imágenes en el extremo distal, mientras que las ópticas más elaboradas, cuyo propósito incluye la ampliación de la imagen transmitida sobre un sensor de imagen digital o un visor, se encuentran en el extremo proximal. Más comúnmente, los endoscopios obtienen una imagen de dispersión, sin embargo, también se utilizan ampliamente imágenes fluorescentes y tomografía de coherencia óptica.
Para la óptica flexible, normalmente se utilizan fibras ópticas. Entre los posibles tipos de fibra pueden utilizarse los paquetes de fibra, así como fibras multimodo. También se han utilizado comúnmente fibras multinúcleo.
Una limitación importante que está relacionada con el uso de fibras ópticas es la baja apertura numérica de las fibras, lo que se traduce en un pequeño ángulo de aceptación y, por lo tanto, un pequeño campo de visión.
Un enfoque conocido de WO 2017/016663 A1 utiliza un endoscopio con una funda tubular flexible que contiene fibras ópticas. Se describe una punta distal con múltiples puertos ópticos que se extienden en tres dimensiones los cuales incluyen guías de onda flexibles. Estas guías de onda continúan hacia el cuerpo del endoscopio a través del mismo número de fibras o bien se conectan a un multiplexor que está conectado a una fibra óptica única o a unas pocas fibras que continúan hasta el extremo proximal del endoscopio.
La tecnología para producir el endoscopio con una punta distal correspondiente es complicada y costosa. Además, las guías de onda flexibles que conectan los puertos ópticos al extremo proximal o al multiplexor presentan una alta posibilidad de ruptura durante la fabricación (ya que tienen que someterse a fuertes flexiones) o durante el uso de este último si no se emplea un paquete adecuado. Además, si se utiliza un multiplexor, que incluye una cascada de acopladores y divisores, se produce una pérdida significativa de señal. Para muchas aplicaciones, esta pérdida óptica adicional es perjudicial, si no impide completamente la funcionalidad del dispositivo. El esquema también es difícil de adaptarse a diferentes geometrías de fibra, por ejemplo, a diferentes geometrías de fibra multinúcleo.
Un objetivo de la presente invención es, por lo tanto, disponer un endoscopio óptico perfeccionado, que sea mecánicamente más confiable y adaptable en uso.
Este objetivo se consigue con un endoscopio óptico de acuerdo con la reivindicación 1. En las reivindicaciones dependientes se especifican realizaciones preferidas.
DESCRIPCIÓN
De acuerdo con la invención, en el extremo distal del elemento de fibra óptica hay dispuesto un bloque de guías de ondas ópticas, en el que el bloque de guías de ondas ópticas comprende un material rígido en el cual están formadas dos o más guías de ondas ópticas. Dado que las dos o más guías de ondas ópticas está formadas en un material rígido, la invención permite una estabilidad a largo plazo y una confiabilidad mecánica mayor en comparación con soluciones conocidas que utilizan guías de ondas flexibles.
Tal como se ha mencionado anteriormente, el uso del endoscopio óptico no está particularmente limitado. El endoscopio puede ser un endoscopio para fines médicos o para fines no médicos. En el extremo proximal, puede disponerse una óptica de imagen y/o un sensor de imagen y/o un visor. La óptica de imagen puede incluir elementos para ampliar la imagen transmitida en el sensor de imagen digital o el visor. El elemento de fibra óptica puede ser flexible. Sin embargo, el elemento de fibra óptica también puede ser rígido.
El elemento de fibra óptica puede comprender, particularmente, una o más fibras ópticas, particularmente en un revestimiento flexible común. El revestimiento flexible común puede estar fabricado en un material plástico, particularmente un elastómero.
El bloque de guías de ondas ópticas puede ser un elemento macizo o sólido (no hueco). En otras palabras, el bloque de guías de ondas ópticas puede no comprender una cavidad en la que se dispongan las guías de ondas ópticas. En cambio, las dos o más guías de ondas ópticas pueden estar integradas por separado en el material rígido del bloque de guías de ondas ópticas.
El bloque de guías de ondas ópticas puede estar acoplado rígidamente al extremo distal del elemento de fibra óptica. De este modo, el bloque de guías de ondas ópticas puede ser fijo o inmóvil respecto al extremo distal del elemento de fibra óptica. El bloque de guías de ondas ópticas puede estar acoplado o fijado al extremo distal del elemento de fibra óptica por medio de una fijación mecánica, adhesiva (química) y/o de fusión (térmica).
El bloque de guías de ondas ópticas puede estar acoplado al extremo distal del elemento de fibra óptica de manera que la luz se transmita a través de las dos o más guías de ondas ópticas y el elemento de fibra óptica el extremo proximal del endoscopio. Por ejemplo, puede realizarse un acoplamiento a tope.
El número de guías de ondas ópticas en el bloque de guías de ondas ópticas no está particularmente limitado. El número real depende de la aplicación prevista. Para muchas aplicaciones, puede utilizarse cuatro o más guías de ondas ópticas.
Las dos o más guías de ondas ópticas pueden disponerse arbitrariamente dentro del bloque de guías de ondas ópticas, particularmente en función de la aplicación deseada. Las guías de ondas ópticas pueden disponerse particularmente de manera tridimensional (3-D) sin cruzarse. Las guías de ondas ópticas pueden extenderse también en dos dimensiones (2-D). Una o más de las guías de ondas ópticas puede ser curvada. Una o más de las guías de ondas ópticas puede ser recta o no curvada. Si ambos extremos de las guías de ondas se disponen en un plano común, se considera que las guías de ondas ópticas se encuentran en una distribución 2- D, en caso contrario, en una distribución 3-D.
Las dos o más guías de ondas ópticas pueden ser guías de ondas de modo único o multimodo. Es posible variar de una guía de ondas de modo único a una multimodo aumentando la sección transversal y/o la diferencia de índice de refracción de la guía de ondas. La diferencia de índice de refracción corresponde a la diferencia en el índice de refracción entre la guía de ondas y su medio circundante (revestimiento).
Las dos o más guías de ondas ópticas pueden estar formadas integralmente con el material rígido del bloque de guías de ondas ópticas. En otras palabras, las dos o más guías de ondas ópticas pueden estar formadas por el propio material rígido. De este modo, no es necesario introducir elementos separados en el bloque de guías de ondas ópticas, lo que da lugar a una estructura simplificada con una alta confiabilidad mecánica.
Las dos o más guías de ondas ópticas pueden estar formadas particularmente por partes del material rígido que tienen un mayor índice de refracción que las partes de alrededor. Las guías de ondas ópticas, de este modo, pueden estar formadas por un cambio de índice de refracción positivo en el material rígido. Las partes de alrededor del material rígido pueden formar el revestimiento de las guías de ondas ópticas.
Las dos o más guías de ondas ópticas pueden obtenerse particularmente por grabado con láser ultrarrápido a través del volumen del bloque de guías de ondas ópticas. El grabado con láser ultrarrápido se realiza preferiblemente con pulsos láser de una duración inferior a 1 ps.
En el bloque de guías de ondas ópticas puede estar formado un filtro u otro elemento óptico, particularmente obtenido por grabado con láser ultrarrápido. Por ejemplo, en el bloque de guías de ondas ópticas pueden estar formados uno o más filtros de FBG (fibra con rejilla de Bragg), particularmente en una o más de las guías de ondas ópticas.
El material rígido es ópticamente transparente en la longitud de onda de funcionamiento del endoscopio óptico. También puede ser ópticamente transparente para el láser utilizado para grabado con láser ultrarrápido. La longitud de onda de funcionamiento del endoscopio óptico puede ser inferior a 2 pm, particularmente inferior a 1 ,6 pm, por ejemplo, entre 1 ,3 pm y 1 ,55 pm. El bloque de guías de ondas ópticas puede consistir en el material rígido. El material rígido puede comprender o consistir particularmente en un vidrio, un polímero y/o un semiconductor. Ejemplos de materiales son silicato y/o vidrios multicomponentes, polímero perfluorado, silicio y nitruro de silicio.
Cada una de las dos o más guías de ondas ópticas puede comprender un extremo frente al elemento de fibra óptica y dispuesto en una primera superficie del bloque de guías de ondas ópticas, el denominado extremo de acoplamiento, y un extremo de espaldas al elemento de fibra óptica y dispuesto en una segunda superficie del bloque de guías de ondas ópticas, el denominado extremo del objeto. El extremo del objeto puede encontrarse particularmente frente al objeto cuando el endoscopio se encuentra en uso. Las dos o más guías de ondas ópticas pueden formar particularmente tubos o canales que conecten el extremo de acoplamiento y el extremo del objeto. Geométricamente, por lo tanto, las dos o más guías de ondas ópticas parecen fibras ópticas. El revestimiento lo puede proporcionar el material rígido que rodea las guías de ondas ópticas, tal como se ha mencionado anteriormente.
El elemento de fibra óptica puede comprender una fibra óptica multinúcleo, en el que las dos o más guías de ondas ópticas están conectadas al elemento de fibra óptica de manera que, en el extremo de acoplamiento, las dos o más guías de ondas ópticas se alinean con los núcleos de la fibra óptica multinúcleo. En otras palabras, puede realizarse un acoplamiento a tope de los núcleos de la fibra multinúcleo con las guías de ondas ópticas en el bloque de guías de ondas ópticas. El bloque de guías de ondas puede ser de índice coincidente con el elemento de fibra óptica. De este modo, es posible reducir la pérdida óptica.
Los núcleos individuales de la fibra óptica multinúcleo pueden ser núcleos de modo único en la longitud de onda de funcionamiento. Las guías de ondas de modo único son compatibles con técnicas de imagen coherente tales como tomografía de coherencia óptica.
Adicionalmente o alternativamente, el elemento de fibra óptica puede comprender una fibra óptica multimodo, en el que las dos o más guías de ondas ópticas están conectadas a la fibra óptica multimodo a través de una sección de linterna fotónica formada en el material rígido del bloque de guías de ondas ópticas. De este modo, es posible omitir la sección de multiplexación tal como se utiliza en la técnica anterior. Una linterna fotónica corresponde a un elemento óptico que conecta una guía de ondas multimodo a múltiples guías de ondas con menos modos, particularmente modo único.
La geometría del bloque de guías de ondas ópticas no está particularmente limitada. También, la geometría de las guías de ondas ópticas dentro del material rígido no está particularmente limitada. Ambas dependen de la aplicación deseada.
El bloque de guías de ondas ópticas pueden presentar simetría de rotación, por ejemplo, cilindrica o en forma de cono truncado. El bloque de guías de ondas ópticas puede tener también forma de dos o más elementos con simetría de rotación unidos entre sí, por ejemplo, un cilindro circular y una semiesfera.
El bloque de guías de ondas ópticas puede comprender o consistir en una o más pastillas planas. Cada pastilla plana puede comprender una o más de las guías de ondas ópticas. Las guías de ondas ópticas pueden ser curvadas. Cada pastilla plana puede comprender también multiplexores y/o divisores formados en la misma, particularmente por grabado con láser ultrarrápido. Tal como se utiliza aquí,“pastilla plana” se refiere a una forma geométrica cuya extensión en una dirección (grosor) es significativamente menor (por lo menos tres veces menos) que la extensión en las otras dos direcciones (longitud, anchura). En su forma más simple, una pastilla plana puede ser una placa rectangular. Puede conectarse entre sí más de una pastilla plana formando así una geometría más compleja para el bloque de guías de ondas ópticas. Por ejemplo, pueden disponerse dos pastillas planas ortogonales entre sí, particularmente de manera que cada una de las pastillas planas quede dividida por la mitad por la otra de las dos pastillas planas.
El extremo de acoplamiento puede ser una superficie plana pulida perpendicular al eje longitudinal del elemento de fibra óptica.
El extremo del objeto puede ser una superficie plana perpendicular o inclinada respecto al eje longitudinal del elemento de fibra óptica. Utilizando una superficie inclinada, pueden minimizarse o eliminarse reflexiones de retorno.
Las dos o más guías de ondas ópticas, particularmente, pueden abrirse en abanico desde el extremo de acoplamiento hacia el extremo del objeto de manera que la separación entre núcleos en el extremo del objeto es mayor que en el extremo de acoplamiento. En este caso, es posible expandir el campo de visión del endoscopio sin variar el ángulo sólido.
El extremo del objeto puede ser plano pulido.
El extremo del objeto puede ser curvado; particularmente, el extremo del objeto puede ser semiesférico. De este modo, es posible asignar una distribución 2-D plana de extremos de guías de ondas presentes en el extremo de acoplamiento a una semiesfera 3-D. De este modo, es posible expandir el ángulo sólido y consecuentemente también el campo de visión.
El extremo del objeto puede ser continuamente o discontinuamente curvado. El extremo del objeto puede estar compuesto también por una pluralidad de caras planas pulidas, unidas entre sí para formar una superficie curvada, particularmente semiesférica.
La asignación de la distribución espacial de los extremos de las dos o más guías de ondas ópticas en el extremo de acoplamiento a la distribución espacial de los extremos de las dos o más guías de ondas ópticas en el extremo del objeto puede ser simétrica respecto a un plano que se extiende paralelo al eje longitudinal del elemento de fibra óptica. En otras palabras, las guías de ondas ópticas en el bloque de guías de ondas ópticas pueden cruzarse con un plano que se extiende paralelo al eje longitudinal cuando se extiende desde el extremo de acoplamiento hacia el extremo del objeto. De este modo, puede realizarse un mayor radio de curvatura para las guías de ondas ópticas, reduciendo pérdidas de curvatura. Las guías de ondas ópticas que se extienden desde los dos lados del plano pueden cruzarse con el plano en diferentes posiciones, evitando de este modo cruzar guías de ondas. De esta manera también puede mantenerse una conexión entre guías de ondas razonablemente baja.
El plano que se extiende paralelo al eje longitudinal puede incluir un eje de simetría del elemento de fibra óptica y, por lo tanto, puede corresponder a un plano de simetría del elemento de fibra óptica. El plano puede formar también un plano de simetría del bloque de guías de ondas ópticas conectado al elemento de fibra óptica. Si el bloque de guías de ondas ópticas tiene simetría de rotación, el plano puede incluir también el eje de simetría de rotación del bloque de guías de ondas ópticas. Tal como se ha mencionado anteriormente, el plano puede formar también un plano de simetría para la distribución de las guías de ondas ópticas en el bloque de guías de ondas ópticas. En lugar del plano de simetría, puede utilizarse como referencia para algunas realizaciones el eje de simetría del elemento de fibra óptica o del bloque de guías de ondas ópticas.
Pueden conectarse otras ópticas, particularmente una o más lentes GRIN (de gradiente de índice) y/o una o más micro-lentes al bloque de guías de ondas ópticas. Los elementos ópticos adicionales pueden utilizarse para enfocar luz, por ejemplo.
Puede conectarse una micro-lente independiente a cada extremo de las guías de ondas ópticas en el extremo del objeto del bloque de guías de ondas ópticas, por ejemplo.
La una o más micro-lentes pueden estar realizadas en sílice fundida, silicio, o cualquier otro material transparente en la longitud de onda de funcionamiento del endoscopio. La una o más micro-lentes pueden ser particularmente lentes plano-convexas.
Las guías de ondas ópticas en el bloque de guías de ondas ópticas pueden disponerse de manera que las guías de ondas que tengan extremos en el extremo de acoplamiento con una distancia radial inferior a una distancia predefinida al eje longitudinal del elemento de fibra óptica sean curvadas hacia una parte lateral del extremo del objeto, mientras que las guías de ondas que tengan extremos en el extremo de acoplamiento con una distancia radial al eje longitudinal del elemento de fibra óptica mayor que la distancia predefinida continúen hacia una parte orientada hacia delante del extremo del objeto. Esta configuración, de nuevo, permite reducir la pérdida de curvatura ya que se omiten radios de curvatura pequeños para guías de onda cerca de una superficie lateral del bloque de guías de ondas ópticas. La distancia predefinida puede ser mayor de un cuarto y menor de tres cuartos de la extensión radial del bloque de guías de ondas ópticas en el extremo de acoplamiento.
El eje longitudinal del elemento de fibra óptica se considera, en este caso, que se extiende hacia el bloque de guías de ondas ópticas para formar un eje de referencia para el bloque de guías de ondas ópticas. El eje longitudinal del bloque de guías de ondas ópticas no coincide necesariamente con el eje longitudinal del elemento de fibra óptica. Si el bloque de guías de ondas ópticas tiene simetría de rotación, el eje de simetría de rotación puede coincidir con el eje longitudinal del elemento de fibra óptica. En otras palabras, el eje de simetría de rotación del bloque de guías de ondas ópticas puede alinearse con el eje longitudinal del elemento de fibra óptica. En este caso el eje de simetría de rotación del bloque de guías de ondas ópticas puede utilizarse de manera similar como eje de referencia. Tal como se utiliza aquí, una "parte lateral" del extremo de objeto se refiere a un área de la superficie del bloque de guías de ondas ópticas orientada en una dirección inclinada respecto al eje de referencia del bloque de guías de ondas ópticas (que corresponde, por ejemplo, a la extensión del eje longitudinal del elemento de fibra óptica) en un ángulo mayor o igual que 45° y menor o igual que 135°. De la misma manera, una "parte orientada hacia delante" del extremo del objeto se refiere a un área de la superficie del bloque de guías de ondas ópticas orientada en una dirección inclinada respecto al eje de referencia del bloque de guías de ondas ópticas en un ángulo menor de 45° y una "parte orientada hacia atrás" del extremo del objeto se refiere a un área de la superficie del bloque de guías de ondas ópticas orientada en una dirección inclinada respecto al eje de referencia del bloque de guías de ondas ópticas en un ángulo mayor de 135°. Para estas consideraciones, el eje de referencia se considera que tiene una dirección de espaldas al extremo distal del elemento de fibra óptica. De este modo, la "parte orientada hacia delante" del extremo del objeto da la espalda al extremo distal del elemento de fibra óptica. Los respectivos ángulos pueden medirse entre la superficie normal de la respectiva área de superficie y el eje de referencia. La superficie normal puede considerarse que tiene una dirección de espaldas al bloque de guías de ondas ópticas.
El bloque de guías de ondas ópticas puede estar cubierto por lo menos parcialmente por una capa eléctricamente conductora. La capa eléctricamente conductora puede estar conectada eléctricamente a otro conductor que se extienda hacia el extremo proximal del endoscopio óptico. A través de este conductor y la capa conductora del bloque de guías de ondas ópticas, es posible transmitir corriente al extremo distal para fines de ablación.
La capa eléctricamente conductora que cubre el bloque de guías de ondas ópticas puede ser particularmente transparente o semitransparente en la longitud de onda de funcionamiento del endoscopio óptico. Para tal fin, la capa eléctricamente conductora puede estar formada de un material transparente o semitransparente y/o la capa eléctricamente conductora puede tener un grosor que permita el paso de una fracción de luz predefinida en la longitud de onda de funcionamiento del endoscopio óptico a través de la capa, sin que se disperse. La fracción predefinida puede ser un 50% o más.
Posibles materiales para la capa eléctricamente conductora incluyen materiales semiconductores de banda ancha, tales como óxido de indio y estaño u óxido de cinc dopado con aluminio, metales ultrafinos, nano-alambres de plata y/o mallas metálicas. Por ejemplo, pueden combinarse metales ultrafinos y mallas metálicas para obtener una alta transmisión óptica para longitudes de onda por encima de 1 pm, al mismo tiempo que mantengan una baja resistencia eléctrica (alta conductancia). Para aplicaciones médicas, es necesario que el material o por lo menos la superficie exterior de la capa eléctricamente conductora sea compatible con tejidos humanos. Para tales aplicaciones, puede utilizarse oro como material para la capa eléctricamente conductora o su superficie exterior. La superficie exterior se refiere a la superficie de la capa eléctricamente conductora que puede ponerse en contacto con tejidos humanos cuando el endoscopio óptico se está utilizando.
Alternativamente o adicionalmente, la capa eléctricamente conductora puede comprender unas aberturas para que la luz entre en las dos o más guías de ondas ópticas. En otras palabras, las aberturas pueden formar puertos ópticos para las dos o más guías de ondas ópticas.
Si el material eléctricamente conductor que cubre el bloque de guías de ondas ópticas es transparente o semitransparente en la longitud de onda de funcionamiento del endoscopio óptico, no se disponen necesariamente aberturas para que la luz entre en las dos o más guías de ondas ópticas. En otras palabras, en este caso no se forman tales aberturas o puertos. La fabricación, por lo tanto, puede simplificarse.
La invención presenta, además, un bloque de guías de ondas ópticas para un endoscopio óptico, comprendiendo el bloque de guías de ondas ópticas un material rígido, en el que una o más guías de ondas ópticas están formadas en el material rígido. El bloque de guías de ondas ópticas puede comprender cualquiera o más de las características descritas anteriormente.
La invención presenta, además, un procedimiento para fabricar un endoscopio óptico que comprende las etapas de: disponer un elemento de fibra óptica con un extremo proximal y un extremo distal, disponer un bloque de guías de ondas ópticas que comprende un material rígido, formar dos o más guías de ondas ópticas en el material rígido, y conectar el bloque de guías de ondas ópticas al extremo distal del elemento de fibra óptica. Las dos o más guías de ondas ópticas pueden estar formadas particularmente por grabado con láser ultrarrápido.
El endoscopio óptico, particularmente el bloque de guías de ondas ópticas, puede comprender cualquiera o más de las características descritas anteriormente.
A continuación, se describirán unas realizaciones ventajosas en combinación con las figuras incluidas.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Figura 1 ilustra la configuración básica de un endoscopio óptico de acuerdo con la invención en una ilustración esquemática;
Figura 2 muestra partes de un endoscopio óptico de acuerdo con una primera realización de la invención;
Figura 3 muestra partes de un endoscopio óptico de acuerdo con una segunda realización de la invención;
Figura 4 muestra un bloque de guías de ondas ópticas de ejemplo para un endoscopio óptico de acuerdo con la invención;
Figura 5 muestra otro bloque de guías de ondas ópticas de ejemplo para un endoscopio óptico de acuerdo con la invención;
Figura 6 muestra partes de un endoscopio óptico de acuerdo con una tercera realización de la invención;
Figura 7 muestra otro bloque de guías de ondas ópticas de ejemplo para un endoscopio óptico de acuerdo con la invención;
Figura 8 muestra partes de un endoscopio óptico de acuerdo con una cuarta realización de la invención; Figuras 9a y 9b ilustran una linterna fotónica utilizable en el contexto de un endoscopio óptico de acuerdo con la invención
Figura 10 muestra partes de un endoscopio óptico de acuerdo con una quinta realización de la invención;
Figura 11 muestra partes de un endoscopio óptico de acuerdo con una sexta realización de la invención;
Figura 12 muestra otro bloque de guías de ondas ópticas de ejemplo para un endoscopio óptico de acuerdo con la invención; y
Figura 13 muestra otro bloque de guías de ondas ópticas de ejemplo para un endoscopio óptico de acuerdo con la invención.
DESCRIPCIÓN DETALLADA
La figura 1 ilustra de manera esquemática la configuración básica de un endoscopio óptico de acuerdo con la invención. El endoscopio óptico 1 comprende un elemento de fibra óptica 2, que típicamente incluye una o más fibras ópticas dispuestas dentro de un material de funda flexible. El elemento de fibra óptica 2 tiene un extremo proximal 3 y un extremo distal 4. En el extremo proximal 3 se dispone un elemento óptico de formación de imágenes 5. El elemento óptico de formación de imágenes 5 puede comprender una óptica para representar la luz transmitida a través del elemento de fibra óptica 2 sobre, por ejemplo, un sensor de imagen digital. El elemento óptico de formación de imágenes 5 puede comprender también una pantalla LCD para visualizar la imagen obtenida del sensor de imagen digital. Los elementos dispuestos en el extremo proximal 3 del elemento de fibra óptica 2 son elementos estándar en sí conocidos.
En el extremo distal 4 del elemento de fibra óptica 2 se dispone un bloque de guías de ondas ópticas 6. Tal como se detallará adicionalmente más adelante, el bloque de guías de ondas ópticas 6 comprende un material rígido en el cual están formadas dos o más guías de ondas ópticas. Este bloque de guías de ondas ópticas 6 permite disponer un endoscopio óptico 1 perfeccionado, tal como quedará claro a partir de las realizaciones específicas que se describen a continuación. El elemento de fibra óptica 2 se extiende a lo largo de una dirección longitudinal, que define el eje longitudinal del endoscopio óptico 1. Dado que el elemento de fibra óptica 2 normalmente es flexible, la dirección/eje longitudinal normalmente será curvado. El elemento de fibra óptica 2 normalmente es cilindrico, definiendo el eje central un eje de simetría del cilindro. El eje longitudinal del elemento de fibra óptica 2 puede considerarse que se extiende más allá de su eje proximal y distal, en particular como líneas rectas perpendiculares a la superficie extrema proximal/distal. El eje longitudinal del elemento de fibra óptica 2 se utiliza, por lo tanto, como eje de referencia respecto al cual deben entenderse indicaciones tales como“lateral” o“radial”, particularmente respecto al bloque de guías de ondas ópticas 6.
La figura 2 ilustra una primera realización de la invención. El elemento de fibra óptica 2 comprende una fibra multinúcleo con una pluralidad de núcleos 10 recubiertos en un revestimiento común de polímero flexible 11. Se conocen muchos tipos de fibras multinúcleo. La invención no está limitada particularmente a cualquier realización específica para la fibra multinúcleo ni a cualquier disposición específica de las fibras en el elemento de fibra óptica 2.
El bloque de guías de ondas ópticas 6 tiene forma de cuboide en esta realización específica y está realizado en vidrio. El bloque de guías de ondas ópticas 6 también puede ser cilindrico o puede tener cualquier otra forma deseada. Un bloque de guías de ondas ópticas 6 cilindrico tendría el mismo aspecto, en la vista en sección transversal de la figura 2, que el de un cuboide. La invención no está limitada a vidrio como material rígido para el bloque de guías de ondas ópticas 6. El bloque de guías de ondas ópticas 6 podría estar formado de un polímero rígido o un semiconductor rígido, que particularmente sean ópticamente transparentes en la longitud de onda de funcionamiento del endoscopio óptico.
El bloque de guías de ondas ópticas 6 comprende una pluralidad de guías de ondas ópticas grabadas por láser ultrarrápido 3-D 7 que va del extremo de acoplamiento 8 del bloque de guías de ondas ópticas 6 a un extremo del objeto 9. El extremo de acoplamiento 8 queda frente al elemento de fibra óptica mientras que el extremo del objeto 9 queda frente al objeto cuando el endoscopio óptico se está utilizando, por ejemplo, el interior de un órgano del cuerpo humano.
El grabado con láser ultrarrápido es conocido como tal y funciona tal como sigue: se aplica un haz láser de femtosegundo enfocado de alta intensidad al material rígido con el fin de inducir un cambio en el índice de refracción positivo permanente a través de un mecanismo de absorción multi-fotón. Trasladando el foco del láser a través del bloque de material rígido, la trayectoria trazada por el foco, por lo tanto, se convierte en un núcleo de guía de luz debido a su alto índice de refracción resultante, con un revestimiento efectivo proporcionado por el resto no modificado del bloque de material rígido. Realizando múltiples series de exploraciones se consigue escribir un número arbitrario de guías de ondas con formas 3-D arbitrarias en un único bloque de material rígido. Son posibles varios enfoques para explicar el hecho de que la forma del láser enfocado no es la forma ideal de un núcleo de guía de ondas, por ejemplo, utilizando múltiples series de exploraciones con un ligero desplazamiento entre sí y recociendo el bloque de material rígido tras un grabado por láser ultrarrápido mediante calentamiento.
En K. M. Davis, K. Miura, N. Sugimoto y K. Hirao,"Writing waveguides in glass with a femtosecond láser", Optics Letters, vol. 21 , n° 21 , pág. 1729, 1996 pueden encontrarse más detalles de la escritura de guías de onda en vidrio con un láser de femtosegundo.
En el bloque de guías de ondas ópticas 6 de la figura 2, el extremo del objeto 9 es una superficie plana pulida, perpendicular al eje longitudinal del elemento de fibra óptica 2. En vista de la conexión entre el bloque de guías de ondas ópticas 6 y el elemento de fibra óptica 2, puede considerarse que el eje longitudinal del elemento de fibra óptica 2 se extiende hacia el bloque de guías de ondas ópticas 6, siendo el extremo del objeto 9 perpendicular al mismo. También es posible disponer extremo del objeto 9 formando un ligero ángulo respecto al eje longitudinal para eliminar o minimizar reflexiones de retorno. El ángulo depende de los índices de refracción del bloque y el medio circundante. Típicamente, éste varía entre unos pocos grados y diez grados. Así, el ángulo puede ser de más de 1o y de menos de 10°.
En general, el extremo de acoplamiento 8 está definido por la superficie del bloque de guías de ondas ópticas 6 donde los extremos de las guías de ondas ópticas 7 quedan dispuestos frente al elemento de fibra óptica 2, mientras que el extremo del objeto 9 está definido como el área de superficie del bloque de guías de ondas ópticas 6 en el que los extremos de las guías de ondas ópticas 7 se disponen frente al objeto cuando el endoscopio óptico se está utilizando o, en otras palabras, de espaldas al elemento de fibra óptica 2.
En la realización de la figura 2, las guías de ondas ópticas 7 en el bloque de guías de ondas ópticas 6 se abren en abanico desde el extremo de acoplamiento 8 hacia el extremo del objeto 9, replicando efectivamente la distribución de los extremos de las guías de ondas en el extremo de acoplamiento 8, con una mayor separación entre núcleos. Se aumenta, por lo tanto, el campo de visión a costa de una resolución espacial; sin embargo, el ángulo de aceptación sigue siendo el mismo que en un endoscopio de fibras multinúcleo regular.
Cada núcleo 10 de las fibras multinúcleo del elemento de fibra óptica 2 queda acoplado a tope, en este ejemplo, a un extremo de una guía de ondas óptica 7 en el extremo de acoplamiento 8 (no ilustrado en la figura). De este modo, es posible la transmisión de luz desde el extremo del objeto 9 hacia el extremo proximal del endoscopio óptico.
Opcionalmente, puede acoplarse por lo menos un elemento óptico adicional 12, tal como una lente o micro-lente de barra GRIN o múltiples lentes de ese tipo, en el extremo del objeto 9. Si solamente se utilizan guías de ondas de modo único, esta realización también es compatible con técnicas de imagen coherente tales como tomografía de coherencia óptica.
El patrón del extremo del objeto de las guías de ondas ópticas 7 no está particularmente limitado. La distribución podría ser también mono-dimensional, es decir, una matriz lineal de guías de ondas o, de otro modo, diferente de la distribución de los extremos de la guía de ondas 7 en el extremo de acoplamiento 8. De manera similar, el patrón del extremo del objeto puede ser de una dimensión o de dos dimensiones.
La configuración totalmente rígida del bloque de guías de ondas ópticas 6 asegura estabilidad a largo plazo y sin degradación de la señal óptica.
La figura 3 ilustra otra realización de la invención. Al contrario que las realizaciones de la figura 2, el bloque de guías de ondas ópticas 6 tiene un extremo del objeto 9 que es semiesférico. Las guías de ondas ópticas 7 en el bloque de guías de ondas ópticas 6, por lo tanto, asigna la distribución 2-D del extremo de acoplamiento 8 a la semiesfera 3-D, aumentándose, de este modo, el ángulo sólido. En otras palabras, las guías de ondas ópticas 7 también llevan a una superficie lateral del bloque de guías de ondas ópticas 6 respecto al eje longitudinal del elemento de fibra óptica 2 como eje de referencia. De este modo, puede aumentarse el ángulo sólido a 2TT. El ángulo sólido máximo puede ser incluso mayor en caso de que las guías de ondas ópticas 7 se curven hacia atrás. Esto, sin embargo, puede introducir una pérdida óptica, ya que las pérdidas de la guía de ondas aumentan a medida que disminuye el radio de la guía de ondas. Las figuras 4 y 5 ilustran posibles alternativas al bloque de guías de ondas ópticas 6 ilustrado en la figura 3. En las figuras 4 y 5 se ilustra un plano teórico 13 que se extiende paralelo al eje longitudinal del elemento de fibra óptica 2 y que incluye el eje de simetría del elemento de fibra óptica 2. En algunas realizaciones, en lugar del plano 13 puede utilizarse el eje de simetría rotacional del bloque de guías de ondas ópticas 6 como referencia. Las guías de ondas 7 van desde una parte lateral del plano o eje 13 en el extremo de acoplamiento 8 a la otra parte lateral del plano o eje 13 en el extremo del objeto 9. De este modo, es posible mantener el radio de curvatura lo suficientemente grande para mantener unas pérdidas de curvatura razonablemente bajas. Las guías de ondas ópticas 7 pueden diseñarse con unos ángulos y distancias entre sí de manera que se minimice la interferencia (véase figura 5). En ambas alternativas (figura 4 y figura 5) las guías de ondas ópticas 7 no se cruzan en tres dimensiones, sino solamente en proyección.
La figura 5 muestra, además, la alternativa de componer el extremo del objeto 9 de una pluralidad de caras planas 14, las cuales se unen entre sí de manera prismática para cubrir el extremo del objeto 9. Este diseño discontinuo del extremo del objeto 9 puede utilizarse independientemente del patrón de guías de ondas ópticas dentro del bloque de guías de ondas ópticas 6.
La figura 6 ilustra una realización adicional de la invención, que básicamente corresponde a la realización descrita con referencia a la figura 3. En este caso, sin embargo, unas micro-lentes 15 se fijan a los extremos de las guías de ondas ópticas en el extremo del objeto 9 del bloque de guías de ondas ópticas 6. En particular, en este ejemplo se utilizan lentes plano-convexas microscópicas 15 realizadas en sílice fundida o silicio. En esta realización, un espacio de objeto semiesférico se representa y se transmite a través del elemento de fibra óptica 2 hacia el extremo proximal. En caso de que todas las guías de ondas sean de modo único, puede utilizarse tomografía de coherencia óptica, tal como se ha mencionado anteriormente, con el número de píxeles igual al número de guías de ondas en el bloque de guías de ondas ópticas 6.
La figura 7 ilustra un bloque de guías de ondas ópticas 6 alternativo, que puede utilizarse para reducir una pérdida de curvatura. En este ejemplo, unas guías de ondas ópticas 7a que se encuentran más cerca del plano o eje 13 se asignan a las áreas de superficie lateral del extremo del objeto, mientras que las guías de ondas ópticas 7b más cercanas al borde del bloque de guía de ondas ópticas 6 se asignan a un área de superficie orientada hacia adelante del extremo del objeto. El área de superficie orientada hacia un lado puede ser una superficie cilindrica, o bien a través del uso de micro-lentes con distintas distancias focales puede modificarse para que coincida mejor con una superficie semiesférica. Asimismo, el área de superficie orientada hacia adelante puede ser plana, tal como se ilustra en la figura 2 o curvada tal como se ilustra, por ejemplo, en la figura 3.
En la figura 7 se ilustran micro-lentes ópticas o lentes GRIN como elementos ópticos adicionales.
La figura 8 ilustra otra realización de la invención que utiliza, en lugar de fibra multinúcleo para el elemento de fibra óptica 2, una fibra multimodo 16. Todas las realizaciones anteriores que se han descrito aquí también pueden utilizarse con una fibra multimodo. Sin embargo, con una fibra multimodo no pueden implementarse técnicas de imagen coherente, tales como tomografía de coherencia óptica. Con el fin de conectar las dos o más guías de ondas ópticas en el bloque de guías de ondas ópticas 6 a la fibra multimodo 16, se dispone una sección de linterna fotónica 17, que también se obtiene por grabado con láser ultrarrápido.
Las figuras 9a y 9b ilustran las denominadas“linternas fotónicas”. Las linternas fotónicas son dispositivos ópticos que conectan una guía de ondas multimodo a una pluralidad de guías de ondas con menos modos, posiblemente con modo único. La figura 9a muestra la alternativa de asignar una guía de ondas multimodo 19 a una serie de guías de ondas de modo único 18. La figura 9b ilustra la dispersión de una guía de ondas multimodo 19 en una pluralidad de guías de ondas de modo único 18 y después la recombinación de nuevo a una guía de ondas multimodo 20. Esta alternativa es particularmente útil, ya que pueden incluirse filtros de FBG (fibra con rejilla de Bragg) en la zona de las guías de ondas de modo único 18. De la alternativa mostrada en la figura 9b toma su nombre la linterna fotónica. Ambas realizaciones de las linternas fotónicas mostradas en las figuras 9a y 9b pueden utilizarse en el contexto de la presente invención. Los filtros de FBG (fibra con rejilla de Bragg) pueden incluirse en el bloque de guías de ondas ópticas 6, particularmente en las guías de ondas de modo único 18 de una sección de linterna fotónica 17.
Haciendo referencia de nuevo a la figura 8, los modos de la fibra multimodo 16 se conectan primero a las guías de ondas individuales en la sección de linterna fotónica 17 y después se dispersan de acuerdo con las necesidades de la realización específica. En este caso, el extremo del objeto 8 guarda coherencia con el ejemplo mostrado en la figura 6. Dado que los endoscopios que utilizan una fibra multimodo son sensibles a la flexión durante el uso, es necesario obtener una función de transferencia para una operación efectiva, tal como es por sí conocido en la técnica.
La figura 10 muestra otra realización de un endoscopio óptico de acuerdo con la invención. Para el elemento de fibra óptica 2, puede utilizarse una fibra de modo único o multimodo 21. De nuevo, en el bloque de guías de ondas ópticas 6 se escribe una sección de linterna fotónica 17. La sección de linterna fotónica 17 se implementa de una manera ramificada, es decir, con una dispersión desde una guía de ondas multimodo a guías de ondas de menos modos que se producen en múltiples etapas de apertura en abanico.
Si se utiliza una fibra multimodo para el elemento de fibra óptica 2, en cada nivel de división, el número de modos de la guía de ondas de entrada mayor se divide entre sus ramas. Funcionalmente, esta alternativa es idéntica a la realización descrita con referencia a la figura 8 siendo la única diferencia que la sección de linterna fotónica 17 no se abre en abanico a la vez.
De acuerdo con la alternativa de una fibra de modo único que se utiliza para el elemento de fibra óptica 2, cada rama funciona como divisor en lugar de dispositivo de apertura en abanico. De este modo, es posible dividir la luz de entrada en modo único que se propaga hacia el extremo del objeto 9 y que alcance coherentemente todo el campo de visión. De este modo, la sección de linterna fotónica 17 funciona como elemento de multiplexación.
Con referencia a la figura 11 se ilustra otra realización de la invención. Algunas veces, los endoscopios ópticos están destinados a utilizarse para ablación por radiofrecuencia de tejidos internos. La realización de la figura 11 es adecuada para tales fines. Particularmente, alrededor del elemento de fibra óptica 2 se dispone un tubo conductor 22 de un material conductor, tal como un metal, con una funda aislante 23 opcional. El bloque de guías de ondas ópticas 6 está integrado en una capa conductora 24, que presenta unas aberturas adecuadas 25 para un acceso óptico a las guías de ondas ópticas del bloque de guías de ondas ópticas 6. Por medio del tubo conductor 22 que rodea el elemento de fibra óptica 2 puede transmitirse corriente al extremo distal. Opcionalmente, varias capas de tubos conductores y aislantes pueden rodear el elemento de fibra óptica 2 para permitir electrodos anulares para fines de monitorización. El tubo conductor 22 está en contacto eléctrico con la capa conductora 24 del bloque de guías de ondas ópticas 6 para que la corriente pueda transmitirse a la capa conductora 24 del bloque de guías de ondas ópticas 6. De este modo, pueden llevarse a cabo tratamientos de ablación. Esta funcionalidad de ablación por radiofrecuencia puede utilizarse con cualquiera de las realizaciones anteriores. Si se tuviera que utilizar una fibra multimodo para el elemento de fibra óptica 2, en el bloque de guías de ondas ópticas puede incluirse una sección de linterna fotónica tal como se ilustra en las figuras 8 y 10.
En una realización alternativa, la capa conductora 24 puede ser semitransparente o transparente en la longitud de onda de funcionamiento del endoscopio óptico. En este caso, las aberturas 25 pueden omitirse. La capa conductora 24 puede estar formada particularmente de un material transparente o semitransparente y/o puede ser suficientemente fina para permitir que la luz pase por lo menos parcialmente a través de la capa en la longitud de onda de funcionamiento del endoscopio óptico.
Las figuras 12 y 13 ilustran otras alternativas para el bloque de guías de ondas ópticas 6, tal como puede utilizarse para endoscopios ópticos de acuerdo con la invención.
En la figura 12, el bloque de guías de ondas ópticas 6 está formado como una pastilla plana 26 con una distribución 2-D de cinco guías de ondas ópticas 7 de ejemplo formadas en la misma. La guía de ondas óptica central se extiende recta o no curvada desde el extremo de acoplamiento hacia el extremo del objeto, mientras que otras guías de ondas son curvadas hacia una superficie lateral de la pastilla plana 26. El grosor de la pastilla plana 26 es significativamente menor que su longitud y anchura.
En la figura 13, el bloque de guías de ondas ópticas 6 está formado por dos pastillas planas que se cruzan perpendicularmente 26, 27 cada una con una distribución 2-D de guías de ondas ópticas 7 formadas en las mismas. Las pastillas planas 26, 27 están dispuestas de manera que cada una de las pastillas planas 26, 27 queda dividida por la mitad por la otra pastilla respectiva. De este modo, puede obtenerse una distribución 3-D de las guías de ondas ópticas 7 a la vez que se reduce la cantidad de material rígido. Cada una de las pastillas planas 26, 27 puede comprender dos o más elementos. Por ejemplo, la pastilla plana 26 puede comprender dos mitades, cada una conectada a la pastilla plana 27.
En las realizaciones descritas, las guías de ondas ópticas formadas en el material rígido del bloque de guías de ondas ópticas 6 pueden ser guías de ondas de modo único o multimodo. Aunque las realizaciones y ejemplos de la presente invención descritos anteriormente se han descrito por separado, debe entenderse que algunas o todas las características descritas anteriormente también pueden combinarse de distintas maneras. Por ejemplo, los bloques de guías de ondas ópticas descritos pueden utilizarse en combinación con distintos tipos de elementos de fibra óptica.
En las figuras solamente se han ilustrado varias características de manera esquemática. Por ejemplo, el bloque de guías de ondas ópticas a menudo se muestra separado del extremo distal del elemento de fibra óptica. Esto es solamente para fines ilustrativos. El bloque de guías de ondas ópticas en realidad está conectado al extremo distal del elemento de fibra óptica de manera que la luz puede transmitirse a través de las dos o más guías de ondas ópticas y el elemento de fibra óptica hacia el extremo proximal del endoscopio. Por ejemplo, puede realizarse un acoplamiento a tope.
Las realizaciones descritas no pretenden ser limitaciones, sino que sirven como ejemplos que ilustran características y ventajas de la invención. Particularmente, el patrón de las guías de ondas ópticas en el bloque de guías de ondas ópticas viene determinado por la aplicación deseada. De maneras similar, aunque se utiliza vidrio para el bloque de guías de ondas ópticas de acuerdo con las realizaciones, el bloque de guías de ondas ópticas puede consistir en cualquier material rígido transparente con un índice de refracción apropiado que ofrezca la posibilidad de albergar guías de ondas ópticas 3-D tal como se ha descrito. Con las realizaciones descritas, es posible aumentar el campo de visión o el ángulo sólido en endoscopios ópticos conocidos. Esto es posible mientras que, al mismo tiempo, proporciona una solución mecánicamente confiable y económica que puede utilizarse con cualquier tipo de fibra.

Claims

REIVINDICACIONES
1. Endoscopio óptico (1), que comprende un elemento de fibra óptica (2) con un extremo proximal (3) y un extremo distal (4), en el que, en el extremo distal (4) del elemento de fibra óptica (2), hay dispuesto un bloque de guías de ondas ópticas (6), comprendiendo el bloque de guías de ondas ópticas (6) un material rígido con dos o más guías de ondas ópticas (7) formadas en el mismo.
2. Endoscopio óptico (1) de acuerdo con la reivindicación 1 , en el que las dos o más guías de ondas ópticas (7) están formadas integralmente con el material rígido del bloque de guías de ondas ópticas (6).
3. Endoscopio óptico (1) de acuerdo con la reivindicación 1 o 2, en el que las dos o más guías de ondas ópticas (7) están formadas por partes del material rígido que tienen un índice de refracción mayor que las partes circundantes.
4. Endoscopio óptico (1) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que las dos o más guías de ondas ópticas (7) se obtienen por grabado con láser ultrarrápido.
5. Endoscopio óptico (1) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el material rígido es ópticamente transparente en la longitud de onda de funcionamiento del endoscopio óptico (1).
6. Endoscopio óptico (1) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el material rígido comprende un vidrio, un polímero y/o un semiconductor.
7. Endoscopio óptico (1) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que las dos o más guías de ondas ópticas (7) comprenden un extremo frente al elemento de fibra óptica (2) y dispuesto en una primera superficie del bloque de guías de ondas ópticas (6), el extremo de acoplamiento (8), y un extremo de espaldas al elemento de fibra óptica (2) y dispuesto en una segunda superficie del bloque de guías de ondas ópticas, el extremo del objeto (9).
8. Endoscopio óptico (1) de acuerdo con la reivindicación 7, en el que el elemento de fibra óptica (2) comprende una fibra óptica multinúcleo y en el que las dos o más guías de ondas ópticas (7) están conectadas al elemento de fibra óptica (2) de manera que, en el extremo de acoplamiento (8), las dos o más guías de ondas ópticas se alinean con núcleos (10) de la fibra óptica multinúcleo.
9. Endoscopio óptico (1) de acuerdo con la reivindicación 8, en el que los núcleos (10) de la fibra óptica multinúcleo son núcleos de modo único en la longitud de onda de funcionamiento.
10. Endoscopio óptico (1) de acuerdo con la reivindicación 7, en el que el elemento de fibra óptica (2) comprende una fibra óptica multimodo (16) y en el que las dos o más guías de ondas ópticas (7) están conectadas a la fibra óptica multimodo (16) a través de una sección de linterna fotónica (17) formada en el material rígido del bloque de guías de ondas ópticas (6).
11. Endoscopio óptico (1) de acuerdo con cualquiera de las reivindicaciones 7-10, en el que el extremo del objeto (9) es una superficie plana perpendicular o inclinada respecto al eje longitudinal del elemento de fibra óptica (2).
12. Endoscopio óptico (1) de acuerdo con la reivindicación 11 , en el que las dos o más guías de ondas ópticas (7) se abren en abanico desde el extremo de acoplamiento (8) hacia el extremo del objeto (9) de manera que la separación entre núcleos en el extremo del objeto (9) es mayor que en el extremo de acoplamiento (8).
13. Endoscopio óptico (1) de acuerdo con cualquiera de las reivindicaciones 7-10, en el que el extremo del objeto (9) es curvado, particularmente semiesférico.
14. Endoscopio óptico (1) de acuerdo con la reivindicación 13, en el que la asignación de la distribución espacial de los extremos de las dos o más guías de ondas ópticas (7) en el extremo de acoplamiento (8) a la distribución espacial de los extremos de las dos o más guías de ondas ópticas (7) en el extremo del objeto (9) es simétrica respecto a un plano (13) que se extiende paralelo al eje longitudinal del elemento de fibra óptica (2).
15. Endoscopio óptico (1) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que unas ópticas adicionales (15), particularmente una o más lentes GRIN y/o una o más micro-lentes, están conectadas al bloque de guías de ondas ópticas (6).
16. Endoscopio óptico (1) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el bloque de guías de ondas ópticas (6) está cubierto por lo menos parcialmente por una capa eléctricamente conductora (24), en particular, en el que la capa eléctricamente conductora (24) es transparente o semitransparente en la longitud de onda de funcionamiento del endoscopio óptico (1).
17. Endoscopio óptico (1) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el bloque de guías de ondas ópticas (6) comprende o consiste en una o más pastillas planas (26, 27).
18. Procedimiento para fabricar un endoscopio óptico que comprende las etapas de: disponer un elemento de fibra óptica con un extremo proximal y un extremo distal, disponer un bloque de guías de ondas ópticas que comprende un material rígido, formar dos o más guías de ondas ópticas en el material rígido, y conectar el bloque de guías de ondas ópticas al extremo distal del elemento de fibra óptica.
PCT/ES2017/070787 2017-11-30 2017-11-30 Endoscopio óptico WO2019106209A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP17840589.0A EP3719557A1 (en) 2017-11-30 2017-11-30 Optical endoscope
JP2020547317A JP7289845B2 (ja) 2017-11-30 2017-11-30 光学内視鏡
AU2017441379A AU2017441379B2 (en) 2017-11-30 2017-11-30 Optical endoscope
US16/768,566 US20200310103A1 (en) 2017-11-30 2017-11-30 Optical endoscope
CN201780098202.6A CN111788509A (zh) 2017-11-30 2017-11-30 光学内窥镜
DE17840589.0T DE17840589T1 (de) 2017-11-30 2017-11-30 Optisches endoskop
CA3083870A CA3083870A1 (en) 2017-11-30 2017-11-30 Optical endoscope
PCT/ES2017/070787 WO2019106209A1 (es) 2017-11-30 2017-11-30 Endoscopio óptico

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2017/070787 WO2019106209A1 (es) 2017-11-30 2017-11-30 Endoscopio óptico

Publications (1)

Publication Number Publication Date
WO2019106209A1 true WO2019106209A1 (es) 2019-06-06

Family

ID=61198865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070787 WO2019106209A1 (es) 2017-11-30 2017-11-30 Endoscopio óptico

Country Status (8)

Country Link
US (1) US20200310103A1 (es)
EP (1) EP3719557A1 (es)
JP (1) JP7289845B2 (es)
CN (1) CN111788509A (es)
AU (1) AU2017441379B2 (es)
CA (1) CA3083870A1 (es)
DE (1) DE17840589T1 (es)
WO (1) WO2019106209A1 (es)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423452B (zh) * 2019-01-09 2023-09-26 维纳医疗控股公司 脑血管病变观察和治疗设备
CA3162823A1 (en) 2020-01-13 2021-07-22 Medlumics S.L. Systems for optical analysis and prediction of lesion using ablation catheters
US11331142B2 (en) 2020-01-13 2022-05-17 Medlumics S.L. Methods, devices, and support structures for assembling optical fibers in catheter tips
EP4090228B1 (en) * 2020-01-13 2023-10-25 Medlumics S.L. Methods, devices, and support structures for assembling optical fibers in catheter tips
JP2023510830A (ja) 2020-01-13 2023-03-15 メドルミクス,エセ.エレ. パルスフィールドエネルギー供給源とともに使用するための光学的にガイドされるアブレーションシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179131A (ja) * 1994-12-22 1996-07-12 Yasuo Kitada 像伝送体、その製造方法及びそれを使用した像伝送装置
US20160357007A1 (en) * 2015-05-05 2016-12-08 Eric Swanson Fixed distal optics endoscope employing multicore fiber
WO2017016663A1 (en) 2015-07-29 2017-02-02 Medlumics S.L. Radiofrequency ablation catheter with optical tissue evaluation

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366565A (en) * 1980-07-29 1982-12-28 Herskowitz Gerald J Local area network optical fiber data communication
EP0211976B1 (en) * 1985-08-13 1989-11-15 Sumitomo Electric Industries Limited Method for producing an optical sensor
JPH0681506U (ja) * 1993-05-11 1994-11-22 日本光電工業株式会社 撮像装置の対物アダプタ
US8024027B2 (en) * 1998-09-03 2011-09-20 Hyperspectral Imaging, Inc. Infrared endoscopic balloon probes
US6845184B1 (en) * 1998-10-09 2005-01-18 Fujitsu Limited Multi-layer opto-electronic substrates with electrical and optical interconnections and methods for making
JP2003167203A (ja) * 2001-11-30 2003-06-13 Olympus Optical Co Ltd 内視鏡装置
US7130498B2 (en) * 2003-10-16 2006-10-31 3M Innovative Properties Company Multi-layer optical circuit and method for making
US7349589B2 (en) * 2004-04-08 2008-03-25 Omniguide, Inc. Photonic crystal fibers and medical systems including photonic crystal fibers
US7773849B2 (en) * 2004-12-14 2010-08-10 Oms Displays Ltd. Device and method for optical resizing and backlighting
US7391561B2 (en) * 2005-07-29 2008-06-24 Aculight Corporation Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method
US7450241B2 (en) * 2005-09-30 2008-11-11 Infraredx, Inc. Detecting vulnerable plaque
WO2011143468A2 (en) * 2010-05-12 2011-11-17 Shifamed, Llc Low profile electrode assembly
US8478086B2 (en) * 2011-03-02 2013-07-02 Eastman Kodak Company Imaging laser diodes with a lightwave circuit
US8548286B2 (en) * 2011-03-02 2013-10-01 Eastman Kodak Company Imaging laser diodes with a lightwave circuit
JP6170498B2 (ja) * 2011-11-14 2017-07-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 関連する物体の走査顕微鏡撮像のための光学顕微鏡プローブ
US9062960B2 (en) * 2012-02-07 2015-06-23 Medlumics S.L. Flexible waveguides for optical coherence tomography
US20140055562A1 (en) * 2012-08-27 2014-02-27 Joseph R. Demers Endoscopic synthetic stereo imaging method and apparatus
KR102507206B1 (ko) * 2013-01-15 2023-03-06 매직 립, 인코포레이티드 초고해상도 스캐닝 섬유 디스플레이
US10098694B2 (en) * 2013-04-08 2018-10-16 Apama Medical, Inc. Tissue ablation and monitoring thereof
US9874749B2 (en) * 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
US10194788B2 (en) * 2013-06-19 2019-02-05 Optiscan Pty Ltd. Optical scanner and scanned lens optical probe
JP6253527B2 (ja) * 2014-06-24 2017-12-27 オリンパス株式会社 内視鏡装置
CN110251058B (zh) * 2014-07-24 2022-10-04 Z思快尔有限公司 多芯纤维内窥镜
EP3326023B1 (en) * 2015-07-20 2020-02-26 Magic Leap, Inc. Collimating fiber scanner design with inward pointing angles in virtual/augmented reality system
JP6799835B2 (ja) * 2015-08-27 2020-12-16 バー‐イラン、ユニバーシティーBar−Ilan University マルチ光結合チャネルモジュールおよび関連する計算方法
WO2017062667A1 (en) * 2015-10-06 2017-04-13 Magic Leap, Inc. Virtual/augmented reality system having reverse angle diffraction grating
EP3222964B1 (en) * 2016-03-25 2020-01-15 Fogale Nanotech Chromatic confocal device and method for 2d/3d inspection of an object such as a wafer
WO2018022319A1 (en) * 2016-07-29 2018-02-01 Corning Optical Communications LLC Waveguide connector elements and optical assemblies incorporating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179131A (ja) * 1994-12-22 1996-07-12 Yasuo Kitada 像伝送体、その製造方法及びそれを使用した像伝送装置
US20160357007A1 (en) * 2015-05-05 2016-12-08 Eric Swanson Fixed distal optics endoscope employing multicore fiber
WO2017016663A1 (en) 2015-07-29 2017-02-02 Medlumics S.L. Radiofrequency ablation catheter with optical tissue evaluation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVIS K M ET AL: "Writing waveguides in glass with a femtosecond laser", OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, US, vol. 21, no. 21, 1 November 1996 (1996-11-01), pages 1729 - 1731, XP002231513, ISSN: 0146-9592, DOI: 10.1364/OL.21.001729 *
K. M. DAVIS; K. MIURA; N. SUGIMOTO Y; K. HIRAO: "Writing waveguides in glass with a femtosecond laser", OPTICS LETTERS, vol. 21, no. 21, 1996, pages 1729, XP002231513, DOI: doi:10.1364/OL.21.001729

Also Published As

Publication number Publication date
CN111788509A (zh) 2020-10-16
AU2017441379B2 (en) 2024-01-04
AU2017441379A1 (en) 2020-06-18
DE17840589T1 (de) 2021-01-14
CA3083870A1 (en) 2019-06-06
JP2021514797A (ja) 2021-06-17
JP7289845B2 (ja) 2023-06-12
US20200310103A1 (en) 2020-10-01
EP3719557A1 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
WO2019106209A1 (es) Endoscopio óptico
ES2879897T3 (es) Dispositivo videoendoscópico
KR101257100B1 (ko) 광 간섭 영상화 시스템 및 방법
US10682044B2 (en) Spectrally encoded forward view and spectrally encoded multi-view endoscope using back-reflected light between reflective surfaces
ES2834991T3 (es) Aparato y método de visualización omnidireccional
CN110251058B (zh) 多芯纤维内窥镜
US20160357007A1 (en) Fixed distal optics endoscope employing multicore fiber
WO2007106075A2 (en) Multi-cladding optical fiber scanner
WO2018057924A1 (en) Spectrally encoded endoscopy apparatus and methods
US11213191B2 (en) Optical fiber arrangement for endoscope
JP2005527280A5 (es)
JP6573626B2 (ja) 熱伝導性レンズクレードルを使用した医用画像形成装置
EP3365722B1 (en) Optical adapter connectable to an image acquisition device, in particular intended to be used for microscopic observation
EP2846677B1 (en) Dual mode microendoscope apparatus
ES2920832T3 (es) Dispositivo endoscópico destinado en particular a un uso médico
US11693229B2 (en) Shortwave infrared imaging system
US20200088988A1 (en) Illumination device and endoscope apparatus including the illumination device
US8270794B2 (en) Light guide for endoscopes
CN219921015U (zh) 一种内窥镜镜头及内窥镜系统
JP7413512B2 (ja) 高分解能高速カプセル内視鏡のためのシステム及び方法
Galvez et al. Comparison of micro-optic systems for close-focus microendoscopic applications
JP2018029885A (ja) 電子スコープ、電子スコープシステムおよびレンズユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3083870

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020547317

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017441379

Country of ref document: AU

Date of ref document: 20171130

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017840589

Country of ref document: EP

Effective date: 20200630