WO2019088317A1 - 순차적 장애물 회피가 가능한 무인운반차 - Google Patents

순차적 장애물 회피가 가능한 무인운반차 Download PDF

Info

Publication number
WO2019088317A1
WO2019088317A1 PCT/KR2017/012291 KR2017012291W WO2019088317A1 WO 2019088317 A1 WO2019088317 A1 WO 2019088317A1 KR 2017012291 W KR2017012291 W KR 2017012291W WO 2019088317 A1 WO2019088317 A1 WO 2019088317A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
signal
body frame
unit
automatic guided
Prior art date
Application number
PCT/KR2017/012291
Other languages
English (en)
French (fr)
Inventor
박종현
최영광
Original Assignee
주식회사 로탈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 로탈 filed Critical 주식회사 로탈
Publication of WO2019088317A1 publication Critical patent/WO2019088317A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding

Definitions

  • the present invention relates to an automatic guided vehicle capable of successive obstacle avoidance. More specifically, a QR code is attached to the bottom of a traveling path of an unmanned vehicle and the attached QR code is recognized, thereby recognizing the current position, traveling speed, and traveling route of the unmanned vehicle while traveling,
  • the first obstacle detection unit is provided in a diagonal direction on the body frame of the unmanned vehicle to detect an obstacle located in the forward path of the unmanned vehicle, When the unmanned vehicle collides with an obstacle that is not detected by the vehicle, the collision obstacle can be avoided after the collision with the obstacle is detected in the second obstacle detection section, and normal driving can be performed.
  • the present invention relates to an automatic guided vehicle capable of avoiding sequential obstacles as much as possible.
  • AGV Automatic Guided Vehicle
  • a guided line tracking AGV that repeatedly travels along a guide line along a guide line can be used for transporting parts loaded on a carriage to a predetermined position in the production process, and the demand thereof is increasing.
  • the guided line tracking AGV used in the conventional field mainly uses a one-dimensional scanning method through a magnetic sensor.
  • a guided line tracking method based on a magnetic sensor it is difficult to analyze a guided line having a complex structure such as a branching or joining point of a guiding line due to the use of a one-dimensional narrow searching and sensing area, and it is also vulnerable to damage to a magnetic guiding line There is a drawback.
  • a magnetic induction line is embedded in the bottom of the work site to minimize damage, while a separate marker (magnetic marker, RFID tag, etc.)
  • a method of overcoming the difficulties of the analysis of the complex structure guidance line is used by using a separate sensor for recognizing the embedded markers.
  • the overcome of the landfill by such a separate landmark has become a great burden for securing the production flexibility required in the industrial field of the recent multi-product small scale production method.
  • the production line must be changed and redesigned from time to time depending on the production item.
  • the magnetic induction line and the landfill method for separate markings are very costly and time-consuming to make such changes. It is impossible to use the magnetic sensor based induction method because of the magnetic field interference.
  • the present invention has been conceived in order to solve the above problems, and it is an object of the present invention to provide a method and apparatus for attaching a QR code to a floor on a traveling route of an unmanned vehicle,
  • the obstacle can be conveyed smoothly and quickly.
  • the body frame of the unmanned vehicle is equipped with the first obstacle sensing part in the diagonal direction,
  • the second obstacle detection unit detects a collision with an obstacle and avoids a collided obstacle.
  • the object of the present invention is to provide an unmanned transportation vehicle capable of avoiding sequential obstacles capable of traveling forward and backward,
  • the present invention provides an automatic guided vehicle capable of avoiding a sequential obstacle, comprising: a body frame modularized according to each component mounting position in order to facilitate detachment and attachment of the components located therein; A plurality of primary obstacle detectors positioned at corners of the body frame in a diagonal direction for detecting an obstacle located on a traveling path; A second obstacle sensing unit provided on a slope outer side of the body frame for transmitting a collision signal when the obstacle collides with an obstacle out of the detection range of the first obstacle sensing unit; A QR code recognizing unit recognizing a QR code attached to a floor on a traveling path and recognizing a current position and a traveling path in a traveling direction; A towing vehicle signal transmission unit for attaching the towing vehicle to a lower side of a towing vehicle to distinguish whether the towing vehicle is loaded with goods or not, and to transmit a corresponding signal; A traction trajectory signal receiving unit for receiving a signal transmitted from the traction trajectory signal transmitting unit and transmitting a signal for identifying
  • the limit switch may transmit the collision signal to the drive control unit, and the drive control unit may transmit the avoidance drive signal to the mechanical hookwheel to avoid the collided obstacle.
  • the apparatus may further include a driving state light emitting unit provided outside the body frame for visually confirming the driving state including rotation, stopping, driving state, and charging state.
  • a driving state light emitting unit provided outside the body frame for visually confirming the driving state including rotation, stopping, driving state, and charging state.
  • the present invention it is possible to avoid an obstacle quickly and accurately, thereby improving the travel efficiency of an unmanned vehicle for towing a bogie, and facilitating the maintenance and repair of the unmanned bogie.
  • FIG. 1 is a perspective view illustrating an automatic guided vehicle capable of avoiding a sequential obstacle according to a preferred embodiment of the present invention
  • FIG. 3 is an exploded perspective view of an automatic guided vehicle capable of successive obstacle avoidance
  • Fig. 4 is a side view of Fig. 1,
  • FIG. 5 is a block diagram illustrating sensor signal flow
  • the object of the present invention is to provide an automatic guided vehicle capable of avoiding an obstacle in a sequential manner, the body frame being modularized according to each component mounting position in order to facilitate detachment and attachment of the components located therein.
  • a plurality of primary obstacle detectors positioned at corners of the body frame in a diagonal direction for detecting an obstacle located on a traveling path;
  • a second obstacle sensing unit provided on a slope outer side of the body frame for transmitting a collision signal when the obstacle collides with an obstacle out of the detection range of the first obstacle sensing unit;
  • a QR code recognizing unit recognizing a QR code attached to a floor on a traveling path and recognizing a current position and a traveling path in a traveling direction;
  • a towing vehicle signal transmission unit for attaching the towing vehicle to a lower side of a towing vehicle to distinguish whether the towing vehicle is loaded with goods or not, and to transmit a corresponding signal;
  • a traction trajectory signal receiving unit for receiving a signal transmitted from the traction trajectory signal transmitting unit and transmit
  • FIG. 1 is a perspective view illustrating an automatic guided vehicle capable of avoiding sequential obstacles according to a preferred embodiment of the present invention
  • FIG. 2 is an internal configuration view of an automatic guided vehicle capable of avoiding a sequential obstacle
  • FIG. Fig. 4 is a side view of Fig. 1
  • Fig. 5 is a block diagram showing a sensor signal flow.
  • the unmanned vehicle includes a body frame 10, a primary obstacle sensing unit 20, a secondary obstacle sensing unit 30, A QR code recognizing unit 40, a towing cart signal transmitting unit 50, a towing cart signal receiving unit 60, a driving control unit 70, a mechanical hookwheel 80, a driving state light emitting unit 90, a touch panel 100, A quick switch 110, and a driving battery 120.
  • an unmanned conveyance vehicle capable of avoiding a sequential obstacle includes a plurality of unmanned conveying vehicles mounted on a floor on a traveling path at a work site for towing a vehicle,
  • the QR code recognizing unit 40 recognizes the attached QR code and recognizes the current position, traveling speed, and traveling route of the unmanned vehicle in motion, thereby flexibly and promptly transporting the bogie.
  • the primary obstacle detecting portion 20 is provided in the diagonal direction on the body frame 10 of the unmanned vehicle, And avoids it and travels.
  • the secondary obstacle sensing unit 30 detects a collision with an obstacle, It is possible to avoid the obstacle and make a normal driving.
  • a mechanical hook-and-loop wheel 80 is provided on both sides of the body frame 10 to limit the turning radius of the body frame 10, so that the body frame 10 can be moved forward and backward and horizontally.
  • the body frame 10 is modularized according to the positions at which the components described below are mounted in order to facilitate detachment and maintenance of internal components.
  • the mechanical hook-and-loop wheel 80 provided in the body frame 10 is a wheel which can be driven forward and backward and horizontally and horizontally. Therefore, no separate steering device is required for the mechanism, and the mechanical drive wheel is not limited to the rotational driving radius of the wheel. Therefore, the body frame 10 according to the present invention has a merit that the weight of the driving wheels can be reduced, and various electric parts can be mounted in a modular fashion so that the maintenance and repair of the unmanned vehicle can be easily performed.
  • a plurality of cover panels 12 are connected in series from the upper side of the modular body frame 10 to protect the components located inside the body frame 10.
  • the primary obstacle sensing unit 20 includes an infrared sensor and a laser sensor.
  • the primary obstacle sensing unit 20 is a sensor for recognizing an obstacle at a predetermined distance.
  • the sensor detects an obstacle located in the path of the unmanned vehicle A plurality of pairs are disposed at corner portions of the body frame 10 in the diagonal direction.
  • the primary obstacle control portion of one of the pair of primary obstacle detecting portions 20 provided at the corner of the body frame 10 can provide a wide viewing angle of about 270 degrees to the left and right in the diagonal direction,
  • the plurality of primary obstacle detection units 20 provided in the diagonal direction of the automatic guided vehicle 10 detect an obstacle located 360 degrees in all directions with respect to the traveling direction of the automatic guided vehicle.
  • the secondary obstacle detecting unit 30 is provided along the periphery of the body frame 10 at an outer circumference of a slope of the body frame 10.
  • the second obstacle sensing unit 30 transmits the collision signal to the drive control unit 70 described below when an obstacle out of the sensing range of the primary obstacle sensing unit 20 collides with an unmanned vehicle, A signal for avoiding the collided obstacle is transmitted to the mechanical hook-up wheel 80 to avoid the collided obstacle so that the unmanned vehicle can be driven along the original course.
  • the secondary obstacle detecting portion 30 includes a bumper 32, a linear bush 34, a linear shaft 36, and a limit switch.
  • the bumper is guided by a linear shaft (not shown) 36).
  • the linear shaft is pushed rearward to actuate the limit switch.
  • the limit switch transmits a collision signal to the drive control unit 70, and the drive control unit 70 transmits an avoidance drive signal for avoiding the collided obstacle to the mechanical hook- 80).
  • the unmanned conveyance vehicle of the present invention is a point-to-point moving method in which a QR code is attached to the bottom of a path through which an unmanned conveyance vehicle travels, and recognizes and determines a traveling path, Code, and recognizes the current position, traveling speed, and traveling direction of the unmanned vehicle.
  • the QR code method according to the present invention can be flexibly changed to a form suitable for a factory environment and can respond immediately when the QR code is damaged.
  • the QR code recognition unit 40 is a vision sensor including a scan camera.
  • the QR code recognition unit 40 recognizes a QR code attached to a floor on a traveling path on which an unmanned vehicle runs, and transmits the recognized information to the drive control unit 70
  • the driving control unit 70 recognizes the current position, traveling speed, and traveling path of the unmanned vehicle in the traveling direction, and determines the traveling direction and traveling speed.
  • the RFID reader or camera attached to the unmanned vehicle recognize the color tape
  • the present invention is advantageous in terms of economical efficiency and running efficiency as compared with a method of recognizing a traveling route, a present route, and a current position, and is easy to maintain and repair.
  • the traction load signal transmission unit 50 may transmit a corresponding signal to the traction load signal transmission unit 50 so as to distinguish whether the vehicle is a towed vehicle or a non- And transmits the signal to the lower side of the traction bogie.
  • the traction trajectory signal receiving unit 60 is installed so as to look upward from the manned vehicle and receives a signal transmitted from the traction trajectory signal transmitting unit 50 provided at the lower side of the traction trajectory to drive a signal for identifying the traction object When it is transmitted to the control unit 70, the drive control unit 70 determines whether or not the vehicle is a towing vehicle.
  • the drive control unit 70 includes a primary obstacle detection unit 20, a secondary obstacle detection unit 30, a QR code recognition unit, and a towing vehicle signal receiving unit 60, Receives the signal transmitted from the sensor, performs calculation in a central processing unit such as an MCU, and controls the entire driving device including the traction of the traction and the driving signal transmission.
  • a central processing unit such as an MCU
  • the mechanical hook-and-loop wheel 80 is connected to the independent driving motors before and after the both sides of the body frame 10, and is driven by the driving signal of the driving control unit 70, Independent driving is possible so that the rotational speed and the rotational direction can be different in order to perform the horizontal travel in the left and right direction without the turning radius.
  • the present invention is provided with a driving-state light emitting unit 90 capable of emitting a color capable of displaying a corresponding driving state according to the driving state of the unmanned vehicle.
  • the driving state light emitting unit 90 may include a light emitting diode Is provided outside the body frame 10 to visually confirm the driving state of the body frame 10.
  • the touch panel 100 is provided in the form of a touch pad on the front side of the automatic guided vehicle so that the user can directly operate the driving of the automatic guided vehicle through the setting of the drive control unit 70 .
  • the quick switch 110 is provided on the rear side of the touch panel 100 in the form of a shortened switch so as to quickly perform a basic function in driving including on / off operation of an unmanned vehicle.
  • the driving battery 120 supplies power to the components requiring electricity, and is located at the center of the body frame 10 in consideration of the position of the components with respect to other components and the center of gravity of the unmanned vehicle .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

본 발명은 순차적 장애물 회피가 가능한 무인운반차에 관한 것이다. 보다 상세하게는, 무인운반차의 주행 경로 상의 바닥에 QR 코드를 부착하고 부착된 QR 코드를 인식하여 주행 중인 무인운반차의 현재 위치, 주행 속도, 주행 경로를 인식하여 유연하고, 신속하게 대차를 운송할 수 있으며, 순차적으로 장애물을 회피하기 위해 무인운반차의 바디프레임에 대각 방향으로 1차 장애물감지부가 구비되어 무인운반차의 진행 경로 사방에 위치하는 장애물을 감지하고, 1차 장애물감지부에 의해 감지되지 않은 장애물과 무인운반차가 충돌할 경우 2차 장애물감지부에서 장애물과의 충돌을 감지한 후 충돌된 장애물을 회피하여 정상 주행을 할 수 있으며, 메카넘휠에 의해 전후주행 및 좌우 수평주행이 가능한 순차적 장애물 회피가 가능한 무인운반차에 관한 것이다.

Description

순차적 장애물 회피가 가능한 무인운반차
본 발명은 순차적 장애물 회피가 가능한 무인운반차에 관한 것이다. 보다 상세하게는, 무인운반차의 주행 경로 상의 바닥에 QR 코드를 부착하고 부착된 QR 코드를 인식하여 주행 중인 무인운반차의 현재 위치, 주행 속도, 주행 경로를 인식하여 유연하고, 신속하게 대차를 운송할 수 있으며, 순차적으로 장애물을 회피하기 위해 무인운반차의 바디프레임에 대각 방향으로 1차 장애물감지부가 구비되어 무인운반차의 진행 경로 사방에 위치하는 장애물을 감지하고, 1차 장애물감지부에 의해 감지되지 않은 장애물과 무인운반차가 충돌할 경우 2차 장애물감지부에서 장애물과의 충돌을 감지한 후 충돌된 장애물을 회피하여 정상 주행을 할 수 있으며, 메카넘휠에 의해 전후주행 및 좌우 수평주행이 가능한 순차적 장애물 회피가 가능한 무인운반차에 관한 것이다.
최근 산업 자동화 및 무인화 경향에 따라 다양한 AGV(Automatic Guided Vehicle) 즉, 무인운반차가 산업 현장에 적용되고 있다.
그 중 유도라인을 따라 일정 경로를 반복적으로 주행하는 유도라인 추적 AGV는 생산 공정에서 정해진 위치로 대차에 적재된 부품을 운반하기 위한 용도로 사용될 수 있어 그 수요가 증가하고 있는 추세에 있다.
한편, 종래 현장에서 사용되고 있는 유도라인 추적 AGV는 주로 마그네틱 센서를 통한 1차원 스캔 방식을 사용한다. 이러한 마그네틱 센서 기반의 유도라인 추적 방식에서는 1차원의 좁은 탐색 및 감지 영역을 사용함에 따라 유도라인의 분기나 합류 지점과 같은 복합구조의 유도라인을 분석하는데 어려움이 많으며, 마그네틱 유도라인의 훼손에도 취약하다는 단점이 있다.
이러한 단점을 해결하기 위해 마그네틱 유도라인을 작업장 바닥에 매립하여 훼손을 최소로 줄이는 한편, 유도라인의 분기 및 병합 지점에 별도의 표식(마그네틱 마커, RFID 태그 등)을 작업장 바닥에 매립 설치하고, AGV에는 매립된 표식을 인식하기 위한 별도의 센서를 장착하여 활용함으로써 복합구조 유도라인 분석의 애로사항을 극복하는 방식을 사용하고 있다.
그러나 이러한 별도 표식의 매립을 통한 극복 방식은 근래의 다품종 소량생산 방식의 산업현장에서 요구하는 생산 유연성의 확보에 매우 큰 부담이 되고 있다. 즉, 생산품목에 따라 생산라인의 변경과 재설계가 수시로 이루어져야 하는데, 마그네틱 유도라인 및 별도 표식의 매립 방법은 이러한 변경에 있어 경제적, 시간적으로 매우 부담스러운 방식이며, 작업장 현장의 바닥이 철재로 구성되어 있는 경우에는 자기장간섭으로 인해 마그네틱 센서 기반 유도방식의 활용이 원천적으로 불가능하다는 한계도 있다.
또한, 무인운반차의 주행 경로 바닥에 페인트나 컬러테이프를 도색 또는 부착하고 이를 카메라가 인식하는 방식이 있으나, 이 방식 또한 작업장 오염 및 페인터나 컬러 테이프의 훼손에 취약한 문제점이 있다.
한편, 무인운반차의 진행 경로 상에 위치한 장애물을 회피하기 위해서는 상술한 종래 방식으로는 정확한 장애물 회피를 통해 신속한 대차의 이동이 곤란한 문제점이 있다.
따라서, 보다 신속하고 정확하게 장애물을 회피하며 무인운반차의 주행 효율을 향상시킬 수 있는 새로운 수단이 필요한 실정이다.
선행기술문헌 : KR등록특허공보 제10-1349507호(2014.01.02. 공고)
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 무인운반차의 주행 경로 상의 바닥에 QR 코드를 부착하고 부착된 QR 코드를 인식하여 주행 중인 무인운반차의 현재 위치, 주행 속도, 주행 경로를 인식하여 유연하고, 신속하게 대차를 운송할 수 있으며, 순차적으로 장애물을 회피하기 위해 무인운반차의 바디프레임에 대각 방향으로 1차 장애물감지부가 구비되어 무인운반차의 진행 경로 사방에 위치하는 장애물을 감지하고, 1차 장애물감지부에 의해 감지되지 않은 장애물과 무인운반차가 충돌할 경우 2차 장애물감지부에서 장애물과의 충돌을 감지한 후 충돌된 장애물을 회피하여 정상 주행을 할 수 있으며, 메카넘휠에 의해 전후주행 및 좌우 수평주행이 가능한 순차적 장애물 회피가 가능한 무인운반차를 제공하는 데 그 목적이 있다.
상기 목적을 달성하기 위해 안출된 본 발명에 따른 순차적 장애물 회피가 가능한 무인운반차는 내부에 위치하는 구성요소의 탈부착을 용이하게 하기 위해 구성요소 장착 위치 별로 모듈화된 바디프레임; 진행경로에 위치하는 장애물을 감지하기 위해 바디프레임의 대각 방향의 모서리 부분에 위치하는 복수의 1차 장애물감지부; 바디프레임의 사면 외곽에 구비되며, 1차 장애물감지부의 감지범위를 벗어난 장애물과의 충돌시 충돌신호를 전송하는 2차 장애물감지부; 진행 경로 상의 바닥에 부착된 QR 코드를 인식하여 진행 방향에서 현재 위치, 및 진행 경로를 인식하기 구비되는 QR 코드인식부; 견인대상 대차에 물건이 탑재되어 있는지, 물건이 탑재되지 않은 공대차인지여부를 구별하여 해당 신호를 송신하기 위해 견인대차의 하측에 부착하는 견인대차신호송신부; 견인대차신호송신부로부터 전송된 신호를 수신하여 견인대상이 되는 대차를 식별하기 위한 신호를 전송하는 견인대차신호수신부; 1차 장애물감지부, 2차 장애물감지부, QR코드인식부, 견인대차신호송신부, 견인대차신호수신부를 포함한 센서에서 송신된 신호를 수신하여 연산을 수행하고, 대차견인, 구동신호를 전송을 포함하여 구동 장치를 제어하는 구동제어부; 및 바디프레임의 양 측면 전후에 독립된 구동모터와 각각 연결되어 구비되며, 구동제어부의 구동신호에 의해 각각 독립 구동이 가능한 메카넘휠을 포함한다.
또한, 2차 장애물감지부는 범퍼, 리니어 부시, 리니어 샤프트, 리미트 스위치를 포함하여 구성되며, 장애물이 범퍼에 충돌하면, 범퍼가 범퍼와 연결된 리니어 부시 내측에 위치한 리니어 샤프트를 밀게 되면, 리니어 샤프트가 리미트 스위치를 작동시키게 되고, 리미트 스위치는 구동제어부로 충돌 신호를 전달하며 구동제어부는 충돌된 장애물을 회피하기 위한 회피 구동 신호를 메카넘휠로 전송하게 되는 것을 더 포함할 수 있다.
또한, 회전, 정지, 운행상태, 및 충전상태를 포함하여 구동상태를 시각적으로 확인하기 위해 바디프레임의 외측에 구비되는 구동상태발광부를 더 포함할 수 있다.
본 발명에 의하면 신속하고 정확하게 장애물을 회피할 수 있어 대차를 견인하는 무인운반차의 주행 효율을 향상시킬 수 있으며, 무인운반차의 유지 및 보수가 용이한 효과가 있다.
도 1은 본 발명의 바람직한 실시예에 따른 순차적 장애물 회피가 가능한 무인운반차를 도시한 사시도,
도 2는 순차적 장애물 회피가 가능한 무인운반차의 내부구성도,
도 3은 순차적 장애물 회피가 가능한 무인운반차의 분리사시도,
도 4는 도 1의 측면도,
도 5는 센서 신호 흐름을 도시한 블록도.
본 발명에 따른 순차적 장애물 회피가 가능한 무인운반차는 내부에 위치하는 구성요소의 탈부착을 용이하게 하기 위해 구성요소 장착 위치 별로 모듈화된 바디프레임; 진행경로에 위치하는 장애물을 감지하기 위해 바디프레임의 대각 방향의 모서리 부분에 위치하는 복수의 1차 장애물감지부; 바디프레임의 사면 외곽에 구비되며, 1차 장애물감지부의 감지범위를 벗어난 장애물과의 충돌시 충돌신호를 전송하는 2차 장애물감지부; 진행 경로 상의 바닥에 부착된 QR 코드를 인식하여 진행 방향에서 현재 위치, 및 진행 경로를 인식하기 구비되는 QR 코드인식부; 견인대상 대차에 물건이 탑재되어 있는지, 물건이 탑재되지 않은 공대차인지여부를 구별하여 해당 신호를 송신하기 위해 견인대차의 하측에 부착하는 견인대차신호송신부; 견인대차신호송신부로부터 전송된 신호를 수신하여 견인대상이 되는 대차를 식별하기 위한 신호를 전송하는 견인대차신호수신부; 1차 장애물감지부, 2차 장애물감지부, QR코드인식부, 견인대차신호송신부, 견인대차신호수신부를 포함한 센서에서 송신된 신호를 수신하여 연산을 수행하고, 대차견인, 구동신호를 전송을 포함하여 구동 장치를 제어하는 구동제어부; 및 바디프레임의 양 측면 전후에 독립된 구동모터와 각각 연결되어 구비되며, 구동제어부의 구동신호에 의해 각각 독립 구동이 가능한 메카넘휠을 포함한다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.
도 1은 본 발명의 바람직한 실시예에 따른 순차적 장애물 회피가 가능한 무인운반차를 도시한 사시도, 도 2는 순차적 장애물 회피가 가능한 무인운반차의 내부구성도, 도 3은 순차적 장애물 회피가 가능한 무인운반차의 분리사시도, 도 4는 도 1의 측면도, 도 5는 센서 신호 흐름을 도시한 블록도이다.
본 발명의 바람직한 실시예에 따른 순차적 장애물 회피가 가능한 무인운반차는, 도 1 내지 도 5를 참조하면, 바디프레임(10), 1차 장애물감지부(20), 2차 장애물감지부(30), QR 코드인식부(40), 견인대차신호송신부(50), 견인대차신호수신부(60), 구동제어부(70), 메카넘휠(80), 구동상태발광부(90), 터치판넬(100), 퀵스위치(110), 구동배터리(120)를 포함하여 이루어진다.
먼저, 본 발명에 따른 순차적 장애물 회피가 가능한 무인운반차는 도 5를 참조하면, 무인운반차가 주행하며 대차를 견인하는 작업현장의 주행 경로 상의 바닥에 QR 코드를 소정 간격으로 부착하고 무인운반차에 구비된 QR 코드인식부(40)에서 부착된 QR 코드를 인식하여 주행 중인 무인운반차의 현재 위치, 주행 속도, 주행 경로를 인식하여 유연하고, 신속하게 대차를 운송할 수 있다.
또한, 도 2를 참조하면, 순차적으로 장애물을 회피하기 위해 무인운반차의 바디프레임(10)에 대각 방향으로 1차 장애물감지부(20)가 구비되어 무인운반차의 진행 경로 사방에 위치하는 장애물을 감지하고 이를 회피하여 주행한다.
또한, 도 3과 도 5를 참조하면, 1차 장애물감지부(20)에 의해 감지되지 않은 장애물과 무인운반차가 충돌할 경우 2차 장애물감지부(30)에서 장애물과의 충돌을 감지한 후 충돌된 장애물을 회피하여 정상 주행을 할 수 있다.
또한, 도 3을 참조하면, 바디프레임(10)의 양 측면 전후에는 회전반경의 제한이 없는 메카넘휠(80)이 구비되어 전후주행 및 좌우 수평주행이 가능한 특징이 있다.
이하, 본 발명의 바람직한 실시예에 따른 순차적 장애물 회피가 가능한 무인운반차를 구성하는 구성 요소에 대해 상세하게 설명한다.
바디프레임(10)은 도 1 및 도 3을 참조하면, 내부에 위치하는 구성요소의 탈부착 및 유지 보수를 용이하게 하기 위해 아래에 서술된 구성요소가 장착되는 위치별로 모듈화되어 구성된다.
바디프레임(10)에 구비되는 메카넘휠(80)은 전후 직진 구동 및 좌우 수평 구동이 가능한 바퀴로써, 그 특성상 별도의 조향장치를 요하지 않고, 휠의 회전 구동 반경에 대해 거의 제한을 받지 않는다. 따라서 본 발명의 바디프레임(10)은 구동바퀴가 차지하는 비중을 줄이고, 다양한 전장 부품이 모듈화되어 탈부착 가능하게 탑재될 수 있으므로 무인운반차의 유지 및 보수가 용이한 장점이 있다.
커버패널(12)은 도 1을 참조하면, 내부가 모듈화된 바디프레임(10)의 상측에서 다수 개가 직렬적으로 연결되어 위치하며, 바디프레임(10)의 내측에 위치한 구성요소를 보호한다.
1차 장애물감지부(20)는 도 2를 참조하면, 적외선센서, 레이저센서를 포함하여 소정거리에 떨어져 있는 장애물을 인식하기 위한 센서로써, 무인운반차의 진행경로에 위치하는 장애물을 감지하기 위해 바디프레임(10)의 대각 방향 모서리 부분에 복수 개가 한 쌍을 이루며 위치한다.
바디프레임(10)의 모서리부분에 구비된 한 쌍의 1차 장애물감지부(20) 중 하나의 1차 장애물감비부는 대각 방향에서 좌우로 약 270도 이상의 넓은 시야를 제공할 수 있으므로, 바디프레임(10)의 대각방향으로 구비된 복수의 1차 장애물감지부(20)는 무인운반차의 진행방향에 대해 사방 360도 전 범위에 위치하는 장애물을 감지하게 된다.
2차 장애물감지부(30)는 도 3 및 도 5를 참조하면, 바디프레임(10)의 사면 외곽에 바디프레임(10)의 둘레를 따라 구비된다. 2차 장애물감지부(30)는 1차 장애물감지부(20)의 감지범위를 벗어난 장애물과 무인운반차가 충돌할 경우 그 충돌신호를 아래에 서술된 구동제어부(70)로 전송하면 구동제어부(70)에서는 충돌된 장애물을 회피하기 위한 신호를 메카넘휠(80)로 전송하여 충돌된 장애물을 회피하여 무인운반차가 원래의 진행경로를 따라 구동될 수 있도록 한다.
여기서, 2차 장애물감지부(30)를 구성하는 구성요소와 그 작용에 대해 상세하게 설명하면 다음과 같다.
2차 장애물감지부(30)는 범퍼(32), 리니어 부시(34), 리니어 샤프트(36), 및 리미트 스위치를 포함하여 구성된다.
만약, 무인운반차의 진행경로 상에 위치한 장애물이 바디프레임(10)의 외곽을 둘러싸고 있는 어느 하나의 범퍼(32)에 충돌하면, 범퍼가 범퍼와 연결된 리니어 부시(34) 내측에 위치한 리니어 샤프트(36)를 밀게 된다.
이때 리니어 샤프트가 후방으로 밀리면서 리미트 스위치를 작동시키게 되고, 리미트 스위치는 구동제어부(70)로 충돌 신호를 전달하며, 구동제어부(70)는 충돌된 장애물을 회피하기 위한 회피 구동 신호를 메카넘휠(80)로 전송하게 된다.
본원발명의 무인운반차는 무인운반차가 진행하는 경로의 바닥에 QR 코드가 부착되고 이를 인식하여 진행 경로를 결정하는 포인트 투 포인트(Point to point) 이동방식으로써 진행경로 상의 바닥에 소정 간격으로 부착된 QR 코드를 인식하여 무인운반차의 현재의 위치, 주행속도, 진행 방향을 인식하는 방식을 취한다.
본원발명에 따른 QR 코드 방식은 공장 환경에 적합한 형태의 코드로 유연성 있게 변경하기가 용이하고, QR 코드의 훼손 시 즉각적으로 대응이 가능하다.
QR 코드인식부(40)는 도 5를 참조하면, 스캔 카메라를 포함한 비젼센서로서, 무인운반차가 주행하는 진행 경로 상의 바닥에 부착된 QR 코드를 인식하여 인식된 정보를 구동제어부(70)로 전송하게 되면, 구동제어부(70)에서는 진행 방향에서 무인운반차의 현재 위치, 주행속도 및 진행 경로를 인식하고 진행방향, 및 진행 속도를 결정하게 된다.
QR 코드를 인식하는 본원발명의 방식은 종래의 무인운반차가 진행 경로 상에 위치하는 RFID 태그 또는 진행 경로의 바닥에 부착된 마그네틱 테이프, 색테이프를 무인운반차에 부착된 RFID 리더기 또는 카메라가 인식하며 진행 경로, 및 현재의 위치를 인식하며 주행하는 방식에 비해 경제성 및 주행효율이 뛰어나고 유지 및 보수가 용이한 효과를 발행시킨다.
견인대차신호송신부(50)는 도 5를 참조하면, RFID 센서 등이 사용될 수 있으며, 견인대상이 되는 대차에 물건이 탑재되어 있는지, 물건이 탑재되지 않은 공대차인지를 구별할 수 있도록 해당 신호를 외부로 송신하기 위해 견인대차의 하측에 설치되어 하방으로 신호를 전송하게 된다.
견인대차신호수신부(60)는 무인운반차에서 상측을 바라보도록 설치되어 견인대차의 하측에 설치된 견인대차신호송신부(50)로부터 전송된 신호를 수신하여 견인대상이 되는 대차를 식별하기 위한 신호를 구동제어부(70)로 전송하면, 구동제어부(70)에서는 견인대상이 되는 대차인지 여부를 결정하게 된다.
구동제어부(70)는 도 5를 참조하면, 1차 장애물감지부(20), 2차 장애물감지부(30), QR코드인식부, 견인대차신호수신부(60)를 포함하여 무인운반차에 구비된 센서에서 송신된 신호를 수신하여 MCU 등의 중앙처리장치에서 연산을 수행하고, 대차견인, 구동신호 전송을 포함하여 전체 구동 장치를 제어한다.
메카넘휠(80)은 도 3 및 도 4를 참조하면, 바디프레임(10)의 양 측면 전후에 독립된 구동모터와 각각 연결되어 구비되며, 구동제어부(70)의 구동신호에 의해 수직 또는 회전중심에서 선회 반경이 없이 좌우 방향으로 수평주행을 수행하기 위해 회전속도 및 회전방향을 달리할 수 있도록 각각 독립 구동이 가능하다.
한편, 무인운반차가 운행하는 대부분의 작업라인에는 다양한 소음의 발생으로 인해 무인운반차의 운행 상태를 소리로 확인하는데 상당한 어려움이 있다.
본원발명에서는 이러한 어려움을 해결하기 위해 무인운반차의 운행상태에 따라 해당 구동 상태를 나타낼 수 있는 색을 발광할 수 있는 구동상태발광부(90)가 구비된다.
구동상태발광부(90)는 도 3 및 도 4를 참조하면, 다양한 색을 가진 LED 등이 사용될 수 있으며, 무인운반차의 주행상태, 회전, 정지, 운행상태, 충전상태를 포함하여 무인운반차의 구동상태를 시각적으로 확인하기 위해 바디프레임(10)의 외측에 구비된다.
터치판넬(100)은 도 1 및 도 2를 참조하면, 구동제어부(70) 설정을 통해 무인운반차의 구동을 사용자가 직접 조작할 수 있도록 무인운반차의 전면부 상측에 터치패드 형태로 구비된다.
퀵스위치(110)는 도 1을 참조하면, 무인운반차의 온오프를 포함하여 구동에 있어 기본적 기능을 신속하게 수행할 수 있도록 단축된 스위치 형태로 터치판넬(100)의 후방에 구비된다.
구동배터리(120)는 도 3을 참조하면, 전기를 요하는 구성요소에 전원을 공급하며, 다른 구성요소와의 위치 및 무인운반차의 무게 중심을 고려하여 바디프레임(10)의 중앙부에 위치한다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (3)

  1. 내부에 위치하는 구성요소의 탈부착을 용이하게 하기 위해 구성요소 장착 위치 별로 모듈화된 바디프레임;
    진행경로에 위치하는 장애물을 감지하기 위해 바디프레임의 대각 방향의 모서리 부분에 위치하는 복수의 1차 장애물감지부;
    바디프레임의 사면 외곽에 구비되며, 1차 장애물감지부의 감지범위를 벗어난 장애물과의 충돌시 충돌신호를 전송하는 2차 장애물감지부;
    진행 경로 상의 바닥에 부착된 QR 코드를 인식하여 진행 방향에서 현재 위치, 및 진행 경로를 인식하기 구비되는 QR 코드인식부;
    견인대상 대차에 물건이 탑재되어 있는지, 물건이 탑재되지 않은 공대차인지여부를 구별하여 해당 신호를 송신하기 위해 견인대차의 하측에 부착하는 견인대차신호송신부;
    견인대차신호송신부로부터 전송된 신호를 수신하여 견인대상이 되는 대차를 식별하기 위한 신호를 전송하는 견인대차신호수신부;
    1차 장애물감지부, 2차 장애물감지부, QR코드인식부, 견인대차신호송신부, 견인대차신호수신부를 포함한 센서에서 송신된 신호를 수신하여 연산을 수행하고, 대차견인, 구동신호를 전송을 포함하여 구동 장치를 제어하는 구동제어부; 및
    바디프레임의 양 측면 전후에 독립된 구동모터와 각각 연결되어 구비되며, 구동제어부의 구동신호에 의해 각각 독립 구동이 가능한 메카넘휠
    를 포함하는, 순차적 장애물 회피가 가능한 무인운반차.
  2. 제1항에 있어서,
    2차 장애물감지부는 범퍼, 리니어 부시, 리니어 샤프트, 리미트 스위치를 포함하여 구성되며, 장애물이 범퍼에 충돌하면, 범퍼가 범퍼와 연결된 리니어 부시 내측에 위치한 리니어 샤프트를 밀게 되면, 리니어 샤프트가 리미트 스위치를 작동시키게 되고, 리미트 스위치는 구동제어부로 충돌 신호를 전달하며 구동제어부는 충돌된 장애물을 회피하기 위한 회피 구동 신호를 메카넘휠로 전송하게 되는 것
    을 더 포함하는, 순차적 장애물 회피가 가능한 무인운반차차.
  3. 제1항에 있어서,
    회전, 정지, 운행상태, 및 충전상태를 포함하여 구동상태를 시각적으로 확인하기 위해 바디프레임의 외측에 구비되는 구동상태발광부
    을 더 포함하는, 순차적 장애물 회피가 가능한 무인운반차.
PCT/KR2017/012291 2017-11-01 2017-11-02 순차적 장애물 회피가 가능한 무인운반차 WO2019088317A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0144672 2017-11-01
KR1020170144672A KR101866207B1 (ko) 2017-11-01 2017-11-01 순차적 장애물 회피가 가능한 무인운반차

Publications (1)

Publication Number Publication Date
WO2019088317A1 true WO2019088317A1 (ko) 2019-05-09

Family

ID=62601072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012291 WO2019088317A1 (ko) 2017-11-01 2017-11-02 순차적 장애물 회피가 가능한 무인운반차

Country Status (2)

Country Link
KR (1) KR101866207B1 (ko)
WO (1) WO2019088317A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110143396A (zh) * 2019-06-27 2019-08-20 广东利元亨智能装备股份有限公司 智能巡航车
CN110435787A (zh) * 2019-08-20 2019-11-12 和县隆盛精密机械有限公司 一种跟随式agv小车

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108995743B (zh) * 2018-09-30 2023-05-16 四川福德机器人股份有限公司 导航车及导航方法
KR20200074774A (ko) 2018-12-17 2020-06-25 (주)엠아이티코리아 자율주행이 가능한 물류 이동용 무인운반차
US11560153B2 (en) 2019-03-07 2023-01-24 6 River Systems, Llc Systems and methods for collision avoidance by autonomous vehicles
CN109991982A (zh) * 2019-04-09 2019-07-09 广东嘉腾机器人自动化有限公司 一种agv小车控制方法、装置及agv小车
CN111142540A (zh) * 2020-01-13 2020-05-12 宝钜(中国)儿童用品有限公司 无人搬运车碰撞回避装置及碰撞回避方法
KR102641233B1 (ko) * 2020-12-18 2024-02-27 라온피플 주식회사 가축의 음식섭취 영상을 기반으로 하는 이동식 개체관리 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132189B1 (ko) * 2011-08-16 2012-04-06 (주)대성에스이 무인반송 시스템의 무인 유도 제어 장치
KR101323705B1 (ko) * 2013-06-05 2013-11-11 한경대학교 산학협력단 무인 화물 이송로봇을 이용한 무인 화물 이송시스템
KR101392992B1 (ko) * 2014-01-07 2014-05-08 주식회사 지아체시스템즈 무인반송카트
US20140358331A1 (en) * 2011-05-11 2014-12-04 Google Inc. Transitioning a Mixed-Mode Vehicle to Autonomous Mode
KR20160011390A (ko) * 2014-07-22 2016-02-01 이병주 자동운행 기능을 갖는 물류 이송용 카트

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140358331A1 (en) * 2011-05-11 2014-12-04 Google Inc. Transitioning a Mixed-Mode Vehicle to Autonomous Mode
KR101132189B1 (ko) * 2011-08-16 2012-04-06 (주)대성에스이 무인반송 시스템의 무인 유도 제어 장치
KR101323705B1 (ko) * 2013-06-05 2013-11-11 한경대학교 산학협력단 무인 화물 이송로봇을 이용한 무인 화물 이송시스템
KR101392992B1 (ko) * 2014-01-07 2014-05-08 주식회사 지아체시스템즈 무인반송카트
KR20160011390A (ko) * 2014-07-22 2016-02-01 이병주 자동운행 기능을 갖는 물류 이송용 카트

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110143396A (zh) * 2019-06-27 2019-08-20 广东利元亨智能装备股份有限公司 智能巡航车
CN110435787A (zh) * 2019-08-20 2019-11-12 和县隆盛精密机械有限公司 一种跟随式agv小车

Also Published As

Publication number Publication date
KR101866207B1 (ko) 2018-06-11

Similar Documents

Publication Publication Date Title
WO2019088317A1 (ko) 순차적 장애물 회피가 가능한 무인운반차
KR101863738B1 (ko) 승강식 대차견인기구가 구비된 무인운반차
KR101884825B1 (ko) 무인운반차를 이용한 자동화 창고 시스템
WO2020101097A1 (ko) 공정 및 생산관리를 위한 모바일 로봇 플랫폼 시스템
KR101968217B1 (ko) Qr 코드와 십자마크에 의해 주행정보인식 및 자세제어가 가능한 무인운반차
CN103135548A (zh) 一种无人搬运小车及其驱动控制系统
CN204241966U (zh) 一种视觉导向自行搬运小车
KR102000825B1 (ko) 자동 화물이송 및 피킹 시스템
CN110919623A (zh) 一种物流搬运机器人系统
WO2018105954A1 (ko) 가시광통신을 이용한 무인 운송장치 및 시스템
US11360478B2 (en) Method for the operation of an autonomous industrial truck and intra-logistics system with an autonomous industrial truck
CN109240287B (zh) 一种送料车导航控制系统和控制方法
WO2020184752A1 (ko) 설치물과 평행하게 이동하는 카트 및 이동 방법
CN202694147U (zh) 一种无人搬运小车及其驱动控制系统
CN112659152A (zh) 一种物流搬运机器人
JP6684531B2 (ja) 無人搬送システム
CN109189038A (zh) 一种自动导引运输车无人搬运系统及无人搬运方法
CN210455023U (zh) 一种无轨牵引式agv输送装置
JP3740883B2 (ja) 無人移動台車の制御方法
WO2022158706A1 (ko) 컨테이너 화물 검사 장치
CN203601430U (zh) 生产线自动搬运车
CN213024067U (zh) 一种基于磁导航的鸡舍巡检平台
WO2020159238A1 (ko) 전동 카트
WO2019143090A1 (ko) 차량 자율주행 보조 장치 및 이를 포함하는 차량 자율주행 보조 시스템
JP5170190B2 (ja) 搬送車システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930348

Country of ref document: EP

Kind code of ref document: A1