WO2019082840A1 - Ophthalmological imaging device and control method for same - Google Patents

Ophthalmological imaging device and control method for same

Info

Publication number
WO2019082840A1
WO2019082840A1 PCT/JP2018/039174 JP2018039174W WO2019082840A1 WO 2019082840 A1 WO2019082840 A1 WO 2019082840A1 JP 2018039174 W JP2018039174 W JP 2018039174W WO 2019082840 A1 WO2019082840 A1 WO 2019082840A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference signal
light
unit
optical path
tomogram
Prior art date
Application number
PCT/JP2018/039174
Other languages
French (fr)
Japanese (ja)
Inventor
航 坂川
稲生 耕久
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018147777A external-priority patent/JP7218122B2/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019082840A1 publication Critical patent/WO2019082840A1/en
Priority to US16/857,034 priority Critical patent/US20200281462A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the present invention relates to an ophthalmologic imaging apparatus and a control method thereof.
  • an ophthalmologic apparatus for observing or photographing an eye
  • an anterior segment photographing apparatus for example, an eye fundus camera, a confocal laser scanning ophthalmoscope (SLO) apparatus, light using multi-wavelength light wave interference
  • SLO confocal laser scanning ophthalmoscope
  • OCT optical coherence tomography
  • the ophthalmic OCT apparatus has the optical path length of the reference light and the optical path length of the irradiation light.
  • the difference may be large.
  • the light path length of the irradiation light means the light path length of the light path obtained by combining the light path of the irradiation light and the light path of the reflected light. If the optical path length difference is large, the OCT apparatus causes aliasing or chipping of a tomogram, and can not obtain a tomogram representing the shape of the fundus correctly.
  • Patent Document 1 discloses a technique for inverting a tomogram in which aliasing has occurred and synthesizing the original tomogram and detecting a retina by image analysis. By this technique, it is possible to perform appropriate shape analysis of the fundus in a wide range in the depth direction.
  • One of the ophthalmologic imaging apparatuses is A detection unit that detects, as an interference signal, interference light due to return light from an object irradiated with measurement light and reference light corresponding to the measurement light; A converter for converting the detected interference signal; An arithmetic processing unit that generates a tomogram of the subject using the converted interference signal; The arithmetic processing unit is a plurality of components obtained from the converted interference signal, and uses a component of a frequency higher than the Nyquist frequency of the conversion unit and a component of a frequency lower than the Nyquist frequency of the conversion unit. , Generating the tomogram.
  • the conventional technique is a technique for inverting and connecting tomograms after occurrence of aliasing and performing shape analysis. For this reason, it does not remove the aliasing itself from the tomogram. That is, it is not possible to obtain a tomogram suitable for observing the detailed structure of the portion where the aliasing has occurred.
  • one of the objects of the present embodiment is to acquire a tomogram that is wider in the depth direction and in which aliasing is reduced.
  • one of the ophthalmologic imaging apparatus is a plurality of components (for example, information including intensity and phase) obtained from the interference signal converted by the conversion unit, and the Nyquist frequency of the conversion unit A tomogram of the object is generated using the high frequency component and the low frequency component lower than the Nyquist frequency of the conversion unit.
  • the present embodiment will be described below.
  • FIG. 1 is a view showing a configuration of an OCT (an example of an ophthalmologic imaging apparatus) according to the present embodiment.
  • the wavelength swept light source 101 is a light source in which the wavelength of light to be emitted temporally changes from a short wavelength to a long wavelength, or from a long wavelength to a short wavelength.
  • the light L emitted from the wavelength sweeping light source 101 is demultiplexed into the irradiation light LA (measurement light) and the reference light LB by a branching fiber coupler 102 which is an example of a dividing means.
  • the irradiation light LA is collimated by the collimator lens 103, reflected by the scanning mirror 108, passes through the condenser lens 105, and is irradiated onto the subject 107.
  • the light LA ′ (return light) which is irradiated to and reflected by the object 107 is incident on the coupler 104 via the coupler 102.
  • the reference light LB passes through the collimator lens 109, the mirrors 110 and 111, and the condenser lens 112, and enters the coupler 104 as light LB ′.
  • the light LA ′ and the light LB ′ are simultaneously multiplexed by the coupler 104 and demultiplexed, and enter the differential detector 120 as an example of the detection unit as interference light.
  • the differential detector 120 also converts the intensity of the interference light into an analog signal.
  • the analog signal output from the differential detector 120 is branched, one of which becomes only a low frequency component by the low pass filter 121, and is converted into a digital signal by an AD conversion unit 131 which is an example of a conversion unit.
  • the other becomes high frequency components only by the high pass filter 122, and is converted into a digital signal by an AD conversion unit 132 which is an example of another conversion unit.
  • the bands of the low pass filter 121 and the high pass filter 122 are electrically adjustable.
  • the low pass filter 121 and the high pass filter 122 are an example of a filter unit that attenuates the detected interference signal according to a predetermined frequency characteristic.
  • the arithmetic processing unit 114 obtains information of the object 107 by performing processing such as Fourier transform on these digital signals.
  • the display unit 115 displays a tomogram of the subject obtained by the arithmetic processing unit 114.
  • the arithmetic processing device may be communicably connected to the ophthalmologic imaging device.
  • the arithmetic processing unit may be incorporated in the inside of the ophthalmologic imaging apparatus.
  • the above is the process of acquiring a tomogram at a certain point of the subject 107, and thus acquiring information on a cross section in the depth direction of the subject 107 is referred to as an A-scan. Further, information on a tomographic image of the subject in a direction orthogonal to the A-scan, that is, a scan for acquiring a two-dimensional image is referred to as a B-scan.
  • B-scan is performed by the scanning mirror 108.
  • FIG. 2A shows the appearance of a tomographic image of the fundus of the subject 107.
  • the positions of the mirrors 110 and 111 are adjusted by the method described later so that the optical path length of the irradiation light matches the optical path length of the reference light when the irradiation light is reflected at the depth position 240.
  • FIG. 2B shows that the arithmetic processing unit 114 Fourier-transforms the signal obtained by A-scanning the position 201 of FIG. 2A, and shows the signal strength for each frequency component.
  • the horizontal axis represents frequency
  • the vertical axis represents the logarithm of signal strength.
  • the DC component 241 represents frequency 0.
  • the Nyquist frequency 242 is half the frequency of the sampling frequency of the AD converter 131, and is the maximum frequency that can be acquired by the AD converter 131.
  • aliasing occurs around the Nyquist frequency.
  • the mirror image 203 is an image representing a frequency indistinguishable from the real image 202 when sampled by the AD conversion unit 131.
  • FIG. 2C shows a tomogram of a certain stage generated by the arithmetic processing unit 114.
  • the upper end 243 of the image represents the DC component 241 and the lower end 244 of the image represents the Nyquist frequency 242.
  • Line 204 is an image of the signal of FIG. 2B. Since the real image 202 is entirely included in the range from the DC component to the Nyquist frequency, a tomographic image is included on the straight line 204 between the upper end and the lower end of the image.
  • FIG. 2D shows the signal at position 211 in the same manner as FIG. 2B. Since the object 107 is at a deeper position than the position 201 at the position 211, the real image 212 has a frequency higher than that of the real image 202. The real image 212 partially overlaps the folded mirror image 213 because it partially exceeds the Nyquist frequency. Therefore, on the straight line 214, the original tomographic image and the folded tomographic image are partially overlapped.
  • FIG. 2E shows the signal at position 221 in the same manner as FIG. 2B. Since the object 107 is at a position deeper than the position 211 at the position 221, the real image 222 has a higher frequency and exceeds the Nyquist frequency. Therefore, on the straight line 224, only the mirror image 223, that is, the folded portion is imaged. Such sampling of a signal having a frequency exceeding the Nyquist frequency is generally referred to as undersampling.
  • the position adjustment of the mirrors 110 and 111 described above is performed as follows.
  • the photographer adjusts the positions of the mirrors 110 and 111 which are an example of the optical path length changing unit by the input unit (not shown) while looking at the image shown in FIG. 2C or the like displayed on the display unit 115.
  • the adjustment of the positions of the mirrors 110 and 111 can be performed by, for example, moving the mirrors 110 and 111 along the optical axis with a common stage, thereby changing the optical path length of the reference light.
  • the optical path length changing unit may change not only the optical path length of the reference light but also the optical path length of the measurement light, or both of the optical path length of the reference light and the optical path length of the measurement light It may be changed. That is, the light length change unit may be anything as long as it can change the difference between the light path length of the reference light and the light path length of the measurement light.
  • aliasing may occur at the upper end of the image. This is the case where the depth position 240 and the subject 107 overlap.
  • the frequency components of the signal are distributed on both sides of the direct current component 241, and the area where the frequency is negative is folded back to the positive area as a mirror image to cause aliasing of the tomographic image.
  • the expression of aliasing of a tomogram often refers to this aliasing.
  • the arithmetic processing unit 114 is used to suppress aliasing due to the Nyquist frequency and to image the structure of the object 107 in a wide range in the depth direction. Describes the process that is additionally performed.
  • FIG. 3 is a diagram showing an additional process for imaging the structure of the object 107 in a wide range in the depth direction.
  • FIG. 3A is a diagram showing the frequency characteristics of the filter.
  • a characteristic 301 is a frequency characteristic of the low pass filter 121
  • a characteristic 311 is a frequency characteristic of the high pass filter 122.
  • the abscissa represents the frequency
  • the ordinate represents the logarithm of the filter transmittance.
  • the cutoff frequency is adjusted to be in the vicinity of the Nyquist frequency 242.
  • FIG. 3B shows the frequency characteristic of the low pass filter 121 and the tomographic image 312 acquired from the digital signal obtained by the AD conversion unit 131.
  • the tomogram 312 is an example of a first partial tomogram generated using a component having a frequency lower than the Nyquist frequency of the conversion unit.
  • the signal S L and the signal S H indicates a signal output from the differential detector 120 at each frequency.
  • the frequencies of the signal S L and the signal S H are symmetrical about the Nyquist frequency 242.
  • the signal S L and the signal S H are attenuated by the low pass filter 121.
  • the transmittances P L and P H are values indicating the transmittances of the low pass filter 121 at the frequencies of the signal S L and the signal S H , respectively. These are values determined during adjustment of the device.
  • the signals input to the AD conversion unit 131 are P L S L and P H S H , respectively. These results one signal S P which when analog / digital conversion is summed overlap by folding the AD conversion unit 131.
  • Processing unit 114 stores the signal S P obtained by the Fourier transform, and generates a tomographic image 312 in which the intensity of the signal S P and brightness simultaneously.
  • the signal S P consistent with that from the above description, determined by the following equation.
  • FIG. 3C shows the frequency characteristic of the high pass filter 122 and the tomographic image 322 acquired from the digital signal obtained by the AD conversion unit 132 in the same manner as FIG. 3B.
  • the tomogram 322 is an example of a second partial tomogram generated using a component having a frequency higher than the Nyquist frequency of the conversion unit.
  • the signal S Q matches the one determined by the following equation.
  • the signal S L and the signal S H can be obtained as follows.
  • processor 114 uses the signals and the transmittance of the filter used to generate the tomographic image 312 and the tomographic image 322, it is possible to obtain a signal S L and the signal S H. That is, the signal S L below the Nyquist frequency and the signal S H above the Nyquist frequency, which are overlapped due to the folding, can be separated by the above method. By performing this calculation for all frequencies other than the Nyquist frequency 242, a signal of each frequency can be obtained. The above calculation can not be performed at the Nyquist frequency 242 because P L and P H coincide, but by using the signal obtained by analog / digital conversion as it is, the signal S L (in this case, the same signal as the signal S H Can be asked).
  • FIG. 3D shows a tomogram obtained by imaging the intensity of the signal obtained as described above and imaging the object 107 in a deep range. It can be seen that tomographic images in a wide range in the depth direction are obtained as compared to FIGS. 2C, 3B, and 3C.
  • Signal S P, S Q can be obtained by Fourier transforming a signal obtained by A-scan the fundus. Since the signals S L and S H are obtained as complex numbers from the above calculation, their intensities may be used as the luminance of the image.
  • the component in the present embodiment is information including not only intensity but also phase, and is information including not only mounting but also a complex number.
  • FIG. 4 shows a flow until a tomographic image is generated and displayed based on the above description.
  • the arithmetic processing unit 114 acquires the interference signal obtained by the AD conversion unit 131 and the AD conversion unit 132.
  • the processing unit 114 performs a Fourier transform of these interference signals to obtain the signal S P, the S Q.
  • the processing unit 114 performs a calculation to separate at the Nyquist frequency signals in the manner described above, to obtain signal S L, the S H.
  • the processing unit 114 generates a tomographic image shown in FIG. 3D seeking intensity of the signal S L, S H.
  • the display unit 115 displays a tomogram.
  • the transmittance values of the low pass filter 121 and the high pass filter 122 may be updated after adjustment of the device in consideration of environmental dependency and the like.
  • these transmittances may be calculated from signals obtained by reflecting the irradiation light by a mirror (not shown) inside the apparatus before or during the inspection.
  • the value of the transmittance may be estimated based on the obtained luminance distribution of the tomogram of FIG. 3D, and the tomogram of FIG. 3D may be regenerated.
  • the formula for obtaining the signal S L and the signal S H may be a material other than the above.
  • the filter is close to the ideal filter and the cutoff frequency is close to the Nyquist frequency, the aliasing portion hardly occurs in the tomogram 312 and only the aliasing portion occurs in the tomogram 322. Therefore, a tomographic image close to a desired tomographic image can be obtained by inverting the tomographic image 322 up and down and simply connecting the tomographic image 312.
  • This and P H and Q L in the above formula is 0, the same as the calculation in the case of the 1 P L and Q H.
  • the filter used may not be a combination of a low pass filter and a high pass filter.
  • a combination in which the cutoff frequency is different only by the low pass filter may be used.
  • the value of the above P L and Q L may be only the low-pass filter can perform the same calculations for different values of different or or P H and Q H.
  • a band pass filter may be used in consideration of a frequency higher than twice the Nyquist frequency.
  • three or more filters may be provided. By combining the three or more filters having different frequency bands and performing the same calculation, it is possible to obtain a tomogram in an even deeper range.
  • the signal intensities obtained by using a plurality of filters in the same band may be averaged to increase the calculation accuracy of the luminance.
  • the filter there may be one filter. Similar calculations may be made from filtered and non-filtered signals. In that case, since the attenuation in a signal not passed through the filter substantially no, the value of P L and P H may be substantially 1. Furthermore, if the only filter is close to the ideal low-pass filter, Q L should be 1 and Q H should be 0. In this case, the above equation for S H corresponds to a simple subtraction of the filtered signal from the unfiltered signal. That is, in such a configuration, a tomogram in a wide range in the depth direction can be obtained by the subtraction processing of signals.
  • the band may be switched temporally by one filter.
  • the filter band By acquiring a plurality of tomograms continuously while switching the band, it is possible to generate a tomogram in a deeper range from the plurality of tomograms.
  • the filter band be electrically changed as in the present embodiment.
  • a configuration for switching the filter band for example, a configuration including a characteristic change unit (for example, variable resistance) provided in the filter to change the frequency characteristic of the filter and a control unit that controls the characteristic change unit is preferable. .
  • the attenuation of the signal due to other than the filter is also included in the value of the transmittance of the filter. That is, calculation is performed by regarding the decrease in signal strength due to defocusing and the attenuation due to the filter characteristics inside the AD conversion unit as the attenuation due to the low pass filter 121 and the high pass filter 122. However, these may be treated as separate parameters.
  • sampling frequencies of the AD conversion unit 131 and the AD conversion unit 132 may be different from each other. It may be possible to switch whether or not the processing unit 114 performs the above processing.
  • the final tomogram 3D may be generated from the obtained signals directly using the above equation without generating the tomogram 312 and the tomogram 322. In that case, since the imaging of the tomograms 312 and 322 is unnecessary, higher speed processing is possible.
  • k-clock is an example of a clock generation unit that generates a clock at which the conversion unit samples an analog signal.
  • k-clock is an interferometer in which an optical path through which a part of light from the wavelength swept light source 101 passes is branched into a first optical path and a second optical path having a difference in optical path length with respect to the first optical path.
  • a component of a frequency higher than the Nyquist frequency of the converting unit is a time during which sampling of interference signals (analog signals) is performed twice It can be regarded as a component that vibrates in a shorter time.
  • the component of the frequency lower than the Nyquist frequency of the converting unit is from the time when the sampling of the interference signal (analog signal) by the converting unit is performed twice. It shall be regarded as a component that vibrates for a long time.
  • this embodiment is SS-OCT, it may be applied to other OCTs.
  • an optical low pass filter may be disposed in front of the line sensor to perform the same role as the low pass filter 121 of the present embodiment.
  • the present invention may be applied to the reduction in resolution based on the pixel size of the line sensor, the design of the diffraction grating, the lens and the like as the same effect as the low pass filter.
  • the signal acquisition can be performed in a short time, and the influence of the involuntary eye movement and fatigue of the eye to be examined can be suppressed.
  • the present invention is also realized by executing the following processing. That is, software (program) for realizing the functions of the above-described embodiments is supplied to a system or apparatus via a network or various storage media, and a computer (or CPU, MPU or the like) of the system or apparatus reads the program. It is a process to execute.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

This ophthalmological imaging device is characterized by comprising a detection unit that detects, as an interference signal, interference light formed between light returning from a subject onto which measurement light was emitted and reference light corresponding to the measurement light, a conversion unit that converts the detected interference signal, and an arithmetic processing unit that generates a tomogram of the subject using the converted interference signal, the arithmetic processing unit generating the tomogram using a plurality of components attained from the converted interference signal, the components including a frequency component higher than a Nyquist frequency of the conversion unit, and a frequency component lower than the Nyquist frequency of the conversion unit.

Description

眼科撮影装置及びその制御方法Ophthalmic imaging apparatus and control method thereof
 本発明は、眼科撮影装置及びその制御方法に関する。 The present invention relates to an ophthalmologic imaging apparatus and a control method thereof.
 現在、眼を観察や撮影等するための眼科装置としては、例えば、前眼部撮影装置、眼底カメラ、共焦点レーザー走査検眼鏡(Scanning Laser Ophthalmoscope:SLO)装置、多波長光波干渉を利用した光干渉断層撮影(Optical Coherence Tomography:OCT)装置等がある。中でもOCT装置は被写体の断層画像を高解像度に得ることができるため、特に眼科装置として網膜の専門外来では必要不可欠な装置になりつつある。 At present, as an ophthalmologic apparatus for observing or photographing an eye, for example, an anterior segment photographing apparatus, an eye fundus camera, a confocal laser scanning ophthalmoscope (SLO) apparatus, light using multi-wavelength light wave interference There is an optical coherence tomography (OCT) apparatus and the like. Above all, since an OCT apparatus can obtain a tomographic image of a subject with high resolution, it is becoming an indispensable apparatus especially in a specialized outpatient department of the retina as an ophthalmologic apparatus.
 眼科用OCT装置では、被検眼の眼底を広範囲で撮影する場合や、眼底の湾曲が大きい場合、あるいは撮影したい部位が深さ方向に長い場合に、参照光の光路長と照射光の光路長の差が大きくなることがある。ここで、照射光の光路長とは照射光の光路とその反射光の光路を合わせた光路の光路長を意味する。この光路長差が大きいとOCT装置では断層像の折り返しや欠けが発生し、眼底の形状を正しく表した断層像を得ることができない。 In the case of imaging the fundus of the subject's eye in a wide range, when the curvature of the fundus is large, or when the site to be imaged is long in the depth direction, the ophthalmic OCT apparatus has the optical path length of the reference light and the optical path length of the irradiation light. The difference may be large. Here, the light path length of the irradiation light means the light path length of the light path obtained by combining the light path of the irradiation light and the light path of the reflected light. If the optical path length difference is large, the OCT apparatus causes aliasing or chipping of a tomogram, and can not obtain a tomogram representing the shape of the fundus correctly.
 そこで、折り返しが発生した断層像を反転させて元の断層像と合成し、画像解析により網膜を検出する技術が特許文献1に開示されている。この技術により深さ方向に広い範囲で眼底の適切な形状解析を行うことができる。 Therefore, Patent Document 1 discloses a technique for inverting a tomogram in which aliasing has occurred and synthesizing the original tomogram and detecting a retina by image analysis. By this technique, it is possible to perform appropriate shape analysis of the fundus in a wide range in the depth direction.
特開2014-176566号公報JP, 2014-176566, A
 本発明に係る眼科撮影装置の一つは、
 測定光を照射した被検体からの戻り光と前記測定光に対応する参照光とによる干渉光を干渉信号として検出する検出部と、
 前記検出された干渉信号を変換する変換部と、
 前記変換された干渉信号を用いて、前記被検体の断層像を生成する演算処理部と、を有し、
 前記演算処理部は、前記変換された干渉信号から得られる複数の成分であって、前記変換部のナイキスト周波数より高い周波数の成分と、前記変換部のナイキスト周波数より低い周波数の成分とを用いて、前記断層像を生成する。
One of the ophthalmologic imaging apparatuses according to the present invention is
A detection unit that detects, as an interference signal, interference light due to return light from an object irradiated with measurement light and reference light corresponding to the measurement light;
A converter for converting the detected interference signal;
An arithmetic processing unit that generates a tomogram of the subject using the converted interference signal;
The arithmetic processing unit is a plurality of components obtained from the converted interference signal, and uses a component of a frequency higher than the Nyquist frequency of the conversion unit and a component of a frequency lower than the Nyquist frequency of the conversion unit. , Generating the tomogram.
本実施形態に係るOCTの模式図Schematic diagram of OCT according to the present embodiment 本実施形態における、信号の周波数と断層像の関係を示す図The figure which shows the relationship between the frequency of a signal and a tomogram in this embodiment 本実施形態における、信号の周波数と断層像の関係を示す図The figure which shows the relationship between the frequency of a signal and a tomogram in this embodiment 本実施形態における、信号の周波数と断層像の関係を示す図The figure which shows the relationship between the frequency of a signal and a tomogram in this embodiment 本実施形態における、信号の周波数と断層像の関係を示す図The figure which shows the relationship between the frequency of a signal and a tomogram in this embodiment 本実施形態における、信号の周波数と断層像の関係を示す図The figure which shows the relationship between the frequency of a signal and a tomogram in this embodiment 本実施形態における、深さ方向により広い断層像を取得する方法を示す図The figure which shows the method of acquiring a tomogram wider in the depth direction in this embodiment 本実施形態における、深さ方向により広い断層像を取得する方法を示す図The figure which shows the method of acquiring a tomogram wider in the depth direction in this embodiment 本実施形態における、深さ方向により広い断層像を取得する方法を示す図The figure which shows the method of acquiring a tomogram wider in the depth direction in this embodiment 本実施形態における、深さ方向により広い断層像を取得する方法を示す図The figure which shows the method of acquiring a tomogram wider in the depth direction in this embodiment 本実施形態における、深さ方向により広い断層像を取得する流れを示す図A diagram showing a flow for acquiring a wider tomographic image in the depth direction in the present embodiment
 従来の技術では、折り返しが発生した後の断層像を反転して接続し形状解析を行う技術である。このため、断層像から折り返しそのものを除去するものではない。すなわち、折り返しが発生した部位の詳細な構造の観察に適した断層像を得ることができない。 The conventional technique is a technique for inverting and connecting tomograms after occurrence of aliasing and performing shape analysis. For this reason, it does not remove the aliasing itself from the tomogram. That is, it is not possible to obtain a tomogram suitable for observing the detailed structure of the portion where the aliasing has occurred.
 そこで、本実施形態の目的の一つは、深さ方向により広い断層像であって、折り返しが低減された断層像を取得することである。 Therefore, one of the objects of the present embodiment is to acquire a tomogram that is wider in the depth direction and in which aliasing is reduced.
 例えば、本実施形態に係る眼科撮影装置の一つは、変換部により変換された干渉信号から得られる複数の成分(例えば、強度と位相とを含む情報)であって、変換部のナイキスト周波数より高い周波数の成分と、変換部のナイキスト周波数より低い周波数の成分とを用いて、被検体の断層像を生成する。これにより、深さ方向により広い断層像であって、折り返しが低減された断層像を取得することができる。以下では本実施形態について説明する。 For example, one of the ophthalmologic imaging apparatus according to the present embodiment is a plurality of components (for example, information including intensity and phase) obtained from the interference signal converted by the conversion unit, and the Nyquist frequency of the conversion unit A tomogram of the object is generated using the high frequency component and the low frequency component lower than the Nyquist frequency of the conversion unit. As a result, it is possible to acquire a tomogram that is wider in the depth direction and in which aliasing is reduced. The present embodiment will be described below.
 (光干渉断層計)
 図1は、本実施形態に係るOCT(眼科撮影装置の一例)の構成を示す図である。波長掃引光源101は、出射する光の波長が短波長から長波長へ、または長波長から短波長へ時間的に変化する光源である。波長掃引光源101から出射された光Lが、分割手段の一例である分岐ファイバカップラ102で照射光LA(測定光)と参照光LBに分波される。また、照射光LAはコリメータレンズ103で平行光となり、走査ミラー108で反射され、集光レンズ105を経て、被検体107に照射される。また、被検体107に照射されて反射した光LA’(戻り光)は、カップラ102を経由して、カップラ104に入射する。一方、参照光LBは、コリメータレンズ109、ミラー110、111、集光レンズ112を経て光LB’としてカップラ104に入射する。光LA’と光LB’とはカップラ104で合波すると同時に分波され、検出部の一例である差動検出器120に干渉光として入射する。
(Optical coherence tomography)
FIG. 1 is a view showing a configuration of an OCT (an example of an ophthalmologic imaging apparatus) according to the present embodiment. The wavelength swept light source 101 is a light source in which the wavelength of light to be emitted temporally changes from a short wavelength to a long wavelength, or from a long wavelength to a short wavelength. The light L emitted from the wavelength sweeping light source 101 is demultiplexed into the irradiation light LA (measurement light) and the reference light LB by a branching fiber coupler 102 which is an example of a dividing means. Further, the irradiation light LA is collimated by the collimator lens 103, reflected by the scanning mirror 108, passes through the condenser lens 105, and is irradiated onto the subject 107. Further, the light LA ′ (return light) which is irradiated to and reflected by the object 107 is incident on the coupler 104 via the coupler 102. On the other hand, the reference light LB passes through the collimator lens 109, the mirrors 110 and 111, and the condenser lens 112, and enters the coupler 104 as light LB ′. The light LA ′ and the light LB ′ are simultaneously multiplexed by the coupler 104 and demultiplexed, and enter the differential detector 120 as an example of the detection unit as interference light.
 また、差動検出器120は、干渉光の強度をアナログ信号に変換する。差動検出器120から出力されたアナログ信号は分岐され、一方はローパスフィルタ121によって低周波成分のみとなり、変換部の一例であるAD変換部131によりディジタル信号に変換される。他方はハイパスフィルタ122によって高周波成分のみとなり、別の変換部の一例であるAD変換部132によってディジタル信号に変換される。ローパスフィルタ121とハイパスフィルタ122の帯域は電気的に調整可能である。なお、ローパスフィルタ121とハイパスフィルタ122は、検出された干渉信号を所定の周波数特性に従って減衰させるフィルタ部の一例である。これらのディジタル信号は、演算処理部の一例である演算処理装置114によって後述する方法で処理される。演算処理装置114は、これらのディジタル信号に対してフーリエ変換を始めとする処理を行うことによって被検体107の情報を取得する。表示部115は演算処理装置114によって得られた被検体の断層像を表示する。なお、演算処理装置は、眼科撮影装置に通信可能に接続されていれば良い。また、演算処理装置は、眼科撮影装置の内部に組み込まれていても良い。 The differential detector 120 also converts the intensity of the interference light into an analog signal. The analog signal output from the differential detector 120 is branched, one of which becomes only a low frequency component by the low pass filter 121, and is converted into a digital signal by an AD conversion unit 131 which is an example of a conversion unit. The other becomes high frequency components only by the high pass filter 122, and is converted into a digital signal by an AD conversion unit 132 which is an example of another conversion unit. The bands of the low pass filter 121 and the high pass filter 122 are electrically adjustable. The low pass filter 121 and the high pass filter 122 are an example of a filter unit that attenuates the detected interference signal according to a predetermined frequency characteristic. These digital signals are processed by an arithmetic processing unit 114, which is an example of an arithmetic processing unit, in a method described later. The arithmetic processing unit 114 obtains information of the object 107 by performing processing such as Fourier transform on these digital signals. The display unit 115 displays a tomogram of the subject obtained by the arithmetic processing unit 114. The arithmetic processing device may be communicably connected to the ophthalmologic imaging device. The arithmetic processing unit may be incorporated in the inside of the ophthalmologic imaging apparatus.
 以上は、被検体107のある1点における断層像の取得プロセスであり、このように被検体107の奥行き方向の断層に関する情報を取得することをA-scanと呼ぶ。また、A-scanと直交する方向で被検体の断層に関する情報、すなわち2次元画像を取得するための走査をB-scanと呼ぶ。本実施形態においては走査ミラー108によって、B-scanを行う。 The above is the process of acquiring a tomogram at a certain point of the subject 107, and thus acquiring information on a cross section in the depth direction of the subject 107 is referred to as an A-scan. Further, information on a tomographic image of the subject in a direction orthogonal to the A-scan, that is, a scan for acquiring a two-dimensional image is referred to as a B-scan. In the present embodiment, B-scan is performed by the scanning mirror 108.
 (断層像の取得)
 断層像の取得について図2を用いて説明する。ここでは、図1におけるローパスフィルタ121の帯域が充分広く調整されている場合について説明する。この場合、差動検出器120から出力されるアナログ信号は全てローパスフィルタ121を通過するため、ローパスフィルタ121は無視してよいものとする。
(Tomogram acquisition)
Acquisition of a tomogram will be described with reference to FIG. Here, the case where the band of the low pass filter 121 in FIG. 1 is adjusted sufficiently wide will be described. In this case, since all analog signals output from the differential detector 120 pass through the low pass filter 121, the low pass filter 121 may be ignored.
 ここで、図2Aは、被検体107の眼底のある断層の様子を表したものである。照射光が深さ位置240で反射した場合に照射光の光路長と参照光の光路長とが一致するように、後述の方法によってミラー110、111の位置が調整されている。 Here, FIG. 2A shows the appearance of a tomographic image of the fundus of the subject 107. The positions of the mirrors 110 and 111 are adjusted by the method described later so that the optical path length of the irradiation light matches the optical path length of the reference light when the irradiation light is reflected at the depth position 240.
 また、図2Bは、図2Aの位置201をA-scanすることによって得られた信号を演算処理装置114がフーリエ変換し、周波数成分ごとに信号強度を示したものである。横軸は周波数を、縦軸は信号強度の対数を表している。直流成分241は周波数0を表している。照射光の光路長と参照光の光路長とが完全に一致すると、掃引された全ての波長で照射光と参照光が強め合うため、直流成分の信号が得られる。照射光の光路長と参照光の光路長が異なる場合はその差に応じて干渉が発生し、信号の周波数が変化する。 Further, FIG. 2B shows that the arithmetic processing unit 114 Fourier-transforms the signal obtained by A-scanning the position 201 of FIG. 2A, and shows the signal strength for each frequency component. The horizontal axis represents frequency, and the vertical axis represents the logarithm of signal strength. The DC component 241 represents frequency 0. When the optical path length of the irradiation light and the optical path length of the reference light completely match, the irradiation light and the reference light intensify each other at all the swept wavelengths, so that a signal of a DC component is obtained. When the optical path length of the irradiation light and the optical path length of the reference light are different, interference occurs according to the difference, and the frequency of the signal changes.
 また、位置201では、被検体107が深さ位置240よりも深い位置にあるため光路長差が生じ、実像202が得られる。ナイキスト周波数242はAD変換部131のサンプリング周波数の半分の周波数であり、AD変換部131によって取得できる最大の周波数である。AD変換部131でアナログ/ディジタル変換を行うとナイキスト周波数を軸とした折り返し(エイリアシング)が発生する。鏡像203はAD変換部131でサンプリングしたときに実像202と区別がつかない周波数を表した像である。 Further, at the position 201, since the object 107 is at a position deeper than the depth position 240, an optical path length difference occurs, and a real image 202 is obtained. The Nyquist frequency 242 is half the frequency of the sampling frequency of the AD converter 131, and is the maximum frequency that can be acquired by the AD converter 131. When analog-to-digital conversion is performed by the AD conversion unit 131, aliasing occurs around the Nyquist frequency. The mirror image 203 is an image representing a frequency indistinguishable from the real image 202 when sampled by the AD conversion unit 131.
 また、図2Cは、演算処理装置114によって生成されたある段階の断層像を示している。画像の上端243は直流成分241を表し、画像の下端244はナイキスト周波数242を表している。直線204は図2Bの信号を画像化したものである。実像202が直流成分からナイキスト周波数までの範囲に全て含まれているため、直線204上では画像の上端から下端の間に断層画像が含まれている。 Further, FIG. 2C shows a tomogram of a certain stage generated by the arithmetic processing unit 114. The upper end 243 of the image represents the DC component 241 and the lower end 244 of the image represents the Nyquist frequency 242. Line 204 is an image of the signal of FIG. 2B. Since the real image 202 is entirely included in the range from the DC component to the Nyquist frequency, a tomographic image is included on the straight line 204 between the upper end and the lower end of the image.
 また、図2Dは、位置211の信号を図2Bと同様に示したものである。位置211では位置201よりも被検体107が深い位置にあるため、実像212は実像202よりも高い周波数を持つ。実像212はナイキスト周波数を一部越えているため、折り返した鏡像213と一部重なっている。そのため、直線214上では本来の断層画像と折り返した断層画像が一部重なった画像になっている。 Further, FIG. 2D shows the signal at position 211 in the same manner as FIG. 2B. Since the object 107 is at a deeper position than the position 201 at the position 211, the real image 212 has a frequency higher than that of the real image 202. The real image 212 partially overlaps the folded mirror image 213 because it partially exceeds the Nyquist frequency. Therefore, on the straight line 214, the original tomographic image and the folded tomographic image are partially overlapped.
 また、図2Eは、位置221の信号を図2Bと同様に示したものである。位置221では位置211よりも被検体107がさらに深い位置にあるため、実像222はさらに高い周波数となり、ナイキスト周波数を越えている。そのため直線224上では鏡像223すなわち折り返した部分のみが画像化されている。このようにナイキスト周波数を越えた周波数の信号をサンプリングすることを一般にアンダーサンプリングという。 Further, FIG. 2E shows the signal at position 221 in the same manner as FIG. 2B. Since the object 107 is at a position deeper than the position 211 at the position 221, the real image 222 has a higher frequency and exceeds the Nyquist frequency. Therefore, on the straight line 224, only the mirror image 223, that is, the folded portion is imaged. Such sampling of a signal having a frequency exceeding the Nyquist frequency is generally referred to as undersampling.
 以上から分かる通り、被検体107の深さ方向の範囲に対してAD変換部131のサンプリング周波数が充分ではない場合、断層像に折り返しが発生し、被検体107の構造を正しく表した断層像を取得することができない。 As understood from the above, when the sampling frequency of the AD conversion unit 131 is not sufficient for the range in the depth direction of the subject 107, aliasing occurs in the tomogram and a tomogram representing the structure of the subject 107 correctly Can not get.
 なお、前述したミラー110、111の位置調整は以下のように行う。撮影者は表示部115に表示された図2Cまたはそれに類する画像を見ながら、不図示の入力手段によって光路長変更部の一例であるミラー110、111の位置を調整する。ミラー110、111の位置を適切に調整すると、図2Bのように画像の下端のみで折り返しが発生する断層像を得ることができる。なお、ミラー110、111の位置の調整は、例えば、ミラー110、111を共通のステージで光軸に沿って移動することで行うことにより、参照光の光路長を変更することができる。なお、光路長変更部は、参照光の光路長の変更だけでなく、測定光の光路長を変更するものであっても良いし、参照光の光路長と測定光の光路長との両方を変更するものであっても良い。すなわち、光長長変更部は、参照光の光路長と測定光の光路長との差を変更できるものであれば、何でも良い。 The position adjustment of the mirrors 110 and 111 described above is performed as follows. The photographer adjusts the positions of the mirrors 110 and 111 which are an example of the optical path length changing unit by the input unit (not shown) while looking at the image shown in FIG. 2C or the like displayed on the display unit 115. By appropriately adjusting the positions of the mirrors 110 and 111, it is possible to obtain a tomogram in which aliasing occurs only at the lower end of the image as shown in FIG. 2B. The adjustment of the positions of the mirrors 110 and 111 can be performed by, for example, moving the mirrors 110 and 111 along the optical axis with a common stage, thereby changing the optical path length of the reference light. The optical path length changing unit may change not only the optical path length of the reference light but also the optical path length of the measurement light, or both of the optical path length of the reference light and the optical path length of the measurement light It may be changed. That is, the light length change unit may be anything as long as it can change the difference between the light path length of the reference light and the light path length of the measurement light.
 なお、ミラー110、111の位置が適切でないと、画像の上端で折り返しが発生することがある。これは、深さ位置240と被検体107が重なっている場合である。このとき信号の周波数成分は直流成分241の両側に分布し、周波数が負の領域が鏡像として正の領域に折り返すことで断層像の折り返しが発生する。従来のOCT装置では、断層像の折り返しという表現はこの折り返しを指す場合が多い。一方で本発明では、このような画像の上端243における折り返しはミラー110、111の位置調整によって回避することを前提とする。その結果として画像の下端244でナイキスト周波数による折り返しが発生するが、以下ではこのナイキスト周波数による折り返しを抑制し、被検体107の構造を深さ方向に広い範囲で画像化するために演算処理装置114が追加で行う処理について述べる。 If the positions of the mirrors 110 and 111 are not appropriate, aliasing may occur at the upper end of the image. This is the case where the depth position 240 and the subject 107 overlap. At this time, the frequency components of the signal are distributed on both sides of the direct current component 241, and the area where the frequency is negative is folded back to the positive area as a mirror image to cause aliasing of the tomographic image. In the conventional OCT apparatus, the expression of aliasing of a tomogram often refers to this aliasing. On the other hand, in the present invention, it is premised that such folding at the upper end 243 of the image is avoided by position adjustment of the mirrors 110 and 111. As a result, aliasing due to the Nyquist frequency occurs at the lower end 244 of the image, but in the following, the arithmetic processing unit 114 is used to suppress aliasing due to the Nyquist frequency and to image the structure of the object 107 in a wide range in the depth direction. Describes the process that is additionally performed.
 これ以降の説明では、説明を簡単にするためフィルタの位相シフトはないものとする。同様に、眼底をA-scanすることによって得られた信号は全ての周波数で位相が揃っているものとする。このとき、この信号をフーリエ変換すると実数のみからなる周波数分布が得られるため、以降の説明では実数のみを用いる。 In the following description, for the sake of simplicity, it is assumed that there is no phase shift of the filter. Similarly, it is assumed that the signals obtained by A-scan the fundus are in phase at all frequencies. At this time, since the frequency distribution consisting of only real numbers can be obtained by Fourier transforming this signal, only the real numbers will be used in the following description.
 (折り返しの低減)
 また、図3は、被検体107の構造を深さ方向に広い範囲で画像化するための追加の処理について示した図である。ここで、図3Aは、フィルタの周波数特性を示した図である。特性301はローパスフィルタ121の周波数特性であり、特性311はハイパスフィルタ122の周波数特性である。横軸は周波数を、縦軸はフィルタ透過率の対数を表している。いずれもカットオフ周波数はナイキスト周波数242付近になるように調整されている。なお、フィルタの周波数特性に関する情報として、図3Aのようなグラフやグラフを示すテーブル等を記憶部に記憶させておくことが好ましい。
(Reduction of aliasing)
FIG. 3 is a diagram showing an additional process for imaging the structure of the object 107 in a wide range in the depth direction. Here, FIG. 3A is a diagram showing the frequency characteristics of the filter. A characteristic 301 is a frequency characteristic of the low pass filter 121, and a characteristic 311 is a frequency characteristic of the high pass filter 122. The abscissa represents the frequency, and the ordinate represents the logarithm of the filter transmittance. In either case, the cutoff frequency is adjusted to be in the vicinity of the Nyquist frequency 242. In addition, it is preferable to store a graph as shown in FIG. 3A, a table showing a graph, or the like in the storage unit as information on the frequency characteristic of the filter.
 また、図3Bは、ローパスフィルタ121の周波数特性と、AD変換部131によって得られたディジタル信号から取得した断層像312を示したものである。なお、断層像312は、変換部のナイキスト周波数より低い周波数の成分を用いて生成される第1の部分断層像の一例である。ここで、信号Sと信号Sはそれぞれの周波数において差動検出器120から出力された信号を示している。信号Sと信号Sの周波数はナイキスト周波数242を軸に対称になっている。信号Sと信号Sはローパスフィルタ121によって減衰する。透過率P,Pはそれぞれ信号Sと信号Sの周波数におけるローパスフィルタ121の透過率を示した値である。これらは装置の調整の際に決まる値である。ローパスフィルタ121によって信号Sと信号Sが減衰すると、AD変換部131に入力される信号はそれぞれPとPである。これらはAD変換部131でアナログ/ディジタル変換されると折り返しによって重なり加算された結果1つの信号Sとなる。演算処理装置114はフーリエ変換によって得られたこの信号Sを記憶し、同時に信号Sの強度を輝度とした断層像312を生成する。一方で、信号Sは上記の説明より、以下の式で求めたものと一致する。 Further, FIG. 3B shows the frequency characteristic of the low pass filter 121 and the tomographic image 312 acquired from the digital signal obtained by the AD conversion unit 131. The tomogram 312 is an example of a first partial tomogram generated using a component having a frequency lower than the Nyquist frequency of the conversion unit. Here, the signal S L and the signal S H indicates a signal output from the differential detector 120 at each frequency. The frequencies of the signal S L and the signal S H are symmetrical about the Nyquist frequency 242. The signal S L and the signal S H are attenuated by the low pass filter 121. The transmittances P L and P H are values indicating the transmittances of the low pass filter 121 at the frequencies of the signal S L and the signal S H , respectively. These are values determined during adjustment of the device. When the signal S L and the signal S H are attenuated by the low pass filter 121, the signals input to the AD conversion unit 131 are P L S L and P H S H , respectively. These results one signal S P which when analog / digital conversion is summed overlap by folding the AD conversion unit 131. Processing unit 114 stores the signal S P obtained by the Fourier transform, and generates a tomographic image 312 in which the intensity of the signal S P and brightness simultaneously. On the other hand, the signal S P consistent with that from the above description, determined by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、図3Cは、ハイパスフィルタ122の周波数特性と、AD変換部132によって得られたディジタル信号から取得した断層像322を図3Bと同様に示したものである。なお、断層像322は、変換部のナイキスト周波数より高い周波数の成分を用いて生成される第2の部分断層像の一例である。図3Bと同様に、信号Sは以下の式で求めたものと一致する。 Further, FIG. 3C shows the frequency characteristic of the high pass filter 122 and the tomographic image 322 acquired from the digital signal obtained by the AD conversion unit 132 in the same manner as FIG. 3B. The tomogram 322 is an example of a second partial tomogram generated using a component having a frequency higher than the Nyquist frequency of the conversion unit. As in FIG. 3B, the signal S Q matches the one determined by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 これらの式を連立方程式として解くと、以下のように信号Sと信号Sを得ることができる。 If these equations are solved as simultaneous equations, the signal S L and the signal S H can be obtained as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 したがって、演算処理装置114は、断層像312と断層像322の生成に用いた信号およびフィルタの透過率を用いて、信号Sと信号Sを得ることができる。すなわち、折り返しによって重なっていた、ナイキスト周波数未満の信号Sとナイキスト周波数以上の信号Sを上記の方法で分離することができる。この計算をナイキスト周波数242以外の全ての周波数について行うことで、それぞれの周波数の信号を得ることができる。ナイキスト周波数242ではPとPが一致するため上記の計算は行うことができないが、アナログ/ディジタル変換によって得られた信号をそのまま用いることで、信号S(この場合信号Sと同じ信号である)を求めることができる。 Thus, processor 114 uses the signals and the transmittance of the filter used to generate the tomographic image 312 and the tomographic image 322, it is possible to obtain a signal S L and the signal S H. That is, the signal S L below the Nyquist frequency and the signal S H above the Nyquist frequency, which are overlapped due to the folding, can be separated by the above method. By performing this calculation for all frequencies other than the Nyquist frequency 242, a signal of each frequency can be obtained. The above calculation can not be performed at the Nyquist frequency 242 because P L and P H coincide, but by using the signal obtained by analog / digital conversion as it is, the signal S L (in this case, the same signal as the signal S H Can be asked).
 また、図3Dは、以上により得られた信号の強度を画像化して被検体107を深い範囲で画像化した断層像を示したものである。図2Cや図3B、図3Cと比較して深さ方向に広い範囲の断層像が得られていることが分かる。 Further, FIG. 3D shows a tomogram obtained by imaging the intensity of the signal obtained as described above and imaging the object 107 in a deep range. It can be seen that tomographic images in a wide range in the depth direction are obtained as compared to FIGS. 2C, 3B, and 3C.
 以上の説明ではフィルタの周波数シフトはないものとし、眼底をA-scanすることによって得られた信号は全ての周波数で位相が揃っているものとした。しかし実際の周波数フィルタでは位相シフトが発生する。また、実際に眼底をA-scanすることによって得られた信号には様々な位相の信号が含まれている。したがって、これらを考慮した計算を行うことが望ましい。具体的には、以上の説明で用いた信号SL、H、透過率P、P、Q、Q、輝度SP、を全て実数から複素数に置き換えればよい。透過率P、P、Q、Qはフィルタのゲイン特性と位相特性から複素数として得ることができる。信号SP、は眼底をA-scanすることによって得られた信号をフーリエ変換することで得ることができる。信号SL、は以上の計算から複素数として得られるため、その強度を画像の輝度とすればよい。なお、本実施形態における成分とは、強度だけでなく、位相を含む情報であり、また、実装だけでなく、複素数を含む情報である。 In the above description, it is assumed that there is no frequency shift of the filter, and the signal obtained by A-scan of the fundus is in phase at all frequencies. However, in an actual frequency filter, phase shift occurs. In addition, signals obtained by actually performing A-scan on the fundus include signals of various phases. Therefore, it is desirable to perform calculations taking these into consideration. Specifically, all of the signals S L and S H, the transmittances P L , P H , Q L and Q H , and the luminances S P and S Q used in the above description may be replaced with real numbers and complex numbers. The transmittances P L , P H , Q L and Q H can be obtained as complex numbers from the gain characteristics and the phase characteristics of the filter. Signal S P, S Q can be obtained by Fourier transforming a signal obtained by A-scan the fundus. Since the signals S L and S H are obtained as complex numbers from the above calculation, their intensities may be used as the luminance of the image. The component in the present embodiment is information including not only intensity but also phase, and is information including not only mounting but also a complex number.
 図4は以上の説明に基づいて断層像を生成し表示するまでの流れを示したものである。ステップS401において、演算処理装置114はAD変換部131とAD変換部132によって得られた干渉信号を取得する。ステップS402において、演算処理装置114はそれらの干渉信号のフーリエ変換を行い、信号SP、を得る。ステップS403において、演算処理装置114は上記で説明した方法で信号をナイキスト周波数で分離する計算を行い、信号SL、を得る。ステップS404において、演算処理装置114は信号SL、の強度を求めて図3Dに示す断層像を生成する。ステップS405において、表示部115が断層像を表示する。 FIG. 4 shows a flow until a tomographic image is generated and displayed based on the above description. In step S401, the arithmetic processing unit 114 acquires the interference signal obtained by the AD conversion unit 131 and the AD conversion unit 132. In step S402, the processing unit 114 performs a Fourier transform of these interference signals to obtain the signal S P, the S Q. In step S403, the processing unit 114 performs a calculation to separate at the Nyquist frequency signals in the manner described above, to obtain signal S L, the S H. In step S404, the processing unit 114 generates a tomographic image shown in FIG. 3D seeking intensity of the signal S L, S H. In step S405, the display unit 115 displays a tomogram.
 本実施形態では短時間の撮影が可能である。なぜなら、折り返し強度の異なる画像を複数取得するために、ミラー110、111を駆動して参照光の光路長を変更する必要がなく、図3Dの断層像を得るためにミラー108が行う走査は1回でよいためである。 In this embodiment, short-time shooting is possible. This is because it is not necessary to drive the mirrors 110 and 111 to change the optical path length of the reference light in order to acquire a plurality of images with different folding strengths, and the scanning performed by the mirror 108 to obtain the tomographic image of FIG. It is because it is good at times.
 また、ローパスフィルタ121とハイパスフィルタ122の透過率の値は環境依存などを考慮して装置の調整後に更新してもよい。例えば、検査前や検査中に照射光を装置内部の不図示のミラーで反射させて得られた信号からこれらの透過率を計算してもよい。また、得られた図3Dの断層像の輝度分布に基づいて透過率の値を推定し、図3Dの断層像を再生成してもよい。 In addition, the transmittance values of the low pass filter 121 and the high pass filter 122 may be updated after adjustment of the device in consideration of environmental dependency and the like. For example, these transmittances may be calculated from signals obtained by reflecting the irradiation light by a mirror (not shown) inside the apparatus before or during the inspection. Further, the value of the transmittance may be estimated based on the obtained luminance distribution of the tomogram of FIG. 3D, and the tomogram of FIG. 3D may be regenerated.
 また、信号Sと信号Sを求める式は、上記以外のものでもよい。例えば、フィルタが理想フィルタに近く、カットオフ周波数がナイキスト周波数に近い場合は断層像312には折り返し部分がほぼ発生せず、断層像322にはほぼ折り返し部分のみが発生する。したがって、断層像322を上下反転させて断層像312に単純に接続することで、所望の断層像に近い断層像を得ることができる。これは上記の式でPとQを0とし、PとQを1とした場合の計算と同じである。 Further, the formula for obtaining the signal S L and the signal S H may be a material other than the above. For example, when the filter is close to the ideal filter and the cutoff frequency is close to the Nyquist frequency, the aliasing portion hardly occurs in the tomogram 312 and only the aliasing portion occurs in the tomogram 322. Therefore, a tomographic image close to a desired tomographic image can be obtained by inverting the tomographic image 322 up and down and simply connecting the tomographic image 312. This and P H and Q L in the above formula is 0, the same as the calculation in the case of the 1 P L and Q H.
 また、使用するフィルタはローパスフィルタとハイパスフィルタの組み合わせでなくてもよい。例えば、ローパスフィルタのみでカットオフ周波数が異なる組み合わせを用いてもよい。ローパスフィルタのみであっても上記のPとQの値が異なるかもしくはPとQの値が異なれば同様の計算を行うことができる。また、ナイキスト周波数の2倍よりもさらに高い周波数を考慮してバンドパスフィルタを用いてもよい。 Also, the filter used may not be a combination of a low pass filter and a high pass filter. For example, a combination in which the cutoff frequency is different only by the low pass filter may be used. The value of the above P L and Q L may be only the low-pass filter can perform the same calculations for different values of different or or P H and Q H. In addition, a band pass filter may be used in consideration of a frequency higher than twice the Nyquist frequency.
 また、フィルタは3つ以上でもよい。周波数帯域の異なる3つ以上のフィルタを組み合わせて同様の計算を行うことで、さらに深い範囲の断層像を取得可能にしてもよい。また同じ帯域のフィルタを複数用いて得られる信号強度を平均化して輝度の算出精度を高くしてもよい。 Also, three or more filters may be provided. By combining the three or more filters having different frequency bands and performing the same calculation, it is possible to obtain a tomogram in an even deeper range. In addition, the signal intensities obtained by using a plurality of filters in the same band may be averaged to increase the calculation accuracy of the luminance.
 また、フィルタは1つでもよい。フィルタを通した信号と通さない信号から同様の計算を行ってもよい。その場合、フィルタを通さない信号では減衰がほぼないため、PとPの値はほぼ1とすればよい。さらに唯一のフィルタが理想ローパスフィルタに近ければ、Qを1、Qを0とすればよい。この場合、上記のSの計算式は、フィルタを通さない信号からフィルタを通した信号の単純な減算に対応する。すなわちこのような構成では、信号の減算処理によって深さ方向に広い範囲の断層像を得ることが出来る。 Also, there may be one filter. Similar calculations may be made from filtered and non-filtered signals. In that case, since the attenuation in a signal not passed through the filter substantially no, the value of P L and P H may be substantially 1. Furthermore, if the only filter is close to the ideal low-pass filter, Q L should be 1 and Q H should be 0. In this case, the above equation for S H corresponds to a simple subtraction of the filtered signal from the unfiltered signal. That is, in such a configuration, a tomogram in a wide range in the depth direction can be obtained by the subtraction processing of signals.
 また、1つのフィルタで時間的に帯域を切り替えてもよい。帯域を切り替えながら複数の断層像を連続で取得することにより、これら複数の断層像からより深い範囲の断層像を生成することができる。この場合、被検眼の動きの影響を小さくするため、短時間で複数の断層像を取得することが好ましい。そのためには、本実施形態のようにフィルタの帯域は電気的に変更できる構成が好ましい。なお、フィルタの帯域を切り替える構成としては、例えば、フィルタに設けられ、フィルタの周波数特性を変更する特性変更部(例えば、可変抵抗)と、特性変更部を制御する制御部とから成る構成が好ましい。 Also, the band may be switched temporally by one filter. By acquiring a plurality of tomograms continuously while switching the band, it is possible to generate a tomogram in a deeper range from the plurality of tomograms. In this case, in order to reduce the influence of the movement of the subject's eye, it is preferable to acquire a plurality of tomograms in a short time. For that purpose, it is preferable that the filter band be electrically changed as in the present embodiment. Note that, as a configuration for switching the filter band, for example, a configuration including a characteristic change unit (for example, variable resistance) provided in the filter to change the frequency characteristic of the filter and a control unit that controls the characteristic change unit is preferable. .
 また、本実施形態ではフィルタ以外による信号の減衰もフィルタの透過率の値に含めている。すなわち、デフォーカスによる信号強度の低下やAD変換部内部のフィルタ特性による減衰もローパスフィルタ121およびハイパスフィルタ122による減衰と見なして計算を行っている。しかし、これらは別のパラメータとして扱ってもよい。 Moreover, in the present embodiment, the attenuation of the signal due to other than the filter is also included in the value of the transmittance of the filter. That is, calculation is performed by regarding the decrease in signal strength due to defocusing and the attenuation due to the filter characteristics inside the AD conversion unit as the attenuation due to the low pass filter 121 and the high pass filter 122. However, these may be treated as separate parameters.
 また、AD変換部131とAD変換部132のサンプリング周波数はお互いに異なっていてもよい。演算処理装置114が上記の処理を行うかどうかを切り替えられるようにしてもよい。 In addition, sampling frequencies of the AD conversion unit 131 and the AD conversion unit 132 may be different from each other. It may be possible to switch whether or not the processing unit 114 performs the above processing.
 また、断層像312と断層像322を生成せず、得られた信号から直接上記の式で最終的な断層像図3Dを生成してもよい。その場合、断層像312や322の画像化が不要なため、より高速な処理が可能である。 Alternatively, the final tomogram 3D may be generated from the obtained signals directly using the above equation without generating the tomogram 312 and the tomogram 322. In that case, since the imaging of the tomograms 312 and 322 is unnecessary, higher speed processing is possible.
 また、本実施形態では、波長掃引光源101による波長掃引には安定性があり、波数に対して一定速度である場合を想定しているが、一定速度ではない光源であっても良い。このような場合には、光源または装置内部で等波数間隔のサンプリングを行うためのk-clockを生成し、AD変換部に入力するような構成が好ましい。なお、k-clockは、変換部がアナログ信号をサンプリングするクロックを生成するクロック生成部の一例である。また、k-clockは、波長掃引光源101からの光のうち一部の光が通る光路が第一光路と第一光路に対して光路長差を有する第二光路とに分岐された干渉計として構成されることが好ましい。ここで、波長掃引光源101による波長掃引が一定速度ではない場合であっても、変換部のナイキスト周波数より高い周波数の成分は、変換部による干渉信号(アナログ信号)のサンプリングが2回行われる時間より短い時間で振動する成分とみなせるものとする。また、波長掃引光源101による波長掃引が一定速度ではない場合であっても、変換部のナイキスト周波数より低い周波数の成分は、変換部による干渉信号(アナログ信号)のサンプリングが2回行われる時間より長い時間で振動する成分とみなせるものとする。 Further, in the present embodiment, it is assumed that the wavelength sweep by the wavelength sweep light source 101 is stable and the velocity is constant with respect to the wave number, but the light source may not be a constant velocity. In such a case, a configuration is preferable in which k-clocks for sampling at equal wave number intervals in the light source or in the device are generated and input to the AD conversion unit. Note that k-clock is an example of a clock generation unit that generates a clock at which the conversion unit samples an analog signal. In addition, k-clock is an interferometer in which an optical path through which a part of light from the wavelength swept light source 101 passes is branched into a first optical path and a second optical path having a difference in optical path length with respect to the first optical path. It is preferred to be configured. Here, even if the wavelength sweeping by the wavelength sweeping light source 101 is not at a constant speed, a component of a frequency higher than the Nyquist frequency of the converting unit is a time during which sampling of interference signals (analog signals) is performed twice It can be regarded as a component that vibrates in a shorter time. In addition, even when the wavelength sweeping by the wavelength sweeping light source 101 is not at a constant speed, the component of the frequency lower than the Nyquist frequency of the converting unit is from the time when the sampling of the interference signal (analog signal) by the converting unit is performed twice. It shall be regarded as a component that vibrates for a long time.
 また、本実施形態は、SS-OCTであるが、その他のOCTに適用してもよい。例えば、SD-OCTではラインセンサの前に光学ローパスフィルタを配置して本実施形態のローパスフィルタ121と同等の役割をさせてもよい。また、ラインセンサの画素サイズや回折格子、レンズ等の設計に基づく分解能の低下をローパスフィルタと同等の効果と考え、本発明を適用してもよい。 In addition, although this embodiment is SS-OCT, it may be applied to other OCTs. For example, in the SD-OCT, an optical low pass filter may be disposed in front of the line sensor to perform the same role as the low pass filter 121 of the present embodiment. Further, the present invention may be applied to the reduction in resolution based on the pixel size of the line sensor, the design of the diffraction grating, the lens and the like as the same effect as the low pass filter.
 以上の説明のように、本実施形態によれば、ナイキスト周波数より高い周波数の信号と低い周波数の信号をそれぞれ計算することができる。それにより、ナイキスト周波数より高い周波数の領域すなわち眼底のより深い領域を画像化することができ、深さ方向に広い断層像を得ることが出来る。さらに、光路長を変更する方法と比較すると信号取得を短時間で行うことができ、被検眼の固視微動や疲労の影響を抑えることが出来る。 As described above, according to this embodiment, it is possible to calculate a signal of a frequency higher than the Nyquist frequency and a signal of a frequency lower than the Nyquist frequency. As a result, an area of a frequency higher than the Nyquist frequency, that is, a deeper area of the fundus can be imaged, and a wide tomographic image in the depth direction can be obtained. Furthermore, as compared with the method of changing the optical path length, the signal acquisition can be performed in a short time, and the influence of the involuntary eye movement and fatigue of the eye to be examined can be suppressed.
 (その他の実施形態)
 また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
(Other embodiments)
The present invention is also realized by executing the following processing. That is, software (program) for realizing the functions of the above-described embodiments is supplied to a system or apparatus via a network or various storage media, and a computer (or CPU, MPU or the like) of the system or apparatus reads the program. It is a process to execute.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Accordingly, the following claims are attached to disclose the scope of the present invention.
 本願は、2017年10月27日提出の日本国特許出願特願2017-208428と2018年8月6日提出の日本国特許出願特願2018-147777を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 The present application claims priority based on Japanese Patent Application No. 2017-208428 filed Oct. 27, 2017 and Japanese Patent Application No. 2018-147777 submitted on August 6, 2018, The entire contents of the description are incorporated herein.

Claims (15)

  1.  測定光を照射した被検体からの戻り光と前記測定光に対応する参照光とによる干渉光を干渉信号として検出する検出部と、
     前記検出された干渉信号をアナログ信号からディジタル信号に変換する変換部と、
     前記変換された干渉信号を用いて、前記被検体の断層像を生成する演算処理部と、を有し、
     前記演算処理部は、前記変換された干渉信号から得られる複数の成分であって、前記変換部のナイキスト周波数より高い周波数の成分と、前記変換部のナイキスト周波数より低い周波数の成分とを用いて、前記断層像を生成することを特徴とする眼科撮影装置。
    A detection unit that detects, as an interference signal, interference light due to return light from an object irradiated with measurement light and reference light corresponding to the measurement light;
    A converter for converting the detected interference signal from an analog signal to a digital signal;
    An arithmetic processing unit that generates a tomogram of the subject using the converted interference signal;
    The arithmetic processing unit is a plurality of components obtained from the converted interference signal, and uses a component of a frequency higher than the Nyquist frequency of the conversion unit and a component of a frequency lower than the Nyquist frequency of the conversion unit. An ophthalmologic imaging apparatus characterized by generating the tomogram.
  2.  前記演算処理部は、前記低い周波数の成分を用いて第1の部分断層像を生成し、前記高い周波数の成分を用いて第2の部分断層像を生成し、前記第1の部分断層像と前記第2の部分断層像とを合成することによって前記断層像を生成することを特徴とする請求項1に記載の眼科撮影装置。 The arithmetic processing unit generates a first partial tomogram using the low frequency component, generates a second partial tomogram using the high frequency component, and the first partial tomogram The ophthalmologic imaging apparatus according to claim 1, wherein the tomogram is generated by combining the second partial tomogram.
  3.  前記検出された干渉信号を所定の周波数特性に従って減衰させるフィルタ部をさらに有し、
     前記変換部は、前記減衰した干渉信号を変換することを特徴とする請求項1または2に記載の眼科撮影装置。
    It further comprises a filter unit for attenuating the detected interference signal according to a predetermined frequency characteristic,
    The ophthalmologic imaging apparatus according to claim 1, wherein the conversion unit converts the attenuated interference signal.
  4.  測定光を照射した被検体からの戻り光と前記測定光に対応する参照光とによる干渉光を干渉信号として検出する検出部と、
     前記検出された干渉信号を所定の周波数特性に従って減衰させるフィルタ部と、
     前記減衰した干渉信号をアナログ信号からディジタル信号に変換する変換部と、
     前記変換された干渉信号を用いて、前記被検体の断層像を生成する演算処理部と、を有し、
     前記演算処理部は、前記変換された干渉信号から得られる複数の成分を用いて前記断層像を生成することを特徴とする眼科撮影装置。
    A detection unit that detects, as an interference signal, interference light due to return light from an object irradiated with measurement light and reference light corresponding to the measurement light;
    A filter unit for attenuating the detected interference signal according to a predetermined frequency characteristic;
    A converter for converting the attenuated interference signal from an analog signal to a digital signal;
    An arithmetic processing unit that generates a tomogram of the subject using the converted interference signal;
    The operation processing unit generates the tomogram by using a plurality of components obtained from the converted interference signal.
  5.  前記変換部とは異なり、前記検出された干渉信号を変換する別の変換部をさらに有し、前記演算処理部は、前記減衰した干渉信号と前記別の変換部によって変換された干渉信号とから得られる前記複数の成分を用いて、前記断層像を生成することを特徴とする請求項3または4に記載の眼科撮影装置。 Unlike the conversion unit, the processing unit further includes another conversion unit for converting the detected interference signal, and the arithmetic processing unit is configured to use the attenuated interference signal and the interference signal converted by the other conversion unit. The ophthalmic imaging apparatus according to claim 3, wherein the tomographic image is generated using the plurality of components obtained.
  6.  前記演算処理部は、前記減衰した干渉信号と前記別の変換部によって変換された干渉信号とを減算することにより前記複数の成分のいずれかを取得することを特徴とする請求項5に記載の眼科撮影装置。 The arithmetic processing unit according to claim 5, wherein any one of the plurality of components is acquired by subtracting the attenuated interference signal and the interference signal converted by the another conversion unit. Ophthalmic imaging device.
  7.  前記フィルタ部に設けられ、前記フィルタ部の周波数特性を変更する特性変更部と、
     前記特性変更部を制御する制御部と、をさらに有し、
     前記演算処理部は、前記周波数特性が変更される前に変換された干渉信号と、前記周波数特性が変更された後に変換された干渉信号とから得られる前記複数の成分を用いて、前記断層像を生成することを特徴とする請求項3または4に記載の眼科撮影装置。
    A characteristic change unit provided in the filter unit to change the frequency characteristic of the filter unit;
    A control unit that controls the characteristic change unit;
    The arithmetic processing unit uses the plurality of components obtained from the interference signal converted before the frequency characteristic is changed and the interference signal converted after the frequency characteristic is changed, tomograms The ophthalmologic imaging apparatus according to claim 3 or 4, wherein
  8.  前記演算処理部は、前記フィルタ部の周波数特性に関する情報と前記変換された干渉信号とを用いて前記複数の成分を取得し、前記取得された複数の成分を用いて前記断層像を生成することを特徴とする請求項3乃至7のいずれか1項に記載の眼科撮影装置。 The arithmetic processing unit acquires the plurality of components using information on the frequency characteristics of the filter unit and the converted interference signal, and generates the tomographic image using the plurality of acquired components. The ophthalmologic photographing apparatus according to any one of claims 3 to 7, characterized in that
  9.  前記参照光の光路長と前記測定光の光路長との少なくとも1つを変更する光路長変更部をさらに有し、
     前記演算処理部は、前記光路長変更部による光路長の変更が行われずに取得された前記変換された干渉信号を用いて前記折り返し成分が分離された前記複数の成分を取得し、前記取得された複数の成分を用いて前記断層像を生成することを特徴とする請求項1乃至8のいずれか1項に記載の眼科撮影装置。
    The optical system further includes an optical path length change unit that changes at least one of the optical path length of the reference light and the optical path length of the measurement light,
    The arithmetic processing unit acquires the plurality of components from which the aliasing component is separated by using the converted interference signal acquired without the change of the optical path length by the optical path length changing unit being performed. The ophthalmologic imaging apparatus according to any one of claims 1 to 8, wherein the tomogram is generated using a plurality of components.
  10.  測定光を照射した被検体からの戻り光と前記測定光に対応する参照光とによる干渉光を干渉信号として検出する検出部と、
     前記検出された干渉信号をアナログ信号からディジタル信号に変換する変換部と、
     前記変換された干渉信号を用いて、前記被検体の断層像を生成する演算処理部と、
     前記参照光の光路長と前記測定光の光路長との少なくとも1つを変更する光路長変更部と、を有し、
     前記演算処理部は、前記光路長変更部による光路長の変更が行われずに取得された折り返し成分が異なる複数の前記変換された干渉信号を用いて前記折り返し成分が分離された複数の成分を取得し、前記取得された複数の成分を用いて前記断層像を生成することを特徴とする眼科撮影装置。
    A detection unit that detects, as an interference signal, interference light due to return light from an object irradiated with measurement light and reference light corresponding to the measurement light;
    A converter for converting the detected interference signal from an analog signal to a digital signal;
    An arithmetic processing unit that generates a tomogram of the subject using the converted interference signal;
    An optical path length changing unit configured to change at least one of an optical path length of the reference light and an optical path length of the measurement light;
    The arithmetic processing unit acquires a plurality of components in which the aliasing components are separated by using a plurality of the converted interference signals having different aliasing components acquired without changing the optical path length by the optical path length changing unit. An ophthalmologic imaging apparatus, wherein the tomogram is generated using the plurality of acquired components.
  11.  波長掃引光源と、
     波長掃引光源からの光を前記測定光と前記参照光とに分割する分割手段と、
     前記波長掃引光源からの光のうち一部の光が通る光路が第一光路と前記第一光路に対して光路長差を有する第二光路とに分岐された干渉計として構成され、前記変換部によるサンプリングのクロックを生成するクロック生成部と、
     をさらに有することを特徴とする請求項1乃至10のいずれか1項に記載の眼科撮影装置。
    Wavelength swept light source,
    A dividing means for dividing light from a wavelength swept light source into the measurement light and the reference light;
    The conversion unit is configured as an interferometer in which an optical path through which part of the light from the wavelength swept light source passes is branched into a first optical path and a second optical path having a difference in optical path length with respect to the first optical path A clock generation unit that generates a clock for sampling by
    The ophthalmic imaging apparatus according to any one of claims 1 to 10, further comprising:
  12.  測定光を照射した被検体からの戻り光と前記測定光に対応する参照光とによる干渉光を干渉信号として検出する検出部と、
     前記検出された干渉信号をアナログ信号からディジタル信号に変換する変換部と、を有する眼科撮影装置の制御方法であって、
     前記変換された干渉信号から得られる複数の成分であって、前記変換部のナイキスト周波数より高い周波数の成分と、前記変換部のナイキスト周波数より低い周波数の成分とを用いて、前記被検体の断層像を生成する工程を有することを特徴とする眼科撮影装置の制御方法。
    A detection unit that detects, as an interference signal, interference light due to return light from an object irradiated with measurement light and reference light corresponding to the measurement light;
    And converting the detected interference signal from an analog signal to a digital signal.
    Using a plurality of components obtained from the converted interference signal, a component of a frequency higher than the Nyquist frequency of the conversion unit, and a component of a frequency lower than the Nyquist frequency of the conversion unit, A control method of an ophthalmologic imaging apparatus, comprising the step of generating an image.
  13.  測定光を照射した被検体からの戻り光と前記測定光に対応する参照光とによる干渉光を干渉信号として検出する検出部と、
     前記検出された干渉信号を所定の周波数特性に従って減衰させるフィルタ部と、
     前記減衰した干渉信号をアナログ信号からディジタル信号に変換する変換部と、を有する眼科撮影装置の制御方法であって、
     前記変換された干渉信号から得られる複数の成分を用いて前記断層像を生成することを特徴とする眼科撮影装置の制御方法。
    A detection unit that detects, as an interference signal, interference light due to return light from an object irradiated with measurement light and reference light corresponding to the measurement light;
    A filter unit for attenuating the detected interference signal according to a predetermined frequency characteristic;
    A control unit for converting the attenuated interference signal from an analog signal into a digital signal,
    A control method of an ophthalmologic imaging apparatus, wherein the tomogram is generated using a plurality of components obtained from the converted interference signal.
  14.  測定光を照射した被検体からの戻り光と前記測定光に対応する参照光とによる干渉光を干渉信号として検出する検出部と、
     前記検出された干渉信号をアナログ信号からディジタル信号に変換する変換部と、
     前記参照光の光路長と前記測定光の光路長との少なくとも1つを変更する光路長変更部と、を有する眼科撮影装置の制御方法であって、
     前記光路長変更部による光路長の変更が行われずに取得された折り返し成分の強度が異なる複数の前記変換された干渉信号を用いて前記折り返し成分が分離された複数の成分を取得し、前記取得された複数の成分を用いて前記断層像を生成することを特徴とする眼科撮影装置の制御方法。
    A detection unit that detects, as an interference signal, interference light due to return light from an object irradiated with measurement light and reference light corresponding to the measurement light;
    A converter for converting the detected interference signal from an analog signal to a digital signal;
    A control method of an ophthalmologic imaging apparatus, comprising: an optical path length changing unit that changes at least one of an optical path length of the reference light and an optical path length of the measurement light;
    The plurality of components from which the aliasing component is separated are acquired using the plurality of converted interference signals having different intensities of the aliasing component acquired without changing the optical path length by the optical path length changing unit, and the acquisition is performed A control method of an ophthalmologic imaging apparatus, wherein the tomogram is generated using the plurality of components.
  15.  請求項12乃至14のいずれか1項に記載の眼科撮影装置の制御方法をコンピュータに実行させるプログラム。 A program that causes a computer to execute the control method of the ophthalmologic imaging apparatus according to any one of claims 12 to 14.
PCT/JP2018/039174 2017-10-27 2018-10-22 Ophthalmological imaging device and control method for same WO2019082840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/857,034 US20200281462A1 (en) 2017-10-27 2020-04-23 Ophthalmic imaging apparatus, control method for ophthalmic imaging apparatus, and computer-readable medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017208428 2017-10-27
JP2017-208428 2017-10-27
JP2018147777A JP7218122B2 (en) 2017-10-27 2018-08-06 Ophthalmic imaging device and its control method
JP2018-147777 2018-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/857,034 Continuation US20200281462A1 (en) 2017-10-27 2020-04-23 Ophthalmic imaging apparatus, control method for ophthalmic imaging apparatus, and computer-readable medium

Publications (1)

Publication Number Publication Date
WO2019082840A1 true WO2019082840A1 (en) 2019-05-02

Family

ID=66247884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039174 WO2019082840A1 (en) 2017-10-27 2018-10-22 Ophthalmological imaging device and control method for same

Country Status (1)

Country Link
WO (1) WO2019082840A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014514A (en) * 2008-07-03 2010-01-21 Fujifilm Corp Optical tomographic imaging apparatus and coherent signal processing method in optical tomographic imaging apparatus
JP2015114284A (en) * 2013-12-13 2015-06-22 キヤノン株式会社 Optical coherence tomography
JP2015208574A (en) * 2014-04-28 2015-11-24 キヤノン株式会社 Ophthalmic imaging apparatus, control method thereof, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014514A (en) * 2008-07-03 2010-01-21 Fujifilm Corp Optical tomographic imaging apparatus and coherent signal processing method in optical tomographic imaging apparatus
JP2015114284A (en) * 2013-12-13 2015-06-22 キヤノン株式会社 Optical coherence tomography
JP2015208574A (en) * 2014-04-28 2015-11-24 キヤノン株式会社 Ophthalmic imaging apparatus, control method thereof, and program

Similar Documents

Publication Publication Date Title
JP5912358B2 (en) Fundus observation device
JP6632266B2 (en) Imaging device
JP4902721B2 (en) Optical tomographic image generation apparatus and optical tomographic image generation method
JP5036785B2 (en) Optical tomographic image generation method and optical tomographic image generation apparatus
JP6685144B2 (en) Ophthalmic equipment and ophthalmic examination system
JP6276943B2 (en) Ophthalmic equipment
JP2010029648A (en) Optical tomographic image photographing apparatus
JP2015226579A (en) Optical coherence tomographic device and control method of the same
JP2016209182A (en) Imaging device, method for operating imaging device, information processor, and method for operating information processor
JP6776076B2 (en) OCT device
JP2015198757A (en) Fault imaging apparatus
JP6491540B2 (en) Optical coherence tomography and control method thereof
JP2017046975A (en) Ophthalmic imaging apparatus and ophthalmic imaging program
JP2016127900A (en) Optical tomographic imaging device, control method of the same, and program
JP2022176282A (en) Ophthalmologic apparatus and control method thereof
JP5637721B2 (en) Tomographic imaging apparatus and tomographic imaging apparatus control apparatus
JP2019033919A (en) Measurement device
JP2017006456A (en) Light interference tomographic meter and control method thereof
JP7218122B2 (en) Ophthalmic imaging device and its control method
WO2019082840A1 (en) Ophthalmological imaging device and control method for same
JP2019063044A (en) OCT apparatus and OCT apparatus control program
JP2019154764A (en) Tear film thickness measurement apparatus and method
WO2019203091A1 (en) Image processing device, image processing method, and program
JP6564076B2 (en) Ophthalmic equipment
JP6021289B2 (en) Blood flow information generation device, blood flow information generation method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870972

Country of ref document: EP

Kind code of ref document: A1