WO2019088243A1 - Resin composition and method for producing three-dimensional model using same - Google Patents

Resin composition and method for producing three-dimensional model using same Download PDF

Info

Publication number
WO2019088243A1
WO2019088243A1 PCT/JP2018/040797 JP2018040797W WO2019088243A1 WO 2019088243 A1 WO2019088243 A1 WO 2019088243A1 JP 2018040797 W JP2018040797 W JP 2018040797W WO 2019088243 A1 WO2019088243 A1 WO 2019088243A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
thin layer
particles
dimensional object
Prior art date
Application number
PCT/JP2018/040797
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 溝口
和也 磯部
永田 員也
和昭 真田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019550494A priority Critical patent/JP7099473B2/en
Publication of WO2019088243A1 publication Critical patent/WO2019088243A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a resin composition and a method for producing a three-dimensional object using the same.
  • a method using resin particles such as powder bed fusion bonding method can produce three-dimensional objects with relatively high forming accuracy as compared with other methods.
  • resin particles are laid flat to form a thin layer.
  • the thin layer is irradiated with laser light in a pattern (a pattern in which a three-dimensional object is finely divided in the thickness direction).
  • the resin particles in the region irradiated with the laser beam are selectively sintered or melt bonded (hereinafter, also simply referred to as “melt bonding”).
  • resin particles are further spread on the obtained shaped object layer, and laser light irradiation is similarly performed.
  • the resin particles when forming the thin layer, even if the resin particles are arranged without gaps, the resin particles are usually spherical. Therefore, the contact area between adjacent resin particles is very small, and heat is not easily transmitted at the interface between resin particles. Therefore, there has been a problem that the molten state when the thin layer is irradiated with the laser light and the temperature are easily varied. Similarly, the contact area between the already formed shaped material layer and the newly formed thin layer (resin particles) is also small. Therefore, it is difficult for heat to be transmitted to each other. Therefore, the degree of thermal contraction is different between the previously formed shaped material layer and the later formed shaped material layer, and the warping (hereinafter, the warping generated in this manner is also referred to as “thermal warping”) Was also a problem that
  • a method for producing a three-dimensional object a method of melt extruding a resin composition in the form of filaments and forming a thin layer finely dividing the three-dimensional object in the thickness direction on a stage to obtain a three-dimensional object Melt lamination method is also known. It has been proposed to impart conductivity to the resulting three-dimensional object, or to increase the elastic modulus of the resulting three-dimensional object, by adding various fillers to such resin compositions (Patent Document 1). .
  • a modeling thing layer is piled up and a desired three-dimensional modeling thing is obtained (Hereinafter, the method is also called "MJF method"). Also in this method, it is difficult to improve the thermal conductivity of adjacent particles, and it is likely that problems occur such as variation in the molten state in the shaped object layer or generation of heat warpage.
  • the present invention has been made in view of the above problems. That is, the present invention provides a resin composition for obtaining a three-dimensional object with high strength, high ductility, and no thermal warpage and high dimensional accuracy, and a method for producing a three-dimensional object using the same.
  • the purpose is to provide
  • the present invention provides the following resin composition.
  • a resin composition used in a three-dimensional shaping method for forming a three-dimensional object by repeating the formation of a thin layer containing a particulate resin composition and the energy irradiation to the thin layer which is a thermoplastic resin
  • a resin composition comprising: particles comprising: and tabular grains having a thickness of 50 to 500 nm.
  • the present invention provides the following three-dimensional object and a method for producing the three-dimensional object.
  • a three-dimensional object including a cured product of the resin composition according to any one of the above [1] to [8].
  • a laser beam irradiation step of forming a shaped object layer in which the resin composition is melt-bonded, wherein the thin layer forming step and the laser light irradiation step are repeated a plurality of times, and the shaped object layer is laminated.
  • a thin layer forming step of forming a thin layer containing the resin composition according to any one of the above [1] to [8], a bonding fluid containing an energy absorbing agent, and energy absorption from the bonding fluid Applying a peeling fluid with a small amount to the adjacent areas of the thin layer, and applying energy to the thin layer after the fluid applying process, the thermoplasticity of the area to which the bonding fluid is applied
  • An energy irradiation step of melting the resin to form a shaped object layer repeating the thin layer forming step, the fluid application step, and the energy irradiation step a plurality of times to laminate the shaped object layer;
  • the manufacturing method of the three-dimensional molded item which forms a molded article which forms a molded article.
  • the resin composition of the present invention it is possible to manufacture a three-dimensional object with high dimensional accuracy, high strength and high ductility, and no thermal warpage and the like.
  • the resin composition of the present invention is used in a method for producing a three-dimensional object by melt bonding particles containing a resin, such as a powder bed melt bonding method or an MJF method.
  • the resin composition of the present invention includes particles (hereinafter, also simply referred to as “resin particles”) containing a thermoplastic resin, and tabular particles.
  • resin particles particles
  • tabular grains have two main planes facing each other, and the distance (thickness) between these two main planes is also the maximum diameter of the main planes (hereinafter referred to as "width"). And small enough for the smallest diameter.
  • a thin layer made of resin particles is formed, and the thin layer is irradiated with energy.
  • adjacent resin particles are melt-bonded to obtain a shaped object layer in which the three-dimensional shaped object is finely divided in the thickness direction.
  • the resin particles are usually spherical, the contact area between adjacent resin particles is very small, and heat is not easily transmitted.
  • the thermal conductivity between the formed object layer formed earlier and the formed object layer formed later is also low, and there is also a problem that heat warpage is easily generated due to the difference in the degree of heat contraction of these layers. .
  • the resin composition of the present invention contains tabular particles having a thickness of 50 nm to 500 nm, together with resin particles. Since the tabular grains have a sufficiently small thickness, the temperature is likely to be uniform in the tabular grains. And it becomes possible to equalize the temperature of the resin particle which adjoins by such flat particle. That is, in the resin composition of the present invention, the molten state of each resin particle is likely to be uniform, and the dimensional accuracy and strength of the resulting three-dimensional object are enhanced.
  • the temperatures of the previously formed shaped material layer and the thin layer containing the resin composition disposed thereon are easily made uniform.
  • the degree of thermal contraction hardly varies between the formed object layer to be formed first and the formed object layer to be formed later, and the dimensional accuracy is enhanced even if the heat warpage or the like is not easily generated.
  • the tabular particle of the said thickness is contained in the three-dimensional molded item obtained, the elasticity modulus of a three-dimensional molded item becomes high and the intensity
  • a conventional general spherical ceramic particle is included in the three-dimensional object, when a tensile stress or the like is applied to the three-dimensional object, the resin and the ceramic particle are separated due to the difference in elastic modulus between the resin and the ceramic particle. And cracks are likely to occur. And a three-dimensional model becomes easy to fracture because such a crevice and a crack connect.
  • the tabular grains have the property of being arranged in parallel with the tensile direction. Therefore, in the case of a three-dimensional object containing flat particles, when tensile stress is applied, it is difficult to form a gap or a crack between the resin and the flat particles, and there is also an advantage that the ductility of the three-dimensional object is increased.
  • thermoplastic resin contained in the resin particles is a crystalline resin
  • the thermoplastic resin melted during the formation of the shaped object layer is crystal-grown using the plate-like particles as a nucleating agent. It will be easier.
  • the resin of a uniform crystal structure is likely to be contained in the three-dimensional object, and the strength and ductility of the three-dimensional object are likely to be uniform.
  • by suppressing irregular crystal growth dimensional accuracy can be easily enhanced.
  • the above-mentioned tabular particles may be contained inside the resin particles. Further, the tabular particles may be attached to the periphery of the resin particles. Furthermore, the tabular grains may be contained inside the resin particles and around the resin particles. However, when the tabular particles are attached to the periphery of the resin particles, the tabular particles are likely to be contained between the adjacent resin particles when forming the shaped object layer. As a result, it is preferable from the viewpoint that the temperature and the molten state of the adjacent resin particles are easily uniformed. In addition, when flat particles are also contained in the inside of the resin particle, the strength of the obtained three-dimensional object is likely to be further enhanced.
  • the tabular particles are attached to the periphery of the resin particles, it is preferable that the tabular particles are attached to a region of 10 to 80% of the surface area of the resin particles. If the area of the region to which the tabular particles are attached is 80% or less with respect to the surface area of the resin particles, the resin particles are easily melt-bonded to each other during production of the three-dimensional object. On the other hand, when the area of 10% or more of the surface area of the resin particles is covered with the tabular particles, the thermal conductivity by the tabular particles is increased, and the temperature and the molten state of adjacent resin particles are likely to be uniform. .
  • the extent to which the tabular particles are attached around the resin particles depends on the particle diameter of the resin particles, the area of the tabular particles in plan view, the content ratio of the thermoplastic resin to the tabular particles, etc. It can be calculated from In addition, the resin particles in which the tabular particles are attached to the periphery are dissolved with a solvent or the like to determine the content and shape of the tabular particles, and based on these and the shape of the resin particles (particle diameter etc.) The area to which the tabular resin particles are attached may be calculated.
  • the tabular particles and the thermoplastic resin, and the other components and the like contained in the resin composition will be described in detail.
  • the tabular grains contained in the resin composition of the present invention are not particularly limited as long as they have a thickness of 50 to 500 nm and are tabular grains.
  • the thickness of the tabular grains is more preferably 100 to 400 nm, still more preferably 150 to 300 nm.
  • the thickness of the tabular grains is 50 nm or more, the strength of the obtained three-dimensional object is likely to be increased.
  • the thickness of the tabular grains is 500 nm or less, the thermal conductivity tends to be favorable.
  • the shape of the tabular grains in plan view may be circular, elliptical or polygonal. Among these, an elliptical shape is more preferable.
  • the width (average maximum diameter) of the tabular particles when viewed in plan is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m, and still more preferably 3 to 6 ⁇ m.
  • the width (average maximum diameter) of the tabular grains is excessively large, the dimensional accuracy of the three-dimensional object is lowered, and the tabular grains are likely to inhibit the melt bonding of the resin particles.
  • the width (average maximum diameter) of the tabular grains is too small, the tabular grains may not be able to sufficiently transfer heat to the adjacent resin grains.
  • the average minimum diameter of the tabular grains in plan view is preferably 1 to 6 ⁇ m, and more preferably 2 to 5 ⁇ m.
  • the ratio (width / thickness) of the average thickness of the tabular grains to the average maximum diameter (width) is preferably 5 to 15, and more preferably 10 to 12.
  • the ratio (minimum diameter / thickness) of the average thickness of the tabular grains to the average minimum diameter is preferably 5 to 13, and more preferably 6 to 11.
  • the thickness, maximum diameter and width of tabular grains are specified, for example, as follows.
  • the thermoplastic resin is removed using a solvent or the like capable of dissolving the thermoplastic resin, and only the tabular particles are taken out. If the resin is difficult to dissolve in the solvent, heating is performed as needed. Then, dry mixing is performed with a propylene resin so that the amount of the tabular grains is 15% by mass. Then, using, for example, a known small kneader and injection molding machine, a dumbbell test piece having a length of 175 mm is produced.
  • the shape of the test piece is not particularly limited as long as it can measure 100 or more of the cross section of tabular grains.
  • the test piece is immersed in liquid nitrogen for 10 minutes or more and broken while being frozen in the liquid nitrogen.
  • a thickness of 100 pieces, a maximum diameter (width) of 100 pieces, an average minimum diameter of 100 pieces, and the like are observed with an electron microscope (SEM) to create a histogram. Then, from these data, an average value is calculated for each, and the average value is adopted as the thickness, width, and average minimum diameter of tabular grains.
  • tabular grains include various grains commonly referred to as layered clay minerals. Specific examples of tabular grains include kaolin; talc; mica; smectite minerals such as montmorillonite, beidellite, hectorite, saponite, nontronite, and stevensite; vermiculite; bentonite; kanemite; Sodium acid; mica group clay minerals such as Na-type tetrasilastic fluorine mica, Li-type tetrasilisic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, etc. are included. Such tabular grains may be obtained from natural minerals or may be chemically synthesized. Furthermore, the tabular grains may have their surfaces modified (surface-treated) with an ammonium salt or the like.
  • the tabular grains have the above-described thermal conductivity, the tabular grains easily make the temperature and the like of the adjacent resin grains uniform.
  • a silicate compound containing magnesium, and talc and mica are preferred.
  • the component analysis of tabular grains can be performed by, for example, X-ray photoelectron spectroscopy (XPS) or electron spectroscopy for chemical analysis (ESCA). Specific examples include ESCALAB-200R photoelectron spectrometer manufactured by VG Scientific, Inc., and the like.
  • the tabular grains are preferably contained in an amount of 5 to 40 parts by mass, more preferably 10 to 20 parts by mass, with respect to 100 parts by mass of the total amount of the resin composition.
  • the amount of tabular particles in the resin composition is too small, the above-mentioned thermal conductivity may not be sufficiently exhibited or the strength of the three-dimensional object may not be sufficiently increased.
  • the amount of tabular grains is excessive, the amount of the thermoplastic resin relatively decreases, so that the thermoplastic resin can not be sufficiently melt-bonded, and the strength of the three-dimensional object may be reduced.
  • thermoplastic resin The kind of thermoplastic resin contained in a resin composition is suitably selected according to the formation method of a three-dimensional model.
  • the thermoplastic resin may be a resin contained in a resin composition for a general powder bed melt bonding method or a resin contained in a resin composition for an MJF method, and the resin particles may be thermoplastic. Only one kind of resin may be contained, or two or more kinds may be contained.
  • the melting temperature of the thermoplastic resin is too high, it may be necessary to irradiate energy to a high temperature in order to melt the resin particles when producing the three-dimensional object, and it may take time to produce the three-dimensional object, etc. is there. Then, it is preferable that it is 300 degrees C or less, and, as for the melting temperature of a thermoplastic resin, it is more preferable that it is 230 degrees C or less.
  • the melting temperature of the thermoplastic resin is preferably 100 ° C. or more, and more preferably 150 ° C. or more, from the viewpoint of the heat resistance and the like of the three-dimensional object to be obtained. The melting temperature can be adjusted by the type of thermoplastic resin and the like.
  • the thermoplastic resin may be a crystalline resin or an amorphous resin, but as described above, when the thermoplastic resin is a crystalline resin, the tabular particles are cored As an agent, there is an advantage that it becomes easy to form uniform crystals.
  • the crystalline resin include polyamide 12, polyolefin resins such as polylactic acid and polypropylene, polyphenylene sulfide (PPS), polybutylene terephthalate and the like.
  • polyamide 12 or an olefin resin is preferable, and a polypropylene resin is particularly preferable, from the viewpoint that the tabular particles and the crystal structure are close to each other, and it is easily crystallized uniformly using the tabular particles as a nucleating agent.
  • the thermoplastic resin is preferably contained in an amount of 60 to 95 parts by mass, more preferably 80 to 90 parts by mass, with respect to 100 parts by mass of the total amount of the resin composition.
  • the amount of the thermoplastic resin in the resin composition is too small, the strength of the three-dimensional object tends to be reduced.
  • the amount of the resin composition is too large, the amount of tabular grains relatively decreases, and it becomes difficult to exhibit the above-mentioned thermal conductivity.
  • the shape of the resin particles containing a thermoplastic resin is not particularly limited, but from the viewpoint of enhancing the dimensional accuracy of the three-dimensional object, the shape is preferably spherical.
  • the size (diameter) of the resin particles is preferably 20 to 100 ⁇ m, and more preferably 30 to 70 ⁇ m. When the size of the resin particles is 100 ⁇ m or less, it is possible to produce a three-dimensional object with a fine structure.
  • the size of the resin particles is preferably 20 ⁇ m or more from the viewpoint of sufficient fluidity and good manufacturing cost and handling.
  • the average particle size is a volume average particle size measured by a dynamic light scattering method. The volume average particle size can be measured by a laser diffraction type particle size distribution measuring apparatus (manufactured by Microtrack Bell, MT3300EXII) equipped with a wet disperser.
  • the resin composition may contain components other than the above-mentioned tabular particles and the thermoplastic resin, as long as the objects and effects of the present invention are not impaired.
  • examples of other components include various additives, fillers and the like.
  • additives examples include antioxidants, acidic compounds and derivatives thereof, lubricants, UV absorbers, light stabilizers, nucleating agents, flame retardants, impact modifiers, blowing agents, colorants, organic peroxides, Adhesives, adhesives and the like are included.
  • the resin composition may contain only one of these, or two or more of these. Moreover, these may be apply
  • the filler examples include inorganic particles that do not correspond to the above-described flat particles, various fibers, and the like. Examples thereof are talc, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, glass cut fiber, Glass milled fiber, glass flake, glass powder, silicon carbide, silicon nitride, gypsum, gypsum whisker, calcined kaolin, carbon black, zinc oxide, antimony trioxide, zeolite, hydrotalcite, metal fiber, metal whisker, metal powder, ceramic Inorganic fillers such as whiskers, potassium titanate, boron nitride, graphite, and carbon fibers; organic fillers such as polysaccharide nanofibers; various polymers.
  • the resin composition may contain only one of these, or two or more of these. However, these amounts are preferably
  • the resin composition used in the powder bed melt bonding method may contain a laser absorber and the like.
  • laser absorbers include carbon powder, nylon resin powder, pigments, dyes and the like. These laser absorbers may be contained alone in the resin composition, or in two or more kinds.
  • the method for producing the resin composition is not particularly limited, and it may be appropriately selected depending on whether the tabular particles are attached to the periphery of the resin particles or the tabular particles are contained in the resin particles. It is selected.
  • the resin composition in which the tabular particles adhere around the resin particles can be prepared by preparing resin particles in advance and mixing the resin particles with the tabular particles by a known method.
  • the resin composition in which the tabular particles are contained inside the resin particles can be produced by melt-kneading the tabular particles and the resin, and pulverizing these with a freeze crusher or the like.
  • resin compositions in which tabular grains are present inside and around resin particles can be prepared by combining these methods.
  • the resin composition described above can be used in a method for producing a three-dimensional shaped object by a powder bed bonding melting method or an MJF method.
  • a powder bed bonding melting method or an MJF method a powder bed bonding melting method or an MJF method.
  • a method for producing a three-dimensional shaped object by powder bed bonding and melting method the method can be carried out in the same manner as a normal powder bed bonding and melting method except using the resin composition. Specifically, (1) a thin layer forming step of forming a thin layer containing the above-mentioned resin composition, and (2) a thin layer containing the resin composition is selectively irradiated with a laser beam to form the particles. And a laser beam irradiation step of forming a shaped object layer in which the resin compositions are melt-bonded to each other.
  • a three-dimensional model can be manufactured by repeating a process (1) and a process (2) multiple times, and laminating
  • the manufacturing method of the said three-dimensional model may include the other process as needed, for example, may include the process etc. of preheating a resin composition.
  • a thin layer containing a resin composition is formed.
  • molding apparatus is spread on a modeling stage flatly with a recoater.
  • the thin layer may be formed directly on the shaping stage, or may be formed on a powder material that has already been spread or may be in contact with the already formed shaped material layer.
  • the above-mentioned resin composition may be separately mixed with a flow agent or a laser absorbent, if necessary.
  • the thickness of the thin layer is the same as the thickness of the desired shaped object layer.
  • the thickness of the thin layer can be optionally set according to the accuracy of the three-dimensional object to be produced, but is usually 0.01 mm or more and 0.30 mm or less.
  • By setting the thickness of the thin layer to 0.01 mm or more it is possible to prevent the resin composition of the lower layer from being melt-bonded by laser light irradiation for forming the next shaped object layer, and further, It is possible to spread the powder uniformly. Further, by setting the thickness of the thin layer to 0.30 mm or less, the energy of the laser beam is conducted to the lower part of the thin layer, and the resin composition constituting the thin layer is sufficiently melt-bonded along the entire thickness direction. It can be done.
  • the thickness of the thin layer is more preferably 0.01 mm or more and 0.10 mm or less.
  • the thickness of the thin layer is the beam spot diameter of the laser light described later It is preferable to set so that the difference with it becomes less than 0.10 mm.
  • examples of the laser absorber that can be mixed with the resin composition include carbon powder, nylon resin powder, pigments, dyes, and the like.
  • the amount of the laser absorber can be appropriately set within the range in which the melt bonding of the resin composition becomes easy. For example, it can be more than 0% by mass and less than 3% by mass with respect to the total mass of the thermoplastic resin.
  • the laser absorbent may be used alone or in combination of two or more.
  • the flow agent that can be mixed with the resin composition may be a material having a small coefficient of friction and having self-lubricity.
  • examples of such flow agents include silicon dioxide and boron nitride. These flow agents may be used alone or in combination of two.
  • the amount of the flow agent can be appropriately set within a range in which the fluidity of the resin particles and the like can be improved and the melt bonding of the resin particles can be sufficiently generated. For example, it can be more than 0% by mass and less than 2% by mass with respect to the mass of the thermoplastic resin.
  • a laser beam is selectively irradiated to the position which should form a modeling thing layer among the thin layers containing a resin composition, and the resin composition of the irradiated position is melt-bonded.
  • the melted resin composition melts with the adjacent resin composition (resin particles) to form a melt bonded body, and becomes a shaped object layer.
  • the resin composition (resin particles) that has received the energy of the laser beam also melt-bonds with the already formed shaped material layer, and adhesion between adjacent layers also occurs.
  • the wavelength of the laser light may be set within the range of the wavelength absorbed by the resin composition. At this time, it is preferable to reduce the difference between the wavelength of the laser light and the wavelength at which the absorptivity of the resin composition is the highest.
  • thermoplastic resins absorb light in various wavelength ranges. Therefore, it is preferable to use a laser beam with a wide wavelength band such as a CO 2 laser.
  • the wavelength of the laser light can be, for example, 0.8 ⁇ m or more and 12 ⁇ m or less.
  • the power at the time of output of the laser light may be set within a range where the resin composition (resin particles) is sufficiently melted and bonded at the scanning speed of the laser light described later. Specifically, it can be 5.0 W or more and 60 W or less. From the viewpoint of reducing the energy of the laser beam to reduce the manufacturing cost and simplifying the configuration of the manufacturing apparatus, the power at the output of the laser beam is preferably 30 W or less, and is 20 W or less It is more preferable that
  • the scanning speed of the laser light may be set within a range that does not increase the manufacturing cost and does not excessively complicate the apparatus configuration. Specifically, it is preferably 1 m / sec to 10 m / sec, more preferably 2 m / sec to 8 m / sec, and still more preferably 3 m / sec to 7 m / sec.
  • the beam diameter of the laser beam can be appropriately set according to the accuracy of the three-dimensional object to be manufactured.
  • process (1) and process (2) In the case of manufacture of a three-dimensional molded item, the above-mentioned process (1) and process (2) are repeated arbitrary times. Thereby, a modeling thing layer will be laminated
  • the step of preheating the resin composition may be performed.
  • the preheating of the resin composition may be performed after the thin layer formation (step (1)) or may be performed before the thin layer formation (step (1)). Also, both of them may be performed.
  • the preheating temperature is set to a temperature lower than the melting temperature of the thermoplastic resin so that the resin compositions do not melt and bond.
  • the preheating temperature is appropriately selected according to the melting temperature of the thermoplastic resin, and can be, for example, 50 ° C. or more and 300 ° C. or less, more preferably 100 ° C. or more and 230 ° C. or less, 150 ° C. or more and 190 ° C. It is more preferable that it is the following.
  • the heating time is preferably 1 to 30 seconds, and more preferably 5 to 20 seconds.
  • the step (2) it is preferable to carry out at least the step (2) under reduced pressure or in an inert gas atmosphere.
  • the pressure when decompressing is preferably 10 ⁇ 2 Pa or less, more preferably 10 ⁇ 3 Pa or less.
  • inert gas examples include nitrogen gas and a noble gas. Among these inert gases, nitrogen (N 2 ) gas, helium (He) gas or argon (Ar) gas is preferable from the viewpoint of availability. From the viewpoint of simplifying the production process, it is preferable to carry out both step (1) and step (2) under reduced pressure or in an inert gas atmosphere.
  • the method for producing a three-dimensional shaped object according to the present embodiment includes (1) a thin layer forming step of forming a thin layer containing the above-mentioned resin composition, and (2) an energy absorber A bonding fluid and a fluid applying step of applying a peeling fluid with less energy absorption than the bonding fluid to adjacent regions of the thin layer, and (3) applying energy to the thin layer after the fluid applying step and bonding An energy irradiation step of melting the thermoplastic resin in the application region of the fluid to form a shaped object layer.
  • the manufacturing method of the said three-dimensional model may include the other process as needed, for example, may include the process etc. of preheating a resin composition.
  • the thin layer which mainly contains the above-mentioned resin composition is formed.
  • the method of forming the thin layer is not particularly limited as long as a layer having a desired thickness can be formed.
  • this step can be a step of laying the resin composition supplied from the resin composition supply unit of the three-dimensional model forming device flatly on the modeling stage by recoater.
  • the thin layer may be formed directly on the shaping stage, or may be formed on a powder material that has already been spread or may be in contact with the already formed shaped material layer.
  • the thickness of the thin layer is the same as the thickness of the desired shaped object layer.
  • the thickness of the thin layer can be optionally set according to the accuracy of the three-dimensional object to be produced, but is usually 0.01 mm or more and 0.30 mm or less.
  • By setting the thickness of the thin layer to 0.01 mm or more it is possible to melt the already-formed shaped object layer by energy irradiation (energy irradiation in the energy irradiating step described later) for forming a new shaped object layer. It can prevent.
  • the thickness of the thin layer is more preferably 0.01 mm or more and 0.20 mm or less.
  • a bonding fluid containing an energy absorbing agent and a peeling fluid with less energy absorption than the bonding fluid are respectively provided in adjacent regions of the thin layer formed in the thin layer forming step.
  • the bonding fluid is selectively applied to the position where the shaped object layer is to be formed, and the peeling fluid is applied to the area where the shaped object layer is not formed.
  • the peeling fluid adjacent to the periphery of the region to which the bonding fluid is applied, the resin particles are less likely to melt and bond in the region where the peeling fluid is applied.
  • Either of the bonding fluid and the peeling fluid may be applied first, but it is preferable to apply the bonding fluid first from the viewpoint of the dimensional accuracy of the resulting three-dimensional object.
  • the method of applying the binding fluid and the release fluid is not particularly limited, and may be, for example, application by a dispenser, application by an inkjet method, spray application, etc. It is preferable to apply at least one of them by the inkjet method from the viewpoint of being able to be applied, and it is more preferable to apply both by the inkjet method.
  • the application amount of the binding fluid and the release fluid is preferably 0.1 to 50 ⁇ L, and more preferably 0.2 to 40 ⁇ L, per 1 mm 3 of the thin layer.
  • the application amount of the bonding fluid and the peeling fluid is in the above range, the powder material in the region forming the shaped object layer and the region not forming the shaped object layer is sufficiently impregnated with the bonding fluid and the peeling fluid, respectively. It is possible to form a three-dimensional object with good dimensional accuracy.
  • the bonding fluid to be applied in this step may be the same as the bonding fluid used in the conventional MJF method, and may be, for example, a composition including at least an energy absorbing agent and a solvent.
  • the binding fluid may contain known dispersants and the like as required.
  • the energy absorbing agent is not particularly limited as long as it can absorb the energy irradiated in the energy irradiation step described later and can efficiently increase the temperature of the region to which the binding fluid is applied.
  • energy absorbers include infrared absorbers such as carbon black, ITO (tin indium oxide), ATO (antimony tin oxide), cyanine dyes, phthalocyanine dyes mainly having aluminum or zinc, various naphthalocyanine compounds, planar Infrared absorbing dyes such as nickel dithiolene complexes having a four-coordinate structure, squalium dyes, quinone compounds, diimmonium compounds, and azo compounds are included.
  • infrared absorbers are preferred, and carbon black is more preferred.
  • the shape of the energy absorbing agent is not particularly limited, but is preferably in the form of particles.
  • the average particle diameter is preferably 0.1 to 1.0 ⁇ m, more preferably 0.1 to 0.5 ⁇ m. If the average particle size of the energy absorbing agent is too large, the energy absorbing agent is less likely to enter the gaps of the resin particles when the bonding fluid is applied on the thin layer. On the other hand, if the average particle diameter of the energy absorbing agent is 0.1 ⁇ m or more, heat can be efficiently transmitted to the thermoplastic resin in the energy irradiation step described later, and the surrounding thermoplastic resin can be melted. Become.
  • the binding fluid preferably contains 0.1 to 10.0% by mass, more preferably 1.0 to 5.0% by mass, of the energy absorbing agent. It becomes possible to fully raise the temperature of the area
  • the solvent is not particularly limited as long as it is a solvent which can disperse the energy absorbing agent and further hardly dissolve the thermoplastic resin and the like in the resin composition, and can be, for example, water.
  • the binding fluid preferably contains 90.0 to 99.9% by mass, and more preferably 95.0 to 99.0% by mass of the solvent.
  • the amount of the solvent in the binding fluid is 90.0% by mass or more, the fluidity of the binding fluid is increased, and for example, it becomes easy to apply by an inkjet method or the like.
  • the viscosity of the binding fluid is preferably 0.5 to 50.0 mPa ⁇ s, and more preferably 1.0 to 20.0 mPa ⁇ s.
  • the viscosity of the bonding fluid is 0.5 mPa ⁇ s or more, the diffusion when the bonding fluid is applied to the thin layer is easily suppressed.
  • the viscosity of the bonding fluid is 50.0 mPa ⁇ s or less, the coating stability of the bonding fluid tends to be enhanced.
  • the peeling fluid to be applied in this step may be a fluid relatively less in energy absorption than the coupling fluid, and may be, for example, a fluid containing water as a main component.
  • the peeling fluid preferably contains 90% by mass or more of water, and more preferably 95% by mass or more. It becomes easy to apply
  • the type of energy to be irradiated in this step is appropriately selected according to the type of energy absorbing agent contained in the binding fluid.
  • Specific examples of the energy include infrared light, white light and the like. Among these, it is possible to melt the thermoplastic resin efficiently in the region where the bonding fluid is applied, while it is difficult to increase the temperature of the thin layer in the region where the peeling fluid is applied.
  • the light is preferably infrared light, more preferably light having a wavelength of 780 to 3000 nm, and still more preferably light having a wavelength of 800 to 2500 nm.
  • the time of energy irradiation in this step is appropriately selected according to the type of the thermoplastic resin contained in the powder material, but in general, it is preferably 5 to 60 seconds, and preferably 10 to 30 seconds. More preferable. By setting the energy irradiation time to 5 seconds or more, it is possible to sufficiently melt the thermoplastic resin and bond them. On the other hand, by setting the time to 60 seconds or less, it is possible to efficiently manufacture a three-dimensional object.
  • a step of preheating the resin composition may be performed.
  • the preheating of the resin composition may be performed after the thin layer formation (step (1)) or may be performed before the thin layer formation (step (1)). Also, both of them may be performed.
  • the preheating temperature is preferably a temperature lower than the melting temperature of the thermoplastic resin and (2) a temperature lower than the boiling point of the solvent contained in the bonding fluid and the peeling fluid applied in the fluid application step. Specifically, the temperature is preferably 50 ° C. to 5 ° C.
  • the temperature is 30 ° C. to 5 ° C. lower More preferable.
  • the heating time is preferably 1 to 60 seconds, more preferably 3 to 20 seconds.
  • Example 1 As a thermoplastic resin, polyamide 12 (PA12, manufactured by Daicel-Evonik Co., Ltd., Diamide L1600 ("Diamide” is a registered trademark of the company) was prepared. Laser diffraction particle size distribution measurement of the thermoplastic resin was equipped with a wet disperser. It ground by the mechanical grinding method until the average particle diameter measured with the apparatus (SYNPATEC company make, HEROS (HELOS)) becomes a value of 50 micrometers. Next, kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was crushed by a free crusher (M-2, manufactured by Nara Machinery Co., Ltd.) to a thickness of 50 nm and a width of 0.5 ⁇ m.
  • PA12 manufactured by Daicel-Evonik Co., Ltd., Diamide L1600
  • Laser diffraction particle size distribution measurement of the thermoplastic resin was equipped with a wet disperser. It ground by the mechanical grinding method until the average particle diameter measured with the apparatus
  • the said flat particle was mixed with the said resin particle with the Henschel mixer (made by Nippon Coke Kogyo Co., Ltd.), and the resin composition 1 was produced.
  • the mass ratio of the thermoplastic resin to the tabular particles was 85:15.
  • Example 2 A resin was prepared in the same manner as in Example 1, except that kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was pulverized by a free crusher (M-2, manufactured by Nara Machine Co., Ltd.) to a thickness of 500 nm and a width of 0.5 ⁇ m. Composition 2 was made.
  • kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was pulverized by a free crusher (M-2, manufactured by Nara Machine Co., Ltd.) to a thickness of 500 nm and a width of 0.5 ⁇ m.
  • Composition 2 was made.
  • Example 3 A resin composition as in Example 1 except that kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was pulverized by a bead mill (UAM015, manufactured by Hiroshima Metal & Machinery Co., Ltd.) and pulverized to a thickness of 50 nm and a width of 1 ⁇ m. 3 was produced.
  • kaolin kaolin
  • Example 4 A resin composition was prepared in the same manner as Example 1, except that kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was crushed using a bead mill (UAM015, manufactured by Hiroshima Metal & Machinery Co., Ltd.) to a thickness of 300 nm and a width of 5 ⁇ m. 4 was produced.
  • kaolin kaolin
  • UAM015 manufactured by Hiroshima Metal & Machinery Co., Ltd.
  • Example 5 A resin composition as in Example 1 except that kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was pulverized by a bead mill (UAM015, manufactured by Hiroshima Metal & Machinery Co., Ltd.) to a thickness of 500 nm and a width of 10 ⁇ m. 5 was produced.
  • kaolin kaolin
  • Example 6 The same as Example 1, except that mica (grind by Yamaguchi Mica, A-11) was crushed as tabular particles instead of kaolin (manufactured by Hayashi Kasei Corp., ASPR 400P) and mica having a thickness of 300 nm and a width of 5 ⁇ m was used. Resin composition 6 was used.
  • Example 7 Resin composition 7 in the same manner as in Example 1 except that talc (manufactured by Hayashi Kasei Co., Ltd., Micron White # 5000) was used instead of kaolin (manufactured by Hayashi Kasei Corp., ASPR 400P) and talc having a thickness of 300 nm and a width of 5 ⁇ m was used. I got
  • thermoplastic resin polypropylene resin pellets (PM600A, manufactured by Sun Aroma Co., Ltd.) were used, and the thermoplastic resin was crushed by a freeze crusher until the average particle size became 50 ⁇ m.
  • talc manufactured by Hayashi Kasei Co., Ltd., Micron White # 5000 was pulverized to a thickness of 300 nm and a width of 5 ⁇ m in the same manner as in Example 1 and mixed to obtain a resin composition 8.
  • the mass ratio of the thermoplastic resin to the tabular particles was 85:15.
  • Example 9 90 parts by mass of polypropylene resin pellet (manufactured by Sun Aroma Co., Ltd., PM600A) and 10 parts by mass of talc (manufactured by Hayashi Kasei Co., Ltd., micron white # 5000 (thickness 3000 nm, width 10 ⁇ m)) in a kneader (Mc 15 manufactured by Xplore) It knead
  • talc manufactured by Hayashi Kasei Co., Ltd., Micron White # 5000
  • the mass ratio of the thermoplastic resin to the tabular particles was 85:15.
  • Comparative Example 1 A resin was prepared in the same manner as in Example 1 except that kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was crushed to a thickness of 10 nm and a width of 0.5 ⁇ m using a free crusher (M-2, manufactured by Nara Machinery Co., Ltd.) Composition 10 was made.
  • kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was crushed to a thickness of 10 nm and a width of 0.5 ⁇ m using a free crusher (M-2, manufactured by Nara Machinery Co., Ltd.) Composition 10 was made.
  • Comparative Example 2 A resin was prepared in the same manner as in Example 1 except that kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was pulverized by a free crusher (M-2, manufactured by Nara Machine Co., Ltd.) to a thickness of 550 nm and a width of 0.5 ⁇ m. Composition 11 was made.
  • kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was pulverized by a free crusher (M-2, manufactured by Nara Machine Co., Ltd.) to a thickness of 550 nm and a width of 0.5 ⁇ m.
  • Composition 11 was made.
  • the thin layer was irradiated with laser light in the range of 15 mm long ⁇ 20 mm wide from a CO 2 laser mounted with a galvanometer scanner for YAG wavelength under the following conditions to produce a shaped material layer. The above-described steps were repeated until the height reached 55 mm, to manufacture laminated three-dimensional objects.
  • Laser power 12 W
  • Laser light wavelength 10.6 ⁇ m
  • Beam diameter 170 ⁇ m on thin layer surface
  • Scanning speed 2000 mm / sec Number of lines: 1 line
  • breaking elongation The breaking elongation was 50% or more ⁇ : The breaking elongation was 10% or more and less than 50% x: The breaking elongation was less than 10%
  • any evaluation of elastic modulus, elongation at break, and warpage was also good (Example 1) ⁇ 9). It is thought that the strength of the three-dimensional object obtained is enhanced by the inclusion of tabular grains of the above thickness.
  • the particles are flat, when the three-dimensional object has tensile strength, the flat particles are easily arranged in the direction of elongation of the resin in the three-dimensional object, and between the resin and the flat particles. It is surmised that it was difficult to create a gap.
  • the resin composition of the present invention it is possible to form a three-dimensional object with high accuracy by any of the powder bed melt bonding method and the MJF method. Therefore, the present invention is considered to contribute to the further spread of the three-dimensional modeling method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention addresses the problem of providing a resin composition for obtaining a three-dimensional model with high dimensional accuracy, which has high strength and high ductility, while being free from thermal warping and the like. A resin composition that solves the above-described problem is used in a three-dimensional modeling method in which a three-dimensional model is formed by repeating formation of a thin layer that contains the resin composition in the form of particles and selective energy irradiation on the thin layer. The resin composition contains thermoplastic resin particles and plate-like particles that have a thickness of 50-500 nm.

Description

樹脂組成物、およびこれを用いた立体造形物の製造方法Resin composition and method for producing three-dimensional object using the same
 本発明は、樹脂組成物、およびこれを用いた立体造形物の製造方法に関する。 The present invention relates to a resin composition and a method for producing a three-dimensional object using the same.
 近年、複雑な形状の立体造形物を比較的容易に製造できる様々な方法が開発されており、このような手法を利用したラピッドプロトタイピングやラピッドマニュファクチュアリングが注目されている。 In recent years, various methods capable of relatively easily producing a three-dimensional object having a complicated shape have been developed, and rapid prototyping and rapid manufacturing using such a method are attracting attention.
 従来、これらの造形物作製方法は、モデリングの分野で広く使用されてきたが、近年、これらの手法を直接製造に展開する動きが活発になっている。立体造形物を直接製造に使用するためには、高強度かつ高延性でさらには造形精度が高いことが求められる。 Conventionally, these three-dimensional object manufacturing methods have been widely used in the field of modeling, but in recent years there has been an increasing movement to expand these methods directly into manufacturing. In order to use a three-dimensional object for direct production, it is required that the high strength, high ductility, and high forming accuracy.
 各種立体造形物の製造方法の中でも、粉末床溶融結合法をはじめとする樹脂粒子を使用した方法は、他の方式に比べて比較的高い造形精度で立体造形物を作製できることが知られている。例えば、粉末床溶融結合法では、樹脂粒子を平らに敷き詰めて薄層を形成する。そして、当該薄層に、パターン状(立体造形物を厚さ方向に微分割したパターン状)にレーザ光を照射する。これにより、レーザ光が照射された領域の樹脂粒子を選択的に焼結または溶融結合(以下、単に「溶融結合」とも称する)させる。そして、得られた造形物層上に樹脂粒子をさらに敷き詰め、同様にレーザ光照射を行う。これらの手順を繰り返すことで、造形物層が積み上げられ、所望の形状の立体造形物が得られる。 Among various methods for producing three-dimensional objects, it is known that a method using resin particles such as powder bed fusion bonding method can produce three-dimensional objects with relatively high forming accuracy as compared with other methods. . For example, in a powder bed melt bonding process, resin particles are laid flat to form a thin layer. Then, the thin layer is irradiated with laser light in a pattern (a pattern in which a three-dimensional object is finely divided in the thickness direction). Thereby, the resin particles in the region irradiated with the laser beam are selectively sintered or melt bonded (hereinafter, also simply referred to as “melt bonding”). Then, resin particles are further spread on the obtained shaped object layer, and laser light irradiation is similarly performed. By repeating these procedures, buildup object layers are piled up and a three-dimensional fabrication thing of a desired shape is obtained.
 しかしながら、上記薄層形成の際、樹脂粒子を隙間なく並べたとしても、樹脂粒子は通常球状である。そのため、隣り合う樹脂粒子どうしの接触面積が非常に少なく、樹脂粒子どうしの界面において、熱が伝わり難い。したがって、薄層にレーザ光を照射した際の溶融状態や、温度にばらつきが生じやすいという課題があった。また同様に、既に形成された造形物層と、新たに形成された薄層(樹脂粒子)との接触面積も少ない。そのため、これらの間でも互いに熱が伝わり難い。したがって、先に形成された造形物層と後に形成される造形物層との間で、熱収縮の度合いが相違し、反り(以下、このようにして発生する反りを「熱反り」とも称する)が発生する、という課題もあった。 However, when forming the thin layer, even if the resin particles are arranged without gaps, the resin particles are usually spherical. Therefore, the contact area between adjacent resin particles is very small, and heat is not easily transmitted at the interface between resin particles. Therefore, there has been a problem that the molten state when the thin layer is irradiated with the laser light and the temperature are easily varied. Similarly, the contact area between the already formed shaped material layer and the newly formed thin layer (resin particles) is also small. Therefore, it is difficult for heat to be transmitted to each other. Therefore, the degree of thermal contraction is different between the previously formed shaped material layer and the later formed shaped material layer, and the warping (hereinafter, the warping generated in this manner is also referred to as “thermal warping”) Was also a problem that
 一方、立体造形物の製造方法として、樹脂組成物をフィラメント状に溶融押出しし、ステージ上に、立体造形物を厚さ方向に微分割した薄層を形成して立体造形物を得る方法(熱溶解積層方式)も知られている。このような樹脂組成物に、各種フィラーを添加することで、得られる立体造形物に導電性を付与したり、得られる立体造形物の弾性率を高めることが提案されている(特許文献1)。 On the other hand, as a method for producing a three-dimensional object, a method of melt extruding a resin composition in the form of filaments and forming a thin layer finely dividing the three-dimensional object in the thickness direction on a stage to obtain a three-dimensional object Melt lamination method is also known. It has been proposed to impart conductivity to the resulting three-dimensional object, or to increase the elastic modulus of the resulting three-dimensional object, by adding various fillers to such resin compositions (Patent Document 1). .
特開2016-28887号公報JP, 2016-28887, A
 また近年、樹脂粒子を利用した、別の立体造形物の製造方法として、以下のような方法も提案されている。まず、樹脂粒子を平らに敷き詰めて薄層を形成する。そして、当該薄層のうち、硬化させたい領域(所望の立体造形物を厚さ方向に微分割したパターン状)にのみ、赤外光吸収剤等を含む結合用流体を塗布する。一方で、結合用流体を塗布しない領域には、結合用流体よりエネルギー吸収の少ない剥離用流体を塗布する。その後、赤外光の照射を行い、結合用流体を塗布した領域の粉末材料のみを加熱溶融させる。そして、これらの工程を繰り返すことで、造形物層が積み上げられ、所望の立体造形物が得られる(以下、当該方法を「MJF方式」とも称する)。当該方法においても、隣り合う粒子どうしの熱伝導性を高めることは難しく、造形物層内の溶融状態にばらつきが生じたり、熱反りが発生したりする、といった課題が生じやすかった。 In recent years, the following methods have also been proposed as another method for producing a three-dimensional object using resin particles. First, resin particles are spread evenly to form a thin layer. Then, a bonding fluid containing an infrared light absorbing agent or the like is applied only to the area to be cured (pattern of the desired three-dimensional object finely divided in the thickness direction) in the thin layer. On the other hand, in the region to which the binding fluid is not applied, a peeling fluid having less energy absorption than the binding fluid is applied. Thereafter, irradiation with infrared light is performed to heat and melt only the powder material in the region to which the bonding fluid is applied. And by repeating these processes, a modeling thing layer is piled up and a desired three-dimensional modeling thing is obtained (Hereinafter, the method is also called "MJF method"). Also in this method, it is difficult to improve the thermal conductivity of adjacent particles, and it is likely that problems occur such as variation in the molten state in the shaped object layer or generation of heat warpage.
 そこで、上述の立体造形物の製造方法に用いられる樹脂粒子の内部に、特許文献1のようにフィラーを含めること等が考えられる。しかしながら、一般的なフィラーを添加しただけでは、隣り合う樹脂粒子間の熱伝導性を高めることは難しく、フィラーを添加することで、却って立体造形物の延性が低くなる、という課題も生じやすかった。 Then, it is possible to include a filler like patent document 1 in the inside of the resin particle used for the manufacturing method of the above-mentioned three-dimensional model. However, it is difficult to improve the thermal conductivity between adjacent resin particles only by adding a general filler, and adding the filler is likely to cause a problem that the ductility of the three-dimensional object is lowered. .
 本発明は、上記課題を鑑みてなされたものである。すなわち本発明は、高強度、かつ高延性であり、さらには熱反り等がなく、寸法精度の高い立体造形物を得るための樹脂組成物の提供、およびこれを用いた立体造形物の製造方法の提供を目的とする。 The present invention has been made in view of the above problems. That is, the present invention provides a resin composition for obtaining a three-dimensional object with high strength, high ductility, and no thermal warpage and high dimensional accuracy, and a method for producing a three-dimensional object using the same. The purpose is to provide
 本発明は、以下の樹脂組成物を提供する。
 [1]粒子状の樹脂組成物を含む薄層の形成および前記薄層へのエネルギー照射の繰り返しによって、立体造形物を形成する立体造形法に使用される樹脂組成物であって、熱可塑性樹脂を含む粒子、および厚み50~500nmである平板状粒子を含む、樹脂組成物。
The present invention provides the following resin composition.
[1] A resin composition used in a three-dimensional shaping method for forming a three-dimensional object by repeating the formation of a thin layer containing a particulate resin composition and the energy irradiation to the thin layer, which is a thermoplastic resin A resin composition comprising: particles comprising: and tabular grains having a thickness of 50 to 500 nm.
 [2]前記平板状粒子は、幅が1~10μmである、[1]に記載の樹脂組成物。
 [3]前記平板状粒子が、前記熱可塑性樹脂を含む粒子の周囲に付着している、[1]または[2]に記載の樹脂組成物。
 [4]前記平板状粒子が、前記熱可塑性樹脂を含む粒子の内部に含まれている、[1]~[3]のいずれかに記載の樹脂組成物。
[2] The resin composition according to [1], wherein the tabular grains have a width of 1 to 10 μm.
[3] The resin composition according to [1] or [2], wherein the tabular grains adhere around the particles containing the thermoplastic resin.
[4] The resin composition according to any one of [1] to [3], wherein the tabular grains are contained in the inside of the particles containing the thermoplastic resin.
 [5]前記平板状粒子は、マグネシウムを含むケイ酸塩化合物である、[1]~[4]のいずれかに記載の樹脂組成物。
 [6]前記平板状粒子は、タルクである、[1]~[5]のいずれかに記載の樹脂組成物。
 [7]前記熱可塑性樹脂が、結晶性樹脂である、[1]~[6]のいずれかに記載の樹脂組成物。
 [8]前記熱可塑性樹脂が、オレフィン樹脂である、[1]~[7]のいずれかに記載の樹脂組成物。
[5] The resin composition according to any one of [1] to [4], wherein the tabular grains are magnesium-containing silicate compounds.
[6] The resin composition according to any one of [1] to [5], wherein the tabular grains are talc.
[7] The resin composition according to any one of [1] to [6], wherein the thermoplastic resin is a crystalline resin.
[8] The resin composition according to any one of [1] to [7], wherein the thermoplastic resin is an olefin resin.
 本発明は、以下の立体造形物、および立体造形物の製造方法を提供する。
 [9]上記[1]~[8]のいずれかに記載の樹脂組成物の硬化物を含む、立体造形物。
 [10]上記[1]~[8]のいずれかに記載の樹脂組成物を含む薄層を形成する薄層形成工程と、前記薄層にレーザ光を選択的に照射して、複数の前記樹脂組成物が溶融結合した造形物層を形成するレーザ光照射工程と、を含み、前記薄層形成工程、および前記レーザ光照射工程を複数回繰り返し、前記造形物層を積層することで立体造形物を形成する、立体造形物の製造方法。
 [11]上記[1]~[8]のいずれかに記載の樹脂組成物を含む薄層を形成する薄層形成工程と、エネルギー吸収剤を含む結合用流体、および前記結合用流体よりエネルギー吸収の少ない剥離用流体を、前記薄層の互いに隣接する領域に塗布する流体塗布工程と、前記流体塗布工程後の前記薄層にエネルギーを照射し、前記結合用流体を塗布した領域の前記熱可塑性樹脂を溶融させて造形物層を形成するエネルギー照射工程と、を含み、前記薄層形成工程、前記流体塗布工程、および前記エネルギー照射工程を複数回繰り返し、前記造形物層を積層することで立体造形物を形成する、立体造形物の製造方法。
The present invention provides the following three-dimensional object and a method for producing the three-dimensional object.
[9] A three-dimensional object including a cured product of the resin composition according to any one of the above [1] to [8].
[10] A thin layer forming step of forming a thin layer containing the resin composition according to any one of the above [1] to [8], and the thin layer is selectively irradiated with a laser beam to form a plurality of the above And a laser beam irradiation step of forming a shaped object layer in which the resin composition is melt-bonded, wherein the thin layer forming step and the laser light irradiation step are repeated a plurality of times, and the shaped object layer is laminated. The manufacturing method of the three-dimensional molded item which forms a thing.
[11] A thin layer forming step of forming a thin layer containing the resin composition according to any one of the above [1] to [8], a bonding fluid containing an energy absorbing agent, and energy absorption from the bonding fluid Applying a peeling fluid with a small amount to the adjacent areas of the thin layer, and applying energy to the thin layer after the fluid applying process, the thermoplasticity of the area to which the bonding fluid is applied An energy irradiation step of melting the resin to form a shaped object layer; repeating the thin layer forming step, the fluid application step, and the energy irradiation step a plurality of times to laminate the shaped object layer; The manufacturing method of the three-dimensional molded item which forms a molded article.
 本発明の樹脂組成物によれば、高強度、かつ高延性であり、さらには熱反り等がなく、寸法精度の高い立体造形物を製造することができる。 According to the resin composition of the present invention, it is possible to manufacture a three-dimensional object with high dimensional accuracy, high strength and high ductility, and no thermal warpage and the like.
 1.樹脂組成物
 本発明の樹脂組成物は、粉末床溶融結合方式やMJF方式等、樹脂を含む粒子を溶融結合させて立体造形物を製造する方法に用いられる。本発明の樹脂組成物には、熱可塑性樹脂を含む粒子(以下、単に「樹脂粒子」とも称する)、および平板状粒子が含まれる。ここで、本明細書において、平板状粒子とは、対向する2つの主平面を有し、これら2つの主平面の間の距離(厚み)が、主平面の最大径(以下、「幅」とも称する)および最小径に対して十分に小さい粒子をいう。
1. Resin Composition The resin composition of the present invention is used in a method for producing a three-dimensional object by melt bonding particles containing a resin, such as a powder bed melt bonding method or an MJF method. The resin composition of the present invention includes particles (hereinafter, also simply referred to as “resin particles”) containing a thermoplastic resin, and tabular particles. Here, in the present specification, tabular grains have two main planes facing each other, and the distance (thickness) between these two main planes is also the maximum diameter of the main planes (hereinafter referred to as "width"). And small enough for the smallest diameter.
 前述のように、粉末床溶融結合方式やMJF方式では、樹脂粒子からなる薄層を形成し、当該薄層にエネルギーを照射する。これにより、隣り合う樹脂粒子どうしを溶融結合させて、立体造形物を厚さ方向に微分割した造形物層を得る。しかしながら、樹脂粒子は通常球状であることから、隣り合う樹脂粒子どうしの接触面積が非常に少なく、熱が伝わり難い。その結果、造形物層内で、各樹脂粒子の溶融状態や温度がばらつきやすい、という課題があった。さらに、先に形成された造形物層と、後に形成される造形物層との間の熱伝導性も低く、これらの熱収縮の度合いの相違によって、熱反りが生じやすい、という課題もあった。 As described above, in the powder bed fusion bonding method or the MJF method, a thin layer made of resin particles is formed, and the thin layer is irradiated with energy. Thereby, adjacent resin particles are melt-bonded to obtain a shaped object layer in which the three-dimensional shaped object is finely divided in the thickness direction. However, since the resin particles are usually spherical, the contact area between adjacent resin particles is very small, and heat is not easily transmitted. As a result, there has been a problem that the molten state and the temperature of each resin particle are likely to be dispersed in the formed object layer. Furthermore, the thermal conductivity between the formed object layer formed earlier and the formed object layer formed later is also low, and there is also a problem that heat warpage is easily generated due to the difference in the degree of heat contraction of these layers. .
 このような課題に対し、本発明の樹脂組成物には、樹脂粒子と共に、厚さが50nm~500nmである平板状粒子が含まれる。当該平板状粒子は、その厚みが十分に薄いことから、平板状粒子内で温度が均一になりやすい。そして、このような平板状粒子によって、隣り合う樹脂粒子の温度を均一化することが可能となる。つまり、本発明の樹脂組成物では、各樹脂粒子の溶融状態が均一になりやすく、得られる立体造形物の寸法精度や強度が高まる。 In order to address such problems, the resin composition of the present invention contains tabular particles having a thickness of 50 nm to 500 nm, together with resin particles. Since the tabular grains have a sufficiently small thickness, the temperature is likely to be uniform in the tabular grains. And it becomes possible to equalize the temperature of the resin particle which adjoins by such flat particle. That is, in the resin composition of the present invention, the molten state of each resin particle is likely to be uniform, and the dimensional accuracy and strength of the resulting three-dimensional object are enhanced.
 また同様に、本発明の樹脂組成物によれば、先に形成された造形物層と、その上に配置される樹脂組成物を含む薄層との温度も均一化されやすくなる。その結果、先に形成される造形物層と後に形成される造形物層との間で、熱収縮の度合いがばらつき難くなり、熱反り等が発生し難くなることでも寸法精度が高まる。 Similarly, according to the resin composition of the present invention, the temperatures of the previously formed shaped material layer and the thin layer containing the resin composition disposed thereon are easily made uniform. As a result, the degree of thermal contraction hardly varies between the formed object layer to be formed first and the formed object layer to be formed later, and the dimensional accuracy is enhanced even if the heat warpage or the like is not easily generated.
 また、得られる立体造形物内に、上記厚みの平板状粒子が含まれると、立体造形物の弾性率が高くなり、立体造形物の強度が高くなる。さらに、従来の一般的な球状のセラミック粒子が立体造形物に含まれる場合、立体造形物に引っ張り応力等がかかると、樹脂とセラミック粒子との弾性率の違いによって、樹脂とセラミック粒子との間に隙間や亀裂が生じやすい。そして、このような隙間や亀裂が繋がることで、立体造形物が破断しやすくなる。これに対し、平板状粒子を含む立体造形物に引張応力がかかると、平板状粒子は、その引張方向と平行に配列する性質を有する。したがって、平板状粒子を含む立体造形物では、引張応力がかかった際に、樹脂と当該平板状粒子との間に隙間や亀裂が生じ難く、立体造形物の延性が高まる、という利点もある。 Moreover, when the tabular particle of the said thickness is contained in the three-dimensional molded item obtained, the elasticity modulus of a three-dimensional molded item becomes high and the intensity | strength of a three-dimensional molded item becomes high. Furthermore, when a conventional general spherical ceramic particle is included in the three-dimensional object, when a tensile stress or the like is applied to the three-dimensional object, the resin and the ceramic particle are separated due to the difference in elastic modulus between the resin and the ceramic particle. And cracks are likely to occur. And a three-dimensional model becomes easy to fracture because such a crevice and a crack connect. On the other hand, when a tensile stress is applied to a three-dimensional object including tabular grains, the tabular grains have the property of being arranged in parallel with the tensile direction. Therefore, in the case of a three-dimensional object containing flat particles, when tensile stress is applied, it is difficult to form a gap or a crack between the resin and the flat particles, and there is also an advantage that the ductility of the three-dimensional object is increased.
 また、本発明の樹脂組成物において、樹脂粒子に含まれる熱可塑性樹脂が結晶性樹脂である場合、造形物層形成の際に溶融した熱可塑性樹脂が、平板状粒子を核剤として結晶成長しやすくなる。その結果、立体造形物に均一な結晶構造の樹脂が含まれやすくなり、立体造形物の強度や延性が均一化されやすくなる。また、いびつな結晶成長が抑制されることで、寸法精度も高まりやすくなる。 In the resin composition of the present invention, when the thermoplastic resin contained in the resin particles is a crystalline resin, the thermoplastic resin melted during the formation of the shaped object layer is crystal-grown using the plate-like particles as a nucleating agent. It will be easier. As a result, the resin of a uniform crystal structure is likely to be contained in the three-dimensional object, and the strength and ductility of the three-dimensional object are likely to be uniform. In addition, by suppressing irregular crystal growth, dimensional accuracy can be easily enhanced.
 ここで、本発明の樹脂組成物では、上記平板状粒子が、樹脂粒子の内部に含まれていてもよい。また、上記平板状粒子が、樹脂粒子の周囲に付着していてもよい。さらに、上記平板状粒子が、樹脂粒子の内部および樹脂粒子の周囲に含まれていてもよい。ただし、平板状粒子が樹脂粒子の周囲に付着していると、造形物層形成の際に、隣り合う樹脂粒子どうしの間に平板状粒子が含まれやすくなる。その結果、隣り合う樹脂粒子の温度や溶融状態がより均一化されやすくなる観点から好ましい。なお、平板状粒子が樹脂粒子の内部にも含まれている場合、得られる立体造形物の強度がより高まりやすくなる。 Here, in the resin composition of the present invention, the above-mentioned tabular particles may be contained inside the resin particles. Further, the tabular particles may be attached to the periphery of the resin particles. Furthermore, the tabular grains may be contained inside the resin particles and around the resin particles. However, when the tabular particles are attached to the periphery of the resin particles, the tabular particles are likely to be contained between the adjacent resin particles when forming the shaped object layer. As a result, it is preferable from the viewpoint that the temperature and the molten state of the adjacent resin particles are easily uniformed. In addition, when flat particles are also contained in the inside of the resin particle, the strength of the obtained three-dimensional object is likely to be further enhanced.
 なお、平板状粒子が樹脂粒子の周囲に付着している場合、樹脂粒子の表面積に対して10~80%の領域に平板状粒子が付着していることが好ましい。樹脂粒子の表面積に対して、平板状粒子が付着している領域の面積が80%以下であれば、立体造形物の作製の際に、樹脂粒子どうしが十分に溶融結合しやすくなる。一方、樹脂粒子の表面積に対して10%以上の領域が平板状粒子で覆われていると、平板状粒子による熱伝導性が高まり、隣り合う樹脂粒子の温度や溶融状態が均一になりやすくなる。なお、平板状粒子が樹脂粒子の周囲に、どの程度付着しているかは、樹脂粒子の粒子径、平板状粒子を平面視視したときの面積、熱可塑性樹脂と平板状粒子との含有比等から算出可能である。また、平板状粒子が周囲に付着している樹脂粒子について、溶剤等で樹脂を溶解させて、平板状粒子の含有量や形状を特定し、これらと樹脂粒子の形状(粒径等)とから、平板状樹脂粒子が付着している面積を算出してもよい。以下、当該樹脂組成物に含まれる平板状粒子および熱可塑性樹脂、さらにその他の成分等について詳しく説明する。 When the tabular particles are attached to the periphery of the resin particles, it is preferable that the tabular particles are attached to a region of 10 to 80% of the surface area of the resin particles. If the area of the region to which the tabular particles are attached is 80% or less with respect to the surface area of the resin particles, the resin particles are easily melt-bonded to each other during production of the three-dimensional object. On the other hand, when the area of 10% or more of the surface area of the resin particles is covered with the tabular particles, the thermal conductivity by the tabular particles is increased, and the temperature and the molten state of adjacent resin particles are likely to be uniform. . The extent to which the tabular particles are attached around the resin particles depends on the particle diameter of the resin particles, the area of the tabular particles in plan view, the content ratio of the thermoplastic resin to the tabular particles, etc. It can be calculated from In addition, the resin particles in which the tabular particles are attached to the periphery are dissolved with a solvent or the like to determine the content and shape of the tabular particles, and based on these and the shape of the resin particles (particle diameter etc.) The area to which the tabular resin particles are attached may be calculated. Hereinafter, the tabular particles and the thermoplastic resin, and the other components and the like contained in the resin composition will be described in detail.
 (平板状粒子)
 本発明の樹脂組成物に含まれる平板状粒子は、厚みが50~500nmであり、かつ平板状の粒子であれば特に制限されない。平板状粒子の厚みは、100~400nmであることがより好ましく、150~300nmであることがさらに好ましい。平板状粒子の厚みが50nm以上であると、得られる立体造形物の強度が高まりやすい。一方、平板状粒子の厚みが500nm以下であると、熱伝導性が良好になりやすい。
(Tabular grain)
The tabular grains contained in the resin composition of the present invention are not particularly limited as long as they have a thickness of 50 to 500 nm and are tabular grains. The thickness of the tabular grains is more preferably 100 to 400 nm, still more preferably 150 to 300 nm. When the thickness of the tabular grains is 50 nm or more, the strength of the obtained three-dimensional object is likely to be increased. On the other hand, when the thickness of the tabular grains is 500 nm or less, the thermal conductivity tends to be favorable.
 平板状粒子を平面視したときの形状は、円形状であってもよく、楕円状であってもよく、多角形状であってもよい。これらの中でも、楕円状であることがより好ましい。また、平板状粒子を平面視したときの粒子の幅(平均最大径)は、1~10μmであることが好ましく、2~8μmであることがより好ましく、3~6μmであることがさらに好ましい。平板状粒子の幅(平均最大径)が過度に大きいと、立体造形物の寸法精度が低下したり、平板状粒子が、樹脂粒子の溶融結合を阻害しやすくなる。一方、平板状粒子の幅(平均最大径)が小さすぎると、平板状粒子によって、隣り合う樹脂粒子に十分に熱を伝えられないことがある。 The shape of the tabular grains in plan view may be circular, elliptical or polygonal. Among these, an elliptical shape is more preferable. In addition, the width (average maximum diameter) of the tabular particles when viewed in plan is preferably 1 to 10 μm, more preferably 2 to 8 μm, and still more preferably 3 to 6 μm. When the width (average maximum diameter) of the tabular grains is excessively large, the dimensional accuracy of the three-dimensional object is lowered, and the tabular grains are likely to inhibit the melt bonding of the resin particles. On the other hand, when the width (average maximum diameter) of the tabular grains is too small, the tabular grains may not be able to sufficiently transfer heat to the adjacent resin grains.
 また、平板状粒子を平面視したときの平均最小径は、1~6μmであることが好ましく、2~5μmであることがより好ましい。 The average minimum diameter of the tabular grains in plan view is preferably 1 to 6 μm, and more preferably 2 to 5 μm.
 なお、平板状粒子の平均厚みと平均最大径(幅)との比(幅/厚み)は、5~15であることが好ましく、10~12であることがより好ましい。一方、平板状粒子の平均厚みと平均最小径との比(最小径/厚み)は、5~13であることが好ましく、6~11であることがより好ましい。平板状粒子の厚みと、幅や平均最小径との比が上記範囲であると、平板状粒子の熱伝導性が良好になりやすい。 The ratio (width / thickness) of the average thickness of the tabular grains to the average maximum diameter (width) is preferably 5 to 15, and more preferably 10 to 12. On the other hand, the ratio (minimum diameter / thickness) of the average thickness of the tabular grains to the average minimum diameter is preferably 5 to 13, and more preferably 6 to 11. When the ratio of the thickness of the tabular grains to the width or the average minimum diameter is in the above range, the thermal conductivity of the tabular grains tends to be favorable.
 平板状粒子物の厚みや最大径、幅は、例えば以下のように特定される。熱可塑性樹脂を溶解可能な溶剤等を用いて、熱可塑性樹脂を除去し、平板状粒子のみを取り出す。なお、樹脂が溶剤に溶けにくい場合には、必要に応じて加熱を行う。そして、当該平板状粒子の量が15質量%となるように、プロピレン樹脂と乾式混合する。そして、公知の小型混練機および射出成形機を用い、例えば長さ175mmのダンベル試験片を作製する。ただし、試験片の形状は、平板状粒子の断面を100以上測定可能であれば特に制限されない。そして、当該試験片を液体窒素に10分以上浸して、当該液体窒素中で凍結させながら割る。当該破断面に存在する平板状粒子について、100個の厚み、100個の最大径(幅)、および100個の平均最小径等をそれぞれ電子顕微鏡(SEM)にて観察し、ヒストグラムを作成する。そして、これらのデータから、平均値をそれぞれについて算出し、平均値を平板状粒子の厚み、幅、および平均最小径として採用する。 The thickness, maximum diameter and width of tabular grains are specified, for example, as follows. The thermoplastic resin is removed using a solvent or the like capable of dissolving the thermoplastic resin, and only the tabular particles are taken out. If the resin is difficult to dissolve in the solvent, heating is performed as needed. Then, dry mixing is performed with a propylene resin so that the amount of the tabular grains is 15% by mass. Then, using, for example, a known small kneader and injection molding machine, a dumbbell test piece having a length of 175 mm is produced. However, the shape of the test piece is not particularly limited as long as it can measure 100 or more of the cross section of tabular grains. Then, the test piece is immersed in liquid nitrogen for 10 minutes or more and broken while being frozen in the liquid nitrogen. With respect to tabular grains present on the fractured surface, a thickness of 100 pieces, a maximum diameter (width) of 100 pieces, an average minimum diameter of 100 pieces, and the like are observed with an electron microscope (SEM) to create a histogram. Then, from these data, an average value is calculated for each, and the average value is adopted as the thickness, width, and average minimum diameter of tabular grains.
 平板状粒子の例には、一般に層状粘土鉱物と称される各種粒子が含まれる。平板状粒子の具体例には、カオリン;タルク;マイカ;モンモリロナイト、バイデライト、ヘクトライト、サポナイト、ノントロナイト、スチーブンサイト等のスメクタイト系鉱物;バーミキュライト;ベントナイト;カネマイト、ケニアナイト、マカナイト等の層状ケイ酸ナトリウム;Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の雲母族粘土鉱物;等が含まれる。このような平板状粒子は、天然の鉱物から得られたものであってもよく、化学的に合成されたものであってもよい。さらに、平板状粒子は、表面がアンモニウム塩等で修飾(表面処理)されたものであってもよい。 Examples of tabular grains include various grains commonly referred to as layered clay minerals. Specific examples of tabular grains include kaolin; talc; mica; smectite minerals such as montmorillonite, beidellite, hectorite, saponite, nontronite, and stevensite; vermiculite; bentonite; kanemite; Sodium acid; mica group clay minerals such as Na-type tetrasilastic fluorine mica, Li-type tetrasilisic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, etc. are included. Such tabular grains may be obtained from natural minerals or may be chemically synthesized. Furthermore, the tabular grains may have their surfaces modified (surface-treated) with an ammonium salt or the like.
 これらの中でも、熱伝導率が0.5~5.0W・m-1・K-1である化合物が好ましい。平板状粒子が上記熱伝導率を有すると、平板状粒子によって、隣り合う樹脂粒子の温度等が均一化されやすくなる。 Among these, compounds having a thermal conductivity of 0.5 to 5.0 W · m −1 · K −1 are preferable. When the tabular grains have the above-described thermal conductivity, the tabular grains easily make the temperature and the like of the adjacent resin grains uniform.
 また特に熱伝導性が良好であるとの観点から、マグネシウムを含むケイ酸塩化合物であることが好ましく、タルク、マイカであることが好ましい。なお、平板状粒子の成分分析は、例えばX線光電子分光分析法XPS(X-ray Photoelectron Spectroscopy)やESCA(Electron Spectroscopy for Chemical Analysis,エスカ)により行うことができる。具体的な装置としては、VGサイエンティフィックス社製のESCALAB-200R光電子分光装置等が含まれる。 Further, from the viewpoint of particularly good thermal conductivity, it is preferably a silicate compound containing magnesium, and talc and mica are preferred. The component analysis of tabular grains can be performed by, for example, X-ray photoelectron spectroscopy (XPS) or electron spectroscopy for chemical analysis (ESCA). Specific examples include ESCALAB-200R photoelectron spectrometer manufactured by VG Scientific, Inc., and the like.
 平板状粒子は、樹脂組成物の全量100質量部に対して、5~40質量部含まれることが好ましく、10~20質量部含まれることがより好ましい。樹脂組成物中の平板状粒子の量が少なすぎると、上述の熱伝導性が十分に発揮され難くなったり、立体造形物の強度が十分に高まり難くなることがある。一方、平板状粒子の量が過剰である場合、相対的に熱可塑性樹脂の量が減少するため、熱可塑性樹脂が十分に溶融結合できず、立体造形物の強度が低下することがある。 The tabular grains are preferably contained in an amount of 5 to 40 parts by mass, more preferably 10 to 20 parts by mass, with respect to 100 parts by mass of the total amount of the resin composition. When the amount of tabular particles in the resin composition is too small, the above-mentioned thermal conductivity may not be sufficiently exhibited or the strength of the three-dimensional object may not be sufficiently increased. On the other hand, when the amount of tabular grains is excessive, the amount of the thermoplastic resin relatively decreases, so that the thermoplastic resin can not be sufficiently melt-bonded, and the strength of the three-dimensional object may be reduced.
 (熱可塑性樹脂)
 樹脂組成物に含まれる熱可塑性樹脂の種類は、立体造形物の形成方法に応じて適宜選択される。当該熱可塑性樹脂としては、一般的な粉末床溶融結合方式用の樹脂組成物に含まれる樹脂や、MJF方式用の樹脂組成物に含まれる樹脂とすることができ、樹脂粒子には、熱可塑性樹脂が一種のみ含まれていてもよく、二種以上含まれていてもよい。
(Thermoplastic resin)
The kind of thermoplastic resin contained in a resin composition is suitably selected according to the formation method of a three-dimensional model. The thermoplastic resin may be a resin contained in a resin composition for a general powder bed melt bonding method or a resin contained in a resin composition for an MJF method, and the resin particles may be thermoplastic. Only one kind of resin may be contained, or two or more kinds may be contained.
 ただし、熱可塑性樹脂の溶融温度が高すぎると、立体造形物の作製時に、樹脂粒子を溶融させるために高温までエネルギー照射する必要が生じ、立体造形物の作製に時間がかかったりすること等がある。そこで、熱可塑性樹脂の溶融温度は、300℃以下であることが好ましく、230℃以下であることがより好ましい。一方、得られる立体造形物の耐熱性等の観点から、熱可塑性樹脂の溶融温度は100℃以上であることが好ましく、150℃以上であることがより好ましい。溶融温度は、熱可塑性樹脂の種類等によって調整することができる。 However, if the melting temperature of the thermoplastic resin is too high, it may be necessary to irradiate energy to a high temperature in order to melt the resin particles when producing the three-dimensional object, and it may take time to produce the three-dimensional object, etc. is there. Then, it is preferable that it is 300 degrees C or less, and, as for the melting temperature of a thermoplastic resin, it is more preferable that it is 230 degrees C or less. On the other hand, the melting temperature of the thermoplastic resin is preferably 100 ° C. or more, and more preferably 150 ° C. or more, from the viewpoint of the heat resistance and the like of the three-dimensional object to be obtained. The melting temperature can be adjusted by the type of thermoplastic resin and the like.
 ここで、熱可塑性樹脂は結晶性の樹脂であってもよく、非晶性の樹脂であってもよいが、上述のように、熱可塑性樹脂が結晶性樹脂であると、平板状粒子を核剤として、均一な結晶を形成しやすくなる、という利点がある。結晶性樹脂の例には、ポリアミド12、ポリ乳酸、ポリプロピレン等のポリオレフィン樹脂、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート等が含まれる。これらの中でも、平板状粒子と結晶構造が近く、平板状粒子を核剤として均一に結晶化しやすいとの観点から、ポリアミド12またはオレフィン樹脂が好ましく、特にポリプロピレン樹脂であることが好ましい。 Here, the thermoplastic resin may be a crystalline resin or an amorphous resin, but as described above, when the thermoplastic resin is a crystalline resin, the tabular particles are cored As an agent, there is an advantage that it becomes easy to form uniform crystals. Examples of the crystalline resin include polyamide 12, polyolefin resins such as polylactic acid and polypropylene, polyphenylene sulfide (PPS), polybutylene terephthalate and the like. Among them, polyamide 12 or an olefin resin is preferable, and a polypropylene resin is particularly preferable, from the viewpoint that the tabular particles and the crystal structure are close to each other, and it is easily crystallized uniformly using the tabular particles as a nucleating agent.
 ここで、熱可塑性樹脂は、樹脂組成物の全量100質量部に対して、60~95質量部含まれることが好ましく、80~90質量部含まれることがより好ましい。樹脂組成物中の熱可塑性樹脂の量が少なすぎると、立体造形物の強度が低下しやすくなる。一方、樹脂組成物の量が多すぎると、相対的に平板状粒子の量が減少し、上述の熱伝導性を発揮することが難しくなる。 Here, the thermoplastic resin is preferably contained in an amount of 60 to 95 parts by mass, more preferably 80 to 90 parts by mass, with respect to 100 parts by mass of the total amount of the resin composition. When the amount of the thermoplastic resin in the resin composition is too small, the strength of the three-dimensional object tends to be reduced. On the other hand, when the amount of the resin composition is too large, the amount of tabular grains relatively decreases, and it becomes difficult to exhibit the above-mentioned thermal conductivity.
 また、熱可塑性樹脂を含む樹脂粒子の形状は特に制限されないが、立体造形物の寸法精度を高めるとの観点から、その形状は球状であることが好ましい。さらに、当該樹脂粒子の大きさ(直径)は、20~100μmであることが好ましく、30~70μmであることがより好ましい。樹脂粒子の大きさが100μm以下であると、微細な構造の立体造形物を作製することが可能となる。一方、樹脂粒子の大きさは、十分な流動性を有し、かつ製造コストや取り扱い性が良好になる等の観点から20μm以上であることが好ましい。上記平均粒子径は、動的光散乱法により測定した体積平均粒子径とする。体積平均粒子径は、湿式分散機を備えたレーザ回折式粒度分布測定装置(マイクロトラックベル社製、MT3300EXII)により測定することができる。 Further, the shape of the resin particles containing a thermoplastic resin is not particularly limited, but from the viewpoint of enhancing the dimensional accuracy of the three-dimensional object, the shape is preferably spherical. Furthermore, the size (diameter) of the resin particles is preferably 20 to 100 μm, and more preferably 30 to 70 μm. When the size of the resin particles is 100 μm or less, it is possible to produce a three-dimensional object with a fine structure. On the other hand, the size of the resin particles is preferably 20 μm or more from the viewpoint of sufficient fluidity and good manufacturing cost and handling. The average particle size is a volume average particle size measured by a dynamic light scattering method. The volume average particle size can be measured by a laser diffraction type particle size distribution measuring apparatus (manufactured by Microtrack Bell, MT3300EXII) equipped with a wet disperser.
 (その他の成分)
 樹脂組成物には、本発明の目的および効果を損なわない範囲で、上記平板状粒子および熱可塑性樹脂以外の成分が含まれていてもよい。その他の成分の例には、各種添加剤、充填剤等が含まれる。
(Other ingredients)
The resin composition may contain components other than the above-mentioned tabular particles and the thermoplastic resin, as long as the objects and effects of the present invention are not impaired. Examples of other components include various additives, fillers and the like.
 各種添加剤の例には、酸化防止剤、酸性化合物及びその誘導体、滑剤、紫外線吸収剤、光安定剤、核剤、難燃剤、衝撃改良剤、発泡剤、着色剤、有機過酸化物、展着剤、粘着剤等が含まれる。樹脂組成物には、これらが一種のみ含まれてもよく、二種以上含まれていてもよい。また、これらは、本発明の目的を損なわない範囲で、樹脂粒子の表面に塗布されていてもよい。 Examples of various additives include antioxidants, acidic compounds and derivatives thereof, lubricants, UV absorbers, light stabilizers, nucleating agents, flame retardants, impact modifiers, blowing agents, colorants, organic peroxides, Adhesives, adhesives and the like are included. The resin composition may contain only one of these, or two or more of these. Moreover, these may be apply | coated to the surface of the resin particle in the range which does not impair the objective of this invention.
 充填材の例には、上述の平板状粒子に相当しない無機系の粒子や、各種繊維等が含まれる。その例には、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、ガラスバルーン、ガラスカットファイバー、ガラスミルドファイバー、ガラスフレーク、ガラス粉末、炭化ケイ素、窒化ケイ素、石膏、石膏ウィスカー、焼成カオリン、カーボンブラック、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、金属繊維、金属ウィスカー、金属粉、セラミックウィスカー、チタン酸カリウム、窒化ホウ素、グラファイト、炭素繊維等の無機充填材;多糖類のナノファイバー等の有機充填剤;各種ポリマー等が含まれる。樹脂組成物には、これらが一種のみ含まれてもよく、二種以上含まれていてもよい。ただし、これらの量は、上述の平板状粒子より少ない量であることが好ましい。 Examples of the filler include inorganic particles that do not correspond to the above-described flat particles, various fibers, and the like. Examples thereof are talc, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, glass cut fiber, Glass milled fiber, glass flake, glass powder, silicon carbide, silicon nitride, gypsum, gypsum whisker, calcined kaolin, carbon black, zinc oxide, antimony trioxide, zeolite, hydrotalcite, metal fiber, metal whisker, metal powder, ceramic Inorganic fillers such as whiskers, potassium titanate, boron nitride, graphite, and carbon fibers; organic fillers such as polysaccharide nanofibers; various polymers. The resin composition may contain only one of these, or two or more of these. However, these amounts are preferably smaller than the tabular grains described above.
 また、粉末床溶融結合法に用いられる樹脂組成物には、レーザ吸収剤等が含まれていてもよい。レーザ吸収剤の例には、カーボン粉末、ナイロン樹脂粉末、顔料、および染料等が含まれる。これらのレーザ吸収剤は、樹脂組成物中に一種類のみ含まれていてもよく、二種類以上含まれていてもよい。 The resin composition used in the powder bed melt bonding method may contain a laser absorber and the like. Examples of laser absorbers include carbon powder, nylon resin powder, pigments, dyes and the like. These laser absorbers may be contained alone in the resin composition, or in two or more kinds.
 (樹脂組成物の製造方法)
 上記樹脂組成物の製造方法は特に制限されず、平板状粒子が樹脂粒子の周囲に付着している態様であるか、平板状粒子が樹脂粒子の内部に含まれている態様であるかによって適宜選択される。例えば、平板状粒子が樹脂粒子の周囲に付着している樹脂組成物は、樹脂粒子を予め作製し、当該樹脂粒子と平板状粒子とを公知の方法で混合することで作製することができる。一方、平板状粒子が樹脂粒子の内側に含まれている樹脂組成物は、平板状粒子と樹脂とを溶融混練し、これらを凍結粉砕機等により粉砕することで作製することができる。また、平板状粒子が樹脂粒子の内側および周囲に存在する樹脂組成物は、これらの方法を組み合わせることにより作製することができる。
(Method for producing resin composition)
The method for producing the resin composition is not particularly limited, and it may be appropriately selected depending on whether the tabular particles are attached to the periphery of the resin particles or the tabular particles are contained in the resin particles. It is selected. For example, the resin composition in which the tabular particles adhere around the resin particles can be prepared by preparing resin particles in advance and mixing the resin particles with the tabular particles by a known method. On the other hand, the resin composition in which the tabular particles are contained inside the resin particles can be produced by melt-kneading the tabular particles and the resin, and pulverizing these with a freeze crusher or the like. Also, resin compositions in which tabular grains are present inside and around resin particles can be prepared by combining these methods.
 2.立体造形物の製造方法
 上述の樹脂組成物は、前述のように、粉末床結合溶融方式、またはMJF方式による立体造形物の製造方法に用いることができる。以下、上記樹脂組成物を用いた立体造形方法について、それぞれ説明するが、本発明は、これらの方法に制限されない。
2. Method for Producing Three-Dimensional Shaped Object As described above, the resin composition described above can be used in a method for producing a three-dimensional shaped object by a powder bed bonding melting method or an MJF method. Hereinafter, although the three-dimensional modeling method using the said resin composition is each demonstrated, this invention is not restrict | limited to these methods.
 2-1.粉末床結合溶融方式による立体造形物の製造方法
 粉末床結合溶融方式による立体造形物の製造方法では、前記樹脂組成物を用いる以外は、通常の粉末床結合溶融方式と同様に行うことができる。具体的には、(1)前述の樹脂組成物を含む薄層を形成する薄層形成工程と、(2)樹脂組成物を含む薄層にレーザ光を選択的に照射して、前記粒子状の樹脂組成物どうしが溶融結合した造形物層を形成するレーザ光照射工程と、を含む方法とすることができる。そして工程(1)および工程(2)を複数回繰り返し、造形物層を積層することで、立体造形物を製造することができる。なお、当該立体造形物の製造方法は、必要に応じて、他の工程を含んでいてもよく、例えば樹脂組成物を予備加熱する工程等を含んでいてもよい。
2-1. Method for Producing Three-Dimensional Shaped Object by Powder Bed Bonding and Melting Method In a method for producing a three-dimensional shaped object by powder bed bonding and melting method, the method can be carried out in the same manner as a normal powder bed bonding and melting method except using the resin composition. Specifically, (1) a thin layer forming step of forming a thin layer containing the above-mentioned resin composition, and (2) a thin layer containing the resin composition is selectively irradiated with a laser beam to form the particles. And a laser beam irradiation step of forming a shaped object layer in which the resin compositions are melt-bonded to each other. And a three-dimensional model can be manufactured by repeating a process (1) and a process (2) multiple times, and laminating | stacking a modeling thing layer. In addition, the manufacturing method of the said three-dimensional model may include the other process as needed, for example, may include the process etc. of preheating a resin composition.
 ・薄層形成工程(工程(1))
 本工程では、樹脂組成物を含む薄層を形成する。たとえば、立体造形装置の粉末供給部から供給された樹脂組成物を、リコータによって造形ステージ上に平らに敷き詰める。薄層は、造形ステージ上に直接形成してもよいし、すでに敷き詰められている粉末材料またはすでに形成されている造形物層の上に接するように形成してもよい。なお、上記樹脂組成物は、必要に応じて別途、フローエージェントやレーザ吸収剤と混合して用いてもよい。
.Thin layer forming step (step (1))
In this step, a thin layer containing a resin composition is formed. For example, the resin composition supplied from the powder supply part of a three-dimensional model | molding apparatus is spread on a modeling stage flatly with a recoater. The thin layer may be formed directly on the shaping stage, or may be formed on a powder material that has already been spread or may be in contact with the already formed shaped material layer. The above-mentioned resin composition may be separately mixed with a flow agent or a laser absorbent, if necessary.
 薄層の厚さは、所望の造形物層の厚さと同じとする。薄層の厚さは、製造しようとする立体造形物の精度に応じて任意に設定することができるが、通常、0.01mm以上0.30mm以下である。薄層の厚さを0.01mm以上とすることで、次の造形物層を形成するためのレーザ光照射によって下の層の樹脂組成物が溶融結合されることを防ぐことができ、さらには均一な粉体の敷き詰めが可能となる。また、薄層の厚さを0.30mm以下とすることで、レーザ光のエネルギーを薄層の下部まで伝導させて、薄層を構成する樹脂組成物を、厚み方向の全体にわたって十分に溶融結合させることができる。前記観点からは、薄層の厚さは0.01mm以上0.10mm以下であることがより好ましい。また、薄層の厚み方向の全体にわたってより十分に樹脂組成物を溶融結合させ、造形物層の割れをより生じ難くする観点からは、薄層の厚さは、後述するレーザ光のビームスポット径との差が0.10mm以内になるよう設定することが好ましい。 The thickness of the thin layer is the same as the thickness of the desired shaped object layer. The thickness of the thin layer can be optionally set according to the accuracy of the three-dimensional object to be produced, but is usually 0.01 mm or more and 0.30 mm or less. By setting the thickness of the thin layer to 0.01 mm or more, it is possible to prevent the resin composition of the lower layer from being melt-bonded by laser light irradiation for forming the next shaped object layer, and further, It is possible to spread the powder uniformly. Further, by setting the thickness of the thin layer to 0.30 mm or less, the energy of the laser beam is conducted to the lower part of the thin layer, and the resin composition constituting the thin layer is sufficiently melt-bonded along the entire thickness direction. It can be done. From the above viewpoint, the thickness of the thin layer is more preferably 0.01 mm or more and 0.10 mm or less. In addition, from the viewpoint of making the resin composition melt and bond more sufficiently throughout the thickness direction of the thin layer and making the formation layer more difficult to crack, the thickness of the thin layer is the beam spot diameter of the laser light described later It is preferable to set so that the difference with it becomes less than 0.10 mm.
 ここで、樹脂組成物と混合可能なレーザ吸収剤の例には、カーボン粉末、ナイロン樹脂粉末、顔料、および染料等が含まれる。レーザ吸収剤の量は、上記樹脂組成物の溶融結合が容易になる範囲で適宜設定することができる。例えば、熱可塑性樹脂の全質量に対して、0質量%より多く3質量%未満とすることができる。レーザ吸収剤は、一種のみ用いてもよく、二種以上を組み合わせて用いてもよい。 Here, examples of the laser absorber that can be mixed with the resin composition include carbon powder, nylon resin powder, pigments, dyes, and the like. The amount of the laser absorber can be appropriately set within the range in which the melt bonding of the resin composition becomes easy. For example, it can be more than 0% by mass and less than 3% by mass with respect to the total mass of the thermoplastic resin. The laser absorbent may be used alone or in combination of two or more.
 一方、樹脂組成物と混合可能なフローエージェントは、摩擦係数が小さく、自己潤滑性を有する材料であればよい。このようなフローエージェントの例には、二酸化ケイ素および窒化ホウ素が含まれる。これらのフローエージェントは、一種のみ用いてもよく、二種を組み合わせて用いてもよい。フローエージェントの量は、樹脂粒子等の流動性を向上させ、かつ樹脂粒子の溶融結合が十分に生じる範囲で適宜設定することができる。たとえば、熱可塑性樹脂の質量に対して、0質量%より多く2質量%未満とすることができる。 On the other hand, the flow agent that can be mixed with the resin composition may be a material having a small coefficient of friction and having self-lubricity. Examples of such flow agents include silicon dioxide and boron nitride. These flow agents may be used alone or in combination of two. The amount of the flow agent can be appropriately set within a range in which the fluidity of the resin particles and the like can be improved and the melt bonding of the resin particles can be sufficiently generated. For example, it can be more than 0% by mass and less than 2% by mass with respect to the mass of the thermoplastic resin.
 ・レーザ光照射工程(工程(2))
 本工程では、樹脂組成物を含む薄層のうち、造形物層を形成すべき位置にレーザ光を選択的に照射し、照射された位置の樹脂組成物を溶融結合させる。溶融した樹脂組成物は、隣接する樹脂組成物(樹脂粒子)と溶融し合って溶融結合体を形成し、造形物層となる。このとき、レーザ光のエネルギーを受け取った樹脂組成物(樹脂粒子)は、すでに形成された造形物層とも溶融結合するため、隣り合う層間の接着も生じる。
・ Laser beam irradiation process (process (2))
At this process, a laser beam is selectively irradiated to the position which should form a modeling thing layer among the thin layers containing a resin composition, and the resin composition of the irradiated position is melt-bonded. The melted resin composition melts with the adjacent resin composition (resin particles) to form a melt bonded body, and becomes a shaped object layer. At this time, the resin composition (resin particles) that has received the energy of the laser beam also melt-bonds with the already formed shaped material layer, and adhesion between adjacent layers also occurs.
 レーザ光の波長は、樹脂組成物が吸収する波長の範囲内で設定すればよい。このとき、レーザ光の波長と、樹脂組成物の吸収率が最も高くなる波長との差が小さくなるようにすることが好ましいが、一般的に熱可塑性樹脂は様々な波長域の光を吸収するため、COレーザ等の波長帯域の広いレーザ光を用いることが好ましい。たとえば、レーザ光の波長は、例えば0.8μm以上12μm以下とすることができる。 The wavelength of the laser light may be set within the range of the wavelength absorbed by the resin composition. At this time, it is preferable to reduce the difference between the wavelength of the laser light and the wavelength at which the absorptivity of the resin composition is the highest. Generally, thermoplastic resins absorb light in various wavelength ranges. Therefore, it is preferable to use a laser beam with a wide wavelength band such as a CO 2 laser. For example, the wavelength of the laser light can be, for example, 0.8 μm or more and 12 μm or less.
 レーザ光の出力時のパワーは、後述するレーザ光の走査速度において、前記樹脂組成物(樹脂粒子)が十分に溶融結合する範囲内で設定すればよい。具体的には、5.0W以上60W以下とすることができる。レーザ光のエネルギーを低くして、製造コストを低くし、かつ、製造装置の構成を簡易なものにする観点からは、レーザ光の出力時のパワーは30W以下であることが好ましく、20W以下であることがより好ましい。 The power at the time of output of the laser light may be set within a range where the resin composition (resin particles) is sufficiently melted and bonded at the scanning speed of the laser light described later. Specifically, it can be 5.0 W or more and 60 W or less. From the viewpoint of reducing the energy of the laser beam to reduce the manufacturing cost and simplifying the configuration of the manufacturing apparatus, the power at the output of the laser beam is preferably 30 W or less, and is 20 W or less It is more preferable that
 レーザ光の走査速度は、製造コストを高めず、かつ、装置構成を過剰に複雑にしない範囲内で設定すればよい。具体的には、1m/秒以上10m/秒以下とすることが好ましく、2m/秒以上8m/秒以下とすることがより好ましく、3m/秒以上7m/秒以下とすることがさらに好ましい。
 レーザ光のビーム径は、製造しようとする立体造形物の精度に応じて適宜設定することができる。
The scanning speed of the laser light may be set within a range that does not increase the manufacturing cost and does not excessively complicate the apparatus configuration. Specifically, it is preferably 1 m / sec to 10 m / sec, more preferably 2 m / sec to 8 m / sec, and still more preferably 3 m / sec to 7 m / sec.
The beam diameter of the laser beam can be appropriately set according to the accuracy of the three-dimensional object to be manufactured.
 ・工程(1)および工程(2)の繰返しについて
 立体造形物の製造の際には、上述の工程(1)および工程(2)を、任意の回数繰り返す。これにより、造形物層が積層されて、所望の立体造形物が得られることとなる。
-About repetition of process (1) and process (2) In the case of manufacture of a three-dimensional molded item, the above-mentioned process (1) and process (2) are repeated arbitrary times. Thereby, a modeling thing layer will be laminated | stacked and a desired three-dimensional modeling thing will be obtained.
 ・予備加熱工程
 前述のように、粉末床結合溶融方式による立体造形物の製造方法では、樹脂組成物を予備加熱する工程を行ってもよい。樹脂組成物の予備加熱は、上記薄層形成(工程(1))後に行ってもよく、薄層形成(工程(1))前に行ってもよい。また、これらの両方で行ってもよい。
Preheating Step As described above, in the method of producing a three-dimensional object by the powder bed bonding melting method, the step of preheating the resin composition may be performed. The preheating of the resin composition may be performed after the thin layer formation (step (1)) or may be performed before the thin layer formation (step (1)). Also, both of them may be performed.
 予備加熱温度は、樹脂組成物どうしが溶融結合しないように、熱可塑性樹脂の溶融温度より低い温度とする。予備加熱温度は、熱可塑性樹脂の溶融温度に応じて適宜選択され、例えば、50℃以上300℃以下とすることができ、100℃以上230℃以下であることがより好ましく、150℃以上190℃以下であることがさらに好ましい。 The preheating temperature is set to a temperature lower than the melting temperature of the thermoplastic resin so that the resin compositions do not melt and bond. The preheating temperature is appropriately selected according to the melting temperature of the thermoplastic resin, and can be, for example, 50 ° C. or more and 300 ° C. or less, more preferably 100 ° C. or more and 230 ° C. or less, 150 ° C. or more and 190 ° C. It is more preferable that it is the following.
 またこのとき、加熱時間は1~30秒とすることが好ましく、5~20秒とすることがより好ましい。上記温度で上記時間、予備加熱を行うことで、レーザエネルギー照射時に樹脂組成物(樹脂粒子)が溶融するまでの時間を短くすることができ、少ないレーザエネルギー量で立体造形物を製造することが可能となる。 At this time, the heating time is preferably 1 to 30 seconds, and more preferably 5 to 20 seconds. By performing preheating at the above temperature for the above time, the time until the resin composition (resin particles) melts at the time of laser energy irradiation can be shortened, and a three-dimensional object can be manufactured with a small amount of laser energy. It becomes possible.
 ・その他
 なお、溶融結合中の樹脂組成物の酸化等によって、立体造形物の強度が低下することを防ぐ観点からは、少なくとも工程(2)は減圧下または不活性ガス雰囲気中で行うことが好ましい。減圧するときの圧力は10-2Pa以下であることが好ましく、10-3Pa以下であることがより好ましい。このとき、使用することができる不活性ガスの例には、窒素ガスおよび希ガスが含まれる。これらの不活性ガスのうち、入手の容易さの観点からは、窒素(N)ガス、ヘリウム(He)ガスまたはアルゴン(Ar)ガスが好ましい。製造工程を簡略化する観点からは、工程(1)および工程(2)の両方を減圧下または不活性ガス雰囲気中で行うことが好ましい。
Others In addition, from the viewpoint of preventing the strength of the three-dimensional object from being reduced due to oxidation or the like of the resin composition during the melt bonding, it is preferable to carry out at least the step (2) under reduced pressure or in an inert gas atmosphere. . The pressure when decompressing is preferably 10 −2 Pa or less, more preferably 10 −3 Pa or less. At this time, examples of inert gas that can be used include nitrogen gas and a noble gas. Among these inert gases, nitrogen (N 2 ) gas, helium (He) gas or argon (Ar) gas is preferable from the viewpoint of availability. From the viewpoint of simplifying the production process, it is preferable to carry out both step (1) and step (2) under reduced pressure or in an inert gas atmosphere.
 2-2.MJF方式による立体造形物の製造方法
 本実施形態の立体造形物の製造方法は、(1)上述の樹脂組成物を含む薄層を形成する薄層形成工程と、(2)エネルギー吸収剤を含む結合用流体、および結合用流体よりエネルギー吸収の少ない剥離用流体を、薄層の互いに隣接する領域に塗布する流体塗布工程と、(3)流体塗布工程後の薄層にエネルギーを照射し、結合用流体の塗布領域の熱可塑性樹脂を溶融させて造形物層を形成するエネルギー照射工程と、を含む。なお、当該立体造形物の製造方法は、必要に応じて、他の工程を含んでいてもよく、例えば樹脂組成物を予備加熱する工程等を含んでいてもよい。
2-2. Method for Producing Three-Dimensional Shaped Object by MJF Method The method for producing a three-dimensional shaped object according to the present embodiment includes (1) a thin layer forming step of forming a thin layer containing the above-mentioned resin composition, and (2) an energy absorber A bonding fluid and a fluid applying step of applying a peeling fluid with less energy absorption than the bonding fluid to adjacent regions of the thin layer, and (3) applying energy to the thin layer after the fluid applying step and bonding An energy irradiation step of melting the thermoplastic resin in the application region of the fluid to form a shaped object layer. In addition, the manufacturing method of the said three-dimensional model may include the other process as needed, for example, may include the process etc. of preheating a resin composition.
 (1)薄層形成工程
 本工程では、上述の樹脂組成物を主に含む薄層を形成する。薄層の形成方法は、所望の厚みの層を形成可能であれば特に制限されない。例えば、本工程は、立体造形装置の樹脂組成物供給部から供給された樹脂組成物を、リコータによって造形ステージ上に平らに敷き詰める工程とすることができる。薄層は、造形ステージ上に直接形成してもよいし、すでに敷き詰められている粉末材料またはすでに形成されている造形物層の上に接するように形成してもよい。
(1) Thin layer formation process At this process, the thin layer which mainly contains the above-mentioned resin composition is formed. The method of forming the thin layer is not particularly limited as long as a layer having a desired thickness can be formed. For example, this step can be a step of laying the resin composition supplied from the resin composition supply unit of the three-dimensional model forming device flatly on the modeling stage by recoater. The thin layer may be formed directly on the shaping stage, or may be formed on a powder material that has already been spread or may be in contact with the already formed shaped material layer.
 薄層の厚さは、所望の造形物層の厚さと同じとする。薄層の厚さは、製造しようとする立体造形物の精度に応じて任意に設定することができるが、通常、0.01mm以上0.30mm以下である。薄層の厚さを0.01mm以上とすることで、新たな造形物層を形成するためのエネルギー照射(後述のエネルギー照射工程におけるエネルギー照射)によって、既に作製した造形物層が溶融することを防ぐことができる。また、薄層の厚さが0.01mm以上であると、粉末材料を均一に敷き詰めやすくなる。また、薄層の厚さを0.30mm以下とすることで、後述のエネルギー照射工程において、エネルギー(例えば赤外光)を薄層の下部まで伝導させることが可能となる。これにより、所望の領域(結合用流体を塗布する領域)の熱可塑性樹脂を、厚み方向の全体にわたって溶融させることが可能となる。前記観点からは、薄層の厚さは0.01mm以上0.20mm以下であることがより好ましい。 The thickness of the thin layer is the same as the thickness of the desired shaped object layer. The thickness of the thin layer can be optionally set according to the accuracy of the three-dimensional object to be produced, but is usually 0.01 mm or more and 0.30 mm or less. By setting the thickness of the thin layer to 0.01 mm or more, it is possible to melt the already-formed shaped object layer by energy irradiation (energy irradiation in the energy irradiating step described later) for forming a new shaped object layer. It can prevent. Moreover, it becomes easy to spread powder material uniformly as the thickness of a thin layer is 0.01 mm or more. In addition, by setting the thickness of the thin layer to 0.30 mm or less, energy (for example, infrared light) can be conducted to the lower portion of the thin layer in the energy irradiation process described later. This makes it possible to melt the thermoplastic resin in the desired area (the area to which the bonding fluid is applied) throughout the thickness direction. From the above viewpoint, the thickness of the thin layer is more preferably 0.01 mm or more and 0.20 mm or less.
 (2)流体塗布工程
 本工程では、上記薄層形成工程で形成した薄層の互いに隣接する領域に、エネルギー吸収剤を含む結合用流体、および結合用流体よりエネルギー吸収の少ない剥離用流体をそれぞれ塗布する。具体的には、造形物層を形成すべき位置に選択的に結合用流体を塗布し、造形物層を形成しない領域に、剥離用流体を塗布する。結合用流体を塗布する領域の周囲に隣接して剥離用流体を塗布することで、剥離用流体を塗布した領域では、樹脂粒子が溶融結合し難くなる。結合用流体および剥離用流体のうち、どちらを先に塗布してもよいが、得られる立体造形物の寸法精度の観点から、結合用流体を先に塗布することが好ましい。
(2) Fluid application step In this step, a bonding fluid containing an energy absorbing agent and a peeling fluid with less energy absorption than the bonding fluid are respectively provided in adjacent regions of the thin layer formed in the thin layer forming step. Apply Specifically, the bonding fluid is selectively applied to the position where the shaped object layer is to be formed, and the peeling fluid is applied to the area where the shaped object layer is not formed. By applying the peeling fluid adjacent to the periphery of the region to which the bonding fluid is applied, the resin particles are less likely to melt and bond in the region where the peeling fluid is applied. Either of the bonding fluid and the peeling fluid may be applied first, but it is preferable to apply the bonding fluid first from the viewpoint of the dimensional accuracy of the resulting three-dimensional object.
 結合用流体および剥離用流体の塗布方法は特に制限されず、例えばディスペンサーによる塗布や、インクジェット法による塗布、スプレー塗布等とすることができるが、高速で所望の領域に結合用流体および剥離用流体を塗布可能であるとの観点から少なくとも一方を、インクジェット法で塗布することが好ましく、両方をインクジェット法で塗布することがより好ましい。 The method of applying the binding fluid and the release fluid is not particularly limited, and may be, for example, application by a dispenser, application by an inkjet method, spray application, etc. It is preferable to apply at least one of them by the inkjet method from the viewpoint of being able to be applied, and it is more preferable to apply both by the inkjet method.
 結合用流体および剥離用流体の塗布量は、それぞれ薄層1mm当たり、0.1~50μLであることが好ましく、0.2~40μLであることがより好ましい。結合用流体および剥離用流体の塗布量が当該範囲であると、造形物層を形成する領域、および造形物層を形成しない領域の粉末材料に、それぞれ結合用流体および剥離用流体を十分に含浸させることができ、寸法精度の良好な立体造形物を形成することができる。 The application amount of the binding fluid and the release fluid is preferably 0.1 to 50 μL, and more preferably 0.2 to 40 μL, per 1 mm 3 of the thin layer. When the application amount of the bonding fluid and the peeling fluid is in the above range, the powder material in the region forming the shaped object layer and the region not forming the shaped object layer is sufficiently impregnated with the bonding fluid and the peeling fluid, respectively. It is possible to form a three-dimensional object with good dimensional accuracy.
 本工程で塗布する結合用流体は、従来のMJF方式に用いられる結合用流体と同様とすることができ、例えばエネルギー吸収剤と、溶媒と、を少なくとも含む組成物とすることができる。結合用流体は、必要に応じて公知の分散剤等を含んでいてもよい。 The bonding fluid to be applied in this step may be the same as the bonding fluid used in the conventional MJF method, and may be, for example, a composition including at least an energy absorbing agent and a solvent. The binding fluid may contain known dispersants and the like as required.
 エネルギー吸収剤は、後述するエネルギー照射工程において照射されるエネルギーを吸収し、結合用流体が塗布された領域の温度を効率的に高めることが可能なものであれば特に制限されない。エネルギー吸収剤の具体例には、カーボンブラック、ITO(スズ酸化インジウム)、ATO(アンチモン酸化スズ)等の赤外線吸収剤、シアニン色素,アルミニウムや亜鉛を中心に持つフタロシアニン色素,各種ナフタロシアニン化合物,平面四配位構造を有するニッケルジチオレン錯体,スクアリウム色素,キノン系化合物,ジインモニウム化合物,アゾ化合物等の赤外線吸収色素が含まれる。これらの中でも、汎用性や結合用流体が塗布された領域の温度を効率的に高めることができるとの観点から、赤外線吸収剤が好ましく、カーボンブラックであることがさらに好ましい。 The energy absorbing agent is not particularly limited as long as it can absorb the energy irradiated in the energy irradiation step described later and can efficiently increase the temperature of the region to which the binding fluid is applied. Specific examples of energy absorbers include infrared absorbers such as carbon black, ITO (tin indium oxide), ATO (antimony tin oxide), cyanine dyes, phthalocyanine dyes mainly having aluminum or zinc, various naphthalocyanine compounds, planar Infrared absorbing dyes such as nickel dithiolene complexes having a four-coordinate structure, squalium dyes, quinone compounds, diimmonium compounds, and azo compounds are included. Among these, from the viewpoint of versatility and the ability to efficiently increase the temperature of the region to which the binding fluid is applied, infrared absorbers are preferred, and carbon black is more preferred.
 エネルギー吸収剤の形状は特に制限されないが、粒子状であることが好ましい。また、その平均粒子径は0.1~1.0μmであることが好ましく、0.1~0.5μmであることがより好ましい。エネルギー吸収剤の平均粒子径が過度に大きいと、結合用流体を薄層上に塗布した際、エネルギー吸収剤が樹脂粒子の隙間に入り込み難くなる。一方、エネギー吸収剤の平均粒子径が0.1μm以上であると、後述するエネルギー照射工程で、効率良く熱可塑性樹脂に熱を伝えることができ、周囲の熱可塑性樹脂を溶融させることが可能となる。 The shape of the energy absorbing agent is not particularly limited, but is preferably in the form of particles. The average particle diameter is preferably 0.1 to 1.0 μm, more preferably 0.1 to 0.5 μm. If the average particle size of the energy absorbing agent is too large, the energy absorbing agent is less likely to enter the gaps of the resin particles when the bonding fluid is applied on the thin layer. On the other hand, if the average particle diameter of the energy absorbing agent is 0.1 μm or more, heat can be efficiently transmitted to the thermoplastic resin in the energy irradiation step described later, and the surrounding thermoplastic resin can be melted. Become.
 結合用流体は、エネルギー吸収剤を0.1~10.0質量%含むことが好ましく、1.0~5.0質量%含むことがより好ましい。エネルギー吸収剤の量が0.1質量%以上であると、後述のエネルギー照射工程で、結合用流体が塗布された領域の温度を十分に高めることが可能となる。一方、エネルギー吸収剤の量が10.0質量%以下であると、結合用流体内でエネルギー吸収剤が凝集すること等が少なく、結合用流体の塗布安定性が高まりやすくなる。 The binding fluid preferably contains 0.1 to 10.0% by mass, more preferably 1.0 to 5.0% by mass, of the energy absorbing agent. It becomes possible to fully raise the temperature of the area | region where the fluid for coupling | bonding was apply | coated in the below-mentioned energy irradiation process as the quantity of an energy absorbing agent is 0.1 mass% or more. On the other hand, if the amount of the energy absorbing agent is 10.0% by mass or less, the energy absorbing agent is less likely to be aggregated in the binding fluid, and the coating stability of the binding fluid is likely to be enhanced.
 一方、溶媒は、エネルギー吸収剤を分散可能であり、さらに樹脂組成物中の熱可塑性樹脂等を溶解し難い溶媒であれば特に制限されず、例えば水とすることができる。 On the other hand, the solvent is not particularly limited as long as it is a solvent which can disperse the energy absorbing agent and further hardly dissolve the thermoplastic resin and the like in the resin composition, and can be, for example, water.
 結合用流体は、上記溶媒を90.0~99.9質量%含むことが好ましく、95.0~99.0質量%含むことがより好ましい。結合用流体中の溶媒量が90.0質量%以上であると、結合用流体の流動性が高くなり、例えばインクジェット法等で塗布しやすくなる。 The binding fluid preferably contains 90.0 to 99.9% by mass, and more preferably 95.0 to 99.0% by mass of the solvent. When the amount of the solvent in the binding fluid is 90.0% by mass or more, the fluidity of the binding fluid is increased, and for example, it becomes easy to apply by an inkjet method or the like.
 結合用流体の粘度は、0.5~50.0mPa・sであることが好ましく、1.0~20.0mPa・sであることがより好ましい。結合用流体の粘度が0.5mPa・s以上であると、結合用流体を薄層に塗布した際の拡散が抑制されやすくなる。一方で、結合用流体の粘度が50.0mPa・s以下であると、結合用流体の塗布安定性が高まりやすくなる。 The viscosity of the binding fluid is preferably 0.5 to 50.0 mPa · s, and more preferably 1.0 to 20.0 mPa · s. When the viscosity of the bonding fluid is 0.5 mPa · s or more, the diffusion when the bonding fluid is applied to the thin layer is easily suppressed. On the other hand, when the viscosity of the bonding fluid is 50.0 mPa · s or less, the coating stability of the bonding fluid tends to be enhanced.
 一方、本工程で塗布する剥離用流体は、相対的に、結合用流体よりエネルギー吸収の少ない流体であればよく、例えば水を主成分とする流体等とすることができる。 On the other hand, the peeling fluid to be applied in this step may be a fluid relatively less in energy absorption than the coupling fluid, and may be, for example, a fluid containing water as a main component.
 剥離用流体は、水を90質量%以上含むことが好ましく、95質量%以上含むことがより好ましい。剥離用流体中の水の量が90質量%以上であると、例えばインクジェット法等で塗布しやすくなる。 The peeling fluid preferably contains 90% by mass or more of water, and more preferably 95% by mass or more. It becomes easy to apply | coat, for example by the inkjet method etc. as the quantity of the water in the fluid for peeling is 90 mass% or more.
 (3)エネルギー照射工程
 本工程では、上記流体塗布工程後の薄層、すなわち結合用流体および剥離用流体が塗布された薄層に、エネルギーを一括照射する。このとき、結合用流体が塗布された領域では、エネルギー吸収剤がエネルギーを吸収し、当該領域の温度が部分的に上昇する。そして、当該領域の熱可塑性樹脂のみが溶融し、造形物層が形成される。
(3) Energy Irradiation Step In this step, energy is collectively applied to the thin layer after the fluid application step, that is, the thin layer to which the bonding fluid and the peeling fluid are applied. At this time, in the region where the binding fluid is applied, the energy absorbing agent absorbs energy, and the temperature of the region partially rises. And only the thermoplastic resin of the said area | region fuses, and a modeling thing layer is formed.
 本工程で照射するエネルギーの種類は、結合用流体が含むエネルギー吸収剤の種類に応じて適宜選択される。当該エネルギーの具体例には、赤外光、白色光等が含まれる。これらの中でも、結合用流体を塗布した領域では、効率よく熱可塑性樹脂を溶融させることが可能である一方で、剥離用流体を塗布した領域では、薄層の温度が上昇し難いとの観点から赤外光であることが好ましく、波長780~3000nmの光であることがより好ましく、波長800~2500nmの光であることがより好ましい。 The type of energy to be irradiated in this step is appropriately selected according to the type of energy absorbing agent contained in the binding fluid. Specific examples of the energy include infrared light, white light and the like. Among these, it is possible to melt the thermoplastic resin efficiently in the region where the bonding fluid is applied, while it is difficult to increase the temperature of the thin layer in the region where the peeling fluid is applied. The light is preferably infrared light, more preferably light having a wavelength of 780 to 3000 nm, and still more preferably light having a wavelength of 800 to 2500 nm.
 また、本工程でエネルギーを照射する時間は、粉末材料が含む熱可塑性樹脂の種類に応じて適宜選択されるが、通常、5~60秒であることが好ましく、10~30秒であることがより好ましい。エネルギー照射時間を5秒以上とすることで、十分に熱可塑性樹脂を溶融させて、これらを結合させることが可能となる。一方で、60秒以下とすることで、効率よく立体造形物を製造することが可能となる。 The time of energy irradiation in this step is appropriately selected according to the type of the thermoplastic resin contained in the powder material, but in general, it is preferably 5 to 60 seconds, and preferably 10 to 30 seconds. More preferable. By setting the energy irradiation time to 5 seconds or more, it is possible to sufficiently melt the thermoplastic resin and bond them. On the other hand, by setting the time to 60 seconds or less, it is possible to efficiently manufacture a three-dimensional object.
 ・予備加熱工程
 MJF方式においても、樹脂組成物を予備加熱する工程を行ってもよい。樹脂組成物の予備加熱は、上記薄層形成(工程(1))後に行ってもよく、薄層形成(工程(1))前に行ってもよい。また、これらの両方で行ってもよい。予備加熱を行うことで、(3)エネルギー照射工程で照射するエネルギー量を少なくすることが可能となる。またさらに、短時間で効率良く造形物層を形成することが可能となる。予備加熱温度は、熱可塑性樹脂の溶融温度より低い温度であり、かつ(2)流体塗布工程で塗布する結合用流体や剥離用流体が含む溶媒の沸点より低い温度であることが好ましい。具体的には、熱可塑性樹脂の融点や、結合用流体や剥離用流体が含む溶媒の沸点より、50℃~5℃低い温度であることが好ましく、30℃~5℃低い温度であることがより好ましい。またこのとき、加熱時間は1~60秒とすることが好ましく、3~20秒とすることがより好ましい。加熱温度および加熱時間を上記範囲とすることで、(3)エネルギー照射工程におけるエネルギー照射量を低減することができる。
Preheating Step In the MJF method, a step of preheating the resin composition may be performed. The preheating of the resin composition may be performed after the thin layer formation (step (1)) or may be performed before the thin layer formation (step (1)). Also, both of them may be performed. By performing preheating, it is possible to reduce the amount of energy irradiated in the (3) energy irradiation step. Furthermore, it becomes possible to form a three-dimensional object layer efficiently in a short time. The preheating temperature is preferably a temperature lower than the melting temperature of the thermoplastic resin and (2) a temperature lower than the boiling point of the solvent contained in the bonding fluid and the peeling fluid applied in the fluid application step. Specifically, the temperature is preferably 50 ° C. to 5 ° C. lower than the melting point of the thermoplastic resin or the boiling point of the solvent contained in the bonding fluid and the peeling fluid, and the temperature is 30 ° C. to 5 ° C. lower More preferable. At this time, the heating time is preferably 1 to 60 seconds, more preferably 3 to 20 seconds. By making heating temperature and heating time into the said range, the energy irradiation amount in (3) energy irradiation process can be reduced.
 以下において、本発明の具体的な実施例を説明する。なお、これらの実施例によって、本発明の範囲は限定して解釈されない。 Hereinafter, specific embodiments of the present invention will be described. The scope of the present invention is not interpreted as being limited by these examples.
 [実施例1]
 熱可塑性樹脂として、ポリアミド12(PA12、ダイセル・エボニック社製、ダイアミドL1600(「ダイアミド」は同社の登録商標)を準備した。当該熱可塑性樹脂を、湿式分散機を備えたレーザー回折式粒度分布測定装置(シンパティック(SYMPATEC)社製、ヘロス(HELOS))にて測定した平均粒子径が50μmの値になるまで、機械的粉砕法で粉砕した。
 次にカオリン(林化成社製、ASPR400P)を、自由粉砕機(奈良機械社製、M-2)にて、50nmの厚み、0.5μmの幅になるまで粉砕した。その後、当該平板状粒子をヘンシェルミキサー(日本コークス工業社製)にて上記樹脂粒子と混ぜ合わせ、樹脂組成物1を作製した。熱可塑性樹脂と平板状粒子との質量比は、85:15とした。
Example 1
As a thermoplastic resin, polyamide 12 (PA12, manufactured by Daicel-Evonik Co., Ltd., Diamide L1600 ("Diamide" is a registered trademark of the company) was prepared. Laser diffraction particle size distribution measurement of the thermoplastic resin was equipped with a wet disperser. It ground by the mechanical grinding method until the average particle diameter measured with the apparatus (SYNPATEC company make, HEROS (HELOS)) becomes a value of 50 micrometers.
Next, kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was crushed by a free crusher (M-2, manufactured by Nara Machinery Co., Ltd.) to a thickness of 50 nm and a width of 0.5 μm. Then, the said flat particle was mixed with the said resin particle with the Henschel mixer (made by Nippon Coke Kogyo Co., Ltd.), and the resin composition 1 was produced. The mass ratio of the thermoplastic resin to the tabular particles was 85:15.
 [実施例2]
 カオリン(林化成社製、ASPR400P)を自由粉砕機(奈良機械社製、M-2)にて、500nmの厚み、0.5μmの幅になるまで粉砕した以外は、実施例1と同様に樹脂組成物2を作製した。
Example 2
A resin was prepared in the same manner as in Example 1, except that kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was pulverized by a free crusher (M-2, manufactured by Nara Machine Co., Ltd.) to a thickness of 500 nm and a width of 0.5 μm. Composition 2 was made.
 [実施例3]
 カオリン(林化成社製、ASPR400P)をビーズミル(広島メタル&マシナリー社製、UAM015)にて粉砕し、50nmの厚み、1μmの幅になるまで粉砕した以外は、実施例1と同様に樹脂組成物3を作製した。
[Example 3]
A resin composition as in Example 1 except that kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was pulverized by a bead mill (UAM015, manufactured by Hiroshima Metal & Machinery Co., Ltd.) and pulverized to a thickness of 50 nm and a width of 1 μm. 3 was produced.
 [実施例4]
 カオリン(林化成社製、ASPR400P)をビーズミル(広島メタル&マシナリー社製、UAM015)にて粉砕し、300nmの厚み、5μmの幅になるまで粉砕した以外は、実施例1と同様に樹脂組成物4を作製した。
Example 4
A resin composition was prepared in the same manner as Example 1, except that kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was crushed using a bead mill (UAM015, manufactured by Hiroshima Metal & Machinery Co., Ltd.) to a thickness of 300 nm and a width of 5 μm. 4 was produced.
 [実施例5]
 カオリン(林化成社製、ASPR400P)をビーズミル(広島メタル&マシナリー社製、UAM015)にて粉砕し、500nmの厚み、10μmの幅になるまで粉砕した以外は、実施例1と同様に樹脂組成物5を作製した。
[Example 5]
A resin composition as in Example 1 except that kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was pulverized by a bead mill (UAM015, manufactured by Hiroshima Metal & Machinery Co., Ltd.) to a thickness of 500 nm and a width of 10 μm. 5 was produced.
 [実施例6]
 カオリン(林化成社製、ASPR400P)の代わりに平板状粒子としてマイカ(ヤマグチマイカ社製、A-11)を粉砕し、厚み300nm、幅5μmのマイカを用いた以外は、実施例1と同様に樹脂組成物6を用いた。
[Example 6]
The same as Example 1, except that mica (grind by Yamaguchi Mica, A-11) was crushed as tabular particles instead of kaolin (manufactured by Hayashi Kasei Corp., ASPR 400P) and mica having a thickness of 300 nm and a width of 5 μm was used. Resin composition 6 was used.
 [実施例7]
 カオリン(林化成社製、ASPR400P)の代わりにタルク(林化成社製、ミクロンホワイト#5000)を用い、厚み300nm、幅5μmのタルクを用いた以外は、実施例1と同様に樹脂組成物7を得た。
[Example 7]
Resin composition 7 in the same manner as in Example 1 except that talc (manufactured by Hayashi Kasei Co., Ltd., Micron White # 5000) was used instead of kaolin (manufactured by Hayashi Kasei Corp., ASPR 400P) and talc having a thickness of 300 nm and a width of 5 μm was used. I got
 [実施例8]
 熱可塑性樹脂として、ポリプロピレン樹脂ペレット(サンアロマー社製、PM600A)を用い、当該熱可塑性樹脂を凍結粉砕機にて、平均粒径50μmになるまで粉砕した。一方、タルク(林化成社製、ミクロンホワイト#5000)を厚み300nm、幅5μmになるまで実施例1と同様に粉砕し、これらを混ぜ合わせて、樹脂組成物8を得た。熱可塑性樹脂と平板状粒子との質量比は、85:15とした。
[Example 8]
As the thermoplastic resin, polypropylene resin pellets (PM600A, manufactured by Sun Aroma Co., Ltd.) were used, and the thermoplastic resin was crushed by a freeze crusher until the average particle size became 50 μm. On the other hand, talc (manufactured by Hayashi Kasei Co., Ltd., Micron White # 5000) was pulverized to a thickness of 300 nm and a width of 5 μm in the same manner as in Example 1 and mixed to obtain a resin composition 8. The mass ratio of the thermoplastic resin to the tabular particles was 85:15.
 [実施例9]
 ポリプロピレン樹脂ペレット(サンアロマー社製、PM600A)90質量部とタルク(林化成社製、ミクロンホワイト#5000(厚み3000nm、幅10μm))10質量部とを、混練機(Xplore社製、MC15)にて混練し、タルク含有ポリプロピレン樹脂ペレットを作製した。そして、ポリプロピレン樹脂ペレットを凍結粉砕機にて、平均粒径50μmになるまで粉砕した。一方、タルク(林化成社製、ミクロンホワイト#5000)を厚み300nm、幅5μmになるまで実施例1と同様に粉砕し、これらを混ぜ合わせて、樹脂組成物9を得た。熱可塑性樹脂と平板状粒子との質量比は、85:15とした。
[Example 9]
90 parts by mass of polypropylene resin pellet (manufactured by Sun Aroma Co., Ltd., PM600A) and 10 parts by mass of talc (manufactured by Hayashi Kasei Co., Ltd., micron white # 5000 (thickness 3000 nm, width 10 μm)) in a kneader (Mc 15 manufactured by Xplore) It knead | mixed and produced the talc containing polypropylene resin pellet. Then, the polypropylene resin pellet was crushed by a freeze crusher until the average particle diameter became 50 μm. On the other hand, talc (manufactured by Hayashi Kasei Co., Ltd., Micron White # 5000) was pulverized to a thickness of 300 nm and a width of 5 μm in the same manner as in Example 1 and mixed to obtain a resin composition 9. The mass ratio of the thermoplastic resin to the tabular particles was 85:15.
 [比較例1]
 カオリン(林化成社製、ASPR400P)を自由粉砕機(奈良機械社製、M-2)にて、10nmの厚み、0.5μmの幅になるまで粉砕した以外は、実施例1と同様に樹脂組成物10を作製した。
Comparative Example 1
A resin was prepared in the same manner as in Example 1 except that kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was crushed to a thickness of 10 nm and a width of 0.5 μm using a free crusher (M-2, manufactured by Nara Machinery Co., Ltd.) Composition 10 was made.
 [比較例2]
 カオリン(林化成社製、ASPR400P)を自由粉砕機(奈良機械社製、M-2)にて、550nmの厚み、0.5μmの幅になるまで粉砕した以外は、実施例1と同様に樹脂組成物11を作製した。
Comparative Example 2
A resin was prepared in the same manner as in Example 1 except that kaolin (ASPR 400P, manufactured by Hayashi Kasei Co., Ltd.) was pulverized by a free crusher (M-2, manufactured by Nara Machine Co., Ltd.) to a thickness of 550 nm and a width of 0.5 μm. Composition 11 was made.
 [評価]
 上述の樹脂組成物1~11について、以下の粉末床溶融結合法で立体造形物を作製し、弾性向上率、破断伸び、および反りについて評価した。
 (1)立体造形物の作製
 作製した樹脂組成物をホットプレート上に設置した造形ステージ上に敷き詰めて厚さ0.1mmの薄層を形成し、ホットプレートの温度を調整することで、予備加熱温度150℃にそれぞれ加熱した。この薄層に、以下の条件で、YAG波長用ガルバノメータスキャナを搭載したCOレーザから縦15mm×横20mmの範囲にレーザ光を照射して、造形物層を作製した。上記工程を高さ55mmになるまで繰り返し、積層された立体造形物をそれぞれ製造した。
 [レーザ光の出射条件]
 レーザ出力   :12W 
 レーザ光の波長  :10.6μm
 ビーム径    :薄層表面で170μm
 [レーザ光の走査条件]
 走査速度    :2000mm/sec
 ライン数    :1ライン
[Evaluation]
With respect to the above-mentioned resin compositions 1 to 11, a three-dimensional object was produced by the powder bed fusion bonding method described below, and the rate of improvement in elasticity, elongation at break, and warpage were evaluated.
(1) Preparation of Three-Dimensional Shaped Object The prepared resin composition is spread on a forming stage placed on a hot plate to form a thin layer having a thickness of 0.1 mm, and preheating is performed by adjusting the temperature of the hot plate. Each was heated to a temperature of 150 ° C. The thin layer was irradiated with laser light in the range of 15 mm long × 20 mm wide from a CO 2 laser mounted with a galvanometer scanner for YAG wavelength under the following conditions to produce a shaped material layer. The above-described steps were repeated until the height reached 55 mm, to manufacture laminated three-dimensional objects.
[Conditions of emitting laser light]
Laser power: 12 W
Laser light wavelength: 10.6 μm
Beam diameter: 170 μm on thin layer surface
[Scanning condition of laser light]
Scanning speed: 2000 mm / sec
Number of lines: 1 line
 (2)弾性率および破断伸びの測定
 得られた立体造形物を引張試験機(エーアンドディー社製、テンシロンRTC-1250)に設置して、1mm/分の速度で縦方向(造形物層の積層方向に垂直)に引っ張り、弾性率を測定した。さらに、同装置で、50mm/分の速度で縦方向(造形物層の積層方向に垂直)に引っ張り、破断伸びを測定した。そして、弾性率および破断伸びについて、それぞれ以下の基準で評価した。なお、ブランクとは、各平板状粒子を含まない以外は、実施例または各比較例と同一の樹脂粒子を用いて作製した立体造形物である。
(2) Measurement of elastic modulus and elongation at break The obtained three-dimensional object is placed in a tensile tester (Tensilon RTC-1250 manufactured by A and D Co.), and the longitudinal direction (the object layer) is obtained at a speed of 1 mm / min. The modulus of elasticity was measured by pulling in the direction perpendicular to the stacking direction. Further, in the same device, the sample was pulled in the longitudinal direction (perpendicular to the laminating direction of the shaped article layer) at a speed of 50 mm / min to measure the breaking elongation. And it evaluated by the following references | standards about an elasticity modulus and breaking elongation, respectively. In addition, a blank is a three-dimensional model manufactured using the resin particle same as an Example or each comparative example except not containing each tabular particle.
 (弾性率)
 ◎:弾性率がブランクの弾性率に比べ30%以上向上した。
 ○:弾性率がブランクの弾性率に比べ10%以上向上した。
 ×:弾性率はブランクの弾性率に対して向上しなかった。
(Elastic modulus)
◎: The elastic modulus was improved by 30% or more compared to the elastic modulus of the blank.
○: The elastic modulus was improved by 10% or more compared to the elastic modulus of the blank.
X: The elastic modulus did not improve relative to the elastic modulus of the blank.
 (破断伸び)
 ◎:破断伸びが50%以上であった
 ○:破断伸びが10%以上50%未満であった
 ×:破断伸びが10%未満であった
(Breaking elongation)
:: The breaking elongation was 50% or more ○: The breaking elongation was 10% or more and less than 50% x: The breaking elongation was less than 10%
 (3)造形特性の評価(熱反り)
 得られた立体造形物について、デジタルノギス(株式会社ミツトヨ製、スーパキャリパCD67-S PS/PM、「スーパキャリパ」は同社の登録商標)で縦方向および横方向の寸法を測定した。製造しようとした寸法(縦15mm×横20mm×高さ55mm)と測定された縦横の寸法との差を平均して、以下の基準で、立体造形物の寸法精度(熱反りの有無)を評価した。
 ◎:寸法差の平均が0.1mm未満であった
 ○:寸法差の平均が0.1mm以上0.5mm未満であった
 ×:寸法差の平均が0.5mm以上であった
(3) Evaluation of molding characteristics (heat warpage)
The dimensions of the three-dimensional object obtained were measured with a digital caliper (Supercaliper CD67-S PS / PM, manufactured by Mitutoyo Co., Ltd., "Supercaliper" is a registered trademark of the company) for longitudinal and lateral dimensions. The difference between the measured dimensions (length 15 mm x width 20 mm x height 55 mm) and the measured vertical and horizontal dimensions are averaged to evaluate the dimensional accuracy (with or without thermal warpage) of the three-dimensional object based on the following criteria did.
◎: Average of difference in dimension was less than 0.1 mm ○: Average of difference in dimension was 0.1 mm or more and less than 0.5 mm ×: Average of difference in dimension was 0.5 mm or more
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、樹脂粒子の周囲に、平板状粒子が付着していたとしても、その厚みが薄い場合には、得られる立体造形物の弾性率を向上させることができなかった(比較例1)。平板状粒子があまりにも薄いと、その添加効果が十分に発揮されないと考えられる。一方で、平板状粒子の厚みが厚く、球状に近づくと、破断伸びが低くなったり、熱反りが生じやすかった(比較例2)。 As shown in Table 1, even if tabular particles were attached around the resin particles, when the thickness was thin, it was not possible to improve the elastic modulus of the three-dimensional object obtained ((1) Comparative example 1). If the tabular grains are too thin, it is considered that their addition effect is not sufficiently exhibited. On the other hand, when the thickness of the tabular grains was large and approached to a spherical shape, the elongation at break was low and thermal warpage was likely to occur (Comparative Example 2).
 これに対し、厚みが50nm以上500nm以下である平板状粒子を樹脂粒子の外側に含む樹脂組成物によれば、弾性率、破断伸び、および反りのいずれの評価も良好であった(実施例1~9)。上記厚みの平板状粒子が含まれることで、得られる立体造形物の強度が高まったと考えられる。また、粒子が平板状であるため、立体造形物に引張強度がかかったときに、立体造形物内で、樹脂の伸び方向に平板状粒子が配列しやすく、樹脂と平板状粒子との間に隙間が生じ難かったと推察される。さらに、樹脂粒子の周囲に平板状粒子が付着していることから、立体造形物の製造の際、樹脂粒子どうしの熱伝導性や、樹脂粒子と(既に形成された)造形物層との間における熱伝導性が良好になり、熱反りが生じ難くなったと推察される。 On the other hand, according to the resin composition containing flat particles having a thickness of 50 nm or more and 500 nm or less on the outside of the resin particle, any evaluation of elastic modulus, elongation at break, and warpage was also good (Example 1) ~ 9). It is thought that the strength of the three-dimensional object obtained is enhanced by the inclusion of tabular grains of the above thickness. In addition, since the particles are flat, when the three-dimensional object has tensile strength, the flat particles are easily arranged in the direction of elongation of the resin in the three-dimensional object, and between the resin and the flat particles. It is surmised that it was difficult to create a gap. Furthermore, since tabular particles are attached around the resin particles, the thermal conductivity of the resin particles, and between the resin particles and the (previously formed) object layer during the production of a three-dimensional object. It is surmised that the thermal conductivity in the case of (1) is good and thermal warpage is less likely to occur.
 さらに、その結晶構造が似ているポリプロピレンおよびタルク(平板状粒子)を用いた実施例8および9では、破断伸びが良好であり、さらには熱反りが生じ難かった。当該樹脂組成物では、立体造形物の製造の際、樹脂粒子が溶融すると、平板状粒子が核剤となって、再結晶化する。その結果、立体造形物内に、均一な構造の結晶が多数含まれることとなり、均一に熱が伝わったり、均一に荷重が加わったりしやすく、これらの結果が良好になったと推察される。 Furthermore, in Examples 8 and 9 using polypropylene and talc (tabular particles) whose crystal structures are similar to each other, the breaking elongation was good, and furthermore, the thermal warpage did not easily occur. In the said resin composition, when resin particles fuse | melt in the case of manufacture of a three-dimensional molded item, a tabular particle becomes a nucleating agent and recrystallizes. As a result, a large number of crystals having a uniform structure are contained in the three-dimensional object, so that heat is uniformly transmitted or a load is easily applied uniformly, and these results are considered to be good.
 本出願は、2017年11月6日出願の特願2017-213710号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims the priority based on Japanese Patent Application No. 2017-213710 filed on Nov. 6, 2017. The contents described in the application specification are all incorporated herein by reference.
 本発明に係る樹脂組成物によれば、粉末床溶融結合法、およびMJF法のいずれの方法によっても、精度よく立体造形物を形成することが可能である。そのため、本発明は、立体造形法のさらなる普及に寄与するものと思われる。
 
 
According to the resin composition of the present invention, it is possible to form a three-dimensional object with high accuracy by any of the powder bed melt bonding method and the MJF method. Therefore, the present invention is considered to contribute to the further spread of the three-dimensional modeling method.

Claims (11)

  1.  粒子状の樹脂組成物を含む薄層の形成および前記薄層へのエネルギー照射の繰り返しによって、立体造形物を形成する立体造形法に使用される樹脂組成物であって、
     熱可塑性樹脂を含む粒子、および厚み50~500nmである平板状粒子を含む、
     樹脂組成物。
    A resin composition used in a three-dimensional shaping method for forming a three-dimensional object by forming a thin layer containing a particulate resin composition and repeating the energy irradiation to the thin layer,
    Particles comprising a thermoplastic resin, and tabular particles having a thickness of 50 to 500 nm,
    Resin composition.
  2.  前記平板状粒子は、幅が1~10μmである、
     請求項1に記載の樹脂組成物。
    The tabular grains have a width of 1 to 10 μm.
    The resin composition according to claim 1.
  3.  前記平板状粒子が、前記熱可塑性樹脂を含む粒子の周囲に付着している、
     請求項1または2に記載の樹脂組成物。
    The tabular grains are attached around the grains containing the thermoplastic resin,
    The resin composition according to claim 1 or 2.
  4.  前記平板状粒子が、前記熱可塑性樹脂を含む粒子の内部に含まれている、
     請求項1~3のいずれか一項に記載の樹脂組成物。
    The tabular grains are contained inside the grains comprising the thermoplastic resin,
    The resin composition according to any one of claims 1 to 3.
  5.  前記平板状粒子は、マグネシウムを含むケイ酸塩化合物である、
     請求項1~4のいずれか一項に記載の樹脂組成物。
    The tabular grains are magnesium-containing silicate compounds,
    The resin composition according to any one of claims 1 to 4.
  6.  前記平板状粒子は、タルクである、
     請求項1~5のいずれか一項に記載の樹脂組成物。
    The tabular grains are talc,
    The resin composition according to any one of claims 1 to 5.
  7.  前記熱可塑性樹脂が、結晶性樹脂である、
     請求項1~6のいずれか一項に記載の樹脂組成物。
    The thermoplastic resin is a crystalline resin,
    The resin composition according to any one of claims 1 to 6.
  8.  前記熱可塑性樹脂が、オレフィン樹脂である、
     請求項1~7のいずれか一項に記載の樹脂組成物。
    The thermoplastic resin is an olefin resin,
    The resin composition according to any one of claims 1 to 7.
  9.  請求項1~8のいずれか一項に記載の樹脂組成物の硬化物を含む、
     立体造形物。
    A cured product of the resin composition according to any one of claims 1 to 8,
    Three-dimensional object.
  10.  請求項1~8のいずれか一項に記載の樹脂組成物を含む薄層を形成する薄層形成工程と、
     前記薄層にレーザ光を選択的に照射して、複数の前記樹脂組成物が溶融結合した造形物層を形成するレーザ光照射工程と、
     を含み、
     前記薄層形成工程、および前記レーザ光照射工程を複数回繰り返し、前記造形物層を積層することで立体造形物を形成する、
     立体造形物の製造方法。
    A thin layer forming step of forming a thin layer containing the resin composition according to any one of claims 1 to 8;
    A laser beam irradiation step of selectively irradiating the thin layer with a laser beam to form a three-dimensional object layer in which a plurality of the resin compositions are melt-bonded;
    Including
    The three-dimensional object is formed by repeating the thin layer formation step and the laser light irradiation step a plurality of times to laminate the three-dimensional object layer.
    A method of manufacturing a three-dimensional object.
  11.  請求項1~8のいずれか一項に記載の樹脂組成物を含む薄層を形成する薄層形成工程と、
     エネルギー吸収剤を含む結合用流体、および前記結合用流体よりエネルギー吸収の少ない剥離用流体を、前記薄層の互いに隣接する領域に塗布する流体塗布工程と、
     前記流体塗布工程後の前記薄層にエネルギーを照射し、前記結合用流体を塗布した領域の前記熱可塑性樹脂を溶融させて造形物層を形成するエネルギー照射工程と、
     を含み、
     前記薄層形成工程、前記流体塗布工程、および前記エネルギー照射工程を複数回繰り返し、前記造形物層を積層することで立体造形物を形成する、
     立体造形物の製造方法。
     
    A thin layer forming step of forming a thin layer containing the resin composition according to any one of claims 1 to 8;
    Applying a bonding fluid comprising an energy absorbing agent, and a peeling fluid with less energy absorption than the bonding fluid, to adjacent areas of the thin layer;
    An energy irradiation step of irradiating the thin layer after the fluid application step with energy, melting the thermoplastic resin in the region to which the bonding fluid is applied, and forming a shaped object layer;
    Including
    The three-dimensional object is formed by repeating the thin layer formation step, the fluid application step, and the energy irradiation step a plurality of times to laminate the three-dimensional object layer.
    A method of manufacturing a three-dimensional object.
PCT/JP2018/040797 2017-11-06 2018-11-02 Resin composition and method for producing three-dimensional model using same WO2019088243A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019550494A JP7099473B2 (en) 2017-11-06 2018-11-02 A resin composition and a method for producing a three-dimensional model using the resin composition.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-213710 2017-11-06
JP2017213710 2017-11-06

Publications (1)

Publication Number Publication Date
WO2019088243A1 true WO2019088243A1 (en) 2019-05-09

Family

ID=66332160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040797 WO2019088243A1 (en) 2017-11-06 2018-11-02 Resin composition and method for producing three-dimensional model using same

Country Status (2)

Country Link
JP (1) JP7099473B2 (en)
WO (1) WO2019088243A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028887A (en) * 2014-07-14 2016-03-03 学校法人同志社 Heat-melting lamination type filament for three-dimensional printer, and method for producing the same
WO2016059986A1 (en) * 2014-10-14 2016-04-21 花王株式会社 Soluble material for three-dimensional molding
JP2017052870A (en) * 2015-09-09 2017-03-16 株式会社リコー Active energy ray-curable composition
WO2017126484A1 (en) * 2016-01-20 2017-07-27 東レ株式会社 Polyarylene sulfide resin granular article and method for producing same
JP2017523252A (en) * 2014-05-15 2017-08-17 ノースウェスタン ユニバーシティ Ink composition for three-dimensional printing and method of forming an object using the ink composition
JP2018131497A (en) * 2017-02-14 2018-08-23 東京インキ株式会社 Resin molding material for three-dimensional molding devices and filament for three-dimensional molding devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167520A1 (en) * 2014-04-30 2015-11-05 Hewlett-Packard Development Company, L.P. Computational model and three-dimensional (3d) printing methods
CN108495886B (en) * 2016-04-15 2021-02-02 惠普发展公司,有限责任合伙企业 Composite granular building material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523252A (en) * 2014-05-15 2017-08-17 ノースウェスタン ユニバーシティ Ink composition for three-dimensional printing and method of forming an object using the ink composition
JP2016028887A (en) * 2014-07-14 2016-03-03 学校法人同志社 Heat-melting lamination type filament for three-dimensional printer, and method for producing the same
WO2016059986A1 (en) * 2014-10-14 2016-04-21 花王株式会社 Soluble material for three-dimensional molding
JP2017052870A (en) * 2015-09-09 2017-03-16 株式会社リコー Active energy ray-curable composition
WO2017126484A1 (en) * 2016-01-20 2017-07-27 東レ株式会社 Polyarylene sulfide resin granular article and method for producing same
JP2018131497A (en) * 2017-02-14 2018-08-23 東京インキ株式会社 Resin molding material for three-dimensional molding devices and filament for three-dimensional molding devices

Also Published As

Publication number Publication date
JPWO2019088243A1 (en) 2020-11-26
JP7099473B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
US11634577B2 (en) Resin powder material, laser powder molding method and device
JP7010243B2 (en) A resin composition and a method for manufacturing a three-dimensional model using the resin composition.
JP6655714B2 (en) Resin molding and laser powder additive manufacturing device
JP6958217B2 (en) Manufacturing method of resin powder for three-dimensional modeling and three-dimensional modeling
JP2021524399A (en) How to make a three-dimensional object from a poly (allylene sulfide) polymer
JP7107325B2 (en) Resin composition for three-dimensional modeling, three-dimensional modeled article, and method for producing three-dimensional modeled article
JP7099473B2 (en) A resin composition and a method for producing a three-dimensional model using the resin composition.
KR20210064326A (en) Sintered powder (SP) comprising a first polyamide component (PA1) and a second polyamide component (PA2), wherein the melting point of the second polyamide component (PA2) is higher than that of the first polyamide component (PA1)
JP6037263B2 (en) Inorganic organic composite composition
CN110142968B (en) 3D printing material and preparation method thereof
JP7136186B2 (en) Method for producing thermoplastic resin-containing particles, resin composition for three-dimensional modeling, and method for producing three-dimensional object using the same
JP7172134B2 (en) POWDER MATERIAL AND METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME
WO2019117016A1 (en) Method for producing three-dimensional molded object, and powder material used therein
KR102049600B1 (en) method for manufacturing ceramics nano fused compositee heat-release film
JP2022122462A (en) Carbon-fixed carbon steel powder
TWI838230B (en) Alumina-based thermally conductive disc-shaped particles and manufacturing method thereof, thermally conductive composition, articles, liquid composition, thermally conductive film, and components for electronic equipment
JP7463971B2 (en) Resin composition and method for producing three-dimensional object using same
WO2023286824A1 (en) Powder composition, method for producing three-dimensionally shaped article by powder bed melt bonding process using powder composition, and three-dimensionally shaped article
JP7457925B2 (en) Powder composition, method for producing a three-dimensional object by powder bed fusion bonding method using the powder composition, and three-dimensional object
An et al. Multi Jet Fusion of surface-modified ZnO nanorod–reinforced PA12 nanocomposites
KR102584049B1 (en) Powder for laser sintering and its uses
JP2009215134A (en) Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler
JP2023013967A (en) Powder composition, method for manufacturing three-dimensional molding by powder bed melting bonding method using the same, and three-dimensional molding
KR20230044485A (en) Powder compositions for lamination processes and prints thereof
JP2009215133A (en) Spherical particles, resin composition containing the same and its manufacturing method, as well as filler being aggregate of the spherical particles and semiconductor resin sealing agent containing the filler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18872602

Country of ref document: EP

Kind code of ref document: A1