WO2019093061A1 - Method and device for assisting driver of vehicle - Google Patents

Method and device for assisting driver of vehicle Download PDF

Info

Publication number
WO2019093061A1
WO2019093061A1 PCT/JP2018/037910 JP2018037910W WO2019093061A1 WO 2019093061 A1 WO2019093061 A1 WO 2019093061A1 JP 2018037910 W JP2018037910 W JP 2018037910W WO 2019093061 A1 WO2019093061 A1 WO 2019093061A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
detection area
lane change
determined
lane
Prior art date
Application number
PCT/JP2018/037910
Other languages
French (fr)
Japanese (ja)
Inventor
俊晴 菅原
アルトマンホファー ハイコ
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2019552673A priority Critical patent/JPWO2019093061A1/en
Publication of WO2019093061A1 publication Critical patent/WO2019093061A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • B60W2050/0215Sensor drifts or sensor failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain

Definitions

  • the present invention relates to a method and apparatus for assisting a driver of a host vehicle having one or more sensors configured to detect other vehicles around the host vehicle.
  • An automatic merging system for automatically controlling a vehicle to perform a lane change or to travel on a lane junction reduces the workload of the driver and also reduces the risk of traffic accidents. It is one of the main functions of the objective autonomous driving system. However, if the surrounding area is not detected at all, probably because the detection area is blocked, the obstacle is a controlled vehicle, as the automatic merging system is configured as an example to determine the situation based on the safety requirements It is difficult to use an automatic merging system in a blind merging section which may block the detection area of the (own vehicle) sensor. If the following vehicle not detected comes out of the blind spot at high speed and the vehicle is still controlled to perform a lane change, the following vehicle may need to be slowed significantly or the accident high Hazard levels may exist and need to be reduced.
  • Patent Document 1 Japanese Patent Laid-Open Publication No. 2014-180986A is a lane based on an obstacle detection means for detecting an obstacle present around a vehicle, a white line detection means for detecting a white line of a lane, and a detection white line.
  • Request detection area calculation means for calculating a request detection area requested when change control is executed, shielding determination means for determining whether the detection area of the obstacle detection means is smaller than the request detection area, obstacle detection Control amount calculating means for calculating a control amount of the vehicle required to make the detection area of the obstacle detection means equal to or larger than the request detection area when the detection area of the means is smaller than the request detection area;
  • the present invention relates to a lane change support system including vehicle control means for controlling a vehicle based on the vehicle.
  • the system suffers from changing its lateral position to accelerate its own vehicle and / or reduce blind spots, but the system does blind spots at the end of the junction.
  • the object of the present invention is to provide a method and system for assisting a driver in the context of automotive line change control or lane merging control, and the reliability and safety of automatic merging system or automotive line change system. Intended to improve the sex aspect.
  • the main advantage of the present invention is that the lane change operation and the automatic control of the lane confluence can be controlled more safely and reliably, and in the case of problems due to blind spot conditions, the control becomes more secure and safer to the driver. It is a migratable thing.
  • the main aspect of the illustrated embodiment is specifically when no vehicle is detected around the vehicle in the target lane (this indicates that the obstacle may limit the detection area of the sensor of the vehicle) ),
  • the actual detection area (sensor area that can actually be used) is calculated based on the detection information.
  • a detection area required for automatic merging can be calculated based on, for example, map data and / or detection information.
  • the driving control can be transferred efficiently, reliably and safely to the driver of the host vehicle.
  • a method for assisting a driver of said vehicle having one or more sensors configured to detect another vehicle around said vehicle.
  • the method is executed by the driving support control unit of the host vehicle, for example, when a lane change operation of changing the current lane in which the host vehicle is traveling to the target lane is performed.
  • the method determines an available detection area detected by the one or more sensors of the vehicle and performs automatic or semi-automatic control of the lane change operation by the driving assistance control unit of the vehicle. Determining the required detection area for the vehicle and / or controlling the lane change operation of the vehicle based on the comparison result of the determined available detection area and the determined necessary detection area. May be included.
  • the determined available detection area is greater than or equal to the determined necessary detection area and / or the determined available detection area includes the determined necessary detection area.
  • the lane change operation of the vehicle may be controlled.
  • the method also includes issuing a warning message to the driver requesting that the driver take over control of the vehicle, for example by means of a human-machine interface of the vehicle. Good.
  • the necessary detection area may be determined based on the speed of the host vehicle.
  • the required sensing area may be determined based on the required estimated length and / or the required estimated time estimated to be necessary to perform the lane change.
  • the required detection area is based on map data indicating the surrounding environment of the vehicle and / or based on lane marking information detected by one or more sensors of the vehicle. May be determined.
  • the required sensing area may be determined based on an estimated speed of a virtual vehicle.
  • the necessary detection area may be determined based on an estimated maximum relative velocity of the virtual vehicle with respect to the host vehicle, the maximum relative velocity being the estimated velocity of the virtual vehicle and / or Or it is preferable to determine based on the said speed of the said own vehicle.
  • the estimated speed of the virtual vehicle may be determined based on a speed limit on the target lane.
  • the estimated speed of the virtual vehicle may be determined based on at least one of current weather conditions, time of day, current season, current traffic conditions.
  • the estimated speed of the virtual vehicle is based on statistical speed data indicating an average speed on the target lane or a statistically estimated maximum speed of a vehicle traveling on the target lane. May be determined.
  • the method may further include determining the slowest lane change start point of the current lane ahead of the vehicle, the available detection area being the most If the host vehicle is located at the late lane change start point, it is determined as an estimated available detection area and / or the required detection area is at the slowest lane change start point to perform the lane change operation. Preferably, it is determined as the required detection area required.
  • the method further comprises estimating the slowest lane change start point of the current lane ahead of the vehicle and the vehicle being located at the slowest lane change start point A second required detection area for determining a second available detection area and for automatically controlling or semi-automatically controlling the lane change operation by the driving support control unit of the host vehicle at the slowest lane change start point And / or comparing the estimated second available detection area with the determined second required detection area based on the result of comparing the estimated second available detection area and the determined second required detection area, It may include controlling a lane change operation.
  • control of the lane change operation of the vehicle at the slowest lane change start point may be performed.
  • the available detection area may be determined based on prestored information indicating an available detection area of a position ahead of the vehicle.
  • the other vehicle following the vehicle in the target lane is not detected by the one or more sensors of the vehicle. Determining the required detection area, determining the required detection area, and / or comparing the determined available detection area with the determined required detection area based on the result of comparison of the vehicle A step of controlling the lane change operation may be performed.
  • the method determines a relative distance between the vehicle and the detected other vehicle, determines a relative velocity between the vehicle and the detected other vehicle, and the vehicle and the vehicle If the determined relative distance between the detected other vehicle and / or the determined relative speed between the own vehicle and the detected other vehicle satisfies the lane change condition, Preferably, controlling the lane change operation is included.
  • a device installable on said vehicle comprising one or more sensors adapted to detect another vehicle around said vehicle, said device being described above or below
  • a control unit configured to perform the method of any of the aspects of claim 1 is included.
  • a computer program product comprising a computer program comprising computer program instructions adapted to cause a controller or processor to carry out the steps of the method according to any of the above or below aspects. Suggested.
  • the present invention it is possible to provide a method and system for assisting a driver in the situation of automobile line change control or lane junction control, and improve the reliability and safety aspect of the automatic joining system or the automobile line change system. .
  • FIG. 1 exemplarily illustrates a vehicle comprising a driving assistance system according to an exemplary embodiment.
  • 4 exemplarily illustrates a flowchart of a control process of a driving assistance system according to an exemplary embodiment. Show different options to indicate lane change intentions to surrounding vehicles. Show different options to indicate lane change intentions to surrounding vehicles. Show different options to indicate lane change intentions to surrounding vehicles. An example of a situation in which the host vehicle is traveling on a road surrounded by three other vehicles is exemplarily illustrated. The correlation mapping of the time required for the lane change / confluence according to the vehicle speed of self-vehicles is illustrated illustratively.
  • a dashed line range area of allowable / possible lane change with respect to inter-vehicle distance (horizontal axis) and collision prediction time (vertical axis) is exemplarily illustrated.
  • An illustrative warning process is shown which lights a warning lamp on the equipment panel of the vehicle and / or activates a warning sound.
  • a flowchart of lane change control processing by the driving support control unit is exemplarily illustrated.
  • An exemplary situation is shown in which the host vehicle is about to change lanes and the vehicles following the target lane can not be detected due to an obstacle (eg, a wall) that limits the actual detection area.
  • FIG. 7 exemplarily illustrates a flowchart of an example process of determining a maximum relative velocity.
  • FIG. 8 exemplarily illustrates a flowchart of another control process of the driving assistance system according to another exemplary embodiment.
  • Fig. 3 exemplarily illustrates a schematic of an exemplary junction such as, for example, a highway. The calculation / determination of the actual detection area is exemplarily illustrated based on the previously acquired data.
  • FIG. 1 exemplarily illustrates a vehicle 100 with a driving assistance system according to an exemplary embodiment, such as, for example, a driving assistance system including an autonomous driving system.
  • the autonomous driving system is a driving operation of the vehicle such as cruise control, overtaking operation, lane change operation, turn operation, stop operation, etc. without influence of the driver or by at least extremely little driver influence or control.
  • a system configured to control (or at least semi-automatically) automatically.
  • the driving assistance system of the exemplary embodiment of the present invention is optionally configured to control various different driving operations or driving operations, for example, configured to control the vehicle completely and autonomously along the target route.
  • the exemplary embodiment may be specific, the exemplary embodiment may be specifically directed to control of a lane change driving operation in which the vehicle is operated to continuously transition from one lane of the road to another lane of the road, and in particular Preferably, the present invention relates to a lane merging operation when, for example, a vehicle enters an expressway or the like on an access lane that merges with a expressway lane.
  • the vehicle 100 may be a vehicle having two, three, four or more wheels, and the vehicle may be driven by a combustion engine, an electric motor, or a combination thereof.
  • the vehicle may be driven by front wheel drive, rear wheel drive or four wheel drive.
  • the vehicle 100 of FIG. 1 is embodied as a car having four wheels including the left front wheel “FL wheel”, the right front wheel “FR wheel”, the left rear wheel “RL wheel” and the right rear wheel “RR wheel”. Be done.
  • Each of the wheels illustratively comprises a respective brake of four brakes 16FL, 16FR, 16RL and 16RR (including for example brake cylinders, pistons, brake pads etc.), illustratively each wheel speed sensor is , Four brakes 16FL, 16FR, 16RL and 16RR respectively. See the exemplary wheel speed sensors 22FL, 22FR, 22RL and 22RR of FIG.
  • the driving support system of the vehicle 100 of FIG. 1 includes a steering control unit 8 (steering control unit) configured to control the steering control mechanism 10 and a brake control unit 15 configured to control the brake control mechanism 13.
  • a driving support control unit 1 driving support control unit communicably connected to the (brake control unit) and the throttle control unit 19 (throttle control unit) configured to control the throttle control mechanism 20 of the vehicle 100 Exemplarily includes.
  • the driving support control unit 1 is configured to output control values and / or control signals to the control units 8, 15 and 19 of the respective control mechanisms 10, 13 and 20, respectively.
  • 13 and 20 respectively are configured to receive respective command values or command signals from the driving support control unit 1 by communication, and control mechanisms 10, 13 and 20 based on the command values. Configured to control the actuator of
  • the driving assistance control unit 1 is configured to control the respective control mechanisms 10, 13 and 20 autonomously and automatically to control the driving operation performed by the vehicle 100. It may be realized as a controlled autonomous driving control unit.
  • the driving support control unit 1 may include a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output unit.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • input / output unit an input/ output unit.
  • the processing procedure of the vehicle driving support operation may be stored in the ROM.
  • map data e.g. navigation map data indicating the geographical arrangement of the road system or other map data
  • specific map data indicating the surroundings of the vehicle 100 may for example be GPS sensors (shown in FIG. Based on satellite navigation systems, such as based on data, rotational speeds of each wheel and / or detected steering angles, it is possible to extract, for example, the position of the vehicle calculated using a position sensor.
  • the driving support control unit 1 can, for example, change the lane based on the relative distance and relative speed between the vehicle and the surrounding vehicle detected by the external recognition sensor. To calculate the command values supplied to the control units 8, 15 and 19 of the respective control mechanisms 10, 13 and 20 guiding the vehicle in order to realize the control of the desired driving operation etc. Configured
  • the driving support control unit 1 may operate based on sensor information including sensor information on the surrounding area of the vehicle 100.
  • the vehicle 100 illustratively includes a plurality of sensors 2, 3 and 5.
  • the sensors 2, 3, 4 and 5 are provided with a sensor device for detecting or recognizing the outside of the vehicle for detecting the surrounding area of the vehicle 100 and / or detecting an obstacle around the vehicle 100.
  • a sensor device for detecting or recognizing the outside of the vehicle for detecting the surrounding area of the vehicle 100 and / or detecting an obstacle around the vehicle 100.
  • Such sensors may include one or more cameras (including conventional cameras such as CCD cameras, infrared cameras and / or stereo cameras), one or more radars, and / or one or more lidars or laser radars, etc. And may be provided.
  • the sensor for recognizing the outside of the vehicle is a camera 2 disposed in front of the vehicle, laser radars 3 and 4 disposed on the right and left sides thereof, and a millimeter wave radar disposed behind the same.
  • a camera 2 disposed in front of the vehicle
  • laser radars 3 and 4 disposed on the right and left sides thereof
  • a millimeter wave radar disposed behind the same.
  • the combination of sensors is used as an example of a sensor structure.
  • the present invention is not limited thereto, and an ultrasonic sensor, a stereo camera, an infrared camera or a combination thereof may be used together with the above-mentioned sensor, and may be used instead of the above-mentioned sensor.
  • a sensor signal can be supplied to the driving support control unit 1.
  • the driver's input to the lane change support input device 11 is supplied to the driving support control unit 1.
  • the lane change support input device 11 may use, for example, blinkers and / or blinking lights, and the lane change support operation can be determined based on the on / off information.
  • the lane change support input device 11 is not limited to the blinker or the blinking signal light, and a dedicated input device may be used.
  • the lane change assistance input device 11 includes an input interface configured to receive a driver's command for performing a lane change or the like and / or a driver's action indicating the driver's intention.
  • the driving support system supports lane change based on a plurality of sensors 2, 3, 4 and 5 for recognizing or recognizing the outside of the vehicle and the information recognized by the sensors From the driving support control unit 1 which calculates command values supplied to the steering control mechanism 10, the brake control mechanism 13, the throttle control mechanism 20, and the actuators of the control mechanisms 10, 13 and 20 And a brake control unit 15 for controlling the brake control mechanism 13 based on the command value in order to adjust distribution of the braking force to each wheel. And a throttle controller based on the above command value to adjust the torque output of the engine And a throttle control unit 19 for controlling the 20. Furthermore, the driving support system of FIG. 1 includes a warning device 23 as an example.
  • the driving support control unit 1 may, for example, longitudinal acceleration, lateral acceleration and yaw rate, sensor signals from wheel speed sensors 22FL to 22RR attached to the wheels, and braking force from the driving support control unit 1.
  • a sensor signal is supplied from the composite vehicle system sensor 14 which can detect the command and / or the sensor signal supplied from the steering angle detector 21 via the steering control unit 8.
  • the output of the brake control unit 15 is connected to a brake control mechanism 13 which may include, by way of example, a pump (not shown) and a control valve, which is independent of the driver's brake pedal operation.
  • a brake control mechanism 13 which may include, by way of example, a pump (not shown) and a control valve, which is independent of the driver's brake pedal operation.
  • the brake control unit 15 can estimate the spins, drifts and locks of the vehicle 100 based on the above information, and can generate a braking force on the related wheels to suppress them, thereby the driver's operation or Handling and stability of driving operation can be improved.
  • the driving support control unit 1 can transmit a brake command to the brake control unit 15 so that an arbitrary braking force can be generated in the vehicle 100.
  • the present invention is not limited to the brake control unit, and other actuators such as a brake by wire can be used.
  • the brake control system of the driving support system of FIG. 1 is, by way of example, a brake control mechanism 13 for operating the brakes 16FL, 16FR, 16RL and 16RR based on the brake operation control signal and / or the respective brakes 16FL, 16FR, 16RL. And 16RR can be communicated to the brake control unit 15 configured to control the operation of the brakes 16FL, 16FR, 16RL and 16RR based, for example, on the brake operation control signal transmitted from the brake control unit 15 to The brake control mechanism 13 connected is included.
  • the brake control mechanism 13 may be realized as an electrical control system having an electrical actuator.
  • the brake control mechanism 13 may additionally or alternatively have mechanical, hydraulic and / or pneumatic actuators.
  • vehicle 100 further includes a brake pedal 12 actuatable by the vehicle driver, for example, to affect vehicle control of vehicle 100 or to take over brake control. That is, the vehicle 100 is configured such that the driver can take over control further affecting the control of the vehicle 100 by a dedicated input device such as the brake pedal 12 or the steering wheel 6 or the accelerator pedal 17 of the vehicle 100. Ru.
  • the driver pedaling operation of stepping on the brake pedal 12 can be amplified (e.g. doubled) by the brake booster (not shown) to generate hydraulic pressure according to the pedal operation by the master cylinder (not shown) .
  • the generated hydraulic pressure may be supplied to the respective brake cylinders of the wheels of the brakes 16FL to 16RR via the brake control mechanism 13.
  • the wheel brakes 16FL to 16RR may be composed of cylinders (not shown), pistons, brake pads and the like.
  • the piston may be propelled by the brake fluid supplied from a master cylinder (not shown), and the brake pad connected to the piston may be pressurized on the disc rotor.
  • the disc rotor is rotatable with the wheels (not shown). Therefore, the brake torque acting on the disc rotor becomes the braking force acting between the wheel and the road. As a result, a desired braking force can be exerted on the wheels in accordance with the driver's brake pedal operation.
  • the brake control unit 15 may include, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output unit.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • the steering control system of the driving support system of FIG. 1 is, by way of example, transmitted to the steering control mechanism 10 from the steering control unit 8 based on the steering operation control signal, for example, based on the steering operation control signal. It includes a steering control mechanism 10 communicably connected to a steering control unit 8 configured to control the operation of the corresponding steering control mechanism 10.
  • the steering control unit 8 outputs an electrical control signal
  • the steering control mechanism 10 may be realized as an electrical control system having an electrical actuator.
  • the steering control mechanism 10 may additionally or alternatively include mechanical, hydraulic and / or pneumatic actuators.
  • the vehicle 100 further comprises a handle 6 actuatable by the vehicle driver, for example to influence the vehicle control of the vehicle 100 or to take over steering control. That is, the vehicle 100 is configured to allow the driver to influence or take over control of the vehicle 100 by the steering wheel 6 of the vehicle 100 or a dedicated input device such as the brake pedal 12 or the accelerator pedal 17 or the like. .
  • the steering torque and / or the steering angle input by the driver via the steering wheel 6 can be detected by the steering torque detector 7 and / or the steering angle detector 21, respectively, and the steering control unit 8 can support the assist torque
  • the internal combustion engine can be controlled based on the detected information to generate
  • the steering control unit 8 is, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM) And an input / output unit.
  • the steering control mechanism 10 can be operated by a combined force of the driver's steering torque for rotating the front wheels and the assist torque by the internal combustion engine.
  • the reaction force from the road surface can be transmitted to the driver after being transmitted to the steering control mechanism 10 according to the rotation angle of the front wheels.
  • the steering control unit 8 can generate torque by the internal combustion engine 9 independently of the driver's steering operation, and can control the steering control mechanism 10.
  • the driving support control unit 1 can control the front wheels to rotate at an arbitrary rotation angle by transmitting a steering force command to the steering control unit 8.
  • the present invention is not limited to the use of a steering control, and other actuators such as steering by wire can be used.
  • the throttle control system of the driving support system of FIG. 1 is, for example, based on a throttle operation control signal transmitted from the throttle control unit 19 to the throttle control mechanism 20 based on, for example, a throttle operation control signal.
  • a throttle control mechanism 20 communicably connected to a throttle control unit 19 configured to control the operation of the controller.
  • the throttle control mechanism 20 can be realized as an electrical control system having an electrical actuator.
  • the throttle control mechanism 20 may additionally or alternatively include mechanical, hydraulic and / or pneumatic actuators.
  • the throttle control mechanism 20 may further include a drive system of the vehicle 100 including, for example, a combustion engine and / or an electrically driven internal combustion engine.
  • the vehicle 100 further includes an accelerator pedal 17 actuatable by the vehicle driver to, for example, affect vehicle control or take over throttle control of the vehicle 100. That is, the vehicle 100 is configured to enable the driver to influence or take over control of the vehicle 100 by a dedicated input device such as the accelerator pedal 17 or the steering wheel 6 or the brake pedal 12 of the vehicle 100.
  • a dedicated input device such as the accelerator pedal 17 or the steering wheel 6 or the brake pedal 12 of the vehicle 100.
  • the depression amount of the driver's accelerator pedal 17 can be detected by the stroke sensor 18 and can be input to the throttle control unit 19.
  • the throttle control unit 19 is, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM) as in the driving support control unit 1. And an input / output unit.
  • the throttle control unit 19 is capable of adjusting the throttle opening according to the accelerator pedal depression amount in order to control the drive system of the throttle control mechanism 20.
  • the vehicle 100 can accelerate according to the driver's accelerator pedal operation.
  • the throttle control unit can control the throttle opening independently of the driver's accelerator pedal operation. Therefore, the driving support control unit 1 can transmit an acceleration command to the throttle control unit in order to realize an arbitrary acceleration in the vehicle 100.
  • the brake control mechanism and the throttle control mechanism control the vehicle 100 (to The vehicle can be guided to a position where it is possible to change lanes by adjusting according to the conditions of surrounding vehicles in the vicinity of the vehicle. Also, system control steering for lane change can be realized by executing control of the steering control mechanism.
  • FIG. 2 exemplarily illustrates a flowchart of control processing of a driving assistance system according to an exemplary embodiment.
  • FIG. 2 is a flowchart showing an example of control processing of automatic merging processing according to a processing command of a control program or a control program part, for example, stored in the memory of the driving support control unit 1 or the like.
  • the driving support control unit 1 determines whether lane change / automatic merging is necessary (step S201). For example, the driving support control unit 1 can determine that the lane change is necessary based on one or more of the following determination criteria. That is, a lane change is required to follow the navigation route as determined by the vehicle's navigation system, for example, the driver has made a lane change intention or request based on the input to the lane change assistance input device 11 A lane change is necessary to indicate that other vehicles ahead of the host vehicle (vehicle 100) need to change lanes in order to meet the target speed condition, eg at highway entrances etc.
  • step S201 determines whether the determination in step S201 is YES. If the determination in step S201 is YES, the process proceeds to step S202. If the determination is NO, lane change / automatic merging is not necessary, and the process returns.
  • step S202 the driving assistance control unit 1 executes a process of notifying the surrounding other vehicle of the intention of changing the lane of the vehicle 100 (own vehicle).
  • Figures 3A, 3B and 3C show different options to surrounding vehicles to indicate the intent of a lane change.
  • the host vehicle 101 moves along the boundary between the current lane and the adjacent lane that the driver wishes to change, as exemplarily shown in FIG. 3B. There is a way to
  • the driving support control unit 1 may first detect the lane by using the information of the camera 2 disposed in front of the vehicle. The driving support control unit 1 may then calculate the target steering angle or the steering support torque required for the above movement. The target steering angle or torque can be transmitted to the steering control unit 8. Thereby, the vehicle can be controlled to move along the border with the adjacent lane.
  • step S202 the vehicle is transmitted to the other vehicle There is also a way to send a lane change intention for the vehicle.
  • the driver's lane change intention can be clearly transmitted to the other vehicle from the own vehicle 100 by the process of step S202, the other vehicle such as the vehicle 101 in FIGS. 3A to 3C is the lane of the own vehicle.
  • the intention to change can be recognized, which enables lane change to be performed smoothly.
  • the driving support control unit 1 determines whether or not one or more following vehicles around the host vehicle 101 can travel in the target lane for the intended lane change. (Step S203). If YES, the process proceeds to step S204; otherwise, the process proceeds to step S210.
  • step S203 based on sensor information acquired from sensors 2, 3, 4 and / or 5 in step S203, one or more vehicles around vehicle 100 are next or behind vehicle 100 (backward). It is checked whether it can be detected that the target lane (that is, the target lane of the vehicle 100 after the route change of the vehicle 100 is changed) and that the vehicle 100 is traveling inside.
  • the target lane that is, the target lane of the vehicle 100 after the route change of the vehicle 100 is changed
  • step S203 when it is detected in step S203 that at least one subsequent vehicle is traveling in the target lane of the intended lane change around the host vehicle 101, the process continues to step S204.
  • step S204 for example, as illustrated in FIG. 4, the driving support control unit 1 detects the front portion of the vehicle, the camera 2, the laser radars 3 and 4, which detects the side portion of the vehicle, and the rear of the vehicle.
  • the relative distance and the relative velocity between the vehicle 100 and the detection surrounding vehicle are determined or calculated based on the information of the sensor such as the millimeter wave radar 5 which detects the portion.
  • FIG. 4 exemplarily illustrates an example of a situation in which the host vehicle 100 is traveling on a road surrounded by three other vehicles 101, 102 and 103.
  • the vehicle 100 travels in the left lane of the road and is surrounded by three other vehicles 101, 102 and 103.
  • the vehicle 103 is, for example, traveling in the same lane as the host vehicle 100 in front of the host vehicle.
  • the vehicle 101 travels the other lane next to the vehicle 100 (a possible target lane when the lane change is to be controlled) by way of example, and the vehicle 102 is also another lane by way of example (ie lane change) Is a possible target lane in the case of a control target), but travels behind the host vehicle 100.
  • reference numerals A2, A3, A4 and A5 indicate, as an example, the front (detection area A2 of sensor 2) and the rear (detection area A5 of sensor 5) of vehicle 100, and the left of vehicle 100 (sensor 3
  • the detection areas of sensors 2, 3, 4, and 5 for detecting an obstacle (for example, a vehicle) in detection area A3) and the right (detection area A4 of sensor 4) are related. Therefore, of the vehicles around vehicle 100, vehicle 102 is disposed in sensor area A5, so that vehicle 102 can be detected by sensor 5, and vehicle 101 is disposed in sensor area A4. Since the vehicle 103 can be detected by the sensor 4 and the vehicle 103 is disposed in the sensor area A2, the vehicle 103 can be detected by the sensor 2.
  • step S203 the result of step S203 is YES, and the driving assistance control unit 1 calculates the relative distance and speed between the host vehicle and the vehicle 102 in step S204, and the host vehicle and the vehicle 101
  • the relative distance between and the speed is also possibly calculated, and it is assumed that both are located in the possible target lane if a lane change is desired or intended.
  • the speed of the vehicle 100 can be estimated based on the information of the wheel speed sensors 22FL to 22RR.
  • the maximum speed of the information of the four wheel speed sensors can be selected to be set as the estimated vehicle speed.
  • the method of estimating the vehicle speed is not limited thereto, and other methods using the average value of the wheel speed sensor can be used.
  • the relative position and the relative speed of the other vehicle are, for example, with the center of gravity of the vehicle 100 as the origin, for example, the X axis is set toward the front of the vehicle 100 (for example, along the axial direction of the vehicle 100)
  • the relative velocity Vi of the i-th vehicle is defined, for example, such that the velocity in the direction in which the i-th surrounding vehicle approaches the host vehicle 100 is positive.
  • the driving support control unit 1 changes the lane based on the determined relative position and relative velocity in step S206, for example.
  • the process proceeds to the process of calculating the collision risk for each of the detected surrounding vehicles or at least the detected surrounding vehicles in the lane change target lane.
  • the vehicle speed of the host vehicle 100 required for the lane change / merging can be calculated as shown in FIG. It is applied to the predetermined correlation mapping of V0 versus time T1.
  • FIG. 5 exemplarily illustrates correlation mapping of time T1 required for lane change / merging according to the vehicle speed V0 of the host vehicle 100.
  • the correlation mapping exemplarily shown in FIG. 5 is set such that the time T1 required to change the lane is shorter as the vehicle speed V0 of the host vehicle 100 is higher.
  • the time T1 required for lane change (or lane merging) is short at high speed and the time T1 is long at low speed, so the time T1 required for lane change is correctly calculated according to the vehicle speed V0 of the host vehicle 100. It is possible.
  • Such correlation mapping may be determined in advance, and in other exemplary embodiments may be used to determine an estimated time T1 required to change lanes according to the vehicle speed V0 of the vehicle 100. It is. On the other hand, the time required to change lanes may be calculated based on the vehicle speed ahead of the host vehicle and further based on the detected lane width (for example, based on the detection view of the camera 2 ahead of the vehicle).
  • an inter-vehicle distance Xi ⁇ gap to the i-th vehicle around the host vehicle 100 at time t + T1 and a same time t + T1 representing a collision risk at time t (after time T1 required for lane change) when lane change is performed The estimated time to collision or the collision prediction time Ti ⁇ ttc is calculated based on the calculation time T1 required for the lane change by the following equation.
  • L0 represents the full length (front-back direction) of the host vehicle 100
  • Li represents the length of the vehicle i around the host vehicle 100.
  • the inter-vehicle distance Xi ⁇ gap at time t + T1 is the start time t of the lane change operation and the estimated time T1 of the lane change operation, and further at time t + T1 at which the lane change is expected to be completed.
  • the estimated gap distance after the completion of the lane change (or lane merging) between the i-th vehicle and the host vehicle 100 in consideration of the expected relative distance Xi from the vehicle 100 to the i-th vehicle is shown.
  • the predicted relative distance Xi from the host vehicle 100 to the i-th vehicle at time t + T1 may be estimated based on the relative distance Xi and the relative velocity Vi of the i-th vehicle relative to the host vehicle 100 calculated in step S204. Good.
  • the estimated collision prediction time Ti ⁇ ttc at the same time t + T1 represents the estimation of the time until a collision occurs between the i-th vehicle and the vehicle 100 after the lane change is completed.
  • the driving support control unit 1 calculates for each of the surrounding vehicles or at least for each of the surrounding vehicles traveling in the target lane of the desired lane change by the equations (2) and (3). Based on the calculated calculated inter-vehicle distance Xi ⁇ gap (t + T1) and the predicted collision time Ti ⁇ ttc (t + T1), it is determined whether or not the lane change can be performed (step S207 in FIG. 2).
  • the calculated inter-vehicle distance Xi ⁇ gap (t + T1) is larger (or more) than the relative distance threshold Xi ⁇ gap_a (hereinafter referred to as a first predetermined value)
  • the calculated collision prediction time Ti ⁇ ttc (t + T1) is larger than (or more than) a threshold Ti ⁇ ttc_a (hereinafter referred to as a second predetermined value) for the collision prediction time.
  • FIG. 6 exemplarily illustrates a dashed line area of allowable / possible lane change for a pair of inter-vehicle distance Xi ⁇ gap (horizontal axis) and collision prediction time Ti ⁇ ttc (vertical axis).
  • the determination criterion for step S207 in FIG. 2 is that the relative distance for each surrounding vehicle i in at least the target lane and the collision prediction time have sufficient time for all surrounding vehicles i, that is, the first one described above.
  • the second and third thresholds Xi ⁇ gap_a and Ti ⁇ ttc_a it is possible to set that the lane change is feasible if the following equation is satisfied.
  • the condition expressed by equation (4) below is not satisfied or not satisfied, it is determined in step S207 that the lane change is not feasible.
  • X1 ⁇ gap_a is an example of a vehicle 101 ahead in the target space.
  • the threshold value of the relative distance (hereinafter referred to as a first predetermined value) for determining whether the lane change can be performed, and X2 ⁇ gap_a is, by way of example, for the rear or following vehicle 102 in the target space.
  • This is a threshold for a relative distance (hereinafter referred to as a third predetermined value) for determining whether lane change is feasible.
  • the first and third predetermined values of the distance at which the lane change is considered not to be performed are given regardless of the relative speed at which the driver is within the relative distance (changing the lane) (For example, 7 m as a first predetermined value, and 10 m as a third predetermined value).
  • these predetermined threshold values can be determined in advance but need not be fixed, and can be changed according to the vehicle speed V0 of the host vehicle 100 or by the driver in some exemplary embodiments.
  • the first and / or third threshold may be calculated based on the vehicle speed V0 based on the predetermined function (s), eg, whereby the first and / or third threshold is high
  • the first and / or third thresholds may be determined smaller than the low vehicle speed V0 of the host vehicle 100.
  • the time parameter T1 ⁇ TTC_a is, as an example, a vehicle ahead in the target space
  • the threshold value of the collision prediction time (hereinafter referred to as a second predetermined value) for determining whether the lane change is possible with respect to 101, and the time parameter T2 ⁇ TTC_a is whether the lane change is possible for the following vehicle in the target space
  • a threshold value of the collision prediction time (hereinafter referred to as a fourth predetermined time) to be determined.
  • the second and fourth predetermined threshold values are time parameters that the driver feels in a dangerous situation (for example, 5s as a second predetermined value) when the calculated time (s) are within the collision prediction time. And 6s as a fourth predetermined value).
  • these predetermined threshold values can be determined in advance but need not be fixed, and can be changed according to the vehicle speed V0 of the host vehicle 100 or by the driver in some exemplary embodiments.
  • the second and / or fourth threshold may be calculated based on the vehicle speed V0 based on the predetermined function (s), for example whereby the second and / or fourth threshold is high
  • the second and / or fourth threshold values may be determined smaller than the low vehicle speed V0 of the host vehicle 100.
  • the relative speed determined is negative, that is, when the i-th vehicle disappears and the distance from the host vehicle 100 increases, the relative distance is short, and preferably the gap between the vehicles after the lane change is small. In order to avoid this, it is possible to judge that the lane change can not be performed in step S207.
  • step S207 determines whether the lane change is executable according to the above determination (if step S207 returns YES). If step S207 returns YES), the process proceeds to step S209 in FIG. Is executed by control of
  • step S207 if the determination in S207 is NO (ie,), the process proceeds to step S208, and a warning is issued to the driver of the host vehicle 100.
  • the lane change appropriateness determination is not limited to that of FIG. 6 (or the above equation 4), and in the other exemplary embodiments, the definition set on the horizontal axis of FIG. It may be done.
  • step S208 when step S207 returns to NO, for example, as shown in FIG. 7, the driving support control unit 1 executes a warning process for issuing a warning to the driver of the host vehicle.
  • FIG. 7 exemplarily illustrates a warning process of lighting a warning on the device panel of the host vehicle 100 and / or activating a warning sound.
  • Light and / or sound alerts can be varied in brightness and volume respectively depending on the level of risk calculated.
  • the display size of the warning lamp of the warning device 23 also refer to FIG. 1
  • the volume of the warning sound change according to the collision risk calculated in step S206 as shown in FIG.
  • the driver is informed that the lane change is not possible (step S208).
  • the displayed warning light and / or the warning volume can be changed according to the collision risk, it is possible to predict when the driver can change lanes.
  • step S207 when returning to FIG. 2 and step S207 returns to YES, the desired lane change is performed by the control of the driving assistance control unit 1 in step S209.
  • the driving support control unit 1 can execute processing of control for lane change.
  • FIG. 8 exemplarily illustrates a flowchart of lane change control processing by the driving support control unit 1.
  • a target route for lane change is based on, for example, acquired lane sign information, such as based on a lane sign detected in front of the host vehicle 100 by the camera 2, for example. , Calculated in step S901.
  • the target route for the lane change may be determined based on navigation information including map information regarding the lane position of the road ahead of the detected vehicle position.
  • step S902 based on the target route determined in step S901, a steering assist torque is calculated to follow the target route, and the steering assist torque is a steering control mechanism based on the target steering assist torque determined in step S902.
  • the steering control unit 8 is instructed to control 10, and the vehicle 100 executes the lane change based on the control of the driving support control unit 1.
  • step S903 the driving support control unit 1 determines whether the lane change has ended. If the process S 903 returns to YES, the control process for the lane change ends. If the process S903 returns to NO, the process returns to the process S901.
  • step S203 the process in the case where it is not detected that the following vehicle around the host vehicle 101 is traveling in the target lane of lane change intended by the driving support control unit 1 (step S203 returns to NO) Do.
  • step S203 if it is determined in step S203 that a subsequent vehicle is not detected in the lane change target lane, that is, if no subsequent vehicles are detected in the lane change target lane, a detection region is calculated in step S210. . This is illustrated exemplarily in FIG.
  • FIG. 9 exemplarily shows a situation in which the host vehicle 100 executes a lane change, and the following vehicle 101 in the target lane can not be detected due to an obstacle (for example, a wall) that limits the actual detection area.
  • an obstacle for example, a wall
  • the actual detection area available via the sensor (s) of the host vehicle 100 can not be detected because the dashed line area is due to an obstacle (for example, a wall) In this situation, the dashed area is limited in that it is not included in the actual detection area.
  • the actual detection area is also called the actually available detection area, and is compared with the maximum available detection area (available when there is no obstacle that limits the detection area of the sensor of the host vehicle 100). Ru.
  • the actually available detection area corresponds to the detection area that is maximally available when there are no obstacles in the detection area, but the detection area that is actually available is that the detection area is inside the detection area When limited by an obstacle (for example, in the case of a 2D sensor such as a radar), it may be smaller than the maximum available detection area.
  • the actual detection area can be calculated based on the radial maximum distance to one or more obstacles detected by the sensor of the host vehicle 100 as an example.
  • the method of calculating the actual detection area is not limited to the above method.
  • the detected road surface area can be set as an actual detection area.
  • the actual detection area can be represented as an occupied grid map.
  • step S211 the maximum relative velocity is calculated based on an exemplary process as illustrated in FIG. 10, for example.
  • FIG. 10 exemplarily illustrates a flowchart of an example process of determining the maximum relative velocity.
  • the maximum relative velocity is calculated in step S1101 in FIG. 10, and the velocity of the vehicle 100 is determined / calculated based on the rotational velocity of each wheel, for example, as described above.
  • the maximum speed of the other virtual vehicle is at least one of the current road speed limit, time, season, road surface conditions, and / or accumulated speed data in this area (such as statistical vehicle speed data). Determined / calculated based on
  • the estimation method of the maximum speed of a virtual vehicle is not limited to the above-mentioned aspect.
  • the maximum speed of the vehicle may be determined based on or in response to the current road segment speed limit, and may be adjusted by a threshold (e.g. depending on traffic conditions, seasonal conditions, road conditions etc. Such as the following vehicle including the possibility of exceeding the speed limit by a certain percentage of speed).
  • the current speed of the vehicle 100 is determined in step S1101, and the maximum speed of the possibly undetected following vehicle (virtual vehicle) traveling on the target lane of the lane change in step S1102 is, for example, And / or based on statistical speed data available for the current road portion.
  • the maximum relative speed between the host vehicle 100 and another virtual vehicle is calculated or determined in step S1103. .
  • the vehicle For example (if the number below is just an example value) and the vehicle is on a ramp road with a vehicle speed of 80 km / h and this ramp road joins the expressway at a speed limit of 100 km / h, the vehicle
  • the maximum relative speed between 100 and the other virtual vehicle is the difference between the vehicle speed and the determined maximum speed of the virtual vehicle assumed to be traveling at the speed limit on the object lane on the freeway It can be determined to be 20 km / hour based on.
  • the vehicle 100 and another virtual vehicle The maximum relative speed between them is the difference between the own vehicle speed and the determined maximum speed of the virtual vehicle assumed to be traveling at the speed limit on the object lane on the freeway, taking into account the safety limits It can be determined to be 30 km / hour based on. Also, the maximum relative speed can be further adjusted for safety reasons, depending on the time of day, traffic conditions to be expected, seasonal conditions, statistical data, etc.
  • step S212 a detection area necessary for lane change and / or merging is calculated or determined based on the maximum relative velocity determined in step S211.
  • the length required for lane change along an adjacent lane can be calculated based on the maximum relative velocity determined in step S212.
  • This required length can be calculated according to the relative velocity. For example, the higher the relative velocity, the longer the required length is determined, and the lower the relative velocity, the shorter the required length. Furthermore, this required length can be determined based on the determined / estimated time T1 required for the lane change / merging as described above.
  • the required sensing area estimated to be necessary to be able to execute lane change safely ie the sensing area considered to be a lane change / merging requirement, has been determined It may be calculated or determined based on the length, and further determined based on map data and / or lane marking information detected by the sensor of the vehicle 100.
  • the necessary detection area can be calculated / decided based on, for example, map data and / or the shape of the adjacent lane (target lane) based on the lane sign information acquired by the sensor of the host vehicle 100
  • the example The above algorithm is also applicable to merging or changing lanes regardless of the curve shape of the road curve.
  • the method of calculating the actual detection area is not limited to the above method.
  • the required detection area can be calculated based on the adjacent lane and the next lane of the adjacent lane.
  • step S213 the driving support control unit 1 determines whether the necessary detection area determined in step S212 is included in the actual detection area determined in step S210. For example, in step S213, it is determined whether the required detection area determined in step S212 is smaller or at least equal to the actual detection area determined in step S210.
  • the driving support control unit 1 determines in step S213 whether the detection area requirement (detection area condition) is satisfied in the current lane change state or the merging state.
  • step S213 returns to NO, the process proceeds to step S214, where the driving is transferred to the driver of the host vehicle 100.
  • the driver is instructed to take over control of the host vehicle 100, or at least control of the host vehicle 100 is controlled by a visual and / or auditory alert or a transition command output by a human-machine interface attached to the vehicle. It is warned that manual control needs to be migrated.
  • FIG. 11 exemplarily illustrates the device panel of the host vehicle that outputs a warning message to the driver.
  • This warning message includes, in addition to the output of the warning message, a display by indicating the reason for the need to take over control of the vehicle by the driver if the driver needs to take over the driving control, It can be understood why manual control is needed, eg information as to why the level of automation is decreasing and / or by which time the driver needs to initiate manual control of the vehicle.
  • step S213 returns to YES
  • the process proceeds to step S209, and the driving support control unit 1 performs lane change as described above as an example in connection with, for example, FIG.
  • the detection area actually available for example, due to an obstacle in the detection area, the other vehicle (following vehicle) in the target lane of the desired lane change / merge operation If not detected at all, the necessary detection area required to safely carry out a lane change is safe, for example even if the following vehicle is approaching at high speed from outside the actual detection area in a blind merge situation
  • the purpose is to realize merging.
  • the driving control is instead transferred to the driver.
  • This aspect allows the driver to easily and safely control the vehicle even before the start of a lane change or merging situation, for example by helping the driver avoid sudden occurrence of a control transition at the end of the merging area. It has the advantage of being able to take over.
  • FIG. 12 exemplarily illustrates a flowchart of another control process of the driving assistance system according to another exemplary embodiment.
  • FIG. 12 exemplarily illustrates an automatic merging process that can be stored in the memory of the driving support control unit 1, and the driving support control unit 1 may be configured to execute the corresponding control processing.
  • Steps S1301 to S1314 in FIG. 12 are, for example, the same as S201 to S214 in FIG. 2 described above.
  • step S1313 returns to NO, information and / or map information is detected in step S315, for example, the slowest junction start point (or slowest lane change point) detected by, for example, the camera 2 of the host vehicle 100 or other forward sensors. Calculated or determined based on
  • the slowest merging start point indicates, as an example, a position from which the vehicle 100 can safely merge or safely change lanes.
  • step S1316 the actual detection area at the confluence start point is estimated based on the current actual detection area and the determined confluence start point.
  • step S1317 the necessary detection area at the merging start point is calculated or determined based on the necessary length, map data and / or lane marking information detected by the sensor of the vehicle 100 (for example, similar to step S211) But with regard to the latest determined confluence start point).
  • the driving support control unit 1 determines whether the necessary detection area at the joining start point is included in the actual detection area at the joining start point (for example, although it is determined similar to step S212) For the slowest merging start).
  • step S1318 returns to YES, the process proceeds to step S1319 to continue the merging operation (or the lane change operation).
  • step S1319 the vehicle is controllable to reduce the blind area in the actual detection area estimated at the latest merging start point. This has the advantage of increasing the possibility of performing automatic merging or car line changes.
  • step S1318 returns to NO, the process proceeds to step S1314 where operation control is transferred to the driver in a manner similar to step S214 above.
  • the vehicle performs merging operation or lane
  • the execution of the change operation can continue.
  • FIG. 13 exemplarily illustrates, for example, a schematic of an exemplary merging portion of a highway.
  • the driving support control unit 1 of the subject vehicle 100 compares the necessary detection area of the latest joining start point as an example with the actual detection area of the joining start point. This has the advantage that the automatic merging operation / lane changing operation can be performed depending on the situation.
  • FIG. 14 exemplarily illustrates the calculation / determination of an actual detection area based on previously acquired data.
  • the upper part of FIG. 14 shows, as an example, processing of storing actual detection information regarding the vehicle position in the database at time A.
  • the lower part of FIG. 14 shows, as an example, a process of extracting actual detection information stored in advance at time B (later than time A).
  • a database may be provided on the vehicle, or such database may be located at a remote location, for example at a service provider's database center, such center and / or database being You may communicate with the driving assistance control part 1 via wireless communication.
  • the actual detection information and / or Or visibility information (e.g. low / medium / high visibility) can be extracted.
  • this information can be displayed to the driver via the human-machine interface.
  • Such information is very useful to the driver, because the driver can prepare to take over control of the vehicle 100 before reaching the merging point or at least before reaching the slowest junction start point. It has the advantage of
  • the database can be implemented on the vehicle 100 in the illustrated embodiment, the location and specific configuration of the database are not limited, and the database is not limited to the data center in the other illustrated embodiment as described above. It can be implemented.
  • the same information can be used by other vehicles by wireless information using, for example, Car-to-X communications (Car-to-X communications or C2X).
  • the present invention as described above and the accompanying drawings may be implemented as a method (e.g. computer implemented process or other process), a control apparatus (apparatus, machine, system, computer program product and / or other apparatus Or a combination thereof.
  • a method e.g. computer implemented process or other process
  • a control apparatus apparatus, machine, system, computer program product and / or other apparatus Or a combination thereof.
  • embodiments of the present invention are generally hardware embodiments, software embodiments (firmware, resident software, microcode, etc.) as a whole, or embodiments combining software and hardware aspects commonly referred to herein as a "system”. It may take the form of Additionally, embodiments of the present invention may take the form of a computer program product on a computer readable medium having computer executable program code embodied in the medium.
  • Computer-executable program code may be provided to a processing device, such as a general purpose computer, a special purpose computer, or the control of another programmable data processing device to create a particular machine, such as a computer or other program.
  • the program code to be executed via the data processing apparatus creates means for implementing the functions / actions / outputs specified in the flowchart, block diagram, block, diagram and / or description.
  • These computer executable program code may be stored in computer readable memory, which may be directed to a computer or other programmable data processing device to function in a further specific manner, and stored in computer readable memory.
  • the program code creates a product that includes instruction means for implementing the functions / operations / outputs specified in the flowcharts, block diagrams, blocks, diagrams and / or specifications.
  • Computer-executable program code may be loaded onto a computer or other programmable data processing device that causes a sequence of operating steps to be performed on the computer or other programmable device to create a computer-implemented process.
  • the program code executing on the programmable device implements the steps of implementing the functions / actions / outputs specified in the flowchart, block diagram, block, diagram and / or description.
  • computer program execution steps or actions may be combined with steps or actions performed by an operator or human to carry out embodiments of the present invention.
  • logic flow has been described herein to represent various aspects of the present invention, it should not be construed to limit the present invention to any particular logic flow or logic implementation.
  • the described logic may be divided into different logic blocks (e.g. programs, modules, functions or subroutines) without changing the overall result or deviating from the true scope of the present invention.
  • logic elements are added, modified, omitted, performed in a different order, or different logic structures (e.g., logic gates) without changing the overall result or departing from the true scope of the present invention.
  • Looping primitives, conditional logic, and other logical structures may be divided into different logic blocks (e.g. programs, modules, functions or subroutines) without changing the overall result or deviating from the true scope of the present invention.
  • logic elements are added, modified, omitted, performed in a different order, or different logic structures (e.g., logic gates) without changing the overall result or departing from the true scope of the present invention.
  • SYMBOLS 1 driving assistance control part, 2 ... camera, 3 ... laser radar, 4 ... laser radar, 5 ... millimeter wave radar, 6 ... steering wheel, 7 ... steering torque detector, 8 ... steering control part, 9 ... internal combustion engine, 10 ... steering control mechanism, 11 ... lane change support input device, 12 ... brake pedal, 13 ... brake control mechanism, 14 ... composite vehicle system sensor, 15 ... brake control unit, 16 FL ... brake, 16 FR ... brake, 16 RL ... brake, 16 RR ... brake ... 17 ... accelerator pedal ... 18 ... stroke sensor 19 ... throttle control part 20 ... throttle control mechanism, 21 ... steering angle detector, 22FL ... wheel speed sensor, 22FR ... wheel speed sensor, 22RL ... wheel speed sensor, 22 RR ... wheel speed sensor, 23 ... warning device, 100 ... Vehicle, 101 ... vehicle, 102 ... vehicle, 103 ... vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

The present disclosure provides a method and a device for assisting a driver of a vehicle having at least one sensor configured to detect another vehicle at the periphery of the host vehicle, wherein the method is executed by a driving assistance control unit of the host vehicle when a lane change operation to change from a current lane in which the host vehicle is traveling to a target lane is executed, the method comprising: determining an available detection region to be detected by the at least one sensor of the host vehicle; determining a detection region necessary to execute automatic control or semi-automatic control of the lane change operation by the driving assistance control unit of the host vehicle; and controlling the lane change operation of the host vehicle on the basis of the result of a comparison between the determined available detection region and the determined necessary detection region.

Description

自車両の運転手を支援するための方法および装置Method and apparatus for assisting a driver of a host vehicle
 本発明は、自車両の周囲の他車両を検出するように構成された1つ以上のセンサを有する自車両の運転手を支援するための方法および装置に関する。 The present invention relates to a method and apparatus for assisting a driver of a host vehicle having one or more sensors configured to detect other vehicles around the host vehicle.
 車線変更を実行する、または車線合流部上を走行するように車両を自動的に制御するための自動合流システムは、運転手の作業負荷を低減する、さらに交通事故の危険性を低減することを目的とした自律運転システムの主要機能の1つである。しかしながら、おそらく検知領域が遮断されているため周囲車両が全く検出されない場合に通常、自動合流システムが安全性要件に基づいて状況を判断するように例として構成されるため、障害物が被制御車両(自車両)のセンサの検知領域を遮断する場合のあるブラインド合流部において自動合流システムを使用するのが困難である。検出されない後続車両がブラインドスポットから高速度で出て来て自車両が車線変更を実行するように依然として制御されている場合、後続車両は大幅に減速する必要がある場合があり、または事故の高危険度が存在する場合があり、それを低減する必要がある。 An automatic merging system for automatically controlling a vehicle to perform a lane change or to travel on a lane junction reduces the workload of the driver and also reduces the risk of traffic accidents. It is one of the main functions of the objective autonomous driving system. However, if the surrounding area is not detected at all, probably because the detection area is blocked, the obstacle is a controlled vehicle, as the automatic merging system is configured as an example to determine the situation based on the safety requirements It is difficult to use an automatic merging system in a blind merging section which may block the detection area of the (own vehicle) sensor. If the following vehicle not detected comes out of the blind spot at high speed and the vehicle is still controlled to perform a lane change, the following vehicle may need to be slowed significantly or the accident high Hazard levels may exist and need to be reduced.
 日本特許公開公報第2014-180986A号(特許文献1)は、車両の周囲に存在する障害物を検出する障害物検出手段と、車線の白線を検出する白線検出手段と、検出白線に基づいて車線変更制御が実行された場合に要求された要求検出領域を算出する要求検出領域算出手段と、障害物検出手段の検出領域が要求検出領域よりも小さいかを決定する遮蔽決定手段と、障害物検出手段の検出領域が要求検出領域よりも小さい場合に障害物検出手段の検出領域を要求検出領域以上とすることを要求される車両の制御量を算出する制御量算出手段と、算出した制御量に基づいて車両を制御する車両制御手段を含む車線変更支援システムに関する。 Japanese Patent Laid-Open Publication No. 2014-180986A (Patent Document 1) is a lane based on an obstacle detection means for detecting an obstacle present around a vehicle, a white line detection means for detecting a white line of a lane, and a detection white line. Request detection area calculation means for calculating a request detection area requested when change control is executed, shielding determination means for determining whether the detection area of the obstacle detection means is smaller than the request detection area, obstacle detection Control amount calculating means for calculating a control amount of the vehicle required to make the detection area of the obstacle detection means equal to or larger than the request detection area when the detection area of the means is smaller than the request detection area; The present invention relates to a lane change support system including vehicle control means for controlling a vehicle based on the vehicle.
 しかしながら、ブラインド合流点周辺の状況において、システムは自車両を加速および/またはブラインドスポットを減らすためにその横方向の位置を変更させる問題が発生するが、システムが合流部の端部でブラインドスポットを十分に減らすことを実現することができない場合が時々あり、運転手が車両の制御を安全に引き継ぐには十分な時間が残っていない場合に合流部の端部で運転手に対して運転を移行する必要がある。したがって、そのような状況において適切かつ安全に制御を運転手が引き継ぐことが非常に困難である。 However, in situations around the blind junction, the system suffers from changing its lateral position to accelerate its own vehicle and / or reduce blind spots, but the system does blind spots at the end of the junction. Sometimes there are times when it is not possible to realize sufficient reduction, and when there is not enough time left for the driver to take over control of the vehicle safely, transfer drive to the driver at the end of the junction There is a need to. Therefore, it is very difficult for the driver to take over control properly and safely in such a situation.
日本特許公開公報第2014-180986A号Japanese Patent Publication No. 2014-180986A
 上記の問題を回避するために、本発明の目的は自動車線変更制御または車線合流制御の状況において運転手を支援する方法およびシステムを提供し、自動合流システムまたは自動車線変更システムの信頼性および安全性の態様を改善することを目的とする。 In order to avoid the above problems, the object of the present invention is to provide a method and system for assisting a driver in the context of automotive line change control or lane merging control, and the reliability and safety of automatic merging system or automotive line change system. Intended to improve the sex aspect.
 上記の目的を解決するために、本発明によれば、請求項1による方法と、請求項19による装置と、請求項20によるコンピュータプログラム製品とが提案される。 In order to solve the above objects, according to the invention, a method according to claim 1, an apparatus according to claim 19 and a computer program product according to claim 20 are proposed.
 本発明の主な利点は、車線変更動作および車線合流状況の自動制御をより安全かつ確実に制御可能であり、ブラインドスポット状況に起因する問題の場合、より確実かつより安全に制御が運転手に移行可能なことである。 The main advantage of the present invention is that the lane change operation and the automatic control of the lane confluence can be controlled more safely and reliably, and in the case of problems due to blind spot conditions, the control becomes more secure and safer to the driver. It is a migratable thing.
 例示の実施形態の主な態様は、具体的には対象車線における車両の周囲に車両が検出されない場合(これは障害物が自車両のセンサの検知領域を限定する可能性があることを示すため)、実際の検知領域(実際に利用可能なセンサ領域)が検知情報に基づいて算出されることである。また、好ましくは、自動合流に必要な検知領域が、例えばマップデータおよび/または検知情報に基づいて算出可能である。さらに、必要な検知領域を実際の検知領域が含まない場合、運転制御は効率的、かつ確実および安全に自車両の運転手に移行可能である。 The main aspect of the illustrated embodiment is specifically when no vehicle is detected around the vehicle in the target lane (this indicates that the obstacle may limit the detection area of the sensor of the vehicle) ), The actual detection area (sensor area that can actually be used) is calculated based on the detection information. In addition, preferably, a detection area required for automatic merging can be calculated based on, for example, map data and / or detection information. Furthermore, if the actual sensing area does not include the required sensing area, the driving control can be transferred efficiently, reliably and safely to the driver of the host vehicle.
 本発明の一態様によれば、自車両の周囲において他車両を検出するように構成された1つ以上のセンサを有する前記自車両の運転手を支援する方法が提案される。 According to an aspect of the present invention, a method is proposed for assisting a driver of said vehicle having one or more sensors configured to detect another vehicle around said vehicle.
 例示の実施形態において、前記方法は、例えば前記自車両が走行している現在の車線から対象車線へ変更する車線変更動作が実行される場合に前記自車両の運転支援制御部によって実行され、前記方法は、前記自車両の前記1つ以上のセンサによって検知される利用可能な検知領域を決定し、前記自車両の前記運転支援制御部による前記車線変更動作の自動制御または半自動制御を実行するために必要な検知領域を決定し、および/または前記決定された利用可能な検知領域と前記決定された必要な検知領域との比較結果に基づいて前記自車両の前記車線変更動作を制御することを含んでもよい。 In the illustrated embodiment, the method is executed by the driving support control unit of the host vehicle, for example, when a lane change operation of changing the current lane in which the host vehicle is traveling to the target lane is performed. The method determines an available detection area detected by the one or more sensors of the vehicle and performs automatic or semi-automatic control of the lane change operation by the driving assistance control unit of the vehicle. Determining the required detection area for the vehicle and / or controlling the lane change operation of the vehicle based on the comparison result of the determined available detection area and the determined necessary detection area. May be included.
 例示の実施形態において、前記決定された利用可能な検知領域が前記決定された必要な検知領域以上の場合および/または前記決定された利用可能な検知領域が前記決定された必要な検知領域を含む場合に前記自車両の前記車線変更動作を制御してもよい。 In an exemplary embodiment, the determined available detection area is greater than or equal to the determined necessary detection area and / or the determined available detection area includes the determined necessary detection area. In this case, the lane change operation of the vehicle may be controlled.
 好適な例示の実施形態において、前記方法は、例えば前記自車両の人間-機械インタフェースによって、前記運転手が前記自車両の制御を引き継ぐことを要求する警告メッセージを前記運転手に発することを含んでもよい。 In a preferred exemplary embodiment, the method also includes issuing a warning message to the driver requesting that the driver take over control of the vehicle, for example by means of a human-machine interface of the vehicle. Good.
 好適な例示の実施形態において、前記必要な検知領域は前記自車両の速度に基づいて決定されてもよい。 In a preferred exemplary embodiment, the necessary detection area may be determined based on the speed of the host vehicle.
 好適な例示の実施形態において、前記必要な検知領域は、前記車線変更を実行するために必要として推定される必要な推定長さおよび/または必要な推定時間に基づいて決定されてもよい。 In a preferred exemplary embodiment, the required sensing area may be determined based on the required estimated length and / or the required estimated time estimated to be necessary to perform the lane change.
 好適な例示の実施形態において、前記必要な検知領域は、前記自車両の周囲環境を示すマップデータに基づいて、および/または前記自車両の1つ以上のセンサによって検出された車線標識情報に基づいて決定されてもよい。 In a preferred exemplary embodiment, the required detection area is based on map data indicating the surrounding environment of the vehicle and / or based on lane marking information detected by one or more sensors of the vehicle. May be determined.
 好適な例示の実施形態において、前記必要な検知領域は、仮想車両の推定速度に基づいて決定されてもよい。 In a preferred exemplary embodiment, the required sensing area may be determined based on an estimated speed of a virtual vehicle.
 好適な例示の実施形態において、前記必要な検知領域は、前記自車両に対する前記仮想車両の推定最大相対速度に基づいて決定されてもよく、前記最大相対速度は前記仮想車両の前記推定速度および/または前記自車両の前記速度に基づいて決定されることが好ましい。 In a preferred exemplary embodiment, the necessary detection area may be determined based on an estimated maximum relative velocity of the virtual vehicle with respect to the host vehicle, the maximum relative velocity being the estimated velocity of the virtual vehicle and / or Or it is preferable to determine based on the said speed of the said own vehicle.
 好適な例示の実施形態において、前記仮想車両が、前記決定された利用可能な検知領域の外側で前記車線変更動作の対象車線において走行していることが推定されてもよい。 In a preferred exemplary embodiment, it may be estimated that the virtual vehicle is traveling in the target lane of the lane change operation outside the determined available detection area.
 好適な例示の実施形態において、前記仮想車両の前記推定速度は前記対象車線上での制限速度に基づいて決定されてもよい。 In a preferred exemplary embodiment, the estimated speed of the virtual vehicle may be determined based on a speed limit on the target lane.
 好適な例示の実施形態において、前記仮想車両の前記推定速度は、現在の天候条件、時刻、現在の季節、現在の交通条件のうちの少なくとも1つに基づいて決定されてもよい。 In a preferred exemplary embodiment, the estimated speed of the virtual vehicle may be determined based on at least one of current weather conditions, time of day, current season, current traffic conditions.
 好適な例示の実施形態において、前記仮想車両の前記推定速度は、前記対象車線上の平均速度を示す統計速度データまたは前記対象車線上を走行している車両の統計上推定される最大速度に基づいて決定されてもよい。 In a preferred exemplary embodiment, the estimated speed of the virtual vehicle is based on statistical speed data indicating an average speed on the target lane or a statistically estimated maximum speed of a vehicle traveling on the target lane. May be determined.
 好適な例示の実施形態において、前記方法は、さらに、前記自車両の前方の前記現在の車線の最も遅い車線変更開始点を決定することを含んでもよく、前記利用可能な検知領域は、前記最も遅い車線変更開始点に前記自車両が位置する場合に推定利用可能な検知領域として決定され、および/または前記必要な検知領域は前記車線変更動作を実行するために前記最も遅い車線変更開始点において必要とされる前記必要な検知領域として決定されることが好ましい。 In a preferred exemplary embodiment, the method may further include determining the slowest lane change start point of the current lane ahead of the vehicle, the available detection area being the most If the host vehicle is located at the late lane change start point, it is determined as an estimated available detection area and / or the required detection area is at the slowest lane change start point to perform the lane change operation. Preferably, it is determined as the required detection area required.
 好適な例示の実施形態において、前記方法は、さらに、前記自車両の前方の前記現在の車線の最も遅い車線変更開始点が決定され、前記自車両が前記最も遅い車線変更開始点に位置する推定第2の利用可能な検知領域を決定し、前記最も遅い車線変更開始点の前記自車両の前記運転支援制御部によって前記車線変更動作を自動制御または半自動制御するために第2の必要な検知領域を決定し、および/または前記推定第2の利用可能な検知領域と前記決定された第2の必要な検知領域との比較結果に基づいて、前記最も遅い車線変更開始点における前記自車両の前記車線変更動作を制御すること含んでもよい。 In a preferred exemplary embodiment, the method further comprises estimating the slowest lane change start point of the current lane ahead of the vehicle and the vehicle being located at the slowest lane change start point A second required detection area for determining a second available detection area and for automatically controlling or semi-automatically controlling the lane change operation by the driving support control unit of the host vehicle at the slowest lane change start point And / or comparing the estimated second available detection area with the determined second required detection area based on the result of comparing the estimated second available detection area and the determined second required detection area, It may include controlling a lane change operation.
 好適な例示の実施形態において、前記決定された推定第2の利用可能な検知領域が前記決定された第2の必要な検知領域以上である場合、および/または前記決定された推定第2の利用可能な検知領域が前記決定された第2の必要な検知領域を含む場合に、前記最も遅い車線変更開始点における前記自車両の前記車線変更動作の制御が実行されてもよい。 In a preferred exemplary embodiment, if the determined estimated second available detection area is greater than or equal to the determined second required detection area, and / or the determined estimated second use When the possible detection area includes the determined second necessary detection area, control of the lane change operation of the vehicle at the slowest lane change start point may be performed.
 好適な例示の実施形態において、前記利用可能な検知領域は、前記自車両の前方の位置の利用可能な検知領域を示す、事前に格納された情報に基づいて決定されてもよい。 In a preferred exemplary embodiment, the available detection area may be determined based on prestored information indicating an available detection area of a position ahead of the vehicle.
 好適な例示の実施形態において、前記車線変更動作が実行される際に、前記対象車線において前記自車両の後続の他車両が前記自車両の前記1つ以上のセンサによって検出されない場合、前記利用可能な検知領域を決定する工程、前記必要な検知領域を決定する工程、および/または前記決定された利用可能な検知領域および前記決定された必要な検知領域との比較結果に基づいて前記自車両の前記車線変更動作を制御する工程が実行されてもよい。 In a preferred exemplary embodiment, when the lane change operation is performed, the other vehicle following the vehicle in the target lane is not detected by the one or more sensors of the vehicle. Determining the required detection area, determining the required detection area, and / or comparing the determined available detection area with the determined required detection area based on the result of comparison of the vehicle A step of controlling the lane change operation may be performed.
 好適な例示の実施形態において、前記車線変更動作が実行された際に、前記自車両の後続の前記対象車線における別の車両が前記自車両の前記1つ以上のセンサによって検出される場合、前記方法は、さらに、前記自車両と前記検出された他車両との間の相対距離を決定し、前記自車両と前記検出された他車両との間の相対速度を決定し、前記自車両と前記検出された他車両との間の前記決定された相対距離および/または前記自車両と前記検出された他車両との間の前記決定された相対速度が車線変更条件を満たす場合に前記自車両の前記車線変更動作を制御することを含むことが好ましい。 In a preferred exemplary embodiment, when the lane change operation is performed, another vehicle in the target lane following the vehicle is detected by the one or more sensors of the vehicle. The method further determines a relative distance between the vehicle and the detected other vehicle, determines a relative velocity between the vehicle and the detected other vehicle, and the vehicle and the vehicle If the determined relative distance between the detected other vehicle and / or the determined relative speed between the own vehicle and the detected other vehicle satisfies the lane change condition, Preferably, controlling the lane change operation is included.
 本発明の別の態様によれば、自車両の周囲において他車両を検出するように構成された1つ以上のセンサを有する前記自車両に設置可能な装置が提案され、前記装置は上記または下記の態様のいずれかの方法を実行するように構成された制御部を含むことが好ましい。 According to another aspect of the invention, there is proposed a device installable on said vehicle comprising one or more sensors adapted to detect another vehicle around said vehicle, said device being described above or below Preferably, a control unit configured to perform the method of any of the aspects of claim 1 is included.
 本発明の別の態様によれば、制御部または処理装置に上記または下記の態様のいずれかの方法の前記工程を実行させるように適応されたコンピュータプログラム命令を含むコンピュータプログラムを含むコンピュータプログラム製品が提案される。 According to another aspect of the present invention there is provided a computer program product comprising a computer program comprising computer program instructions adapted to cause a controller or processor to carry out the steps of the method according to any of the above or below aspects. Suggested.
 上記で特定の例示の態様を説明したが、そのような態様は例示目的に過ぎず、広範な発明を限定するものではなく、例示の態様は、上記パラグラフに記載のものに加えて様々なその他の変更、組み合わせ、省略、修正、置換が可能であるため、本発明の実施形態は図示および上述された特定の構造および配置に限定されるものではないことを理解されたい。 While certain exemplary aspects have been described above, such aspects are for illustrative purposes only and are not intended to limit the broad invention, and the exemplary aspects may include various other features in addition to those described in the above paragraphs. It is to be understood that embodiments of the present invention are not limited to the specific structures and arrangements shown and described above, as variations, combinations, omissions, corrections, and substitutions are possible.
 上述の態様の様々な適応、修正および/または組み合わせが構成可能であることを当業者は理解するであろう。したがって、さらなる態様は本明細書で具体的に説明した以外で実行可能であることを理解されたい。当業者は、本開示を鑑みて、本発明の他の態様を形成するために本明細書で説明した異なる態様を組み合わせ可能であることを理解するであろう。 Those skilled in the art will appreciate that various adaptations, modifications and / or combinations of the above aspects may be configured. Thus, it should be understood that further aspects may be practiced other than as specifically described herein. Those skilled in the art will understand, in light of the present disclosure, that the different embodiments described herein can be combined to form other embodiments of the present invention.
 本発明によると、自動車線変更制御または車線合流制御の状況において運転手を支援する方法およびシステムを提供し、自動合流システムまたは自動車線変更システムの信頼性および安全性の態様を改善することができる。 According to the present invention, it is possible to provide a method and system for assisting a driver in the situation of automobile line change control or lane junction control, and improve the reliability and safety aspect of the automatic joining system or the automobile line change system. .
例示の実施形態による運転支援システムを備えている車両を例示的に図示する。1 exemplarily illustrates a vehicle comprising a driving assistance system according to an exemplary embodiment. 例示の実施形態による運転支援システムの制御処理のフローチャートを例示的に図示する。4 exemplarily illustrates a flowchart of a control process of a driving assistance system according to an exemplary embodiment. 周囲車両への車線変更意図を示す異なるオプションを示す。Show different options to indicate lane change intentions to surrounding vehicles. 周囲車両への車線変更意図を示す異なるオプションを示す。Show different options to indicate lane change intentions to surrounding vehicles. 周囲車両への車線変更意図を示す異なるオプションを示す。Show different options to indicate lane change intentions to surrounding vehicles. 3台の他車両によって囲まれた道路上を自車両が走行している状況例を例示的に図示する。An example of a situation in which the host vehicle is traveling on a road surrounded by three other vehicles is exemplarily illustrated. 自車両の車両速度に応じた車線変更/合流に必要な時間の相関マッピングを例示的に図示する。The correlation mapping of the time required for the lane change / confluence according to the vehicle speed of self-vehicles is illustrated illustratively. 車間距離(横軸)および衝突予測時間(縦軸)に対する許可可能/可能な車線変更の破線範囲領域を例示的に図示する。A dashed line range area of allowable / possible lane change with respect to inter-vehicle distance (horizontal axis) and collision prediction time (vertical axis) is exemplarily illustrated. 自車両の機器パネル上の警告ランプを点灯するおよび/または警告音を作動する警告処理を例示的に図示する。An illustrative warning process is shown which lights a warning lamp on the equipment panel of the vehicle and / or activates a warning sound. 運転支援制御部による車線変更制御処理のフローチャートを例示的に図示する。A flowchart of lane change control processing by the driving support control unit is exemplarily illustrated. 自車両が車線変更をしようとしており対象車線の後続車両が実際の検知領域を限定する障害物(例えば壁)に起因して検出不可である状況を例示的に示す。An exemplary situation is shown in which the host vehicle is about to change lanes and the vehicles following the target lane can not be detected due to an obstacle (eg, a wall) that limits the actual detection area. 最大相対速度を決定する処理の一例のフローチャートを例示的に図示する。FIG. 7 exemplarily illustrates a flowchart of an example process of determining a maximum relative velocity. 運転手に対して警告メッセージを出力する自車両の機器パネルを例示的に図示する。An equipment panel of a host vehicle that outputs a warning message to a driver is exemplarily illustrated. 他の例示の実施形態による運転支援システムの他の制御処理のフローチャートを例示的に図示する。FIG. 8 exemplarily illustrates a flowchart of another control process of the driving assistance system according to another exemplary embodiment. 例えば高速道路などの例示の合流部の概略を例示的に図示する。Fig. 3 exemplarily illustrates a schematic of an exemplary junction such as, for example, a highway. 事前に取得されたデータに基づいて実際の検知領域の算出/決定を例示的に図示する。The calculation / determination of the actual detection area is exemplarily illustrated based on the previously acquired data.
 以下において、本発明の好適な態様および実施形態を、添付図面を参照してより詳細に説明する。異なる図面および実施形態における同一または同様の特徴を、同様の参照番号によって示す。なお、様々な好適な態様および好適な例示の実施形態に関する以下の詳細な説明は本発明の範囲を限定することを意味しないことを理解されたい。 In the following, preferred aspects and embodiments of the present invention will be described in more detail with reference to the attached drawings. The same or similar features in different drawings and embodiments are indicated by like reference numerals. It should be understood, however, that the following detailed description of various preferred aspects and preferred exemplary embodiments is not meant to limit the scope of the present invention.
 図1は、例えば自律運転システムを含む運転支援システムなど例示の実施形態による運転支援システムを備えた車両100を例示的に図示する。 FIG. 1 exemplarily illustrates a vehicle 100 with a driving assistance system according to an exemplary embodiment, such as, for example, a driving assistance system including an autonomous driving system.
 本発明の意味において、自律運転システムは、運転手の影響なく、または少なくとも極めて少ない運転手の影響もしくは制御によって例えばクルーズコントロール、追い越し操作、車線変更操作、転回操作、停車動作などの車両の運転動作を自動的(または少なくとも半自動的)に制御するように構成されたシステムである。 In the sense of the present invention, the autonomous driving system is a driving operation of the vehicle such as cruise control, overtaking operation, lane change operation, turn operation, stop operation, etc. without influence of the driver or by at least extremely little driver influence or control. Is a system configured to control (or at least semi-automatically) automatically.
 ただし、本発明の例示の実施形態の運転支援システムは様々な異なる運転動作または運転操作を制御するように任意で構成され、例えば対象ルートに沿って車両を完全かつ自律的に制御するように構成されてもよいが、例示の実施形態は、車両が道路の一車線から該道路の別の車線へ連続的に移行するように動作される車線変更運転動作の制御に具体的に関してもよく、特に、高速道路の車線と合流するアクセス車線上において例えば車両が高速道路などに進入する場合の車線合流動作に関することが好ましい。 However, the driving assistance system of the exemplary embodiment of the present invention is optionally configured to control various different driving operations or driving operations, for example, configured to control the vehicle completely and autonomously along the target route. Although the exemplary embodiment may be specific, the exemplary embodiment may be specifically directed to control of a lane change driving operation in which the vehicle is operated to continuously transition from one lane of the road to another lane of the road, and in particular Preferably, the present invention relates to a lane merging operation when, for example, a vehicle enters an expressway or the like on an access lane that merges with a expressway lane.
 車両100は2輪、3輪、4輪以上の車輪を有する車両でもよく、車両は燃焼エンジン、電動機またはその組み合わせによって駆動されてもよい。車両は、前輪駆動、後輪駆動または四輪駆動によって駆動されてもよい。例示的に、図1の車両100は、左前輪「FL車輪」、右前輪「FR車輪」、左後輪「RL車輪」および右後輪「RR車輪」を含む4輪を有する車として具体化される。 The vehicle 100 may be a vehicle having two, three, four or more wheels, and the vehicle may be driven by a combustion engine, an electric motor, or a combination thereof. The vehicle may be driven by front wheel drive, rear wheel drive or four wheel drive. Illustratively, the vehicle 100 of FIG. 1 is embodied as a car having four wheels including the left front wheel "FL wheel", the right front wheel "FR wheel", the left rear wheel "RL wheel" and the right rear wheel "RR wheel". Be done.
 車輪のそれぞれはブレーキ16FL、16FR、16RLおよび16RR(例えばブレーキシリンダ、ピストン、ブレーキパッドなどを含む)4つのブレーキのそれぞれのブレーキを例示的に備えており、例示的に、それぞれの車輪速度センサは、4つのブレーキ16FL、16FR、16RLおよび16RRのそれぞれに対応している。図1の例示の車輪速度センサ22FL、22FR、22RLおよび22RRを参照。 Each of the wheels illustratively comprises a respective brake of four brakes 16FL, 16FR, 16RL and 16RR (including for example brake cylinders, pistons, brake pads etc.), illustratively each wheel speed sensor is , Four brakes 16FL, 16FR, 16RL and 16RR respectively. See the exemplary wheel speed sensors 22FL, 22FR, 22RL and 22RR of FIG.
 図1の車両100の運転支援システムは、ステアリング制御機構10を制御するように構成されたステアリング制御部8(ステアリング制御部)と、ブレーキ制御機構13を制御するように構成されたブレーキ制御部15(ブレーキ制御部)と、車両100のスロットル制御機構20を制御するように構成されたスロットル制御部19(スロットル制御部)とに通信可能に接続された運転支援制御部1(運転支援制御部)を例示的に含む。 The driving support system of the vehicle 100 of FIG. 1 includes a steering control unit 8 (steering control unit) configured to control the steering control mechanism 10 and a brake control unit 15 configured to control the brake control mechanism 13. A driving support control unit 1 (driving support control unit) communicably connected to the (brake control unit) and the throttle control unit 19 (throttle control unit) configured to control the throttle control mechanism 20 of the vehicle 100 Exemplarily includes.
 一般に、それぞれの制御機構10、13および20のそれぞれの制御部8、15および19に対して運転支援制御部1は制御値および/または制御信号を出力するように構成され、それぞれの制御機構10、13および20のそれぞれの制御部8、15および19は通信によって運転支援制御部1からそれぞれのコマンド値またはコマンド信号を受信するように構成され、コマンド値に基づいて制御機構10、13および20のアクチュエータを制御するように構成される。 Generally, the driving support control unit 1 is configured to output control values and / or control signals to the control units 8, 15 and 19 of the respective control mechanisms 10, 13 and 20, respectively. , 13 and 20 respectively are configured to receive respective command values or command signals from the driving support control unit 1 by communication, and control mechanisms 10, 13 and 20 based on the command values. Configured to control the actuator of
 いくつかの例示の実施形態において、運転支援制御部1は、車両100によって実行される運転動作を制御するためにそれぞれの制御機構10、13および20を自律的および自動的に制御するように構成された自律運転制御部として実現されてもよい。 In some exemplary embodiments, the driving assistance control unit 1 is configured to control the respective control mechanisms 10, 13 and 20 autonomously and automatically to control the driving operation performed by the vehicle 100. It may be realized as a controlled autonomous driving control unit.
 例示的に、運転支援制御部1は、図示しないが、中央演算処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)および入力/出力部を含んでもよい。例えば下記に説明するように、車両運転支援動作の処理手順はROMに格納されてもよい。 For example, although not shown, the driving support control unit 1 may include a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output unit. For example, as described below, the processing procedure of the vehicle driving support operation may be stored in the ROM.
 さらに、マップデータ(例えば道路システムの地理的配置を示すナビゲーションマップデータまたはその他のマップデータ)はROMに格納されてもよく、車両100の周囲を示す特定のマップデータは、例えばGPSセンサ(図示せず)データ、各車輪の回転速度および/または検出ステアリング角度に基づいてなどの衛星ナビゲーションシステムに基づいて例えば位置センサを用いて算出された自車両位置に応じて抽出可能である。 Furthermore, map data (e.g. navigation map data indicating the geographical arrangement of the road system or other map data) may be stored in the ROM, and specific map data indicating the surroundings of the vehicle 100 may for example be GPS sensors (shown in FIG. Based on satellite navigation systems, such as based on data, rotational speeds of each wheel and / or detected steering angles, it is possible to extract, for example, the position of the vehicle calculated using a position sensor.
 詳細には後述するが、運転支援制御部1は、車線変更ができない場合、外部認識センサによって検出される自車両と周囲車両との間の相対距離および相対速度に基づいて、例えば車線変更を可能にするようになど所望の運転動作の制御を実現するために、車両を案内するそれぞれの制御機構10、13および20の制御部8、15および19に対して供給されたコマンド値を算出するように構成される。 Although described later in detail, when the lane change can not be made, the driving support control unit 1 can, for example, change the lane based on the relative distance and relative speed between the vehicle and the surrounding vehicle detected by the external recognition sensor. To calculate the command values supplied to the control units 8, 15 and 19 of the respective control mechanisms 10, 13 and 20 guiding the vehicle in order to realize the control of the desired driving operation etc. Configured
 上述したように、運転支援制御部1は、車両100の周囲領域に関するセンサ情報を含むセンサ情報に基づいて動作してもよい。図1の例において、車両100は複数のセンサ2、3、および5を例示的に含む。 As described above, the driving support control unit 1 may operate based on sensor information including sensor information on the surrounding area of the vehicle 100. In the example of FIG. 1, the vehicle 100 illustratively includes a plurality of sensors 2, 3 and 5.
 例えば、センサ2、3、4および5は、車両100の周囲領域を検知するため、および/または車両100の周囲の障害物検出するための車両の外側を認識または認知するためのセンサ装置を備えてもよい。そのようなセンサは、1つ以上のカメラ(CCDカメラ、赤外線カメラおよび/またはステレオカメラなどの通常のカメラを含む)と、1つ以上のレーダ、および/または1つ以上のライダーまたはレーザレーダなどとを備えてもよい。 For example, the sensors 2, 3, 4 and 5 are provided with a sensor device for detecting or recognizing the outside of the vehicle for detecting the surrounding area of the vehicle 100 and / or detecting an obstacle around the vehicle 100. May be Such sensors may include one or more cameras (including conventional cameras such as CCD cameras, infrared cameras and / or stereo cameras), one or more radars, and / or one or more lidars or laser radars, etc. And may be provided.
 例として、図1において、車両の外側を認識するセンサは、車両前方に配置されたカメラ2と、その右側および左側に配置されたレーザレーダ3および4と、その後方に配置されたミリメートル波レーダ5を含むことによって、車両100(自車両)と周囲車両との間の相対距離および相対速度を検出可能にする。 As an example, in FIG. 1, the sensor for recognizing the outside of the vehicle is a camera 2 disposed in front of the vehicle, laser radars 3 and 4 disposed on the right and left sides thereof, and a millimeter wave radar disposed behind the same. By including 5, it is possible to detect the relative distance and relative speed between the vehicle 100 (own vehicle) and the surrounding vehicles.
 例示の実施形態において、上記センサの組み合わせはセンサ構造体の一例として使用される。ただし、本発明はそれに限定されず、超音波センサ、ステレオカメラ、赤外線カメラまたはその組み合わせも上記センサとともに使用されてもよく、上記センサの代わりに使用されてもよい。センサの信号は運転支援制御部1に供給可能である。 In the illustrated embodiment, the combination of sensors is used as an example of a sensor structure. However, the present invention is not limited thereto, and an ultrasonic sensor, a stereo camera, an infrared camera or a combination thereof may be used together with the above-mentioned sensor, and may be used instead of the above-mentioned sensor. A sensor signal can be supplied to the driving support control unit 1.
 さらに、例として、車線変更支援入力装置11への運転手の入力は運転支援制御部1に対して供給される。例として、車線変更支援入力装置11は、例えば、ウィンカーおよび/または点滅信号灯を使用してもよく、車線変更支援動作はそのオン/オフ情報に基づいて決定可能である。ただし、車線変更支援入力装置11はウィンカーまたは点滅信号灯に限定されず、専用の入力装置を使用してもよい。 Furthermore, as an example, the driver's input to the lane change support input device 11 is supplied to the driving support control unit 1. As an example, the lane change support input device 11 may use, for example, blinkers and / or blinking lights, and the lane change support operation can be determined based on the on / off information. However, the lane change support input device 11 is not limited to the blinker or the blinking signal light, and a dedicated input device may be used.
 通常、車線変更支援入力装置11は、車線変更などを実行する運転手の命令および/または運転手の意図を示す運転手の動作を受信するように構成された入力インタフェースを含む。 In general, the lane change assistance input device 11 includes an input interface configured to receive a driver's command for performing a lane change or the like and / or a driver's action indicating the driver's intention.
 上記を要約すると、例示の実施形態による運転支援システムは、車両の外側を認識または認知するための複数のセンサ2、3、4および5と、センサによって認識された情報に基づいて車線変更を支援するステアリング制御機構10、ブレーキ制御機構13、およびスロットル制御機構20、制御機構10、13および20のアクチュエータに対して供給されたコマンド値を算出する運転支援制御部1と、運転支援制御部1からのコマンド値に基づいてステアリング制御機構10を制御するステアリング制御部8と、各車輪に対する制動力の分配を調節するために上記コマンド値に基づいてブレーキ制御機構13を制御するためのブレーキ制御部15と、エンジンのトルク出力を調節するために上記コマンド値に基づいてスロットル制御機構20を制御するためのスロットル制御部19とを含む。さらに、図1の運転支援システムは、例として警告装置23を含む。 Summarizing the above, the driving support system according to the exemplary embodiment supports lane change based on a plurality of sensors 2, 3, 4 and 5 for recognizing or recognizing the outside of the vehicle and the information recognized by the sensors From the driving support control unit 1 which calculates command values supplied to the steering control mechanism 10, the brake control mechanism 13, the throttle control mechanism 20, and the actuators of the control mechanisms 10, 13 and 20 And a brake control unit 15 for controlling the brake control mechanism 13 based on the command value in order to adjust distribution of the braking force to each wheel. And a throttle controller based on the above command value to adjust the torque output of the engine And a throttle control unit 19 for controlling the 20. Furthermore, the driving support system of FIG. 1 includes a warning device 23 as an example.
 さらに、運転支援制御部1は、例として、例えば縦方向の加速度、横方向の加速度およびヨーレート、車輪に取り付けられた車輪速度センサ22FL~22RRからのセンサ信号、運転支援制御部1からの制動力コマンド、および/またはステアリング角度検出器21からステアリング制御部8を介して供給されるセンサ信号を検出可能な合成車両システムセンサ14からセンサ信号が供給される。 Furthermore, for example, the driving support control unit 1 may, for example, longitudinal acceleration, lateral acceleration and yaw rate, sensor signals from wheel speed sensors 22FL to 22RR attached to the wheels, and braking force from the driving support control unit 1. A sensor signal is supplied from the composite vehicle system sensor 14 which can detect the command and / or the sensor signal supplied from the steering angle detector 21 via the steering control unit 8.
 さらに、ブレーキ制御部15の出力は、例として、ポンプ(不図示)および制御弁を含むことが可能なブレーキ制御機構13に接続され、ブレーキ制御部15は運転手のブレーキペダル動作からは独立して車輪に対してかけられる任意の制動力を生成可能である。ブレーキ制御部15は、上記の情報に基づいて車両100のスピン、ドリフトおよびロックを推測可能であり、それらを抑制するために関連車輪に対する制動力を生成可能であることによって、運転手の動作または運転動作のハンドリングおよび安定性が向上可能となる。 Furthermore, the output of the brake control unit 15 is connected to a brake control mechanism 13 which may include, by way of example, a pump (not shown) and a control valve, which is independent of the driver's brake pedal operation. Thus, any braking force that can be applied to the wheel can be generated. The brake control unit 15 can estimate the spins, drifts and locks of the vehicle 100 based on the above information, and can generate a braking force on the related wheels to suppress them, thereby the driver's operation or Handling and stability of driving operation can be improved.
 運転支援制御部1はブレーキ制御部15に対してブレーキコマンドを送信可能であることによって、車両100において任意の制動力を生成可能である。なお、本発明はブレーキ制御部に限定されるものではなく、ブレーキバイワイヤなどの他のアクチュエータを使用可能である。 The driving support control unit 1 can transmit a brake command to the brake control unit 15 so that an arbitrary braking force can be generated in the vehicle 100. The present invention is not limited to the brake control unit, and other actuators such as a brake by wire can be used.
 図1の運転支援システムのブレーキ制御システムは、例として、ブレーキ作動制御信号に基づいてブレーキ16FL、16FR、16RLおよび16RRを作動させるためのブレーキ制御機構13および/またはそれぞれのブレーキ16FL、16FR、16RLおよび16RRに対してブレーキ制御部15から送信されるブレーキ作動制御信号に例えば基づいて、ブレーキ16FL、16FR、16RLおよび16RRの動作を制御するように構成されたブレーキ制御部15に対して通信可能に接続されたブレーキ制御機構13を含む。 The brake control system of the driving support system of FIG. 1 is, by way of example, a brake control mechanism 13 for operating the brakes 16FL, 16FR, 16RL and 16RR based on the brake operation control signal and / or the respective brakes 16FL, 16FR, 16RL. And 16RR can be communicated to the brake control unit 15 configured to control the operation of the brakes 16FL, 16FR, 16RL and 16RR based, for example, on the brake operation control signal transmitted from the brake control unit 15 to The brake control mechanism 13 connected is included.
 例として、ブレーキ制御部15は電気制御信号を出力するが、ブレーキ制御機構13は電気アクチュエータを有する電気制御システムとして実現されてもよい。ただし、ブレーキ制御機構13はさらにまたは代替として機械的、油圧および/または空気作用によるアクチュエータを有してもよい。 As an example, although the brake control unit 15 outputs an electrical control signal, the brake control mechanism 13 may be realized as an electrical control system having an electrical actuator. However, the brake control mechanism 13 may additionally or alternatively have mechanical, hydraulic and / or pneumatic actuators.
 例として、車両100は、例えば、車両100の車両制御に影響するまたはブレーキ制御を引き継ぐために、車両運転手によって作動可能なブレーキペダル12をさらに含む。すなわち、車両100は、運転手が車両100のブレーキペダル12またはさらにハンドル6またはアクセルペダル17などの専用の入力装置によって車両100の制御に影響するさらには制御を引き継ぐことが可能なように構成される。 By way of example, vehicle 100 further includes a brake pedal 12 actuatable by the vehicle driver, for example, to affect vehicle control of vehicle 100 or to take over brake control. That is, the vehicle 100 is configured such that the driver can take over control further affecting the control of the vehicle 100 by a dedicated input device such as the brake pedal 12 or the steering wheel 6 or the accelerator pedal 17 of the vehicle 100. Ru.
 例えば、ブレーキペダル12を踏むという運転手ペダル作業は、マスターシリンダー(不図示)によるペダル操作に従って油圧を生成するためにブレーキブースター(不図示)によって増幅(例えば二倍)されることが可能である。生成された油圧はブレーキ制御機構13を介して、ブレーキ16FL~16RRの車輪のそれぞれのブレーキシリンダに対して供給されてもよい。車輪のブレーキ16FL~16RRはシリンダ(不図示)と、ピストンと、ブレーキパッドなどとから構成されてもよい。ピストンは、マスターシリンダー(不図示)から供給されたブレーキ液によって推進されてもよく、そのピストンと接続されたブレーキパッドは円盤回転子上で加圧されてもよい。円盤回転子は車輪(不図示)とともに回転可能である。そのため、円盤回転子上に作用するブレーキトルクは車輪と道路との間に作用する制動力となる。それによって、運転手のブレーキペダル動作に応じて車輪に対して所望の制動力が発揮可能となる。 For example, the driver pedaling operation of stepping on the brake pedal 12 can be amplified (e.g. doubled) by the brake booster (not shown) to generate hydraulic pressure according to the pedal operation by the master cylinder (not shown) . The generated hydraulic pressure may be supplied to the respective brake cylinders of the wheels of the brakes 16FL to 16RR via the brake control mechanism 13. The wheel brakes 16FL to 16RR may be composed of cylinders (not shown), pistons, brake pads and the like. The piston may be propelled by the brake fluid supplied from a master cylinder (not shown), and the brake pad connected to the piston may be pressurized on the disc rotor. The disc rotor is rotatable with the wheels (not shown). Therefore, the brake torque acting on the disc rotor becomes the braking force acting between the wheel and the road. As a result, a desired braking force can be exerted on the wheels in accordance with the driver's brake pedal operation.
 例として、ブレーキ制御部15は、図1に詳細に図示しないが、例えば中央演算処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)および入力/出力部を含んでもよい。 As an example, although not shown in detail in FIG. 1, the brake control unit 15 may include, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output unit.
 図1の運転支援システムのステアリング制御システムは、例として、ステアリング作動制御信号に基づいてステアリング制御部8からステアリング制御機構10に対して送信される例えばステアリング作動制御信号に基づいて、例として前輪に対応するステアリング制御機構10の動作を制御するように構成されたステアリング制御部8に対して通信可能に接続されたステアリング制御機構10を含む。 The steering control system of the driving support system of FIG. 1 is, by way of example, transmitted to the steering control mechanism 10 from the steering control unit 8 based on the steering operation control signal, for example, based on the steering operation control signal. It includes a steering control mechanism 10 communicably connected to a steering control unit 8 configured to control the operation of the corresponding steering control mechanism 10.
 例として、ステアリング制御部8は電気制御信号を出力するが、ステアリング制御機構10は電気アクチュエータを有する電気制御システムとして実現されてもよい。ただし、ステアリング制御機構10は機械、油圧および/または空気作用アクチュエータをさらにまたは代替として有してもよい。 As an example, the steering control unit 8 outputs an electrical control signal, but the steering control mechanism 10 may be realized as an electrical control system having an electrical actuator. However, the steering control mechanism 10 may additionally or alternatively include mechanical, hydraulic and / or pneumatic actuators.
 例として、車両100は、例えば車両100の車両制御に影響するため、またはステアリング制御を引き継ぐために、車両運転手によって作動可能なハンドル6さらに含む。すなわち、車両100は、運転手が、車両100のハンドル6またはさらにブレーキペダル12またはアクセルペダル17などの専用の入力装置によって車両100の制御に影響するまたは引き継ぐまでも可能となるように構成される。 By way of example, the vehicle 100 further comprises a handle 6 actuatable by the vehicle driver, for example to influence the vehicle control of the vehicle 100 or to take over steering control. That is, the vehicle 100 is configured to allow the driver to influence or take over control of the vehicle 100 by the steering wheel 6 of the vehicle 100 or a dedicated input device such as the brake pedal 12 or the accelerator pedal 17 or the like. .
 例として、運転手によってハンドル6を介して入力されたステアリングトルクおよび/またはステアリング角度は、それぞれステアリングトルク検出器7および/またはステアリング角度検出器21によって検出可能であり、ステアリング制御部8は支援トルクを生成するために検出情報に基づいて内燃機関を制御可能である。 As an example, the steering torque and / or the steering angle input by the driver via the steering wheel 6 can be detected by the steering torque detector 7 and / or the steering angle detector 21, respectively, and the steering control unit 8 can support the assist torque The internal combustion engine can be controlled based on the detected information to generate
 図1には詳細に示さないが、例として、運転支援制御部1と同様に、ステアリング制御部8は、例えば、中央演算処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)および入力/出力部を含み得る。ステアリング制御機構10は、前輪を回転させるための運転手のステアリングトルクおよび内燃機関による支援トルクの合成された力によって動作されることが可能である。一方、道路表面からの反力は、前輪の回転角度に応じてステアリング制御機構10に対して送信された後、運転手に対して送信可能である。 Although not shown in detail in FIG. 1, as an example, the steering control unit 8 is, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM) And an input / output unit. The steering control mechanism 10 can be operated by a combined force of the driver's steering torque for rotating the front wheels and the assist torque by the internal combustion engine. On the other hand, the reaction force from the road surface can be transmitted to the driver after being transmitted to the steering control mechanism 10 according to the rotation angle of the front wheels.
 ステアリング制御部8は、運転手のステアリング動作から独立して内燃機関9によってトルクを生成可能であり、ステアリング制御機構10を制御可能である。それによって、運転支援制御部1はステアリング制御部8に対してステアリング力コマンドを送信することによって前輪を任意の回転角度に回転するように制御可能である。ただし、本発明は、ステアリング制御部の使用に限定されるものではなく、ステアリングバイワイヤーなどの他のアクチュエータを使用可能である。 The steering control unit 8 can generate torque by the internal combustion engine 9 independently of the driver's steering operation, and can control the steering control mechanism 10. Thus, the driving support control unit 1 can control the front wheels to rotate at an arbitrary rotation angle by transmitting a steering force command to the steering control unit 8. However, the present invention is not limited to the use of a steering control, and other actuators such as steering by wire can be used.
 図1の運転支援システムのスロットル制御システムは、例として、例えばスロットル作動制御信号に基づいてスロットル制御部19からスロットル制御機構20に対して送信されたスロットル作動制御信号に基づいて、スロットル制御機構20の動作を制御するように構成されたスロットル制御部19に対して通信可能に接続されたスロットル制御機構20を含む。 The throttle control system of the driving support system of FIG. 1 is, for example, based on a throttle operation control signal transmitted from the throttle control unit 19 to the throttle control mechanism 20 based on, for example, a throttle operation control signal. And a throttle control mechanism 20 communicably connected to a throttle control unit 19 configured to control the operation of the controller.
 例として、スロットル制御部19は電気制御信号を出力するが、スロットル制御機構20は電気アクチュエータを有する電気制御システムとして実現可能である。ただし、スロットル制御機構20は、さらにまたは代替として機械的、油圧および/または空気作用によるアクチュエータを有してもよい。スロットル制御機構20は、さらに、燃焼エンジンおよび/または電気駆動内燃機関を例えば含む車両100の駆動システムを含んでもよい。 As an example, although the throttle control unit 19 outputs an electrical control signal, the throttle control mechanism 20 can be realized as an electrical control system having an electrical actuator. However, the throttle control mechanism 20 may additionally or alternatively include mechanical, hydraulic and / or pneumatic actuators. The throttle control mechanism 20 may further include a drive system of the vehicle 100 including, for example, a combustion engine and / or an electrically driven internal combustion engine.
 例として、車両100は、さらに、例えば車両制御に影響する、または車両100のスロットル制御を引き継ぐために車両運転手によって作動可能なアクセルペダル17を含む。すなわち、車両100は、車両100のアクセルペダル17またはさらにハンドル6またはブレーキペダル12などの専用の入力装置によって車両100の制御に影響または引き継ぐことまで運転手ができるように構成される。 By way of example, the vehicle 100 further includes an accelerator pedal 17 actuatable by the vehicle driver to, for example, affect vehicle control or take over throttle control of the vehicle 100. That is, the vehicle 100 is configured to enable the driver to influence or take over control of the vehicle 100 by a dedicated input device such as the accelerator pedal 17 or the steering wheel 6 or the brake pedal 12 of the vehicle 100.
 例として、運転手のアクセルペダル17のペダル踏込み量はストロークセンサ18によって検出可能であり、スロットル制御部19に対して入力可能である。スロットル制御部19は、さらに、図1に詳細に示していないが、例えば、運転支援制御部1と同様に、中央演算処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)および入力/出力部を含んでもよい。スロットル制御部19は、スロットル制御機構20の駆動システムを制御するために、アクセルペダル踏込み量に応じてスロットル開口部を調節可能である。それによって、車両100は運転手のアクセルペダル動作に応じて加速可能である。さらに、スロットル制御部は、運転手のアクセルペダル動作とは独立してスロットル開口部を制御可能である。そのため、運転支援制御部1は車両100において任意の加速度を実現するためにスロットル制御部に対して加速度コマンドを送信可能である。 As an example, the depression amount of the driver's accelerator pedal 17 can be detected by the stroke sensor 18 and can be input to the throttle control unit 19. Further, although not shown in detail in FIG. 1, the throttle control unit 19 is, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM) as in the driving support control unit 1. And an input / output unit. The throttle control unit 19 is capable of adjusting the throttle opening according to the accelerator pedal depression amount in order to control the drive system of the throttle control mechanism 20. Thereby, the vehicle 100 can accelerate according to the driver's accelerator pedal operation. Furthermore, the throttle control unit can control the throttle opening independently of the driver's accelerator pedal operation. Therefore, the driving support control unit 1 can transmit an acceleration command to the throttle control unit in order to realize an arbitrary acceleration in the vehicle 100.
 要約すると、上記の制御動作にしたがって、自律運転システムが自動車線合流の制御を例として実行する場合、ブレーキ制御機構およびスロットル制御機構は、車両100の速度を適切に制御するために車両100(自車両)の近傍の周囲車両の状況に応じて調節されることによって、車線変更が可能な位置に車両を案内可能である。また、車線変更のためのシステム制御ステアリングは、ステアリング制御機構の制御を実行することによって実現可能である。 In summary, when the autonomous driving system executes the control of the vehicle line merging as an example according to the above-described control operation, the brake control mechanism and the throttle control mechanism control the vehicle 100 (to The vehicle can be guided to a position where it is possible to change lanes by adjusting according to the conditions of surrounding vehicles in the vicinity of the vehicle. Also, system control steering for lane change can be realized by executing control of the steering control mechanism.
 図2は、例示の実施形態による運転支援システムの制御処理のフローチャートを例示的に図示する。具体的には、図2は、例えば運転支援制御部1のメモリに格納されるなど、制御プログラムまたは制御プログラム部分の処理命令に応じて自動合流処理の制御処理を例として示すフローチャートである。 FIG. 2 exemplarily illustrates a flowchart of control processing of a driving assistance system according to an exemplary embodiment. Specifically, FIG. 2 is a flowchart showing an example of control processing of automatic merging processing according to a processing command of a control program or a control program part, for example, stored in the memory of the driving support control unit 1 or the like.
 まず、運転支援制御部1は車線変更/自動合流が必要であるか否かを判断する(工程S201)。例えば、運転支援制御部1は以下の判断基準の1つ以上に基づいて車線変更が必要であると判断できる。すなわち、車両のナビゲーションシステムによって決定された通りのナビゲーションルートをたどるために車線変更が必要である、例えば車線変更支援入力装置11に対しての入力に基づいて車線変更の意図または要求を運転手が示すために車線変更が必要である、自車両(車両100)の前方の他車両が目標速度条件を満たすために追い越さなければいけないために車線変更が必要である、(例えば高速道路入口において)他の車線に合流するために車線変更が必要である、現在の車線が無くなろうとしている、または道路条件、障害物などに起因して不適切であるため車線変更が必要である、指示された回転動作の前に回転するために指示された車線に進入するために車線変更が必要であるという判断基準である。 First, the driving support control unit 1 determines whether lane change / automatic merging is necessary (step S201). For example, the driving support control unit 1 can determine that the lane change is necessary based on one or more of the following determination criteria. That is, a lane change is required to follow the navigation route as determined by the vehicle's navigation system, for example, the driver has made a lane change intention or request based on the input to the lane change assistance input device 11 A lane change is necessary to indicate that other vehicles ahead of the host vehicle (vehicle 100) need to change lanes in order to meet the target speed condition, eg at highway entrances etc. It is necessary to change lanes in order to merge into the current lane, the current lane is about to disappear, or lane change is necessary because it is inappropriate due to road conditions, obstacles etc. It is a criterion that a lane change is required to enter the designated lane to turn prior to the turn operation.
 工程S201の判断がYESの場合処理は工程S202に進み、NOの場合車線変更/自動合流は必要なく、処理は戻る。 If the determination in step S201 is YES, the process proceeds to step S202. If the determination is NO, lane change / automatic merging is not necessary, and the process returns.
 工程S202の処理において、図3A、3Bおよび3Cに例示的示すように、運転支援制御部1は、車両100(自車両)の車線変更の意図を周囲の他車両に通知する処理を実行する。 In the process of step S202, as exemplarily shown in FIGS. 3A, 3B and 3C, the driving assistance control unit 1 executes a process of notifying the surrounding other vehicle of the intention of changing the lane of the vehicle 100 (own vehicle).
 図3A、3Bおよび3Cは、車線変更の意図を示す異なる選択肢を周囲車両に示す。 Figures 3A, 3B and 3C show different options to surrounding vehicles to indicate the intent of a lane change.
 まず、図3Aに例示的に示すように自車両100においてウィンカー(点滅信号灯)をオン状態とすることによって、例えば他車両101などの周囲車両に対して車線変更の意図を示す方法がある。 First, as shown exemplarily in FIG. 3A, there is a method of indicating the intention of lane change to surrounding vehicles such as the other vehicle 101 by turning on blinkers (flashing signal lights) in the own vehicle 100.
 さらに、またはあるいは、自車両100を制御することによって、図3Bに例示的に示すように運転手が現在の車線から変更を希望している隣接した車線との境界に沿って自車両101が移動される方法がある。 Additionally or alternatively, by controlling the host vehicle 100, the host vehicle 101 moves along the boundary between the current lane and the adjacent lane that the driver wishes to change, as exemplarily shown in FIG. 3B. There is a way to
 上記の制御を実現するために、運転支援制御部1は、まず、車両前方に配置されたカメラ2の情報を使用することによって車線を検出してもよい。運転支援制御部1は、その後、上記の動きに必要な目標ステアリング角度またはステアリング支援トルクを算出してもよい。目標ステアリング角度またはトルクはステアリング制御部8に対して送信可能である。それによって、車両は隣接した車線との境界に沿って移動するように制御可能である。 In order to realize the above control, the driving support control unit 1 may first detect the lane by using the information of the camera 2 disposed in front of the vehicle. The driving support control unit 1 may then calculate the target steering angle or the steering support torque required for the above movement. The target steering angle or torque can be transmitted to the steering control unit 8. Thereby, the vehicle can be controlled to move along the border with the adjacent lane.
 さらにまたはあるいは、車両101などの他車両に対して自車両100の車線変更意図を通知する方法として、図3Cに例示的に示すように、工程S202において、他車両に対して車両間通信によって車両の車線変更意図を送信する方法もある。 Additionally or alternatively, as a method of notifying the other vehicle such as the vehicle 101 of the lane change intention of the host vehicle 100, as illustrated in FIG. 3C, in step S202, the vehicle is transmitted to the other vehicle There is also a way to send a lane change intention for
 上述のように、運転手の車線変更意図は工程S202の処理によって明確に自車両100から他車両に対して送信可能であるため、図3A~3Cの車両101などの他車両は自車両の車線変更意図を認識可能であり、それによって車線変更が円滑に実行可能となる。 As described above, since the driver's lane change intention can be clearly transmitted to the other vehicle from the own vehicle 100 by the process of step S202, the other vehicle such as the vehicle 101 in FIGS. 3A to 3C is the lane of the own vehicle. The intention to change can be recognized, which enables lane change to be performed smoothly.
 図2に戻り、次に、運転支援制御部1は自車両101の周囲の1台以上の後続車両が、意図した車線変更の対象車線を走行しているか否かを検出可能であるかを判断する(工程S203)。YESの場合処理は工程S204に進み、そうでなければ処理は工程S210に進む。 Returning to FIG. 2, next, the driving support control unit 1 determines whether or not one or more following vehicles around the host vehicle 101 can travel in the target lane for the intended lane change. (Step S203). If YES, the process proceeds to step S204; otherwise, the process proceeds to step S210.
 すなわち、工程S203において、センサ2、3、4および/または5から取得されたセンサ情報に基づいて、自車両100の周囲の1台以上の車両が、自車両100の次または後ろ(後方)で対象車線(すなわち車両100の経路が変更され車両100が車線変更動作後に走行予定の対象車線)の内側を走行していることを検出可能であるかが確認される。 That is, based on sensor information acquired from sensors 2, 3, 4 and / or 5 in step S203, one or more vehicles around vehicle 100 are next or behind vehicle 100 (backward). It is checked whether it can be detected that the target lane (that is, the target lane of the vehicle 100 after the route change of the vehicle 100 is changed) and that the vehicle 100 is traveling inside.
 上述したように、工程S203において、自車両101の周囲において少なくとも1台の後続車両が意図した車線変更の対象車線を走行していると検出された場合、処理は工程S204へと続く。 As described above, when it is detected in step S203 that at least one subsequent vehicle is traveling in the target lane of the intended lane change around the host vehicle 101, the process continues to step S204.
 工程S204において、例えば、運転支援制御部1は、図4に例示的に示すように、車両の前方部分を検出するカメラ2、車両の側方部分を検出するレーザレーダ3および4、車両の後方部分を検出するミリメートル波レーダ5などのセンサの情報に基づいて自車両100と検出周囲車両との間の相対距離および相対速度を決定または算出する。 In step S204, for example, as illustrated in FIG. 4, the driving support control unit 1 detects the front portion of the vehicle, the camera 2, the laser radars 3 and 4, which detects the side portion of the vehicle, and the rear of the vehicle. The relative distance and the relative velocity between the vehicle 100 and the detection surrounding vehicle are determined or calculated based on the information of the sensor such as the millimeter wave radar 5 which detects the portion.
 図4は、自車両100が3台の他車両101、102および103によって囲まれて道路を走行している状況例を例示的に図示する。 FIG. 4 exemplarily illustrates an example of a situation in which the host vehicle 100 is traveling on a road surrounded by three other vehicles 101, 102 and 103.
 例として、図4において、自車両100は道路の左車線を走行しており、3台の他車両101、102および103によって囲まれている。車両103は、例として、自車両の前方の自車両100と同じ車線を走行している。車両101は、例として、自車両100の次の他車線(車線変更が制御対象である場合の可能な対象車線)を走行しており、車両102も、例として、その他車線(すなわち、車線変更が制御対象の場合の可能な対象車線)であるが自車両100の後方を走行している。 As an example, in FIG. 4, the vehicle 100 travels in the left lane of the road and is surrounded by three other vehicles 101, 102 and 103. The vehicle 103 is, for example, traveling in the same lane as the host vehicle 100 in front of the host vehicle. The vehicle 101 travels the other lane next to the vehicle 100 (a possible target lane when the lane change is to be controlled) by way of example, and the vehicle 102 is also another lane by way of example (ie lane change) Is a possible target lane in the case of a control target), but travels behind the host vehicle 100.
 図4において、参照番号A2、A3、A4およびA5は、例として、車両100の前方(センサ2の検知領域A2)および後方(センサ5の検知領域A5)、ならびに車両100の左(センサ3の検知領域A3)および右(センサ4の検知領域A4)にある障害物(例えば車両)を検知するセンサ2、3、4および5のそれぞれの検知領域に関する。したがって、自車両100の周囲にある車両のうち、車両102はセンサ領域A5に配置されているため車両102はセンサ5によって検出可能であり、車両101はセンサ領域A4に配置されるため車両101はセンサ4によって検出可能であり、車両103はセンサ領域A2に配置されているため車両103はセンサ2によって検出可能である。 In FIG. 4, reference numerals A2, A3, A4 and A5 indicate, as an example, the front (detection area A2 of sensor 2) and the rear (detection area A5 of sensor 5) of vehicle 100, and the left of vehicle 100 (sensor 3 The detection areas of sensors 2, 3, 4, and 5 for detecting an obstacle (for example, a vehicle) in detection area A3) and the right (detection area A4 of sensor 4) are related. Therefore, of the vehicles around vehicle 100, vehicle 102 is disposed in sensor area A5, so that vehicle 102 can be detected by sensor 5, and vehicle 101 is disposed in sensor area A4. Since the vehicle 103 can be detected by the sensor 4 and the vehicle 103 is disposed in the sensor area A2, the vehicle 103 can be detected by the sensor 2.
 例として、図4の状況において、工程S203の結果がYESであり、運転支援制御部1が工程S204において自車両と車両102との間の相対距離および速度を算出し、自車両と車両101との間の相対距離および速度もおそらく算出し、車線変更が所望または意図されている場合に、その両方が可能な対象車線に配置されているとする。 For example, in the situation of FIG. 4, the result of step S203 is YES, and the driving assistance control unit 1 calculates the relative distance and speed between the host vehicle and the vehicle 102 in step S204, and the host vehicle and the vehicle 101 The relative distance between and the speed is also possibly calculated, and it is assumed that both are located in the possible target lane if a lane change is desired or intended.
 例えば、自車両100の速度は車輪速度センサ22FL~22RRの情報に基づいて推定可能である。例えば、4個の車輪速度センサの情報の最高速度が推定車両速度として設定されるように選択可能である。車両速度の推定方法はそれに限定されず、車輪速度センサの平均値を使用する他の方法が使用可能である。 For example, the speed of the vehicle 100 can be estimated based on the information of the wheel speed sensors 22FL to 22RR. For example, the maximum speed of the information of the four wheel speed sensors can be selected to be set as the estimated vehicle speed. The method of estimating the vehicle speed is not limited thereto, and other methods using the average value of the wheel speed sensor can be used.
 他車両の相対位置および相対速度は、例えば自車両100の重心を原点にし、例としてX軸を自車両100の前方に向かって設定し(例えば車両100の軸方向に沿う)、例としてY軸を自車両100の左側に設定する共垂直(covertical)(例えば共動)座標系で表現可能である。 The relative position and the relative speed of the other vehicle are, for example, with the center of gravity of the vehicle 100 as the origin, for example, the X axis is set toward the front of the vehicle 100 (for example, along the axial direction of the vehicle 100) Can be represented by a co-vertical (e.g. co-motion) coordinate system in which is set on the left side of the host vehicle 100.
 例えば、時間tにおける自車両100の重心とX軸方向の周囲車両(i=1,2,3,..,i)との間の相対距離Xi(例えば車両101はX1、車両102はX2、および車両103はX3)および相対速度Vi(例えば車両101はV1、車両102はV2、および車両103はV3)は、以下の式で表わすことができる。 For example, the relative distance Xi between the center of gravity of the vehicle 100 and the surrounding vehicles (i = 1, 2, 3,..., I) in the x-axis direction at time t (for example, vehicle 101 is X1, vehicle 102 is X2, And the vehicle 103 is X3) and the relative velocity Vi (for example, the vehicle 101 is V1, the vehicle 102 is V2, and the vehicle 103 is V3) can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば車両101に対してi=1、車両102に対してi=2など、例として、接尾辞iはi番目の車両を表わす。さらに、i番目の車両の相対速度Viは、例として、周囲のi番目の車両が自車両100に接近する方向の速度が正となるように定義される。 For example, the suffix i represents the i-th vehicle, eg i = 1 for vehicle 101, i = 2 for vehicle 102 and so on. Furthermore, the relative velocity Vi of the i-th vehicle is defined, for example, such that the velocity in the direction in which the i-th surrounding vehicle approaches the host vehicle 100 is positive.
 図2に戻り、工程S204において他車両の相対位置および相対速度を決定すると、工程S206において、運転支援制御部1は、例として、車線がそれぞれ決定された相対位置および相対速度に基づいて変更される場合、好ましくは、検出された周囲の車両、または少なくとも車線変更の対象車線において検出された周囲車両のそれぞれに対して、衝突危険性を算出する処理に進む。 Returning to FIG. 2, when the relative position and the relative velocity of the other vehicle are determined in step S204, the driving support control unit 1 changes the lane based on the determined relative position and relative velocity in step S206, for example. In this case, preferably, the process proceeds to the process of calculating the collision risk for each of the detected surrounding vehicles or at least the detected surrounding vehicles in the lane change target lane.
 例として、上記で推定された自車両の速度は、車線変更に必要な時間T1を算出するために、図5に例示的に示すように、車線変更/合流に必要な自車両100の車両速度V0対時間T1の所定の相関マッピングに適用される。 As an example, in order to calculate the time T1 required for the lane change, the vehicle speed of the host vehicle 100 required for the lane change / merging can be calculated as shown in FIG. It is applied to the predetermined correlation mapping of V0 versus time T1.
 図5は、自車両100の車両速度V0に応じた車線変更/合流に必要な時間T1の相関マッピングを例示的に図示する。 FIG. 5 exemplarily illustrates correlation mapping of time T1 required for lane change / merging according to the vehicle speed V0 of the host vehicle 100.
 図5に例示的に示す相関マッピングは、自車両100の車両速度V0が高いほど車線変更に必要な時間T1が短いように設定される。それによって、高速度では車線変更(または車線合流)に必要な時間T1が短く、低速度では時間T1が長いため、車線変更に必要な時間T1は自車両100の車両速度V0に応じて正しく算出可能である。 The correlation mapping exemplarily shown in FIG. 5 is set such that the time T1 required to change the lane is shorter as the vehicle speed V0 of the host vehicle 100 is higher. As a result, the time T1 required for lane change (or lane merging) is short at high speed and the time T1 is long at low speed, so the time T1 required for lane change is correctly calculated according to the vehicle speed V0 of the host vehicle 100. It is possible.
 そのような相関マッピングは事前に決定されることが可能であり、その他の例示の実施形態では、自車両100の車両速度V0に応じて車線変更に必要な推定時間T1を決定するために使用可能である。一方、車線変更に必要な時間は、自車両の前方の車両速度に基づいて、さらに検出された車線幅に基づいて(例えば車両前方のカメラ2の検出ビューに基づいて)算出してもよい。 Such correlation mapping may be determined in advance, and in other exemplary embodiments may be used to determine an estimated time T1 required to change lanes according to the vehicle speed V0 of the vehicle 100. It is. On the other hand, the time required to change lanes may be calculated based on the vehicle speed ahead of the host vehicle and further based on the detected lane width (for example, based on the detection view of the camera 2 ahead of the vehicle).
 次に、時刻t+T1における自車両100の周囲のi番目の車両までの車間距離Xi^gapおよび車線変更が行われる時刻t(車線変更に必要な時間T1後)における衝突危険性を表わす同時刻t+T1における衝突までの推定時間または衝突予測時間Ti^ttcが、以下の式によって車線変更に必要な算出時間T1に基づいて算出される。 Next, an inter-vehicle distance Xi ^ gap to the i-th vehicle around the host vehicle 100 at time t + T1 and a same time t + T1 representing a collision risk at time t (after time T1 required for lane change) when lane change is performed The estimated time to collision or the collision prediction time Ti ^ ttc is calculated based on the calculation time T1 required for the lane change by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記式において、L0は自車両100の全長(前後方向)、Liは自車両100の周囲の車両iの長さを表わす。 In the above equation, L0 represents the full length (front-back direction) of the host vehicle 100, and Li represents the length of the vehicle i around the host vehicle 100.
 したがって、i番目の車両に対して、時刻t+T1における車間距離Xi^gapは、車線変更動作の開始時間tと車線変更動作の推定時間T1、さらには車線変更が完了すると予想される時刻t+T1における自車両100からi番目の車両までの予想される相対距離Xiを考慮した場合のi番目の車両と自車両100との間の車線変更(または車線合流)完了後の推定間隙距離を表わす。例えば、時刻t+T1における自車両100からi番目の車両への予想相対距離Xiは、工程S204において算出された自車両100に対するi番目の車両の相対距離Xiおよび相対速度Viに基づいて推定してもよい。 Therefore, for the i-th vehicle, the inter-vehicle distance Xi ^ gap at time t + T1 is the start time t of the lane change operation and the estimated time T1 of the lane change operation, and further at time t + T1 at which the lane change is expected to be completed. The estimated gap distance after the completion of the lane change (or lane merging) between the i-th vehicle and the host vehicle 100 in consideration of the expected relative distance Xi from the vehicle 100 to the i-th vehicle is shown. For example, the predicted relative distance Xi from the host vehicle 100 to the i-th vehicle at time t + T1 may be estimated based on the relative distance Xi and the relative velocity Vi of the i-th vehicle relative to the host vehicle 100 calculated in step S204. Good.
 さらに、例として、同じ時刻t+T1における推定衝突予測時間Ti^ttcは、車線変更完了後のi番目の車両と自車両100との間で衝突が起きるまでの時間の推定を表わす。 Furthermore, as an example, the estimated collision prediction time Ti ^ ttc at the same time t + T1 represents the estimation of the time until a collision occurs between the i-th vehicle and the vehicle 100 after the lane change is completed.
 次に、運転支援制御部1は、周囲車両のそれぞれに対して、または少なくとも所望の車線変更の対象車線を走行している周囲車両のそれぞれに対して、式(2)および(3)によって算出された算出車間距離Xi^gap(t+T1)および衝突予測時間Ti^ttc(t+T1)に基づいて、車線変更が実行可能か否かを判断する(図2の工程S207)。 Next, the driving support control unit 1 calculates for each of the surrounding vehicles or at least for each of the surrounding vehicles traveling in the target lane of the desired lane change by the equations (2) and (3). Based on the calculated calculated inter-vehicle distance Xi ^ gap (t + T1) and the predicted collision time Ti ^ ttc (t + T1), it is determined whether or not the lane change can be performed (step S207 in FIG. 2).
 例として、車線変更が可能であると判断できるとすると、算出車間距離Xi^gap(t+T1)は、相対距離の閾値Xi^gap_a(以下第1の所定値と呼ばれる)よりも大きく(またはそれ以上)、算出衝突予測時間Ti^ttc(t+T1)が衝突予測時間に対する閾値Ti^ttc_a(以下第2の所定値と呼ばれる)よりも大きい(またはそれ以上)。 As an example, if it can be determined that a lane change is possible, the calculated inter-vehicle distance Xi ^ gap (t + T1) is larger (or more) than the relative distance threshold Xi ^ gap_a (hereinafter referred to as a first predetermined value) And the calculated collision prediction time Ti ^ ttc (t + T1) is larger than (or more than) a threshold Ti ^ ttc_a (hereinafter referred to as a second predetermined value) for the collision prediction time.
 例えば、図6は、車間距離Xi^gap(横軸)および衝突予測時間Ti^ttc(縦軸)の対に対する許可可能な/可能な車線変更の破線範囲領域を例示的に図示する。 For example, FIG. 6 exemplarily illustrates a dashed line area of allowable / possible lane change for a pair of inter-vehicle distance Xi ^ gap (horizontal axis) and collision prediction time Ti ^ ttc (vertical axis).
 図2における工程S207に対する判断基準は、周囲車両iのすべてに対して、または少なくとも対象車線にある周囲車両i毎の相対距離および衝突予測時間が十分な時間を有する場合、すなわち、上述の第1のおよび第2の閾値Xi^gap_aおよびTi^ttc_aに基づいて、以下の式が満足された場合に車線変更が実行可能であると設定可能であることが好ましい。もしくは、例えば以下に式(4)で表わす条件が満足されないまたは満たされない場合、車線変更が実行可能でないと工程S207において判断される。 The determination criterion for step S207 in FIG. 2 is that the relative distance for each surrounding vehicle i in at least the target lane and the collision prediction time have sufficient time for all surrounding vehicles i, that is, the first one described above. Preferably, based on the second and third thresholds Xi ^ gap_a and Ti ^ ttc_a, it is possible to set that the lane change is feasible if the following equation is satisfied. Alternatively, for example, if the condition expressed by equation (4) below is not satisfied or not satisfied, it is determined in step S207 that the lane change is not feasible.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、例として、対象車線における2台の車両101(i=1)および102(i=2)を有する図4の例に基づき、X1^gap_aは、例として、対象空間において前方の車両101に対して車線変更が実行可能であるかを判断するための相対距離の閾値(以下第1の所定値と呼ばれる)であり、X2^gap_aは、例として、対象空間における後方または後続車両102に対して車線変更が実行可能であるかを判断するための相対距離に対する閾値(以下第3の所定値と呼ばれる)である。 Here, based on the example of FIG. 4 with two vehicles 101 (i = 1) and 102 (i = 2) in the target lane as an example, X1 ^ gap_a is an example of a vehicle 101 ahead in the target space. The threshold value of the relative distance (hereinafter referred to as a first predetermined value) for determining whether the lane change can be performed, and X2 ^ gap_a is, by way of example, for the rear or following vehicle 102 in the target space. This is a threshold for a relative distance (hereinafter referred to as a third predetermined value) for determining whether lane change is feasible.
 例えば、運転手が上記相対距離内に存在する(車線を変更している)相対速度にかかわらず、車線変更が実行されないと考えられる距離の第1および第3の所定値が与えられることが望ましい(例えば第1の所定値として7m、第3の所定値として10m)。 For example, it is desirable that the first and third predetermined values of the distance at which the lane change is considered not to be performed are given regardless of the relative speed at which the driver is within the relative distance (changing the lane) (For example, 7 m as a first predetermined value, and 10 m as a third predetermined value).
 なお、これらの所定の閾値は事前に決定可能であるが固定である必要はなく、いくつかの例示の実施形態において、自車両100の車両速度V0に応じてまたは運転手によって変更可能である。例えば、第1および/または第3の閾値は、所定の関数(複数の関数可)に基づく車両速度V0に基づいて算出してもよく、例えばそれによって第1および/または第3の閾値は高車両速度V0に対して大きく決定されてもよく、第1および/または第3の閾値は自車両100の低車両速度V0に対して小さく決定されてもよい。 Note that these predetermined threshold values can be determined in advance but need not be fixed, and can be changed according to the vehicle speed V0 of the host vehicle 100 or by the driver in some exemplary embodiments. For example, the first and / or third threshold may be calculated based on the vehicle speed V0 based on the predetermined function (s), eg, whereby the first and / or third threshold is high The first and / or third thresholds may be determined smaller than the low vehicle speed V0 of the host vehicle 100.
 一方、例として対象車線において2台の車両101(i=1)および102(i=2)を有する図4の例に基づくと、時間パラメータT1^TTC_aは、例として、対象空間において前方の車両101に対して車線変更可能かを判断するための衝突予測時間(以下第2の所定値と呼ばれる)の閾値であり、時間パラメータT2^TTC_aは、対象空間における後続車両に対し車線変更可能かを判断するための衝突予測時間(以下第4の所定時刻と呼ばれる)の閾値である。 On the other hand, based on the example of FIG. 4 with two vehicles 101 (i = 1) and 102 (i = 2) in the target lane as an example, the time parameter T1 ^ TTC_a is, as an example, a vehicle ahead in the target space The threshold value of the collision prediction time (hereinafter referred to as a second predetermined value) for determining whether the lane change is possible with respect to 101, and the time parameter T2 ^ TTC_a is whether the lane change is possible for the following vehicle in the target space This is a threshold value of the collision prediction time (hereinafter referred to as a fourth predetermined time) to be determined.
 好ましくは、第2および第4の所定の閾値は、算出時刻(複数可)が衝突予測時間内にある場合に運転手が危険な状況であると感じる時間パラメータ(例えば5sを第2の所定値および6sを第4の所定値とする)である。 Preferably, the second and fourth predetermined threshold values are time parameters that the driver feels in a dangerous situation (for example, 5s as a second predetermined value) when the calculated time (s) are within the collision prediction time. And 6s as a fourth predetermined value).
 さらに、これらの所定の閾値は事前に決定可能であるが固定である必要はなく、いくつかの例示の実施形態において、自車両100の車両速度V0に応じてまたは運転手によって変更可能である。例えば、第2および/または第4の閾値は、所定の関数(複数の関数可)に基づく車両速度V0に基づいて算出してもよく、例えばそれによって第2および/または第4の閾値は高車両速度V0に対して大きく決定されてもよく、第2および/または第4の閾値は自車両100の低車両速度V0に対して小さく決定されてもよい。 Furthermore, these predetermined threshold values can be determined in advance but need not be fixed, and can be changed according to the vehicle speed V0 of the host vehicle 100 or by the driver in some exemplary embodiments. For example, the second and / or fourth threshold may be calculated based on the vehicle speed V0 based on the predetermined function (s), for example whereby the second and / or fourth threshold is high The second and / or fourth threshold values may be determined smaller than the low vehicle speed V0 of the host vehicle 100.
 上記式(4)の例示の判断基準によれば、例えば、相対距離が大きくても、衝突予測時間が短いと判断された(すなわちそれぞれの相対速度が大きい)状態で車線変更される場合、すなわち、車線変更直後に後続車に自車両100が追い越し可能な場合、安全上の理由により車線が変更できないと工程S207において依然として判断されることが好ましい。 According to the determination criterion of the above equation (4), for example, when the lane change is made in a state where the collision prediction time is determined to be short (ie, each relative velocity is large) even if the relative distance is large, ie, If it is possible to pass the vehicle 100 to the following vehicle immediately after the lane change, it is preferable that it is still determined in step S207 that the lane can not be changed for safety reasons.
 決定された相対速度が負の場合でも、すなわちそれぞれのi番目の車両がいなくなって自車両100からの距離が増加した場合、相対距離が短く、好ましくは車線変更後の車間の間隙が小さくなることを回避するために、工程S207において車線変更は実行不可であると判断可能である。 Even when the relative speed determined is negative, that is, when the i-th vehicle disappears and the distance from the host vehicle 100 increases, the relative distance is short, and preferably the gap between the vehicles after the lane change is small. In order to avoid this, it is possible to judge that the lane change can not be performed in step S207.
 例えば上記の判断によって車線変更が実行可能であると工程S207において判断される場合(工程S207はYESに戻る場合)、処理は図2の工程S209に進み、所望の車線変更が運転支援制御部1の制御によって実行される。 For example, if it is determined in step S207 that the lane change is executable according to the above determination (if step S207 returns YES), the process proceeds to step S209 in FIG. Is executed by control of
 一方、S207の判断がNO(すなわち)の場合、処理は工程S208に進み、自車両100の運転手に対して警告が発せられる。 On the other hand, if the determination in S207 is NO (ie,), the process proceeds to step S208, and a warning is issued to the driver of the host vehicle 100.
 なお、車線変更適正判定は図6(または上記式4)のものに限定されるものではなく、その他の例示の実施形態において、図6の横軸に設定された定義は例えば相対速度Viと置き換えられてもよい。 The lane change appropriateness determination is not limited to that of FIG. 6 (or the above equation 4), and in the other exemplary embodiments, the definition set on the horizontal axis of FIG. It may be done.
 工程S208において、工程S207がNOに戻った場合、運転支援制御部1は例えば図7に示すように自車両の運転手に対して警告を発する警告処理を実行する。 In step S208, when step S207 returns to NO, for example, as shown in FIG. 7, the driving support control unit 1 executes a warning process for issuing a warning to the driver of the host vehicle.
 図7は、自車両100の機器パネル上の警告を点灯するおよび/または警告音を作動する警告処理を例示的に図示する。光および/または音による警告は、算出危険性のレベルに応じて輝度および音量においてそれぞれ変化可能である。 FIG. 7 exemplarily illustrates a warning process of lighting a warning on the device panel of the host vehicle 100 and / or activating a warning sound. Light and / or sound alerts can be varied in brightness and volume respectively depending on the level of risk calculated.
 まず、図7に示すように、警告装置23(図1も参照)の警告ランプの表示サイズおよび警告音の音量は、図7に示すように工程S206において算出された衝突危険性に応じて変化可能であるため、例えば、運転手は車線変更が不可であるということを知らされる(工程S208)。例えば衝突危険性に応じて表示警告光および/または警告音量は変更可能であるため、運転手が車線変更可能な時を予測できる。 First, as shown in FIG. 7, the display size of the warning lamp of the warning device 23 (also refer to FIG. 1) and the volume of the warning sound change according to the collision risk calculated in step S206 as shown in FIG. As it is possible, for example, the driver is informed that the lane change is not possible (step S208). For example, since the displayed warning light and / or the warning volume can be changed according to the collision risk, it is possible to predict when the driver can change lanes.
 一方、図2に戻り、工程S207がYESに戻る場合、工程S209において、所望の車線変更は運転支援制御部1の制御によって実行される。 On the other hand, when returning to FIG. 2 and step S207 returns to YES, the desired lane change is performed by the control of the driving assistance control unit 1 in step S209.
 例えば、運転支援制御部1は、例えば図8に示すように車線変更に対する制御の処理を実行可能である。 For example, as shown in FIG. 8, for example, the driving support control unit 1 can execute processing of control for lane change.
 図8は、運転支援制御部1による車線変更制御処理のフローチャートを例示的に図示する。 FIG. 8 exemplarily illustrates a flowchart of lane change control processing by the driving support control unit 1.
 まず、図8に例示的に示すように、車線変更のための目標経路が、例えばカメラ2によって自車両100の前方に検出された車線標識に基づくなど、例えば取得された車線標識情報に基づいて、工程S901において算出される。同様に、またはさらに、車線変更のための目標経路を、検出された車両位置の前方の道路の車線位置に関するマップ情報を含むナビゲーション情報に基づいて決定してもよい。 First, as exemplarily shown in FIG. 8, a target route for lane change is based on, for example, acquired lane sign information, such as based on a lane sign detected in front of the host vehicle 100 by the camera 2, for example. , Calculated in step S901. Similarly, or additionally, the target route for the lane change may be determined based on navigation information including map information regarding the lane position of the road ahead of the detected vehicle position.
 工程S902において、工程S901において決定された目標経路に基づいて、目標経路をたどるようにステアリング支援トルクが算出され、ステアリング支援トルクは、工程S902で決定された目標ステアリング支援トルクに基づいてステアリング制御機構10を制御するようにステアリング制御部8に対して指示され、車両100は、運転支援制御部1の制御に基づいて車線変更を実行する。 In step S902, based on the target route determined in step S901, a steering assist torque is calculated to follow the target route, and the steering assist torque is a steering control mechanism based on the target steering assist torque determined in step S902. The steering control unit 8 is instructed to control 10, and the vehicle 100 executes the lane change based on the control of the driving support control unit 1.
 工程S903において、運転支援制御部1は車線変更が終了したか否かを判断する。工程S903がYESに戻った場合、車線変更に対する制御の処理は終了する。工程S903がNOに戻る場合、処理は工程S901に戻る。 In step S903, the driving support control unit 1 determines whether the lane change has ended. If the process S 903 returns to YES, the control process for the lane change ends. If the process S903 returns to NO, the process returns to the process S901.
 上記において、図2に戻り、自車両101の周囲の少なくとも1台以上の後続車両が意図した車線変更の対象車線を走行していることを運転支援制御部1が検出した場合(工程S203はYESに戻る)の処理を説明した。 In the above, returning to FIG. 2, when the driving support control unit 1 detects that at least one or more subsequent vehicles around the host vehicle 101 are traveling in the target lane for the intended lane change (YES in step S203) I explained the process of).
 次に、運転支援制御部1が意図した車線変更の対象車線において自車両101の周囲における後続の車両が走行しているのを検出しなかった場合(工程S203はNOに戻る)の処理を説明する。 Next, the process in the case where it is not detected that the following vehicle around the host vehicle 101 is traveling in the target lane of lane change intended by the driving support control unit 1 (step S203 returns to NO) Do.
 すなわち、車線変更の対象車線において後続の車両が検出されないと工程S203において判断された場合、すなわち車線変更の対象車線において後続の車両が1台も検出されない場合、工程S210において検知領域が算出される。これを図9に例示的に図示する。 That is, if it is determined in step S203 that a subsequent vehicle is not detected in the lane change target lane, that is, if no subsequent vehicles are detected in the lane change target lane, a detection region is calculated in step S210. . This is illustrated exemplarily in FIG.
 図9は、自車両100が車線変更を実行し、対象車線における後続車両101が実際の検知領域を限定する障害物(例えば壁)に起因して検出できない状況を例示的に示す。 FIG. 9 exemplarily shows a situation in which the host vehicle 100 executes a lane change, and the following vehicle 101 in the target lane can not be detected due to an obstacle (for example, a wall) that limits the actual detection area.
 具体的には、図9の例において、自車両100のセンサ(複数可)を介して利用可能な実際の検知領域は、破線領域が障害物(例えば壁)に起因して検知不可であるため、この状況において破線領域は実際の検知領域に含まれない点で限定されている。実際の検知領域は、実際に利用可能な検知領域とも呼ばれ、最大限に利用可能な検知領域(自車両100のセンサの検知領域を限定する障害物が全くない場合に利用可能)と比較される。実際に利用可能な検知領域は、検知領域において障害物が全くない場合に最大限利用可能な検知領域に対応しているが、実際に利用可能な検知領域は、検知領域が検知領域の内側の障害物によって限定される場合(例えばレーダなどの2Dセンサの場合)最大限に利用可能な検知領域よりも小さい場合がある。 Specifically, in the example of FIG. 9, the actual detection area available via the sensor (s) of the host vehicle 100 can not be detected because the dashed line area is due to an obstacle (for example, a wall) In this situation, the dashed area is limited in that it is not included in the actual detection area. The actual detection area is also called the actually available detection area, and is compared with the maximum available detection area (available when there is no obstacle that limits the detection area of the sensor of the host vehicle 100). Ru. The actually available detection area corresponds to the detection area that is maximally available when there are no obstacles in the detection area, but the detection area that is actually available is that the detection area is inside the detection area When limited by an obstacle (for example, in the case of a 2D sensor such as a radar), it may be smaller than the maximum available detection area.
 例えば、実際の検知領域は、例として、自車両100のセンサによって検出される1つ以上の障害物に対する放射状最大距離に基づいて算出可能である。ただし、実際の検知領域の算出方法は上記方法に限定されない。例えば、3Dセンサ(例えばステレオカメラまたはレーザレーダ装置)の場合、検出された道路表面領域は実際の検知領域として設定可能である。また、実際の検知領域は占有格子地図として表わされることも可能である。 For example, the actual detection area can be calculated based on the radial maximum distance to one or more obstacles detected by the sensor of the host vehicle 100 as an example. However, the method of calculating the actual detection area is not limited to the above method. For example, in the case of a 3D sensor (for example, a stereo camera or a laser radar device), the detected road surface area can be set as an actual detection area. Also, the actual detection area can be represented as an occupied grid map.
 次に、図2に戻り、工程S211において、例えば図10に図示するような例示の処理に基づいて最大相対速度が算出される。 Next, returning to FIG. 2, in step S211, the maximum relative velocity is calculated based on an exemplary process as illustrated in FIG. 10, for example.
 図10は、最大相対速度を決定している処理の一例のフローチャートを例示的に図示する。 FIG. 10 exemplarily illustrates a flowchart of an example process of determining the maximum relative velocity.
 例として、最大相対速度は図10において工程S1101において算出され、自車両100の速度は、例えば上述したように各車輪の回転速度に基づいて決定/算出されることを含む。 As an example, the maximum relative velocity is calculated in step S1101 in FIG. 10, and the velocity of the vehicle 100 is determined / calculated based on the rotational velocity of each wheel, for example, as described above.
 工程S1102において、仮想の他車両の最大速度は、現在の道路部分の制限速度、時刻、季節、道路表面条件および/またはこの地域における蓄積速度データ(統計車両速度データなど)などのうちの少なくとも1つに基づいて決定/算出される。なお、仮想車両の最大速度の推定方法は上述の態様に限定されない。例えば、車両の最大速度は、現在の道路部分の制限速度に基づいてまたはそれに応じて決定されてもよく、閾値によって調節してもよい(例えば、交通条件、季節的条件、道路条件などに応じて、後続車両がある速度パーセントだけ制限速度を超過する可能性を含むなど)。 In step S1102, the maximum speed of the other virtual vehicle is at least one of the current road speed limit, time, season, road surface conditions, and / or accumulated speed data in this area (such as statistical vehicle speed data). Determined / calculated based on In addition, the estimation method of the maximum speed of a virtual vehicle is not limited to the above-mentioned aspect. For example, the maximum speed of the vehicle may be determined based on or in response to the current road segment speed limit, and may be adjusted by a threshold (e.g. depending on traffic conditions, seasonal conditions, road conditions etc. Such as the following vehicle including the possibility of exceeding the speed limit by a certain percentage of speed).
 すなわち、工程S1101において自車両100の現在の速度が決定され、工程S1102において車線変更の対象車線上を走行している非検出の可能性のある後続車両(仮想車両)の最大速度が、例えば現在の道路部分の制限速度に基づいて、および/または現在の道路部分に対して利用可能な統計速度データに基づいて推定される。 That is, the current speed of the vehicle 100 is determined in step S1101, and the maximum speed of the possibly undetected following vehicle (virtual vehicle) traveling on the target lane of the lane change in step S1102 is, for example, And / or based on statistical speed data available for the current road portion.
 工程S1102において決定された仮想車両の最大速度または工程S1101において決定された自車両速度に基づいて、工程S1103において、自車両100と他の仮想車両との間の最大相対速度が算出または決定される。 Based on the maximum speed of the virtual vehicle determined in step S1102 or the host vehicle speed determined in step S1101, the maximum relative speed between the host vehicle 100 and another virtual vehicle is calculated or determined in step S1103. .
 例えば(以下の数は例示の値に過ぎない)、自車両が自車両速度80km/時でランプ道路上におり、このランプ道路は制限速度100km/時の高速道路に合流される場合、自車両100と他の仮想車両との間の最大相対速度は、自車両速度と、高速道路上の対象車線上を制限速度で走行していると仮定される仮想車両の決定された最大速度との差に基づいて20km/時と決定できる。また、例えば10km/時を安全性の限界と考える場合、(仮想車両が10km/時だけ制限速度を超過している可能性があると仮定した場合)、自車両100と他の仮想車両との間の最大相対速度は、安全性の限界を考慮すると、自車両速度と、高速道路上の対象車線上を制限速度で走行していると仮定される仮想車両の決定された最大速度との差に基づいて30km/時と決定できる。また、時刻、予想される交通条件、季節条件、統計データなどに応じて、安全性を理由として最大相対速度をさらに調節可能である。 For example (if the number below is just an example value) and the vehicle is on a ramp road with a vehicle speed of 80 km / h and this ramp road joins the expressway at a speed limit of 100 km / h, the vehicle The maximum relative speed between 100 and the other virtual vehicle is the difference between the vehicle speed and the determined maximum speed of the virtual vehicle assumed to be traveling at the speed limit on the object lane on the freeway It can be determined to be 20 km / hour based on. For example, if 10 km / hour is considered as the limit of safety (if it is assumed that the virtual vehicle may have exceeded the speed limit by 10 km / hour), the vehicle 100 and another virtual vehicle The maximum relative speed between them is the difference between the own vehicle speed and the determined maximum speed of the virtual vehicle assumed to be traveling at the speed limit on the object lane on the freeway, taking into account the safety limits It can be determined to be 30 km / hour based on. Also, the maximum relative speed can be further adjusted for safety reasons, depending on the time of day, traffic conditions to be expected, seasonal conditions, statistical data, etc.
 次に、図2に戻り、工程S212において、工程S211で決定された最大相対速度に基づいて、車線変更および/または合流に対して必要な検知領域が算出または決定される。 Next, referring back to FIG. 2, in step S212, a detection area necessary for lane change and / or merging is calculated or determined based on the maximum relative velocity determined in step S211.
 例えば、隣接した車線(対象車線)に沿った車線変更に必要な長さは、工程S212において決定された最大相対速度に基づいて算出可能である。この必要な長さは、相対速度に応じて算出可能である。例えば、相対速度が高いほど必要な長さは長く決定され、相対速度が低いほど必要な長さは短く決定される。さらに、この必要な長さは、上述したように車線変更/合流に必要な決定/推定時間T1に基づいて決定可能である。 For example, the length required for lane change along an adjacent lane (target lane) can be calculated based on the maximum relative velocity determined in step S212. This required length can be calculated according to the relative velocity. For example, the higher the relative velocity, the longer the required length is determined, and the lower the relative velocity, the shorter the required length. Furthermore, this required length can be determined based on the determined / estimated time T1 required for the lane change / merging as described above.
 その後、例として、車線変更を安全に実行するために利用可能となるように必要であると推定される必要な検知領域、すなわち車線変更/合流の要件と見なされる検知領域は、決定された必要な長さに基づいて算出または決定され、さらにマップデータおよび/または自車両100のセンサによって検出された車線標識情報に基づいて決定されてもよい。 Then, as an example, the required sensing area estimated to be necessary to be able to execute lane change safely, ie the sensing area considered to be a lane change / merging requirement, has been determined It may be calculated or determined based on the length, and further determined based on map data and / or lane marking information detected by the sensor of the vehicle 100.
 例として、必要な検知領域が例えばマップデータおよび/または自車両100のセンサによって取得された車線標識情報に基づいた隣接した車線(対象車線)の形状に基づいて算出/決定可能であるため、例として、上記のアルゴリズムは、道路の曲線の曲線形状とは関係なく合流または車線変更にも適用可能である。ただし、実際の検知領域の算出方法は上記の方法に限定されない。例えば、必要な検知領域は、隣接した車線および隣接した車線の次の車線に基づいて算出可能である。 As an example, since the necessary detection area can be calculated / decided based on, for example, map data and / or the shape of the adjacent lane (target lane) based on the lane sign information acquired by the sensor of the host vehicle 100, the example The above algorithm is also applicable to merging or changing lanes regardless of the curve shape of the road curve. However, the method of calculating the actual detection area is not limited to the above method. For example, the required detection area can be calculated based on the adjacent lane and the next lane of the adjacent lane.
 工程S213において、運転支援制御部1は、工程S212において決定された必要な検知領域が工程S210において決定された実際の検知領域に含まれるかを判断する。例えば、工程S213において、工程S212において決定された必要な検知領域は工程S210において決定された実際の検知領域よりも小さい、または少なくとも等しいかが決定される。 In step S213, the driving support control unit 1 determines whether the necessary detection area determined in step S212 is included in the actual detection area determined in step S210. For example, in step S213, it is determined whether the required detection area determined in step S212 is smaller or at least equal to the actual detection area determined in step S210.
 すなわち、運転支援制御部1は、現在の車線変更状況または合流状況において検知領域要件(検知領域条件)が満足されるかを工程S213において判断する。 That is, the driving support control unit 1 determines in step S213 whether the detection area requirement (detection area condition) is satisfied in the current lane change state or the merging state.
 工程S213がNOに戻る場合、処理は工程S214に進み、運転は自車両100の運転手に移行される。例えば、視覚および/または聴覚警告または車両に取り付けられた人間-機械インタフェースによって出力された移行命令によって、運転手は自車両100の制御を引き継ぐように指示され、または少なくとも、自車両100の制御が手動制御によって移行される必要があると警告される。 If step S213 returns to NO, the process proceeds to step S214, where the driving is transferred to the driver of the host vehicle 100. For example, the driver is instructed to take over control of the host vehicle 100, or at least control of the host vehicle 100 is controlled by a visual and / or auditory alert or a transition command output by a human-machine interface attached to the vehicle. It is warned that manual control needs to be migrated.
 例えば、図11は運転手に対して警告メッセージを出力する自車両の機器パネルを例示的に図示する。 For example, FIG. 11 exemplarily illustrates the device panel of the host vehicle that outputs a warning message to the driver.
 この警告メッセージは、警告メッセージの出力に加えて、運転手が運転制御を引き継ぐ必要がある場合に、運転手による車両の制御を引き継ぐ必要性の理由を示す表示を含むことによって、運転手は、手動制御が何故必要であるか、例えば何故自動化レベルが低減しているかについての情報および/またはいつまでに運転手が車両の手動制御を開始する必要があるかを理解できる。 This warning message includes, in addition to the output of the warning message, a display by indicating the reason for the need to take over control of the vehicle by the driver if the driver needs to take over the driving control, It can be understood why manual control is needed, eg information as to why the level of automation is decreasing and / or by which time the driver needs to initiate manual control of the vehicle.
 工程S213がYESに戻る場合、処理は工程S209に進み、運転支援制御部1は、例えば図8と関連して例として上述したように車線変更を実行する。 When step S213 returns to YES, the process proceeds to step S209, and the driving support control unit 1 performs lane change as described above as an example in connection with, for example, FIG.
 なお、本発明の主な態様は図2の工程S210~S214と関連して説明される。 The main aspects of the present invention will be described in connection with steps S210 to S214 of FIG.
 すなわち、上記を要約すると、実際に利用可能な検知領域の限定に起因して、例えば検知領域における障害物に起因して、所望の車線変更/合流動作の対象車線において他車両(後続車両)が全く検出されない場合、車線変更を安全に実行するために必要とされる必要な検知領域は、例えば後続車両がブラインド合流状況において実際の検知領域の外側から高速度で接近している場合でも安全に合流を実現することを目的とする。 That is, to summarize the above, due to the limitation of the detection area actually available, for example, due to an obstacle in the detection area, the other vehicle (following vehicle) in the target lane of the desired lane change / merge operation If not detected at all, the necessary detection area required to safely carry out a lane change is safe, for example even if the following vehicle is approaching at high speed from outside the actual detection area in a blind merge situation The purpose is to realize merging.
 さらに、必要な検知領域が実際の検知領域に含まれていない場合、運転制御は代わりに運転手に移行される。この態様は、例えば合流領域の端部で運転手に対して制御移行が突然発生することを回避することを助けることによって運転手が車線変更または合流状況の開始前でも容易かつ安全に車両制御を引き継ぐことができるという利点を有する。 Furthermore, if the required sensing area is not included in the actual sensing area, the driving control is instead transferred to the driver. This aspect allows the driver to easily and safely control the vehicle even before the start of a lane change or merging situation, for example by helping the driver avoid sudden occurrence of a control transition at the end of the merging area. It has the advantage of being able to take over.
 図12は、その他の例示の実施形態による運転支援システムの他の制御処理のフローチャートを例示的に図示する。 FIG. 12 exemplarily illustrates a flowchart of another control process of the driving assistance system according to another exemplary embodiment.
 図12は運転支援制御部1のメモリに格納可能な自動合流処理を例示的に図示し、運転支援制御部1は対応する制御処理を実行するように構成されてもよい。 FIG. 12 exemplarily illustrates an automatic merging process that can be stored in the memory of the driving support control unit 1, and the driving support control unit 1 may be configured to execute the corresponding control processing.
 図12において、工程S1301~S1314は、例として、上記図2のS201~S214と同様である。 Steps S1301 to S1314 in FIG. 12 are, for example, the same as S201 to S214 in FIG. 2 described above.
 工程S1313がNOに戻ると、工程S315において、例として最も遅い合流開始点(または最も遅い車線変更点)が例えば自車両100のカメラ2またはその他の前方センサによって検出された情報および/またはマップ情報に基づいて算出または決定される。 If step S1313 returns to NO, information and / or map information is detected in step S315, for example, the slowest junction start point (or slowest lane change point) detected by, for example, the camera 2 of the host vehicle 100 or other forward sensors. Calculated or determined based on
 最も遅い合流開始点は、例として、そこから自車両100が安全に合流できるまたは安全に車線変更もできる位置を表わす。 The slowest merging start point indicates, as an example, a position from which the vehicle 100 can safely merge or safely change lanes.
 その後、工程S1316において、合流開始点における実際の検知領域は現在の実際の検知領域および決定された合流開始点に基づいて推定される。 Then, in step S1316, the actual detection area at the confluence start point is estimated based on the current actual detection area and the determined confluence start point.
 工程S1317において、合流開始点における必要な検知領域は、必要な長さ、マップデータおよび/または自車両100のセンサによって検出された車線標識情報に基づいて算出または決定される(例えば工程S211と類似しているが、決定された一番遅い合流開始点に関するものである)。 In step S1317, the necessary detection area at the merging start point is calculated or determined based on the necessary length, map data and / or lane marking information detected by the sensor of the vehicle 100 (for example, similar to step S211) But with regard to the latest determined confluence start point).
 S1318において、運転支援制御部1は、該合流開始点における必要な検知領域が該合流開始点における実際の検知領域に含まれるかを判断する(例えば工程S212に類似しているが、決定された最も遅い合流開始点に関するものである)。 In S1318, the driving support control unit 1 determines whether the necessary detection area at the joining start point is included in the actual detection area at the joining start point (for example, although it is determined similar to step S212) For the slowest merging start).
 工程S1318がYESに戻る場合、処理は工程S1319に進んで、合流操作(または車線変更操作)を継続する。 If step S1318 returns to YES, the process proceeds to step S1319 to continue the merging operation (or the lane change operation).
 工程S1319において、最も遅い合流開始点において推定された実際の検知領域におけるブラインド領域を減らすために、車両は制御可能である。これは、自動合流または自動車線変更の実行の可能性を高くするという利点を有する。 In step S1319, the vehicle is controllable to reduce the blind area in the actual detection area estimated at the latest merging start point. This has the advantage of increasing the possibility of performing automatic merging or car line changes.
 工程S1318がNOに戻る場合、処理は工程S1314に進み、上記工程S214と類似して運転制御が運転手に移行される。 If step S1318 returns to NO, the process proceeds to step S1314 where operation control is transferred to the driver in a manner similar to step S214 above.
 工程S1315~S1319の処理の結果として、合流のための検知要件(検知条件)(すなわち工程S1318の判断)が少なくとも合流開始点または最も遅い合流開始点で満たされた場合、車両は合流操作または車線変更操作の実行を継続できる。 If, as a result of the processing of steps S1315-S1319, the detection requirement (detection condition) for merging (that is, the determination of step S1318) is satisfied at least at the merging start point or the latest merging start point, the vehicle performs merging operation or lane The execution of the change operation can continue.
 図13は、例えば高速道路の例示の合流部分の概略を例示的に図示する。 FIG. 13 exemplarily illustrates, for example, a schematic of an exemplary merging portion of a highway.
 ここで、図12による例示の実施形態において、合流部分に進入する際に自車両100のセンサに対して利用可能な実際の検知領域が例として壁または類似の障害物によって邪魔されている間、例として、自車両100が合流部分の始まりにある時に、自車両100の運転支援制御部1が例として最も遅い合流開始点の必要な検知領域を合流開始点の実際の検知領域と比較する。これは、自動合流動作/車線変更動作が状況に応じて実行できるという利点を有する。 Here, in the exemplary embodiment according to FIG. 12, while entering the merging part, while the actual detection area available to the sensor of the vehicle 100 is interrupted by a wall or similar obstacle as an example, As an example, when the subject vehicle 100 is at the beginning of the joining portion, the driving support control unit 1 of the subject vehicle 100 compares the necessary detection area of the latest joining start point as an example with the actual detection area of the joining start point. This has the advantage that the automatic merging operation / lane changing operation can be performed depending on the situation.
 図14は、事前に取得されたデータに基づく実際の検知領域の算出/決定を例示的に図示する。 FIG. 14 exemplarily illustrates the calculation / determination of an actual detection area based on previously acquired data.
 図14の上部は、例として、車両位置に関する実際の検知情報を時刻Aにおいてデータベースに格納する処理を示す。図14の下部は、例として、時刻B(時刻Aよりも遅い)において事前に格納された実際の検知情報を抽出する処理を示す。そのようなデータベースは車両に設けられてもよく、またはそのようなデータベースは遠隔地に配置されてもよく、例えばサービスプロバイダのデータベースセンタに配置されてもよく、そのようなセンタおよび/またはデータベースが無線通信を介して運転支援制御部1と通信してもよい。 The upper part of FIG. 14 shows, as an example, processing of storing actual detection information regarding the vehicle position in the database at time A. The lower part of FIG. 14 shows, as an example, a process of extracting actual detection information stored in advance at time B (later than time A). Such a database may be provided on the vehicle, or such database may be located at a remote location, for example at a service provider's database center, such center and / or database being You may communicate with the driving assistance control part 1 via wireless communication.
 例えば、自車両100は、最も遅い合流開始点で実際の検知領域を正確に推定可能となるように、自車両100が合流部分に到達する前に、合流部分の前方において実際の検知情報および/または可視性情報(例えば低/中/高可視性)を抽出可能である。 For example, in order for the own vehicle 100 to accurately estimate the actual detection area at the slowest convergence start point, the actual detection information and / or Or visibility information (e.g. low / medium / high visibility) can be extracted.
 また、この情報は人間-機械インタフェースを介して運転手に対して表示可能である。これは、合流部分に到達する前または少なくとも最も遅い合流開始点に到達する前に、運転手が自車両100の制御を引き継ぐ準備ができるため、そのような情報は運転手にとって非常に有効であるという利点を有する。 Also, this information can be displayed to the driver via the human-machine interface. Such information is very useful to the driver, because the driver can prepare to take over control of the vehicle 100 before reaching the merging point or at least before reaching the slowest junction start point. It has the advantage of
 上述したように、例示の実施形態においてデータベースは自車両100に実装可能であるが、データベースの位置および特定の構成は限定されず、データベースは上述したような他の例示の実施形態におけるデータセンタに実装可能である。データベースがデータセンタに取り付けられている場合、例えばカーツーX通信(Car-to-X communicationsまたはC2X)を使用して無線情報によって同じ情報を他車両が使用可能である。 As described above, although the database can be implemented on the vehicle 100 in the illustrated embodiment, the location and specific configuration of the database are not limited, and the database is not limited to the data center in the other illustrated embodiment as described above. It can be implemented. When the database is attached to the data center, the same information can be used by other vehicles by wireless information using, for example, Car-to-X communications (Car-to-X communications or C2X).
 当業者によって理解されるように、上述したような本発明および添付図面は、方法(例えばコンピュータ実装処理またはその他の処理)、制御装置(装置、機械、システム、コンピュータプログラム製品および/またはその他の装置)、またはその組み合わせとして具体化されてもよい。 As will be appreciated by those skilled in the art, the present invention as described above and the accompanying drawings may be implemented as a method (e.g. computer implemented process or other process), a control apparatus (apparatus, machine, system, computer program product and / or other apparatus Or a combination thereof.
 したがって、本発明の実施形態は全体としてハードウェア実施形態、全体としてソフトウェア実施形態(ファームウェア、常駐ソフトウェア、マイクロコードなど)、またはここで「システム」と一般に呼ばれるソフトウェアおよびハードウェア態様を組み合わせた実施形態の形状をとってもよい。さらに、本発明の実施形態は、媒体において具体化されるコンピュータ実行可能プログラムコードを有するコンピュータ読込可能媒体上のコンピュータプログラム製品の形状をとってもよい。 Thus, embodiments of the present invention are generally hardware embodiments, software embodiments (firmware, resident software, microcode, etc.) as a whole, or embodiments combining software and hardware aspects commonly referred to herein as a "system". It may take the form of Additionally, embodiments of the present invention may take the form of a computer program product on a computer readable medium having computer executable program code embodied in the medium.
 以上、本発明の実施形態を方法および装置のフローチャート図および/またはブロック図を参照して説明した。なお、フローチャート図および/またはブロック図の各ブロック、および/またはフローチャート図および/またはブロック図の各ブロックの組み合わせはコンピュータ実行可能プログラムコードによって実現可能である。 Embodiments of the present invention have been described above with reference to flowchart illustrations and / or block diagrams of methods and apparatus. Note that each block of the flowchart illustrations and / or block diagrams, and / or combinations of each block in the flowchart illustrations and / or block diagrams, can be implemented by computer executable program code.
 コンピュータ実行可能プログラムコードは、特定の機械を製作するために、汎用コンピュータ、専用コンピュータ、その他のプログラム可能なデータ処理装置の制御部などの処理装置に対して供給して、コンピュータまたはその他のプログラム可能なデータ処理装置を介して実行するプログラムコードがフローチャート、ブロック図、ブロック、図、および/または明細書で特定される機能/動作/出力を実現する手段を作成するようにする。これらのコンピュータ実行可能プログラムコードは、さらの特定の方法で機能するようにコンピュータまたはその他のプログラム可能データ処理装置に指示可能なコンピュータ読込可能メモリに格納してもよく、コンピュータ読込可能メモリに格納されたプログラムコードはフローチャート、ブロック図、ブロック、図、および/または明細書で特定される機能/動作/出力を実現する命令手段を含む製品を作製する。コンピュータ実行可能プログラムコードは、コンピュータ実装処理を作製するために一連の動作工程をコンピュータまたはその他のプログラム可能装置上で実行させるコンピュータまたはその他のプログラム可能なデータ処理装置にロードして、コンピュータまたはその他のプログラム可能装置上で実行するプログラムコードがフローチャート、ブロック図、ブロック、図、および/または明細書で特定される機能/動作/出力を実現する工程を実現するようにする。あるいは、コンピュータプログラム実行工程または動作は、本発明の実施形態を実行するためにオペレータまたは人間が実行した工程または動作と組み合わされてもよい。 Computer-executable program code may be provided to a processing device, such as a general purpose computer, a special purpose computer, or the control of another programmable data processing device to create a particular machine, such as a computer or other program. The program code to be executed via the data processing apparatus creates means for implementing the functions / actions / outputs specified in the flowchart, block diagram, block, diagram and / or description. These computer executable program code may be stored in computer readable memory, which may be directed to a computer or other programmable data processing device to function in a further specific manner, and stored in computer readable memory. The program code creates a product that includes instruction means for implementing the functions / operations / outputs specified in the flowcharts, block diagrams, blocks, diagrams and / or specifications. Computer-executable program code may be loaded onto a computer or other programmable data processing device that causes a sequence of operating steps to be performed on the computer or other programmable device to create a computer-implemented process. The program code executing on the programmable device implements the steps of implementing the functions / actions / outputs specified in the flowchart, block diagram, block, diagram and / or description. Alternatively, computer program execution steps or actions may be combined with steps or actions performed by an operator or human to carry out embodiments of the present invention.
 なお、論理フローは本発明の様々な態様を表現するために本明細書において説明したが、本発明を特定の論理フローまたは論理実施例に限定すると解釈されるべきではない。説明した論理は、全体的な結果を変更せずに、もしくは本発明の真の範囲から逸脱することなく異なる論理ブロック(例えばプログラム、モジュール、機能、またはサブルーチン)に分割されてもよい。しばしば、論理要素は、全体的な結果を変更せずに、もしくは本発明の真の範囲から逸脱することなく、追加、修正、省略、異なる順番での実行、または異なる論理構造(例えば、論理ゲート、ループするプリミティブ、条件付き論理、およびその他の論理構造)を使用して実現可能である。 It should be noted that while logic flow has been described herein to represent various aspects of the present invention, it should not be construed to limit the present invention to any particular logic flow or logic implementation. The described logic may be divided into different logic blocks (e.g. programs, modules, functions or subroutines) without changing the overall result or deviating from the true scope of the present invention. Often, logic elements are added, modified, omitted, performed in a different order, or different logic structures (e.g., logic gates) without changing the overall result or departing from the true scope of the present invention. , Looping primitives, conditional logic, and other logical structures).
 特定の例示の実施形態を添付図面において説明および図示したが、そのような実施形態は例示目的に過ぎず、広範な発明を限定するものではなく、上記パラグラフに記載のものに加えて様々なその他の変更、組み合わせ、省略、修正、置換が可能であるため、本発明の実施形態は図示および説明された特定の構造および配置に限定されるものではない。上述の実施形態の様々な適応、修正および/または組み合わせは、本発明の範囲および精神から逸脱することなく構成可能であることを当業者は理解されたい。したがって、添付の請求項の範囲内において、本発明は本明細書で具体的に説明した以外で実行可能であることを理解されたい。例えば、特記しない限り、本明細書で説明した処理の工程は、本明細書で説明した順番と異なる順番で実行可能であり、1つ以上の工程を組み合わせ、分割または同時に実行してもよい。当業者は、本開示を鑑みて、本明細書で説明する本発明の異なる実施形態を組み合わせて本発明の他の実施形態を形成してもよい。 Although specific illustrative embodiments are described and illustrated in the accompanying drawings, such embodiments are for illustrative purposes only and are not intended to limit the broad invention, and various others in addition to those described in the above paragraphs. The embodiments of the present invention are not limited to the specific structure and arrangement shown and described because changes, combinations, omissions, corrections, and substitutions are possible. Those skilled in the art should understand that various adaptations, modifications and / or combinations of the above-described embodiments can be configured without departing from the scope and spirit of the present invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein. For example, unless specifically stated otherwise, the process steps described herein may be performed in a different order than the order described herein, and one or more steps may be combined, separated or performed simultaneously. Those skilled in the art, in light of the present disclosure, may combine different embodiments of the invention described herein to form other embodiments of the invention.
 1…運転支援制御部、2…カメラ、3…レーザレーダ、4…レーザレーダ、5…ミリメートル波レーダ、6…ハンドル、7…ステアリングトルク検出器、8…ステアリング制御部、9…内燃機関、10…ステアリング制御機構、11…車線変更支援入力装置、12…ブレーキペダル、13…ブレーキ制御機構、14…合成車両システムセンサ、15…ブレーキ制御部、16FL…ブレーキ、16FR…ブレーキ、16RL…ブレーキ、16RR…ブレーキ、17…アクセルペダル、18…ストロークセンサ、19…スロットル制御部、20…スロットル制御機構、21…ステアリング角度検出器、22FL…車輪速度センサ、22FR…車輪速度センサ、22RL…車輪速度センサ、22RR…車輪速度センサ、23…警告装置、100…自車両、101…車両、102…車両、103…車両。 DESCRIPTION OF SYMBOLS 1 ... driving assistance control part, 2 ... camera, 3 ... laser radar, 4 ... laser radar, 5 ... millimeter wave radar, 6 ... steering wheel, 7 ... steering torque detector, 8 ... steering control part, 9 ... internal combustion engine, 10 ... steering control mechanism, 11 ... lane change support input device, 12 ... brake pedal, 13 ... brake control mechanism, 14 ... composite vehicle system sensor, 15 ... brake control unit, 16 FL ... brake, 16 FR ... brake, 16 RL ... brake, 16 RR ... brake ... 17 ... accelerator pedal ... 18 ... stroke sensor 19 ... throttle control part 20 ... throttle control mechanism, 21 ... steering angle detector, 22FL ... wheel speed sensor, 22FR ... wheel speed sensor, 22RL ... wheel speed sensor, 22 RR ... wheel speed sensor, 23 ... warning device, 100 ... Vehicle, 101 ... vehicle, 102 ... vehicle, 103 ... vehicle.

Claims (20)

  1.  自車両の周囲において他車両を検出するように構成された1つ以上のセンサを有する前記自車両の運転手を支援する方法であって、前記方法は、前記自車両が走行している現在の車線から対象車線へ変更する車線変更動作が実行される場合に前記自車両の運転支援制御部によって実行され、前記方法は、
     前記自車両の前記1つ以上のセンサによって検知される利用可能な検知領域を決定し、
     前記自車両の前記運転支援制御部による前記車線変更動作の自動制御または半自動制御を実行するために必要な検知領域を決定し、
     前記決定された利用可能な検知領域と前記決定された必要な検知領域との比較結果に基づいて前記自車両の前記車線変更動作を制御することを含む方法。
    A method of assisting a driver of said vehicle having one or more sensors configured to detect another vehicle around said vehicle, said method comprising: The method is executed by the driving support control unit of the host vehicle when the lane change operation for changing from the lane to the target lane is performed,
    Determine the available detection area detected by the one or more sensors of the vehicle;
    Determining a detection area required to execute automatic control or semi-automatic control of the lane change operation by the driving support control unit of the host vehicle;
    Controlling the lane change operation of the vehicle based on a comparison between the determined available sensing area and the determined necessary sensing area.
  2.  前記決定された利用可能な検知領域が前記決定された必要な検知領域以上の場合および/または前記決定された利用可能な検知領域が前記決定された必要な検知領域を含む場合に前記自車両の前記車線変更動作を制御することを特徴とする請求項1に記載の方法。 If the determined available detection area is greater than or equal to the determined necessary detection area and / or if the determined available detection area includes the determined required detection area The method of claim 1, wherein the lane change operation is controlled.
  3.  前記自車両の人間-機械インタフェースによって、前記運転手が前記自車両の制御を引き継ぐことを要求する警告メッセージを前記運転手に発することを特徴とする請求項1または2に記載の方法。 Method according to claim 1 or 2, characterized in that the human-machine interface of the subject vehicle issues a warning message to the driver requesting that the driver take over control of the subject vehicle.
  4.  前記必要な検知領域は、前記自車両の速度に基づいて決定されることを特徴とする請求項1~3のいずれか1項に記載の方法。 The method according to any one of the preceding claims, wherein the required sensing area is determined based on the speed of the vehicle.
  5.  前記必要な検知領域は、前記車線変更動作を実行するために必要として推定される必要な推定長さおよび/または必要な推定時間に基づいて決定されることを特徴とする請求項4に記載の方法。 The said required detection area is determined based on the required estimated length and / or required estimated time estimated as required to perform the said lane change operation | movement. Method.
  6.  前記必要な検知領域は、前記自車両の周囲環境を示すマップデータに基づいて、および/または前記自車両の1つ以上のセンサによって検出された車線標識情報に基づいて決定されることを特徴とする請求項4または5に記載の方法。 The required detection area is determined based on map data indicating the surrounding environment of the host vehicle and / or based on lane sign information detected by one or more sensors of the host vehicle. The method according to claim 4 or 5.
  7.  前記必要な検知領域は、仮想車両の推定速度に基づいて決定されることを特徴とする請求項4~6のいずれか1項に記載の方法。 The method according to any one of claims 4 to 6, wherein the required detection area is determined based on an estimated speed of a virtual vehicle.
  8.  前記必要な検知領域は、前記自車両に対する前記仮想車両の推定最大相対速度に基づいて決定され、前記推定最大相対速度は前記仮想車両の前記推定速度および前記自車両の前記速度に基づいて決定されることを特徴とする請求項7に記載の方法。 The necessary detection area is determined based on the estimated maximum relative velocity of the virtual vehicle with respect to the host vehicle, and the estimated maximum relative velocity is determined based on the estimated velocity of the virtual vehicle and the velocity of the host vehicle. The method according to claim 7, characterized in that:
  9.  前記仮想車両が、前記決定された利用可能な検知領域の外側で前記車線変更動作の対象車線において走行していることが推定されることを特徴とする請求項7または8に記載の方法。 The method according to claim 7 or 8, wherein it is estimated that the virtual vehicle is traveling in the target lane of the lane change operation outside the determined available detection area.
  10.  前記仮想車両の前記推定速度は、前記対象車線上での制限速度に基づいて決定されることを特徴とする請求項7~9のいずれか1項に記載の方法。 The method according to any one of claims 7 to 9, wherein the estimated speed of the virtual vehicle is determined based on a speed limit on the target lane.
  11.  前記仮想車両の前記推定速度は、現在の天候条件、時刻、現在の季節、現在の交通条件のうちの少なくとも1つに基づいて決定されることを特徴とする請求項7~10のいずれか1項に記載の方法。 The estimated speed of the virtual vehicle is determined based on at least one of current weather conditions, time, current season, and current traffic conditions. Method described in Section.
  12.  前記仮想車両の前記推定速度は、前記対象車線上の平均速度を示す統計速度データまたは前記対象車線上を走行している車両の統計上推定される最大速度に基づいて決定されることを特徴とする請求項7~11のいずれか1項に記載の方法。 The estimated speed of the virtual vehicle is determined based on statistical speed data indicating an average speed on the target lane or a statistically estimated maximum speed of a vehicle traveling on the target lane. A method according to any one of the claims 7-11.
  13.  さらに、前記自車両の前方の前記現在の車線の最も遅い車線変更開始点を決定することを含み、
     前記利用可能な検知領域は、前記最も遅い車線変更開始点に前記自車両が位置する場合に推定利用可能な検知領域として決定され、前記必要な検知領域は、前記車線変更動作を実行するために前記最も遅い車線変更開始点において必要とされる前記必要な検知領域として決定されることを特徴とする請求項1~12のいずれか1項に記載の方法。
    Furthermore, determining the slowest lane change starting point of the current lane ahead of the host vehicle;
    The available detection area is determined as an estimated available detection area when the host vehicle is located at the slowest lane change start point, and the necessary detection area is for performing the lane change operation. Method according to any of the preceding claims, characterized in that it is determined as the required detection area required at the slowest lane change start point.
  14.  さらに、
     前記自車両の前方の前記現在の車線の最も遅い車線変更開始点が決定され、
     前記自車両が前記最も遅い車線変更開始点に位置する推定第2の利用可能な検知領域を決定し、
     前記最も遅い車線変更開始点の前記自車両の前記運転支援制御部によって前記車線変更動作を自動制御または半自動制御するために第2の必要な検知領域を決定し、
     前記推定第2の利用可能な検知領域と前記決定された第2の必要な検知領域との比較結果に基づいて、前記最も遅い車線変更開始点における前記自車両の前記車線変更動作を制御することを含むことを特徴とする請求項1~13のいずれか1項に記載の方法。
    further,
    The slowest lane change start point of the current lane ahead of the vehicle is determined;
    Determining an estimated second available detection area in which the vehicle is located at the slowest lane change start point;
    Determining a second necessary detection area for automatically controlling or semi-automatically controlling the lane change operation by the driving support control unit of the host vehicle at the slowest lane change start point;
    Controlling the lane change operation of the vehicle at the slowest lane change start point based on a comparison result between the estimated second available detection area and the determined second necessary detection area A method according to any one of the preceding claims, characterized in that it comprises
  15.  前記決定された推定第2の利用可能な検知領域が前記決定された第2の必要な検知領域以上である場合、および/または前記決定された推定第2の利用可能な検知領域が前記決定された第2の必要な検知領域を含む場合に、前記最も遅い車線変更開始点における前記自車両の前記車線変更動作の制御が実行されることを特徴とする請求項14に記載の方法。 If the determined estimated second available detection area is greater than or equal to the determined second required detection area, and / or the determined estimated second available detection area is determined The method according to claim 14, wherein control of the lane change operation of the vehicle at the slowest lane change start point is performed when the second required detection area is included.
  16.  前記利用可能な検知領域は、前記自車両の前方の位置の利用可能な検知領域を示す、事前に格納された情報に基づいて決定されることを特徴とする請求項1~15のいずれか1項に記載の方法。 The available detection area is determined based on information stored in advance, which indicates an available detection area of a position in front of the host vehicle. Method described in Section.
  17.  前記車線変更動作が実行される際に、前記対象車線において前記自車両の後続の他車両が前記自車両の前記1つ以上のセンサによって検出されない場合、前記利用可能な検知領域を決定する工程と、前記必要な検知領域を決定する工程と、前記決定された利用可能な検知領域および前記決定された必要な検知領域の比較結果に基づいて前記自車両の前記車線変更動作を制御する工程とが実行されることを特徴とする請求項1~16のいずれか1項に記載の方法。 Determining the available detection area if the other vehicle following the vehicle is not detected by the one or more sensors of the vehicle in the target lane when the lane change operation is performed; Determining the required detection area, and controlling the lane change operation of the vehicle based on the comparison result of the determined available detection area and the determined necessary detection area. The method according to any one of the preceding claims, characterized in that it is carried out.
  18.  前記車線変更動作が実行された際に、前記自車両の後続の前記対象車線における別の車両が前記自車両の前記1つ以上のセンサによって検出される場合、前記方法は、さらに、
     前記自車両と前記検出された他車両との間の相対距離を決定し、
     前記自車両と前記検出された他車両との間の相対速度を決定し、
     前記自車両と前記検出された他車両との間の前記決定された相対距離および/または前記自車両と前記検出された他車両との間の前記決定された相対速度が車線変更条件を満たす場合に前記自車両の前記車線変更動作を制御することを含むことを特徴とする請求項17に記載の方法。
    If another vehicle in the target lane following the vehicle is detected by the one or more sensors of the vehicle when the lane change operation is performed, the method further comprising:
    Determine the relative distance between the vehicle and the other vehicle detected;
    Determine the relative speed between the vehicle and the other vehicle detected;
    When the determined relative distance between the host vehicle and the detected other vehicle and / or the determined relative speed between the host vehicle and the detected other vehicle satisfy a lane change condition The method according to claim 17, comprising controlling the lane change movement of the vehicle.
  19.  自車両の周囲において他車両を検出するように構成された1つ以上のセンサを有する前記自車両に設置可能な装置で、前記装置は請求項1~18のいずれか1項に記載の方法を実行するように構成された制御部を含む装置。 A device installable on said vehicle comprising one or more sensors adapted to detect another vehicle around said vehicle, said device comprising the method according to any one of claims 1-18. An apparatus comprising a controller configured to execute.
  20.  制御部または処理装置に請求項1~18のいずれか1項に記載の方法の工程を実行させるコンピュータプログラム命令を含むコンピュータプログラムを含むコンピュータプログラム製品。 A computer program product comprising a computer program comprising computer program instructions for causing a control unit or processor to carry out the steps of the method according to any one of the preceding claims.
PCT/JP2018/037910 2017-11-08 2018-10-11 Method and device for assisting driver of vehicle WO2019093061A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019552673A JPWO2019093061A1 (en) 2017-11-08 2018-10-11 Methods and equipment to assist the driver of your vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017219813.3A DE102017219813A1 (en) 2017-11-08 2017-11-08 A method and apparatus for assisting a driver of an own vehicle
DE102017219813.3 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019093061A1 true WO2019093061A1 (en) 2019-05-16

Family

ID=66179275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037910 WO2019093061A1 (en) 2017-11-08 2018-10-11 Method and device for assisting driver of vehicle

Country Status (3)

Country Link
JP (1) JPWO2019093061A1 (en)
DE (1) DE102017219813A1 (en)
WO (1) WO2019093061A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112061121A (en) * 2019-05-21 2020-12-11 铃木株式会社 Vehicle travel control device
JP2021128590A (en) * 2020-02-14 2021-09-02 株式会社Soken Driving assist system
JP7250091B1 (en) 2021-10-01 2023-03-31 三菱電機株式会社 vehicle controller

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117132A1 (en) * 2019-12-10 2021-06-17 日産自動車株式会社 Driving control method and driving control device
DE102020213726A1 (en) 2020-11-02 2022-05-05 Volkswagen Aktiengesellschaft Method for operating a lane change assistance system of a motor vehicle, and lane change assistance system
CN113771881B (en) * 2021-10-19 2023-04-25 中国第一汽车股份有限公司 Vehicle lane change control method and device, electronic equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014076689A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp Vehicle control device
JP2014180986A (en) * 2013-03-21 2014-09-29 Toyota Motor Corp Lane change assist system
JP2016126360A (en) * 2014-12-26 2016-07-11 日立オートモティブシステムズ株式会社 Vehicle control system
WO2017163614A1 (en) * 2016-03-25 2017-09-28 日立オートモティブシステムズ株式会社 Vehicle control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018681A1 (en) * 2004-04-17 2005-11-03 Daimlerchrysler Ag Collision avoidance between road vehicles travelling in opposite directions uses detectors to allow planned overtaking
DE102014226462B4 (en) * 2014-12-18 2017-09-21 Honda Motor Co., Ltd. ADAPTIVE DRIVING CONTROL SYSTEM WITH EXCEPTIONAL PREDICTION
DE102016205142A1 (en) * 2016-03-29 2017-10-05 Volkswagen Aktiengesellschaft Methods, apparatus and computer program for initiating or performing a cooperative maneuver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014076689A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp Vehicle control device
JP2014180986A (en) * 2013-03-21 2014-09-29 Toyota Motor Corp Lane change assist system
JP2016126360A (en) * 2014-12-26 2016-07-11 日立オートモティブシステムズ株式会社 Vehicle control system
WO2017163614A1 (en) * 2016-03-25 2017-09-28 日立オートモティブシステムズ株式会社 Vehicle control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112061121A (en) * 2019-05-21 2020-12-11 铃木株式会社 Vehicle travel control device
CN112061121B (en) * 2019-05-21 2024-02-20 铃木株式会社 Vehicle travel control device
JP2021128590A (en) * 2020-02-14 2021-09-02 株式会社Soken Driving assist system
JP7448370B2 (en) 2020-02-14 2024-03-12 株式会社Soken Driving support device
JP7250091B1 (en) 2021-10-01 2023-03-31 三菱電機株式会社 vehicle controller
JP2023053449A (en) * 2021-10-01 2023-04-13 三菱電機株式会社 Vehicle control device

Also Published As

Publication number Publication date
DE102017219813A1 (en) 2019-05-09
JPWO2019093061A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
CN106796759B (en) Vehicle control system
WO2019093061A1 (en) Method and device for assisting driver of vehicle
JP6839770B2 (en) Mobile control system and control device
US10882518B2 (en) Collision avoidance assist apparatus
CN108137044B (en) Lane change system
US10656651B2 (en) Control device for vehicle and control method of vehicle
JP6981837B2 (en) Vehicle driving support control device
CN106043297B (en) Collision avoidance based on front wheel off tracking during reverse operation
JP6536852B2 (en) Vehicle control apparatus and vehicle control method
US9505401B2 (en) Driving support apparatus and driving support method
JP7200871B2 (en) Collision avoidance support device
US11247677B2 (en) Vehicle control device for maintaining inter-vehicle spacing including during merging
US11370442B2 (en) Vehicle control device and control method
CN109455137B (en) Driving support device and driving support method
JP2016084038A (en) Vehicle traveling control device
JPWO2013046301A1 (en) Vehicle driving support system
JP2017165216A (en) Vehicle travel control device
CN111746385B (en) Vehicle control system
WO2016027347A1 (en) Vehicle travel control device and method
JP2020104634A (en) Vehicle control device
KR20150051550A (en) Performance enhanced driver assistance systems and controlling method for the same
JP2012084038A (en) Vehicle driving support system
JP2019053476A (en) Traveling control device, traveling control method, and program
KR101511860B1 (en) Driver assistance systems and controlling method for the same
JP7306887B2 (en) vehicle controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552673

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875750

Country of ref document: EP

Kind code of ref document: A1