WO2019085113A1 - 一种基于层状结构映射的光学成像方法 - Google Patents

一种基于层状结构映射的光学成像方法 Download PDF

Info

Publication number
WO2019085113A1
WO2019085113A1 PCT/CN2017/113691 CN2017113691W WO2019085113A1 WO 2019085113 A1 WO2019085113 A1 WO 2019085113A1 CN 2017113691 W CN2017113691 W CN 2017113691W WO 2019085113 A1 WO2019085113 A1 WO 2019085113A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
layered structure
absorption coefficient
medium
melanin
Prior art date
Application number
PCT/CN2017/113691
Other languages
English (en)
French (fr)
Inventor
徐敏
曾碧新
陈新林
Original Assignee
温州医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州医科大学 filed Critical 温州医科大学
Priority to US16/760,378 priority Critical patent/US11058346B2/en
Publication of WO2019085113A1 publication Critical patent/WO2019085113A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/443Evaluating skin constituents, e.g. elastin, melanin, water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens

Definitions

  • the invention particularly relates to an optical imaging method based on layered structure mapping.
  • the composition of biological tissues is complex and diverse. All the detected substances are not all isotropic substances. In fact, biological tissues are heterogeneous substances, and the detected regional substances have spatial heterogeneity. Distribution (such as skin melanin only exists in the epidermis, while oxygenated hemoglobin and hypoxic hemoglobin are present in the dermis layer), but in actual processing, in order to simplify the actual path of light into the biological tissue, the detected substances are considered to be oriented Same-sex substances, therefore, miscalculate the material content of each layer, and cannot accurately restore the spatial distribution, optical and physiological information of the tested substances.
  • the large-area skin imaging method based on layered structure mapping fully considers the way the light enters the biological path and the spatial distribution of the measured substance. It can accurately obtain the spatial distribution, optical and physiological information of the tested substance.
  • the present invention proposes an optical imaging method based on layered structure mapping.
  • the invention provides an optical imaging method based on layer structure mapping
  • a layered structure is mapped to an equivalent uniform medium having a respective absorption coefficient per layer.
  • the equivalent uniform medium has the same scattering characteristics as the layer and the absorption coefficient is the spatial modulation frequency of the incident light. And the absorption coefficient and thickness of each layer are determined;
  • the scattering characteristics of the medium and the absorption coefficient and thickness of each layer are inversely solved.
  • the layered structure is a two-layered layered structure or a multi-layered layered structure.
  • the application includes the following steps:
  • the optical parameters of the corresponding layers are obtained by a large-area optical imaging method of a layered model, and the layered structure mapping includes the following steps
  • ⁇ a,dermis ( ⁇ ) ⁇ Hb ( ⁇ )c Hb + ⁇ HbO ( ⁇ )c HbO ,
  • c HbO2, c Hb, c melanin are oxyhemoglobin, hemoglobin, and melanin concentrations hypoxia
  • ⁇ HbO2, ⁇ Hb, ⁇ melanin are oxygenated hemoglobin molar extinction coefficient of hemoglobin and melanin hypoxia, [lambda] is the wavelength
  • each layer has its own absorption coefficient.
  • the equivalent uniform medium has the same scattering characteristics as the layer and its absorption coefficient is the spatial modulation frequency of the incident light and the layers. The absorption coefficient and thickness are determined;
  • the scattering characteristics of the medium and the absorption coefficient and thickness of each layer are inversely solved.
  • the invention has the beneficial effects that the spatial distribution of the biological tissue and the optical properties of each layer are fully considered, and the detection depth at the spatial modulation frequency of each wavelength is accurately evaluated, so that the spatial distribution of the layered structure and the content of each layer can be accurately obtained. Moreover, we combined this model with SFDI technology and applied good results for forearm reactive hyperemia experiments and skin black sputum testing.
  • Figure 1 is a schematic view of the skin structure.
  • Figure 4 is a graphical representation of the oxidized hemoglobin concentration (a), deoxyhemoglobin concentration (b), total hemoglobin concentration (c), and blood oxygen saturation change process (d) of a typical subject in a forearm reactive hyperemia experiment.
  • Figure 5 is a graphical representation of melanin and epidermal thickness in a forearm reactive hyperemia experiment.
  • Fig. 6 is a graph showing the absorption coefficient at each wavelength of the epidermal layer (a-c) and the dermis layer (d-f) and the scattering coefficient (g) and scattering ability (h) of the skin.
  • Figure 7 shows the measured area under the SSMD-SFDI system, and the dotted rectangular area is the area of interest.
  • Fig. 8 is a distribution diagram of normal tissue and black sputum optical parameters (absorption coefficient (a-f), scattering coefficient (g) and scattering ability (h) of each wavelength layer).
  • Figure 9 shows normal tissue and black sputum physiological parameters (oxygenated hemoglobin (a), hypoxic hemoglobin (b), total oxygenated hemoglobin (c), oxygen saturation (d), melanin (e) and epidermal thickness (f)) Distribution map.
  • the invention provides an optical imaging method based on layered structure mapping
  • a layered structure is mapped to an equivalent uniform medium having a respective absorption coefficient per layer.
  • the equivalent uniform medium has the same scattering characteristics as the layer and the absorption coefficient is the spatial modulation frequency of the incident light. And the absorption coefficient and thickness of each layer are determined;
  • the scattering characteristics of the medium and the absorption coefficient and thickness of each layer are inversely solved.
  • the layered structure is a two-layer layer structure or a multi-layer layer structure.
  • the structural characteristics of the skin for the multilayer structure (Fig. 1), melanin is mainly concentrated on the surface skin (50-120 ⁇ m), and the epidermal layer (1-4 mm) is basically Contains no blood. Oxygenated and anoxic hemoglobin content and only present in the dermis.
  • the epidermal layer of the skin is extremely thin. It can be assumed that the epidermis and the dermis have the same scattering coefficient ⁇ ' s , and the absorption of light differs in different layers, predominating the melanin of the epidermis.
  • the present invention provides an optical imaging method based on layered structure mapping, which includes the following step:
  • the optical parameters of the corresponding layers are obtained by a large-area optical imaging method of a layered model, and the layered structure mapping includes the following steps
  • ⁇ a,dermis ( ⁇ ) ⁇ Hb ( ⁇ )c Hb + ⁇ HbO ( ⁇ )c HbO ,
  • c HbO2, c Hb, c melanin are oxyhemoglobin, hemoglobin, and melanin concentrations hypoxia
  • ⁇ HbO2, ⁇ Hb, ⁇ melanin are oxygenated hemoglobin molar extinction coefficient of hemoglobin and melanin hypoxia, [lambda] is the wavelength
  • is 623 nm, 540 nm, 460 nm.
  • the image acquisition device is one of CCD, spectrometer or fiber optic probe or the like.
  • the layered structure mapping model and Monte Carlo simulation of equivalent homogeneous medium were carried out.
  • the layered structure mapping model had a skin layer of 0.1 mm, a melanin content of 3.485 mM, and a dermis oxyhemoglobin and anoxic hemoglobin content of 0.0077 mM, 0.0027 mM.
  • the scattering coefficient at 540 nm is 1.7 mm -1 , the scattering power is 0.76, the reflectance is 1.4, and the anisotropy factor is 0.7.
  • Figure 3(a) shows the comparison of the diffuse reflectance of the layered structure mapping model and the equivalent uniform model under Monte Carlo simulation.
  • Figure 3(b) shows the average maximum depth of detection at each spatial frequency.
  • An optical imaging method based on layered structure mapping can also be applied to endoscopic tissue mucosal layer detection imaging.
  • the layered structure mapping can also be applied to optical spectroscopy methods.
  • FIG 4 shows the typical changes in oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, total hemoglobin concentration, and oxygen saturation in a forearm reactive hyperemia experiment.
  • the cuff blocks blood flow to the veins and arteries, blood is deposited in the subcutaneous blood vessels due to obstruction of the distal vein, causing the blood vessels to expand and expand, and the total hemoglobin (the sum of HbO 2 and Hb, (Fig. 4(c)) slightly rises. Blockage leads to rapid depletion of oxygen in the tissue, causing a rapid decrease in tissue oxyhemoglobin (HbO 2 concentration, Figure 4(a)) and an increase in tissue deoxyhemoglobin concentration (Hb, Figure 4(b)).
  • Skin black mites were detected using the SSMD-SFDI system in combination with a layered structure mapping model.
  • Figure 9 shows oxyhemoglobin (a), hypoxic hemoglobin (b), total hemoglobin (c), oxygen saturation (d), melanin (e) and epidermal layer thickness (f), respectively.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种基于层状结构映射的光学成像方法,此方法充分考虑各层物质特定的空间分布和光学性质,可分离出相应各层的光学信息,光学信息包括各层吸收系数和散射系数等。该方法应用于生物体系检测可得到组织各层的生理参数信息,生理参数信息包括含氧血红蛋白含量,缺氧血红蛋白含量,黑色素含量和表皮层深度等。将此方法与SFDI技术相结合,应用于前臂反应性充血实验和皮肤黑痣检测得到了良好的结果。

Description

一种基于层状结构映射的光学成像方法 技术领域
本发明具体涉及一种基于层状结构映射的光学成像方法。
背景技术
在光学成像领域,生物组织的构成是复杂多样的,所有的探测的物质并不都是各向同性物质,实际上,生物组织是各项异性物质,所探测的区域物质存在空间上的不均匀分布(如皮肤的黑色素只存在于表皮层,而含氧血红蛋白和缺氧血红蛋白存在与真皮层),但在实际处理中,为简化光进入生物组织中实际路径,认为所探测的物质为各向同性物质,因此会错估各层的物质含量,无法准确还原被测物质的空间分布,光学和生理信息。而基于层状结构映射的大面积皮肤成像方法,充分考虑了光进入生物组织中实际路径和被测物质的空间分布方式。能够精确的得出被测物质的空间分布,光学和生理信息。
发明内容
为了解决以上技术问题,本发明提出一种基于层状结构映射的光学成像方法。
本发明提供一种基于层状结构映射的光学成像方法,
将一个层状结构映射于一个等效均匀介质,该层状结构每分层有各自的吸收系数,等效均匀介质具有与分层相同的散射特征而其吸收系数是由入射光的空间调制频率及各分层的吸收系数和厚度决定;
利用光在均匀介质中的传输模型针对等效均匀介质获取其在不同入射光空间调制状态下的光学参数后,反解出介质的散射特征及各分层的吸收系数和厚度。
所述层状结构为双层层状结构或多层层状结构。
一种基于上述基于层状结构映射的光学成像方法在皮肤参数检测的应用。
所述的应用,包括以下步骤:
一、通过分层模型的大面积光学成像方法获取相应各层的光学参数,其层状结构映射包括以下步骤
①建立表皮层和真皮层的吸收系数
μa,epidermis(λ)=εmelanin(λ)cmelanin
μa,dermis(λ)=εHb(λ)cHbHbO(λ)cHbO
其中cHbO2、cHb、cmelanin分别是含氧血红蛋白,缺氧血红蛋白和黑色素浓度,εHbO2、εHb、εmelanin分别是含氧血红蛋白,缺氧血红蛋白和黑色素的摩尔消光系数,λ为波长;
②建立如下关系式μa(q,λ)L(q,λ)=μa,epidermis(λ)h+μa,dermis(λ)(L-h),其中q是入射光空间调制角频率,μa(q,λ)为等效均匀介质的吸收系数,h为表皮层厚度,以及平均探测深度
Figure PCTCN2017113691-appb-000001
其中μ′t≡μa+μ′s
Figure PCTCN2017113691-appb-000002
D0=1/3μ′s,l是外推长度,μ′s为约化散射系数;
③等效均匀介质的吸收系数μa由步骤②决定;
二、根据获得的光学参数,通过比尔-朗伯定律各物质的含量。
一种基于上述的基于层状结构映射的光学成像方法在内窥镜组织粘膜层检测成像中的应用。
一种基于上述的层状结构映射的光学光谱方法,将一个层状结构 映射于一个等效均匀介质,该层状结构每分层有各自的吸收系数,等效均匀介质具有与分层相同的散射特征而其吸收系数是由入射光的空间调制频率及各分层的吸收系数和厚度决定;
利用光在均匀介质中的传输模型针对等效均匀介质获取其在不同入射光空间调制状态下的光学参数后,反解出介质的散射特征及各分层的吸收系数和厚度。
本发明的有益效果:充分考虑生物组织的空间分布和各层光学性质,精确评估各波长所在空间调制频率下的探测深度,使其能够准确的得到层状组织的空间分布和各层物质含量,并且,我们将此模型与SFDI技术相结合,应用于前臂反应性充血实验和皮肤黑痣检测得到了良好的结果。
附图说明
图1为皮肤结构示意图。
图2中,图左:空间调制图案;图右正弦曲线是空间调制图案中的一部分。
图3.(a)层状结构映射模型和等效模型的反射率拟合,误差棒为5次拟合后的结果。(b)为460nm,540nm,623nm和800nm在不同空间频率下的最大探测深度。
图4为典型被测者在前臂反应性充血实验中氧合血红蛋白浓度(a)、脱氧血红蛋白浓度(b)、总血红蛋白浓度(c)和血氧饱和度变化过程(d)的示意图。
图5为在前臂反应性充血实验中黑色素和表皮层厚度的示意图。
图6为表皮层(a-c)和真皮层(d-f)各波长下的吸收系数和皮肤的散射系数(g)和散射能力(h)的示意图。
图7为SSMD-SFDI系统下被测区域,虚线矩形区域为感兴趣区域。
图8为正常组织和黑痣光学参数(各波长各层吸收系数(a-f),散射系数(g)和散射能力(h))的分布图。
图9为正常组织和黑痣生理参数(,含氧血红蛋白(a),缺氧血红蛋白(b),总含氧血红蛋白(c),血氧饱和度(d),黑色素(e)和表皮层厚度(f))的分布图。
具体实施方式
下面结合附图对本发明实施例作进一步说明:
本发明提供了一种基于层状结构映射的光学成像方法,
将一个层状结构映射于一个等效均匀介质,该层状结构每分层有各自的吸收系数,等效均匀介质具有与分层相同的散射特征而其吸收系数是由入射光的空间调制频率及各分层的吸收系数和厚度决定;
利用光在均匀介质中的传输模型针对等效均匀介质获取其在不同入射光空间调制状态下的光学参数后,反解出介质的散射特征及各分层的吸收系数和厚度。
其中所述层状结构为双层层状结构或多层层状结构。
以皮肤为例解释层状结构映射光学成像方法的推导,皮肤的结构特点:为多层结构(图1),黑色素主要集中在表皮肤(50~120μm),并且表皮层(1-4mm)基本不含血。含氧和缺氧血红蛋白含量和只存在于真皮层。
皮肤表皮层极薄,可以假设表皮层(epidermis)和真皮层(dermis)的有着相同的散射系数μ′s,而光的吸收在不同层存在差异,占主导地位是表皮层的黑色素(melanin),真皮层的含氧血红蛋白(HbO)和缺氧血红蛋白(Hb)次之。假设表层厚度为h,考虑到空间调制频率的探测深度L=L(q),空间调制光的频率q=2πf(图2)。
本发明提供一种基于层状结构映射的光学成像方法,其包括以下 步骤:
一、通过分层模型的大面积光学成像方法获取相应各层的光学参数,其层状结构映射包括以下步骤
①建立表皮层和真皮层的吸收系数
μa,epidermis(λ)=εmelanin(λ)cmelanin
μa,dermis(λ)=εHb(λ)cHbHbO(λ)cHbO
其中cHbO2、cHb、cmelanin分别是含氧血红蛋白,缺氧血红蛋白和黑色素浓度,εHbO2、εHb、εmelanin分别是含氧血红蛋白,缺氧血红蛋白和黑色素的摩尔消光系数,λ为波长;
②建立如下关系式μa(q,λ)L(q,λ)=μa,epidermis(λ)h+μa,dermis(λ)(L-h),其中q是入射光空间调制角频率,μa(q,λ)为等效均匀介质的吸收系数,h为表皮层厚度,以及平均探测深度
Figure PCTCN2017113691-appb-000003
其中μ′t≡μa+μ′s
Figure PCTCN2017113691-appb-000004
D0=1/3μ′s,l是外推长度,μ′s为约化散射系数;
③等效均匀介质的吸收系数μa由步骤②决定;
二、根据获得的光学参数,通过比尔-朗伯定律各物质的含量。
λ为623nm,540nm,460nm。
图像获取装置为CCD,光谱仪或光纤探头其中的一种或其他。
进行了层状结构映射模型和等效均匀介质的蒙特卡洛模拟,层状结构映射模型表皮层0.1mm,黑色素含量3.485mM,真皮层含氧血红蛋白和缺氧血红蛋白含量0.0077mM,0.0027mM,在540nm下散射系数为1.7mm-1,散射能力0.76,反射率1.4,各项异性因子0.7。 图3(a)在蒙特卡洛模拟下,层状结构映射模型和等效均匀模型漫反射率的对比。图3(b)为各空间频率下的平均最大探测深度。
基于层状结构映射的光学成像方法还可以应用在内窥镜组织粘膜层检测成像。
而该层状结构映射还可以应用在光学光谱方法中。
应用实例1:前臂反应性充血实验
实验方案:
使用我们设计的实时SSMD-SFDI设备对志愿者(n=6)手臂背面进行实时检测,DMD设备投射波长为623nm,540nm和460nm,空间频率f=0.2的调制图案,探测器(Point Grey Grasshop3 GS3-U3-51S5C)以每秒3帧的速度进行采集。志愿者按照如下实验方案:正常状3分钟,压脉带给手臂产生压强(200mmg)维持4分钟,释放压脉带休息3分钟,共采集10分钟,并使用SSMD技术快速的解调出反射图案的直流和交流信息。
整个实验现象分析:
图4显示了一个典型的被测者在前臂反应性充血实验中氧合血红蛋白浓度、脱氧血红蛋白浓度、总血红蛋白浓度和血氧饱和度变化过程。当袖带阻塞静脉和动脉的血流量时,由于远端静脉阻塞,血液淤积在皮下血管,使血管充血扩张,总血红蛋白(HbO2和Hb之和,(图4(c))轻微上升。血管阻塞导致组织中的氧快速消耗,使组织氧合血红蛋白(HbO2浓度,图4(a))快速下降,组织脱氧血红蛋白浓度(Hb,图4(b))增加。在袖口释放时,表现出典型的充血反应,大量新鲜血液流入在阻塞期间已耗尽血氧的组织中。如图4(a)袖带释放段。组织氧饱和度(StO2)最初为0.82,在袖带阻塞后降至0.56,最后在袖带释放后迅速回升到0.85。结合SSMD-SFDI 系统和层状结构映射模型很好的剥离表皮层黑色素(图5)的影响,得到真皮层血氧变化(图4),表皮层厚度和各层的光学信息(图6)(散射系数和各层的吸收系数)。
应用实例2:黑痣生理信息和光学信息检测
使用SSMD-SFDI系统与层状结构映射模型相结合对皮肤的黑痣进行检测。
通过SSMD-SFDI系统,可以区分黑痣区域与旁边正常区域丰富的光学信息和生理信息,如图7所示。
图8分别得到各波长下(λ=460nm,540nm,623nm)表皮层(a-c),真皮层的吸收系数(d-f),散射系数(λ=540nm,g)和散射能力(h)。图9分别得到了含氧血红蛋白(a),缺氧血红蛋白(b),总血红蛋白(c),血氧饱和度(d),黑色素(e)和表皮层厚度(f)。
通过2个实验的应用,充分证明了SSMD-SFDI系统和层状结构映射模型的可行性,以此我们可以得到区域组织实时的,连续的,2维的多个生理参数时间变化图。
实施例不应视为对本发明的限制,任何基于本发明的精神所作的改进,都应在本发明的保护范围之内。

Claims (6)

  1. 一种基于层状结构映射的光学成像方法,其特征在于:
    将一个层状结构映射于一个等效均匀介质,该层状结构每分层有各自的吸收系数,等效均匀介质具有与分层相同的散射特征而其吸收系数是由入射光的空间调制频率及各分层的吸收系数和厚度决定;利用光在均匀介质中的传输模型针对等效均匀介质获取其在不同入射光空间调制状态下的光学参数后,反解出介质的散射特征及各分层的吸收系数和厚度。
  2. 根据权利要求1所述的基于层状结构映射的光学成像方法,其特征在于,所述层状结构为双层层状结构或多层层状结构。
  3. 一种基于上述权利要求1或2所述的基于层状结构映射的光学成像方法在皮肤参数检测的应用。
  4. 根据权利要求3所述的应用,其特征在于,包括以下步骤:
    一、通过分层模型的大面积光学成像方法获取相应各层的光学参数,其层状结构映射包括以下步骤
    ①建立表皮层和真皮层的吸收系数
    μa,epidermis(λ)=εmelanin(λ)cmelanin
    μa,dermis(λ)=εHb(λ)cHbHbO(λ)cHbO
    其中
    Figure PCTCN2017113691-appb-100001
    cHb、cmelanin分别是含氧血红蛋白,缺氧血红蛋白和黑色素浓度,
    Figure PCTCN2017113691-appb-100002
    εHb、εmelanin分别是含氧血红蛋白,缺氧血红蛋白和黑色素的摩尔消光系数,λ为波长;
    ②建立如下关系式μa(q,λ)L(q,λ)=μa,epidermis(λ)h+μa,dermis(λ)(L-h),其中q是入射光空间调制角频率,μa(q,λ)为等效均匀介质的吸收系数,h为表皮层厚度,以及平均探测深度
    Figure PCTCN2017113691-appb-100003
    其中μt'≡μas',
    Figure PCTCN2017113691-appb-100004
    D0=1/3μs',l是外推长度,μs'为约化散射系数;
    ③等效均匀介质的吸收系数μa由步骤②决定;
    二、根据获得的光学参数,通过比尔-朗伯定律获得各组分的含量。
  5. 一种基于上述权利要求1或2所述的基于层状结构映射的光学成像方法在内窥镜组织粘膜层检测成像中的应用。
  6. 一种基于上述权利要求1或2所述的层状结构映射的光学光谱方法,其特征在于:将一个层状结构映射于一个等效均匀介质,该层状结构每分层有各自的吸收系数,等效均匀介质具有与分层相同的散射特征而其吸收系数是由入射光的空间调制频率及各分层的吸收系数和厚度决定;利用光在均匀介质中的传输模型针对等效均匀介质获取其在不同入射光空间调制状态下的光学参数后,反解出介质的散射特征及各分层的吸收系数和厚度。
PCT/CN2017/113691 2017-10-30 2017-11-30 一种基于层状结构映射的光学成像方法 WO2019085113A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/760,378 US11058346B2 (en) 2017-10-30 2017-11-30 Optical imaging method based on mapping of layered structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711038893.9 2017-10-30
CN201711038893.9A CN107752981B (zh) 2017-10-30 2017-10-30 一种基于层状结构映射的光学成像方法

Publications (1)

Publication Number Publication Date
WO2019085113A1 true WO2019085113A1 (zh) 2019-05-09

Family

ID=61271832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113691 WO2019085113A1 (zh) 2017-10-30 2017-11-30 一种基于层状结构映射的光学成像方法

Country Status (3)

Country Link
US (1) US11058346B2 (zh)
CN (1) CN107752981B (zh)
WO (1) WO2019085113A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11266345B2 (en) * 2018-07-16 2022-03-08 Swift Medical Inc. Apparatus for visualization of tissue
CN111265188A (zh) * 2020-01-21 2020-06-12 温州医科大学 一种基于局部微循环的糖尿病足风险评估装置及方法
CN115963068B (zh) * 2023-03-16 2023-05-05 北京心联光电科技有限公司 皮肤组织成分含量的测定方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102046071A (zh) * 2008-06-02 2011-05-04 光学实验室成像公司 用于从光学相干断层扫描图像获得组织特性的定量方法
CN102883658A (zh) * 2009-11-19 2013-01-16 调节成像公司 用于使用结构化照明经由单元件检测来分析浑浊介质的方法和设备
US20140128744A1 (en) * 2012-11-07 2014-05-08 Modulated Imaging, Inc. Efficient modulated imaging
US20140213910A1 (en) * 2013-01-25 2014-07-31 The Regents Of The University Of California Method and apparatus for performing qualitative and quantitative analysis of burn extent and severity using spatially structured illumination
CN104825131A (zh) * 2014-02-11 2015-08-12 首尔伟傲世有限公司 皮肤状况评估装置及使用该装置的皮肤状况评估方法
CN105136690A (zh) * 2014-05-28 2015-12-09 天津先阳科技发展有限公司 漫射光谱数据处理方法、建模方法、预测方法和处理装置
CN106163399A (zh) * 2014-03-31 2016-11-23 索尼公司 测量装置、测量方法、程序和记录介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3365227B2 (ja) * 1996-10-25 2003-01-08 花王株式会社 皮膚の表面状態の光学的特性の測定方法及び装置
CN101257847A (zh) * 2005-09-02 2008-09-03 宝丽化学工业有限公司 评价皮肤状况的方法和估计皮肤厚度的方法
CN105786762B (zh) * 2016-03-28 2017-02-22 陈威 一种人皮肤光谱的建模方法以及高拟合度的多个皮肤参数的数学建模方法
CN106814048B (zh) * 2017-01-18 2018-04-17 湖南大学 一种从气凝胶玻璃实验数据反推气凝胶消光系数的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102046071A (zh) * 2008-06-02 2011-05-04 光学实验室成像公司 用于从光学相干断层扫描图像获得组织特性的定量方法
CN102883658A (zh) * 2009-11-19 2013-01-16 调节成像公司 用于使用结构化照明经由单元件检测来分析浑浊介质的方法和设备
US20140128744A1 (en) * 2012-11-07 2014-05-08 Modulated Imaging, Inc. Efficient modulated imaging
US20140213910A1 (en) * 2013-01-25 2014-07-31 The Regents Of The University Of California Method and apparatus for performing qualitative and quantitative analysis of burn extent and severity using spatially structured illumination
CN104825131A (zh) * 2014-02-11 2015-08-12 首尔伟傲世有限公司 皮肤状况评估装置及使用该装置的皮肤状况评估方法
CN106163399A (zh) * 2014-03-31 2016-11-23 索尼公司 测量装置、测量方法、程序和记录介质
CN105136690A (zh) * 2014-05-28 2015-12-09 天津先阳科技发展有限公司 漫射光谱数据处理方法、建模方法、预测方法和处理装置

Also Published As

Publication number Publication date
US11058346B2 (en) 2021-07-13
US20200383630A1 (en) 2020-12-10
CN107752981A (zh) 2018-03-06
CN107752981B (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
JP5916810B2 (ja) ヒトの患者における創傷が治癒しているかどうか判定するシステム
WO2019085113A1 (zh) 一种基于层状结构映射的光学成像方法
US7047055B2 (en) Fetal pulse oximetry
US20100210931A1 (en) Method for performing qualitative and quantitative analysis of wounds using spatially structured illumination
Chatterjee et al. Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model
JP2011518339A5 (zh)
JP2013533766A (ja) 皮膚組織の自己蛍光値を求めるための方法および装置
JP2008049091A (ja) 生体成分濃度測定方法
Hu et al. Opto‐Physiological Modeling Applied to Photoplethysmographic Cardiovascular Assessment
Bousefsaf et al. Peripheral vasomotor activity assessment using a continuous wavelet analysis on webcam photoplethysmographic signals
Hunter et al. Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness
WO2019085114A1 (zh) 实时单次快照多频解调空间频域成像方法
US20110077496A1 (en) Process and apparatus for non-invasive, continuous in vivo measurement of hematocrit
Takatani et al. Optical oximetry sensors for whole blood and tissue
Dremin et al. Hyperspectral imaging of diabetes mellitus skin complications
Li et al. A reflectance model for non-contact mapping of venous oxygen saturation using a CCD camera
JP4072240B2 (ja) 非侵襲血液分析装置
Nishidate et al. Estimation of absorbing components in a local layer embedded in the turbid media on the basis of visible to near-infrared (VIS-NIR) reflectance spectra
Zahedi et al. Applicability of adaptive noise cancellation to fetal heart rate detection using photoplethysmography
Volkov et al. Photoplethysmographic imaging of hemodynamics and two-dimensional oximetry
Mantri et al. Photoacoustic imaging to monitor outcomes during hyperbaric oxygen therapy: validation in a small cohort and case study in a bilateral chronic ischemic wound
KR102482459B1 (ko) 비침습적 당화혈색소 측정 시스템 및 방법
Rubins et al. Snapshot hyperspectral system for noninvasive skin blood oxygen saturation monitoring
Verdel et al. Monitoring of hemodynamics in human skin using pulsed photothermal radiometry and optical spectroscopy
McEwen et al. Vessel calibre and haemoglobin effects on pulse oximetry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930762

Country of ref document: EP

Kind code of ref document: A1