WO2019094544A1 - Multi-piece polymer ammunition, cartridge and components - Google Patents

Multi-piece polymer ammunition, cartridge and components Download PDF

Info

Publication number
WO2019094544A1
WO2019094544A1 PCT/US2018/059748 US2018059748W WO2019094544A1 WO 2019094544 A1 WO2019094544 A1 WO 2019094544A1 US 2018059748 W US2018059748 W US 2018059748W WO 2019094544 A1 WO2019094544 A1 WO 2019094544A1
Authority
WO
WIPO (PCT)
Prior art keywords
shoulder
neck
primer
nose
junction
Prior art date
Application number
PCT/US2018/059748
Other languages
French (fr)
Inventor
Lonnie Burrow
Christopher William Overton
Original Assignee
True Velocity Ip Holdings, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/808,859 external-priority patent/US10876822B2/en
Priority claimed from US29/644,867 external-priority patent/USD882032S1/en
Priority claimed from US29/644,835 external-priority patent/USD882026S1/en
Priority claimed from US29/644,825 external-priority patent/USD882023S1/en
Priority claimed from US29/644,805 external-priority patent/USD881324S1/en
Priority claimed from US29/644,863 external-priority patent/USD882723S1/en
Priority claimed from US29/644,844 external-priority patent/USD913403S1/en
Priority claimed from US29/644,869 external-priority patent/USD882033S1/en
Priority claimed from US29/644,842 external-priority patent/USD884115S1/en
Priority claimed from US29/644,831 external-priority patent/USD882025S1/en
Priority claimed from US29/644,797 external-priority patent/USD881323S1/en
Priority claimed from US29/644,862 external-priority patent/USD882722S1/en
Priority claimed from US29/644,855 external-priority patent/USD882031S1/en
Priority claimed from US29/644,838 external-priority patent/USD882027S1/en
Priority claimed from US29/644,824 external-priority patent/USD881328S1/en
Priority claimed from US29/644,808 external-priority patent/USD882021S1/en
Priority claimed from US29/644,840 external-priority patent/USD882720S1/en
Priority claimed from US29/644,820 external-priority patent/USD881327S1/en
Priority claimed from US29/644,859 external-priority patent/USD903038S1/en
Priority claimed from US29/644,847 external-priority patent/USD882721S1/en
Priority claimed from US29/644,853 external-priority patent/USD882030S1/en
Priority claimed from US29/644,811 external-priority patent/USD881326S1/en
Priority claimed from US29/644,816 external-priority patent/USD882022S1/en
Priority claimed from US29/644,843 external-priority patent/USD882028S1/en
Priority claimed from US29/644,798 external-priority patent/USD882020S1/en
Priority claimed from US29/644,794 external-priority patent/USD882019S1/en
Priority claimed from US29/644,828 external-priority patent/USD882024S1/en
Priority claimed from US29/644,810 external-priority patent/USD881325S1/en
Priority claimed from US29/644,864 external-priority patent/USD882724S1/en
Priority claimed from US29/644,865 external-priority patent/USD903039S1/en
Priority claimed from US29/644,849 external-priority patent/USD882029S1/en
Priority to EP18877060.6A priority Critical patent/EP3707460A4/en
Priority to AU2018364538A priority patent/AU2018364538A1/en
Application filed by True Velocity Ip Holdings, Llc filed Critical True Velocity Ip Holdings, Llc
Publication of WO2019094544A1 publication Critical patent/WO2019094544A1/en
Priority to IL274334A priority patent/IL274334A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/26Cartridge cases
    • F42B5/30Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics
    • F42B5/307Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics formed by assembling several elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/26Cartridge cases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators

Definitions

  • the present invention relates in general to the field of ammunition, specifically to compositions of matter and methods of making and using polymeric ammunition cartridge casings having at least 2 portions.
  • Plastic cartridge casings have been known for many years but have failed to provide satisfactory ammunition that could be produced in commercial quantities with sufficient safety, ballistic, handling characteristics, and survive physical and natural conditions to which it will be exposed during the ammunition's intended life cycle; however, these characteristics have not been achieved.
  • Shortcomings of the known methods of producing plastic or substantially plastic ammunition include the possibility of the projectile being pushed into the cartridge casing, the bullet being held too light such that the bullet can fall out, the bullet being held insufficient to create sufficient chamber pressure, the bullet pull not being uniform from round to round, and the cartridge not being able to maintain the necessary pressure, portions of the cartridge casing breaking off upon firing causing the weapon to jam or damage or danger when subsequent rounds are fired or when the casing portions themselves become projectiles.
  • improvements in cartridge case design and performance polymer materials are needed.
  • the present invention provides a nose for an ammunition cartridge comprising: a generally cylindrical neck having a projectile aperture at a first end; a shoulder comprising a shoulder top connected to the generally cylindrical neck that extends to a shoulder bottom; a nose junction positioned around the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to mate to a base junction in an ammunition cartridge, wherein the skirt is positioned on the inside of the nose and extends away from the shoulder bottom.
  • the present invention provides a multi piece ammunition cartridge comprising: an primer insert comprising a top surface opposite a bottom surface and a substantially cylindrical coupling element that extends from the bottom surface, a primer recess in the top surface that extends toward the bottom surface, a primer flash hole aperture positioned in the primer recess to extend through the bottom surface, and a groove positioned around the primer flash hole aperture in the primer recess; a middle body comprising a body extending from a body half lap junction to the primer insert, wherein the body is molded at least partially the primer insert by molding over the cylindrical coupling element and into the primer flash hole aperture and into the groove to form a primer flash hole; and a nose connected to the middle body, wherein the nose comprises a generally cylindrical neck having a projectile aperture at a first end; a shoulder comprising a shoulder top connected to the generally cylindrical neck that extends to a shoulder bottom; a nose junction positioned around the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to
  • the present invention provides a method of making a multi piece ammunition cartridge comprising: providing an primer insert comprising a top surface opposite a bottom surface and a substantially cylindrical coupling element that extends from the bottom surface, a primer recess in the top surface that extends toward the bottom surface, a primer flash hole aperture positioned in the primer recess to extend through the bottom surface, and a groove positioned around the primer flash hole aperture in the primer recess; forming a middle body by overmolding the primer insert wherein the middle body comprising a body extending from a body half lap junction to the primer insert, wherein the body is molded at least partially the primer insert by molding over the cylindrical coupling element and into the primer flash hole aperture and into the groove to form a primer flash hole; connecting a nose to the middle body, wherein the nose comprises a generally cylindrical neck having a projectile aperture at a first end; a shoulder comprising a shoulder top connected to the generally cylindrical neck that extends to a shoulder bottom; a nose junction positioned around the shoulder bottom, wherein the
  • the present invention provides a multi piece ammunition cartridge comprising: an primer insert comprising a top surface opposite a bottom surface and a substantially cylindrical coupling element that extends from the bottom surface, a primer recess in the top surface that extends toward the bottom surface, a primer flash hole aperture positioned in the primer recess to extend through the bottom surface, and a groove positioned around the primer flash hole aperture in the primer recess; a middle body comprising a body extending from a body half lap junction to the primer insert, wherein the body is molded at least partially the primer insert by molding over the cylindrical coupling element and into the primer flash hole aperture and into the groove to form a primer flash hole; and a shortened neck having a projectile aperture at a first end, wherein the shortened neck is reduced by 25-100% of the neck height of a standard cartridge neck; a shoulder comprising a shoulder top connected to the shortened neck that extends to a shoulder bottom; a nose junction positioned adjacent to the shoulder bottom, wherein the nose junction comprises a half lap junction having
  • the present invention provides a nose for an ammunition cartridge comprising: a shortened neck having a projectile aperture at a first end, wherein the shortened neck is reduced by 25- 100% of the neck height of a standard cartridge neck; a shoulder comprising a shoulder top connected to the shortened neck that extends to a shoulder bottom; a nose junction positioned adjacent to the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to mate to a base junction in an ammunition cartridge, wherein the skirt is positioned on the inside of the nose and extends away from the shoulder bottom.
  • the present invention provides an ammunition cartridge having a reduced neck height comprising: a shortened neck having a projectile aperture, wherein the shortened neck is reduced by 25-100%) of the neck height of a standard cartridge neck; a shoulder extending from the shortened neck to a cartridge side wall; wherein the cartridge side wall extends from the shoulder to the base to form an interior propellant chamber; wherein the base comprises an extraction ring, a primer recess positioned in the base in communication with the propellant chamber through a flash hole that extends from the primer recess into the propellant chamber.
  • any of the embodiments may include a nose comprising a polymer, a metal an alloy or a combination thereof.
  • the present invention provides that any of the embodiments may include a middle body comprising a polymer, a metal an alloy or a combination thereof.
  • the polymer may be a single polymer, a mixture of 2 or more polymers, a blend of 2 or more polymers, or copolymerization of multiple polymers.
  • the polymers may be doped.
  • the polymer comprises comprise one or more polymers selected from the group consisting of polyurethane prepolymer, cellulose, fluoro- polymer, ethylene inter-polymer alloy elastomer, ethylene vinyl acetate, nylon, poly ether imide, polyester elastomer, polyester sulfone, polyphenyl amide, polypropylene, polyvinylidene fluoride or thermoset polyurea elastomer, acrylics, homopolymers, acetates, copolymers, acrylonitrile-butadinen-styrene, thermoplastic fluoro polymers, inomers, polyamides, polyamide-imides, polyacrylates, polyatherketones, polyaryl-sulfones, polybenzimidazoles, polycarbonates, polybutylene, Polybutylene terephthalate, terephthalates, polyether imides, polyether sulfones, thermoplastic polyimides, thermoplastic polyurethanes, polyphenylene
  • any of the embodiments may include a skirt adapted to flushly mate to a body half lap junction in an ammunition cartridge.
  • the overlapping junctions of the skirt and the middle body do not have to fit flush and may have a protrusion by the nose skirt or the mating middle body skirt.
  • the present invention provides that any of the embodiments may include an angle formed between the groove and the skirt is between 40 and 140 degrees, between 80 and 110 degrees or between 85 and 95 degrees or about 90 degrees.
  • the angle may be any angle between 0-180 degrees, e.g., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
  • any of the embodiments may include a shoulder angle on the outside that is not mirrored on the shoulder on the inside.
  • the present invention provides that any of the embodiments may include a generally cylindrical neck comprising an interior neck positioned opposite the generally cylindrical neck and an interior shoulder connected to the interior neck extending opposite the shoulder, wherein an exterior shoulder angle is from the generally cylindrical neck to the shoulder and an interior shoulder angle is from the interior neck to the interior shoulder; and the interior shoulder angle is greater than the exterior shoulder angle.
  • the interior shoulder and the exterior shoulder may not be a single angle or radius but multiple straight and curved segments connected together.
  • the present invention provides that any of the embodiments may include the interior shoulder further comprising a parallel region that is parallel to the exterior shoulder and a nonparallel region that is not parallel to the exterior shoulder.
  • any of the embodiments may include a nose adapted to fit a 5.56 mm, 7.62 mm, 12.7 mm, 14.5 mm, .223, .243, .277, .300, .308, .338, or a .50 caliber projectile.
  • the nose may mate to a middle body of a 5.56 mm, 7.62 mm, 12.7 mm, 14.5 mm, .223, .243, .277, .300, .308, .338, or a .50 caliber ammunition cartridge.
  • any of the embodiments may include a shortened neck that is reduced by 5 to 100% compared to the neck of a conventional ammunition cartridge, e.g., 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%,
  • the present invention provided polymer ammunition cases (cartridges) injection molded over a primer insert and methods of making thereof.
  • the present invention provided polymer ammunition noses that mate to the polymer ammunition cases to be loaded to make polymer ammunition and methods of making thereof.
  • FIG. 1 depicts a side, cross-sectional view of a polymeric cartridge case according to one embodiment of the present invention
  • FIG. 2 depicts a side, cross-sectional view of a portion of the polymeric cartridge case according to one embodiment of the present invention
  • FIG. 3 depicts a side, cross-sectional view of a polymeric cartridge case having a diffuser according to one embodiment of the present invention
  • FIGS. 4-10 depict a partial view of a 2 piece polymer case having a nose and a mid-case connected at a joint.
  • FIG. 11 depict a side, cross-sectional view case of the various dimensions of embodiments of the noses
  • FIGS. 12A-41B depict a side, cross-sectional view case of the various noses that can be substituted for the generic nose in FIG. 1 to form a polymeric cartridge case.
  • FIG. 42A, 42C, 42D and 42E depict a side, cross-sectional view of a nontraditional ammunition cartridges
  • FIG. 42B depicts a side, elevation view of a nontraditional ammunition cartridge.
  • Reliable cartridge manufacture requires uniformity from one cartridge to the next in order to obtain consistent ballistic performance.
  • proper bullet seating and bullet-to- casing fit is required. In this manner, a desired pressure develops within the casing during firing prior to bullet and casing separation.
  • bullets employ a cannelure, which is a slight annular depression formed in a surface of the bullet at a location determined to be the optimal seating depth for the bullet. In this manner, a visual inspection of a cartridge could determine whether or not the bullet is seated at the proper depth.
  • One of two standard procedures is incorporated to lock the bullet in its proper location.
  • One method is the crimping of the entire end of the casing into the cannelure.
  • a second method does not crimp the casing end; rather the bullet is pressure fitted into the casing.
  • the polymeric ammunition cartridges of the present invention are of a caliber typically carried by soldiers in combat for use in their combat weapons.
  • the present invention is not limited to the described caliber and is believed to be applicable to other calibers as well.
  • the ammunition and ammunition cartridge as well as the nose and base used to assemble the ammunition and the cartridge has a standardized size, shape and dimensions based on the caliber and chamber of the gun in which it is chambered.
  • the chamber and the ammunition mate such that they have the same characteristics.
  • the specific neck, shoulder, case diameter projectile aperture, and case length are known to the skilled and those standard measurements are available and known.
  • the ammunition and ammunition cartridge as well as the nose and base used to assemble the ammunition and the cartridge have a nonstandardized size, shape and dimensions as described and illustrated herein.
  • FIG. 1 depicts a side, cross-sectional view of a polymeric cartridge case according to one embodiment of the present invention.
  • a cartridge 10 suitable for use with high velocity rifles is shown manufactured with a polymer casing 12 showing a powder chamber 14 with projectile (not shown) inserted into the forward end opening 16.
  • Polymer casing 12 has a substantially cylindrical open-ended polymeric bullet-end 18 extending from forward end opening 16 rearward to opposite end 20.
  • the bullet-end component 18 may be formed with coupling end 22 formed on end 20. Coupling end 22 is shown as a female element, but may also be configured as a male element in alternate embodiments of the invention.
  • the forward end of bullet-end component 18 has a shoulder 24 forming chamber neck 26.
  • the bullet-end component typically has a wall thickness between about 0.003 and about 0.200 inches and more preferably between about 0.005 and more preferably between about 0.150 inches about 0.010 and about 0.050 inches.
  • the middle body component 28 is connected to a substantially cylindrical coupling element 30 of the substantially cylindrical insert 32.
  • Coupling element 30, as shown may be configured as a male element, however, all combinations of male and female configurations is acceptable for coupling elements 30 and coupling end 22 in alternate embodiments of the invention.
  • Coupling end 22 of bullet-end component 18 fits about and engages coupling element 30 of a substantially cylindrical insert 32.
  • the substantially cylindrical insert 32 includes a substantially cylindrical coupling element 30 extending from a bottom surface 34 that is opposite a top surface 36. Located in the top surface 36 is a primer recess 38 that extends toward the bottom surface 34.
  • a primer flash hole 40 is located in the primer flash hole 40 and extends through the bottom surface 34 into the powder chamber 14.
  • the coupling end 22 extends the polymer through the primer flash hole 40 to form an aperture coating 42 while retaining a passage from the top surface 36 through the bottom surface 34 and into the powder chamber 14 to provide support and protection about the primer flash hole 40.
  • the coupling end 22 interlocks with the substantially cylindrical coupling element 30, through the coupling element 30 that extends with a taper to a smaller diameter at the tip 44 to form a physical interlock between substantially cylindrical insert 32 and middle body component 28.
  • Polymer casing 12 also has a substantially cylindrical open-ended middle body component 28.
  • the middle body component extends from a forward end opening 16 to coupling element 22.
  • the middle body component typically has a wall thickness between about 0.003 and about 0.200 inches and more preferably between about 0.005 and more preferably between about 0.150 inches about 0.010 and about 0.050 inches.
  • the bullet-end 16, middle body 18 and bottom surface 34 define the interior of powder chamber 14 in which the powder charge (not shown) is contained.
  • the interior volume of powder chamber 14 may be varied to provide the volume necessary for complete filling of the chamber 14 by the propellant chosen so that a simplified volumetric measure of propellant can be utilized when loading the cartridge. Either a particulate or consolidated propellant can be used.
  • the substantially cylindrical insert 32 also has a flange 46 cut therein and a primer recess 38 formed therein for ease of insertion of the primer (not shown).
  • the primer recess 38 is sized so as to receive the primer (not shown) in an interference fit during assembly.
  • a primer flash hole 40 communicates through the bottom surface 34 of substantially cylindrical insert 32 into the powder chamber 14 so that upon detonation of primer (not shown) the powder in powder chamber 14 will be ignited.
  • Projectile (not shown) is held in place within chamber case neck 26 at forward opening 16 by an interference fit. Mechanical crimping of the forward opening 16 can also be applied to increase the bullet pull force.
  • the bullet (not shown) may be inserted into place following the completion of the filling of powder chamber 14.
  • Projectile (not shown) can also be injection molded directly onto the forward opening 16 prior to welding or bonding together using solvent, adhesive, spin-welding, vibration- welding, ultrasonic-welding or laser- welding techniques.
  • the welding or bonding increases the joint strength so the casing can be extracted from the hot gun casing after firing at the cook-off temperature.
  • the bullet-end and bullet components can then be welded or bonded together using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques.
  • the welding or bonding increases the joint strength so the casing can be extracted from the hot gun casing after firing at the cook-off temperature.
  • An optional first and second annular grooves may be provided in the bullet-end in the interlock surface of the male coupling element to provide a snap-fit between the two components.
  • the cannelures formed in a surface of the bullet at a location determined to be the optimal seating depth for the bullet. Once the bullet is inserted into the casing to the proper depth to lock the bullet in its proper location.
  • One method is the crimping of the entire end of the casing into the cannelures.
  • the bullet-end and middle body components can then be welded or bonded together using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques.
  • the welding or bonding increases the joint strength so the casing can be extracted from the hot gun casing after firing at the cook-off temperature.
  • FIG. 2 depicts a side, cross-sectional view of a portion of the polymeric cartridge case according to one embodiment of the present invention.
  • a portion of a cartridge suitable for use with high velocity rifles is shown manufactured with a polymer casing 12 showing a powder chamber 14.
  • Polymer casing 12 has a substantially cylindrical opposite end 20.
  • the bullet-end component 18 may be formed with coupling end 22 formed on end 20.
  • Coupling end 22 is shown as a female element, but may also be configured as a male element in alternate embodiments of the invention.
  • the middle body component (not shown) is connected to a substantially cylindrical coupling element 30 of the substantially cylindrical insert 32.
  • Coupling element 30, as shown may be configured as a male element, however, all combinations of male and female configurations is acceptable for coupling elements 30 and coupling end 22 in alternate embodiments of the invention.
  • Coupling end 22 fits about and engages coupling element 30 of a substantially cylindrical insert 32.
  • the substantially cylindrical insert 32 includes a substantially cylindrical coupling element 30 extending from a bottom surface 34 that is opposite a top surface 36. Located in the top surface 36 is a primer recess 38 that extends toward the bottom surface 34.
  • a primer flash hole 40 is located in the primer recess 28 and extends through the bottom surface 34 into the powder chamber 14.
  • the coupling end 22 extends the polymer through the primer flash hole 40 to form an aperture coating 42 while retaining a passage from the top surface 36 through the bottom surface 34 and into the powder chamber 14 to provide support and protection about the primer flash hole 40.
  • the coupling end 22 interlocks with the substantially cylindrical coupling element 30, through the coupling element 30 that extends with a taper to a smaller diameter at the tip 44 to form a physical interlock between substantially cylindrical insert 32 and middle body component 28.
  • Polymer casing 12 also has a substantially cylindrical open-ended middle body component 28.
  • FIG. 3 depicts a side, cross-sectional view of a polymeric cartridge case having a diffuser according to one embodiment of the present invention.
  • the diffuser 50 is a device that is used to divert the affects of the primer off of the polymer and directing it to the flash hole. The affects being the impact from igniting the primer as far as pressure and heat.
  • a cartridge 10 suitable for use with high velocity rifles is shown manufactured with a polymer casing 12 showing a powder chamber 14 with projectile (not shown) inserted into the forward end opening 16.
  • Polymer casing 12 has a substantially cylindrical open-ended polymeric bullet-end 18 extending from forward end opening 16 rearward to the opposite end 20.
  • the bullet-end component 18 may be formed with coupling end 22 formed on end 20. Coupling end 22 is shown as a female element, but may also be configured as a male element in alternate embodiments of the invention.
  • the forward end of bullet-end component 18 has a shoulder 24 forming chamber neck 26.
  • the middle body component 28 is connected to a substantially cylindrical coupling element 30 of the substantially cylindrical insert 32.
  • Coupling element 30, as shown may be configured as a male element, however, all combinations of male and female configurations is acceptable for coupling elements 30 and coupling end 22 in alternate embodiments of the invention.
  • Coupling end 22 of bullet-end component 18 fits about and engages coupling element 30 of a substantially cylindrical insert 32.
  • the substantially cylindrical insert 32 includes a substantially cylindrical coupling element 30 extending from a bottom surface 34 that is opposite a top surface 36. Located in the top surface 36 is a primer recess 38 that extends toward the bottom surface 34.
  • a primer flash hole 40 is located in the primer flash hole 40 and extends through the bottom surface 34 into the powder chamber 14.
  • the coupling end 22 extends the polymer through the primer flash hole 40 to form an aperture coating 42 while retaining a passage from the top surface 36 through the bottom surface 34 and into the powder chamber 14 to provides support and protection about the primer flash hole 40.
  • the coupling end 22 interlocks with the substantially cylindrical coupling element 30, through the coupling element 30 that extends with a taper to a smaller diameter at the tip 44 to form a physical interlock between substantially cylindrical insert 32 and middle body component 28.
  • Polymer casing 12 also has a substantially cylindrical open-ended middle body component 28. The middle body component extends from a forward end opening 16 to coupling element 22.
  • a primer recess 38 that extends toward the bottom surface 34 with a diffuser 50 positioned in the primer recess 38.
  • the diffuser 50 includes a diffuser aperture 52 that aligns with the primer flash hole 40.
  • the diffuser 50 is a device that is used to divert the affects of the primer (not shown) off of the polymer. The affects being the impact from igniting the primer as far as pressure and heat to divert the energy of the primer off of the polymer and directing it to the flash hole.
  • FIG. 4 depicts a partial view of a 2 piece polymer case having a nose and a mid-case connected at a joint.
  • the substantially cylindrical open-ended polymeric bullet-end 18 having a shoulder 24a forming chamber neck 26a and a bullet (not shown).
  • One embodiment includes modifications to strengthen the neck of the mouth 58 and to the internal area 62 to reduce nose tearing and lodging in the chamber.
  • the substantially cylindrical open-ended polymeric bullet-end 18 can include a lock (e.g., 0.030 x 0.003) and added a step to allow for the lock to flex out during firing. Polymer was added to the external area to strengthen the neck of the mouth 58 and to the internal area 62.
  • the interference of the bullet to the neck 26a was increased by adding polymer to the inside of the neck 26a and the exit lock modified by adding an angle to the rim 66.
  • the substantially cylindrical open-ended polymeric bullet-end 18 includes an external shoulder 24a and an external neck 26a that are a fixed dimension as requires by the chamber (not shown) in which they fit. As a result, the shoulder length extending from the external neck 26a to the external side wall 29a is of a fixed length. Similarly, the external shoulder plane angle 27a to the external neck 26a or alternatively to the external side wall 29a is fixed relative to the chamber. Similarly, the substantially cylindrical open-ended polymeric bullet-end 18 includes an internal shoulder 24b and an internal neck 26b that are not fixed dimension and may be varied as desired.
  • the internal shoulder length 25a is determined by the distance from the internal shoulder top 25b that extends from the internal neck 26b to internal shoulder bottom 25c that extends from the internal side wall 29b.
  • This internal shoulder length 25a may be varied as necessary to achieve the desired properties (e.g., pressure, velocity, temperature, etc.).
  • the internal shoulder plane angle 27b is defined as the angle between the internal shoulder 24b, and the internal neck 26b or the angle between the internal shoulder 24b and the internal side wall 29b.
  • the external shoulder 24a, the external neck 26a, and the external shoulder plane angle 27a have fixed values to mate them to the chamber.
  • the relationship between the external shoulder 24a, an external neck 26a, and external shoulder plane angle 27a are caliber ammunition and weapons platform specific and have values.
  • the internal shoulder 24b, the internal neck 26b, and the internal shoulder plane angle 27b have no such constraints and can be varied to form the desired internal shoulder profile.
  • the internal shoulder plane angle 27b is the smaller than the external shoulder plane angle 27a, there is a larger distance from the internal shoulder 24b to the external shoulder 24a as you move up the shoulder toward internal shoulder 24b.
  • the internal shoulder length 25a is determined by the distance from the internal shoulder top 25b that extends from the internal neck 26b to internal shoulder bottom 25c that extends from the internal side wall 29b. This internal shoulder length 25a may be varied as necessary to achieve the desired properties (e.g., pressure, velocity, temperature, etc.).
  • the internal shoulder plane angle 27b is defined as the angle between the internal shoulder 24b, and the internal neck 26b or the angle between the internal shoulder 24b and the internal side wall 29b.
  • FIG. 5 depicts a partial view of a 2 piece polymer case having a nose and a mid-case connected at a joint.
  • FIG. 5 depicts a partial view of the substantially cylindrical open-ended polymeric bullet-end 18 having a shoulder 24a forming chamber neck 26a and a bullet aperture 58.
  • the interference of the bullet (not shown) to the neck 26a can be increased by adding polymer to the inside of the neck 26a or making the neck from a more ridged polymer.
  • the substantially cylindrical open-ended polymeric bullet-end 18 includes an external shoulder 24a and an external neck 26a that are of fixed dimension as requires by the chamber (not shown) in which they fit. As a result, the shoulder length extends from the external neck 26a to the external side wall 29a as a fixed length.
  • the external shoulder plane angle 27a relative to the external neck 26a is a fixed angle relative to the chamber.
  • the substantially cylindrical open-ended polymeric bullet-end 18 includes an internal shoulder 24b and an internal neck 26b that are not of fixed dimension but may be varied as desired.
  • the internal shoulder 24b may be connected to one or more transition segments 24c to form a transition from the internal shoulder 24b to the internal neck 26b or the internal side wall 29b.
  • the one or more transition segments 24c may be straight, curved or a mix thereof.
  • the internal shoulder 24b is connected to one or more transition segments 24c (although 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1 6, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 or more segments can be used).
  • the internal shoulder 24b extends from the internal shoulder top 25b to the internal shoulder bottom 25c.
  • the internal shoulder 24b has a shoulder plane angle 27b that is the same as the external shoulder plane angle 27a. Therefore the internal shoulder 24b is parallel to the shoulder 24a over the internal shoulder length.
  • the one or more transition segments 24c have a transition plane angle 27c that is larger than the external shoulder plane angle 27a and the internal shoulder plane angle 27b.
  • the one or more transition segments 24c extend from the internal shoulder bottom 25c to the transition bottom 25d; however, the transition plane angle 27c is not the same as the external shoulder plane angle 27a or the internal shoulder plane angle 27b.
  • this example depicts an internal shoulder 24b and one or more transition segments 24c, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, or more internal shoulders and/or transition segments 24c can be used.
  • the internal shoulder 24b is parallel to the external shoulder 24a over the internal shoulder length.
  • the transition plane angle 27c can be adjusted to move the transition bottom 25d up and down the interior side wall 29b.
  • the number of transition segments 24c can be varied to adjust to move the transition bottom 25d up and down the interior side wall 29b.
  • the transition segments 24c may be a plethora of short segments connected together to from an arc or radii. The number of transition segments 24c may be such that an almost smooth arc is formed or so few that an angular profile is formed.
  • the angle of each transition segments 24c relative to the adjacent transition segments may be similar or different as necessary.
  • the external shoulder 24a, the external neck 26a, and the external shoulder plane angle 27a have fixed values to mate them to the chamber.
  • the relationship between the external shoulder 24a, an external neck 26a, and external shoulder plane angle 27a are caliber ammunition and weapons platform specific and have values.
  • the internal shoulder 24b, the internal neck 26b, and the internal shoulder plane angle 27b have no such constraints and can be varied to form the desired internal shoulder profile.
  • FIGS. 6- 10 depict a partial view of a 2 piece polymer case having a nose and a mid-case connected at a joint.
  • the joint may be located in the middle body component 28 or in the middle body-shoulder transition region 3 la to 3 lb.
  • the joint 33a and 33b may be located anywhere within the middle body-shoulder transition region 31a to 31b.
  • the mid-case-shoulder transition region 31a covers the neck 26 to shoulder transition area and extends to the shoulder-mid-case transition region.
  • the mid-case -shoulder transition region 31b is located on the upper portion of the middle body component 28.
  • the joint 31 may be of any configuration that allows the connection of the nose 18 and the middle body component 28.
  • the joint may be a butt joint, a bevel lap splice joint, a half lap joint, a lap joint, a square joint, a single bevel joint, double bevel joint, single J joint, double J joint, single v joint, double v joint, single U joint, double U joint, flange joint, tee joint, flare joint, edge joint, rabbit joint, dado and any other joint.
  • the joint type may be modified to allow a gap at regions in the joint.
  • a dado joint may be formed where the fit is not square allowing gaps to form at the corner of the dado.
  • a compound joint may be used, e.g., rabbit joint transitioning to a butt joint transitioning to a bevel joint (modified to have a gap in the fit) transitioning to a butt joint and ending in a lap joint or rabbit joint.
  • the angle of the joint need not be at 90 and 180 degrees.
  • the joint angle may be at any angle from 0-180 degrees and may vary along the joint. For instance the joint may start at a 0 degree move to a +45 degree angle transition to a -40 degree angle and conclude by tapering at a 10 degree angle.
  • the variation in the joint type, position, and internal shoulder length, internal shoulder angle, transition region angle, transition region length and other parameters are shown in FIGS. 6-10.
  • the ammunition, ammunition cartridge, and components may chamber a standard projectile (e.g., .45 mm, 5.56 mm, 6.5 mm, 6.8 mm, 7 mm, 7.62 mm, 8 mm, 9 mm, 10 mm, 12.7 mm, 14.5 mm, 20 mm, 25 mm, 30 mm, 40 mm, .22, .22-250, .223, .243, .25-06, .270, .277, .300, .30-30, .30-40, 30.06, .300, .303, .308, .338, .357, .38, .380, .40, .44, .45, .45-70, .50 caliber) or a nonstandard projectile in a non-traditional cartridge.
  • the nontraditional cartridge may be a result of the neck diameter, neck length, neck thickness, shoulder angle, shoulder length, shoulder angle, shoulder thickness may be varied to form a unique ammunition
  • FIG. 1 1 illustrates a generic embodiment of the nose to define the various angles of the nose because the caliber of the ammunition dictates the size and shape of the nose shoulder angle and shoulder length as well as the neck length. The dimensions are listed in the table below as the midpoint and are intended to include a ran e of + 10% for a given embodiment. Diameter Diameter Diameter Angle Angle
  • the polymeric ammunition cartridges of the present invention are of a caliber typically carried by soldiers in combat for use in their combat weapons.
  • the present invention is not limited to the described caliber and is believed to be applicable to other calibers as well.
  • the ammunition and ammunition cartridge as well as the nose and base used to assemble the ammunition and the cartridge has a standardized size, shape and dimensions based on the caliber and chamber of the gun in which it is chambered.
  • the chamber and the ammunition mate such that they have the same characteristics.
  • the specific neck, shoulder, case diameter projectile aperture, and case length are known to the skilled and those standard measurements are available and known.
  • the ammunition and ammunition cartridge as well as the nose and base used to assemble the ammunition and the cartridge have a nonstandardized size, shape and dimensions as described and illustrated herein.
  • FIGS. 12A-41B To illustrate some embodiments of the nontraditional cases various nose configurations are shown in FIGS. 12A-41B.
  • the nose is connected to the mid-body to form an ammunition cartridge.
  • the noses shown in any of FIGS. 12A-41B may be connected to the mid- body as in FIG. 1 to form nontraditional cases and ammunition.
  • FIG. 42A, 42C, 42D and 42E depict a side, cross-sectional view of a nontraditional ammunition cartridges
  • FIG. 42B depicts a side, elevation view of a nontraditional ammunition cartridge.
  • FIGS. 12A-41B illustrate some of the nontraditional nose configurations where the neck length (defined as the distance from the shoulder to the projectile aperture) is varied and may be 0%, 1%,
  • FIGS. 12A-41B illustrate some of the nontraditional nose configurations where the shoulder angle is varied and may be any angle between 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90 degrees and incremental variations (e.g., .1, .2, .3, .4, .5, .6, .7, .8, or .9) thereof
  • incremental variations e.g., .1, .2, .3, .4, .5, .6, .7, .8, or .9
  • FIGS. 12A-41B illustrate some of the nontraditional nose configurations where the shoulder length is varied and may be any length, e.g., + 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%
  • FIGS. 12A-41B illustrate some of the nontraditional nose configurations where the neck diameter is increased by 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%
  • the present invention includes automatic and semiautomatic rifles having a chamber that mates and fits the nontraditional ammunition of the instant invention.
  • the interior neck, exterior neck, external shoulder and the nose junction may individually be textured in the form of one or more selected from etching, grooves, hatching, knurling, a texture, rings, and free formed textures.
  • the chamber neck 26 and the internal neck 26b are shown as generally parallel to each other; however, the chamber neck 26 and the internal neck 26b may be tapered such that at the mouth 58 the distance from the chamber neck 26 to the internal neck 26b is less than the distance from the chamber neck 26 to the internal neck 26b at the shoulder 24.
  • the mouth 58 may include a groove (not shown) that extends around the internal neck 26b.
  • the internal neck 26b may include a texturing; however, distance from the internal neck 26b to the chamber neck 26 may be accessed using the average distance from the top texture surface (not shown) to the bottom texture surface (not shown) of the texturing, the top texture surface (not shown) of the texturing or the bottom texture surface (not shown) of the texturing.
  • the insert may be made by any method including MIM, cold forming, milling, machining, printing, 3D printing, etching and so forth.
  • the polymeric and composite casing components may be injection molded including overmolding into the flash aperture.
  • Polymeric materials for the bullet-end and middle body components must have propellant compatibility and resistance to gun cleaning solvents and grease, as well as resistance to chemical, biological and radiological agents.
  • the polymeric materials must have a temperature resistance higher than the cook -off temperature of the propellant, typically about 320°F.
  • the polymeric materials must have elongation-to-break values that to resist deformation under interior ballistic pressure as high as 60,000 psi in all environments (temperatures from about -65 to about 320°F and humidity from 0 to 100% RH).
  • the middle body component is either molded onto or snap-fit to the casing head -end component after which the bullet- end component is snap-fit or interference fit to the middle body component.
  • the components may be formed from high-strength polymer, composite or ceramic.
  • suitable high strength polymers include composite polymer material including a tungsten metal powder, nylon 6/6, nylon 6, and glass fibers; and a specific gravity in a range of 3-10.
  • the tungsten metal powder may be 50%-96% of a weight of the bullet body.
  • the polymer material also includes about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of nylon 6/6, about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of nylon 6, and about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of glass fibers. It is most suitable that each of these ingredients be included in amounts less than 10% by weight.
  • the cartridge casing body may be made of a modified ZYTEL resin, available from E.I. DuPont De Nemours Co., a modified 612 nylon resin, modified to increase elastic response.
  • suitable polymers include polyurethane prepolymer, cellulose, fluoro-polymer, ethylene inter-polymer alloy elastomer, ethylene vinyl acetate, nylon, polyether imide, polyester elastomer, polyester sulfone, polyphenyl amide, polypropylene, polyvinylidene fluoride or thermoset polyurea elastomer, acrylics, homopolymers, acetates, copolymers, acrylonitrile-butadinen-styrene, thermoplastic fluoro polymers, inomers, polyamides, polyamide-imides, polyacrylates, polyatherketones, polyaryl-sulfones, polybenzimidazoles, polycarbonates, polybutylene, terephthalates, polyether imides
  • suitable polymers also include aliphatic or aromatic polyamide, polyeitherimide, polysulfone, polyphenylsulfone, poly-phenylene oxide, liquid crystalline polymer and polyketone.
  • suitable composites include polymers such as polyphenylsulfone reinforced with between about 30 and about 70 wt %, and preferably up to about 65 wt % of one or more reinforcing materials selected from glass fiber, ceramic fiber, carbon fiber, mineral fillers, organo nanoclay, or carbon nanotube.
  • Preferred reinforcing materials, such as chopped surface-treated E-glass fibers provide flow characteristics at the above-described loadings comparable to unfilled polymers to provide a desirable combination of strength and flow characteristics that permit the molding of head-end components.
  • Composite components can be formed by machining or injection molding. Finally, the cartridge case must retain sufficient joint strength at cook-off temperatures. More specifically, polymers suitable for molding of the projectile-end component have one or more of the following properties: Yield or tensile strength at -65°F > 10,000 psi Elongation-to-break at -65°F > 15% Yield or tensile strength at 73°F > 8,000 psi Elongation-to-break at 73°F > 50% Yield or tensile strength at 320°F>4,000 psi Elongation-to-break at 320°F>80%.
  • Polymers suitable for molding of the middle- body component have one or more of the following properties: Yield or tensile strength at -65 °F > 10,000 psi Yield or tensile strength at 73°F > 8,000 psi Yield or tensile strength at 320°F > 4,000 psi.
  • polymers suitable for use in the present invention thus include polyphenylsulfones; copolymers of polyphenylsulfones with polyether-sulfones or polysulfones; copolymers and blends of polyphenylsulfones with polysiloxanes; poly(etherimide-siloxane); copolymers and blends of polyetherimides and polysiloxanes, and blends of polyetherimides and poly(etherimide-siloxane) copolymers; and the like.
  • polyphenylsulfones and their copolymers with poly-sulfones or polysiloxane that have high tensile strength and elongation-to-break to sustain the deformation under high interior ballistic pressure are particularly preferred.
  • Such polymers are commercially available, for example, RADEL R5800 polyphenylesulfone from Solvay Advanced Polymers.
  • the polymer can be formulated with up to about 10 wt % of one or more additives selected from internal mold release agents, heat stabilizers, anti-static agents, colorants, impact modifiers and UV stabilizers.
  • the polymers of the present invention can also be used for conventional two-piece metal-plastic hybrid cartridge case designs and conventional shotgun shell designs.
  • One example of such a design is an ammunition cartridge with a one-piece substantially cylindrical polymeric cartridge casing body with an open projectile-end and an end opposing the projectile-end with a male or female coupling element; and a cylindrical metal cartridge casing head-end component with an essentially closed base end with a primer hole opposite an open end having a coupling element that is a mate for the coupling element on the opposing end of the polymeric cartridge casing body joining the open end of the head-end component to the opposing end of the polymeric cartridge casing body.
  • the high polymer ductility permits the casing to resist breakage.
  • One embodiment includes a 2 cavity prototype mold having an upper portion and a base portion for a 5.56 case having a metal insert over-molded with a Nylon 6 (polymer) based material.
  • the polymer in the base includes a lip or flange to extract the case from the weapon.
  • One 2-cavity prototype mold to produce the upper portion of the 5.56 case can be made using a stripper plate tool using an Osco hot spur and two subgates per cavity.
  • Another embodiment includes a subsonic version, the difference from the standard and the subsonic version is the walls are thicker thus requiring less powder. This will decrease the velocity of the bullet thus creating a subsonic round.
  • the extracting inserts is used to give the polymer case a tough enough ridge and groove for the weapons extractor to grab and pull the case out the chamber of the gun.
  • the extracting insert is made of 17-4 ss that is hardened to 42-45rc.
  • the insert may be made of aluminum, brass, cooper, steel or even an engineered resin with enough tensile strength.
  • the insert is over molded in an injection molded process using a nano clay particle filled Nylon material.
  • the inserts can be machined or stamped.
  • an engineered resin able to withstand the demand on the insert allows injection molded and/or even transfer molded.
  • the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), "including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
  • A, B, C, or combinations thereof refers to all permutations and combinations of the listed items preceding the term.
  • A, B, C, or combinations thereof is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB.
  • expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth.
  • BB BB
  • AAA AAA
  • AB BBC
  • AAABCCCCCC CBBAAA
  • CABABB CABABB

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Toys (AREA)

Abstract

The present invention provides polymer ammunition, ammunition cartridge, ammunition case, and portions thereof having traditional and non-traditional cartridge shapes or profiles.

Description

MULTI-PIECE POLYMER AMMUNITION, CARTRIDGE AND COMPONENTS Technical Field of the Invention
The present invention relates in general to the field of ammunition, specifically to compositions of matter and methods of making and using polymeric ammunition cartridge casings having at least 2 portions. Background Art
Without limiting the scope of the invention, its background is described in connection with lightweight polymer cartridge casing ammunition. Conventional ammunition cartridge casings for rifles and machine guns, as well as larger caliber weapons, are made from brass, which is heavy, expensive, and potentially hazardous. There exists a need for an affordable lighter weight replacement for brass ammunition cartridge cases that can increase mission performance and operational capabilities. Lightweight polymer cartridge casing ammunition must meet the reliability and performance standards of existing fielded ammunition and be interchangeable with brass cartridge casing ammunition in existing weaponry. Reliable cartridge casings manufacture requires uniformity (e.g., bullet seating, bullet-to-casing fit, casing strength, etc.) from one cartridge to the next in order to obtain consistent pressures within the casing during firing prior to bullet and casing separation to create uniformed ballistic performance. Plastic cartridge casings have been known for many years but have failed to provide satisfactory ammunition that could be produced in commercial quantities with sufficient safety, ballistic, handling characteristics, and survive physical and natural conditions to which it will be exposed during the ammunition's intended life cycle; however, these characteristics have not been achieved.
Shortcomings of the known methods of producing plastic or substantially plastic ammunition include the possibility of the projectile being pushed into the cartridge casing, the bullet being held too light such that the bullet can fall out, the bullet being held insufficient to create sufficient chamber pressure, the bullet pull not being uniform from round to round, and the cartridge not being able to maintain the necessary pressure, portions of the cartridge casing breaking off upon firing causing the weapon to jam or damage or danger when subsequent rounds are fired or when the casing portions themselves become projectiles. To overcome the above shortcomings, improvements in cartridge case design and performance polymer materials are needed.
Disclosure of the Invention
The present invention provides a nose for an ammunition cartridge comprising: a generally cylindrical neck having a projectile aperture at a first end; a shoulder comprising a shoulder top connected to the generally cylindrical neck that extends to a shoulder bottom; a nose junction positioned around the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to mate to a base junction in an ammunition cartridge, wherein the skirt is positioned on the inside of the nose and extends away from the shoulder bottom.
The present invention provides a multi piece ammunition cartridge comprising: an primer insert comprising a top surface opposite a bottom surface and a substantially cylindrical coupling element that extends from the bottom surface, a primer recess in the top surface that extends toward the bottom surface, a primer flash hole aperture positioned in the primer recess to extend through the bottom surface, and a groove positioned around the primer flash hole aperture in the primer recess; a middle body comprising a body extending from a body half lap junction to the primer insert, wherein the body is molded at least partially the primer insert by molding over the cylindrical coupling element and into the primer flash hole aperture and into the groove to form a primer flash hole; and a nose connected to the middle body, wherein the nose comprises a generally cylindrical neck having a projectile aperture at a first end; a shoulder comprising a shoulder top connected to the generally cylindrical neck that extends to a shoulder bottom; a nose junction positioned around the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to mate to the body half lap junction to form an ammunition cartridge, wherein a propellant chamber is formed between the projectile aperture and the primer flash hole.
The present invention provides a method of making a multi piece ammunition cartridge comprising: providing an primer insert comprising a top surface opposite a bottom surface and a substantially cylindrical coupling element that extends from the bottom surface, a primer recess in the top surface that extends toward the bottom surface, a primer flash hole aperture positioned in the primer recess to extend through the bottom surface, and a groove positioned around the primer flash hole aperture in the primer recess; forming a middle body by overmolding the primer insert wherein the middle body comprising a body extending from a body half lap junction to the primer insert, wherein the body is molded at least partially the primer insert by molding over the cylindrical coupling element and into the primer flash hole aperture and into the groove to form a primer flash hole; connecting a nose to the middle body, wherein the nose comprises a generally cylindrical neck having a projectile aperture at a first end; a shoulder comprising a shoulder top connected to the generally cylindrical neck that extends to a shoulder bottom; a nose junction positioned around the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to mate to the body half lap junction to form an ammunition cartridge, and a propellant chamber is formed between the projectile aperture and the primer flash hole.
The present invention provides a multi piece ammunition cartridge comprising: an primer insert comprising a top surface opposite a bottom surface and a substantially cylindrical coupling element that extends from the bottom surface, a primer recess in the top surface that extends toward the bottom surface, a primer flash hole aperture positioned in the primer recess to extend through the bottom surface, and a groove positioned around the primer flash hole aperture in the primer recess; a middle body comprising a body extending from a body half lap junction to the primer insert, wherein the body is molded at least partially the primer insert by molding over the cylindrical coupling element and into the primer flash hole aperture and into the groove to form a primer flash hole; and a shortened neck having a projectile aperture at a first end, wherein the shortened neck is reduced by 25-100% of the neck height of a standard cartridge neck; a shoulder comprising a shoulder top connected to the shortened neck that extends to a shoulder bottom; a nose junction positioned adjacent to the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to mate to the body half lap junction to form an ammunition cartridge, wherein a propellant chamber is formed between the projectile aperture and the primer flash hole.
The present invention provides a nose for an ammunition cartridge comprising: a shortened neck having a projectile aperture at a first end, wherein the shortened neck is reduced by 25- 100% of the neck height of a standard cartridge neck; a shoulder comprising a shoulder top connected to the shortened neck that extends to a shoulder bottom; a nose junction positioned adjacent to the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to mate to a base junction in an ammunition cartridge, wherein the skirt is positioned on the inside of the nose and extends away from the shoulder bottom.
The present invention provides an ammunition cartridge having a reduced neck height comprising: a shortened neck having a projectile aperture, wherein the shortened neck is reduced by 25-100%) of the neck height of a standard cartridge neck; a shoulder extending from the shortened neck to a cartridge side wall; wherein the cartridge side wall extends from the shoulder to the base to form an interior propellant chamber; wherein the base comprises an extraction ring, a primer recess positioned in the base in communication with the propellant chamber through a flash hole that extends from the primer recess into the propellant chamber.
The present invention provides that any of the embodiments may include a nose comprising a polymer, a metal an alloy or a combination thereof. The present invention provides that any of the embodiments may include a middle body comprising a polymer, a metal an alloy or a combination thereof. The polymer may be a single polymer, a mixture of 2 or more polymers, a blend of 2 or more polymers, or copolymerization of multiple polymers. In addition, the polymers may be doped. The polymer comprises comprise one or more polymers selected from the group consisting of polyurethane prepolymer, cellulose, fluoro- polymer, ethylene inter-polymer alloy elastomer, ethylene vinyl acetate, nylon, poly ether imide, polyester elastomer, polyester sulfone, polyphenyl amide, polypropylene, polyvinylidene fluoride or thermoset polyurea elastomer, acrylics, homopolymers, acetates, copolymers, acrylonitrile-butadinen-styrene, thermoplastic fluoro polymers, inomers, polyamides, polyamide-imides, polyacrylates, polyatherketones, polyaryl-sulfones, polybenzimidazoles, polycarbonates, polybutylene, Polybutylene terephthalate, terephthalates, polyether imides, polyether sulfones, thermoplastic polyimides, thermoplastic polyurethanes, polyphenylene sulfides, polyethylene, polypropylene, polysulfones, polyvinylchlorides, styrene acrylonitriles, polystyrenes, polyphenylene, ether blends, styrene maleic anhydrides, polycarbonates, allyls, aminos, cyanates, epoxies, phenolics, unsaturated polyesters, bismaleimides, polyurethanes, silicones, vinylesters, urethane hybrids, polyphenyl sulfones, copolymers of polyphenyl sulfones with polyethersulfones or polysulfones, copolymers of poly-phenyl sulfones with siloxanes, blends of polyphenyl sulfones with polysiloxanes, poly(etherimide-siloxane) copolymers, blends of polyetherimides and polysiloxanes, and blends of polyetherimides and poly(etherimide- siloxane) copolymers.
The present invention provides that any of the embodiments may include a skirt adapted to flushly mate to a body half lap junction in an ammunition cartridge. However the overlapping junctions of the skirt and the middle body do not have to fit flush and may have a protrusion by the nose skirt or the mating middle body skirt. The present invention provides that any of the embodiments may include an angle formed between the groove and the skirt is between 40 and 140 degrees, between 80 and 110 degrees or between 85 and 95 degrees or about 90 degrees. Although the angle may be any angle between 0-180 degrees, e.g., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180 and incremental variations thereof. The present invention provides that any of the embodiments may include a shoulder angle on the outside that is not mirrored on the shoulder on the inside. For example, the present invention provides that any of the embodiments may include a generally cylindrical neck comprising an interior neck positioned opposite the generally cylindrical neck and an interior shoulder connected to the interior neck extending opposite the shoulder, wherein an exterior shoulder angle is from the generally cylindrical neck to the shoulder and an interior shoulder angle is from the interior neck to the interior shoulder; and the interior shoulder angle is greater than the exterior shoulder angle. In addition, the interior shoulder and the exterior shoulder may not be a single angle or radius but multiple straight and curved segments connected together. For example, the present invention provides that any of the embodiments may include the interior shoulder further comprising a parallel region that is parallel to the exterior shoulder and a nonparallel region that is not parallel to the exterior shoulder.
The present invention provides that any of the embodiments may include a nose adapted to fit a 5.56 mm, 7.62 mm, 12.7 mm, 14.5 mm, .223, .243, .277, .300, .308, .338, or a .50 caliber projectile. Similarly, the nose may mate to a middle body of a 5.56 mm, 7.62 mm, 12.7 mm, 14.5 mm, .223, .243, .277, .300, .308, .338, or a .50 caliber ammunition cartridge.
The present invention provides that any of the embodiments may include a shortened neck that is reduced by 5 to 100% compared to the neck of a conventional ammunition cartridge, e.g., 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%) and incremental variations thereof.
The present invention provided polymer ammunition cases (cartridges) injection molded over a primer insert and methods of making thereof. The present invention provided polymer ammunition noses that mate to the polymer ammunition cases to be loaded to make polymer ammunition and methods of making thereof.
Description of the Drawings
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:
FIG. 1 depicts a side, cross-sectional view of a polymeric cartridge case according to one embodiment of the present invention;
FIG. 2 depicts a side, cross-sectional view of a portion of the polymeric cartridge case according to one embodiment of the present invention;
FIG. 3 depicts a side, cross-sectional view of a polymeric cartridge case having a diffuser according to one embodiment of the present invention;
FIGS. 4-10 depict a partial view of a 2 piece polymer case having a nose and a mid-case connected at a joint.
FIG. 11 depict a side, cross-sectional view case of the various dimensions of embodiments of the noses;
FIGS. 12A-41B depict a side, cross-sectional view case of the various noses that can be substituted for the generic nose in FIG. 1 to form a polymeric cartridge case.
FIG. 42A, 42C, 42D and 42E depict a side, cross-sectional view of a nontraditional ammunition cartridges, while FIG. 42B depicts a side, elevation view of a nontraditional ammunition cartridge. Description of Embodiments
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.
To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as "a", "an" and "the" are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.
Reliable cartridge manufacture requires uniformity from one cartridge to the next in order to obtain consistent ballistic performance. Among other considerations, proper bullet seating and bullet-to- casing fit is required. In this manner, a desired pressure develops within the casing during firing prior to bullet and casing separation. Historically, bullets employ a cannelure, which is a slight annular depression formed in a surface of the bullet at a location determined to be the optimal seating depth for the bullet. In this manner, a visual inspection of a cartridge could determine whether or not the bullet is seated at the proper depth. Once the bullet is inserted into the casing to the proper depth, one of two standard procedures is incorporated to lock the bullet in its proper location. One method is the crimping of the entire end of the casing into the cannelure. A second method does not crimp the casing end; rather the bullet is pressure fitted into the casing.
The polymeric ammunition cartridges of the present invention are of a caliber typically carried by soldiers in combat for use in their combat weapons. The present invention is not limited to the described caliber and is believed to be applicable to other calibers as well. This includes various small and medium caliber munitions, including 5.45 mm, 5.56 mm, 6.5 mm, 6.8 mm, 7 mm, 7.62 mm, 8 mm, 9 mm, 10 mm, 12.7 mm, 14.5 mm, 20 mm, 25 mm, 30 mm, 40 mm, .22, .22-250, .223, .243, .25-06, .270, .277, .300, .30-30, .30-40, 30.06, .300, .303, .308, .338, .357, .38, .380, .40, .44, .45, .45-70, .50 BMG caliber ammunition, cases, cartridges and components of ammunition, cases, cartridges. The ammunition and ammunition cartridge as well as the nose and base used to assemble the ammunition and the cartridge has a standardized size, shape and dimensions based on the caliber and chamber of the gun in which it is chambered. The chamber and the ammunition mate such that they have the same characteristics. The specific neck, shoulder, case diameter projectile aperture, and case length are known to the skilled and those standard measurements are available and known. In other embodiments of the instant application, the ammunition and ammunition cartridge as well as the nose and base used to assemble the ammunition and the cartridge have a nonstandardized size, shape and dimensions as described and illustrated herein.
FIG. 1 depicts a side, cross-sectional view of a polymeric cartridge case according to one embodiment of the present invention. A cartridge 10 suitable for use with high velocity rifles is shown manufactured with a polymer casing 12 showing a powder chamber 14 with projectile (not shown) inserted into the forward end opening 16. Polymer casing 12 has a substantially cylindrical open-ended polymeric bullet-end 18 extending from forward end opening 16 rearward to opposite end 20. The bullet-end component 18 may be formed with coupling end 22 formed on end 20. Coupling end 22 is shown as a female element, but may also be configured as a male element in alternate embodiments of the invention. The forward end of bullet-end component 18 has a shoulder 24 forming chamber neck 26. The bullet-end component typically has a wall thickness between about 0.003 and about 0.200 inches and more preferably between about 0.005 and more preferably between about 0.150 inches about 0.010 and about 0.050 inches.
The middle body component 28 is connected to a substantially cylindrical coupling element 30 of the substantially cylindrical insert 32. Coupling element 30, as shown may be configured as a male element, however, all combinations of male and female configurations is acceptable for coupling elements 30 and coupling end 22 in alternate embodiments of the invention. Coupling end 22 of bullet-end component 18 fits about and engages coupling element 30 of a substantially cylindrical insert 32. The substantially cylindrical insert 32 includes a substantially cylindrical coupling element 30 extending from a bottom surface 34 that is opposite a top surface 36. Located in the top surface 36 is a primer recess 38 that extends toward the bottom surface 34. A primer flash hole 40 is located in the primer flash hole 40 and extends through the bottom surface 34 into the powder chamber 14. The coupling end 22 extends the polymer through the primer flash hole 40 to form an aperture coating 42 while retaining a passage from the top surface 36 through the bottom surface 34 and into the powder chamber 14 to provide support and protection about the primer flash hole 40. When contacted the coupling end 22 interlocks with the substantially cylindrical coupling element 30, through the coupling element 30 that extends with a taper to a smaller diameter at the tip 44 to form a physical interlock between substantially cylindrical insert 32 and middle body component 28. Polymer casing 12 also has a substantially cylindrical open-ended middle body component 28. The middle body component extends from a forward end opening 16 to coupling element 22. The middle body component typically has a wall thickness between about 0.003 and about 0.200 inches and more preferably between about 0.005 and more preferably between about 0.150 inches about 0.010 and about 0.050 inches.
The bullet-end 16, middle body 18 and bottom surface 34 define the interior of powder chamber 14 in which the powder charge (not shown) is contained. The interior volume of powder chamber 14 may be varied to provide the volume necessary for complete filling of the chamber 14 by the propellant chosen so that a simplified volumetric measure of propellant can be utilized when loading the cartridge. Either a particulate or consolidated propellant can be used.
The substantially cylindrical insert 32 also has a flange 46 cut therein and a primer recess 38 formed therein for ease of insertion of the primer (not shown). The primer recess 38 is sized so as to receive the primer (not shown) in an interference fit during assembly. A primer flash hole 40 communicates through the bottom surface 34 of substantially cylindrical insert 32 into the powder chamber 14 so that upon detonation of primer (not shown) the powder in powder chamber 14 will be ignited. Projectile (not shown) is held in place within chamber case neck 26 at forward opening 16 by an interference fit. Mechanical crimping of the forward opening 16 can also be applied to increase the bullet pull force. The bullet (not shown) may be inserted into place following the completion of the filling of powder chamber 14. Projectile (not shown) can also be injection molded directly onto the forward opening 16 prior to welding or bonding together using solvent, adhesive, spin-welding, vibration- welding, ultrasonic-welding or laser- welding techniques. The welding or bonding increases the joint strength so the casing can be extracted from the hot gun casing after firing at the cook-off temperature.
The bullet-end and bullet components can then be welded or bonded together using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. The welding or bonding increases the joint strength so the casing can be extracted from the hot gun casing after firing at the cook-off temperature. An optional first and second annular grooves (cannelures) may be provided in the bullet-end in the interlock surface of the male coupling element to provide a snap-fit between the two components. The cannelures formed in a surface of the bullet at a location determined to be the optimal seating depth for the bullet. Once the bullet is inserted into the casing to the proper depth to lock the bullet in its proper location. One method is the crimping of the entire end of the casing into the cannelures.
The bullet-end and middle body components can then be welded or bonded together using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. The welding or bonding increases the joint strength so the casing can be extracted from the hot gun casing after firing at the cook-off temperature.
FIG. 2 depicts a side, cross-sectional view of a portion of the polymeric cartridge case according to one embodiment of the present invention. A portion of a cartridge suitable for use with high velocity rifles is shown manufactured with a polymer casing 12 showing a powder chamber 14. Polymer casing 12 has a substantially cylindrical opposite end 20. The bullet-end component 18 may be formed with coupling end 22 formed on end 20. Coupling end 22 is shown as a female element, but may also be configured as a male element in alternate embodiments of the invention. The middle body component (not shown) is connected to a substantially cylindrical coupling element 30 of the substantially cylindrical insert 32. Coupling element 30, as shown may be configured as a male element, however, all combinations of male and female configurations is acceptable for coupling elements 30 and coupling end 22 in alternate embodiments of the invention. Coupling end 22 fits about and engages coupling element 30 of a substantially cylindrical insert 32. The substantially cylindrical insert 32 includes a substantially cylindrical coupling element 30 extending from a bottom surface 34 that is opposite a top surface 36. Located in the top surface 36 is a primer recess 38 that extends toward the bottom surface 34. A primer flash hole 40 is located in the primer recess 28 and extends through the bottom surface 34 into the powder chamber 14. The coupling end 22 extends the polymer through the primer flash hole 40 to form an aperture coating 42 while retaining a passage from the top surface 36 through the bottom surface 34 and into the powder chamber 14 to provide support and protection about the primer flash hole 40. When contacted the coupling end 22 interlocks with the substantially cylindrical coupling element 30, through the coupling element 30 that extends with a taper to a smaller diameter at the tip 44 to form a physical interlock between substantially cylindrical insert 32 and middle body component 28. Polymer casing 12 also has a substantially cylindrical open-ended middle body component 28.
FIG. 3 depicts a side, cross-sectional view of a polymeric cartridge case having a diffuser according to one embodiment of the present invention. The diffuser 50 is a device that is used to divert the affects of the primer off of the polymer and directing it to the flash hole. The affects being the impact from igniting the primer as far as pressure and heat. A cartridge 10 suitable for use with high velocity rifles is shown manufactured with a polymer casing 12 showing a powder chamber 14 with projectile (not shown) inserted into the forward end opening 16. Polymer casing 12 has a substantially cylindrical open-ended polymeric bullet-end 18 extending from forward end opening 16 rearward to the opposite end 20. The bullet-end component 18 may be formed with coupling end 22 formed on end 20. Coupling end 22 is shown as a female element, but may also be configured as a male element in alternate embodiments of the invention. The forward end of bullet-end component 18 has a shoulder 24 forming chamber neck 26.
The middle body component 28 is connected to a substantially cylindrical coupling element 30 of the substantially cylindrical insert 32. Coupling element 30, as shown may be configured as a male element, however, all combinations of male and female configurations is acceptable for coupling elements 30 and coupling end 22 in alternate embodiments of the invention. Coupling end 22 of bullet-end component 18 fits about and engages coupling element 30 of a substantially cylindrical insert 32. The substantially cylindrical insert 32 includes a substantially cylindrical coupling element 30 extending from a bottom surface 34 that is opposite a top surface 36. Located in the top surface 36 is a primer recess 38 that extends toward the bottom surface 34. A primer flash hole 40 is located in the primer flash hole 40 and extends through the bottom surface 34 into the powder chamber 14. The coupling end 22 extends the polymer through the primer flash hole 40 to form an aperture coating 42 while retaining a passage from the top surface 36 through the bottom surface 34 and into the powder chamber 14 to provides support and protection about the primer flash hole 40. When contacted the coupling end 22 interlocks with the substantially cylindrical coupling element 30, through the coupling element 30 that extends with a taper to a smaller diameter at the tip 44 to form a physical interlock between substantially cylindrical insert 32 and middle body component 28. Polymer casing 12 also has a substantially cylindrical open-ended middle body component 28. The middle body component extends from a forward end opening 16 to coupling element 22. Located in the top surface 36 is a primer recess 38 that extends toward the bottom surface 34 with a diffuser 50 positioned in the primer recess 38. The diffuser 50 includes a diffuser aperture 52 that aligns with the primer flash hole 40. The diffuser 50 is a device that is used to divert the affects of the primer (not shown) off of the polymer. The affects being the impact from igniting the primer as far as pressure and heat to divert the energy of the primer off of the polymer and directing it to the flash hole.
FIG. 4 depicts a partial view of a 2 piece polymer case having a nose and a mid-case connected at a joint. The substantially cylindrical open-ended polymeric bullet-end 18 having a shoulder 24a forming chamber neck 26a and a bullet (not shown). One embodiment includes modifications to strengthen the neck of the mouth 58 and to the internal area 62 to reduce nose tearing and lodging in the chamber. The substantially cylindrical open-ended polymeric bullet-end 18 can include a lock (e.g., 0.030 x 0.003) and added a step to allow for the lock to flex out during firing. Polymer was added to the external area to strengthen the neck of the mouth 58 and to the internal area 62. The interference of the bullet to the neck 26a was increased by adding polymer to the inside of the neck 26a and the exit lock modified by adding an angle to the rim 66. The substantially cylindrical open-ended polymeric bullet-end 18 includes an external shoulder 24a and an external neck 26a that are a fixed dimension as requires by the chamber (not shown) in which they fit. As a result, the shoulder length extending from the external neck 26a to the external side wall 29a is of a fixed length. Similarly, the external shoulder plane angle 27a to the external neck 26a or alternatively to the external side wall 29a is fixed relative to the chamber. Similarly, the substantially cylindrical open-ended polymeric bullet-end 18 includes an internal shoulder 24b and an internal neck 26b that are not fixed dimension and may be varied as desired. As a result, the internal shoulder length 25a is determined by the distance from the internal shoulder top 25b that extends from the internal neck 26b to internal shoulder bottom 25c that extends from the internal side wall 29b. This internal shoulder length 25a may be varied as necessary to achieve the desired properties (e.g., pressure, velocity, temperature, etc.). The internal shoulder plane angle 27b is defined as the angle between the internal shoulder 24b, and the internal neck 26b or the angle between the internal shoulder 24b and the internal side wall 29b.
The external shoulder 24a, the external neck 26a, and the external shoulder plane angle 27a have fixed values to mate them to the chamber. The relationship between the external shoulder 24a, an external neck 26a, and external shoulder plane angle 27a are caliber ammunition and weapons platform specific and have values. In contrast, the internal shoulder 24b, the internal neck 26b, and the internal shoulder plane angle 27b have no such constraints and can be varied to form the desired internal shoulder profile.
For example, when the internal shoulder plane angle 27b is the same as the external shoulder plane angle 27a the external shoulder 24a and internal shoulder 24b are parallel. When the internal shoulder plane angle 27b is the same as the external shoulder plane angle 27a, the external shoulder 24a and internal shoulder 24b are parallel. When the internal shoulder plane angle 27b is the larger than the external shoulder plane angle 27a, internal shoulder 24b is longer than the external shoulder 24a such that the internal shoulder 24b transitions to the internal side wall 29b at a distance further away from the external shoulder 24a. Thus making a larger distance from the internal shoulder 24b to the external shoulder 24a as you move toward the shoulder bottom 25c. Conversely, when the internal shoulder plane angle 27b is the smaller than the external shoulder plane angle 27a, there is a larger distance from the internal shoulder 24b to the external shoulder 24a as you move up the shoulder toward internal shoulder 24b. As a result, the internal shoulder length 25a is determined by the distance from the internal shoulder top 25b that extends from the internal neck 26b to internal shoulder bottom 25c that extends from the internal side wall 29b. This internal shoulder length 25a may be varied as necessary to achieve the desired properties (e.g., pressure, velocity, temperature, etc.). The internal shoulder plane angle 27b is defined as the angle between the internal shoulder 24b, and the internal neck 26b or the angle between the internal shoulder 24b and the internal side wall 29b.
FIG. 5 depicts a partial view of a 2 piece polymer case having a nose and a mid-case connected at a joint. FIG. 5 depicts a partial view of the substantially cylindrical open-ended polymeric bullet-end 18 having a shoulder 24a forming chamber neck 26a and a bullet aperture 58. The interference of the bullet (not shown) to the neck 26a can be increased by adding polymer to the inside of the neck 26a or making the neck from a more ridged polymer. The substantially cylindrical open-ended polymeric bullet-end 18 includes an external shoulder 24a and an external neck 26a that are of fixed dimension as requires by the chamber (not shown) in which they fit. As a result, the shoulder length extends from the external neck 26a to the external side wall 29a as a fixed length. Similarly, the external shoulder plane angle 27a relative to the external neck 26a (or alternatively to the external side wall 29a) is a fixed angle relative to the chamber. Similarly, the substantially cylindrical open-ended polymeric bullet-end 18 includes an internal shoulder 24b and an internal neck 26b that are not of fixed dimension but may be varied as desired. In some embodiments, the internal shoulder 24b may be connected to one or more transition segments 24c to form a transition from the internal shoulder 24b to the internal neck 26b or the internal side wall 29b. The one or more transition segments 24c may be straight, curved or a mix thereof. For example, the internal shoulder 24b is connected to one or more transition segments 24c (although 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1 6, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 or more segments can be used). The internal shoulder 24b extends from the internal shoulder top 25b to the internal shoulder bottom 25c. The internal shoulder 24b has a shoulder plane angle 27b that is the same as the external shoulder plane angle 27a. Therefore the internal shoulder 24b is parallel to the shoulder 24a over the internal shoulder length. The one or more transition segments 24c have a transition plane angle 27c that is larger than the external shoulder plane angle 27a and the internal shoulder plane angle 27b. The one or more transition segments 24c extend from the internal shoulder bottom 25c to the transition bottom 25d; however, the transition plane angle 27c is not the same as the external shoulder plane angle 27a or the internal shoulder plane angle 27b. Although this example depicts an internal shoulder 24b and one or more transition segments 24c, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, or more internal shoulders and/or transition segments 24c can be used.
Therefore the internal shoulder 24b is parallel to the external shoulder 24a over the internal shoulder length. The skilled artisan will readily understand that the transition plane angle 27c can be adjusted to move the transition bottom 25d up and down the interior side wall 29b. Similarly the number of transition segments 24c can be varied to adjust to move the transition bottom 25d up and down the interior side wall 29b. In addition, the transition segments 24c may be a plethora of short segments connected together to from an arc or radii. The number of transition segments 24c may be such that an almost smooth arc is formed or so few that an angular profile is formed. Similarly, the angle of each transition segments 24c relative to the adjacent transition segments may be similar or different as necessary.
The external shoulder 24a, the external neck 26a, and the external shoulder plane angle 27a have fixed values to mate them to the chamber. The relationship between the external shoulder 24a, an external neck 26a, and external shoulder plane angle 27a are caliber ammunition and weapons platform specific and have values. In contrast, the internal shoulder 24b, the internal neck 26b, and the internal shoulder plane angle 27b have no such constraints and can be varied to form the desired internal shoulder profile.
For example, when the internal shoulder plane angle 27b is the same as the external shoulder plane angle 27a the external shoulder 24a and internal shoulder 24b are parallel. When the internal shoulder plane angle 27b is the same as the external shoulder plane angle 27a, the external shoulder 24a and internal shoulder 24b are parallel. When the internal shoulder plane angle 27b is the larger than the external shoulder plane angle 27a, internal shoulder 24b is longer than the external shoulder 24a such that the internal shoulder 24b transitions to the internal side wall 29b at a distance further away from the external shoulder 24a. Thus making a larger distance from the internal shoulder 24b to the external shoulder 24a as you move toward the shoulder bottom 25c. Conversely, when the internal shoulder plane angle 27b is the smaller than the external shoulder plane angle 27a, there is a larger distance from the internal shoulder 24b to the external shoulder 24a as you move up the shoulder toward internal shoulder 24b.
FIGS. 6- 10 depict a partial view of a 2 piece polymer case having a nose and a mid-case connected at a joint. The joint may be located in the middle body component 28 or in the middle body-shoulder transition region 3 la to 3 lb. Specifically, the joint 33a and 33b may be located anywhere within the middle body-shoulder transition region 31a to 31b. The mid-case-shoulder transition region 31a covers the neck 26 to shoulder transition area and extends to the shoulder-mid-case transition region. The mid-case -shoulder transition region 31b is located on the upper portion of the middle body component 28. The joint 31 may be of any configuration that allows the connection of the nose 18 and the middle body component 28. For example, the joint may be a butt joint, a bevel lap splice joint, a half lap joint, a lap joint, a square joint, a single bevel joint, double bevel joint, single J joint, double J joint, single v joint, double v joint, single U joint, double U joint, flange joint, tee joint, flare joint, edge joint, rabbit joint, dado and any other joint. In addition, the joint type may be modified to allow a gap at regions in the joint. For example, a dado joint may be formed where the fit is not square allowing gaps to form at the corner of the dado. Similarly, a compound joint may be used, e.g., rabbit joint transitioning to a butt joint transitioning to a bevel joint (modified to have a gap in the fit) transitioning to a butt joint and ending in a lap joint or rabbit joint. In addition the angle of the joint need not be at 90 and 180 degrees. The joint angle may be at any angle from 0-180 degrees and may vary along the joint. For instance the joint may start at a 0 degree move to a +45 degree angle transition to a -40 degree angle and conclude by tapering at a 10 degree angle. The variation in the joint type, position, and internal shoulder length, internal shoulder angle, transition region angle, transition region length and other parameters are shown in FIGS. 6-10.
In another embodiment of the present invention the ammunition, ammunition cartridge, and components may chamber a standard projectile (e.g., .45 mm, 5.56 mm, 6.5 mm, 6.8 mm, 7 mm, 7.62 mm, 8 mm, 9 mm, 10 mm, 12.7 mm, 14.5 mm, 20 mm, 25 mm, 30 mm, 40 mm, .22, .22-250, .223, .243, .25-06, .270, .277, .300, .30-30, .30-40, 30.06, .300, .303, .308, .338, .357, .38, .380, .40, .44, .45, .45-70, .50 caliber) or a nonstandard projectile in a non-traditional cartridge. The nontraditional cartridge may be a result of the neck diameter, neck length, neck thickness, shoulder angle, shoulder length, shoulder angle, shoulder thickness may be varied to form a unique ammunition, ammunition cartridge, and components.
FIG. 1 1 illustrates a generic embodiment of the nose to define the various angles of the nose because the caliber of the ammunition dictates the size and shape of the nose shoulder angle and shoulder length as well as the neck length. The dimensions are listed in the table below as the midpoint and are intended to include a ran e of + 10% for a given embodiment.
Figure imgf000016_0001
Diameter Diameter Diameter Angle Angle
7.62 0.344 0.306 0.454 0.35 50 20
5.56 0.222 0.25 0.354 0.25 55 23
12.7x99 0.509 0.556 0.715 0.6 50 15
12.7x108 0.509 0.548 0.746 0.65 50 18
0.338 0.336 0.366 0.577 0.455 50 50.2
0.277 0.275 0.304 0.462 0.39 50 20
The polymeric ammunition cartridges of the present invention are of a caliber typically carried by soldiers in combat for use in their combat weapons. The present invention is not limited to the described caliber and is believed to be applicable to other calibers as well. This includes various small and medium caliber munitions, including 5.45 mm, 5.56 mm, 6.5 mm, 6.8 mm, 7 mm, 7.62 mm, 8 mm, 9 mm, 10 mm, 12.7 mm, 14.5 mm, 20 mm, 25 mm, 30 mm, 40 mm, .22, .22-250, .223, .243, .25-06, .270, .277, .300, .30-30, .30-40, 30.06, .300, .303, .308, .338, .357, .38, .380, .40, .44, .45, .45-70, .50 BMG caliber ammunition, cases, cartridges and components of ammunition, cases, cartridges. The ammunition and ammunition cartridge as well as the nose and base used to assemble the ammunition and the cartridge has a standardized size, shape and dimensions based on the caliber and chamber of the gun in which it is chambered. The chamber and the ammunition mate such that they have the same characteristics. The specific neck, shoulder, case diameter projectile aperture, and case length are known to the skilled and those standard measurements are available and known. In other embodiments of the instant application, the ammunition and ammunition cartridge as well as the nose and base used to assemble the ammunition and the cartridge have a nonstandardized size, shape and dimensions as described and illustrated herein.
To illustrate some embodiments of the nontraditional cases various nose configurations are shown in FIGS. 12A-41B. For example, as seen in FIG. 1 the nose is connected to the mid-body to form an ammunition cartridge. The noses shown in any of FIGS. 12A-41B may be connected to the mid- body as in FIG. 1 to form nontraditional cases and ammunition. FIG. 42A, 42C, 42D and 42E depict a side, cross-sectional view of a nontraditional ammunition cartridges, while FIG. 42B depicts a side, elevation view of a nontraditional ammunition cartridge. Although, the figures depict only a few nose midbody combinations the disclosure clearly envisions numerous combination of midbody and nose, e.g., FIGS. 12A-41B.
FIGS. 12A-41B illustrate some of the nontraditional nose configurations where the neck length (defined as the distance from the shoulder to the projectile aperture) is varied and may be 0%, 1%,
2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% less than the neck length of a standard comparable cartridge of the same caliber. This is seen in FIG. 44A and 44B where the neck is 100% less than the neck length of a standard comparable cartridge of the same caliber to render the neck length zero.
FIGS. 12A-41B illustrate some of the nontraditional nose configurations where the shoulder angle is varied and may be any angle between 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90 degrees and incremental variations (e.g., .1, .2, .3, .4, .5, .6, .7, .8, or .9) thereof
FIGS. 12A-41B illustrate some of the nontraditional nose configurations where the shoulder length is varied and may be any length, e.g., + 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% more or less than the shoulder length of a standard comparable cartridge of the same caliber. This variation is easily seen in FIGS. 30A, 31A, 32A, 33A, 34A, etc.
FIGS. 12A-41B illustrate some of the nontraditional nose configurations where the neck diameter is increased by 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% more or less than the shoulder length of a standard comparable cartridge of the same caliber, e.g., FIGS. 24A, 25A, 26A, 29A, 30A, 40A, 41 A).
These configurations can be used to effectively form a nose with no shoulder (e.g., 30A), shoulder with no nose (38A) and every variation in-between. When the nontraditional ammunition of the present invention is made the corresponding platform chamber must have the mating profile of the ammunition to allow the fitting of the ammunition, firing and ejecting of the ammunition. The present invention includes automatic and semiautomatic rifles having a chamber that mates and fits the nontraditional ammunition of the instant invention. In addition, the interior neck, exterior neck, external shoulder and the nose junction may individually be textured in the form of one or more selected from etching, grooves, hatching, knurling, a texture, rings, and free formed textures.
The chamber neck 26 and the internal neck 26b are shown as generally parallel to each other; however, the chamber neck 26 and the internal neck 26b may be tapered such that at the mouth 58 the distance from the chamber neck 26 to the internal neck 26b is less than the distance from the chamber neck 26 to the internal neck 26b at the shoulder 24. In addition, the mouth 58 may include a groove (not shown) that extends around the internal neck 26b. The internal neck 26b may include a texturing; however, distance from the internal neck 26b to the chamber neck 26 may be accessed using the average distance from the top texture surface (not shown) to the bottom texture surface (not shown) of the texturing, the top texture surface (not shown) of the texturing or the bottom texture surface (not shown) of the texturing.
The insert may be made by any method including MIM, cold forming, milling, machining, printing, 3D printing, etching and so forth.
The polymeric and composite casing components may be injection molded including overmolding into the flash aperture. Polymeric materials for the bullet-end and middle body components must have propellant compatibility and resistance to gun cleaning solvents and grease, as well as resistance to chemical, biological and radiological agents. The polymeric materials must have a temperature resistance higher than the cook -off temperature of the propellant, typically about 320°F. The polymeric materials must have elongation-to-break values that to resist deformation under interior ballistic pressure as high as 60,000 psi in all environments (temperatures from about -65 to about 320°F and humidity from 0 to 100% RH). According to one embodiment, the middle body component is either molded onto or snap-fit to the casing head -end component after which the bullet- end component is snap-fit or interference fit to the middle body component. The components may be formed from high-strength polymer, composite or ceramic.
Examples of suitable high strength polymers include composite polymer material including a tungsten metal powder, nylon 6/6, nylon 6, and glass fibers; and a specific gravity in a range of 3-10. The tungsten metal powder may be 50%-96% of a weight of the bullet body. The polymer material also includes about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of nylon 6/6, about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of nylon 6, and about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of glass fibers. It is most suitable that each of these ingredients be included in amounts less than 10% by weight. The cartridge casing body may be made of a modified ZYTEL resin, available from E.I. DuPont De Nemours Co., a modified 612 nylon resin, modified to increase elastic response. Examples of suitable polymers include polyurethane prepolymer, cellulose, fluoro-polymer, ethylene inter-polymer alloy elastomer, ethylene vinyl acetate, nylon, polyether imide, polyester elastomer, polyester sulfone, polyphenyl amide, polypropylene, polyvinylidene fluoride or thermoset polyurea elastomer, acrylics, homopolymers, acetates, copolymers, acrylonitrile-butadinen-styrene, thermoplastic fluoro polymers, inomers, polyamides, polyamide-imides, polyacrylates, polyatherketones, polyaryl-sulfones, polybenzimidazoles, polycarbonates, polybutylene, terephthalates, polyether imides, polyether sulfones, thermoplastic polyimides, thermoplastic polyurethanes, polyphenylene sulfides, polyethylene, polypropylene, polysulfones, polyvinylchlorides, styrene acrylonitriles, polystyrenes, polyphenylene, ether blends, styrene maleic anhydrides, polycarbonates, allyls, aminos, cyanates, epoxies, phenolics, unsaturated polyesters, bismaleimides, polyurethanes, silicones, vinylesters, or urethane hybrids. Examples of suitable polymers also include aliphatic or aromatic polyamide, polyeitherimide, polysulfone, polyphenylsulfone, poly-phenylene oxide, liquid crystalline polymer and polyketone. Examples of suitable composites include polymers such as polyphenylsulfone reinforced with between about 30 and about 70 wt %, and preferably up to about 65 wt % of one or more reinforcing materials selected from glass fiber, ceramic fiber, carbon fiber, mineral fillers, organo nanoclay, or carbon nanotube. Preferred reinforcing materials, such as chopped surface-treated E-glass fibers provide flow characteristics at the above-described loadings comparable to unfilled polymers to provide a desirable combination of strength and flow characteristics that permit the molding of head-end components. Composite components can be formed by machining or injection molding. Finally, the cartridge case must retain sufficient joint strength at cook-off temperatures. More specifically, polymers suitable for molding of the projectile-end component have one or more of the following properties: Yield or tensile strength at -65°F > 10,000 psi Elongation-to-break at -65°F > 15% Yield or tensile strength at 73°F > 8,000 psi Elongation-to-break at 73°F > 50% Yield or tensile strength at 320°F>4,000 psi Elongation-to-break at 320°F>80%. Polymers suitable for molding of the middle- body component have one or more of the following properties: Yield or tensile strength at -65 °F > 10,000 psi Yield or tensile strength at 73°F > 8,000 psi Yield or tensile strength at 320°F > 4,000 psi.
Commercially available polymers suitable for use in the present invention thus include polyphenylsulfones; copolymers of polyphenylsulfones with polyether-sulfones or polysulfones; copolymers and blends of polyphenylsulfones with polysiloxanes; poly(etherimide-siloxane); copolymers and blends of polyetherimides and polysiloxanes, and blends of polyetherimides and poly(etherimide-siloxane) copolymers; and the like. Particularly preferred are polyphenylsulfones and their copolymers with poly-sulfones or polysiloxane that have high tensile strength and elongation-to-break to sustain the deformation under high interior ballistic pressure. Such polymers are commercially available, for example, RADEL R5800 polyphenylesulfone from Solvay Advanced Polymers. The polymer can be formulated with up to about 10 wt % of one or more additives selected from internal mold release agents, heat stabilizers, anti-static agents, colorants, impact modifiers and UV stabilizers.
The polymers of the present invention can also be used for conventional two-piece metal-plastic hybrid cartridge case designs and conventional shotgun shell designs. One example of such a design is an ammunition cartridge with a one-piece substantially cylindrical polymeric cartridge casing body with an open projectile-end and an end opposing the projectile-end with a male or female coupling element; and a cylindrical metal cartridge casing head-end component with an essentially closed base end with a primer hole opposite an open end having a coupling element that is a mate for the coupling element on the opposing end of the polymeric cartridge casing body joining the open end of the head-end component to the opposing end of the polymeric cartridge casing body. The high polymer ductility permits the casing to resist breakage.
One embodiment includes a 2 cavity prototype mold having an upper portion and a base portion for a 5.56 case having a metal insert over-molded with a Nylon 6 (polymer) based material. In this embodiment the polymer in the base includes a lip or flange to extract the case from the weapon. One 2-cavity prototype mold to produce the upper portion of the 5.56 case can be made using a stripper plate tool using an Osco hot spur and two subgates per cavity. Another embodiment includes a subsonic version, the difference from the standard and the subsonic version is the walls are thicker thus requiring less powder. This will decrease the velocity of the bullet thus creating a subsonic round.
The extracting inserts is used to give the polymer case a tough enough ridge and groove for the weapons extractor to grab and pull the case out the chamber of the gun. The extracting insert is made of 17-4 ss that is hardened to 42-45rc. The insert may be made of aluminum, brass, cooper, steel or even an engineered resin with enough tensile strength.
The insert is over molded in an injection molded process using a nano clay particle filled Nylon material. The inserts can be machined or stamped. In addition, an engineered resin able to withstand the demand on the insert allows injection molded and/or even transfer molded.
One of ordinary skill in the art will know that many propellant types and weights can be used to prepare workable ammunition and that such loads may be determined by a careful trial including initial low quantity loading of a given propellant and the well known stepwise increasing of a given propellant loading until a maximum acceptable load is achieved. Extreme care and caution is advised in evaluating new loads. The propellants available have various burn rates and must be carefully chosen so that a safe load is devised.
The description of the preferred embodiments should be taken as illustrating, rather than as limiting, the present invention as defined by the claims. As will be readily appreciated, numerous combinations of the features set forth above can be utilized without departing from the present invention as set forth in the claims. Such variations are not regarded as a departure from the spirit and scope of the invention, and all such modifications are intended to be included within the scope of the following claims.
It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.
The use of the word "a" or "an" when used in conjunction with the term "comprising" in the claims and/or the specification may mean "one," but it is also consistent with the meaning of "one or more," "at least one," and "one or more than one." The use of the term "or" in the claims is used to mean "and/or" unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and "and/or." Throughout this application, the term "about" is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects. As used in this specification and claim(s), the words "comprising" (and any form of comprising, such as "comprise" and "comprises"), "having" (and any form of having, such as "have" and "has"), "including" (and any form of including, such as "includes" and "include") or "containing" (and any form of containing, such as "contains" and "contain") are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
The term "or combinations thereof as used herein refers to all permutations and combinations of the listed items preceding the term. For example, "A, B, C, or combinations thereof is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.

Claims

What is claimed is:
1. A nose for an ammunition cartridge comprising:
a generally cylindrical neck having a projectile aperture at a first end;
a shoulder comprising a shoulder top connected to the generally cylindrical neck that extends to a shoulder bottom;
a nose junction positioned around the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to mate to a base junction in an ammunition cartridge, wherein the skirt is positioned on the inside of the nose and extends away from the shoulder bottom.
2. A multi piece ammunition cartridge comprising:
an primer insert comprising a top surface opposite a bottom surface and a substantially cylindrical coupling element that extends from the bottom surface, a primer recess in the top surface that extends toward the bottom surface, a primer flash hole aperture positioned in the primer recess to extend through the bottom surface, and a groove positioned around the primer flash hole aperture in the primer recess;
a middle body comprising a body extending from a body half lap junction to the primer insert, wherein the body is molded at least partially the primer insert by molding over the cylindrical coupling element and into the primer flash hole aperture and into the groove to form a primer flash hole; and
a nose connected to the middle body, wherein the nose comprises a generally cylindrical neck having a projectile aperture at a first end; a shoulder comprising a shoulder top connected to the generally cylindrical neck that extends to a shoulder bottom; a nose junction positioned around the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to mate to the body half lap junction to form an ammunition cartridge, wherein a propellant chamber is formed between the projectile aperture and the primer flash hole.
3. A method of making a multi piece ammunition cartridge comprising:
providing an primer insert comprising a top surface opposite a bottom surface and a substantially cylindrical coupling element that extends from the bottom surface, a primer recess in the top surface that extends toward the bottom surface, a primer flash hole aperture positioned in the primer recess to extend through the bottom surface, and a groove positioned around the primer flash hole aperture in the primer recess;
forming a middle body by overmolding the primer insert wherein the middle body comprising a body extending from a body half lap junction to the primer insert, wherein the body is molded at least partially the primer insert by molding over the cylindrical coupling element and into the primer flash hole aperture and into the groove to form a primer flash hole;
connecting a nose to the middle body, wherein the nose comprises a generally cylindrical neck having a projectile aperture at a first end; a shoulder comprising a shoulder top connected to the generally cylindrical neck that extends to a shoulder bottom; a nose junction positioned around the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to mate to the body half lap junction to form an ammunition cartridge, and
a propellant chamber is formed between the projectile aperture and the primer flash hole.
4. A multi piece ammunition cartridge comprising:
an primer insert comprising a top surface opposite a bottom surface and a substantially cylindrical coupling element that extends from the bottom surface, a primer recess in the top surface that extends toward the bottom surface, a primer flash hole aperture positioned in the primer recess to extend through the bottom surface, and a groove positioned around the primer flash hole aperture in the primer recess;
a middle body comprising a body extending from a body half lap junction to the primer insert, wherein the body is molded at least partially the primer insert by molding over the cylindrical coupling element and into the primer flash hole aperture and into the groove to form a primer flash hole; and
a shortened neck having a projectile aperture at a first end, wherein the shortened neck is reduced by 25-100% of the neck height of a standard cartridge neck; a shoulder comprising a shoulder top connected to the shortened neck that extends to a shoulder bottom; a nose junction positioned adjacent to the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to mate to the body half lap junction to form an ammunition cartridge, wherein a propellant chamber is formed between the projectile aperture and the primer flash hole.
5. A nose for an ammunition cartridge comprising:
a shortened neck having a projectile aperture at a first end, wherein the shortened neck is reduced by 25-100% of the neck height of a standard cartridge neck;
a shoulder comprising a shoulder top connected to the shortened neck that extends to a shoulder bottom ;
a nose junction positioned adjacent to the shoulder bottom, wherein the nose junction comprises a half lap junction having a groove adjacent to a skirt adapted to mate to a base junction in an ammunition cartridge, wherein the skirt is positioned on the inside of the nose and extends away from the shoulder bottom.
6. An ammunition cartridge having a reduced neck height comprising:
a shortened neck having a projectile aperture, wherein the shortened neck is reduced by 25- 100% of the neck height of a standard cartridge neck;
a shoulder extending from the shortened neck to a cartridge side wall; and
wherein the cartridge side wall extends from the shoulder to the base to form an interior propellant chamber; wherein the base comprises an extraction ring, a primer recess positioned in the base in communication with the propellant chamber through a flash hole that extends from the primer recess into the propellant chamber.
7. The invention according to any of claims 1-6, wherein the nose comprises a polymer, a metal an alloy or a combination thereof.
8. The invention according to any of claims 2-4, wherein the middle body comprises a polymer, a metal an alloy or a combination thereof.
9. The invention according to any of claims 7-8, wherein the polymer comprises comprise one or more polymers selected from the group consisting of polyurethane prepolymer, cellulose, fluoro- polymer, ethylene inter-polymer alloy elastomer, ethylene vinyl acetate, nylon, polyether imide, polyester elastomer, polyester sulfone, polyphenyl amide, polypropylene, polyvinylidene fluoride or thermoset polyurea elastomer, acrylics, homopolymers, acetates, copolymers, acrylonitrile- butadinen-styrene, thermoplastic fluoro polymers, inomers, polyamides, polyamide-imides, polyacrylates, polyatherketones, polyaryl-sulfones, polybenzimidazoles, polycarbonates, polybutylene, Polybutylene terephthalate, terephthalates, polyether imides, polyether sulfones, thermoplastic polyimides, thermoplastic polyurethane s, polyphenylene sulfides, polyethylene, polypropylene, polysulfones, polyvinylchlorides, styrene acrylonitriles, polystyrenes, polyphenylene, ether blends, styrene maleic anhydrides, polycarbonates, allyls, aminos, cyanates, epoxies, phenolics, unsaturated polyesters, bismaleimides, polyurethane s, silicones, vinylesters, urethane hybrids, polyphenylsulfones, copolymers of polyphenylsulfones with polyethersulfones or polysulfones, copolymers of poly-phenylsulfones with siloxanes, blends of polyphenylsulfones with polysiloxanes, poly(etherimide-siloxane) copolymers, blends of polyetherimides and polysiloxanes, and blends of polyetherimides and poly(etherimide-siloxane) copolymers.
10. The invention according to any of claims 2-4, 6, and 7-9, further comprising a propellant disposed in the propellant chamber, a primer disposed in the primer recess, a projectile positioned in the projectile aperture to form an ammunition cartridge.
1 1. The invention according to any of claims 1-10, wherein an angle formed between the groove and the skirt is between 40 and 140 degrees, between 80 and 1 10 degrees or between 85 and 95 degrees or about 90 degrees.
12. The invention according to any of claims 1- 1 1, wherein the generally cylindrical neck comprises an interior neck positioned opposite the generally cylindrical neck and an interior shoulder connected to the interior neck extending opposite the shoulder, wherein an exterior shoulder angle is from the generally cylindrical neck to the shoulder and an interior shoulder angle is from the interior neck to the interior shoulder; and the interior shoulder angle is greater than the exterior shoulder angle.
13. The invention according to any of claims 1- 12, wherein the interior shoulder further comprises a parallel region that is parallel to the exterior shoulder and a nonparallel region that is not parallel to the exterior shoulder.
14. The invention according to any of claims 1- 13, wherein the nose is adapted to fit a 5.56 mm, 7.62 mm, 12.7 mm, 14.5 mm, .223, .243, .277, .300, .308, .338, or a .50 caliber projectile.
15. The invention according to any of claims 1-14, wherein, wherein the nose is adapted to connect to mate to a 5.56 mm, 7.62 mm, 12.7 mm, 14.5 mm, .223, .243, .277, .300, .308, .338, or a .50 caliber ammunition cartridge.
16. The invention according to any of claims 1- 15, wherein the shortened neck is reduced by 5 to 100% compared to the neck of a conventional ammunition cartridge.
PCT/US2018/059748 2017-11-09 2018-11-08 Multi-piece polymer ammunition, cartridge and components WO2019094544A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018364538A AU2018364538A1 (en) 2017-11-09 2018-11-08 Multi-piece polymer ammunition, cartridge and components
EP18877060.6A EP3707460A4 (en) 2017-11-09 2018-11-08 Multi-piece polymer ammunition, cartridge and components
IL274334A IL274334A (en) 2017-11-09 2020-04-28 Multi-piece polymer ammunition, cartridge and components

Applications Claiming Priority (70)

Application Number Priority Date Filing Date Title
US15/808,859 2017-11-09
US15/808,859 US10876822B2 (en) 2017-11-09 2017-11-09 Multi-piece polymer ammunition cartridge
US29/644,847 USD882721S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,869 USD882033S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,842 USD884115S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,794 2018-04-20
US29/644,831 USD882025S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,797 USD881323S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,816 2018-04-20
US29/644,811 2018-04-20
US29/644,864 2018-04-20
US29/644,831 2018-04-20
US29/644,853 2018-04-20
US29/644,862 USD882722S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,808 2018-04-20
US29/644,855 USD882031S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,869 2018-04-20
US29/644,838 2018-04-20
US29/644,838 USD882027S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,825 2018-04-20
US29/644,824 USD881328S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,808 USD882021S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,828 2018-04-20
US29/644,865 2018-04-20
US29/644,840 USD882720S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,805 2018-04-20
US29/644,805 USD881324S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,798 2018-04-20
US29/644,842 2018-04-20
US29/644,849 2018-04-20
US29/644,824 2018-04-20
US29/644,867 USD882032S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,847 2018-04-20
US29/644,844 USD913403S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,853 USD882030S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,855 2018-04-20
US29/644,820 2018-04-20
US29/644,811 USD881326S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,816 USD882022S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,843 2018-04-20
US29/644,867 2018-04-20
US29/644,843 USD882028S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,863 2018-04-20
US29/644,835 2018-04-20
US29/644,798 USD882020S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,797 2018-04-20
US29/644,794 USD882019S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,835 USD882026S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,810 2018-04-20
US29/644,810 USD881325S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,864 USD882724S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,865 USD903039S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,859 2018-04-20
US29/644,849 USD882029S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,828 USD882024S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,859 USD903038S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,863 USD882723S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,820 USD881327S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,825 USD882023S1 (en) 2018-04-20 2018-04-20 Ammunition cartridge
US29/644,862 2018-04-20
US29/644,844 2018-04-20
US29/644,840 2018-04-20
US201829646298 2018-05-03
US29/646,297 2018-05-03
US201829646297 2018-05-03
US29/646,300 2018-05-03
US29/646,298 2018-05-03
US201829646300 2018-05-03
US29/646,299 2018-05-03
US201829646299 2018-05-03

Publications (1)

Publication Number Publication Date
WO2019094544A1 true WO2019094544A1 (en) 2019-05-16

Family

ID=66439311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/059748 WO2019094544A1 (en) 2017-11-09 2018-11-08 Multi-piece polymer ammunition, cartridge and components

Country Status (3)

Country Link
AU (1) AU2018364538A1 (en)
IL (1) IL274334A (en)
WO (1) WO2019094544A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10415943B2 (en) 2016-03-09 2019-09-17 True Velocity Ip Holdings, Llc Polymer ammunition cartridge having a three-piece primer insert
US10704878B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and method of making the same
US10704872B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704879B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704880B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
USD891567S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891568S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891570S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose
USD891569S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD892258S1 (en) 2019-03-12 2020-08-04 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
US10731957B1 (en) 2019-02-14 2020-08-04 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
USD893667S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893665S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893666S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893668S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD894320S1 (en) 2019-03-21 2020-08-25 True Velocity Ip Holdings, Llc Ammunition Cartridge
US10753713B2 (en) 2010-11-10 2020-08-25 True Velocity Ip Holdings, Llc Method of stamping a primer insert for use in polymer ammunition
US10852108B2 (en) 2017-11-09 2020-12-01 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US10921106B2 (en) 2019-02-14 2021-02-16 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US11047664B2 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US11118882B2 (en) 2010-11-10 2021-09-14 True Velocity Ip Holdings, Llc Method of making a polymeric subsonic ammunition cartridge
US11209252B2 (en) 2010-11-10 2021-12-28 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US11231257B2 (en) 2010-11-10 2022-01-25 True Velocity Ip Holdings, Llc Method of making a metal injection molded ammunition cartridge
US11231258B2 (en) 2010-11-10 2022-01-25 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US11248885B2 (en) 2010-11-10 2022-02-15 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US11293732B2 (en) 2010-11-10 2022-04-05 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US11300393B2 (en) 2010-11-10 2022-04-12 True Velocity Ip Holdings, Llc Polymer ammunition having a MIM primer insert
US11313654B2 (en) 2010-11-10 2022-04-26 True Velocity Ip Holdings, Llc Polymer ammunition having a projectile made by metal injection molding
US11340053B2 (en) 2019-03-19 2022-05-24 True Velocity Ip Holdings, Llc Methods and devices metering and compacting explosive powders
US11435171B2 (en) 2018-02-14 2022-09-06 True Velocity Ip Holdings, Llc Device and method of determining the force required to remove a projectile from an ammunition cartridge
US11448488B2 (en) 2017-08-08 2022-09-20 True Velocity Ip Holdings, Llc Metal injection molded ammunition cartridge
US11543218B2 (en) 2019-07-16 2023-01-03 True Velocity Ip Holdings, Llc Polymer ammunition having an alignment aid, cartridge and method of making the same
US11614314B2 (en) 2018-07-06 2023-03-28 True Velocity Ip Holdings, Llc Three-piece primer insert for polymer ammunition
US11719519B2 (en) 2010-11-10 2023-08-08 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US11733015B2 (en) 2018-07-06 2023-08-22 True Velocity Ip Holdings, Llc Multi-piece primer insert for polymer ammunition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040074412A1 (en) * 2002-10-21 2004-04-22 Kightlinger Paul E. Cartridge and chamber for firearm
US9599443B2 (en) * 2010-07-30 2017-03-21 Pcp Tactical, Llc Base insert for polymer ammunition cartridges
US20170089675A1 (en) * 2010-11-10 2017-03-30 True Velocity, Inc. Subsonic polymeric ammunition cartridge
US20170261296A1 (en) * 2016-03-09 2017-09-14 True Velocity, Inc. Method of making a two-piece primer insert

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040074412A1 (en) * 2002-10-21 2004-04-22 Kightlinger Paul E. Cartridge and chamber for firearm
US9599443B2 (en) * 2010-07-30 2017-03-21 Pcp Tactical, Llc Base insert for polymer ammunition cartridges
US20170089675A1 (en) * 2010-11-10 2017-03-30 True Velocity, Inc. Subsonic polymeric ammunition cartridge
US20170261296A1 (en) * 2016-03-09 2017-09-14 True Velocity, Inc. Method of making a two-piece primer insert

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3707460A4 *

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11231257B2 (en) 2010-11-10 2022-01-25 True Velocity Ip Holdings, Llc Method of making a metal injection molded ammunition cartridge
US11441881B2 (en) 2010-11-10 2022-09-13 True Velocity Ip Holdings, Llc Polymer cartridge having a primer insert with a primer pocket groove
US11953303B2 (en) 2010-11-10 2024-04-09 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US11828580B2 (en) 2010-11-10 2023-11-28 True Velocity Ip Holdings, Llc Diffuser for polymer ammunition cartridges
US11821722B2 (en) 2010-11-10 2023-11-21 True Velocity Ip Holdings, Llc Diffuser for polymer ammunition cartridges
US11733010B2 (en) 2010-11-10 2023-08-22 True Velocity Ip Holdings, Llc Method of making a metal injection molded ammunition cartridge
US11719519B2 (en) 2010-11-10 2023-08-08 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US11592270B2 (en) 2010-11-10 2023-02-28 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge nose
US11486680B2 (en) 2010-11-10 2022-11-01 True Velocity Ip Holdings, Llc Method of making a primer insert for use in polymer ammunition
US11454479B2 (en) 2010-11-10 2022-09-27 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition
US10704878B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and method of making the same
US11243059B2 (en) 2010-11-10 2022-02-08 True Velocity Ip Holdings, Llc Primer insert having a primer pocket groove
US11340048B2 (en) 2010-11-10 2022-05-24 True Velocity Ip Holdings, Llc Method of making a primer insert for use in polymer ammunition
US11340049B2 (en) 2010-11-10 2022-05-24 True Velocity Ip Holdings, Llc Method of making a metal primer insert by injection molding
US11333469B2 (en) 2010-11-10 2022-05-17 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US11333470B2 (en) 2010-11-10 2022-05-17 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US10753713B2 (en) 2010-11-10 2020-08-25 True Velocity Ip Holdings, Llc Method of stamping a primer insert for use in polymer ammunition
US10845169B2 (en) 2010-11-10 2020-11-24 True Velocity Ip Holdings, Llc Polymer cartridge having a primer insert with a primer pocket groove
US11313654B2 (en) 2010-11-10 2022-04-26 True Velocity Ip Holdings, Llc Polymer ammunition having a projectile made by metal injection molding
US10859352B2 (en) 2010-11-10 2020-12-08 True Velocity Ip Holdings, Llc Polymer ammunition having a primer insert with a primer pocket groove
US11300393B2 (en) 2010-11-10 2022-04-12 True Velocity Ip Holdings, Llc Polymer ammunition having a MIM primer insert
US11293732B2 (en) 2010-11-10 2022-04-05 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US11293727B2 (en) 2010-11-10 2022-04-05 True Velocity Ip Holdings, Llc Primer insert having a primer pocket groove
US10996029B2 (en) 2010-11-10 2021-05-04 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US10996030B2 (en) 2010-11-10 2021-05-04 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US11047664B2 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US11085739B2 (en) 2010-11-10 2021-08-10 True Velocity Ip Holdings, Llc Stamped primer insert for use in polymer ammunition
US11280596B2 (en) 2010-11-10 2022-03-22 True Velocity Ip Holdings, Llc Polymer cartridge having a primer insert with a primer pocket groove
US11255647B2 (en) 2010-11-10 2022-02-22 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US11255649B2 (en) 2010-11-10 2022-02-22 True Velocity Ip Holdings, Llc Primer insert having a primer pocket groove
US11248885B2 (en) 2010-11-10 2022-02-15 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US11118882B2 (en) 2010-11-10 2021-09-14 True Velocity Ip Holdings, Llc Method of making a polymeric subsonic ammunition cartridge
US11243060B2 (en) 2010-11-10 2022-02-08 True Velocity Ip Holdings, Llc Primer insert having a primer pocket groove
US11209252B2 (en) 2010-11-10 2021-12-28 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US11408714B2 (en) 2010-11-10 2022-08-09 True Velocity Ip Holdings, Llc Polymer ammunition having an overmolded primer insert
US11226179B2 (en) 2010-11-10 2022-01-18 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US11231258B2 (en) 2010-11-10 2022-01-25 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US10948275B2 (en) 2016-03-09 2021-03-16 True Velocity Ip Holdings, Llc Polymer ammunition cartridge having a three-piece primer insert
US11448490B2 (en) 2016-03-09 2022-09-20 True Velocity Ip Holdings, Llc Two-piece primer insert for polymer ammunition
US11098993B2 (en) 2016-03-09 2021-08-24 True Velocity Ip Holdings, Llc Method of making polymer ammunition cartridge having a two-piece primer insert
US10415943B2 (en) 2016-03-09 2019-09-17 True Velocity Ip Holdings, Llc Polymer ammunition cartridge having a three-piece primer insert
US11098992B2 (en) 2016-03-09 2021-08-24 True Velocity Ip Holdings, Llc Method of making polymer ammunition cartridge having a two-piece primer insert
US11098991B2 (en) 2016-03-09 2021-08-24 True Velocity Ip Holdings, Llc Method of making polymer ammunition cartridge having a two-piece primer insert
US11448489B2 (en) 2016-03-09 2022-09-20 True Velocity Ip Holdings, Llc Two-piece primer insert for polymer ammunition
US11098990B2 (en) 2016-03-09 2021-08-24 True Velocity Ip Holdings, Llc Method of making polymer ammunition cartridge having a two-piece primer insert
US11448488B2 (en) 2017-08-08 2022-09-20 True Velocity Ip Holdings, Llc Metal injection molded ammunition cartridge
US10948273B2 (en) 2017-11-09 2021-03-16 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition, cartridge and components
US10852108B2 (en) 2017-11-09 2020-12-01 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US11506471B2 (en) 2017-11-09 2022-11-22 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge nose
US11118877B2 (en) 2017-11-09 2021-09-14 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge nose
US11768059B2 (en) 2017-11-09 2023-09-26 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition, cartridge and components
US11435171B2 (en) 2018-02-14 2022-09-06 True Velocity Ip Holdings, Llc Device and method of determining the force required to remove a projectile from an ammunition cartridge
US11614314B2 (en) 2018-07-06 2023-03-28 True Velocity Ip Holdings, Llc Three-piece primer insert for polymer ammunition
US11733015B2 (en) 2018-07-06 2023-08-22 True Velocity Ip Holdings, Llc Multi-piece primer insert for polymer ammunition
US10704879B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10921106B2 (en) 2019-02-14 2021-02-16 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704872B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US11209256B2 (en) 2019-02-14 2021-12-28 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10731957B1 (en) 2019-02-14 2020-08-04 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704880B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US11248886B2 (en) 2019-02-14 2022-02-15 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
USD893665S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893666S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893668S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893667S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891568S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891570S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose
USD891567S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD892258S1 (en) 2019-03-12 2020-08-04 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891569S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
US11340053B2 (en) 2019-03-19 2022-05-24 True Velocity Ip Holdings, Llc Methods and devices metering and compacting explosive powders
US11512936B2 (en) 2019-03-19 2022-11-29 True Velocity Ip Holdings, Llc Methods and devices metering and compacting explosive powders
USD894320S1 (en) 2019-03-21 2020-08-25 True Velocity Ip Holdings, Llc Ammunition Cartridge
US11543218B2 (en) 2019-07-16 2023-01-03 True Velocity Ip Holdings, Llc Polymer ammunition having an alignment aid, cartridge and method of making the same

Also Published As

Publication number Publication date
IL274334A (en) 2020-06-30
AU2018364538A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
US11768059B2 (en) Multi-piece polymer ammunition, cartridge and components
WO2019094544A1 (en) Multi-piece polymer ammunition, cartridge and components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018364538

Country of ref document: AU

Date of ref document: 20181108

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018877060

Country of ref document: EP

Effective date: 20200609