WO2019102937A1 - Noise filter circuit and power supply circuit - Google Patents

Noise filter circuit and power supply circuit Download PDF

Info

Publication number
WO2019102937A1
WO2019102937A1 PCT/JP2018/042418 JP2018042418W WO2019102937A1 WO 2019102937 A1 WO2019102937 A1 WO 2019102937A1 JP 2018042418 W JP2018042418 W JP 2018042418W WO 2019102937 A1 WO2019102937 A1 WO 2019102937A1
Authority
WO
WIPO (PCT)
Prior art keywords
common mode
noise
circuit
mode choke
power supply
Prior art date
Application number
PCT/JP2018/042418
Other languages
French (fr)
Japanese (ja)
Inventor
浩志 北田
耕太 斉藤
寛之 高辻
直通 榎
由浩 今西
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019102937A1 publication Critical patent/WO2019102937A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the present invention relates to a noise filter circuit and a power supply circuit, and more particularly to a noise filter circuit that reduces common mode noise of a power conversion circuit, and a power supply circuit using the noise filter circuit.
  • a common mode choke coil in which the winding is wound in the same direction, and between the power line and ground A noise filter circuit is used which is composed of a Y capacitor connected to.
  • Patent Document 1 discloses a power supply unit in which two stages of a filter circuit composed of a common mode choke coil and a Y capacitor are provided at the front stage of an inverter circuit (switching circuit) for driving a DC brushless motor. There is.
  • connection portion of the Y capacitor constituting one of the filter circuits is connected to the ground terminal through the ground pattern of the printed circuit board, and the common mode noise is released to the ground side. Further, the connection portion of the Y capacitor constituting the other filter circuit is connected to the ground terminal through the ground wire, and the noise is dissipated to the ground side. Then, in this power supply unit, by arranging the ground line of the other filter circuit to be separated from the power supply line of the printed circuit board, radiation noise generated from the ground line can be propagated to the power supply line on the printed circuit board. It is suppressing.
  • common mode noise transmitted from the inverter circuit side does not pass through the common mode choke coil through the Y capacitor forming the (other) filter circuit on the inverter circuit side ( That is, there is a risk that the noise level may be escaped to the ground).
  • common mode noise transmitted to the ground may be transmitted to the power supply line without passing through the common mode choke coil via the Y capacitor (that is, without reducing the noise level).
  • switching noise generated on the inverter circuit (switching circuit) side may be transmitted to the power supply side through the ground.
  • the present invention has been made to solve the above problems, and is a noise filter capable of further reducing common mode noise of a power conversion circuit in which the ground on the input side and the ground on the output side are common. It is an object of the present invention to provide a circuit and a power supply circuit.
  • the noise filter circuit according to the present invention is characterized by comprising a pair of common mode choke coils connected in series to the power line, and a Y capacitor connected only between the pair of common mode choke coils.
  • a power supply circuit includes the noise filter circuit and a power conversion circuit.
  • FIG. 1 is a circuit diagram showing a configuration of a power supply circuit 3 using a noise filter circuit 1.
  • the power supply circuit 3 includes a noise filter circuit 1 and a power conversion circuit 10.
  • the noise filter circuit 1 is a power supply EMC filter that reduces common mode noise and normal mode noise (differential mode noise) of the power conversion circuit 10.
  • the noise filter circuit 1 is connected in series to the AC lines 11 and 12 (corresponding to the power lines described in the claims) on the output side (AC side) of the power conversion circuit 10 in order to reduce common mode noise.
  • the noise filter circuit 1 is connected between the inductors 21 and 22 connected in series to the AC lines 11 and 12 and between the AC lines 11 and 12 in order to reduce normal mode noise (differential mode noise).
  • the X capacitors 41 and 42 are provided. Each component will be described in more detail below.
  • the power conversion circuit 10 has a switching element, and converts, for example, the voltage or frequency of the power input from the input side, and outputs the converted voltage to the output side.
  • Examples of the power conversion circuit 10 include a DC-DC converter, an AC-AC converter, an AC-DC converter, a DC-AC converter, and an inverter circuit.
  • the power conversion circuit 10 is applied to a DC-AC converter.
  • the ground on the input side (DC side) of the power conversion circuit 10 and the ground on the output side (AC side) are common (electrically connected).
  • An inductor 21 and an inductor 22 are connected in series to each of the pair of AC lines 11 and 12 on the output side (AC side) of the power conversion circuit 10. Further, an X capacitor 41 is connected between the pair of AC lines 11 and 12. A differential mode filter (LC filter) is configured by the inductor 21, the inductor 22, and the X capacitor 41. Further, an X capacitor 42 is connected between the pair of AC lines 11 and 12 also on the downstream side of a common mode choke coil 32 described later. The X capacitors 41 and 42 are capacitors connected between the AC lines 11 and 12 in order to reduce normal mode noise (differential mode noise).
  • LC filter differential mode filter
  • a pair (two) common mode choke coil 31 and a common mode choke coil 32 are connected in series on the downstream side (rear stage) of the X capacitor 41. It is connected to the.
  • Each of the common mode choke coil 31 and the common mode choke coil 32 is formed by winding a pair of windings in the same direction, and has a high common mode impedance and a low normal mode (differential mode) impedance.
  • the common mode choke coils 31 and 32 for example, a well-known winding type common mode choke coil or a laminated common mode choke coil can be suitably used.
  • Y capacitors 501 and 502 are connected to the AC lines 11 and 12 between the pair (two) common mode choke coils 31 and 32 (only to the AC lines 11 and 12 therebetween). That is, no Y capacitor is provided on the upstream side (the power conversion circuit 10 side) of the common mode choke coil 31 and on the downstream side of the common mode choke coil 32. That is, the Y capacitors 501 and 502 are disposed so as to be sandwiched between the common mode choke coil 31 and the common mode choke coil 32. In other words, common mode choke coils are disposed upstream and downstream of the Y capacitors 501 and 502, respectively.
  • the Y capacitors 501 and 502 are capacitors connected between the AC lines 11 and 12 and the ground in order to reduce common mode noise.
  • the common mode noise transmitted through the AC lines 11 and 12 must be the common mode choke coil 32 or the common before it is released to the ground through the Y capacitors 501 and 502. It passes through the mode choke coil 31 (that is, common mode noise is reduced). In addition, even when common mode noise transmitted to the ground is transmitted to the AC lines 11 and 12 through the Y capacitors 501 and 502, it passes through the common mode choke coil 32 or 31 (common mode noise is weakened). It will be.
  • LISN Line Impedance Stabilizing Network
  • FIG. 2 is a graph showing measurement results of noise levels when the noise filter circuit 1 according to the present embodiment and the noise filter circuit according to the comparative example shown in FIG. 4 are used.
  • the upper graph in FIG. 2 shows the noise level of the L1 phase (ACV side).
  • the horizontal axis of this graph is frequency (MHz), and the vertical axis is noise level (dB ⁇ V).
  • the lower graph in FIG. 2 shows the noise level on the positive side (DCV side).
  • the horizontal axis of this graph is frequency (MHz), and the vertical axis is noise level (dB ⁇ V).
  • Y disposed on the upstream side (power change circuit 10 side) of the common mode choke coil 31
  • a noise filter circuit having capacitors 511 and 512 and Y capacitors 521 and 522 disposed downstream of the common mode choke coil 32 was used.
  • the noise level of the L1 phase (ACV side) is also positive (compared to the noise filter circuit according to the comparative example). It has been confirmed that the noise level on the DCV side also decreases over the entire frequency range. Moreover, according to the noise filter circuit 1 which concerns on this embodiment, it was confirmed that it is less than the limit value (CISPR11ClassA) in the whole region (it is satisfied).
  • CISPR Comite International Special Perturbations Radio hereby
  • FIG. 3 shows the noise filter circuit 1 according to this embodiment, the comparative example 1 (only the Y capacitors 511 and 512 shown in FIG. 4), and the comparative example 2 (Y capacitors 521 and 522 shown in FIG. 4).
  • the upper graph in FIG. 3 shows the noise level of the common mode on the ACV side.
  • the horizontal axis of this graph is frequency (MHz) and the vertical axis is noise level (dB ⁇ A).
  • the lower graph in FIG. 3 shows the noise level of the common mode on the DCV side.
  • the horizontal axis of this graph is frequency (MHz) and the vertical axis is noise level (dB ⁇ A).
  • the conducted noise (voltage) measured by the LISN is a noise in which the common mode noise and the normal mode noise are added, but the common mode noise at this time is either the higher noise level noise (for example, when the common mode noise on the AC side is high on the AC side and the DC side, the common mode noise on the AC side is obtained. Therefore, for example, even if a Y capacitor is inserted on the AC side to reduce the common mode noise level on the AC side, if the noise level on the DC side increases, the noise level measured by LISN will hardly change . That is, to reduce the noise level measured by the LISN, it is necessary to reduce common mode noise on both the AC side and the DC side, and it is required to reduce the noise conducted to the ground through the Y capacitor. Also from this, it was confirmed that the configuration of the filter circuit 1 according to the present embodiment is optimal.
  • the Y capacitors 501 and 502 are connected only to the AC lines 11 and 12 between the pair of (two) common mode choke coils 31 and 32. Therefore, common mode noise transmitted through the AC lines 11 and 12 always passes through the common mode choke coil 31 or the common mode choke coil 32 before being released to the ground via the Y capacitors 501 and 502 (common mode noise is weakened). It will be. In addition, even when common mode noise transmitted to the ground is transmitted to the AC lines 11 and 12 through the Y capacitors 501 and 502, it passes through the common mode choke coil 32 or 31 (common mode noise is weakened). It will be.
  • common mode noise is escaped to the ground through Y capacitors 501 and 502 without passing through common mode choke coils 31 and 32, and common mode noise transmitted through the ground causes common mode choke coils 31 and 32 to It can be prevented from being transmitted to the AC lines 11 and 12 through the Y capacitors 501 and 502 without passing through.
  • common mode noise of the power conversion circuit 10 in which the ground on the input side and the ground on the output side are common can be further reduced.
  • common mode noise switching noise generated by the switching operation of the switching elements constituting the power conversion circuit 10 can be effectively reduced.
  • the present invention is applied to a DC-AC converter as an example, the present invention has a switching element and converts voltage or frequency of input power and the like.
  • the present invention can also be applied to a power conversion circuit that outputs, for example, a DC-DC converter, an AC-DC converter, an inverter circuit (motor driver circuit), and the like.
  • noise filter circuit 1 is provided on the output side (AC side) of the power conversion circuit 10 in the above embodiment, the noise filter circuit 1 may be provided on the input side (DC side) of the power conversion circuit 10.
  • the number of common mode choke coils may be three or more.
  • the number of common mode choke coils is three is shown in FIG.
  • the Y capacitors 501 and 502 and the Y capacitors 503 and 504 are connected only to the power lines 11 and 12 between the three common mode choke coils 31, 32 and 33, respectively.
  • common mode noise is dissipated to the ground through the Y capacitors 501 and 502 and the Y capacitors 503 and 504 without passing through the common mode choke coils 31, 32 and 33, and Common mode noise that is transmitted to the AC lines 11 and 12 of the power conversion circuit 10 through the Y capacitors 501 and 502 and the Y capacitors 503 and 504 without passing through the common mode choke coils 31, 32 and 33. it can. Furthermore, in this case, the noise reduction effect of the common mode noise can be further enhanced by forming the common mode choke coils 31, 32, 33, the Y capacitors 501, 502 and the Y capacitors 503, 504 in multiple stages.

Abstract

A noise filter circuit (1) comprises: a pair (two) of common-mode choke coils (31, 32) that are connected in series to AC lines (11, 12) on the output side of a power conversion circuit (10) in which the input side (DC side) ground and the output side (AC side) ground are a shared ground; and Y capacitors (501, 502) which are only connected to the AC lines (11, 12) between the pair of common-mode choke coils (31, 32).

Description

ノイズフィルタ回路、及び、電源回路Noise filter circuit and power supply circuit
 本発明は、ノイズフィルタ回路、及び、電源回路に関し、特に、電力変換回路のコモンモードノイズを低減するノイズフィルタ回路、及び、該ノイズフィルタ回路を用いた電源回路に関する。 The present invention relates to a noise filter circuit and a power supply circuit, and more particularly to a noise filter circuit that reduces common mode noise of a power conversion circuit, and a power supply circuit using the noise filter circuit.
 従来から、例えば、スイッチングにより電力変換を行う電力変換回路に接続された電力ラインのコモンモードノイズを低減するために、巻線を同方向に巻回したコモンモードチョークコイルと、電力ライン-グランド間に接続されたYコンデンサとで構成されるノイズフィルタ回路が使用されている。 Conventionally, for example, to reduce common mode noise of a power line connected to a power conversion circuit that performs power conversion by switching, a common mode choke coil in which the winding is wound in the same direction, and between the power line and ground A noise filter circuit is used which is composed of a Y capacitor connected to.
 ここで、特許文献1には、DCブラシレスモータを駆動するインバータ回路(スイッチング回路)の前段に、コモンモードチョークコイルとYコンデンサから構成されるフィルタ回路が2段設けられた電源ユニットが開示されている。 Here, Patent Document 1 discloses a power supply unit in which two stages of a filter circuit composed of a common mode choke coil and a Y capacitor are provided at the front stage of an inverter circuit (switching circuit) for driving a DC brushless motor. There is.
 この電源ユニットによれば、一方のフィルタ回路を構成するYコンデンサの結線部がプリント基板のアースパターンを介してアース端子と接続されており、コモンモードノイズがグランド側に逃がされる。また、他方のフィルタ回路を構成するYコンデンサの結線部がアース線を介してアース端子と接続されており、ノイズがグランド側に逃がされる。そして、この電源ユニットでは、他方のフィルタ回路のアース線をプリント基板の電源ラインから離間するように配設することにより、アース線から発生する放射ノイズがプリント基板上の電源ラインへ伝播することを抑制している。 According to this power supply unit, the connection portion of the Y capacitor constituting one of the filter circuits is connected to the ground terminal through the ground pattern of the printed circuit board, and the common mode noise is released to the ground side. Further, the connection portion of the Y capacitor constituting the other filter circuit is connected to the ground terminal through the ground wire, and the noise is dissipated to the ground side. Then, in this power supply unit, by arranging the ground line of the other filter circuit to be separated from the power supply line of the printed circuit board, radiation noise generated from the ground line can be propagated to the power supply line on the printed circuit board. It is suppressing.
特開2009-303477号公報JP, 2009-303477, A
 しかしながら、上述した電源ユニット(フィルタ回路)では、例えば、インバータ回路側から伝わるコモンモードノイズが、インバータ回路側の(他方の)フィルタ回路を構成するYコンデンサを通して、コモンモードチョークコイルを通ることなく(すなわちノイズレベルが弱められることなく)グランドに逃がされるおそれがある。また、グランドを伝わるコモンモードノイズが、Yコンデンサを介してコモンモードチョークコイルを通ることなく(すなわちノイズレベルが弱められることなく)電源ラインに伝達されるおそれがある。さらに、電源側のグランドとインバータ回路側のグランドが共通の場合には、例えば、インバータ回路(スイッチング回路)側で発生したスイッチングノイズがグランドを通して電源側に伝達されるおそれもある。その結果、電源ラインのノイズレベルの低下が抑えられるおそれや、ノイズレベルがかえって悪化するおそれもある。また、近年、電気機器の小型化に伴い、基板や基板のグランドも小さくなる傾向があり、上述したような問題が顕著になる傾向も指摘されている。 However, in the power supply unit (filter circuit) described above, for example, common mode noise transmitted from the inverter circuit side does not pass through the common mode choke coil through the Y capacitor forming the (other) filter circuit on the inverter circuit side ( That is, there is a risk that the noise level may be escaped to the ground). In addition, common mode noise transmitted to the ground may be transmitted to the power supply line without passing through the common mode choke coil via the Y capacitor (that is, without reducing the noise level). Furthermore, when the ground on the power supply side and the ground on the inverter circuit side are common, for example, switching noise generated on the inverter circuit (switching circuit) side may be transmitted to the power supply side through the ground. As a result, there is a possibility that the reduction of the noise level of the power supply line can be suppressed or the noise level may be aggravated. Further, in recent years, with the miniaturization of electrical devices, the substrates and the grounds of the substrates tend to be smaller, and it has been pointed out that the problems as described above become noticeable.
 本発明は、上記問題点を解消する為になされたものであり、入力側のグランドと出力側のグランドが共通とされている電力変換回路のコモンモードノイズをより低減することが可能なノイズフィルタ回路、及び、電源回路を提供することを目的とする。 The present invention has been made to solve the above problems, and is a noise filter capable of further reducing common mode noise of a power conversion circuit in which the ground on the input side and the ground on the output side are common. It is an object of the present invention to provide a circuit and a power supply circuit.
 本発明に係るノイズフィルタ回路は、電力ラインに直列に接続される一対のコモンモードチョークコイルと、一対のコモンモードチョークコイルの間にのみ接続されるYコンデンサとを備えることを特徴とする。 The noise filter circuit according to the present invention is characterized by comprising a pair of common mode choke coils connected in series to the power line, and a Y capacitor connected only between the pair of common mode choke coils.
 本発明に係る電源回路は、上記ノイズフィルタ回路と、電力変換回路とを備えることを特徴とする。 A power supply circuit according to the present invention includes the noise filter circuit and a power conversion circuit.
 本発明によれば、入力側のグランドと出力側のグランドが共通とされている電力変換回路のコモンモードノイズをより低減することが可能となる。 According to the present invention, it is possible to further reduce common mode noise of a power conversion circuit in which the ground on the input side and the ground on the output side are common.
実施形態に係るノイズフィルタ回路を用いた電源回路の構成を示す回路図である。It is a circuit diagram showing composition of a power supply circuit using a noise filter circuit concerning an embodiment. 実施形態に係るノイズフィルタ回路、及び、比較例に係るノイズフィルタ回路(図4)を用いた場合のノイズレベルの測定結果を示すグラフである。It is a graph which shows the measurement result of the noise level at the time of using the noise filter circuit which concerns on embodiment, and the noise filter circuit (FIG. 4) which concerns on a comparative example. 実施形態に係るノイズフィルタ回路、及び、比較例1、比較例2に係るノイズフィルタ回路を用いた場合のノイズレベルの測定結果を示すグラフである。It is a graph which shows the measurement result of a noise level at the time of using the noise filter circuit concerning an embodiment, and the noise filter circuit concerning comparative example 1 and comparative example 2. 比較例に係るノイズフィルタ回路の構成を示す回路図である。It is a circuit diagram showing composition of a noise filter circuit concerning a comparative example. 変形例に係るノイズフィルタ回路を用いた電源回路の構成を示す回路図である。It is a circuit diagram showing composition of a power supply circuit using a noise filter circuit concerning a modification.
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、図中、同一又は相当部分には同一符号を用いることとする。また、各図において、同一要素には同一符号を付して重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals are used for the same or corresponding parts. Further, in the respective drawings, the same elements are denoted by the same reference numerals, and duplicate explanations will be omitted.
 まず、図1を用いて、実施形態に係るノイズフィルタ回路1を用いた電源回路3の構成について説明する。図1は、ノイズフィルタ回路1を用いた電源回路3の構成を示す回路図である。 First, the configuration of a power supply circuit 3 using the noise filter circuit 1 according to the embodiment will be described with reference to FIG. FIG. 1 is a circuit diagram showing a configuration of a power supply circuit 3 using a noise filter circuit 1.
 電源回路3は、ノイズフィルタ回路1と、電力変換回路10とを備えている。ノイズフィルタ回路1は、電力変換回路10のコモンモードノイズ及びノーマルモードノイズ(ディファレンシャルモードノイズ)を低減する電源用EMCフィルタである。 The power supply circuit 3 includes a noise filter circuit 1 and a power conversion circuit 10. The noise filter circuit 1 is a power supply EMC filter that reduces common mode noise and normal mode noise (differential mode noise) of the power conversion circuit 10.
 ノイズフィルタ回路1は、コモンモードノイズを低減するために、電力変換回路10の出力側(AC側)のACライン11,12(請求の範囲に記載の電力ラインに相当)に直列に接続される一対(2個)のコモンモードチョークコイル31,32と、一対(2個)のコモンモードチョークコイル31,32の間のACライン11,12にのみ接続されるYコンデンサ501,502とを備えている。また、ノイズフィルタ回路1は、ノーマルモードノイズ(ディファレンシャルモードノイズ)を低減するために、ACライン11,12それぞれに直列に接続されたインダクタ21,22、及び、ACライン11,12間に接続されたXコンデンサ41,42を備えている。以下、各構成要素についてより詳細に説明する。 The noise filter circuit 1 is connected in series to the AC lines 11 and 12 (corresponding to the power lines described in the claims) on the output side (AC side) of the power conversion circuit 10 in order to reduce common mode noise. A pair of (two) common mode choke coils 31 and 32 and Y capacitors 501 and 502 connected only to the AC lines 11 and 12 between the pair (two) common mode choke coils 31 and 32 There is. Further, the noise filter circuit 1 is connected between the inductors 21 and 22 connected in series to the AC lines 11 and 12 and between the AC lines 11 and 12 in order to reduce normal mode noise (differential mode noise). The X capacitors 41 and 42 are provided. Each component will be described in more detail below.
 電力変換回路10は、スイッチング素子を有し、例えば、入力側から入力される電力の電圧や周波数等を変換して出力側へ出力する。電力変換回路10としては、例えば、DC-DCコンバータ、AC-ACコンバータ、AC-DCコンバータ、DC-ACコンバータ、インバータ回路などを挙げることができる。なお、本実施形態では、電力変換回路10として、DC-ACコンバータに適用した。電力変換回路10の入力側(DC側)のグランドと出力側(AC側)のグランドとは共通とされている(電気的につながれている)。 The power conversion circuit 10 has a switching element, and converts, for example, the voltage or frequency of the power input from the input side, and outputs the converted voltage to the output side. Examples of the power conversion circuit 10 include a DC-DC converter, an AC-AC converter, an AC-DC converter, a DC-AC converter, and an inverter circuit. In the present embodiment, the power conversion circuit 10 is applied to a DC-AC converter. The ground on the input side (DC side) of the power conversion circuit 10 and the ground on the output side (AC side) are common (electrically connected).
 電力変換回路10の出力側(AC側)の一対のACライン11,12それぞれには、直列にインダクタ21及びインダクタ22が接続されている。また、一対のACライン11,12間にはXコンデンサ41が接続されている。これらのインダクタ21、インダクタ22、Xコンデンサ41により、ディファレンシャルモードフィルタ(LCフィルタ)が構成される。また、後述するコモンモードチョークコイル32の下流側にも、一対のACライン11,12間に、Xコンデンサ42が接続されている。なお、Xコンデンサ41,42は、ノーマルモードノイズ(ディファレンシャルモードノイズ)を低減するため、ACライン11,12間に接続されるコンデンサである。 An inductor 21 and an inductor 22 are connected in series to each of the pair of AC lines 11 and 12 on the output side (AC side) of the power conversion circuit 10. Further, an X capacitor 41 is connected between the pair of AC lines 11 and 12. A differential mode filter (LC filter) is configured by the inductor 21, the inductor 22, and the X capacitor 41. Further, an X capacitor 42 is connected between the pair of AC lines 11 and 12 also on the downstream side of a common mode choke coil 32 described later. The X capacitors 41 and 42 are capacitors connected between the AC lines 11 and 12 in order to reduce normal mode noise (differential mode noise).
 電力変換回路10の出力側(AC側)のACライン11,12には、Xコンデンサ41の下流側(後段)に、一対(2個)のコモンモードチョークコイル31及びコモンモードチョークコイル32が直列に接続されている。コモンモードチョークコイル31及びコモンモードチョークコイル32それぞれは、一対の巻線を同方向に巻回して形成され、高いコモンモードインピーダンスと、低いノーマルモード(ディファレンシャルモード)インピーダンスを持つ。なお、コモンモードチョークコイル31,32としては、例えば、公知の巻線型のコモンモードチョークコイル、又は積層型のコモンモードチョークコイルを好適に用いることができる。 In the AC lines 11 and 12 on the output side (AC side) of the power conversion circuit 10, a pair (two) common mode choke coil 31 and a common mode choke coil 32 are connected in series on the downstream side (rear stage) of the X capacitor 41. It is connected to the. Each of the common mode choke coil 31 and the common mode choke coil 32 is formed by winding a pair of windings in the same direction, and has a high common mode impedance and a low normal mode (differential mode) impedance. As the common mode choke coils 31 and 32, for example, a well-known winding type common mode choke coil or a laminated common mode choke coil can be suitably used.
 一対(2個)のコモンモードチョークコイル31,32の間のACライン11,12には(間のACライン11,12にのみ)、Yコンデンサ501,502が接続されている。すなわち、コモンモードチョークコイル31の上流側(電力変換回路10側)、及び、コモンモードチョークコイル32の下流側には、Yコンデンサは設けられていない。すなわち、Yコンデンサ501,502は、コモンモードチョークコイル31とコモンモードチョークコイル32に挟まれるように配置されている。換言すると、Yコンデンサ501,502の上流側にも及び下流側にもコモンモードチョークコイルが配設されている。なお、Yコンデンサ501,502は、コモンモードノイズを低減するために、ACライン11,12とグランドとの間に接続されるコンデンサである。 Y capacitors 501 and 502 are connected to the AC lines 11 and 12 between the pair (two) common mode choke coils 31 and 32 (only to the AC lines 11 and 12 therebetween). That is, no Y capacitor is provided on the upstream side (the power conversion circuit 10 side) of the common mode choke coil 31 and on the downstream side of the common mode choke coil 32. That is, the Y capacitors 501 and 502 are disposed so as to be sandwiched between the common mode choke coil 31 and the common mode choke coil 32. In other words, common mode choke coils are disposed upstream and downstream of the Y capacitors 501 and 502, respectively. The Y capacitors 501 and 502 are capacitors connected between the AC lines 11 and 12 and the ground in order to reduce common mode noise.
 このような構成を有することにより、本実施形態によれば、ACライン11,12を伝わるコモンモードノイズは、Yコンデンサ501,502を介してグランドに逃がされる前に必ずコモンモードチョークコイル32又はコモンモードチョークコイル31を通る(すなわちコモンモードノイズが弱められる)こととなる。また、グランドを伝わるコモンモードノイズがYコンデンサ501,502を介してACライン11,12側に伝わる場合にも、コモンモードチョークコイル32又はコモンモードチョークコイル31を通る(コモンモードノイズが弱められる)こととなる。よって、ACライン11,12を伝わるコモンモードノイズがコモンモードチョークコイル31,32を通ることなくYコンデンサ501,502を介してグランドに逃がされること、及び、グランドを伝わるコモンモードノイズがコモンモードチョークコイル31,32を通ることなくYコンデンサ501,502を介してACライン11,12に伝えられることが防止される。 By having such a configuration, according to the present embodiment, the common mode noise transmitted through the AC lines 11 and 12 must be the common mode choke coil 32 or the common before it is released to the ground through the Y capacitors 501 and 502. It passes through the mode choke coil 31 (that is, common mode noise is reduced). In addition, even when common mode noise transmitted to the ground is transmitted to the AC lines 11 and 12 through the Y capacitors 501 and 502, it passes through the common mode choke coil 32 or 31 (common mode noise is weakened). It will be. Therefore, common mode noise transmitted through the AC lines 11 and 12 is escaped to the ground via the Y capacitors 501 and 502 without passing through the common mode choke coils 31 and 32, and common mode noise transmitted through the ground is common mode choke Transmission to the AC lines 11 and 12 via the Y capacitors 501 and 502 without passing through the coils 31 and 32 is prevented.
 そこで、本実施形態に係るノイズフィルタ回路1のノイズ低減効果を確認するため、電子機器の電源コードから流出するノイズレベルを定量的に評価するための治具であるLISN(Line Inpedance Stabilizing Network)を用いてノイズレベルの測定を行った。続いて、図2、図3を併せて用いて、本実施形態に係るノイズフィルタ回路1のノイズ低減効果について、測定結果を示して説明する。 Therefore, in order to confirm the noise reduction effect of the noise filter circuit 1 according to the present embodiment, LISN (Line Impedance Stabilizing Network), which is a jig for quantitatively evaluating the noise level flowing out from the power supply cord of the electronic device The noise level was measured using this. Subsequently, the noise reduction effect of the noise filter circuit 1 according to the present embodiment will be described with reference to measurement results using FIG. 2 and FIG. 3 together.
 図2は、本実施形態に係るノイズフィルタ回路1、及び、図4に示される比較例に係るノイズフィルタ回路を用いた場合のノイズレベルの測定結果を示すグラフである。図2の上段のグラフは、L1相(ACV側)のノイズレベルを示す。このグラフの横軸は周波数(MHz)であり、縦軸はノイズレベル(dBμV)である。図2の下段のグラフは、プラス側(DCV側)のノイズレベルを示す。このグラフの横軸は周波数(MHz)であり、縦軸はノイズレベル(dBμV)である。なお、比較例として、図4に示されるように、本実施形態に係るノイズフィルタ回路1の構成に加えて、コモンモードチョークコイル31の上流側(電力変改回路10側)に配置されたYコンデンサ511,512、及び、コモンモードチョークコイル32の下流側に配置されたYコンデンサ521,522を有するノイズフィルタ回路を用いた。 FIG. 2 is a graph showing measurement results of noise levels when the noise filter circuit 1 according to the present embodiment and the noise filter circuit according to the comparative example shown in FIG. 4 are used. The upper graph in FIG. 2 shows the noise level of the L1 phase (ACV side). The horizontal axis of this graph is frequency (MHz), and the vertical axis is noise level (dBμV). The lower graph in FIG. 2 shows the noise level on the positive side (DCV side). The horizontal axis of this graph is frequency (MHz), and the vertical axis is noise level (dBμV). As a comparative example, as shown in FIG. 4, in addition to the configuration of the noise filter circuit 1 according to the present embodiment, Y disposed on the upstream side (power change circuit 10 side) of the common mode choke coil 31 A noise filter circuit having capacitors 511 and 512 and Y capacitors 521 and 522 disposed downstream of the common mode choke coil 32 was used.
 図2の上段及び下段に示されるように、本実施形態に係るノイズフィルタ回路1によれば、比較例に係るノイズフィルタ回路と比べて、L1相(ACV側)のノイズレベルも、プラス側(DCV側)のノイズレベルも、全周波数域で低下することが確認された。また、本実施形態に係るノイズフィルタ回路1によれば、全域で限度値(CISPR11ClassA)を下回る(満足する)ことが確認された。なお、CISPR(Comite International Special des Perturbations Radioelectriques)は、IECのノイズ規制規格であり、電子機器の電源コードから流出する伝導ノイズの測定法と限度値を規定している。 As shown in the upper and lower parts of FIG. 2, according to the noise filter circuit 1 according to the present embodiment, the noise level of the L1 phase (ACV side) is also positive (compared to the noise filter circuit according to the comparative example). It has been confirmed that the noise level on the DCV side also decreases over the entire frequency range. Moreover, according to the noise filter circuit 1 which concerns on this embodiment, it was confirmed that it is less than the limit value (CISPR11ClassA) in the whole region (it is satisfied). CISPR (Comite International Special Perturbations Radio electriques) is a noise regulation standard of the IEC, and defines a measurement method and a limit value of conducted noise flowing out from a power cord of an electronic device.
 次に、図3は、本実施形態に係るノイズフィルタ回路1、及び、比較例1(図4に示されるYコンデンサ511,512のみ)、比較例2(図4に示されるYコンデンサ521,522のみ)に係るノイズフィルタ回路を用いた場合のノイズレベルの測定結果を示すグラフである。図3の上段のグラフは、ACV側のコモンモードのノイズレベルを示す。このグラフの横軸は周波数(MHz)であり、縦軸はノイズレベル(dBμA)である。図3の下段のグラフは、DCV側のコモンモードのノイズレベルを示す。このグラフの横軸は周波数(MHz)であり、縦軸はノイズレベル(dBμA)である。 Next, FIG. 3 shows the noise filter circuit 1 according to this embodiment, the comparative example 1 (only the Y capacitors 511 and 512 shown in FIG. 4), and the comparative example 2 ( Y capacitors 521 and 522 shown in FIG. 4). 1) is a graph showing the measurement results of the noise level when the noise filter circuit according to. The upper graph in FIG. 3 shows the noise level of the common mode on the ACV side. The horizontal axis of this graph is frequency (MHz) and the vertical axis is noise level (dBμA). The lower graph in FIG. 3 shows the noise level of the common mode on the DCV side. The horizontal axis of this graph is frequency (MHz) and the vertical axis is noise level (dBμA).
 図3の下段に示されるように、Yコンデンサ511,512のみ(比較例1)の場合(Yコンデンサ501,502及びYコンデンサ521,522がない場合)、DCV側のノイズレベルが増加する結果が得られた。また、図3の上段に示されるように、Yコンデンサ521,522のみ(比較例2)の場合(Yコンデンサ511,512及びYコンデンサ501,502がない場合)、ACV側のノイズレベルが増加する結果が得られた。一方、図3の上段及び下段に示されるように、Yコンデンサ501,502のみ(本実施形態)の場合、ACV側、DCV側、双方のノイズレベルが、比較例1及び比較例2に対して低下することが確認された。 As shown in the lower part of FIG. 3, in the case of only the Y capacitors 511 and 512 (comparative example 1) (without the Y capacitors 501 and 502 and the Y capacitors 521 and 522), the noise level on the DCV side increases. It was obtained. Also, as shown in the upper part of FIG. 3, in the case of only the Y capacitors 521 and 522 (comparative example 2) (without the Y capacitors 511 and 512 and the Y capacitors 501 and 502), the noise level on the ACV side increases. The results were obtained. On the other hand, as shown in the upper and lower portions of FIG. 3, in the case of only the Y capacitors 501 and 502 (this embodiment), the noise levels on both the ACV side and DCV side are higher than those in Comparative Example 1 and Comparative Example 2 It was confirmed to decrease.
 ここで、LISNで測定される伝導ノイズ(電圧)は、コモンモードノイズとノーマルモードノイズが足し合されたノイズであるが、このときのコモンモードノイズは、どちらかノイズレベルの高い方のノイズ(例えば、AC側とDC側で、AC側のコモンモードノイズが高い場合はAC側のコモンモードノイズ)となる。そのため、例えば、AC側にYコンデンサを入れてAC側のコモンモードノイズレベルを低下させたとしても、DC側のノイズレベルが高くなれば、LISNで測定されるノイズレベルはほとんど変らないこととなる。つまり、LISNで測定されるノイズレベルを下げるには、AC側及びDC側両方のコモンモードノイズを低減させる必要があり、Yコンデンサを介してグランドに伝導させるノイズが低減されることが求められる。このことからも、本実施形態に係るフィルタ回路1の構成が最適であることが確認された。 Here, the conducted noise (voltage) measured by the LISN is a noise in which the common mode noise and the normal mode noise are added, but the common mode noise at this time is either the higher noise level noise ( For example, when the common mode noise on the AC side is high on the AC side and the DC side, the common mode noise on the AC side is obtained. Therefore, for example, even if a Y capacitor is inserted on the AC side to reduce the common mode noise level on the AC side, if the noise level on the DC side increases, the noise level measured by LISN will hardly change . That is, to reduce the noise level measured by the LISN, it is necessary to reduce common mode noise on both the AC side and the DC side, and it is required to reduce the noise conducted to the ground through the Y capacitor. Also from this, it was confirmed that the configuration of the filter circuit 1 according to the present embodiment is optimal.
 以上、詳細に説明したように、本実施形態によれば、Yコンデンサ501,502が、一対(2個)のコモンモードチョークコイル31,32の間のACライン11,12にのみ接続される。よって、ACライン11,12を伝わるコモンモードノイズは、Yコンデンサ501,502を介してグランドに逃がされる前に必ずコモンモードチョークコイル31又はコモンモードチョークコイル32を通る(コモンモードノイズが弱められる)こととなる。また、グランドを伝わるコモンモードノイズがYコンデンサ501,502を介してACライン11,12側に伝わる場合にも、コモンモードチョークコイル32又はコモンモードチョークコイル31を通る(コモンモードノイズが弱められる)こととなる。よって、コモンモードノイズが、コモンモードチョークコイル31,32を通ることなくYコンデンサ501,502を介してグランドに逃がされること、及び、グランドを伝わるコモンモードノイズが、コモンモードチョークコイル31,32を通ることなくYコンデンサ501,502を介してACライン11,12に伝えられることを防止できる。その結果、入力側のグランドと出力側のグランドが共通とされている電力変換回路10のコモンモードノイズをより低減することが可能となる。 As described above in detail, according to this embodiment, the Y capacitors 501 and 502 are connected only to the AC lines 11 and 12 between the pair of (two) common mode choke coils 31 and 32. Therefore, common mode noise transmitted through the AC lines 11 and 12 always passes through the common mode choke coil 31 or the common mode choke coil 32 before being released to the ground via the Y capacitors 501 and 502 (common mode noise is weakened). It will be. In addition, even when common mode noise transmitted to the ground is transmitted to the AC lines 11 and 12 through the Y capacitors 501 and 502, it passes through the common mode choke coil 32 or 31 (common mode noise is weakened). It will be. Therefore, common mode noise is escaped to the ground through Y capacitors 501 and 502 without passing through common mode choke coils 31 and 32, and common mode noise transmitted through the ground causes common mode choke coils 31 and 32 to It can be prevented from being transmitted to the AC lines 11 and 12 through the Y capacitors 501 and 502 without passing through. As a result, common mode noise of the power conversion circuit 10 in which the ground on the input side and the ground on the output side are common can be further reduced.
 特に、本実施形態によれば、電力変換回路10を構成するスイッチング素子のスイッチング動作により生じるコモンモードノイズ(スイッチングノイズ)を効果的に低減することができる。 In particular, according to the present embodiment, common mode noise (switching noise) generated by the switching operation of the switching elements constituting the power conversion circuit 10 can be effectively reduced.
 以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、上記実施形態では、本発明を、DC-ACコンバータに適用した場合を例にして説明したが、本発明は、スイッチング素子を有し、入力される電力の電圧や周波数などを変換して出力する電力変換回路、例えば、DC-DCコンバータ、AC-DCコンバータ、インバータ回路(モータドライバ回路)などにも適用することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above embodiment, although the present invention is applied to a DC-AC converter as an example, the present invention has a switching element and converts voltage or frequency of input power and the like. The present invention can also be applied to a power conversion circuit that outputs, for example, a DC-DC converter, an AC-DC converter, an inverter circuit (motor driver circuit), and the like.
 上記実施形態では、電力変換回路10の出力側(AC側)にノイズフィルタ回路1を設けたが、電力変換回路10の入力側(DC側)にノイズフィルタ回路1を設ける構成としてもよい。 Although the noise filter circuit 1 is provided on the output side (AC side) of the power conversion circuit 10 in the above embodiment, the noise filter circuit 1 may be provided on the input side (DC side) of the power conversion circuit 10.
 上記実施形態では、コモンモードチョークコイルの数が2個の場合を例にして説明したが、コモンモードチョークコイルの数は3個以上であってもよい。なお、ここで、コモンモードチョークコイルの数が3個の場合の例を図5に示す。この場合、Yコンデンサ501,502及びYコンデンサ503,504は、3個のコモンモードチョークコイル31,32,33の間の電力ライン11,12にのみ接続される。この場合も、上述したように、コモンモードノイズが、コモンモードチョークコイル31,32,33を通ることなくYコンデンサ501,502及びYコンデンサ503,504を介してグランドに逃がされること、及び、グランドを伝わるコモンモードノイズが、コモンモードチョークコイル31,32,33を通ることなくYコンデンサ501,502及びYコンデンサ503,504を介して電力変換回路10のACライン11,12に伝えられることを防止できる。さらにこの場合、コモンモードチョークコイル31,32,33と、Yコンデンサ501,502及びYコンデンサ503,504とを多段にすることにより、コモンモードノイズのノイズ低減効果をより高めることが可能となる。 Although the case where the number of common mode choke coils is two has been described as an example in the above embodiment, the number of common mode choke coils may be three or more. Here, an example in which the number of common mode choke coils is three is shown in FIG. In this case, the Y capacitors 501 and 502 and the Y capacitors 503 and 504 are connected only to the power lines 11 and 12 between the three common mode choke coils 31, 32 and 33, respectively. Also in this case, as described above, common mode noise is dissipated to the ground through the Y capacitors 501 and 502 and the Y capacitors 503 and 504 without passing through the common mode choke coils 31, 32 and 33, and Common mode noise that is transmitted to the AC lines 11 and 12 of the power conversion circuit 10 through the Y capacitors 501 and 502 and the Y capacitors 503 and 504 without passing through the common mode choke coils 31, 32 and 33. it can. Furthermore, in this case, the noise reduction effect of the common mode noise can be further enhanced by forming the common mode choke coils 31, 32, 33, the Y capacitors 501, 502 and the Y capacitors 503, 504 in multiple stages.
 1,1’ ノイズフィルタ回路
 3,3’ 電源回路
 10 電力変換回路(DC-ACコンバータ)
 11,12 ACライン(電力ライン)
 21,22 インダクタ(コイル)
 31,32,33 コモンモードチョークコイル
 41,42 Xコンデンサ
 501,502,503,504 Yコンデンサ
1,1 'noise filter circuit 3,3' power supply circuit 10 power conversion circuit (DC-AC converter)
11, 12 AC line (power line)
21, 22 inductor (coil)
31, 32, 33 common mode choke coil 41, 42 X capacitor 501, 502, 503, 504 Y capacitor

Claims (6)

  1.  電力ラインに直列に接続される一対のコモンモードチョークコイルと、
     前記一対のコモンモードチョークコイルの間にのみ接続されるYコンデンサと、を備えることを特徴とするノイズフィルタ回路。
    A pair of common mode choke coils connected in series to the power line;
    And a Y capacitor connected only between the pair of common mode choke coils.
  2.  電力ラインに直列に接続される3個以上のコモンモードチョークコイルと、
     前記3個以上のコモンモードチョークコイルの間にのみ接続されるYコンデンサと、を備えることを特徴とするノイズフィルタ回路。
    Three or more common mode choke coils connected in series to the power line;
    And a Y capacitor connected only between the three or more common mode choke coils.
  3.  入力側のグランドと出力側のグランドが共通とされている電力変換回路と、
     前記電力変換回路の入力側の電力ライン又は出力側の電源ラインに接続された請求項1又は2に記載のノイズフィルタ回路と、を備えることを特徴とする電源回路。
    A power conversion circuit in which the ground on the input side and the ground on the output side are common,
    A power supply circuit comprising: the noise filter circuit according to claim 1 connected to a power line on the input side of the power conversion circuit or a power supply line on the output side.
  4.  前記電力変換回路は、スイッチング素子を有し、前記入力側から入力される電力の電圧又は周波数を変換して前記出力側へ出力することを特徴とする請求項3に記載の電源回路。 The power supply circuit according to claim 3, wherein the power conversion circuit has a switching element, converts a voltage or a frequency of power input from the input side, and outputs the voltage or the frequency to the output side.
  5.  前記電力変換回路は、DC-DCコンバータ、AC-ACコンバータ、AC-DCコンバータ、又は、DC-ACコンバータであることを特徴とする請求項4に記載の電源回路。 The power supply circuit according to claim 4, wherein the power conversion circuit is a DC-DC converter, an AC-AC converter, an AC-DC converter, or a DC-AC converter.
  6.  前記電力変換回路は、インバータ回路であることを特徴とする請求項4に記載の電源回路。
     
    The power supply circuit according to claim 4, wherein the power conversion circuit is an inverter circuit.
PCT/JP2018/042418 2017-11-22 2018-11-16 Noise filter circuit and power supply circuit WO2019102937A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017224407 2017-11-22
JP2017-224407 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019102937A1 true WO2019102937A1 (en) 2019-05-31

Family

ID=66631862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042418 WO2019102937A1 (en) 2017-11-22 2018-11-16 Noise filter circuit and power supply circuit

Country Status (1)

Country Link
WO (1) WO2019102937A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250275A1 (en) * 2019-06-10 2020-12-17 三菱電機株式会社 Noise filter circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999594A (en) * 1988-12-09 1991-03-12 Condor, Inc. AC line filter with tapped balun winding
JPH05292668A (en) * 1992-04-13 1993-11-05 Mels Corp Noise filter
JPH07256149A (en) * 1994-03-25 1995-10-09 Hitachi Koki Co Ltd Controller of motor for centrifugal machine
JP2000102242A (en) * 1998-09-14 2000-04-07 Abb Ind Oy Method and device for optimizing elimination of conduction interference
JP2001157441A (en) * 1999-11-24 2001-06-08 Sanken Electric Co Ltd Power conversion apparatus
JP2007214789A (en) * 2006-02-08 2007-08-23 Tdk Corp Composite coil and noise filter
JP2016152642A (en) * 2015-02-16 2016-08-22 Tdk株式会社 Control circuit and switching power supply unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999594A (en) * 1988-12-09 1991-03-12 Condor, Inc. AC line filter with tapped balun winding
JPH05292668A (en) * 1992-04-13 1993-11-05 Mels Corp Noise filter
JPH07256149A (en) * 1994-03-25 1995-10-09 Hitachi Koki Co Ltd Controller of motor for centrifugal machine
JP2000102242A (en) * 1998-09-14 2000-04-07 Abb Ind Oy Method and device for optimizing elimination of conduction interference
JP2001157441A (en) * 1999-11-24 2001-06-08 Sanken Electric Co Ltd Power conversion apparatus
JP2007214789A (en) * 2006-02-08 2007-08-23 Tdk Corp Composite coil and noise filter
JP2016152642A (en) * 2015-02-16 2016-08-22 Tdk株式会社 Control circuit and switching power supply unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250275A1 (en) * 2019-06-10 2020-12-17 三菱電機株式会社 Noise filter circuit

Similar Documents

Publication Publication Date Title
US8228019B2 (en) Output filter and motor drive system including the same
JP5183830B1 (en) Noise filter device
JP6207751B2 (en) Power converter
US20060220772A1 (en) Noise suppressor
CN107404218B (en) Power conversion device
JP2019050719A (en) EMC filter
JP5634102B2 (en) Grid interconnection inverter
US7256662B2 (en) Common mode signal suppressing circuit and normal mode signal suppressing circuit
JP2012044812A (en) Noise filter and emc filter using the same
US20080018425A1 (en) Transforming device of power source and transformer thereof
JP2006136058A (en) Noise filter
WO2019102937A1 (en) Noise filter circuit and power supply circuit
JP2019198033A (en) Noise filter
US20220270816A1 (en) Transformer and switching power supply apparatus for reducing common mode noise due to line-to-ground capacitances
US11251693B2 (en) Electrical filter device for filtering a common-mode interference between a current source and a load
WO2017208420A1 (en) Power conversion device
JP6239468B2 (en) Medical equipment
JP2007236137A (en) Noise filter
CN113439313B (en) Common Mode Choke
JP4592479B2 (en) Transformer
Liu et al. THD and EMI performance study of foil-wound inductor of LCL filter for high power density converter
CN111614094B (en) Electromagnetic interference filter circuit
JP2001025242A (en) Switching power source
JP2004349734A (en) Normal mode noise suppressing circuit
JP2005117218A (en) Noise suppressing circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP