WO2019082640A1 - Electrophoretic support and electrophoresis device - Google Patents

Electrophoretic support and electrophoresis device

Info

Publication number
WO2019082640A1
WO2019082640A1 PCT/JP2018/037589 JP2018037589W WO2019082640A1 WO 2019082640 A1 WO2019082640 A1 WO 2019082640A1 JP 2018037589 W JP2018037589 W JP 2018037589W WO 2019082640 A1 WO2019082640 A1 WO 2019082640A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide film
region
carrier
film pieces
Prior art date
Application number
PCT/JP2018/037589
Other languages
French (fr)
Japanese (ja)
Inventor
年伸 松野
俊裕 坂本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019082640A1 publication Critical patent/WO2019082640A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present invention relates to an electrophoresis support and an electrophoresis apparatus provided with the same.
  • Isoelectric focusing electrophoresis is known in which a sample is separated by utilizing the difference in the isoelectric point of the sample.
  • an electrophoresis apparatus is used (see, for example, Patent Document 1).
  • the electrophoresis apparatus includes a container, a pair of electrodes disposed inside the container, and an electrophoresis support disposed between the pair of electrodes.
  • the electrophoresis support has a porous carrier and a plurality of metal oxide films arranged in a line on the top surface of the carrier.
  • Each of the plurality of metal oxide films is formed of a plurality of metal oxides of different types.
  • the plurality of metal oxide films form a pH gradient on the carrier.
  • the conventional electrophoretic support described above requires one type of metal oxide to form one pH gradation. Therefore, in the case of forming a pH gradient having seven pH gradations, for example, pH 4 to pH 10, seven types of metal oxides equal in number to the pH gradation are required. As a result, as the pH gradation is increased, the number of steps for forming the plurality of metal oxide films increases, and the control of forming the plurality of metal oxide films becomes complicated. As a result, there arises a problem that the manufacturing process of the electrophoresis support becomes complicated.
  • the present invention provides an electrophoresis support capable of suppressing the manufacturing process from becoming complicated even when the number of pH gradations in the pH gradient is increased, and an electrophoresis apparatus including the same. Do.
  • An electrophoresis support is an electrophoresis support used in an electrophoresis apparatus for electrophoresis of a sample, which is a porous carrier, and includes a first region A carrier having a surface formed thereon, and a second region disposed adjacent to the first region, and a first for forming a first pH corresponding to a first isoelectric point of the sample A first metal oxide film disposed in the first region and formed of a first metal oxide, and a second metal oxide film corresponding to a second isoelectric point of the sample A second metal oxide film for forming the pH of the second metal oxide film, the second metal oxide film disposed in the second region and formed of the first metal oxide, and the carrier And the first area ratio occupied by the first metal oxide film in the first region is the second region. Different from the second area ratio occupied the second metal oxide film is in the.
  • the manufacturing process can be prevented from becoming complicated even when the number of pH gradations is increased.
  • FIG. 1 is a top view showing the configuration of the electrophoresis apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the electrophoresis device according to the first embodiment, taken along line II-II in FIG.
  • FIG. 3 is a top view showing the structure of the metal oxide film of the electrophoresis support according to the first embodiment.
  • FIG. 4 is a top view showing the configuration of the metal oxide film of the electrophoresis support according to the second embodiment.
  • FIG. 5 is a top view showing the configuration of the metal oxide film of the electrophoresis support according to the third embodiment.
  • FIG. 6 is a top view showing the configuration of the metal oxide film of the electrophoresis support according to the fourth embodiment.
  • FIG. 1 is a top view showing the configuration of the electrophoresis apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the electrophoresis device according to the first embodiment, taken along line II-II in FIG.
  • FIG. 7 is a cross-sectional view of an essential part of the electrophoresis support according to the fourth embodiment, taken along the line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view of essential parts of the electrophoresis support according to the fourth embodiment, taken along line VIII-VIII in FIG.
  • FIG. 9 is a top view showing the configuration of the metal oxide film of the electrophoresis support according to the fifth embodiment.
  • FIG. 10 is a view for explaining an example of the film formation step of the metal oxide film of the electrophoresis support according to the fifth embodiment.
  • FIG. 11 is a graph for explaining the pH gradient formed by the metal oxide film of the electrophoresis support according to the fifth embodiment.
  • An electrophoresis support is an electrophoresis support used in an electrophoresis apparatus for electrophoresis of a sample, which is a porous carrier, and includes a first region A carrier having a surface formed thereon, and a second region disposed adjacent to the first region, and a first for forming a first pH corresponding to a first isoelectric point of the sample A first metal oxide film disposed in the first region and formed of a first metal oxide, and a second metal oxide film corresponding to a second isoelectric point of the sample A second metal oxide film for forming the pH of the second metal oxide film, the second metal oxide film disposed in the second region and formed of the first metal oxide, and the carrier And the first area ratio occupied by the first metal oxide film in the first region is the second region. Different from the second area ratio occupied the second metal oxide film is in the.
  • the first area ratio occupied by the first metal oxide film in the first region is the second area occupied by the second metal oxide film in the second region. It is different from the area ratio.
  • a third region is further formed opposite to the first region across the second region, and the electrophoresis support further includes: A third metal oxide film for forming a third pH corresponding to a third isoelectric point of a sample, wherein the third metal oxide film is disposed in the third region and formed of a second metal oxide You may comprise so that the metal oxide film of 3 may be provided.
  • the pH gradation of the pH gradient can be further subdivided.
  • a fourth region is further formed opposite to the second region across the third region, and the electrophoresis support further includes the fourth member.
  • It is a 4th metal oxide film for forming the 4th pH corresponding to the 4th isoelectric point of a sample, Comprising: It arrange
  • a fourth metal oxide film is provided, and the third area ratio occupied by the third metal oxide film in the third region when the carrier is viewed in plan is the fourth area ratio in the fourth region. It may be configured to be different from the fourth area ratio occupied by the metal oxide film.
  • the pH gradation of the pH gradient can be further subdivided.
  • the first isoelectric point is lower than the second isoelectric point and the second isoelectric point is lower than the isoelectric point corresponding to the pH of pure water
  • the first isoelectric point is lower than the second isoelectric point.
  • the area ratio of 2 may be configured to be smaller than the first area ratio.
  • the pH gradient can be formed such that the second pH formed by the second metal oxide film is higher than the first pH formed by the first metal oxide film.
  • the first isoelectric point is higher than the second isoelectric point, and the second isoelectric point is higher than the isoelectric point corresponding to the pH of pure water, the first isoelectric point is higher than the second isoelectric point.
  • the area ratio of 2 may be configured to be smaller than the first area ratio.
  • a fifth region is further formed on the surface of the carrier, the fifth region being disposed between the second region and the third region, and the electrophoresis support further comprises: A fifth metal oxide film for forming a fifth pH corresponding to a fifth isoelectric point, which is disposed in the fifth region, and the first metal oxide and the second metal You may comprise so that the 5th metal oxide film formed with the oxide may be provided.
  • the fifth metal oxide film formed of the first metal oxide and the second metal oxide is different from the second metal oxide film formed of the first metal oxide and the second metal oxide film.
  • the third embodiment is disposed between the second metal oxide film and the third metal oxide film formed of the second metal oxide, so that pH gradation of the pH gradient can be further subdivided.
  • the fifth metal oxide film is formed of the first metal oxide, and includes a plurality of first metal oxide film pieces scattered in the fifth region and the second metal oxide. And a plurality of second metal oxide film pieces formed and scattered in the fifth region, and when the carrier is viewed in plan, each of the plurality of first metal oxide film pieces is The plurality of second metal oxide film pieces may be arranged not to overlap with each other.
  • each of the plurality of first metal oxide film pieces is arranged so as not to overlap with each of the plurality of second metal oxide film pieces when the carrier is viewed in a plan view.
  • a contact area between each of the plurality of first metal oxide film pieces and the plurality of second metal oxide film pieces and a liquid such as pure water can be sufficiently secured.
  • each of the plurality of first metal oxide film pieces and the plurality of second metal oxide film pieces can efficiently generate the redox reaction to the liquid.
  • a sixth region is further formed, which is disposed between the third region and the fifth region, and the electrophoresis support further includes the sixth.
  • a sixth metal oxide film for forming a sixth pH corresponding to the sixth isoelectric point of the sample the sixth metal oxide film being the first metal
  • the sixth metal oxide film being the first metal
  • each of the plurality of third metal oxide film pieces does not overlap with each of the plurality of fourth metal oxide film pieces when the carrier is viewed in a plan view.
  • the plurality of first metal oxide film pieces and the plurality of third metal oxide film pieces are And differ by at least one of the number, and said a plurality of second metal oxide film pieces and the plurality of fourth metal oxide film pieces, at least one of the area and the number may be configured differently.
  • the pH gradation of the pH gradient can be further subdivided.
  • the fifth metal oxide film is formed of the first metal oxide, and includes a plurality of first metal oxide film pieces scattered in the fifth region and the second metal oxide. And a plurality of second metal oxide film pieces formed and scattered in the fifth region, and when the carrier is viewed in plan, each of the plurality of first metal oxide film pieces is It may be configured to be arranged to overlap with each of the plurality of second metal oxide film pieces.
  • each of the plurality of first metal oxide film pieces is disposed so as to overlap with each of the plurality of second metal oxide film pieces in plan view of the carrier. Even if the area of the region 5 can not be sufficiently secured, the fifth metal oxide film can be compactly disposed in the fifth region.
  • At least two section lengths among the section lengths of the first area, the second area, the third area, and the fourth area may be configured to be different from each other.
  • An electrophoresis apparatus is an electrophoresis apparatus for electrophoresis of a sample, comprising: a container; a pair of electrodes disposed inside the container; A migration support, and the pair of electrodes are respectively disposed at both ends of the electrophoresis support in the migration direction of the sample.
  • the manufacturing process of the electrophoresis support can be suppressed from being complicated.
  • Embodiment 1 [1-1. Configuration of electrophoresis apparatus] First, the configuration of the electrophoresis device 2 according to the first embodiment will be described with reference to FIGS. 1 and 2.
  • FIG. 1 is a top view showing the configuration of the electrophoresis device 2 according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the electrophoresis device 2 according to the first embodiment, taken along line II-II in FIG.
  • the electrophoresis apparatus 2 is an apparatus for performing isoelectric focusing in which the sample 4 is separated using the difference in the isoelectric point of the sample 4.
  • the electrophoresis apparatus 2 includes a container 6, an electrophoresis support 8, a pair of electrodes 10 and 12, and a power supply device 14.
  • the sample 4 contains, for example, a plurality of proteins each having a plurality of different isoelectric points.
  • the container 6 has an opening 16 on the top surface.
  • the liquid 18 is stored inside the container 6.
  • the liquid 18 is, for example, pure water of pH 7.
  • the material of the container 6 is made of, for example, a resin such as a polymer, silicon, or a metal.
  • the electrophoresis support 8 has a carrier 20 and a metal oxide film 22.
  • the electrophoresis support 8 is disposed inside the container 6 and immersed in the liquid 18 inside the container 6.
  • the carrier 20 is formed of, for example, a porous body such as cellulose acetate.
  • the carrier 20 is formed in a long strip shape in the X-axis direction.
  • the size of the carrier 20 in the longitudinal direction (X-axis direction) is, for example, 30 mm, and the size of the carrier 20 in the lateral direction (Y-axis direction) is, for example, 2 mm.
  • the size of the carrier 20 in the thickness direction (Z-axis direction) is, for example, 0.15 mm.
  • the sample 4 migrates in the direction from the minus side to the plus side of the X axis along the longitudinal direction of the carrier 20.
  • the metal oxide film 22 is for forming a pH gradient along the longitudinal direction of the carrier 20.
  • the metal oxide film 22 is disposed on the upper surface 24 (an example of the surface) of the carrier 20.
  • the metal oxide film 22 forms a pH gradient having seven pH gradations, for example, pH 4 to pH 10, by the redox reaction to the liquid 18. The specific configuration of the metal oxide film 22 will be described later.
  • the pair of electrodes 10 and 12 are disposed inside the container 6 and immersed in the liquid 18 inside the container 6.
  • the pair of electrodes 10 and 12 function as an anode and a cathode, respectively, and are disposed at positions in contact with both ends in the longitudinal direction (the migration direction of the sample 4) of the carrier 20. That is, the electrophoresis support 8 is disposed between the pair of electrodes 10 and 12.
  • the material of each of the pair of electrodes 10 and 12 is formed of, for example, a conductive material such as gold, platinum, copper, carbon, or a composite thereof.
  • the pair of electrodes 10 and 12 are disposed between the electrophoresis support 8 and the side wall of the container 6, but the present invention is not limited to this.
  • a pair of electrodes 10 and 12 may be disposed between the electrophoresis support 8 and the bottom of the container 6.
  • the pair of electrodes 10 and 12 are disposed at positions contacting the both ends in the longitudinal direction of the carrier 20, respectively.
  • the power supply 14 is disposed outside the container 6 and electrically connected to each of the pair of electrodes 10 and 12.
  • the power supply device 14 applies a predetermined DC voltage between the pair of electrodes 10 and 12.
  • FIG. 3 is a top view showing the configuration of the metal oxide film 22 of the electrophoresis support 8 according to the first embodiment.
  • the metal oxide film body 22 has a plurality of metal oxide films 26 to 38.
  • the plurality of metal oxide films 26 to 38 are respectively disposed in the plurality of regions 40 to 52 on the upper surface 24 of the carrier 20.
  • the plurality of regions 40 to 52 are arranged in line in this order along the longitudinal direction of the carrier 20.
  • Each of the plurality of regions 40 to 52 is, for example, a rectangular region, and has the same section length (length in the X-axis direction).
  • the boundary lines of the plurality of regions 40 to 52 are represented by solid rectangular frames.
  • the metal oxide film 26 (an example of a first metal oxide film) is formed of TiO 2 (an example of a first metal oxide) which is a metal oxide.
  • the metal oxide film 26 is uniformly disposed over the entire region 40 (an example of the first region) of the carrier 20.
  • the metal oxide film 26 forms a pH gradation of, for example, pH 4.
  • the pH gradation of the liquid 18 in the vicinity of the region 40 is, for example, the isoelectric point of pH 4 of the sample 4 (first isoelectric point PH corresponding to 4) (an example of the first pH).
  • metal oxide film formed of TiO 2 which is an example of the metal oxide
  • hydrogen atoms (H) of OH groups present on the surface of the metal oxide film in pure water of pH 7 are released into the liquid.
  • the surface potential of the metal oxide film becomes negative.
  • the hydrogen atoms released into the solution become hydrogen ions (H + ) in the solution, so the solution in the vicinity of the metal oxide film becomes acidic (for example, pH 4).
  • acidic for example, pH 4
  • the metal oxide film 28 (an example of the second metal oxide film) is formed of TiO 2 similarly to the metal oxide film 26.
  • the metal oxide film 28 has a plurality of metal oxide film pieces 54 scattered in a lattice shape in the region 42 (an example of the second region) of the carrier 20. That is, the metal oxide film 28 is an aggregate of a plurality of metal oxide film pieces 54.
  • Each of the plurality of metal oxide film pieces 54 is formed in a circular shape in plan view. That is, when the carrier 20 is viewed in plan, the area ratio occupied by the metal oxide film 28 in the region 42 of the carrier 20 (an example of the second area ratio) is the area ratio occupied by the metal oxide film 26 in the region 40 of the carrier 20 (An example of the first area ratio) is smaller.
  • the metal oxide film 28 forms a pH gradation of, for example, pH 4.
  • the region 42 is formed by the exposed portion of the carrier 20 and the metal oxide film 28.
  • the metal oxide film 28 affects the pH gradation in the region 42. Therefore, the pH gradation of the region 42 is formed by a combination of the pH gradation (for example, pH 4) formed by the metal oxide film 28 and the pH gradation (for example, pH 7) formed by the pure water.
  • the pH gradation of the liquid 18 in the vicinity of the region 42 becomes, for example, pH 5 (an example of a second pH) corresponding to the isoelectric point (an example of a second isoelectric point) of pH 5 of the sample 4.
  • the metal oxide film 30 is formed of TiO 2 similarly to the metal oxide film 26.
  • the metal oxide film 30 has a plurality of metal oxide film pieces 56 interspersed in a lattice shape in the region 44 of the carrier 20. That is, the metal oxide film 30 is an aggregate of a plurality of metal oxide film pieces 56.
  • Each of the plurality of metal oxide film pieces 56 is formed in a circular shape in plan view.
  • the number of the plurality of metal oxide film pieces 56 is the same as the number of the plurality of metal oxide film pieces 54.
  • the diameter of each of the plurality of metal oxide film pieces 56 is smaller than the diameter of each of the plurality of metal oxide film pieces 54.
  • the area ratio occupied by the metal oxide film 30 in the region 44 of the carrier 20 is smaller than the area ratio occupied by the metal oxide film 28 in the region 42 of the carrier 20.
  • the metal oxide film 30 forms, for example, a pH gradation of pH4.
  • the region 44 is formed by the exposed portion of the carrier 20 and the metal oxide film 30.
  • the metal oxide film 30 affects the pH gradation in the region 44. Therefore, the pH gradation of the region 44 is formed by a combination of the pH gradation (for example, pH 4) formed by the metal oxide film 30 and the pH gradation (for example, pH 7) formed by the pure water.
  • the pH gradation of the liquid 18 in the vicinity of the region 44 becomes, for example, pH 6 corresponding to the isoelectric point of pH 6 of the sample 4.
  • the pH gradation formed by the region 44 is higher than the pH gradation formed by the region 42.
  • the metal oxide film 32 is formed of NiO which is a metal oxide.
  • the metal oxide film 32 is uniformly disposed over the entire region 46 of the carrier 20.
  • the metal oxide film 32 forms a pH gradation of, for example, pH 7.
  • the pH gradation of the liquid 18 in the vicinity of the region 46 becomes, for example, pH 7 corresponding to the isoelectric point of pH 7 of the sample 4.
  • OH groups present on the surface of the metal oxide film in pure water of pH 7 receive hydrogen ions (H + ) in the liquid. Thereby, the surface potential of the metal oxide film becomes positive. Since hydrogen ions (H + ) decrease in the solution, the solution in the vicinity of the metal oxide film becomes neutral (eg, pH 7).
  • the metal oxide film 34 is formed of MgO (an example of a second metal oxide) which is a metal oxide.
  • the metal oxide film 34 has a plurality of metal oxide film pieces 58 interspersed in a lattice shape in the region 48 of the carrier 20. That is, the metal oxide film 34 is an aggregate of a plurality of metal oxide film pieces 58. Each of the plurality of metal oxide film pieces 58 is formed in a circular shape in plan view.
  • the metal oxide film 34 forms a pH gradation of, for example, pH 10.
  • the region 48 is formed by the exposed portion of the carrier 20 and the metal oxide film 34.
  • the metal oxide film 34 affects the pH gradation in the region 48.
  • the pH gradation of the region 48 is formed by a combination of pH gradation (for example, pH 10) formed by the metal oxide film 34 and pH gradation (for example, pH 7) formed by pure water.
  • pH gradation for example, pH 10
  • pH gradation for example, pH 7
  • the pH gradation of the liquid 18 in the vicinity of the region 48 is, for example, pH 8 corresponding to the isoelectric point of pH 8 of the sample 4.
  • a metal oxide film formed of MgO which is an example of a metal oxide
  • OH groups present on the surface of the metal oxide film in pure water of pH 7 receive hydrogen ions (H + ) in the liquid.
  • the surface potential of the metal oxide film becomes positive.
  • hydrogen ions (H + ) decrease in the liquid, the solution in the vicinity of the metal oxide film becomes more alkaline (for example, pH 10).
  • alkaline for example, pH 10
  • the metal oxide film 36 (an example of the third metal oxide film) is formed of MgO, similarly to the metal oxide film 34.
  • the metal oxide film 36 has a plurality of metal oxide film pieces 60 interspersed in a lattice shape in a region 50 (an example of a third region) of the carrier 20. That is, the metal oxide film 36 is an aggregate of a plurality of metal oxide film pieces 60.
  • Each of the plurality of metal oxide film pieces 60 is formed in a circular shape in plan view.
  • the number of the plurality of metal oxide film pieces 60 is the same as the number of the plurality of metal oxide film pieces 58.
  • the diameter of each of the plurality of metal oxide film pieces 60 is larger than the diameter of each of the plurality of metal oxide film pieces 58.
  • the area ratio occupied by the metal oxide film 36 in the region 50 of the carrier 20 is larger than the area ratio occupied by the metal oxide film 34 in the region 48 of the carrier 20.
  • the metal oxide film 36 forms, for example, a pH gradation of pH 10.
  • Region 50 is formed of a portion where carrier 20 is exposed and metal oxide film 36.
  • the metal oxide film 36 affects the pH gradation in the region 50. Therefore, the pH gradation of the region 50 is formed by a combination of pH gradation (for example, pH 10) formed by the metal oxide film 36 and pH gradation (for example, pH 7) formed by pure water.
  • the pH gradation of the liquid 18 in the vicinity of the region 50 is, for example, pH 9 (an example of a third pH) corresponding to the isoelectric point (an example of a third isoelectric point) of pH 9 of the sample 4.
  • the surface area of MgO in contact with the liquid 18 decreases as the above area ratio decreases, so the OH groups present on the surface of MgO are hydrogen ions in the liquid 18 The amount of receiving (H + ) decreases. Therefore, the pH gradation formed by the region 50 is higher than the pH gradation formed by the region 48.
  • the metal oxide film 38 (an example of the fourth metal oxide film) is formed of MgO, similarly to the metal oxide film 34.
  • the metal oxide film 38 is uniformly disposed over the entire region 52 (an example of a fourth region) of the carrier 20. That is, when the carrier 20 is viewed in plan, the area ratio occupied by the metal oxide film 38 in the region 52 of the carrier 20 (an example of the fourth area ratio) is the area ratio occupied by the metal oxide film 36 in the region 50 of the carrier 20 (An example of the third area ratio) is larger.
  • the metal oxide film 38 forms, for example, a pH gradation of pH 10.
  • the pH gradation of the liquid 18 in the vicinity of the region 52 is, for example, the isoelectric point of pH 10 of the sample 4 (the fourth isoelectric point PH corresponding to 10) (an example of a fourth pH).
  • the surface area of MgO in contact with the liquid 18 decreases as the area ratio decreases, so the OH groups present on the surface of MgO are liquid The amount of hydrogen ions (H + ) in 18 is reduced. Therefore, the pH gradation formed by the area 52 is higher than the pH gradation formed by the area 50.
  • the plurality of metal oxide films 26 to 38 are arranged such that seven pH gradations of pH 4 to pH 10 are arranged in ascending order from the electrode 12 to the electrode 10. As a result, a pH gradient is formed on the electrophoresis support 8 along the longitudinal direction of the carrier 20, in which seven pH gradations of pH 4 to pH 10 are aligned in this order.
  • Each of the plurality of metal oxide films 26 to 38 described above is formed, for example, by using an ALD (Atomic Layer Deposition) method.
  • ALD Atomic Layer Deposition
  • each of the plurality of metal oxide films 26 to 38 can be formed into a desired shape.
  • the plurality of metal oxide films 26 to 38 are not only deposited on the plurality of regions 40 to 52 on the upper surface 24 of the carrier 20 but also penetrate the inside of the carrier 20 corresponding to the plurality of regions 40 to 52 respectively. .
  • the electrophoresis support 8 is disposed inside the container 6, and the liquid 18 is injected into the inside of the container 6.
  • the sample 4 is injected into one end (end on the electrode 12 side) in the longitudinal direction of the carrier 20.
  • a predetermined DC voltage is applied between the pair of electrodes 10 and 12 by the power supply device 14. For example, after applying a DC voltage of 500 V between the pair of electrodes 10 and 12 for one minute, the voltage value is raised to 3500 V in one and a half hours. Thereafter, a DC voltage of 3500 V is applied for six and a half hours between the pair of electrodes 10 and 12. Thereby, an electric field is formed between the pair of electrodes 10 and 12, and the sample 4 moves (migrates) inside the carrier 20 under the action of the electric field.
  • the movement distance of the sample 4 differs depending on the isoelectric point of the sample 4.
  • the protein 4 a moves to the position of the region 40 forming a pH gradation of pH 4.
  • the sample 4b moves to the position of the region 42 forming a pH gradation of pH5.
  • the position of the separated sample 4 can be detected by staining the electrophoresis support 8.
  • a stain of the electrophoresis support 8 for example, silver stain or the like is used.
  • the sample 4 may be stained using a fluorescent dye.
  • the position of the separated sample 4 can be detected by irradiating the electrophoresis support 8 after the electrophoresis with excitation light and observing the fluorescence.
  • the electrophoresis support 8 may be irradiated with light such as ultraviolet light or near infrared light, and the transmitted light or the reflected light of the irradiated light may be detected.
  • the sample 4 containing a protein has the property of absorbing light of a specific wavelength. Therefore, in the case where the light irradiated to the electrophoresis support 8 is detected, the intensity of the detected light is weaker at the place where the sample 4 is located than at other places.
  • the position of the separated sample 4 can also be detected by such a method.
  • the area ratio occupied by the metal oxide film 26 in the region 40 of the carrier 20, the area ratio occupied by the metal oxide film 28 in the region 42 of the carrier 20, and the metal oxide film 30 occupied in the region 44 of the carrier 20 The area ratio is made different from each other.
  • one metal oxide TiO 2 which is smaller than the number of pH gradations is used to form three metal oxide films 26, 28 and 30.
  • a film can be formed.
  • the area ratio occupied by the metal oxide film 34 in the region 48 of the carrier 20, the area ratio occupied by the metal oxide film 36 in the region 50 of the carrier 20, and the metal oxide film in the region 52 of the carrier 20 is different from one another.
  • three metal oxide films 34, 36 and 38 are formed using one kind of metal oxide MgO smaller than the number of pH gradations. It can be membrane.
  • the films 26 to 38 can be formed.
  • an increase in the number of steps for forming the plurality of metal oxide films 26 to 38 can be suppressed, and the plurality of metal oxide films 26 can be suppressed.
  • FIG. 4 is a top view showing the configuration of the metal oxide film 22A of the electrophoresis support 8A according to the second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the configuration of the metal oxide film 22A is different from that of the first embodiment.
  • the section length X1 of the area 40 of the carrier 20 is longer than the section length X2 of the area 42A of the carrier 20 and shorter than the section length X3 of the area 44A of the carrier 20.
  • the section length X1 of the area 52 of the carrier 20 is longer than the section length X2 of the area 50A of the carrier 20 and shorter than the section length X3 of the area 48A of the carrier 20.
  • the section lengths X1 of the regions 40, 46 and 52 of the carrier 20 are the same.
  • the number of the plurality of metal oxide film pieces 56 of the metal oxide film 30A is larger than the number of the plurality of metal oxide film pieces 54 of the metal oxide film 28A. Also, the diameter of each of the plurality of metal oxide film pieces 56 is smaller than the diameter of each of the plurality of metal oxide film pieces 54. That is, when the carrier 20 is viewed in plan, the area ratio occupied by the metal oxide film 30A in the region 44A of the carrier 20 is smaller than the area ratio occupied by the metal oxide film 28A in the region 42A of the carrier 20.
  • the number of the plurality of metal oxide film pieces 58 of the metal oxide film 34A is larger than the number of the plurality of metal oxide film pieces 60 of the metal oxide film 36A.
  • the diameter of each of the plurality of metal oxide film pieces 58 is smaller than the diameter of each of the plurality of metal oxide film pieces 60. That is, when the carrier 20 is viewed in plan, the area ratio occupied by the metal oxide film 34A in the region 48A of the carrier 20 is smaller than the area ratio occupied by the metal oxide film 36A in the region 50A of the carrier 20.
  • each section length X3 of the regions 44A and 48A of the carrier 20 is greater than the section lengths X1 and X2 Also make it longer.
  • proteins having isoelectric points of pH 6 and pH 8 can be separated with high precision by the metal oxide films 30A and 34A, respectively.
  • each section length X2 of the regions 42A and 50A of the carrier 20 is set to section length X1. It should be longer than this.
  • proteins having an isoelectric point of pH 5 and pH 9 can be separated with high precision by the metal oxide films 28A and 36A, respectively.
  • each section length X1 of the regions 40 and 52 of the carrier 20 is set to section length X2 And X3.
  • proteins having an isoelectric point of pH 4 and pH 10 can be separated with high precision by the metal oxide films 26 and 38, respectively.
  • FIG. 5 is a top view showing the configuration of the metal oxide film 22B of the electrophoresis support 8B according to the third embodiment.
  • metal oxide film body 22B includes metal oxide film 62 (an example of a fifth metal oxide film) and metal oxide film 64 (sixth metal oxide film) in addition to the plurality of metal oxide films 26 to 38.
  • metal oxide film 62 an example of a fifth metal oxide film
  • metal oxide film 64 ixth metal oxide film
  • a region 66 is disposed between the region 42 of the carrier 20 and the region 44
  • a region 68 is disposed between the region 48 and the region 50 of the carrier 20.
  • An example is arranged.
  • the metal oxide film 62 includes a plurality of metal oxide film pieces 70 (an example of a first metal oxide film piece) and a plurality of metal oxide film pieces 72 (a second metal) which are scattered in a lattice shape in the region 66 of the carrier 20. (An example of an oxide film piece).
  • each of the plurality of metal oxide film pieces 70 is arranged so as not to overlap with each of the plurality of metal oxide film pieces 72.
  • Each of the plurality of metal oxide film pieces 70 is formed of TiO 2
  • each of the plurality of metal oxide film pieces 72 is formed of MgO. That is, the metal oxide film 62 is formed of two different metal oxides.
  • Each of the plurality of metal oxide film pieces 70 and 72 is formed in a circular shape in plan view.
  • the number of each of the plurality of metal oxide film pieces 70 is greater than the number of each of the plurality of metal oxide film pieces 72.
  • the diameter of each of the plurality of metal oxide film pieces 70 is larger than the diameter of each of the plurality of metal oxide film pieces 72.
  • the diameter of each of the plurality of metal oxide film pieces 70 is the same as the diameter of each of the plurality of metal oxide film pieces 54.
  • Region 66 is formed of a portion where carrier 20 is exposed, a plurality of metal oxide film pieces 70, and a plurality of metal oxide film pieces 72.
  • the metal oxide film 62 affects the pH gradation in the region 66. Therefore, the pH gradation of the region 66 is the pH gradation (for example, pH 4) formed by the plurality of metal oxide film pieces 70, the pH gradation (for example, pH 7) formed by the plurality of metal oxide film pieces 72, and pure water Is formed in combination with the pH gradation (for example, pH 7) which is formed.
  • the pH gradation of the liquid 18 (see FIG. 1) in the vicinity of the region 66 corresponds to the pH 5.5 (the example of the fifth isoelectric point) of the pH 5.5 of the sample 4 Of the pH of
  • the OH group present on the surface of the metal oxide film 62 is a hydrogen ion in the liquid 18 (compared to the metal oxide film 28 formed only of TiO 2 ).
  • the amount of receiving H + ) increases. Therefore, the pH gradation formed by the area 66 is more alkaline (for example, pH 5.5) than the pH gradation formed by the area 42.
  • the metal oxide film 64 includes a plurality of metal oxide film pieces 74 (an example of a third metal oxide film piece) and a plurality of metal oxide film pieces 76 (a fourth metal) which are scattered in a lattice shape in the region 68 of the carrier 20. (An example of an oxide film piece).
  • each of the plurality of metal oxide film pieces 74 is arranged so as not to overlap with each of the plurality of metal oxide film pieces 76.
  • Each of the plurality of metal oxide film pieces 74 is formed of TiO 2
  • each of the plurality of metal oxide film pieces 76 is formed of MgO. That is, the metal oxide film 64 is formed of two different metal oxides.
  • Each of the plurality of metal oxide film pieces 74 and 76 is formed in a circular shape in plan view.
  • the number of each of the plurality of metal oxide film pieces 74 is smaller than the number of each of the plurality of metal oxide film pieces 76.
  • the diameter of each of the plurality of metal oxide film pieces 74 is smaller than the diameter of each of the plurality of metal oxide film pieces 76.
  • the diameter of each of the plurality of metal oxide film pieces 76 is the same as the diameter of each of the plurality of metal oxide film pieces 60.
  • Region 68 is formed of a portion where carrier 20 is exposed, a plurality of metal oxide film pieces 74, and a plurality of metal oxide film pieces 76.
  • the metal oxide film 64 affects the pH gradation in the region 68. Therefore, the pH gradation of the region 68 includes pH gradation (for example, pH 4) formed by the plurality of metal oxide film pieces 74, pH gradation (for example, 10 pH) formed by the plurality of metal oxide film pieces 76, and pure water. Is formed in combination with the pH gradation (for example, pH 7) which is formed.
  • the pH gradation of the liquid 18 in the vicinity of the region 68 is, for example, one example of the pH 8.5 (corresponding to one example of the sixth isoelectric point) of pH 8.5 of the sample 4 ).
  • the OH group present on the surface of the metal oxide film 64 is a hydrogen ion (H (H) as compared to the metal oxide film 36 formed only of MgO.
  • H (H) hydrogen ion
  • the amount of releasing + ) increases. Therefore, the pH gradation formed by the region 68 is more acidic (for example, pH 8.5) than the pH gradation formed by the region 50.
  • the number of each of the plurality of metal oxide film pieces 70 is larger than the number of each of the plurality of metal oxide film pieces 74, and the area of each of the plurality of metal oxide film pieces 70 is a plurality of It is larger than the area of each of the metal oxide film pieces 74.
  • the number of each of the plurality of metal oxide film pieces 72 is smaller than the number of each of the plurality of metal oxide film pieces 76, and the area of each of the plurality of metal oxide film pieces 72 is a plurality of metal oxide film pieces 76. Less than the area of each of Note that at least one of the area and the number may be different between each of the plurality of metal oxide film pieces 70 and each of the plurality of metal oxide film pieces 74. Similarly, at least one of the area and the number of each of the plurality of metal oxide film pieces 72 and each of the plurality of metal oxide film pieces 76 may be different.
  • each of the plurality of metal oxide film pieces 70 of the metal oxide film 62 is arranged so as not to overlap with each of the plurality of metal oxide film pieces 72.
  • a contact area between each of the metal oxide film pieces 70 and the plurality of metal oxide film pieces 72 and the liquid 18 can be sufficiently secured.
  • the redox reaction of the plurality of metal oxide film pieces 70 and the plurality of metal oxide film pieces 72 with respect to the liquid 18 can be efficiently generated.
  • Embodiment 4 [4-1. Configuration of metal oxide film]
  • FIG. 6 is a top view showing the configuration of the metal oxide film 22C of the electrophoresis support 8C according to the fourth embodiment.
  • FIG. 7 is a cross-sectional view of an essential part of the electrophoresis support 8C according to the fourth embodiment, taken along the line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view of an essential portion of the electrophoresis support 8C according to the fourth embodiment, taken along line VIII-VIII in FIG.
  • the configuration of the metal oxide film 22C is different from that of the first embodiment.
  • the metal oxide film body 22 C has metal oxide films 78 and 80 (an example of a fifth metal oxide film) in addition to the plurality of metal oxide films 26 to 38.
  • a region 82 is disposed between the region 42 of the carrier 20 and the region 44
  • a region 84 is disposed between the region 48 and the region 50 of the carrier 20.
  • An example is arranged.
  • the metal oxide film 78 includes a plurality of metal oxide film pieces 86 (an example of a first metal oxide film piece) and a plurality of metal oxide film pieces 88 (a second metal) scattered in a lattice shape in the region 82 of the carrier 20. (An example of an oxide film piece). As shown in FIGS. 6 and 7, each of the plurality of metal oxide film pieces 86 is arranged to overlap with each of the plurality of metal oxide film pieces 88 when the carrier 20 is viewed in plan.
  • Each of the plurality of metal oxide film pieces 86 is formed of TiO 2
  • each of the plurality of metal oxide film pieces 88 is formed of MgO. That is, the metal oxide film 78 is formed of two different metal oxides.
  • Each of the plurality of metal oxide film pieces 86 and 88 is formed in a circular shape in plan view. The number and diameter of each of the plurality of metal oxide film pieces 86 are the same as the number and diameter of each of the plurality of metal oxide film pieces 88, respectively. As shown in FIG. 7, each of the plurality of metal oxide film pieces 86 is stacked on the upper side of each of the plurality of metal oxide film pieces 88.
  • Region 82 is formed of a portion where carrier 20 is exposed, a plurality of metal oxide film pieces 86, and a plurality of metal oxide film pieces 88.
  • the metal oxide film 78 affects the pH gradation in the region 82. Therefore, the pH gradation of the region 82 includes pH gradation (for example, pH 4) formed by the plurality of metal oxide film pieces 86, pH gradation (for example, 7 pH) formed by the plurality of metal oxide film pieces 88, and pure water. Is formed in combination with the pH gradation (for example, pH 7) which is formed.
  • the pH gradation of the liquid 18 (see FIG. 1) in the vicinity of the region 82 is, for example, pH 5.5 (the fifth isoelectric point) corresponding to the pH 5.5 of the sample 4 An example of the pH of 5).
  • the metal oxide film 80 includes a plurality of metal oxide film pieces 90 (an example of a first metal oxide film piece) and a plurality of metal oxide film pieces 92 (a second metal) which are scattered in a lattice shape in the region 84 of the carrier 20. (An example of an oxide film piece). As shown in FIGS. 6 and 8, each of the plurality of metal oxide film pieces 90 is arranged to overlap with each of the plurality of metal oxide film pieces 92 when the carrier 20 is viewed in plan.
  • Each of the plurality of metal oxide film pieces 90 is formed of TiO 2
  • each of the plurality of metal oxide film pieces 92 is formed of MgO. That is, the metal oxide film 80 is formed of two different metal oxides.
  • Each of the plurality of metal oxide film pieces 90 and 92 is formed in a circular shape in plan view. The number and diameter of each of the plurality of metal oxide film pieces 90 is the same as the number and diameter of each of the plurality of metal oxide film pieces 92. As shown in FIG. 8, each of the plurality of metal oxide film pieces 92 is stacked on the upper side of each of the plurality of metal oxide film pieces 90.
  • Region 84 is formed of a portion where carrier 20 is exposed, a plurality of metal oxide film pieces 90, and a plurality of metal oxide film pieces 92.
  • the metal oxide film 80 affects the pH gradation in the region 84. Therefore, the pH gradation of the region 84 includes pH gradation (for example, pH 4) formed by the plurality of metal oxide film pieces 90, pH gradation (for example, pH 10) formed by the plurality of metal oxide film pieces 92, and pure water. Is formed in combination with the pH gradation (for example, pH 7) which is formed.
  • the pH gradation of the liquid 18 in the vicinity of the region 84 is, for example, one example of the pH 8.5 (corresponding to one example of the fifth isoelectric point) of pH 8.5 of the sample 4 ).
  • the pH gradation of the pH gradient can be further subdivided by forming each of the metal oxide films 78 and 80 with two different metal oxides.
  • each of the plurality of metal oxide film pieces 86 of the metal oxide film 78 is disposed so as to overlap with each of the plurality of metal oxide film pieces 88 when the carrier 20 is viewed in a plan view. Even if the area of the region 82 can not be sufficiently secured, the metal oxide film 78 can be compactly disposed in the region 82.
  • FIG. 9 is a top view showing the structure of a metal oxide film body 22D of an electrophoresis support 8D according to the fifth embodiment.
  • FIG. 10 is a view for explaining an example of the film forming step of the metal oxide film 22D of the electrophoresis support 8D according to the fifth embodiment.
  • FIG. 11 is a graph for explaining the pH gradient formed by the metal oxide film body 22D of the electrophoresis support 8D according to the fifth embodiment.
  • the configuration of the metal oxide film 22D is different from that of the first embodiment.
  • the metal oxide film body 22D has a plurality of metal oxide films 94 to 102.
  • the plurality of metal oxide films 94 to 102 are respectively disposed in the plurality of regions 104 to 112 on the upper surface 24 of the carrier 20.
  • the plurality of regions 104 to 112 are arranged in line in this order along the longitudinal direction (X-axis direction) of the carrier 20.
  • the metal oxide film 94 is formed of TiO 2 , and is uniformly disposed over the entire region 104 of the carrier 20.
  • the metal oxide film 94 forms, for example, a pH gradation of pH4.
  • the pH gradation of the liquid 18 (see FIG. 1) in the vicinity of the region 104 corresponds to, for example, the isoelectric point of pH 4 of the sample 4.
  • the metal oxide film 96 has a plurality of metal oxide film pieces 114 and a plurality of metal oxide film pieces 116 interspersed in a lattice shape in the region 106 of the carrier 20.
  • each of the plurality of metal oxide film pieces 114 is arranged to overlap with each of the plurality of metal oxide film pieces 116.
  • Each of the plurality of metal oxide film pieces 114 is formed of TiO 2
  • each of the plurality of metal oxide film pieces 116 is formed of MgO. That is, the metal oxide film 96 is formed of two different metal oxides.
  • Each of the plurality of metal oxide film pieces 114 and 116 is formed in a circular shape in plan view.
  • the number of each of the plurality of metal oxide film pieces 114 is the same as the number of each of the plurality of metal oxide film pieces 116.
  • the diameter of each of the plurality of metal oxide film pieces 114 is larger than the diameter of each of the plurality of metal oxide film pieces 116.
  • Each of the plurality of metal oxide film pieces 114 is stacked under each of the plurality of metal oxide film pieces 116.
  • Region 106 is formed of a portion where carrier 20 is exposed, a plurality of metal oxide film pieces 114 and a plurality of metal oxide film pieces 116.
  • the metal oxide film 96 affects the pH gradation in the region 106. Therefore, the pH gradation of the region 106 includes pH gradation (for example, pH 4) formed by a plurality of metal oxide film pieces 114, pH gradation (for example, pH 7) formed by a plurality of metal oxide film pieces 116, and pure water. Is formed in combination with the pH gradation (for example, pH 7) which is formed. Thereby, the pH gradation of the liquid 18 in the vicinity of the region 106 becomes, for example, pH 5.5 corresponding to the isoelectric point of pH 5.5 of the sample 4.
  • pH gradation for example, pH 4
  • the metal oxide film 98 has a plurality of metal oxide film pieces 118 and a plurality of metal oxide film pieces 120 interspersed in a lattice shape in the region 108 of the carrier 20.
  • each of the plurality of metal oxide film pieces 118 is arranged to overlap with each of the plurality of metal oxide film pieces 120.
  • Each of the plurality of metal oxide film pieces 118 is formed of TiO 2
  • each of the plurality of metal oxide film pieces 120 is formed of MgO. That is, the metal oxide film 98 is formed of two different metal oxides.
  • Each of the plurality of metal oxide film pieces 118 and 120 is formed in a circular shape in plan view. The number and diameter of each of the plurality of metal oxide film pieces 118 are the same as the number and diameter of each of the plurality of metal oxide film pieces 120.
  • Each of the plurality of metal oxide film pieces 118 is stacked under each of the plurality of metal oxide film pieces 120.
  • Region 108 is formed of a portion where carrier 20 is exposed, a plurality of metal oxide film pieces 118, and a plurality of metal oxide film pieces 120.
  • the metal oxide film 98 affects the pH gradation in the region 108. Therefore, the pH gradation of the region 108 includes pH gradation (for example, pH 4) formed by a plurality of metal oxide film pieces 118, pH gradation (for example, pH 7) formed by a plurality of metal oxide film pieces 120, and pure water. Is formed in combination with the pH gradation (for example, pH 7) which is formed. Thereby, the pH gradation of the liquid 18 in the vicinity of the region 108 becomes, for example, pH 7 corresponding to the isoelectric point of pH 7 of the sample 4.
  • pH gradation for example, pH 4
  • the metal oxide film 100 has a plurality of metal oxide film pieces 122 and a plurality of metal oxide film pieces 124 scattered in a lattice shape in the region 110 of the carrier 20.
  • each of the plurality of metal oxide film pieces 122 is arranged to overlap with each of the plurality of metal oxide film pieces 124.
  • Each of the plurality of metal oxide film pieces 122 is formed of TiO 2
  • each of the plurality of metal oxide film pieces 124 is formed of MgO. That is, the metal oxide film 100 is formed of two different metal oxides.
  • Each of the plurality of metal oxide film pieces 122 and 124 is formed in a circular shape in plan view.
  • the number of each of the plurality of metal oxide film pieces 122 is the same as the number of each of the plurality of metal oxide film pieces 124.
  • the diameter of each of the plurality of metal oxide film pieces 122 is smaller than the diameter of each of the plurality of metal oxide film pieces 124.
  • Each of the plurality of metal oxide film pieces 122 is stacked under each of the plurality of metal oxide film pieces 124.
  • the region 110 is formed by a portion where the carrier 20 is exposed, a plurality of metal oxide film pieces 122, and a plurality of metal oxide film pieces 124.
  • the metal oxide film 100 affects the pH gradation in the region 110. Therefore, the pH gradation of the region 110 includes pH gradation (for example, pH 4) formed by a plurality of metal oxide film pieces 122, pH gradation (for example, pH 10) formed by a plurality of metal oxide film pieces 124, and pure water. Is formed in combination with the pH gradation (for example, pH 7) which is formed. Thereby, the pH gradation of the liquid 18 in the vicinity of the region 110 becomes, for example, pH 8.5 corresponding to the isoelectric point of pH 8.5 of the sample 4.
  • pH gradation for example, pH 4
  • the metal oxide film 102 is formed of MgO and is uniformly disposed over the entire region 112 of the carrier 20.
  • the metal oxide film 102 forms, for example, a pH gradation of pH 10.
  • the pH gradation of the liquid 18 in the vicinity of the region 112 becomes, for example, pH 10 corresponding to the isoelectric point of pH 10 of the sample 4.
  • a 1st film-forming process is performed.
  • an organometallic compound gas of Ti is introduced by the ALD method.
  • the metal mask 126 includes a region 130a in which the rectangular holes 128a are formed, a region 130b in which the plurality of circular holes 128b are formed, a region 130c in which the plurality of circular holes 128c is formed, and a circular shape
  • a plurality of holes 128d are formed in a region 130d and a closed region 130e.
  • Each of the plurality of holes 128b, the plurality of holes 128c, and the plurality of holes 128d is arranged in a lattice.
  • the numbers of the plurality of holes 128b, the plurality of holes 128c, and the plurality of holes 128d are the same.
  • the diameter of each of the plurality of holes 128b is larger than the diameter of each of the plurality of holes 128c.
  • the diameter of each of the plurality of holes 128c is larger than the diameter of each of the plurality of holes 128d.
  • the metal oxide film 94 is formed in the region 104 of the carrier 20 by the organometallic compound gas of Ti introduced through the holes 128a of the metal mask 126. Further, a plurality of metal oxide film pieces 114 are formed in the region 106 of the carrier 20 by the metal organic metal compound gas of Ti introduced through the plurality of holes 128 b of the metal mask 126. Further, a plurality of metal oxide film pieces 118 are formed in the region 108 of the carrier 20 by the metal organic metal compound gas of Ti introduced through the plurality of holes 128 c of the metal mask 126.
  • a plurality of metal oxide film pieces 122 are formed in the region 110 of the carrier 20 by the organometallic compound gas of Ti introduced through the plurality of holes 128 d of the metal mask 126. Since the region 112 of the carrier 20 is completely covered by the region 130e of the metal mask 126, the metal oxide film of TiO 2 is not formed.
  • a second film forming process is performed.
  • an organic metal compound gas of Mg is introduced by the ALD method.
  • the direction of the metal mask 126 is reversed from the first film forming process.
  • the metal oxide film 102 is formed in the region 112 of the carrier 20 by the Mg organic metal compound gas introduced through the holes 128a of the metal mask 126.
  • a plurality of metal oxide film pieces 124 are stacked on the plurality of metal oxide film pieces 122 by metal organic metal compound gas introduced through the plurality of holes 128b of the metal mask 126.
  • the plurality of metal oxide film pieces 120 are stacked on the plurality of metal oxide film pieces 118 by the metal organic metal compound gas of Mg introduced through the plurality of holes 128c of the metal mask 126.
  • a plurality of metal oxide film pieces 116 are stacked on the plurality of metal oxide film pieces 114 in the region 106 of the carrier 20 by the metal organic metal compound gas of Mg introduced through the plurality of holes 128 d of the metal mask 126. Formed to Since the region 104 of the carrier 20 is completely covered with the region 130e of the metal mask 126, a metal oxide film of MgO is not formed.
  • the plurality of metal oxide films 94 to 102 are formed on the plurality of regions 104 to 112 of the carrier 20, respectively.
  • the pH of pH 4 to pH 7 formed by the metal oxide film 94 of TiO 2 and the plurality of metal oxide film pieces 114, 118 and 122 As shown in FIG. 11, in the metal oxide film body 22D formed as described above, the pH of pH 4 to pH 7 formed by the metal oxide film 94 of TiO 2 and the plurality of metal oxide film pieces 114, 118 and 122.
  • the gradient and the pH gradient of pH 7 to pH 10 formed by the metal oxide film 102 of MgO and the plurality of metal oxide film fragments 116, 120 and 124 mutually influence to form a pH gradient of pH 4 to pH 10 Become so.
  • the metal oxide film 22 includes at least two of TiO 2 , NiO and MgO, but it is possible to include metal oxides other than the above. Good.
  • the metal oxide film body 22 (22A, 22B, 22C, 22D) is, for example, Al 2 O 3 , HfO, WO 3 , La 2 O 3 , Bi 2 O 3 , SnO 2 , ZnO, In 2 O, Fe 3 O 4 And any two or more metal oxides such as CuO and SiO 2 may be included.
  • the sample 4 contains a protein, but it may contain, for example, DNA (deoxyribonucleic acid) or the like.
  • the present invention is not limited to this, for example, any number of pH gradations such as nine pH gradations of pH 3 to pH 11 You may form a pH gradient with
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading out and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • Each of the above-described devices can be specifically realized by a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse and the like.
  • a computer program is stored in the RAM or the hard disk unit.
  • Each device achieves its function by the microprocessor operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions to the computer in order to achieve a predetermined function.
  • the system LSI is a super-multifunctional LSI manufactured by integrating a plurality of components on one chip, and more specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. .
  • a computer program is stored in the ROM.
  • the system LSI achieves its functions as the microprocessor loads a computer program from the ROM to the RAM and operates according to the loaded computer program.
  • a part or all of the components constituting each of the above-described devices may be configured from an IC card or a single module that can be detached from each device.
  • the IC card or module is a computer system including a microprocessor, a ROM, a RAM, and the like.
  • the IC card or module may include the above-described ultra-multifunctional LSI.
  • the IC card or module achieves its function by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
  • the present invention may be realized by the method shown above. Also, these methods may be realized by a computer program realized by a computer, or may be realized by a digital signal consisting of a computer program.
  • the present invention is a computer program or a recording medium which can read digital signals from a computer, such as a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD (Blu-ray (registered trademark) (Disc), a semiconductor memory or the like. Also, it may be realized by digital signals recorded in these recording media.
  • the present invention may transmit a computer program or a digital signal via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, data broadcasting, and the like.
  • the present invention is a computer system comprising a microprocessor and a memory, the memory storing a computer program, and the microprocessor may operate according to the computer program.
  • the electrophoresis support of the present invention can be applied to an electrophoresis apparatus or the like for electrophoresis of a sample.
  • electrophoresis apparatus 4 samples 4a, 4b protein 6 containers 8, 8A, 8B, 8C, 8D electrophoresis support 10, 12 electrode 14 power supply 16 opening 18 liquid 20 carrier 22, 22A, 22B, 22C, 22D metal oxidation Upper surface 26, 28, 28A, 30, 30A, 32, 34, 34A, 36, 36A, 38, 62, 64, 78, 94, 96, 98, 100, 102 Metal oxide films 40, 42, 42A, 44, 44A, 46, 48, 48A, 50, 50A, 52, 66, 68, 82, 84, 106, 108, 110, 112, 130a, 130b, 130c, 130d, 130e regions 54, 56, 58, 60, 70, 72, 74, 76, 68, 88, 90, 92, 114, 116, 118, 120, 122, 124 metal oxide film pieces 1 6 metal mask 128a, 128b, 128c, 128d hole

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

This electrophoretic support (8) is provided with: a carrier (20) formed in a porous shape and having an upper surface (24) on which a region (40) and a region (42) disposed adjacent to the region (40)are formed; a metal oxide film (26) for forming a first pH that corresponds to a first isoelectric point of a sample (4), the metal oxide film (26) being disposed in the region (40) and composed of a first metal oxide; and a metal oxide film (28) for forming a second pH that corresponds to a second isoelectric point of the sample (4), the metal oxide film (28) being disposed in the region (42) and composed of the first metal oxide. When viewing the carrier (20) in a plan view, a first surface area ratio occupied by the metal oxide film (26) in the region (40) is different from a second surface area ratio occupied by the metal oxide film (28) in the region (42).

Description

電気泳動支持体及び電気泳動装置Electrophoresis support and electrophoresis apparatus
 本発明は、電気泳動支持体及びこれを備えた電気泳動装置に関する。 The present invention relates to an electrophoresis support and an electrophoresis apparatus provided with the same.
 試料の等電点の違いを利用して、試料を分離する等電点電気泳動が知られている。等電点電気泳動では、電気泳動装置が用いられる(例えば、特許文献1参照)。この電気泳動装置は、容器と、容器の内部に配置された一対の電極と、一対の電極の間に配置された電気泳動支持体とを備えている。 Isoelectric focusing electrophoresis is known in which a sample is separated by utilizing the difference in the isoelectric point of the sample. In isoelectric focusing, an electrophoresis apparatus is used (see, for example, Patent Document 1). The electrophoresis apparatus includes a container, a pair of electrodes disposed inside the container, and an electrophoresis support disposed between the pair of electrodes.
 電気泳動支持体は、多孔質状の担体と、担体の上面に一列に並んで配置された複数の金属酸化膜とを有している。複数の金属酸化膜はそれぞれ、互いに異なる種類の複数の金属酸化物で形成されている。これらの複数の金属酸化膜により、担体にpH勾配が形成される。 The electrophoresis support has a porous carrier and a plurality of metal oxide films arranged in a line on the top surface of the carrier. Each of the plurality of metal oxide films is formed of a plurality of metal oxides of different types. The plurality of metal oxide films form a pH gradient on the carrier.
国際公開第2016/163097号International Publication No. 2016/163097
 上述した従来の電気泳動支持体では、1つのpH階調を形成するためには1種類の金属酸化物が必要となる。そのため、例えばpH4~pH10の7つのpH階調を有するpH勾配を形成する場合には、pH階調と同数の7種類の金属酸化物が必要になる。これにより、pH階調を増やすに従って、複数の金属酸化膜の成膜工数が増大するとともに、複数の金属酸化膜の成膜制御が複雑になる。その結果、電気泳動支持体の製造プロセスが複雑になるという課題が生じる。 The conventional electrophoretic support described above requires one type of metal oxide to form one pH gradation. Therefore, in the case of forming a pH gradient having seven pH gradations, for example, pH 4 to pH 10, seven types of metal oxides equal in number to the pH gradation are required. As a result, as the pH gradation is increased, the number of steps for forming the plurality of metal oxide films increases, and the control of forming the plurality of metal oxide films becomes complicated. As a result, there arises a problem that the manufacturing process of the electrophoresis support becomes complicated.
 そこで、本発明は、pH勾配のpH階調の数を増やした場合であっても、製造プロセスが複雑になるのを抑制することができる電気泳動支持体及びこれを備えた電気泳動装置を提供する。 Therefore, the present invention provides an electrophoresis support capable of suppressing the manufacturing process from becoming complicated even when the number of pH gradations in the pH gradient is increased, and an electrophoresis apparatus including the same. Do.
 本発明の一態様に係る電気泳動支持体は、試料を電気泳動するための電気泳動装置に用いられる電気泳動支持体であって、多孔質状に形成された担体であって、第1の領域と、前記第1の領域に隣接して配置された第2の領域とが表面に形成された担体と、前記試料の第1の等電点に対応する第1のpHを形成するための第1の金属酸化膜であって、前記第1の領域に配置され、第1の金属酸化物で形成された第1の金属酸化膜と、前記試料の第2の等電点に対応する第2のpHを形成するための第2の金属酸化膜であって、前記第2の領域に配置され、前記第1の金属酸化物で形成された第2の金属酸化膜と、を備え、前記担体を平面視した際に、前記第1の領域において前記第1の金属酸化膜が占める第1の面積割合は、前記第2の領域において前記第2の金属酸化膜が占める第2の面積割合と異なる。 An electrophoresis support according to an aspect of the present invention is an electrophoresis support used in an electrophoresis apparatus for electrophoresis of a sample, which is a porous carrier, and includes a first region A carrier having a surface formed thereon, and a second region disposed adjacent to the first region, and a first for forming a first pH corresponding to a first isoelectric point of the sample A first metal oxide film disposed in the first region and formed of a first metal oxide, and a second metal oxide film corresponding to a second isoelectric point of the sample A second metal oxide film for forming the pH of the second metal oxide film, the second metal oxide film disposed in the second region and formed of the first metal oxide, and the carrier And the first area ratio occupied by the first metal oxide film in the first region is the second region. Different from the second area ratio occupied the second metal oxide film is in the.
 なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 Note that these general or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer readable CD-ROM, a system, a method, an integrated circuit, a computer program And any combination of recording media.
 本発明の一態様に係る電気泳動支持体等では、pH勾配のpH階調の数を増やした場合であっても、製造プロセスが複雑になるのを抑制することができる。 In the electrophoresis support or the like according to one aspect of the present invention, the manufacturing process can be prevented from becoming complicated even when the number of pH gradations is increased.
図1は、実施の形態1に係る電気泳動装置の構成を示す上面図である。FIG. 1 is a top view showing the configuration of the electrophoresis apparatus according to the first embodiment. 図2は、図1のII-II線による、実施の形態1に係る電気泳動装置の断面図である。FIG. 2 is a cross-sectional view of the electrophoresis device according to the first embodiment, taken along line II-II in FIG. 図3は、実施の形態1に係る電気泳動支持体の金属酸化膜体の構成を示す上面図である。FIG. 3 is a top view showing the structure of the metal oxide film of the electrophoresis support according to the first embodiment. 図4は、実施の形態2に係る電気泳動支持体の金属酸化膜体の構成を示す上面図である。FIG. 4 is a top view showing the configuration of the metal oxide film of the electrophoresis support according to the second embodiment. 図5は、実施の形態3に係る電気泳動支持体の金属酸化膜体の構成を示す上面図である。FIG. 5 is a top view showing the configuration of the metal oxide film of the electrophoresis support according to the third embodiment. 図6は、実施の形態4に係る電気泳動支持体の金属酸化膜体の構成を示す上面図である。FIG. 6 is a top view showing the configuration of the metal oxide film of the electrophoresis support according to the fourth embodiment. 図7は、図6のVII-VII線による、実施の形態4に係る電気泳動支持体の要部断面図である。FIG. 7 is a cross-sectional view of an essential part of the electrophoresis support according to the fourth embodiment, taken along the line VII-VII in FIG. 図8は、図6のVIII-VIII線による、実施の形態4に係る電気泳動支持体の要部断面図である。FIG. 8 is a cross-sectional view of essential parts of the electrophoresis support according to the fourth embodiment, taken along line VIII-VIII in FIG. 図9は、実施の形態5に係る電気泳動支持体の金属酸化膜体の構成を示す上面図である。FIG. 9 is a top view showing the configuration of the metal oxide film of the electrophoresis support according to the fifth embodiment. 図10は、実施の形態5に係る電気泳動支持体の金属酸化膜体の成膜工程の一例を説明するための図である。FIG. 10 is a view for explaining an example of the film formation step of the metal oxide film of the electrophoresis support according to the fifth embodiment. 図11は、実施の形態5に係る電気泳動支持体の金属酸化膜体により形成されるpH勾配を説明するためのグラフである。FIG. 11 is a graph for explaining the pH gradient formed by the metal oxide film of the electrophoresis support according to the fifth embodiment.
 本発明の一態様に係る電気泳動支持体は、試料を電気泳動するための電気泳動装置に用いられる電気泳動支持体であって、多孔質状に形成された担体であって、第1の領域と、前記第1の領域に隣接して配置された第2の領域とが表面に形成された担体と、前記試料の第1の等電点に対応する第1のpHを形成するための第1の金属酸化膜であって、前記第1の領域に配置され、第1の金属酸化物で形成された第1の金属酸化膜と、前記試料の第2の等電点に対応する第2のpHを形成するための第2の金属酸化膜であって、前記第2の領域に配置され、前記第1の金属酸化物で形成された第2の金属酸化膜と、を備え、前記担体を平面視した際に、前記第1の領域において前記第1の金属酸化膜が占める第1の面積割合は、前記第2の領域において前記第2の金属酸化膜が占める第2の面積割合と異なる。 An electrophoresis support according to an aspect of the present invention is an electrophoresis support used in an electrophoresis apparatus for electrophoresis of a sample, which is a porous carrier, and includes a first region A carrier having a surface formed thereon, and a second region disposed adjacent to the first region, and a first for forming a first pH corresponding to a first isoelectric point of the sample A first metal oxide film disposed in the first region and formed of a first metal oxide, and a second metal oxide film corresponding to a second isoelectric point of the sample A second metal oxide film for forming the pH of the second metal oxide film, the second metal oxide film disposed in the second region and formed of the first metal oxide, and the carrier And the first area ratio occupied by the first metal oxide film in the first region is the second region. Different from the second area ratio occupied the second metal oxide film is in the.
 本態様によれば、担体を平面視した際に、第1の領域において第1の金属酸化膜が占める第1の面積割合は、第2の領域において第2の金属酸化膜が占める第2の面積割合と異なる。これにより、pH勾配において複数のpH階調を形成する場合であっても、pH階調の数よりも少ない種類の金属酸化物を用いて、第1の金属酸化膜及び第2の金属酸化膜を含む複数の金属酸化膜を成膜することができる。その結果、pH勾配のpH階調の数を増やした場合であっても、複数の金属酸化膜の成膜工数が増大するのを抑制することができるとともに、複数の金属酸化膜の成膜制御を簡素化することができる。したがって、電気泳動支持体の製造プロセスが複雑になるのを抑制することができる。 According to this aspect, when the carrier is viewed in plan, the first area ratio occupied by the first metal oxide film in the first region is the second area occupied by the second metal oxide film in the second region. It is different from the area ratio. Thereby, even when a plurality of pH gradations are formed in the pH gradient, the first metal oxide film and the second metal oxide film are formed using metal oxides of a type smaller than the number of pH gradations. Can be formed into a plurality of metal oxide films. As a result, even when the number of pH gradations is increased, it is possible to suppress an increase in the number of steps for forming a plurality of metal oxide films, and to control the formation of a plurality of metal oxide films. Can be simplified. Therefore, the manufacturing process of the electrophoresis support can be suppressed from being complicated.
 例えば、前記担体の前記表面には、さらに、前記第2の領域を挟んで前記第1の領域と反対側に配置された第3の領域が形成され、前記電気泳動支持体は、さらに、前記試料の第3の等電点に対応する第3のpHを形成するための第3の金属酸化膜であって、前記第3の領域に配置され、第2の金属酸化物で形成された第3の金属酸化膜を備えるように構成してもよい。 For example, on the surface of the carrier, a third region is further formed opposite to the first region across the second region, and the electrophoresis support further includes: A third metal oxide film for forming a third pH corresponding to a third isoelectric point of a sample, wherein the third metal oxide film is disposed in the third region and formed of a second metal oxide You may comprise so that the metal oxide film of 3 may be provided.
 本態様によれば、pH勾配のpH階調をより細分化することができる。 According to this aspect, the pH gradation of the pH gradient can be further subdivided.
 例えば、前記担体の前記表面には、さらに、前記第3の領域を挟んで前記第2の領域と反対側に配置された第4の領域が形成され、前記電気泳動支持体は、さらに、前記試料の第4の等電点に対応する第4のpHを形成するための第4の金属酸化膜であって、前記第4の領域に配置され、前記第2の金属酸化物で形成された第4の金属酸化膜を備え、前記担体を平面視した際に、前記第3の領域において前記第3の金属酸化膜が占める第3の面積割合は、前記第4の領域において前記第4の金属酸化膜が占める第4の面積割合と異なるように構成してもよい。 For example, on the surface of the carrier, a fourth region is further formed opposite to the second region across the third region, and the electrophoresis support further includes the fourth member. It is a 4th metal oxide film for forming the 4th pH corresponding to the 4th isoelectric point of a sample, Comprising: It arrange | positioned in the said 4th area | region and was formed with the said 2nd metal oxide. A fourth metal oxide film is provided, and the third area ratio occupied by the third metal oxide film in the third region when the carrier is viewed in plan is the fourth area ratio in the fourth region. It may be configured to be different from the fourth area ratio occupied by the metal oxide film.
 本態様によれば、pH勾配のpH階調をより細分化することができる。 According to this aspect, the pH gradation of the pH gradient can be further subdivided.
 例えば、前記第1の等電点が前記第2の等電点よりも低く、且つ、前記第2の等電点が純水のpHに対応する等電点よりも低い場合には、前記第2の面積割合は、前記第1の面積割合よりも小さいように構成してもよい。 For example, when the first isoelectric point is lower than the second isoelectric point and the second isoelectric point is lower than the isoelectric point corresponding to the pH of pure water, the first isoelectric point is lower than the second isoelectric point. The area ratio of 2 may be configured to be smaller than the first area ratio.
 本態様によれば、第2の金属酸化膜により形成される第2のpHが第1の金属酸化膜により形成される第1のpHよりも高くなるように、pH勾配を形成することができる。 According to this aspect, the pH gradient can be formed such that the second pH formed by the second metal oxide film is higher than the first pH formed by the first metal oxide film. .
 例えば、前記第1の等電点が前記第2の等電点よりも高く、且つ、前記第2の等電点が純水のpHに対応する等電点よりも高い場合には、前記第2の面積割合は、前記第1の面積割合よりも小さいように構成してもよい。 For example, when the first isoelectric point is higher than the second isoelectric point, and the second isoelectric point is higher than the isoelectric point corresponding to the pH of pure water, the first isoelectric point is higher than the second isoelectric point. The area ratio of 2 may be configured to be smaller than the first area ratio.
 本態様によれば、第2の金属酸化膜により形成される第2のpHが第1の金属酸化膜により形成される第1のpHよりも低くなるように、pH勾配を形成することができる。 According to this aspect, it is possible to form a pH gradient such that the second pH formed by the second metal oxide film is lower than the first pH formed by the first metal oxide film. .
 例えば、前記担体の前記表面には、さらに、前記第2の領域と前記第3の領域との間に配置された第5の領域が形成され、前記電気泳動支持体は、さらに、前記試料の第5の等電点に対応する第5のpHを形成するための第5の金属酸化膜であって、前記第5の領域に配置され、前記第1の金属酸化物及び前記第2の金属酸化物で形成された第5の金属酸化膜を備えるように構成してもよい。 For example, a fifth region is further formed on the surface of the carrier, the fifth region being disposed between the second region and the third region, and the electrophoresis support further comprises: A fifth metal oxide film for forming a fifth pH corresponding to a fifth isoelectric point, which is disposed in the fifth region, and the first metal oxide and the second metal You may comprise so that the 5th metal oxide film formed with the oxide may be provided.
 本態様によれば、第1の金属酸化物及び第2の金属酸化物で形成された第5の金属酸化膜を、第1の金属酸化物で形成された第2の金属酸化膜と第2の金属酸化物で形成された第3の金属酸化膜との間に配置するので、pH勾配のpH階調をより細分化することができる。 According to this aspect, the fifth metal oxide film formed of the first metal oxide and the second metal oxide is different from the second metal oxide film formed of the first metal oxide and the second metal oxide film. The third embodiment is disposed between the second metal oxide film and the third metal oxide film formed of the second metal oxide, so that pH gradation of the pH gradient can be further subdivided.
 例えば、前記第5の金属酸化膜は、前記第1の金属酸化物で形成され、前記第5の領域において点在する複数の第1の金属酸化膜片と、前記第2の金属酸化物で形成され、前記第5の領域において点在する複数の第2の金属酸化膜片と、を含み、前記担体を平面視した際に、前記複数の第1の金属酸化膜片の各々は、前記複数の第2の金属酸化膜片の各々と互いに重ならないように配置されているように構成してもよい。 For example, the fifth metal oxide film is formed of the first metal oxide, and includes a plurality of first metal oxide film pieces scattered in the fifth region and the second metal oxide. And a plurality of second metal oxide film pieces formed and scattered in the fifth region, and when the carrier is viewed in plan, each of the plurality of first metal oxide film pieces is The plurality of second metal oxide film pieces may be arranged not to overlap with each other.
 本態様によれば、担体を平面視した際に、複数の第1の金属酸化膜片の各々は、複数の第2の金属酸化膜片の各々と互いに重ならないように配置されているので、複数の第1の金属酸化膜片及び複数の第2の金属酸化膜片の各々と、純水等の液体との接触面積を十分に確保することができる。その結果、複数の第1の金属酸化膜片及び複数の第2の金属酸化膜片の各々の、液体に対する酸化還元反応を効率良く生じさせることができる。 According to this aspect, each of the plurality of first metal oxide film pieces is arranged so as not to overlap with each of the plurality of second metal oxide film pieces when the carrier is viewed in a plan view. A contact area between each of the plurality of first metal oxide film pieces and the plurality of second metal oxide film pieces and a liquid such as pure water can be sufficiently secured. As a result, each of the plurality of first metal oxide film pieces and the plurality of second metal oxide film pieces can efficiently generate the redox reaction to the liquid.
 例えば、前記担体の前記表面には、さらに、前記第3の領域と前記第5の領域との間に配置された第6の領域が形成され、前記電気泳動支持体は、さらに、前記第6の領域に配置され、前記試料の第6の等電点に対応する第6のpHを形成するための第6の金属酸化膜を備え、前記第6の金属酸化膜は、前記第1の金属酸化物で形成され、前記第6の領域において点在する複数の第3の金属酸化膜片と、前記第2の金属酸化物で形成され、前記第6の領域において点在する複数の第4の金属酸化膜片と、を含み、前記担体を平面視した際に、前記複数の第3の金属酸化膜片の各々は、前記複数の第4の金属酸化膜片の各々と互いに重ならないように配置されており、前記複数の第1の金属酸化膜片と前記複数の第3の金属酸化膜片とは、面積及び数の少なくとも一方が異なり、且つ、前記複数の第2の金属酸化膜片と前記複数の第4の金属酸化膜片とは、面積及び数の少なくとも一方が異なるように構成してもよい。 For example, on the surface of the carrier, a sixth region is further formed, which is disposed between the third region and the fifth region, and the electrophoresis support further includes the sixth. And a sixth metal oxide film for forming a sixth pH corresponding to the sixth isoelectric point of the sample, the sixth metal oxide film being the first metal A plurality of third metal oxide film pieces formed of an oxide and dispersed in the sixth region, and a plurality of fourth formed in the second region and formed of the second metal oxide And each of the plurality of third metal oxide film pieces does not overlap with each of the plurality of fourth metal oxide film pieces when the carrier is viewed in a plan view. And the plurality of first metal oxide film pieces and the plurality of third metal oxide film pieces are And differ by at least one of the number, and said a plurality of second metal oxide film pieces and the plurality of fourth metal oxide film pieces, at least one of the area and the number may be configured differently.
 本態様によれば、pH勾配のpH階調をより細分化することができる。 According to this aspect, the pH gradation of the pH gradient can be further subdivided.
 例えば、前記第5の金属酸化膜は、前記第1の金属酸化物で形成され、前記第5の領域において点在する複数の第1の金属酸化膜片と、前記第2の金属酸化物で形成され、前記第5の領域において点在する複数の第2の金属酸化膜片と、を含み、前記担体を平面視した際に、前記複数の第1の金属酸化膜片の各々は、前記複数の第2の金属酸化膜片の各々と互いに重なるように配置されているように構成してもよい。 For example, the fifth metal oxide film is formed of the first metal oxide, and includes a plurality of first metal oxide film pieces scattered in the fifth region and the second metal oxide. And a plurality of second metal oxide film pieces formed and scattered in the fifth region, and when the carrier is viewed in plan, each of the plurality of first metal oxide film pieces is It may be configured to be arranged to overlap with each of the plurality of second metal oxide film pieces.
 本態様によれば、担体を平面視した際に、複数の第1の金属酸化膜片の各々は、複数の第2の金属酸化膜片の各々と互いに重なるように配置されているので、第5の領域の面積を十分に確保できない場合であっても、第5の金属酸化膜を第5の領域にコンパクトに配置することができる。 According to this aspect, each of the plurality of first metal oxide film pieces is disposed so as to overlap with each of the plurality of second metal oxide film pieces in plan view of the carrier. Even if the area of the region 5 can not be sufficiently secured, the fifth metal oxide film can be compactly disposed in the fifth region.
 例えば、前記第1の領域、前記第2の領域、前記第3の領域及び前記第4の領域の各区間長のうち少なくとも2つの区間長は、互いに異なるように構成してもよい。 For example, at least two section lengths among the section lengths of the first area, the second area, the third area, and the fourth area may be configured to be different from each other.
 本態様によれば、試料が特定の等電点を比較的多く含む場合に、当該特定の等電点の試料を精度良く分離することができる。 According to this aspect, when the sample contains a relatively large number of specific isoelectric points, it is possible to accurately separate the sample of the specific isoelectric point.
 また、本発明の一態様に係る電気泳動装置は、試料を電気泳動するための電気泳動装置であって、容器と、前記容器の内部に配置された一対の電極と、上述したいずれかの電気泳動支持体と、を備え、前記一対の電極はそれぞれ、前記電気泳動支持体の前記試料の泳動方向における両端部に配置されている。 An electrophoresis apparatus according to an aspect of the present invention is an electrophoresis apparatus for electrophoresis of a sample, comprising: a container; a pair of electrodes disposed inside the container; A migration support, and the pair of electrodes are respectively disposed at both ends of the electrophoresis support in the migration direction of the sample.
 本態様によれば、pH勾配のpH階調の数を増やした場合であっても、電気泳動支持体の製造プロセスが複雑になるのを抑制することができる。 According to this aspect, even when the number of pH gradations of the pH gradient is increased, the manufacturing process of the electrophoresis support can be suppressed from being complicated.
 なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム又は記録媒体の任意な組み合わせで実現されてもよい。 Note that these general or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer readable CD-ROM, a system, a method, an integrated circuit, a computer program Or it may be realized by any combination of recording media.
 以下、実施の形態について、図面を参照しながら具体的に説明する。 Embodiments will be specifically described below with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that all the embodiments described below show general or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and the present invention is not limited thereto. Further, among the components in the following embodiments, components not described in the independent claim indicating the highest concept are described as arbitrary components.
 (実施の形態1)
 [1-1.電気泳動装置の構成]
 まず、図1及び図2を参照しながら、実施の形態1に係る電気泳動装置2の構成について説明する。図1は、実施の形態1に係る電気泳動装置2の構成を示す上面図である。図2は、図1のII-II線による、実施の形態1に係る電気泳動装置2の断面図である。
Embodiment 1
[1-1. Configuration of electrophoresis apparatus]
First, the configuration of the electrophoresis device 2 according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a top view showing the configuration of the electrophoresis device 2 according to the first embodiment. FIG. 2 is a cross-sectional view of the electrophoresis device 2 according to the first embodiment, taken along line II-II in FIG.
 図1及び図2に示すように、電気泳動装置2は、試料4の等電点の違いを利用して試料4を分離する等電点電気泳動を行うための装置である。電気泳動装置2は、容器6と、電気泳動支持体8と、一対の電極10及び12と、電源装置14とを備えている。なお、試料4は、例えば互いに異なる複数の等電点をそれぞれ有する複数のタンパク質を含んでいる。 As shown in FIGS. 1 and 2, the electrophoresis apparatus 2 is an apparatus for performing isoelectric focusing in which the sample 4 is separated using the difference in the isoelectric point of the sample 4. The electrophoresis apparatus 2 includes a container 6, an electrophoresis support 8, a pair of electrodes 10 and 12, and a power supply device 14. The sample 4 contains, for example, a plurality of proteins each having a plurality of different isoelectric points.
 容器6は、上面に開口部16を有している。容器6の内部には液体18が貯められている。液体18は、例えばpH7の純水である。容器6の材料は、例えば高分子等の樹脂、シリコン又は金属等で形成されている。 The container 6 has an opening 16 on the top surface. The liquid 18 is stored inside the container 6. The liquid 18 is, for example, pure water of pH 7. The material of the container 6 is made of, for example, a resin such as a polymer, silicon, or a metal.
 電気泳動支持体8は、担体20と、金属酸化膜体22とを有している。電気泳動支持体8は、容器6の内部に配置され、容器6の内部の液体18に浸漬されている。 The electrophoresis support 8 has a carrier 20 and a metal oxide film 22. The electrophoresis support 8 is disposed inside the container 6 and immersed in the liquid 18 inside the container 6.
 担体20は、例えばセルロースアセテート等の多孔質体で形成されている。担体20は、X軸方向に長い短冊状に形成されている。担体20の長手方向(X軸方向)における大きさは、例えば30mmであり、担体20の短手方向(Y軸方向)における大きさは、例えば2mmである。また、担体20の厚み方向(Z軸方向)における大きさは、例えば0.15mmである。なお、試料4は、担体20の長手方向に沿って、X軸のマイナス側からプラス側に向かう方向に泳動する。 The carrier 20 is formed of, for example, a porous body such as cellulose acetate. The carrier 20 is formed in a long strip shape in the X-axis direction. The size of the carrier 20 in the longitudinal direction (X-axis direction) is, for example, 30 mm, and the size of the carrier 20 in the lateral direction (Y-axis direction) is, for example, 2 mm. The size of the carrier 20 in the thickness direction (Z-axis direction) is, for example, 0.15 mm. The sample 4 migrates in the direction from the minus side to the plus side of the X axis along the longitudinal direction of the carrier 20.
 金属酸化膜体22は、担体20の長手方向に沿ってpH勾配を形成するためのものである。金属酸化膜体22は、担体20の上面24(表面の一例)に配置されている。金属酸化膜体22は、液体18に対する酸化還元反応により、例えばpH4~pH10の7つのpH階調を有するpH勾配を形成する。金属酸化膜体22の具体的な構成については後述する。 The metal oxide film 22 is for forming a pH gradient along the longitudinal direction of the carrier 20. The metal oxide film 22 is disposed on the upper surface 24 (an example of the surface) of the carrier 20. The metal oxide film 22 forms a pH gradient having seven pH gradations, for example, pH 4 to pH 10, by the redox reaction to the liquid 18. The specific configuration of the metal oxide film 22 will be described later.
 一対の電極10及び12は、容器6の内部に配置され、容器6の内部の液体18に浸漬されている。一対の電極10及び12はそれぞれ、陽極及び陰極として機能し、担体20の長手方向(試料4の泳動方向)における両端部に接触する位置に配置されている。すなわち、電気泳動支持体8は、一対の電極10及び12の間に配置されている。一対の電極10及び12の各々の材料は、例えば金、白金、銅、炭素又はこれらの複合体等の導電性材料で形成されている。 The pair of electrodes 10 and 12 are disposed inside the container 6 and immersed in the liquid 18 inside the container 6. The pair of electrodes 10 and 12 function as an anode and a cathode, respectively, and are disposed at positions in contact with both ends in the longitudinal direction (the migration direction of the sample 4) of the carrier 20. That is, the electrophoresis support 8 is disposed between the pair of electrodes 10 and 12. The material of each of the pair of electrodes 10 and 12 is formed of, for example, a conductive material such as gold, platinum, copper, carbon, or a composite thereof.
 なお、本実施の形態では、一対の電極10及び12を電気泳動支持体8と容器6の側壁との間に配置したが、これに限定されない。例えば一対の電極10及び12を、電気泳動支持体8と容器6の底部との間に配置してもよい。この場合においても、一対の電極10及び12はそれぞれ、担体20の長手方向における両端部に接触する位置に配置される。 In the present embodiment, the pair of electrodes 10 and 12 are disposed between the electrophoresis support 8 and the side wall of the container 6, but the present invention is not limited to this. For example, a pair of electrodes 10 and 12 may be disposed between the electrophoresis support 8 and the bottom of the container 6. Also in this case, the pair of electrodes 10 and 12 are disposed at positions contacting the both ends in the longitudinal direction of the carrier 20, respectively.
 電源装置14は、容器6の外部に配置され、一対の電極10及び12の各々に電気的に接続されている。電源装置14は、一対の電極10及び12の間に所定の直流電圧を印加する。 The power supply 14 is disposed outside the container 6 and electrically connected to each of the pair of electrodes 10 and 12. The power supply device 14 applies a predetermined DC voltage between the pair of electrodes 10 and 12.
 [1-2.金属酸化膜体の構成]
 次に、図3を参照しながら、実施の形態1に係る金属酸化膜体22の構成について説明する。図3は、実施の形態1に係る電気泳動支持体8の金属酸化膜体22の構成を示す上面図である。
[1-2. Configuration of metal oxide film]
Next, the configuration of the metal oxide film body 22 according to the first embodiment will be described with reference to FIG. FIG. 3 is a top view showing the configuration of the metal oxide film 22 of the electrophoresis support 8 according to the first embodiment.
 図3に示すように、金属酸化膜体22は、複数の金属酸化膜26~38を有している。複数の金属酸化膜26~38はそれぞれ、担体20の上面24における複数の領域40~52に配置されている。複数の領域40~52は、担体20の長手方向に沿って、この順に一列に並んで配置されている。複数の領域40~52の各々は、例えば矩形状の領域であり、同一の区間長(X軸方向における長さ)を有している。なお、図3では、説明の都合上、複数の領域40~52の各々の境界線を実線の矩形状の枠で表している。 As shown in FIG. 3, the metal oxide film body 22 has a plurality of metal oxide films 26 to 38. The plurality of metal oxide films 26 to 38 are respectively disposed in the plurality of regions 40 to 52 on the upper surface 24 of the carrier 20. The plurality of regions 40 to 52 are arranged in line in this order along the longitudinal direction of the carrier 20. Each of the plurality of regions 40 to 52 is, for example, a rectangular region, and has the same section length (length in the X-axis direction). In FIG. 3, for convenience of description, the boundary lines of the plurality of regions 40 to 52 are represented by solid rectangular frames.
 金属酸化膜26(第1の金属酸化膜の一例)は、金属酸化物であるTiO(第1の金属酸化物の一例)で形成されている。金属酸化膜26は、担体20の領域40(第1の領域の一例)の全域に亘って均一に配置されている。金属酸化膜26は、例えばpH4のpH階調を形成する。このような金属酸化膜26が領域40の全域に亘って配置されることにより、領域40の近傍における液体18のpH階調は、例えば試料4のpH4の等電点(第1の等電点の一例)に対応するpH4(第1のpHの一例)となる。 The metal oxide film 26 (an example of a first metal oxide film) is formed of TiO 2 (an example of a first metal oxide) which is a metal oxide. The metal oxide film 26 is uniformly disposed over the entire region 40 (an example of the first region) of the carrier 20. The metal oxide film 26 forms a pH gradation of, for example, pH 4. By arranging such a metal oxide film 26 over the entire region 40, the pH gradation of the liquid 18 in the vicinity of the region 40 is, for example, the isoelectric point of pH 4 of the sample 4 (first isoelectric point PH corresponding to 4) (an example of the first pH).
 なお、金属酸化物の一例であるTiOで形成された金属酸化膜では、pH7の純水中で金属酸化膜の表面に存在するOH基の水素原子(H)が液中に放出される。これにより、金属酸化膜の表面電位がマイナスになる。液中に放出された水素原子は、液中で水素イオン(H)となるため、金属酸化膜の近傍の溶液は酸性寄り(例えばpH4)になる。このことは、後述する金属酸化膜28及び30についても同様である。 In the metal oxide film formed of TiO 2 which is an example of the metal oxide, hydrogen atoms (H) of OH groups present on the surface of the metal oxide film in pure water of pH 7 are released into the liquid. Thereby, the surface potential of the metal oxide film becomes negative. The hydrogen atoms released into the solution become hydrogen ions (H + ) in the solution, so the solution in the vicinity of the metal oxide film becomes acidic (for example, pH 4). The same applies to metal oxide films 28 and 30 described later.
 金属酸化膜28(第2の金属酸化膜の一例)は、金属酸化膜26と同様に、TiOで形成されている。金属酸化膜28は、担体20の領域42(第2の領域の一例)において格子状に点在された複数の金属酸化膜片54を有している。すなわち、金属酸化膜28は、複数の金属酸化膜片54の集合体である。複数の金属酸化膜片54の各々は、平面視で円形状に形成されている。すなわち、担体20を平面視した際に、担体20の領域42において金属酸化膜28が占める面積割合(第2の面積割合の一例)は、担体20の領域40において金属酸化膜26が占める面積割合(第1の面積割合の一例)よりも小さい。金属酸化膜28は、例えばpH4のpH階調を形成する。領域42は、担体20が露出している部分と、金属酸化膜28とにより形成される。金属酸化膜28は、領域42におけるpH階調に影響を及ぼす。そのため、領域42のpH階調は、金属酸化膜28が形成するpH階調(例えばpH4)と、純水が形成するpH階調(例えばpH7)との組み合わせにより形成される。これにより、領域42の近傍における液体18のpH階調は、例えば試料4のpH5の等電点(第2の等電点の一例)に対応するpH5(第2のpHの一例)となる。 The metal oxide film 28 (an example of the second metal oxide film) is formed of TiO 2 similarly to the metal oxide film 26. The metal oxide film 28 has a plurality of metal oxide film pieces 54 scattered in a lattice shape in the region 42 (an example of the second region) of the carrier 20. That is, the metal oxide film 28 is an aggregate of a plurality of metal oxide film pieces 54. Each of the plurality of metal oxide film pieces 54 is formed in a circular shape in plan view. That is, when the carrier 20 is viewed in plan, the area ratio occupied by the metal oxide film 28 in the region 42 of the carrier 20 (an example of the second area ratio) is the area ratio occupied by the metal oxide film 26 in the region 40 of the carrier 20 (An example of the first area ratio) is smaller. The metal oxide film 28 forms a pH gradation of, for example, pH 4. The region 42 is formed by the exposed portion of the carrier 20 and the metal oxide film 28. The metal oxide film 28 affects the pH gradation in the region 42. Therefore, the pH gradation of the region 42 is formed by a combination of the pH gradation (for example, pH 4) formed by the metal oxide film 28 and the pH gradation (for example, pH 7) formed by the pure water. Thus, the pH gradation of the liquid 18 in the vicinity of the region 42 becomes, for example, pH 5 (an example of a second pH) corresponding to the isoelectric point (an example of a second isoelectric point) of pH 5 of the sample 4.
 なお、純水のpH7よりも低いpH階調では、上記の面積割合が小さくなるほど、液体18と接触するTiOの表面積が小さくなるため、TiOの表面に存在するOH基から液体18中に放出される水素イオン(H)の量が少なくなる。そのため、領域42により形成されるpH階調は、領域40により形成されるpH階調よりも高くなる。 At a pH gradation lower than pH 7 of pure water, the surface area of TiO 2 in contact with liquid 18 decreases as the area ratio decreases, so OH groups present on the surface of TiO 2 enter into liquid 18 The amount of hydrogen ions (H + ) released is reduced. Therefore, the pH gradation formed by the region 42 is higher than the pH gradation formed by the region 40.
 金属酸化膜30は、金属酸化膜26と同様に、TiOで形成されている。金属酸化膜30は、担体20の領域44において格子状に点在された複数の金属酸化膜片56を有している。すなわち、金属酸化膜30は、複数の金属酸化膜片56の集合体である。複数の金属酸化膜片56の各々は、平面視で円形状に形成されている。複数の金属酸化膜片56の数は、複数の金属酸化膜片54の数と同一である。また、複数の金属酸化膜片56の各々の直径は、複数の金属酸化膜片54の各々の直径よりも小さい。すなわち、担体20を平面視した際に、担体20の領域44において金属酸化膜30が占める面積割合は、担体20の領域42において金属酸化膜28が占める面積割合よりも小さい。金属酸化膜30は、例えばpH4のpH階調を形成する。領域44は、担体20が露出している部分と、金属酸化膜30とにより形成される。金属酸化膜30は、領域44におけるpH階調に影響を及ぼす。そのため、領域44のpH階調は、金属酸化膜30が形成するpH階調(例えばpH4)と、純水が形成するpH階調(例えばpH7)との組み合わせにより形成される。これにより、領域44の近傍における液体18のpH階調は、例えば試料4のpH6の等電点に対応するpH6となる。 The metal oxide film 30 is formed of TiO 2 similarly to the metal oxide film 26. The metal oxide film 30 has a plurality of metal oxide film pieces 56 interspersed in a lattice shape in the region 44 of the carrier 20. That is, the metal oxide film 30 is an aggregate of a plurality of metal oxide film pieces 56. Each of the plurality of metal oxide film pieces 56 is formed in a circular shape in plan view. The number of the plurality of metal oxide film pieces 56 is the same as the number of the plurality of metal oxide film pieces 54. Also, the diameter of each of the plurality of metal oxide film pieces 56 is smaller than the diameter of each of the plurality of metal oxide film pieces 54. That is, when the carrier 20 is viewed in plan, the area ratio occupied by the metal oxide film 30 in the region 44 of the carrier 20 is smaller than the area ratio occupied by the metal oxide film 28 in the region 42 of the carrier 20. The metal oxide film 30 forms, for example, a pH gradation of pH4. The region 44 is formed by the exposed portion of the carrier 20 and the metal oxide film 30. The metal oxide film 30 affects the pH gradation in the region 44. Therefore, the pH gradation of the region 44 is formed by a combination of the pH gradation (for example, pH 4) formed by the metal oxide film 30 and the pH gradation (for example, pH 7) formed by the pure water. Thereby, the pH gradation of the liquid 18 in the vicinity of the region 44 becomes, for example, pH 6 corresponding to the isoelectric point of pH 6 of the sample 4.
 なお、上述したように、純水のpH7よりも低いpH階調では、上記の面積割合が小さくなるほど、液体18と接触するTiOの表面積が小さくなるため、TiOの表面に存在するOH基から液体18中に放出される水素イオン(H)の量が少なくなる。そのため、領域44により形成されるpH階調は、領域42により形成されるpH階調よりも高くなる。 As described above, when the pH gradation is lower than pH 7 of pure water, the surface area of TiO 2 in contact with liquid 18 decreases as the area ratio decreases, so the OH groups present on the surface of TiO 2 The amount of hydrogen ions (H + ) released into the liquid 18 from the Therefore, the pH gradation formed by the region 44 is higher than the pH gradation formed by the region 42.
 金属酸化膜32は、金属酸化物であるNiOで形成されている。金属酸化膜32は、担体20の領域46の全域に亘って均一に配置されている。金属酸化膜32は、例えばpH7のpH階調を形成する。このような金属酸化膜32が領域46の全域に亘って配置されることにより、領域46の近傍における液体18のpH階調は、例えば試料4のpH7の等電点に対応するpH7となる。 The metal oxide film 32 is formed of NiO which is a metal oxide. The metal oxide film 32 is uniformly disposed over the entire region 46 of the carrier 20. The metal oxide film 32 forms a pH gradation of, for example, pH 7. By arranging such a metal oxide film 32 over the entire region 46, the pH gradation of the liquid 18 in the vicinity of the region 46 becomes, for example, pH 7 corresponding to the isoelectric point of pH 7 of the sample 4.
 なお、金属酸化物の一例であるNiOで形成された金属酸化膜では、pH7の純水中で金属酸化膜の表面に存在するOH基が液中の水素イオン(H)を受け取る。これにより、金属酸化膜の表面電位がプラスになる。液中では水素イオン(H)が減少するため、金属酸化膜の近傍の溶液は中性寄り(例えばpH7)になる。 In a metal oxide film formed of NiO, which is an example of a metal oxide, OH groups present on the surface of the metal oxide film in pure water of pH 7 receive hydrogen ions (H + ) in the liquid. Thereby, the surface potential of the metal oxide film becomes positive. Since hydrogen ions (H + ) decrease in the solution, the solution in the vicinity of the metal oxide film becomes neutral (eg, pH 7).
 金属酸化膜34は、金属酸化物であるMgO(第2の金属酸化物の一例)で形成されている。金属酸化膜34は、担体20の領域48において格子状に点在された複数の金属酸化膜片58を有している。すなわち、金属酸化膜34は、複数の金属酸化膜片58の集合体である。複数の金属酸化膜片58の各々は、平面視で円形状に形成されている。金属酸化膜34は、例えばpH10のpH階調を形成する。領域48は、担体20が露出している部分と、金属酸化膜34とにより形成される。金属酸化膜34は、領域48におけるpH階調に影響を及ぼす。そのため、領域48のpH階調は、金属酸化膜34が形成するpH階調(例えばpH10)と、純水が形成するpH階調(例えばpH7)との組み合わせにより形成される。これにより、領域48の近傍における液体18のpH階調は、例えば試料4のpH8の等電点に対応するpH8となる。 The metal oxide film 34 is formed of MgO (an example of a second metal oxide) which is a metal oxide. The metal oxide film 34 has a plurality of metal oxide film pieces 58 interspersed in a lattice shape in the region 48 of the carrier 20. That is, the metal oxide film 34 is an aggregate of a plurality of metal oxide film pieces 58. Each of the plurality of metal oxide film pieces 58 is formed in a circular shape in plan view. The metal oxide film 34 forms a pH gradation of, for example, pH 10. The region 48 is formed by the exposed portion of the carrier 20 and the metal oxide film 34. The metal oxide film 34 affects the pH gradation in the region 48. Therefore, the pH gradation of the region 48 is formed by a combination of pH gradation (for example, pH 10) formed by the metal oxide film 34 and pH gradation (for example, pH 7) formed by pure water. Thus, the pH gradation of the liquid 18 in the vicinity of the region 48 is, for example, pH 8 corresponding to the isoelectric point of pH 8 of the sample 4.
 なお、金属酸化物の一例であるMgOで形成された金属酸化膜では、pH7の純水中で金属酸化膜の表面に存在するOH基が液中の水素イオン(H)を受け取る。これにより、金属酸化膜の表面電位がプラスになる。液中では水素イオン(H)が減少するため、金属酸化膜の近傍の溶液はアルカリ性寄り(例えばpH10)になる。このことは、後述する金属酸化膜36及び38についても同様である。 In a metal oxide film formed of MgO, which is an example of a metal oxide, OH groups present on the surface of the metal oxide film in pure water of pH 7 receive hydrogen ions (H + ) in the liquid. Thereby, the surface potential of the metal oxide film becomes positive. Since hydrogen ions (H + ) decrease in the liquid, the solution in the vicinity of the metal oxide film becomes more alkaline (for example, pH 10). The same applies to metal oxide films 36 and 38 described later.
 金属酸化膜36(第3の金属酸化膜の一例)は、金属酸化膜34と同様に、MgOで形成されている。金属酸化膜36は、担体20の領域50(第3の領域の一例)において格子状に点在された複数の金属酸化膜片60を有している。すなわち、金属酸化膜36は、複数の金属酸化膜片60の集合体である。複数の金属酸化膜片60の各々は、平面視で円形状に形成されている。複数の金属酸化膜片60の数は、複数の金属酸化膜片58の数と同一である。また、複数の金属酸化膜片60の各々の直径は、複数の金属酸化膜片58の各々の直径よりも大きい。すなわち、担体20を平面視した際に、担体20の領域50において金属酸化膜36が占める面積割合は、担体20の領域48において金属酸化膜34が占める面積割合よりも大きい。金属酸化膜36は、例えばpH10のpH階調を形成する。領域50は、担体20が露出している部分と、金属酸化膜36とにより形成される。金属酸化膜36は、領域50におけるpH階調に影響を及ぼす。そのため、領域50のpH階調は、金属酸化膜36が形成するpH階調(例えばpH10)と、純水が形成するpH階調(例えばpH7)との組み合わせにより形成される。これにより、領域50の近傍における液体18のpH階調は、例えば試料4のpH9の等電点(第3の等電点の一例)に対応するpH9(第3のpHの一例)となる。 The metal oxide film 36 (an example of the third metal oxide film) is formed of MgO, similarly to the metal oxide film 34. The metal oxide film 36 has a plurality of metal oxide film pieces 60 interspersed in a lattice shape in a region 50 (an example of a third region) of the carrier 20. That is, the metal oxide film 36 is an aggregate of a plurality of metal oxide film pieces 60. Each of the plurality of metal oxide film pieces 60 is formed in a circular shape in plan view. The number of the plurality of metal oxide film pieces 60 is the same as the number of the plurality of metal oxide film pieces 58. In addition, the diameter of each of the plurality of metal oxide film pieces 60 is larger than the diameter of each of the plurality of metal oxide film pieces 58. That is, when the carrier 20 is viewed in plan, the area ratio occupied by the metal oxide film 36 in the region 50 of the carrier 20 is larger than the area ratio occupied by the metal oxide film 34 in the region 48 of the carrier 20. The metal oxide film 36 forms, for example, a pH gradation of pH 10. Region 50 is formed of a portion where carrier 20 is exposed and metal oxide film 36. The metal oxide film 36 affects the pH gradation in the region 50. Therefore, the pH gradation of the region 50 is formed by a combination of pH gradation (for example, pH 10) formed by the metal oxide film 36 and pH gradation (for example, pH 7) formed by pure water. Thus, the pH gradation of the liquid 18 in the vicinity of the region 50 is, for example, pH 9 (an example of a third pH) corresponding to the isoelectric point (an example of a third isoelectric point) of pH 9 of the sample 4.
 なお、純水のpH7よりも高いpH階調では、上記の面積割合が小さくなるほど、液体18と接触するMgOの表面積が小さくなるため、MgOの表面に存在するOH基が液体18中の水素イオン(H)を受け取る量が少なくなる。そのため、領域50により形成されるpH階調は、領域48により形成されるpH階調よりも高くなる。 At a pH gradation higher than pH 7 of pure water, the surface area of MgO in contact with the liquid 18 decreases as the above area ratio decreases, so the OH groups present on the surface of MgO are hydrogen ions in the liquid 18 The amount of receiving (H + ) decreases. Therefore, the pH gradation formed by the region 50 is higher than the pH gradation formed by the region 48.
 金属酸化膜38(第4の金属酸化膜の一例)は、金属酸化膜34と同様に、MgOで形成されている。金属酸化膜38は、担体20の領域52(第4の領域の一例)の全域に亘って均一に配置されている。すなわち、担体20を平面視した際に、担体20の領域52において金属酸化膜38が占める面積割合(第4の面積割合の一例)は、担体20の領域50において金属酸化膜36が占める面積割合(第3の面積割合の一例)よりも大きい。金属酸化膜38は、例えばpH10のpH階調を形成する。このような金属酸化膜38が領域52の全域に亘って配置されることにより、領域52の近傍における液体18のpH階調は、例えば試料4のpH10の等電点(第4の等電点の一例)に対応するpH10(第4のpHの一例)となる。 The metal oxide film 38 (an example of the fourth metal oxide film) is formed of MgO, similarly to the metal oxide film 34. The metal oxide film 38 is uniformly disposed over the entire region 52 (an example of a fourth region) of the carrier 20. That is, when the carrier 20 is viewed in plan, the area ratio occupied by the metal oxide film 38 in the region 52 of the carrier 20 (an example of the fourth area ratio) is the area ratio occupied by the metal oxide film 36 in the region 50 of the carrier 20 (An example of the third area ratio) is larger. The metal oxide film 38 forms, for example, a pH gradation of pH 10. By arranging such a metal oxide film 38 over the entire region 52, the pH gradation of the liquid 18 in the vicinity of the region 52 is, for example, the isoelectric point of pH 10 of the sample 4 (the fourth isoelectric point PH corresponding to 10) (an example of a fourth pH).
 なお、上述したように、純水のpH7よりも高いpH階調では、上記の面積割合が小さくなるほど、液体18と接触するMgOの表面積が小さくなるため、MgOの表面に存在するOH基が液体18中の水素イオン(H)を受け取る量が少なくなる。そのため、領域52により形成されるpH階調は、領域50により形成されるpH階調よりも高くなる。 As described above, at a pH gradation higher than pH 7 of pure water, the surface area of MgO in contact with the liquid 18 decreases as the area ratio decreases, so the OH groups present on the surface of MgO are liquid The amount of hydrogen ions (H + ) in 18 is reduced. Therefore, the pH gradation formed by the area 52 is higher than the pH gradation formed by the area 50.
 以上のように、複数の金属酸化膜26~38は、電極12から電極10に向かって、pH4~pH10の7つのpH階調が昇順に並ぶように配置されている。これにより、電気泳動支持体8には、担体20の長手方向に沿って、pH4~pH10の7つのpH階調がこの順に一列に並んだpH勾配が形成される。 As described above, the plurality of metal oxide films 26 to 38 are arranged such that seven pH gradations of pH 4 to pH 10 are arranged in ascending order from the electrode 12 to the electrode 10. As a result, a pH gradient is formed on the electrophoresis support 8 along the longitudinal direction of the carrier 20, in which seven pH gradations of pH 4 to pH 10 are aligned in this order.
 なお、上述した複数の金属酸化膜26~38の各々は、例えばALD(Atomic Layer Deposition:原子層堆積)法を用いて成膜される。このとき、担体20の上面24を例えばメタルマスク等で覆うことにより、複数の金属酸化膜26~38の各々を所望の形状に形成することができる。複数の金属酸化膜26~38はそれぞれ、担体20の上面24における複数の領域40~52に堆積されるだけでなく、複数の領域40~52にそれぞれ対応する担体20の内部にも浸透される。 Each of the plurality of metal oxide films 26 to 38 described above is formed, for example, by using an ALD (Atomic Layer Deposition) method. At this time, by covering the upper surface 24 of the carrier 20 with, for example, a metal mask or the like, each of the plurality of metal oxide films 26 to 38 can be formed into a desired shape. The plurality of metal oxide films 26 to 38 are not only deposited on the plurality of regions 40 to 52 on the upper surface 24 of the carrier 20 but also penetrate the inside of the carrier 20 corresponding to the plurality of regions 40 to 52 respectively. .
 [1-3.電気泳動装置の動作]
 次に、図1~図3を参照しながら、実施の形態1に係る電気泳動装置2の動作について説明する。
[1-3. Operation of electrophoresis apparatus]
Next, the operation of the electrophoresis device 2 according to the first embodiment will be described with reference to FIGS. 1 to 3.
 まず、図1及び図2に示すように、容器6の内部に電気泳動支持体8を配置し、容器6の内部に液体18を注入する。次に、担体20の長手方向における一端部(電極12側の端部)に試料4を注入する。 First, as shown in FIGS. 1 and 2, the electrophoresis support 8 is disposed inside the container 6, and the liquid 18 is injected into the inside of the container 6. Next, the sample 4 is injected into one end (end on the electrode 12 side) in the longitudinal direction of the carrier 20.
 その後、電源装置14により一対の電極10及び12の間に所定の直流電圧を印加する。例えば、一対の電極10及び12の間に500Vの直流電圧を1分間印加した後に、1時間半かけて3500Vまで電圧値を上昇させる。さらにその後、一対の電極10及び12の間に3500Vの直流電圧を6時間半印加する。これにより、一対の電極10及び12の間に電場が形成され、試料4は、この電場の作用を受けて担体20の内部を移動(泳動)する。 Thereafter, a predetermined DC voltage is applied between the pair of electrodes 10 and 12 by the power supply device 14. For example, after applying a DC voltage of 500 V between the pair of electrodes 10 and 12 for one minute, the voltage value is raised to 3500 V in one and a half hours. Thereafter, a DC voltage of 3500 V is applied for six and a half hours between the pair of electrodes 10 and 12. Thereby, an electric field is formed between the pair of electrodes 10 and 12, and the sample 4 moves (migrates) inside the carrier 20 under the action of the electric field.
 このとき、試料4の移動距離は、試料4の等電点によって異なる。図3に示すように、例えば試料4に等電点がpH4であるタンパク質4aが含まれる場合には、タンパク質4aは、pH4のpH階調を形成する領域40の位置まで移動する。一方、試料4に等電点がpH5であるタンパク質4bが含まれる場合には、タンパク質4bは、pH5のpH階調を形成する領域42の位置まで移動する。これにより、試料4に含まれる複数のタンパク質の各々は、等電点の違いによって複数の領域40~52のいずれかの位置に分離される。 At this time, the movement distance of the sample 4 differs depending on the isoelectric point of the sample 4. As shown in FIG. 3, for example, when the sample 4 contains the protein 4 a having an isoelectric point of pH 4, the protein 4 a moves to the position of the region 40 forming a pH gradation of pH 4. On the other hand, when the sample 4 contains the protein 4b having an isoelectric point of pH 5, the protein 4b moves to the position of the region 42 forming a pH gradation of pH5. Thereby, each of the plurality of proteins contained in the sample 4 is separated into any one of the plurality of regions 40 to 52 due to the difference in isoelectric point.
 試料4を分離した後に、電気泳動支持体8を染色することにより、分離された試料4の位置を検出することができる。電気泳動支持体8の染色として、例えば銀染色等が用いられる。 After separating the sample 4, the position of the separated sample 4 can be detected by staining the electrophoresis support 8. As a stain of the electrophoresis support 8, for example, silver stain or the like is used.
 なお、電気泳動を行う前に、蛍光色素を用いて試料4を染色してもよい。この場合、電気泳動を行った後の電気泳動支持体8に対して励起光を照射し、蛍光を観察することにより、分離された試料4の位置を検出することができる。 Note that, before performing electrophoresis, the sample 4 may be stained using a fluorescent dye. In this case, the position of the separated sample 4 can be detected by irradiating the electrophoresis support 8 after the electrophoresis with excitation light and observing the fluorescence.
 あるいは、試料4を分離した後に、電気泳動支持体8に紫外線又は近赤外線等の光を照射し、照射した光の透過光又は反射光を検出してもよい。タンパク質を含む試料4は、特定の波長の光を吸収する性質を有している。そのため、電気泳動支持体8に照射した光を検出する場合、試料4が位置する場所では、他の場所に比べて検出される光の強度が弱くなる。このような方法によっても、分離された試料4の位置を検出することができる。 Alternatively, after the sample 4 is separated, the electrophoresis support 8 may be irradiated with light such as ultraviolet light or near infrared light, and the transmitted light or the reflected light of the irradiated light may be detected. The sample 4 containing a protein has the property of absorbing light of a specific wavelength. Therefore, in the case where the light irradiated to the electrophoresis support 8 is detected, the intensity of the detected light is weaker at the place where the sample 4 is located than at other places. The position of the separated sample 4 can also be detected by such a method.
 [1-4.効果]
 本実施の形態では、担体20の領域40において金属酸化膜26が占める面積割合と、担体20の領域42において金属酸化膜28が占める面積割合と、担体20の領域44において金属酸化膜30が占める面積割合とを互いに異ならせている。これにより、例えばpH4~pH6の3つのpH階調を形成する場合には、pH階調の数よりも少ない1種類の金属酸化物TiOを用いて3つの金属酸化膜26,28及び30を成膜することができる。
[1-4. effect]
In the present embodiment, the area ratio occupied by the metal oxide film 26 in the region 40 of the carrier 20, the area ratio occupied by the metal oxide film 28 in the region 42 of the carrier 20, and the metal oxide film 30 occupied in the region 44 of the carrier 20 The area ratio is made different from each other. Thus, for example, in the case of forming three pH gradations of pH 4 to pH 6, one metal oxide TiO 2 which is smaller than the number of pH gradations is used to form three metal oxide films 26, 28 and 30. A film can be formed.
 同様に、本実施の形態では、担体20の領域48において金属酸化膜34が占める面積割合と、担体20の領域50において金属酸化膜36が占める面積割合と、担体20の領域52において金属酸化膜38が占める面積割合とを互いに異ならせている。これにより、例えばpH8~pH10の3つのpH階調を形成する場合には、pH階調の数よりも少ない1種類の金属酸化物MgOを用いて3つの金属酸化膜34,36及び38を成膜することができる。 Similarly, in the present embodiment, the area ratio occupied by the metal oxide film 34 in the region 48 of the carrier 20, the area ratio occupied by the metal oxide film 36 in the region 50 of the carrier 20, and the metal oxide film in the region 52 of the carrier 20 The area ratio occupied by 38 is different from one another. Thus, for example, in the case of forming three pH gradations of pH 8 to pH 10, three metal oxide films 34, 36 and 38 are formed using one kind of metal oxide MgO smaller than the number of pH gradations. It can be membrane.
 したがって、例えばpH4~pH10の7つのpH階調を有するpH勾配を形成する場合には、pH階調の数よりも少ない3種類の金属酸化物TiO、NiO及びMgOを用いて7つの金属酸化膜26~38を成膜することができる。これにより、pH勾配のpH階調の数を増やした場合であっても、複数の金属酸化膜26~38の成膜工数が増大するのを抑制することができるとともに、複数の金属酸化膜26~38の成膜制御を簡素化することができる。その結果、電気泳動支持体8の製造プロセスが複雑になるのを抑制することができる。 Thus, for example, in the case of forming a pH gradient having seven pH gradations, for example, pH 4 to pH 10, oxidation of seven metals using three kinds of metal oxides TiO 2 , NiO and MgO smaller than the number of pH gradations. The films 26 to 38 can be formed. As a result, even when the number of pH gradations of the pH gradient is increased, an increase in the number of steps for forming the plurality of metal oxide films 26 to 38 can be suppressed, and the plurality of metal oxide films 26 can be suppressed. It is possible to simplify the film formation control of ~ 38. As a result, the manufacturing process of the electrophoretic support 8 can be suppressed from being complicated.
 (実施の形態2)
 [2-1.金属酸化膜体の構成]
 次に、図4を参照しながら、実施の形態2に係る電気泳動支持体8Aの金属酸化膜体22Aの構成について説明する。図4は、実施の形態2に係る電気泳動支持体8Aの金属酸化膜体22Aの構成を示す上面図である。なお、以下の各実施の形態において、上記実施の形態1と同一の構成要素には同一の符号を付して、その説明を省略する。
Second Embodiment
[2-1. Configuration of metal oxide film]
Next, the configuration of the metal oxide film 22A of the electrophoresis support 8A according to the second embodiment will be described with reference to FIG. FIG. 4 is a top view showing the configuration of the metal oxide film 22A of the electrophoresis support 8A according to the second embodiment. In the following embodiments, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図4に示すように、実施の形態2に係る電気泳動支持体8Aでは、金属酸化膜体22Aの構成が上記実施の形態1と異なっている。具体的には、担体20の領域40の区間長X1は、担体20の領域42Aの区間長X2よりも長く、且つ、担体20の領域44Aの区間長X3よりも短い。また、担体20の領域52の区間長X1は、担体20の領域50Aの区間長X2よりも長く、且つ、担体20の領域48Aの区間長X3よりも短い。なお、担体20の領域40,46及び52の各区間長X1は、同一である。 As shown in FIG. 4, in the electrophoresis support 8A according to the second embodiment, the configuration of the metal oxide film 22A is different from that of the first embodiment. Specifically, the section length X1 of the area 40 of the carrier 20 is longer than the section length X2 of the area 42A of the carrier 20 and shorter than the section length X3 of the area 44A of the carrier 20. The section length X1 of the area 52 of the carrier 20 is longer than the section length X2 of the area 50A of the carrier 20 and shorter than the section length X3 of the area 48A of the carrier 20. The section lengths X1 of the regions 40, 46 and 52 of the carrier 20 are the same.
 金属酸化膜30Aの複数の金属酸化膜片56の数は、金属酸化膜28Aの複数の金属酸化膜片54の数よりも多い。また、複数の金属酸化膜片56の各々の直径は、複数の金属酸化膜片54の各々の直径よりも小さい。すなわち、担体20を平面視した際に、担体20の領域44Aにおいて金属酸化膜30Aが占める面積割合は、担体20の領域42Aにおいて金属酸化膜28Aが占める面積割合よりも小さい。 The number of the plurality of metal oxide film pieces 56 of the metal oxide film 30A is larger than the number of the plurality of metal oxide film pieces 54 of the metal oxide film 28A. Also, the diameter of each of the plurality of metal oxide film pieces 56 is smaller than the diameter of each of the plurality of metal oxide film pieces 54. That is, when the carrier 20 is viewed in plan, the area ratio occupied by the metal oxide film 30A in the region 44A of the carrier 20 is smaller than the area ratio occupied by the metal oxide film 28A in the region 42A of the carrier 20.
 金属酸化膜34Aの複数の金属酸化膜片58の数は、金属酸化膜36Aの複数の金属酸化膜片60の数よりも多い。また、複数の金属酸化膜片58の各々の直径は、複数の金属酸化膜片60の各々の直径よりも小さい。すなわち、担体20を平面視した際に、担体20の領域48Aにおいて金属酸化膜34Aが占める面積割合は、担体20の領域50Aにおいて金属酸化膜36Aが占める面積割合よりも小さい。 The number of the plurality of metal oxide film pieces 58 of the metal oxide film 34A is larger than the number of the plurality of metal oxide film pieces 60 of the metal oxide film 36A. In addition, the diameter of each of the plurality of metal oxide film pieces 58 is smaller than the diameter of each of the plurality of metal oxide film pieces 60. That is, when the carrier 20 is viewed in plan, the area ratio occupied by the metal oxide film 34A in the region 48A of the carrier 20 is smaller than the area ratio occupied by the metal oxide film 36A in the region 50A of the carrier 20.
 [2-2.効果]
 例えば、試料4に等電点がpH6及びpH8であるタンパク質が比較的多く含まれている場合には、上述したように担体20の領域44A及び48Aの各区間長X3を区間長X1及びX2よりも長くする。これにより、等電点がpH6及びpH8であるタンパク質をそれぞれ、金属酸化膜30A及び34Aにより精度良く分離することができる。
[2-2. effect]
For example, when the sample 4 contains a relatively large amount of protein having an isoelectric point of pH 6 and pH 8, as described above, each section length X3 of the regions 44A and 48A of the carrier 20 is greater than the section lengths X1 and X2 Also make it longer. Thus, proteins having isoelectric points of pH 6 and pH 8 can be separated with high precision by the metal oxide films 30A and 34A, respectively.
 同様に、例えば試料4に等電点がpH5及びpH9であるタンパク質が比較的多く含まれている場合には、上述したように担体20の領域42A及び50Aの各区間長X2を、区間長X1よりも長くすればよい。これにより、等電点がpH5及びpH9であるタンパク質をそれぞれ、金属酸化膜28A及び36Aにより精度良く分離することができる。 Similarly, for example, when the sample 4 contains a relatively large amount of protein having an isoelectric point of pH 5 and pH 9, as described above, each section length X2 of the regions 42A and 50A of the carrier 20 is set to section length X1. It should be longer than this. As a result, proteins having an isoelectric point of pH 5 and pH 9 can be separated with high precision by the metal oxide films 28A and 36A, respectively.
 同様に、例えば試料4に等電点がpH4及びpH10であるタンパク質が比較的多く含まれている場合には、上述したように担体20の領域40及び52の各区間長X1を、区間長X2及びX3よりも長くすればよい。これにより、等電点がpH4及びpH10であるタンパク質をそれぞれ、金属酸化膜26及び38により精度良く分離することができる。 Similarly, for example, when the sample 4 contains a relatively large amount of protein having an isoelectric point of pH 4 and pH 10, as described above, each section length X1 of the regions 40 and 52 of the carrier 20 is set to section length X2 And X3. Thereby, proteins having an isoelectric point of pH 4 and pH 10 can be separated with high precision by the metal oxide films 26 and 38, respectively.
 (実施の形態3)
 [3-1.金属酸化膜体の構成]
 次に、図5を参照しながら、実施の形態3に係る電気泳動支持体8Bの金属酸化膜体22Bの構成について説明する。図5は、実施の形態3に係る電気泳動支持体8Bの金属酸化膜体22Bの構成を示す上面図である。
Third Embodiment
3-1. Configuration of metal oxide film]
Next, the configuration of the metal oxide film 22B of the electrophoresis support 8B according to the third embodiment will be described with reference to FIG. FIG. 5 is a top view showing the configuration of the metal oxide film 22B of the electrophoresis support 8B according to the third embodiment.
 図5に示すように、実施の形態3に係る電気泳動支持体8Bでは、金属酸化膜体22Bの構成が上記実施の形態1と異なっている。具体的には、金属酸化膜体22Bは、複数の金属酸化膜26~38に加えて、金属酸化膜62(第5の金属酸化膜の一例)及び金属酸化膜64(第6の金属酸化膜の一例)を有している。また、担体20の領域42と領域44との間には領域66(第5の領域の一例)が配置され、担体20の領域48と領域50との間には領域68(第6の領域の一例)が配置されている。 As shown in FIG. 5, in the electrophoresis support 8B according to the third embodiment, the configuration of the metal oxide film 22B is different from that of the first embodiment. Specifically, metal oxide film body 22B includes metal oxide film 62 (an example of a fifth metal oxide film) and metal oxide film 64 (sixth metal oxide film) in addition to the plurality of metal oxide films 26 to 38. An example). In addition, a region 66 (an example of a fifth region) is disposed between the region 42 of the carrier 20 and the region 44, and a region 68 (of the sixth region) is disposed between the region 48 and the region 50 of the carrier 20. An example is arranged.
 金属酸化膜62は、担体20の領域66において格子状に点在された複数の金属酸化膜片70(第1の金属酸化膜片の一例)及び複数の金属酸化膜片72(第2の金属酸化膜片の一例)を有している。担体20を平面視した際に、複数の金属酸化膜片70の各々は、複数の金属酸化膜片72の各々と互いに重ならないように配置されている。 The metal oxide film 62 includes a plurality of metal oxide film pieces 70 (an example of a first metal oxide film piece) and a plurality of metal oxide film pieces 72 (a second metal) which are scattered in a lattice shape in the region 66 of the carrier 20. (An example of an oxide film piece). When the carrier 20 is viewed in plan, each of the plurality of metal oxide film pieces 70 is arranged so as not to overlap with each of the plurality of metal oxide film pieces 72.
 複数の金属酸化膜片70の各々はTiOで形成され、複数の金属酸化膜片72の各々はMgOで形成されている。すなわち、金属酸化膜62は、異なる2種類の金属酸化物で形成されている。複数の金属酸化膜片70及び72の各々は、平面視で円形状に形成されている。複数の金属酸化膜片70の各々の数は、複数の金属酸化膜片72の各々の数よりも多い。また、複数の金属酸化膜片70の各々の直径は、複数の金属酸化膜片72の各々の直径よりも大きい。なお、複数の金属酸化膜片70の各々の直径は、複数の金属酸化膜片54の各々の直径と同一である。領域66は、担体20が露出している部分と、複数の金属酸化膜片70と、複数の金属酸化膜片72とにより形成される。金属酸化膜62は、領域66におけるpH階調に影響を及ぼす。そのため、領域66のpH階調は、複数の金属酸化膜片70が形成するpH階調(例えばpH4)と、複数の金属酸化膜片72が形成するpH階調(例えばpH7)と、純水が形成するpH階調(例えばpH7)との組み合わせにより形成される。これにより、領域66の近傍における液体18(図1参照)のpH階調は、試料4のpH5.5の等電点(第5の等電点の一例)に対応するpH5.5(第5のpHの一例)となる。 Each of the plurality of metal oxide film pieces 70 is formed of TiO 2 , and each of the plurality of metal oxide film pieces 72 is formed of MgO. That is, the metal oxide film 62 is formed of two different metal oxides. Each of the plurality of metal oxide film pieces 70 and 72 is formed in a circular shape in plan view. The number of each of the plurality of metal oxide film pieces 70 is greater than the number of each of the plurality of metal oxide film pieces 72. In addition, the diameter of each of the plurality of metal oxide film pieces 70 is larger than the diameter of each of the plurality of metal oxide film pieces 72. The diameter of each of the plurality of metal oxide film pieces 70 is the same as the diameter of each of the plurality of metal oxide film pieces 54. Region 66 is formed of a portion where carrier 20 is exposed, a plurality of metal oxide film pieces 70, and a plurality of metal oxide film pieces 72. The metal oxide film 62 affects the pH gradation in the region 66. Therefore, the pH gradation of the region 66 is the pH gradation (for example, pH 4) formed by the plurality of metal oxide film pieces 70, the pH gradation (for example, pH 7) formed by the plurality of metal oxide film pieces 72, and pure water Is formed in combination with the pH gradation (for example, pH 7) which is formed. Thereby, the pH gradation of the liquid 18 (see FIG. 1) in the vicinity of the region 66 corresponds to the pH 5.5 (the example of the fifth isoelectric point) of the pH 5.5 of the sample 4 Of the pH of
 なお、TiO及びMgOで形成された金属酸化膜62では、TiOのみで形成された金属酸化膜28と比べて、金属酸化膜62の表面に存在するOH基が液体18中の水素イオン(H)を受け取る量が多くなる。そのため、領域66により形成されるpH階調は、領域42により形成されるpH階調よりもアルカリ性寄り(例えばpH5.5)になる。 In the metal oxide film 62 formed of TiO 2 and MgO, the OH group present on the surface of the metal oxide film 62 is a hydrogen ion in the liquid 18 (compared to the metal oxide film 28 formed only of TiO 2 ). The amount of receiving H + ) increases. Therefore, the pH gradation formed by the area 66 is more alkaline (for example, pH 5.5) than the pH gradation formed by the area 42.
 金属酸化膜64は、担体20の領域68において格子状に点在された複数の金属酸化膜片74(第3の金属酸化膜片の一例)及び複数の金属酸化膜片76(第4の金属酸化膜片の一例)を有している。担体20を平面視した際に、複数の金属酸化膜片74の各々は、複数の金属酸化膜片76の各々と互いに重ならないように配置されている。 The metal oxide film 64 includes a plurality of metal oxide film pieces 74 (an example of a third metal oxide film piece) and a plurality of metal oxide film pieces 76 (a fourth metal) which are scattered in a lattice shape in the region 68 of the carrier 20. (An example of an oxide film piece). When the carrier 20 is viewed in plan, each of the plurality of metal oxide film pieces 74 is arranged so as not to overlap with each of the plurality of metal oxide film pieces 76.
 複数の金属酸化膜片74の各々はTiOで形成され、複数の金属酸化膜片76の各々はMgOで形成されている。すなわち、金属酸化膜64は、異なる2種類の金属酸化物で形成されている。複数の金属酸化膜片74及び76の各々は、平面視で円形状に形成されている。複数の金属酸化膜片74の各々の数は、複数の金属酸化膜片76の各々の数よりも少ない。また、複数の金属酸化膜片74の各々の直径は、複数の金属酸化膜片76の各々の直径よりも小さい。なお、複数の金属酸化膜片76の各々の直径は、複数の金属酸化膜片60の各々の直径と同一である。領域68は、担体20が露出している部分と、複数の金属酸化膜片74と、複数の金属酸化膜片76とにより形成される。金属酸化膜64は、領域68におけるpH階調に影響を及ぼす。そのため、領域68のpH階調は、複数の金属酸化膜片74が形成するpH階調(例えばpH4)と、複数の金属酸化膜片76が形成するpH階調(例えば10pH)と、純水が形成するpH階調(例えばpH7)との組み合わせにより形成される。これにより、領域68の近傍における液体18のpH階調は、例えば試料4のpH8.5の等電点(第6の等電点の一例)に対応するpH8.5(第6のpHの一例)となる。 Each of the plurality of metal oxide film pieces 74 is formed of TiO 2 , and each of the plurality of metal oxide film pieces 76 is formed of MgO. That is, the metal oxide film 64 is formed of two different metal oxides. Each of the plurality of metal oxide film pieces 74 and 76 is formed in a circular shape in plan view. The number of each of the plurality of metal oxide film pieces 74 is smaller than the number of each of the plurality of metal oxide film pieces 76. In addition, the diameter of each of the plurality of metal oxide film pieces 74 is smaller than the diameter of each of the plurality of metal oxide film pieces 76. The diameter of each of the plurality of metal oxide film pieces 76 is the same as the diameter of each of the plurality of metal oxide film pieces 60. Region 68 is formed of a portion where carrier 20 is exposed, a plurality of metal oxide film pieces 74, and a plurality of metal oxide film pieces 76. The metal oxide film 64 affects the pH gradation in the region 68. Therefore, the pH gradation of the region 68 includes pH gradation (for example, pH 4) formed by the plurality of metal oxide film pieces 74, pH gradation (for example, 10 pH) formed by the plurality of metal oxide film pieces 76, and pure water. Is formed in combination with the pH gradation (for example, pH 7) which is formed. Thereby, the pH gradation of the liquid 18 in the vicinity of the region 68 is, for example, one example of the pH 8.5 (corresponding to one example of the sixth isoelectric point) of pH 8.5 of the sample 4 ).
 なお、TiO及びMgOで形成された金属酸化膜64では、MgOのみで形成された金属酸化膜36と比べて、金属酸化膜64の表面に存在するOH基が液体18中に水素イオン(H)を放出する量が多くなる。そのため、領域68により形成されるpH階調は、領域50により形成されるpH階調よりも酸性寄り(例えばpH8.5)になる。 In the metal oxide film 64 formed of TiO 2 and MgO, the OH group present on the surface of the metal oxide film 64 is a hydrogen ion (H (H) as compared to the metal oxide film 36 formed only of MgO. The amount of releasing + ) increases. Therefore, the pH gradation formed by the region 68 is more acidic (for example, pH 8.5) than the pH gradation formed by the region 50.
 図5に示すように、複数の金属酸化膜片70の各々の数は、複数の金属酸化膜片74の各々の数よりも多く、複数の金属酸化膜片70の各々の面積は、複数の金属酸化膜片74の各々の面積よりも大きい。また、複数の金属酸化膜片72の各々の数は、複数の金属酸化膜片76の各々の数よりも少なく、複数の金属酸化膜片72の各々の面積は、複数の金属酸化膜片76の各々の面積よりも小さい。なお、複数の金属酸化膜片70の各々と複数の金属酸化膜片74の各々とで、面積及び数の少なくとも一方が異なっていてもよい。同様に、複数の金属酸化膜片72の各々と複数の金属酸化膜片76の各々とで、面積及び数の少なくとも一方が異なっていてもよい。 As shown in FIG. 5, the number of each of the plurality of metal oxide film pieces 70 is larger than the number of each of the plurality of metal oxide film pieces 74, and the area of each of the plurality of metal oxide film pieces 70 is a plurality of It is larger than the area of each of the metal oxide film pieces 74. Further, the number of each of the plurality of metal oxide film pieces 72 is smaller than the number of each of the plurality of metal oxide film pieces 76, and the area of each of the plurality of metal oxide film pieces 72 is a plurality of metal oxide film pieces 76. Less than the area of each of Note that at least one of the area and the number may be different between each of the plurality of metal oxide film pieces 70 and each of the plurality of metal oxide film pieces 74. Similarly, at least one of the area and the number of each of the plurality of metal oxide film pieces 72 and each of the plurality of metal oxide film pieces 76 may be different.
 [3-2.効果]
 上述したように、金属酸化膜62及び64の各々を異なる2種類の金属酸化物で形成することにより、pH勾配のpH階調をより細分化することができる。
[3-2. effect]
As described above, by forming each of the metal oxide films 62 and 64 with two different metal oxides, it is possible to further subdivide the pH gradation of the pH gradient.
 また、担体20を平面視した際に、金属酸化膜62の複数の金属酸化膜片70の各々は、複数の金属酸化膜片72の各々と互いに重ならないように配置されているので、複数の金属酸化膜片70及び複数の金属酸化膜片72の各々と、液体18との接触面積を十分に確保することができる。その結果、複数の金属酸化膜片70及び複数の金属酸化膜片72の各々の、液体18に対する酸化還元反応を効率良く生じさせることができる。 Further, when the carrier 20 is viewed in plan, each of the plurality of metal oxide film pieces 70 of the metal oxide film 62 is arranged so as not to overlap with each of the plurality of metal oxide film pieces 72. A contact area between each of the metal oxide film pieces 70 and the plurality of metal oxide film pieces 72 and the liquid 18 can be sufficiently secured. As a result, the redox reaction of the plurality of metal oxide film pieces 70 and the plurality of metal oxide film pieces 72 with respect to the liquid 18 can be efficiently generated.
 (実施の形態4)
 [4-1.金属酸化膜体の構成]
 次に、図6~図8を参照しながら、実施の形態4に係る電気泳動支持体8Cの金属酸化膜体22Cの構成について説明する。図6は、実施の形態4に係る電気泳動支持体8Cの金属酸化膜体22Cの構成を示す上面図である。図7は、図6のVII-VII線による、実施の形態4に係る電気泳動支持体8Cの要部断面図である。図8は、図6のVIII-VIII線による、実施の形態4に係る電気泳動支持体8Cの要部断面図である。
Embodiment 4
[4-1. Configuration of metal oxide film]
Next, the configuration of the metal oxide film body 22C of the electrophoresis support 8C according to the fourth embodiment will be described with reference to FIG. 6 to FIG. FIG. 6 is a top view showing the configuration of the metal oxide film 22C of the electrophoresis support 8C according to the fourth embodiment. FIG. 7 is a cross-sectional view of an essential part of the electrophoresis support 8C according to the fourth embodiment, taken along the line VII-VII in FIG. FIG. 8 is a cross-sectional view of an essential portion of the electrophoresis support 8C according to the fourth embodiment, taken along line VIII-VIII in FIG.
 図6に示すように、実施の形態4に係る電気泳動支持体8Cでは、金属酸化膜体22Cの構成が上記実施の形態1と異なっている。具体的には、金属酸化膜体22Cは、複数の金属酸化膜26~38に加えて、金属酸化膜78及び80(第5の金属酸化膜の一例)を有している。また、担体20の領域42と領域44との間には領域82(第5の領域の一例)が配置され、担体20の領域48と領域50との間には領域84(第5の領域の一例)が配置されている。 As shown in FIG. 6, in the electrophoresis support 8C according to the fourth embodiment, the configuration of the metal oxide film 22C is different from that of the first embodiment. Specifically, the metal oxide film body 22 C has metal oxide films 78 and 80 (an example of a fifth metal oxide film) in addition to the plurality of metal oxide films 26 to 38. In addition, a region 82 (an example of a fifth region) is disposed between the region 42 of the carrier 20 and the region 44, and a region 84 (of the fifth region) is disposed between the region 48 and the region 50 of the carrier 20. An example is arranged.
 金属酸化膜78は、担体20の領域82において格子状に点在された複数の金属酸化膜片86(第1の金属酸化膜片の一例)及び複数の金属酸化膜片88(第2の金属酸化膜片の一例)を有している。図6及び図7に示すように、担体20を平面視した際に、複数の金属酸化膜片86の各々は、複数の金属酸化膜片88の各々と互いに重なるように配置されている。 The metal oxide film 78 includes a plurality of metal oxide film pieces 86 (an example of a first metal oxide film piece) and a plurality of metal oxide film pieces 88 (a second metal) scattered in a lattice shape in the region 82 of the carrier 20. (An example of an oxide film piece). As shown in FIGS. 6 and 7, each of the plurality of metal oxide film pieces 86 is arranged to overlap with each of the plurality of metal oxide film pieces 88 when the carrier 20 is viewed in plan.
 複数の金属酸化膜片86の各々はTiOで形成され、複数の金属酸化膜片88の各々はMgOで形成されている。すなわち、金属酸化膜78は、異なる2種類の金属酸化物で形成されている。複数の金属酸化膜片86及び88の各々は、平面視で円形状に形成されている。複数の金属酸化膜片86の各々の数及び直径はそれぞれ、複数の金属酸化膜片88の各々の数及び直径と同一である。図7に示すように、複数の金属酸化膜片86の各々は、複数の金属酸化膜片88の各々の上側に積層されている。領域82は、担体20が露出している部分と、複数の金属酸化膜片86と、複数の金属酸化膜片88とにより形成される。金属酸化膜78は、領域82におけるpH階調に影響を及ぼす。そのため、領域82のpH階調は、複数の金属酸化膜片86が形成するpH階調(例えばpH4)と、複数の金属酸化膜片88が形成するpH階調(例えば7pH)と、純水が形成するpH階調(例えばpH7)との組み合わせにより形成される。これにより、領域82の近傍における液体18(図1参照)のpH階調は、例えば試料4のpH5.5の等電点(第5の等電点の一例)に対応するpH5.5(第5のpHの一例)となる。 Each of the plurality of metal oxide film pieces 86 is formed of TiO 2 , and each of the plurality of metal oxide film pieces 88 is formed of MgO. That is, the metal oxide film 78 is formed of two different metal oxides. Each of the plurality of metal oxide film pieces 86 and 88 is formed in a circular shape in plan view. The number and diameter of each of the plurality of metal oxide film pieces 86 are the same as the number and diameter of each of the plurality of metal oxide film pieces 88, respectively. As shown in FIG. 7, each of the plurality of metal oxide film pieces 86 is stacked on the upper side of each of the plurality of metal oxide film pieces 88. Region 82 is formed of a portion where carrier 20 is exposed, a plurality of metal oxide film pieces 86, and a plurality of metal oxide film pieces 88. The metal oxide film 78 affects the pH gradation in the region 82. Therefore, the pH gradation of the region 82 includes pH gradation (for example, pH 4) formed by the plurality of metal oxide film pieces 86, pH gradation (for example, 7 pH) formed by the plurality of metal oxide film pieces 88, and pure water. Is formed in combination with the pH gradation (for example, pH 7) which is formed. Thus, the pH gradation of the liquid 18 (see FIG. 1) in the vicinity of the region 82 is, for example, pH 5.5 (the fifth isoelectric point) corresponding to the pH 5.5 of the sample 4 An example of the pH of 5).
 金属酸化膜80は、担体20の領域84において格子状に点在された複数の金属酸化膜片90(第1の金属酸化膜片の一例)及び複数の金属酸化膜片92(第2の金属酸化膜片の一例)を有している。図6及び図8に示すように、担体20を平面視した際に、複数の金属酸化膜片90の各々は、複数の金属酸化膜片92の各々と互いに重なるように配置されている。 The metal oxide film 80 includes a plurality of metal oxide film pieces 90 (an example of a first metal oxide film piece) and a plurality of metal oxide film pieces 92 (a second metal) which are scattered in a lattice shape in the region 84 of the carrier 20. (An example of an oxide film piece). As shown in FIGS. 6 and 8, each of the plurality of metal oxide film pieces 90 is arranged to overlap with each of the plurality of metal oxide film pieces 92 when the carrier 20 is viewed in plan.
 複数の金属酸化膜片90の各々はTiOで形成され、複数の金属酸化膜片92の各々はMgOで形成されている。すなわち、金属酸化膜80は、異なる2種類の金属酸化物で形成されている。複数の金属酸化膜片90及び92の各々は、平面視で円形状に形成されている。複数の金属酸化膜片90の各々の数及び直径はそれぞれ、複数の金属酸化膜片92の各々の数及び直径と同一である。図8に示すように、複数の金属酸化膜片92の各々は、複数の金属酸化膜片90の各々の上側に積層されている。領域84は、担体20が露出している部分と、複数の金属酸化膜片90と、複数の金属酸化膜片92とにより形成される。金属酸化膜80は、領域84におけるpH階調に影響を及ぼす。そのため、領域84のpH階調は、複数の金属酸化膜片90が形成するpH階調(例えばpH4)と、複数の金属酸化膜片92が形成するpH階調(例えばpH10)と、純水が形成するpH階調(例えばpH7)との組み合わせにより形成される。これにより、領域84の近傍における液体18のpH階調は、例えば試料4のpH8.5の等電点(第5の等電点の一例)に対応するpH8.5(第5のpHの一例)となる。 Each of the plurality of metal oxide film pieces 90 is formed of TiO 2 , and each of the plurality of metal oxide film pieces 92 is formed of MgO. That is, the metal oxide film 80 is formed of two different metal oxides. Each of the plurality of metal oxide film pieces 90 and 92 is formed in a circular shape in plan view. The number and diameter of each of the plurality of metal oxide film pieces 90 is the same as the number and diameter of each of the plurality of metal oxide film pieces 92. As shown in FIG. 8, each of the plurality of metal oxide film pieces 92 is stacked on the upper side of each of the plurality of metal oxide film pieces 90. Region 84 is formed of a portion where carrier 20 is exposed, a plurality of metal oxide film pieces 90, and a plurality of metal oxide film pieces 92. The metal oxide film 80 affects the pH gradation in the region 84. Therefore, the pH gradation of the region 84 includes pH gradation (for example, pH 4) formed by the plurality of metal oxide film pieces 90, pH gradation (for example, pH 10) formed by the plurality of metal oxide film pieces 92, and pure water. Is formed in combination with the pH gradation (for example, pH 7) which is formed. Thereby, the pH gradation of the liquid 18 in the vicinity of the region 84 is, for example, one example of the pH 8.5 (corresponding to one example of the fifth isoelectric point) of pH 8.5 of the sample 4 ).
 [4-2.効果]
 本実施の形態では、金属酸化膜78及び80の各々を異なる2種類の金属酸化物で形成することにより、pH勾配のpH階調をより細分化することができる。
[4-2. effect]
In this embodiment, the pH gradation of the pH gradient can be further subdivided by forming each of the metal oxide films 78 and 80 with two different metal oxides.
 また、担体20を平面視した際に、金属酸化膜78の複数の金属酸化膜片86の各々は、複数の金属酸化膜片88の各々と互いに重なるように配置されているので、担体20の領域82の面積を十分に確保できない場合であっても、金属酸化膜78を領域82にコンパクトに配置することができる。 Further, each of the plurality of metal oxide film pieces 86 of the metal oxide film 78 is disposed so as to overlap with each of the plurality of metal oxide film pieces 88 when the carrier 20 is viewed in a plan view. Even if the area of the region 82 can not be sufficiently secured, the metal oxide film 78 can be compactly disposed in the region 82.
 (実施の形態5)
 [5-1.金属酸化膜体の構成]
 次に、図9~図11を参照しながら、実施の形態5に係る電気泳動支持体8Dの金属酸化膜体22Dの構成について説明する。図9は、実施の形態5に係る電気泳動支持体8Dの金属酸化膜体22Dの構成を示す上面図である。図10は、実施の形態5に係る電気泳動支持体8Dの金属酸化膜体22Dの成膜工程の一例を説明するための図である。図11は、実施の形態5に係る電気泳動支持体8Dの金属酸化膜体22Dにより形成されるpH勾配を説明するためのグラフである。
Fifth Embodiment
[5-1. Configuration of metal oxide film]
Next, the configuration of the metal oxide film body 22D of the electrophoresis support 8D according to the fifth embodiment will be described with reference to FIGS. 9 to 11. FIG. FIG. 9 is a top view showing the structure of a metal oxide film body 22D of an electrophoresis support 8D according to the fifth embodiment. FIG. 10 is a view for explaining an example of the film forming step of the metal oxide film 22D of the electrophoresis support 8D according to the fifth embodiment. FIG. 11 is a graph for explaining the pH gradient formed by the metal oxide film body 22D of the electrophoresis support 8D according to the fifth embodiment.
 図9に示すように、実施の形態5に係る電気泳動支持体8Dでは、金属酸化膜体22Dの構成が上記実施の形態1と異なっている。具体的には、金属酸化膜体22Dは、複数の金属酸化膜94~102を有している。複数の金属酸化膜94~102はそれぞれ、担体20の上面24における複数の領域104~112に配置されている。複数の領域104~112は、担体20の長手方向(X軸方向)に沿って、この順に一列に並んで配置されている。 As shown in FIG. 9, in the electrophoresis support 8D according to the fifth embodiment, the configuration of the metal oxide film 22D is different from that of the first embodiment. Specifically, the metal oxide film body 22D has a plurality of metal oxide films 94 to 102. The plurality of metal oxide films 94 to 102 are respectively disposed in the plurality of regions 104 to 112 on the upper surface 24 of the carrier 20. The plurality of regions 104 to 112 are arranged in line in this order along the longitudinal direction (X-axis direction) of the carrier 20.
 金属酸化膜94は、TiOで形成されており、担体20の領域104の全域に亘って均一に配置されている。金属酸化膜94は、例えばpH4のpH階調を形成する。このような金属酸化膜94が領域104の全域に亘って配置されることにより、領域104の近傍における液体18(図1参照)のpH階調は、例えば試料4のpH4の等電点に対応するpH4となる。 The metal oxide film 94 is formed of TiO 2 , and is uniformly disposed over the entire region 104 of the carrier 20. The metal oxide film 94 forms, for example, a pH gradation of pH4. By arranging such a metal oxide film 94 over the entire region 104, the pH gradation of the liquid 18 (see FIG. 1) in the vicinity of the region 104 corresponds to, for example, the isoelectric point of pH 4 of the sample 4. PH 4 to
 金属酸化膜96は、担体20の領域106において格子状に点在された複数の金属酸化膜片114及び複数の金属酸化膜片116を有している。担体20を平面視した際に、複数の金属酸化膜片114の各々は、複数の金属酸化膜片116の各々と互いに重なるように配置されている。 The metal oxide film 96 has a plurality of metal oxide film pieces 114 and a plurality of metal oxide film pieces 116 interspersed in a lattice shape in the region 106 of the carrier 20. When the carrier 20 is viewed in plan, each of the plurality of metal oxide film pieces 114 is arranged to overlap with each of the plurality of metal oxide film pieces 116.
 複数の金属酸化膜片114の各々はTiOで形成され、複数の金属酸化膜片116の各々はMgOで形成されている。すなわち、金属酸化膜96は、異なる2種類の金属酸化物で形成されている。複数の金属酸化膜片114及び116の各々は、平面視で円形状に形成されている。複数の金属酸化膜片114の各々の数は、複数の金属酸化膜片116の各々の数と同一である。また、複数の金属酸化膜片114の各々の直径は、複数の金属酸化膜片116の各々の直径よりも大きい。複数の金属酸化膜片114の各々は、複数の金属酸化膜片116の各々の下側に積層されている。領域106は、担体20が露出している部分と、複数の金属酸化膜片114と、複数の金属酸化膜片116とにより形成される。金属酸化膜96は、領域106におけるpH階調に影響を及ぼす。そのため、領域106のpH階調は、複数の金属酸化膜片114が形成するpH階調(例えばpH4)と、複数の金属酸化膜片116が形成するpH階調(例えばpH7)と、純水が形成するpH階調(例えばpH7)との組み合わせにより形成される。これにより、領域106の近傍における液体18のpH階調は、例えば試料4のpH5.5の等電点に対応するpH5.5となる。 Each of the plurality of metal oxide film pieces 114 is formed of TiO 2 , and each of the plurality of metal oxide film pieces 116 is formed of MgO. That is, the metal oxide film 96 is formed of two different metal oxides. Each of the plurality of metal oxide film pieces 114 and 116 is formed in a circular shape in plan view. The number of each of the plurality of metal oxide film pieces 114 is the same as the number of each of the plurality of metal oxide film pieces 116. In addition, the diameter of each of the plurality of metal oxide film pieces 114 is larger than the diameter of each of the plurality of metal oxide film pieces 116. Each of the plurality of metal oxide film pieces 114 is stacked under each of the plurality of metal oxide film pieces 116. Region 106 is formed of a portion where carrier 20 is exposed, a plurality of metal oxide film pieces 114 and a plurality of metal oxide film pieces 116. The metal oxide film 96 affects the pH gradation in the region 106. Therefore, the pH gradation of the region 106 includes pH gradation (for example, pH 4) formed by a plurality of metal oxide film pieces 114, pH gradation (for example, pH 7) formed by a plurality of metal oxide film pieces 116, and pure water. Is formed in combination with the pH gradation (for example, pH 7) which is formed. Thereby, the pH gradation of the liquid 18 in the vicinity of the region 106 becomes, for example, pH 5.5 corresponding to the isoelectric point of pH 5.5 of the sample 4.
 金属酸化膜98は、担体20の領域108において格子状に点在された複数の金属酸化膜片118及び複数の金属酸化膜片120を有している。担体20を平面視した際に、複数の金属酸化膜片118の各々は、複数の金属酸化膜片120の各々と互いに重なるように配置されている。 The metal oxide film 98 has a plurality of metal oxide film pieces 118 and a plurality of metal oxide film pieces 120 interspersed in a lattice shape in the region 108 of the carrier 20. When the carrier 20 is viewed in plan, each of the plurality of metal oxide film pieces 118 is arranged to overlap with each of the plurality of metal oxide film pieces 120.
 複数の金属酸化膜片118の各々はTiOで形成され、複数の金属酸化膜片120の各々はMgOで形成されている。すなわち、金属酸化膜98は、異なる2種類の金属酸化物で形成されている。複数の金属酸化膜片118及び120の各々は、平面視で円形状に形成されている。複数の金属酸化膜片118の各々の数及び直径はそれぞれ、複数の金属酸化膜片120の各々の数及び直径と同一である。複数の金属酸化膜片118の各々は、複数の金属酸化膜片120の各々の下側に積層されている。領域108は、担体20が露出している部分と、複数の金属酸化膜片118と、複数の金属酸化膜片120とにより形成される。金属酸化膜98は、領域108におけるpH階調に影響を及ぼす。そのため、領域108のpH階調は、複数の金属酸化膜片118が形成するpH階調(例えばpH4)と、複数の金属酸化膜片120が形成するpH階調(例えばpH7)と、純水が形成するpH階調(例えばpH7)との組み合わせにより形成される。これにより、領域108の近傍における液体18のpH階調は、例えば試料4のpH7の等電点に対応するpH7となる。 Each of the plurality of metal oxide film pieces 118 is formed of TiO 2 , and each of the plurality of metal oxide film pieces 120 is formed of MgO. That is, the metal oxide film 98 is formed of two different metal oxides. Each of the plurality of metal oxide film pieces 118 and 120 is formed in a circular shape in plan view. The number and diameter of each of the plurality of metal oxide film pieces 118 are the same as the number and diameter of each of the plurality of metal oxide film pieces 120. Each of the plurality of metal oxide film pieces 118 is stacked under each of the plurality of metal oxide film pieces 120. Region 108 is formed of a portion where carrier 20 is exposed, a plurality of metal oxide film pieces 118, and a plurality of metal oxide film pieces 120. The metal oxide film 98 affects the pH gradation in the region 108. Therefore, the pH gradation of the region 108 includes pH gradation (for example, pH 4) formed by a plurality of metal oxide film pieces 118, pH gradation (for example, pH 7) formed by a plurality of metal oxide film pieces 120, and pure water. Is formed in combination with the pH gradation (for example, pH 7) which is formed. Thereby, the pH gradation of the liquid 18 in the vicinity of the region 108 becomes, for example, pH 7 corresponding to the isoelectric point of pH 7 of the sample 4.
 金属酸化膜100は、担体20の領域110において格子状に点在された複数の金属酸化膜片122及び複数の金属酸化膜片124を有している。担体20を平面視した際に、複数の金属酸化膜片122の各々は、複数の金属酸化膜片124の各々と互いに重なるように配置されている。 The metal oxide film 100 has a plurality of metal oxide film pieces 122 and a plurality of metal oxide film pieces 124 scattered in a lattice shape in the region 110 of the carrier 20. When the carrier 20 is viewed in plan, each of the plurality of metal oxide film pieces 122 is arranged to overlap with each of the plurality of metal oxide film pieces 124.
 複数の金属酸化膜片122の各々はTiOで形成され、複数の金属酸化膜片124の各々はMgOで形成されている。すなわち、金属酸化膜100は、異なる2種類の金属酸化物で形成されている。複数の金属酸化膜片122及び124の各々は、平面視で円形状に形成されている。複数の金属酸化膜片122の各々の数は、複数の金属酸化膜片124の各々の数と同一である。また、複数の金属酸化膜片122の各々の直径は、複数の金属酸化膜片124の各々の直径よりも小さい。複数の金属酸化膜片122の各々は、複数の金属酸化膜片124の各々の下側に積層されている。領域110は、担体20が露出している部分と、複数の金属酸化膜片122と、複数の金属酸化膜片124とにより形成される。金属酸化膜100は、領域110におけるpH階調に影響を及ぼす。そのため、領域110のpH階調は、複数の金属酸化膜片122が形成するpH階調(例えばpH4)と、複数の金属酸化膜片124が形成するpH階調(例えばpH10)と、純水が形成するpH階調(例えばpH7)との組み合わせにより形成される。これにより、領域110の近傍における液体18のpH階調は、例えば試料4のpH8.5の等電点に対応するpH8.5となる。 Each of the plurality of metal oxide film pieces 122 is formed of TiO 2 , and each of the plurality of metal oxide film pieces 124 is formed of MgO. That is, the metal oxide film 100 is formed of two different metal oxides. Each of the plurality of metal oxide film pieces 122 and 124 is formed in a circular shape in plan view. The number of each of the plurality of metal oxide film pieces 122 is the same as the number of each of the plurality of metal oxide film pieces 124. In addition, the diameter of each of the plurality of metal oxide film pieces 122 is smaller than the diameter of each of the plurality of metal oxide film pieces 124. Each of the plurality of metal oxide film pieces 122 is stacked under each of the plurality of metal oxide film pieces 124. The region 110 is formed by a portion where the carrier 20 is exposed, a plurality of metal oxide film pieces 122, and a plurality of metal oxide film pieces 124. The metal oxide film 100 affects the pH gradation in the region 110. Therefore, the pH gradation of the region 110 includes pH gradation (for example, pH 4) formed by a plurality of metal oxide film pieces 122, pH gradation (for example, pH 10) formed by a plurality of metal oxide film pieces 124, and pure water. Is formed in combination with the pH gradation (for example, pH 7) which is formed. Thereby, the pH gradation of the liquid 18 in the vicinity of the region 110 becomes, for example, pH 8.5 corresponding to the isoelectric point of pH 8.5 of the sample 4.
 金属酸化膜102は、MgOで形成されており、担体20の領域112の全域に亘って均一に配置されている。金属酸化膜102は、例えばpH10のpH階調を形成する。このような金属酸化膜102が領域112の全域に亘って配置されることにより、領域112の近傍における液体18のpH階調は、例えば試料4のpH10の等電点に対応するpH10となる。 The metal oxide film 102 is formed of MgO and is uniformly disposed over the entire region 112 of the carrier 20. The metal oxide film 102 forms, for example, a pH gradation of pH 10. By arranging such a metal oxide film 102 over the entire region 112, the pH gradation of the liquid 18 in the vicinity of the region 112 becomes, for example, pH 10 corresponding to the isoelectric point of pH 10 of the sample 4.
 次に、図10を参照しながら、上述した金属酸化膜体22Dの成膜工程の一例について説明する。まず、図10の(a)に示すように、第1の成膜工程が行われる。第1の成膜工程では、担体20の上面24をメタルマスク126で覆った状態で、ALD法によりTiの有機金属化合物ガスを投入する。メタルマスク126は、矩形状の孔128aが形成された領域130aと、円形状の複数の孔128bが形成された領域130bと、円形状の複数の孔128cが形成された領域130cと、円形状の複数の孔128dが形成された領域130dと、閉塞された領域130eとを有している。 Next, with reference to FIG. 10, an example of the film forming process of the metal oxide film 22D described above will be described. First, as shown to (a) of FIG. 10, a 1st film-forming process is performed. In the first film forming step, in a state where the upper surface 24 of the carrier 20 is covered with the metal mask 126, an organometallic compound gas of Ti is introduced by the ALD method. The metal mask 126 includes a region 130a in which the rectangular holes 128a are formed, a region 130b in which the plurality of circular holes 128b are formed, a region 130c in which the plurality of circular holes 128c is formed, and a circular shape A plurality of holes 128d are formed in a region 130d and a closed region 130e.
 複数の孔128b、複数の孔128c及び複数の孔128dの各々は、格子状に配置されている。複数の孔128b、複数の孔128c及び複数の孔128dの各々の数は同一である。複数の孔128bの各々の直径は、複数の孔128cの各々の直径よりも大きい。また、複数の孔128cの各々の直径は、複数の孔128dの各々の直径よりも大きい。 Each of the plurality of holes 128b, the plurality of holes 128c, and the plurality of holes 128d is arranged in a lattice. The numbers of the plurality of holes 128b, the plurality of holes 128c, and the plurality of holes 128d are the same. The diameter of each of the plurality of holes 128b is larger than the diameter of each of the plurality of holes 128c. Also, the diameter of each of the plurality of holes 128c is larger than the diameter of each of the plurality of holes 128d.
 これにより、図10の(a)に示すように、担体20の領域104には、メタルマスク126の孔128aを通して投入されたTiの有機金属化合物ガスにより、金属酸化膜94が形成される。また、担体20の領域106には、メタルマスク126の複数の孔128bを通して投入されたTiの有機金属化合物ガスにより、複数の金属酸化膜片114が形成される。また、担体20の領域108には、メタルマスク126の複数の孔128cを通して投入されたTiの有機金属化合物ガスにより、複数の金属酸化膜片118が形成される。また、担体20の領域110には、メタルマスク126の複数の孔128dを通して投入されたTiの有機金属化合物ガスにより、複数の金属酸化膜片122が形成される。なお、担体20の領域112は、メタルマスク126の領域130eで完全に覆われているため、TiOの金属酸化膜は形成されない。 As a result, as shown in FIG. 10A, the metal oxide film 94 is formed in the region 104 of the carrier 20 by the organometallic compound gas of Ti introduced through the holes 128a of the metal mask 126. Further, a plurality of metal oxide film pieces 114 are formed in the region 106 of the carrier 20 by the metal organic metal compound gas of Ti introduced through the plurality of holes 128 b of the metal mask 126. Further, a plurality of metal oxide film pieces 118 are formed in the region 108 of the carrier 20 by the metal organic metal compound gas of Ti introduced through the plurality of holes 128 c of the metal mask 126. Further, a plurality of metal oxide film pieces 122 are formed in the region 110 of the carrier 20 by the organometallic compound gas of Ti introduced through the plurality of holes 128 d of the metal mask 126. Since the region 112 of the carrier 20 is completely covered by the region 130e of the metal mask 126, the metal oxide film of TiO 2 is not formed.
 その後、図10の(b)に示すように、第2の成膜工程が行われる。第2の成膜工程では、担体20の上面24をメタルマスク126で覆った状態で、ALD法によりMgの有機金属化合物ガスを投入する。この時、メタルマスク126の向きは、第1の成膜工程から左右反転されている。 Thereafter, as shown in (b) of FIG. 10, a second film forming process is performed. In the second film forming step, in a state in which the upper surface 24 of the carrier 20 is covered with the metal mask 126, an organic metal compound gas of Mg is introduced by the ALD method. At this time, the direction of the metal mask 126 is reversed from the first film forming process.
 これにより、図10の(b)に示すように、担体20の領域112には、メタルマスク126の孔128aを通して投入されたMgの有機金属化合物ガスにより、金属酸化膜102が形成される。また、担体20の領域110には、メタルマスク126の複数の孔128bを通して投入されたMgの有機金属化合物ガスにより、複数の金属酸化膜片124が複数の金属酸化膜片122の上側に積層されるように形成される。また、担体20の領域108には、メタルマスク126の複数の孔128cを通して投入されたMgの有機金属化合物ガスにより、複数の金属酸化膜片120が複数の金属酸化膜片118の上側に積層されるように形成される。また、担体20の領域106には、メタルマスク126の複数の孔128dを通して投入されたMgの有機金属化合物ガスにより、複数の金属酸化膜片116が複数の金属酸化膜片114の上側に積層されるように形成される。なお、担体20の領域104は、メタルマスク126の領域130eで完全に覆われているため、MgOの金属酸化膜は形成されない。 Thereby, as shown in (b) of FIG. 10, the metal oxide film 102 is formed in the region 112 of the carrier 20 by the Mg organic metal compound gas introduced through the holes 128a of the metal mask 126. Further, in the region 110 of the carrier 20, a plurality of metal oxide film pieces 124 are stacked on the plurality of metal oxide film pieces 122 by metal organic metal compound gas introduced through the plurality of holes 128b of the metal mask 126. Formed to Further, in the region 108 of the carrier 20, the plurality of metal oxide film pieces 120 are stacked on the plurality of metal oxide film pieces 118 by the metal organic metal compound gas of Mg introduced through the plurality of holes 128c of the metal mask 126. Formed to Further, a plurality of metal oxide film pieces 116 are stacked on the plurality of metal oxide film pieces 114 in the region 106 of the carrier 20 by the metal organic metal compound gas of Mg introduced through the plurality of holes 128 d of the metal mask 126. Formed to Since the region 104 of the carrier 20 is completely covered with the region 130e of the metal mask 126, a metal oxide film of MgO is not formed.
 以上のようにして、複数の金属酸化膜94~102はそれぞれ、担体20の複数の領域104~112に成膜される。 As described above, the plurality of metal oxide films 94 to 102 are formed on the plurality of regions 104 to 112 of the carrier 20, respectively.
 図11に示すように、以上のようにして形成された金属酸化膜体22Dでは、TiOの金属酸化膜94、複数の金属酸化膜片114,118及び122により形成されたpH4~pH7のpH勾配と、MgOの金属酸化膜102、複数の金属酸化膜片116,120及び124により形成されたpH7~pH10のpH勾配とが相互に影響し合うことにより、pH4~pH10のpH勾配が形成されるようになる。 As shown in FIG. 11, in the metal oxide film body 22D formed as described above, the pH of pH 4 to pH 7 formed by the metal oxide film 94 of TiO 2 and the plurality of metal oxide film pieces 114, 118 and 122. The gradient and the pH gradient of pH 7 to pH 10 formed by the metal oxide film 102 of MgO and the plurality of metal oxide film fragments 116, 120 and 124 mutually influence to form a pH gradient of pH 4 to pH 10 Become so.
 [5-2.効果]
 上述と同様に、pH勾配のpH階調の数を増やした場合であっても、電気泳動支持体8Dの製造プロセスが複雑になるのを抑制することができる。
5-2. effect]
As described above, even when the number of pH gradations of the pH gradient is increased, the manufacturing process of the electrophoresis support 8D can be prevented from being complicated.
 (変形例)
 以上、一つ又は複数の態様に係る電気泳動支持体及び電気泳動装置について、上記各実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思い付く各種変形を本実施の形態に施したものや、異なる実施の形態又は変形例における構成要素を組み合わせて構築される形態も、一つ又は複数の態様の範囲内に含まれてもよい。
(Modification)
Although the electrophoresis support and the electrophoresis apparatus according to one or more aspects have been described above based on the above embodiments, the present invention is not limited to these embodiments. Unless it deviates from the gist of the present invention, one or more embodiments in which various modifications that a person skilled in the art finds can be made to the present embodiment, and a configuration constructed by combining components in different embodiments or modifications are also one or more. It may be included within the scope of the embodiments.
 上記各実施の形態では、金属酸化膜体22(22A,22B,22C,22D)がTiO、NiO及びMgOのうち少なくとも2つを含むようにしたが、上記以外の金属酸化物を含むようにしてもよい。金属酸化膜体22(22A,22B,22C,22D)は、例えばAl、HfO、WO、La、Bi、SnO、ZnO、InO、Fe、CuO及びSiO等の任意の2種類以上の金属酸化物を含むようにしてもよい。 In each of the above embodiments, the metal oxide film 22 (22A, 22B, 22C, 22D) includes at least two of TiO 2 , NiO and MgO, but it is possible to include metal oxides other than the above. Good. The metal oxide film body 22 (22A, 22B, 22C, 22D) is, for example, Al 2 O 3 , HfO, WO 3 , La 2 O 3 , Bi 2 O 3 , SnO 2 , ZnO, In 2 O, Fe 3 O 4 And any two or more metal oxides such as CuO and SiO 2 may be included.
 上記各実施の形態では、試料4はタンパク質を含むようにしたが、例えばDNA(デオキシリボ核酸)等を含むようにしてもよい。 In each of the above embodiments, the sample 4 contains a protein, but it may contain, for example, DNA (deoxyribonucleic acid) or the like.
 上記実施の形態1では、pH4~pH10の7つのpH階調を有するpH勾配を形成したが、これに限定されず、例えばpH3~pH11の9つのpH階調等、任意の個数のpH階調を有するpH勾配を形成してもよい。 In the first embodiment, although the pH gradient having seven pH gradations of pH 4 to pH 10 is formed, the present invention is not limited to this, for example, any number of pH gradations such as nine pH gradations of pH 3 to pH 11 You may form a pH gradient with
 なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサ等のプログラム実行部が、ハードディスク又は半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 In the above embodiments, each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or a processor reading out and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 また、以下のような場合も本発明に含まれる。 Further, the following cases are also included in the present invention.
 (1)上記の各装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムで実現され得る。RAM又はハードディスクユニットには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。 (1) Each of the above-described devices can be specifically realized by a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse and the like. A computer program is stored in the RAM or the hard disk unit. Each device achieves its function by the microprocessor operating according to the computer program. Here, the computer program is configured by combining a plurality of instruction codes indicating instructions to the computer in order to achieve a predetermined function.
 (2)上記の各装置を構成する構成要素の一部又は全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。ROMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、ROMからRAMにコンピュータプログラムをロードし、ロードしたコンピュータプログラムにしたがって演算等の動作することにより、システムLSIは、その機能を達成する。 (2) Some or all of the components constituting each of the above-described devices may be configured from one system LSI (Large Scale Integration: large scale integrated circuit). The system LSI is a super-multifunctional LSI manufactured by integrating a plurality of components on one chip, and more specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. . A computer program is stored in the ROM. The system LSI achieves its functions as the microprocessor loads a computer program from the ROM to the RAM and operates according to the loaded computer program.
 (3)上記の各装置を構成する構成要素の一部又は全部は、各装置に脱着可能なICカード又は単体のモジュールから構成されてもよい。ICカード又はモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカード又はモジュールには、上記の超多機能LSIが含まれてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、ICカード又はモジュールは、その機能を達成する。このICカード又はこのモジュールは、耐タンパ性を有してもよい。 (3) A part or all of the components constituting each of the above-described devices may be configured from an IC card or a single module that can be detached from each device. The IC card or module is a computer system including a microprocessor, a ROM, a RAM, and the like. The IC card or module may include the above-described ultra-multifunctional LSI. The IC card or module achieves its function by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
 (4)本発明は、上記に示す方法で実現されてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムで実現してもよいし、コンピュータプログラムからなるデジタル信号で実現してもよい。 (4) The present invention may be realized by the method shown above. Also, these methods may be realized by a computer program realized by a computer, or may be realized by a digital signal consisting of a computer program.
 また、本発明は、コンピュータプログラム又はデジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray(登録商標)Disc)、半導体メモリなどに記録したもので実現してもよい。また、これらの記録媒体に記録されているデジタル信号で実現してもよい。 Further, the present invention is a computer program or a recording medium which can read digital signals from a computer, such as a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD (Blu-ray (registered trademark) (Disc), a semiconductor memory or the like. Also, it may be realized by digital signals recorded in these recording media.
 また、本発明は、コンピュータプログラム又はデジタル信号を、電気通信回線、無線又は有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送してもよい。 In addition, the present invention may transmit a computer program or a digital signal via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, data broadcasting, and the like.
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、メモリは、コンピュータプログラムを記憶しており、マイクロプロセッサは、コンピュータプログラムにしたがって動作してもよい。 Also, the present invention is a computer system comprising a microprocessor and a memory, the memory storing a computer program, and the microprocessor may operate according to the computer program.
 また、プログラム又はデジタル信号を記録媒体に記録して移送することにより、又はプログラム又はデジタル信号をネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい。 In addition, it may be implemented by another independent computer system by recording and transporting a program or digital signal on a recording medium, or by transporting a program or digital signal via a network or the like.
 (5)上記実施の形態及び上記変形例をそれぞれ組み合わせるとしてもよい。 (5) The above embodiment and the above modification may be combined respectively.
 本発明の電気泳動支持体は、試料を電気泳動するための電気泳動装置等に適用することができる。 The electrophoresis support of the present invention can be applied to an electrophoresis apparatus or the like for electrophoresis of a sample.
2 電気泳動装置
4 試料
4a,4b タンパク質
6 容器
8,8A,8B,8C,8D 電気泳動支持体
10,12 電極
14 電源装置
16 開口部
18 液体
20 担体
22,22A,22B,22C,22D 金属酸化膜体
24 上面
26,28,28A,30,30A,32,34,34A,36,36A,38,62,64,78,80,94,96,98,100,102 金属酸化膜
40,42,42A,44,44A,46,48,48A,50,50A,52,66,68,82,84,104,106,108,110,112,130a,130b,130c,130d,130e 領域
54,56,58,60,70,72,74,76,86,88,90,92,114,116,118,120,122,124 金属酸化膜片
126 メタルマスク
128a,128b,128c,128d 孔
2 electrophoresis apparatus 4 samples 4a, 4b protein 6 containers 8, 8A, 8B, 8C, 8D electrophoresis support 10, 12 electrode 14 power supply 16 opening 18 liquid 20 carrier 22, 22A, 22B, 22C, 22D metal oxidation Upper surface 26, 28, 28A, 30, 30A, 32, 34, 34A, 36, 36A, 38, 62, 64, 78, 94, 96, 98, 100, 102 Metal oxide films 40, 42, 42A, 44, 44A, 46, 48, 48A, 50, 50A, 52, 66, 68, 82, 84, 106, 108, 110, 112, 130a, 130b, 130c, 130d, 130e regions 54, 56, 58, 60, 70, 72, 74, 76, 68, 88, 90, 92, 114, 116, 118, 120, 122, 124 metal oxide film pieces 1 6 metal mask 128a, 128b, 128c, 128d hole

Claims (11)

  1.  試料を電気泳動するための電気泳動装置に用いられる電気泳動支持体であって、
     多孔質状に形成された担体であって、第1の領域と、前記第1の領域に隣接して配置された第2の領域とが表面に形成された担体と、
     前記試料の第1の等電点に対応する第1のpHを形成するための第1の金属酸化膜であって、前記第1の領域に配置され、第1の金属酸化物で形成された第1の金属酸化膜と、
     前記試料の第2の等電点に対応する第2のpHを形成するための第2の金属酸化膜であって、前記第2の領域に配置され、前記第1の金属酸化物で形成された第2の金属酸化膜と、を備え、
     前記担体を平面視した際に、前記第1の領域において前記第1の金属酸化膜が占める第1の面積割合は、前記第2の領域において前記第2の金属酸化膜が占める第2の面積割合と異なる
     電気泳動支持体。
    An electrophoresis support for use in an electrophoresis apparatus for electrophoresis of a sample, comprising:
    A porous carrier, wherein the first region and the second region disposed adjacent to the first region are formed on the surface;
    A first metal oxide film for forming a first pH corresponding to a first isoelectric point of the sample, wherein the first metal oxide film is disposed in the first region and formed of the first metal oxide A first metal oxide film,
    A second metal oxide film for forming a second pH corresponding to a second isoelectric point of the sample, which is disposed in the second region and formed of the first metal oxide A second metal oxide film,
    When the carrier is viewed in plan, a first area ratio occupied by the first metal oxide film in the first region is a second area occupied by the second metal oxide film in the second region. Electrophoretic support different from proportions.
  2.  前記担体の前記表面には、さらに、前記第2の領域を挟んで前記第1の領域と反対側に配置された第3の領域が形成され、
     前記電気泳動支持体は、さらに、前記試料の第3の等電点に対応する第3のpHを形成するための第3の金属酸化膜であって、前記第3の領域に配置され、第2の金属酸化物で形成された第3の金属酸化膜を備える
     請求項1に記載の電気泳動支持体。
    Further, a third region is formed on the surface of the carrier opposite to the first region across the second region,
    The electrophoresis support is a third metal oxide film for forming a third pH corresponding to a third isoelectric point of the sample, and is disposed in the third region, The electrophoresis support according to claim 1, comprising a third metal oxide film formed of two metal oxides.
  3.  前記担体の前記表面には、さらに、前記第3の領域を挟んで前記第2の領域と反対側に配置された第4の領域が形成され、
     前記電気泳動支持体は、さらに、前記試料の第4の等電点に対応する第4のpHを形成するための第4の金属酸化膜であって、前記第4の領域に配置され、前記第2の金属酸化物で形成された第4の金属酸化膜を備え、
     前記担体を平面視した際に、前記第3の領域において前記第3の金属酸化膜が占める第3の面積割合は、前記第4の領域において前記第4の金属酸化膜が占める第4の面積割合と異なる
     請求項2に記載の電気泳動支持体。
    Further, a fourth region disposed on the opposite side of the second region with respect to the third region is formed on the surface of the carrier.
    The electrophoresis support is further a fourth metal oxide film for forming a fourth pH corresponding to a fourth isoelectric point of the sample, and is disposed in the fourth region, A fourth metal oxide film formed of a second metal oxide,
    When the carrier is viewed in plan, a third area ratio occupied by the third metal oxide film in the third area is a fourth area occupied by the fourth metal oxide film in the fourth area. The electrophoresis support according to claim 2, which is different from the ratio.
  4.  前記第1の等電点が前記第2の等電点よりも低く、且つ、前記第2の等電点が純水のpHに対応する等電点よりも低い場合には、前記第2の面積割合は、前記第1の面積割合よりも小さい
     請求項1に記載の電気泳動支持体。
    If the first isoelectric point is lower than the second isoelectric point and the second isoelectric point is lower than the isoelectric point corresponding to the pH of pure water, then the second The electrophoresis support according to claim 1, wherein the area ratio is smaller than the first area ratio.
  5.  前記第1の等電点が前記第2の等電点よりも高く、且つ、前記第2の等電点が純水のpHに対応する等電点よりも高い場合には、前記第2の面積割合は、前記第1の面積割合よりも小さい
     請求項1に記載の電気泳動支持体。
    If the first isoelectric point is higher than the second isoelectric point and the second isoelectric point is higher than the isoelectric point corresponding to the pH of pure water, then the second The electrophoresis support according to claim 1, wherein the area ratio is smaller than the first area ratio.
  6.  前記担体の前記表面には、さらに、前記第2の領域と前記第3の領域との間に配置された第5の領域が形成され、
     前記電気泳動支持体は、さらに、前記試料の第5の等電点に対応する第5のpHを形成するための第5の金属酸化膜であって、前記第5の領域に配置され、前記第1の金属酸化物及び前記第2の金属酸化物で形成された第5の金属酸化膜を備える
     請求項2又は3に記載の電気泳動支持体。
    Further, a fifth region disposed between the second region and the third region is formed on the surface of the carrier.
    The electrophoresis support is further a fifth metal oxide film for forming a fifth pH corresponding to a fifth isoelectric point of the sample, and is disposed in the fifth region, The electrophoresis support according to claim 2 or 3, comprising a fifth metal oxide film formed of a first metal oxide and the second metal oxide.
  7.  前記第5の金属酸化膜は、
     前記第1の金属酸化物で形成され、前記第5の領域において点在する複数の第1の金属酸化膜片と、
     前記第2の金属酸化物で形成され、前記第5の領域において点在する複数の第2の金属酸化膜片と、を含み、
     前記担体を平面視した際に、前記複数の第1の金属酸化膜片の各々は、前記複数の第2の金属酸化膜片の各々と互いに重ならないように配置されている
     請求項6に記載の電気泳動支持体。
    The fifth metal oxide film is
    A plurality of first metal oxide film pieces formed of the first metal oxide and scattered in the fifth region;
    And a plurality of second metal oxide film pieces formed of the second metal oxide and scattered in the fifth region;
    The plurality of first metal oxide film pieces are arranged so as not to overlap with each of the plurality of second metal oxide film pieces when the carrier is viewed in plan. Electrophoresis support.
  8.  前記担体の前記表面には、さらに、前記第3の領域と前記第5の領域との間に配置された第6の領域が形成され、
     前記電気泳動支持体は、さらに、前記第6の領域に配置され、前記試料の第6の等電点に対応する第6のpHを形成するための第6の金属酸化膜を備え、
     前記第6の金属酸化膜は、
     前記第1の金属酸化物で形成され、前記第6の領域において点在する複数の第3の金属酸化膜片と、
     前記第2の金属酸化物で形成され、前記第6の領域において点在する複数の第4の金属酸化膜片と、を含み、
     前記担体を平面視した際に、前記複数の第3の金属酸化膜片の各々は、前記複数の第4の金属酸化膜片の各々と互いに重ならないように配置されており、
     前記複数の第1の金属酸化膜片と前記複数の第3の金属酸化膜片とは、面積及び数の少なくとも一方が異なり、且つ、前記複数の第2の金属酸化膜片と前記複数の第4の金属酸化膜片とは、面積及び数の少なくとも一方が異なる
     請求項7に記載の電気泳動支持体。
    Further, a sixth region disposed between the third region and the fifth region is formed on the surface of the carrier.
    The electrophoresis support further includes a sixth metal oxide film disposed in the sixth region to form a sixth pH corresponding to a sixth isoelectric point of the sample;
    The sixth metal oxide film is
    A plurality of third metal oxide film pieces formed of the first metal oxide and scattered in the sixth region;
    And a plurality of fourth metal oxide film pieces formed of the second metal oxide and scattered in the sixth region;
    Each of the plurality of third metal oxide film pieces is disposed so as not to overlap with each of the plurality of fourth metal oxide film pieces when the carrier is viewed in plan view,
    The plurality of first metal oxide film pieces and the plurality of third metal oxide film pieces differ in at least one of the area and the number, and the plurality of second metal oxide film pieces and the plurality of second metal oxide film pieces The electrophoresis support according to claim 7, wherein at least one of the area and the number of the metal oxide film pieces of No. 4 is different.
  9.  前記第5の金属酸化膜は、
     前記第1の金属酸化物で形成され、前記第5の領域において点在する複数の第1の金属酸化膜片と、
     前記第2の金属酸化物で形成され、前記第5の領域において点在する複数の第2の金属酸化膜片と、を含み、
     前記担体を平面視した際に、前記複数の第1の金属酸化膜片の各々は、前記複数の第2の金属酸化膜片の各々と互いに重なるように配置されている
     請求項6に記載の電気泳動支持体。
    The fifth metal oxide film is
    A plurality of first metal oxide film pieces formed of the first metal oxide and scattered in the fifth region;
    And a plurality of second metal oxide film pieces formed of the second metal oxide and scattered in the fifth region;
    The plurality of first metal oxide film pieces are disposed so as to overlap with each of the plurality of second metal oxide film pieces, when the carrier is viewed in plan. Electrophoresis support.
  10.  前記第1の領域、前記第2の領域、前記第3の領域及び前記第4の領域の各区間長のうち少なくとも2つの区間長は、互いに異なる
     請求項3に記載の電気泳動支持体。
    The electrophoresis support according to claim 3, wherein at least two section lengths among the section lengths of the first area, the second area, the third area, and the fourth area are different from one another.
  11.  試料を電気泳動するための電気泳動装置であって、
     容器と、
     前記容器の内部に配置された一対の電極と、
     請求項1~10のいずれか1項に記載の電気泳動支持体と、を備え、
     前記一対の電極はそれぞれ、前記電気泳動支持体の前記試料の泳動方向における両端部に配置されている
     電気泳動装置。
    An electrophoresis apparatus for electrophoresis of a sample, wherein
    A container,
    A pair of electrodes disposed inside the container;
    An electrophoretic support according to any one of claims 1 to 10;
    An electrophoresis apparatus, wherein the pair of electrodes are respectively disposed at both ends of the electrophoresis support in the migration direction of the sample.
PCT/JP2018/037589 2017-10-27 2018-10-09 Electrophoretic support and electrophoresis device WO2019082640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017208548 2017-10-27
JP2017-208548 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019082640A1 true WO2019082640A1 (en) 2019-05-02

Family

ID=66246334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037589 WO2019082640A1 (en) 2017-10-27 2018-10-09 Electrophoretic support and electrophoresis device

Country Status (1)

Country Link
WO (1) WO2019082640A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534914A (en) * 2002-07-31 2005-11-17 ソルヴィーアス アクチェンゲゼルシャフト Apparatus and measuring method
US20060065528A1 (en) * 2004-02-03 2006-03-30 Gabriel Lopez Nanostructured devices for separation and analysis
US20120228142A1 (en) * 2004-03-31 2012-09-13 Scott Sibbett Fabrication and use of semipermeable membranes and gels for the control of electrolysis
WO2016163097A1 (en) * 2015-04-10 2016-10-13 パナソニックIpマネジメント株式会社 Electrophoretic support body and electophoretic device
WO2018030052A1 (en) * 2016-08-10 2018-02-15 パナソニックIpマネジメント株式会社 Electrophoresis support, electrophoresis device, and method for manufacturing electrophoresis support

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534914A (en) * 2002-07-31 2005-11-17 ソルヴィーアス アクチェンゲゼルシャフト Apparatus and measuring method
US20060065528A1 (en) * 2004-02-03 2006-03-30 Gabriel Lopez Nanostructured devices for separation and analysis
US20120228142A1 (en) * 2004-03-31 2012-09-13 Scott Sibbett Fabrication and use of semipermeable membranes and gels for the control of electrolysis
WO2016163097A1 (en) * 2015-04-10 2016-10-13 パナソニックIpマネジメント株式会社 Electrophoretic support body and electophoretic device
WO2018030052A1 (en) * 2016-08-10 2018-02-15 パナソニックIpマネジメント株式会社 Electrophoresis support, electrophoresis device, and method for manufacturing electrophoresis support

Similar Documents

Publication Publication Date Title
US9435802B2 (en) Sensor, a sensor array, and a method of operating a sensor
Kurashige et al. Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II
Onda et al. Wet electrons at the H2O/TiO2 (110) surface
US10180420B2 (en) Methods for detecting an analyte and performing a failsafe step in a body fluid using optical and impedance measurements
CN103971932A (en) Monolithic Ceramic Electronic Component
KR101929057B1 (en) Residual compensation for a biosensor
TWI472315B (en) Biosensor manufacturing method
CN102713610B (en) Electrode arrangements for biosensors
Sairi et al. Electrochemical Characterisation of Nanoscale Liquid| Liquid Interfaces Located at Focused Ion Beam‐Milled Silicon Nitride Membranes
US8999127B2 (en) Biological sensor measuring electrochemical and/or electrical and diamond electrode and electronic integrated circuit
Hees et al. Diamond nanoelectrode arrays for the detection of surface sensitive adsorption
WO2019082640A1 (en) Electrophoretic support and electrophoresis device
JP2019082339A (en) Electrophoresis support and electrophoresis device
TW201013851A (en) RRAM with improved resistance transformation characteristic and the method of making the same
JP2019082341A (en) Electrophoresis support and electrophoresis device
DE102009007851A1 (en) Sensor for detecting relative hydrogen value for e.g. food industry, has pH electrode, half cell and electrochemical reference electrode that are formed on planar substrate using planar technology
Hossain et al. Interfacial screening in ultrafast voltammetry: a theoretical study of redox-active monolayers
TW201937164A (en) Methods for making electrodes and providing electrical connections in sensors
Zrinski et al. Coexistence of memory and threshold resistive switching identified by combinatorial screening in niobium-tantalum system
KR101372172B1 (en) Bio sensor manufacturing method
DE112004001797T5 (en) Electrochemical chip with integrated sensor arrangement, method for its formation and electrode coating
Battistel et al. Pt Nanoelectrodes Sealed in Quartz Capillaries Modified with Underpotential‐Deposited Bismuth for Formic Acid Electrooxidation
Liu et al. Research on improving the working current of NbOx-based selector by inserting a Ti layer
JP2005527799A (en) Vertical impedance sensor structure and method of manufacturing vertical impedance sensor structure
WO2021166597A1 (en) Biological substance detection chip, biological substance detection device, and biological substance detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP