WO2019078216A1 - Vehicle power device and wheel bearing device with generator - Google Patents

Vehicle power device and wheel bearing device with generator Download PDF

Info

Publication number
WO2019078216A1
WO2019078216A1 PCT/JP2018/038534 JP2018038534W WO2019078216A1 WO 2019078216 A1 WO2019078216 A1 WO 2019078216A1 JP 2018038534 W JP2018038534 W JP 2018038534W WO 2019078216 A1 WO2019078216 A1 WO 2019078216A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
stator
rotor
vehicle
bearing
Prior art date
Application number
PCT/JP2018/038534
Other languages
French (fr)
Japanese (ja)
Inventor
浩希 藪田
健太郎 西川
光生 川村
康之 藤田
雄司 矢田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018165590A external-priority patent/JP7140608B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP18868945.9A priority Critical patent/EP3699010A4/en
Priority to CN201880067602.5A priority patent/CN111263706B/en
Publication of WO2019078216A1 publication Critical patent/WO2019078216A1/en
Priority to US16/850,576 priority patent/US11447003B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/18Arrangement of bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/102Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction brakes

Definitions

  • the present invention relates to a vehicular power unit including a bearing for a wheel and a generator, and a bearing unit for a wheel with a generator, wherein the potential difference between the inner and outer rings of the bearing caused by mounting the generator is eliminated in the bearing.
  • the present invention relates to a technology capable of preventing electrolytic corrosion.
  • Patent Document 1 In a wheel drive device which uses a motor as a drive source, a technique for preventing electrolytic corrosion of a rolling bearing portion has been proposed (Patent Document 1).
  • Patent Document 1 in a wheel drive device that uses an inner rotor type motor as a drive source, in order to electrically energize the rotor and the stator, a conical surface or spherical contact body electrically connected to the stator is pressed against the rotor This prevents electrolytic corrosion of the rolling bearing portion of the wheel bearing.
  • Patent Document 1 corresponds only to a vehicle drive device that uses an inner rotor type motor as a drive source. Further, the number of parts of the galvanic corrosion preventing unit for pressing the contact body to the rotor is large, the structure is complicated and the manufacturing cost is high. Therefore, in the configuration shown in FIG. 15, the current-carrying brush Br is provided between the fixed wheel of the wheel bearing and the hub flange, which corresponds to a vehicle drive device using an outer rotor type motor as a drive source. In this case, the potential difference is eliminated by supplying the potential difference generated in the inner and outer rings of the wheel bearing to the current-carrying brush Br, and the electrolytic corrosion due to the spark of the rolling element 60 is prevented. However, since the contact surface of the conical surface or the spherical surface or the current-carrying brush Br continues to slide during rotation of the wheel bearing, the current-carrying capacity is reduced due to wear, and periodical replacement is required.
  • An object of the present invention is to provide a vehicular power unit and a generator-equipped wheel bearing unit capable of preventing electrolytic corrosion of a bearing for a wheel and being maintenance-free with respect to the function of insulation.
  • a vehicle power unit has a fixed wheel and a hub flange, and is rotatably supported by the fixed wheel via a rolling element, and the wheel and brake rotor of the vehicle are attached to the hub flange.
  • a wheel bearing having a rotating wheel A vehicle power unit comprising: a stator attached to the fixed wheel of the wheel bearing; and an electric motor having a rotor attached to the rotary wheel of the wheel bearing.
  • the stator and part or all of the rotor are smaller in diameter than the outer peripheral part of the brake rotor where the brake caliper is pressed, and the entire portion excluding the mounting portion to the hub flange of the electric motor is the above.
  • An insulating layer is interposed between the fixed ring and the stator.
  • the rotor of the motor is a direct drive type mounted on the rotating wheel of the wheel bearing, the number of parts of the entire vehicle power unit is small, the configuration is simple and space saving is realized, and the weight of the vehicle is increased. Can be suppressed.
  • stator and the rotor are smaller in diameter than the outer periphery of the brake rotor, and the whole of the motor except for the attachment to the hub flange is the hub flange and the outboard side of the underframe part. Located in the axial range between. For this reason, the space which installs an electric motor in a brake rotor is secured, and this electric motor can be stored compactly.
  • the insulating layer is interposed between the fixed ring and the stator, the electrical corrosion of the wheel bearing can be prevented by interrupting the current flow to the rolling elements by the insulating layer.
  • electrolytic corrosion of the wheel bearing abnormalities of the rolling element and rolling surface of the wheel bearing can be prevented, life extension of the wheel bearing can be expected, and noise from the wheel bearing can be prevented beforehand. obtain.
  • the insulating layer does not need to be replaced without being worn like a current-carrying brush or the like, maintenance is free with respect to the function of insulation. Therefore, the cost can be reduced as compared with the conventional example using a conductive brush or the like.
  • the electric motor may be an outer rotor type in which the stator is located on the outer periphery of the wheel bearing and the rotor is located radially outward of the stator.
  • the area in which the rotor and the stator face can be increased more than in the inner rotor type. This makes it possible to maximize the output torque in a limited space.
  • the motor may be a motor generator capable of rotationally driving the wheel.
  • the fuel efficiency can be reduced by the power assist by the motor generator.
  • the reduction gear mechanism of the conventional example there is no need to install a motor generator around the wheel bearing, and a configuration in which no potential difference occurs in the inner and outer rings of the bearing can be obtained.
  • the stator and the rotor of the motor generator are formed between the bearing inner and outer rings, a potential difference is generated between the bearing inner and outer rings. Therefore, the present invention is limited to the configuration in which the direct drive type motor generator is mounted on the wheel bearing.
  • the driving voltage or regenerative voltage for rotational driving of the motor may be 60 V or less.
  • a so-called medium-voltage battery can be mounted on the vehicle at a lower voltage than a high-voltage battery of 100 V or more used in a so-called strong hybrid vehicle etc.
  • a mild hybrid vehicle can be obtained without significant modification of the vehicle.
  • an intermediate member for fixing the fixed ring to the frame frame part, and between the intermediate member and the fixed ring and between the intermediate member and the stator Either or both may be equipped with the said insulating layer.
  • the insulating layer can be made of a soft material such as a resin material or a rubber material. This is because the force acting between the intermediate member and the stator is only the force generated by the generator and does not require so much strength. If an insulating layer is provided between the intermediate member and the fixed ring, the insulating layer needs a rigid insulating material between the intermediate member and the fixed ring. The force generated by the motion of the vehicle and the vehicle acts between the intermediate member and the fixed wheel.
  • An intermediate member may be provided between the fixed ring and the stator to fix the fixed ring to the undercarriage frame part, and the intermediate member may be made of an insulating material.
  • the number of parts can be reduced and the structure can be simplified as compared to providing a member made of an insulating material in addition to the intermediate member.
  • an insulating material may be provided between the rotor and the rotating wheel.
  • the generation of a small amount of eddy current between the rotor of the motor and the stator may cause the rolling elements to energize the rolling elements from the rotor.
  • the insulating layer is interposed between the fixed wheel and the stator, by providing the insulating material between the rotor and the rotating wheel, the rotor and the rotating wheel are insulated, and Electric corrosion can be prevented more reliably.
  • a power unit for a vehicle has a fixed wheel and a hub flange, and is rotatably supported by the fixed wheel via a rolling element, and the wheel and brake rotor of the vehicle are attached to the hub flange.
  • a wheel bearing having a rotating wheel A vehicle power unit comprising: a stator attached to the fixed wheel of the wheel bearing; and an electric motor having a rotor attached to the rotary wheel of the wheel bearing.
  • the stator and part or all of the rotor are smaller in diameter than the outer peripheral part of the brake rotor where the brake caliper is pressed, and the entire portion excluding the mounting portion to the hub flange of the electric motor is the above.
  • the rolling element is made of an insulating material.
  • the rolling elements are made of the insulating material, it is possible to prevent the electrolytic corrosion of the wheel bearing by interrupting the energization of the rolling elements.
  • the rolling element made of the insulating material does not need to be replaced without being worn like a current-carrying brush or the like, it becomes maintenance free with respect to the function of insulation. Therefore, the cost can be reduced as compared with the conventional example using a conductive brush or the like.
  • the generator-equipped wheel bearing device in the present invention has a fixed wheel and a hub flange, and is rotatably supported by the fixed wheel via a rolling element, and a wheel and a brake rotor of a vehicle are attached to the hub flange.
  • a wheel bearing having a wheel having a wheel;
  • a generator bearing bearing device comprising: a stator attached to the fixed wheel of the wheel bearing; and a generator having a rotor attached to the rotating wheel of the wheel bearing; Part or all of the stator and the rotor are smaller in diameter than the outer peripheral part of the brake rotor where the brake caliper is pressed, and the whole excluding the mounting portion to the hub flange in the generator is In an axial range between the hub flange and the outboard side of an undercarriage part of the vehicle, An insulating layer is interposed between the fixed ring and the stator.
  • the entire diameter of the generator-equipped wheel bearing apparatus is not increased ( In other words, it is possible to cut off the current flow to the rolling elements by the insulating layer without impeding that the components of the generator-equipped wheel bearing assembly are contained in the brake rotor. This can prevent electrolytic corrosion of the wheel bearing.
  • the same effects as those of the power unit for a vehicle according to the first configuration are obtained.
  • An insulating material may be provided between the rotor and the rotating wheel.
  • the generation of a small amount of eddy current between the rotor and the stator of the generator may cause the rolling elements to energize the rolling elements from the rotor.
  • the insulating layer is interposed between the fixed wheel and the stator, by providing the insulating material between the rotor and the rotating wheel, the rotor and the rotating wheel are insulated, and Electric corrosion can be prevented more reliably.
  • FIG. 1 is a cross-sectional view of a power unit for a vehicle (bearing device with a generator) according to an embodiment of the present invention. It is a side view of the power unit for the same vehicles. It is a front view of the power unit for the same vehicles. It is the IV-IV sectional view taken on the line of FIG.
  • FIG. 6 is a cross-sectional view of a vehicular power unit according to another embodiment of the present invention. It is a cross-sectional view of a vehicular power unit according to still another embodiment of the present invention. It is a cross-sectional view of a vehicular power unit according to still another embodiment of the present invention. It is a cross-sectional view of a vehicular power unit according to still another embodiment of the present invention. It is XX sectional drawing of FIG. It is sectional drawing which shows roughly the fixing method of the insulating material in the power plant for the same vehicles.
  • FIG. 1 is a block diagram showing a conceptual configuration of a vehicle system of a vehicle provided with any of the vehicle power devices. It is a power supply system figure used as an example of the vehicles carrying the system for vehicles. It is sectional drawing of the power unit for vehicles of a prior art example.
  • the vehicle power unit 1 includes a wheel bearing 2 and a motor generator 3 which is a generator that doubles as an electric motor.
  • the bearing apparatus for wheels with a generator which concerns on embodiment of this invention can be comprised by employ
  • the generator-equipped wheel bearing apparatus includes the generator 3 that does not share the motor, and the wheel bearing 2.
  • the generator-equipped wheel bearing device has the same configuration as the vehicle power unit 1 except for the motor generator 3 which also serves as an electric motor.
  • the wheel bearing 2 has an outer ring 4 which is a fixed ring, rolling elements 6 in double rows, and an inner ring 5 which is a rotating ring.
  • the inner ring 5 is rotatably supported by the outer ring 4 via the rolling elements 6 in double rows. Grease is enclosed in the bearing space between the outer ring 4 and the inner ring 5.
  • the inner ring 5 has a hub ring 5a and a partial inner ring 5b fitted to the inboard outer peripheral surface of the hub ring 5a.
  • the hub wheel 5 a has a hub flange 7 at a location protruding toward the outboard side in the axial direction with respect to the outer ring 4.
  • a wheel rim (not shown), a brake rotor 12 and a case bottom 11 (described later) are attached to the side surface on the outboard side of the hub flange 7 by a hub bolt 13 in an axially overlapping manner.
  • a tire not shown is mounted on the outer periphery of the rim.
  • FIG. 1 is a cross-sectional view taken along line II of FIG.
  • the brake rotor 12 has a flat portion 12 a and an outer peripheral portion 12 b.
  • the flat portion 12 a is an annular and flat member overlapping the hub flange 7 via the case bottom 11.
  • the outer circumferential portion 12 b extends from the flat plate portion 12 a to the outer circumferential side of the outer ring 4.
  • the outer peripheral portion 12b is a cylindrical portion 12ba cylindrically extending from the outer peripheral edge of the flat portion 12a to the inboard side, and a flat portion 12bb extending from the inboard end of the cylindrical portion 12ba to the outer diameter side And.
  • the brake caliper Kp has a friction pad that holds the flat plate portion 12bb of the brake rotor 12 therebetween.
  • the brake caliper Kp is attached to a knuckle 8 which is an underbody frame part of a vehicle.
  • the brake caliper Kp may be either hydraulic or mechanical, and may be electric motor.
  • the motor generator 3 of this example is a motor generator (motor) for travel assistance which can generate electric power by rotation of the wheels and can rotationally drive the wheels by being supplied with electricity.
  • the motor generator 3 may be referred to as the motor 3.
  • the motor generator 3 has a rotating case 15, a stator 18 and a rotor 19.
  • the rotating case 15 is attached to the hub flange 7 and covers the rotor 19 and the stator 18.
  • the motor generator 3 is an outer rotor type in which the rotor 19 is located radially outward of the stator 18.
  • the rotor 19 of the motor generator 3 is a direct drive type mounted on the inner ring 5 which is a rotating wheel of the wheel bearing 2.
  • the motor generator 3 is an outer rotor type IPM (Interior Permanent Magnet) synchronous motor (or denoted as IPMSM (Interior Permanent Magnet Synchronous Motor)).
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • the motor generator 3 may be an SPM synchronous motor.
  • the motor generator 3 can adopt various types such as a switched reluctance motor (abbreviation: SR motor), an induction motor (induction motor: abbreviation: IM) and the like.
  • SR motor switched reluctance motor
  • IM induction motor
  • each type of distributed winding and concentrated winding can be adopted as a winding type of the stator 18.
  • the rotating case 15 is composed of a bottomed cylindrical case body 16.
  • the case main body 16 has a case bottom 11 and a case cylindrical portion 25.
  • the case bottom 11 and the case cylindrical portion 25 are integrally or separately formed.
  • the case bottom 11 is a flat and annular member sandwiched between the flat portion 12 a of the brake rotor 12 and the hub flange 7.
  • a case cylindrical portion 25 extends cylindrically from the outer peripheral edge of the case bottom 11 toward the inboard side.
  • the rotor 19 includes a magnetic body 19 a provided by press-fitting or the like in the middle diameter portion of the case cylindrical portion 25 and a plurality of permanent magnets 19 b built in the magnetic body 19 a. As shown in FIG. 1, the outboard side end of the rotor 19 abuts on the stepped portion connecting the small diameter portion and the medium diameter portion of the case cylindrical portion 25, whereby the rotor 19 with respect to the rotation case 15 is obtained. Are positioned in the axial direction.
  • the stator 18 is attached to the outer peripheral surface of the outer ring 4 via the insulating layer 9 and a stator holding member 24 which is an intermediate member. As shown in FIGS. 1 and 4, the stator 18 has a core 18 a and coils 18 b wound around the teeth of the core 18 a. The coil 18 b is connected to the wiring 17 (FIG. 1).
  • the stator holding member 24 holds the stator 18 in contact with the inner peripheral surface of the stator 18 and the end face on the outboard side.
  • the stator 18 is, for example, fixed to the stator holding member 24 in the rotational direction and the radial direction by press-fitting or bolt fastening. Further, the stator holding member 24 is fixed to the outer peripheral surface of the outer ring 4 via the insulating layer 9 by press fitting or the like.
  • stator holding member 24 and the knuckle 8 are fastened by a bolt 20. Between the inboard side end face of the stator holding member 24 and the outboard side face of the knuckle 8, the cover standing plate portion 22a of the unit cover 22 is interposed. As shown in FIG. 5, of the stator holding member 24 which is an intermediate member, on the end face on the inboard side (knuckle surface side), the wire connection of the coil 18b (FIG. 1) A plurality of (six in this example) communication holes 24c are provided in the circumferential direction to be passed from the inside to the inside diameter side.
  • a plurality of communication holes 24 c are formed by providing notches of equal circumferential distribution on the end surface on the inboard side of the stator holding member 24.
  • the plurality of communication holes 24c need not be circumferentially equidistant, and may be communication holes generally passing through the wiring 17 (FIG. 1) formed of three lines of U-phase, V-phase and W-phase.
  • the knuckle 8 is formed with a through hole 8b for allowing insertion of the outer peripheral surface of the cylindrical portion 22b in the unit cover 22.
  • Through holes 8b of the unit cover 22 are inserted through a plurality of bolts 20 (see FIG. 1). Not shown) is formed.
  • a plurality of female threads 24d extending in the axial direction are circumferentially equidistantly formed on the stator holding member 24.
  • Through holes (not shown) in the same phase as the respective female screws 24 d are formed in the cover upright plate portion 22 a.
  • the bolts 20 are inserted from the inboard side of the knuckles 8 into the insertion holes of the knuckles 8 and screwed to the female screws 24 d of the stator holding member 24 through the through holes of the cover upright plate portion 22 a.
  • an annular recess 24 a that is recessed outward in the radial direction is formed on the inner peripheral surface of the stator holding member 24.
  • An insulating layer 9 made of an insulating material having a cylindrical shape and desired rigidity is inserted in the annular recess 24a. Examples of the material of the insulating layer 9 include an insulating soft material such as a resin material or a rubber material, or an insulating material such as a ceramic.
  • An insulating layer 9 made of a rigid insulating material is preferable because a force generated by the vehicle weight and the motion of the vehicle acts between the stator holding member 24 which is the intermediate member and the outer ring 4.
  • the axial length, that is, the width dimension of the insulating layer 9 is substantially the same as the width dimension of the outer peripheral surface of the outer ring 4 and is formed so as to cover all the outer peripheral surface of the outer ring 4. According to the drive voltage of the generator 3, it sets suitably. By interrupting the current flow to the rolling elements 6 by such an insulating layer 9, the electrolytic corrosion of the wheel bearing 2 can be prevented.
  • the insulating layer 9 may be formed by applying or spraying an insulating material on either or both of the inner circumferential surface of the stator holding member 24 and the outer circumferential surface of the outer ring 4.
  • a seal member 23 is disposed between the rotation case 15 and the outboard side surface of the knuckle 8 to prevent the entry of water and foreign matter into the motor generator 3 and the wheel bearing 2.
  • the seal member 23 has an annular seal plate and an elastic seal member facing each other.
  • An annular rotor end ring member 26 is fixed to the large diameter portion and the end face of the case cylindrical portion 25 of the rotation case 15 by bolts.
  • An axial gap is formed between the rotor end ring member 26 and the outboard side surface 8 a of the knuckle 8.
  • An annular groove is formed on the outer peripheral surface of the rotor end ring member 26, and an O-ring is provided in the annular groove.
  • the O-ring seals the contact surface between the end inner peripheral surface of the rotating case 15 and the rotor end ring member 26.
  • the rotor end ring member 26 also serves as a positioning member in the axial direction of the permanent magnet 19 b (FIG. 4) incorporated in the magnetic body 19 a (FIG. 4).
  • the vehicle power unit 1 is provided with a rotation detector 27.
  • the rotation detector 27 is located inside the hollow of the stator 18.
  • the rotation detector 27 detects the rotation angle or rotation speed of the inner ring 5 with respect to the outer ring 4 in order to control the rotation of the motor generator 3 for driving assistance.
  • the rotation detector 27 has a detected portion 27a attached to the detected portion holding member 28 and the like, and a sensor portion 27b attached to the inner peripheral surface of the stator holding member 24 to detect the detected portion 27a.
  • a resolver is applied as the rotation detector 27.
  • the rotation detector 27 is not limited to the resolver, and may be, for example, an encoder, a pulser ring or a Hall sensor regardless of the type.
  • a connector cover 66 covering the inboard end is detachably attached to the inboard end of the cylindrical portion 22b of the unit cover 22 by a plurality of bolts.
  • the wiring 17 of the motor generator 3 is supported by the connector cover 66 via a so-called panel mount type power line connector 67.
  • the connector cover 66 also supports a panel mount type sensor connector 64.
  • the embodiment of the present invention is limited to the configuration in which the direct drive type motor generator is mounted on the wheel bearing.
  • the whole of the stator 18 and the rotor 19 is smaller in diameter than the outer peripheral portion 12b of the brake rotor 12, and the whole of the motor generator 3 excluding the mounting portion to the hub flange 7 is the hub flange 7 and the outboard side face of the knuckle 8. It is located in the axial range L1 between 8a and 8a. For this reason, the space which installs motor generator 3 in brake rotor 12 is secured, and this motor generator 3 can be stored compactly.
  • the vehicle power unit in which all the components fit within the brake rotor, requires a more compact insulating structure than a conventional in-wheel motor.
  • the space between the outer ring 4 and the stator 18 By interposing the insulating layer 9 in the annular space using a slight annular space, the diameter of the entire vehicle power unit 1 is not increased (in other words, the vehicle power unit 1 is installed in the brake rotor 12).
  • the insulation layer 9 can cut off the current flow to the rolling elements 6 without inhibiting the components from being contained.
  • the following advantages are mentioned as a countermeasure against galvanic corrosion compared with the structure which used the electricity supply brush.
  • (1) It is easy to check when checking for electrical corrosion measures. As the above reason, in a state where the power unit for a vehicle is assembled, it is not possible to check whether the inner and outer rings of the bearing are electrically connected by the current-carrying brush only by measuring the electrical resistance between the inner and outer rings.
  • the insulation is obtained by measuring the electrical resistance between the stator 18 and the outer ring 4 or between the stator 18 and the inner ring 5. If done, electrolytic corrosion can not occur.
  • the insulating layer 9 is interposed between the outer ring 4 which is the fixed ring and the stator 18, the electric corrosion of the wheel bearing 2 is prevented by interrupting the current flow to the rolling elements 6 by the insulating layer 9. You can prevent. By preventing the electrolytic corrosion of the wheel bearing 2, abnormalities of the rolling element 6 and the rolling surface of the wheel bearing 2 can be prevented, and life extension of the wheel bearing 2 can be expected, and abnormal noise from the wheel bearing 2 Can be prevented in advance. Since the insulating layer 9 does not need to be replaced without being worn like a current-carrying brush or the like, maintenance is free with respect to the function of insulation. Therefore, the cost can be reduced as compared with the conventional example using a conductive brush or the like.
  • the motor generator 3 is an outer rotor type in which the rotor 19 is located outward in the radial direction of the stator 18, the area in which the rotor 19 and the stator 18 face each other can be increased compared to the inner rotor type. This makes it possible to maximize the output torque in a limited space.
  • the vehicle power unit 1 may include an insulating layer 9A between the stator holding member 24 and the stator 18.
  • the inner peripheral surface of the cylindrical insulating layer 9A is fixed to the outer peripheral surface of the stator holding member 24.
  • a flange portion 24 b which protrudes a predetermined small distance outward in the radial direction is formed on the outer peripheral surface of the stator holding member 24 on the outboard side.
  • the outboard side end face of the insulating layer 9A is in contact with the flange portion 24b and positioned in the axial direction.
  • the width dimension of the insulating layer 9A is substantially the same as the width dimension of the stator 18, and is formed so as to cover the outer peripheral surface of the stator holding member 24 with the insulating layer 9A.
  • a material of the insulating layer 9A for example, a soft material having insulation such as a resin material or a rubber material is applied.
  • the force acting between the stator holding member 24 and the stator 18 is only the force generated by the motor generator 3 and does not require so much strength. According to this configuration, the cost can be reduced more than that using the above-described insulating material such as ceramics. In addition, the same operation and effect as those of the above-described embodiment can be obtained.
  • insulating layer 9A between stator holding member 24 and stator 18 it is also possible to use insulating materials, such as ceramics.
  • the stator holding member 24 which is an intermediate member may be made of an insulating material.
  • the number of parts can be reduced and the structuring can be simplified as compared to providing a member made of an insulating material in addition to the stator holding member 24. This can reduce the cost.
  • the stator holding member 24 which is an intermediate member and the outer ring 4 may be an integral structure made of the same material instead of separate members. In this case, the inner peripheral surface of the stator 18 is fitted to the outer peripheral surface of the outer ring 4. According to this configuration, the rigidity of the intermediate member and the wheel bearing 2 can be increased, and the number of parts can be reduced.
  • the rolling elements 6 may be made of an insulating material. Ceramics etc. can be applied as this insulating material. In this case, since the rolling element 6 is made of an insulating material, the electric corrosion of the wheel bearing 2 can be prevented by interrupting the current flow to the rolling element 6.
  • the present invention is not limited to this example.
  • a part of the stator 18 and the rotor 19 may be smaller in diameter than the outer peripheral portion 12 b of the brake rotor 12.
  • the motor generator may be an inner rotor type in which the rotor is located radially inward of the stator.
  • insulation is provided between the rotor 19 and the inner ring (rotating ring) 5
  • the material 31 may be interposed.
  • a ring-shaped insulating material 31 is attached between the base end of the case cylindrical portion 25 on the outboard side of the rotation case 15 and the case bottom 11.
  • the insulating material 31 is coaxial with the inner ring 5.
  • the case bottom 11 and the case cylindrical portion 25 are separately formed, and fixed by interposing the insulating material 31 by a bolt described later.
  • a plurality of internal threads are formed at predetermined intervals in the circumferential direction at the base end of the case cylindrical portion 25 on the outboard side, and the insulating material 31 and the case bottom 11 In the female screw, bolt holes and countersunk holes of the same phase are formed.
  • Bolts 29 are respectively inserted into the bolt holes from the outboard side of the rotation case 15 and fastened to the respective female screws.
  • a rigid insulating member such as a resin material or a ceramic is preferable.
  • an insulating material may be applied or sprayed over the entire rotation case 15, or the material of the rotation case 15 may be resin or ceramics. According to this modification, the same effect as that of the above-described configuration can be obtained.
  • those in which the material of the insulating material and the rotation case 15 is made of resin or ceramic correspond to the "insulating material" in the present specification.
  • the configuration shown in FIG. 9 and a modified example in which an insulating material is applied or sprayed on the entire rotating case 15 may be provided.
  • the insulating material 31 may be provided between the rotor 19 and the inner ring 5 as well. Good. Also in the rotation case 15 of this example, the case bottom 11 and the case cylindrical portion 25 are separately formed, and are fixed by interposing the insulating material 31 by the bolt. According to this configuration, by providing the insulating material 31 between the rotor 19 and the inner ring 5, the rotor 19 and the inner ring 5 are insulated, and the electrolytic corrosion of the rolling elements 6 can be more reliably prevented.
  • FIG. 13 is a block diagram showing a conceptual configuration of a system for a vehicle using the power unit 1 for a vehicle according to any one of the embodiments.
  • the vehicle power plant 1 in a vehicle having a driven wheel 10 B is a main drive source mechanically unconnected, is mounted against the driven wheel 10 B.
  • Wheel bearing 2 in the vehicle power unit 1 (FIG. 1, 6-8, 9, 12) is a bearing supporting the driven wheel 10 B.
  • the main drive source 35 is an internal combustion engine such as a gasoline engine or a diesel engine, or a motor generator (electric motor), or a hybrid drive source combining both.
  • the "motor generator” refers to an electric motor capable of generating power by rotation.
  • the vehicle 30 is a front wheel drive car whose front wheels are drive wheels 10 A and rear wheels are driven wheels 10 B, and the main drive source 35 is an internal combustion engine 35 a and a motor generator 35 b on the drive wheels side. It is a hybrid car (hereinafter may be referred to as "HEV").
  • HEV hybrid car
  • Hybrids can be broadly divided into Strong Hybrids and Mild Hybrids, but Mild Hybrids, whose main drive source is an internal combustion engine, is a type that mainly assists driving with a motor when starting or accelerating.
  • Mild Hybrids whose main drive source is an internal combustion engine, is a type that mainly assists driving with a motor when starting or accelerating.
  • the (electric car) mode it can be distinguished from the strong hybrid because normal travel can be performed for a while but can not be performed for a long time.
  • Internal combustion engine 35a of the example of the figure is connected to the drive shaft of the drive wheel 10 A via the clutch 36 and the transmission 37, the motor generator 35b of the driving wheel is connected to the transmission 37.
  • System for a vehicle includes an electric motor 3 is a power generator for the drive assistance for rotating driving of the driven wheels 10 B, the individual control means 39 for controlling the electric motor 3, the individual control unit provided in the upper ECU40 And an individual motor generator command means 45 for outputting a command for performing control of drive and regeneration at 39.
  • the motor 3 is connected to the storage means.
  • the storage means may be a battery (storage battery) or a capacitor, a capacitor, etc.
  • the type and mounting position on the vehicle 30 are not limited. In this embodiment, the low voltage battery 50 mounted on the vehicle 30 and The medium voltage battery 49 of the medium voltage battery 49 is used.
  • the driven wheel motor 3 is a direct drive motor that does not use a transmission.
  • the motor 3 acts as a motor by supplying electric power, and also acts as a generator that converts kinetic energy of the vehicle 30 into electric power.
  • the motor 3 has the rotor 19 (FIG. 1) attached to the inner ring 5 (FIG. 1), the current is applied to the motor 3 and torque is generated in the traveling direction of the vehicle. Regenerative power is obtained by being driven and generating torque in the reverse direction.
  • the driving voltage or regenerative voltage for rotational driving of the motor 3 is 60 V or less.
  • the host ECU 40 is a unit that performs integrated control of the vehicle 30, and includes a torque command generation unit 43.
  • the torque command generation unit 43 generates a torque command in accordance with signals of operation amounts respectively input from an accelerator operation unit 56 such as an accelerator pedal and a brake operation unit 57 such as a brake pedal.
  • the vehicle 30 includes a motor generator 35b of the internal combustion engine 35a and the drive wheel as the main drive source 35, and because with the two electric motors 3, 3 for driving two driven wheels 10 B, 10 B, respectively, wherein
  • the host ECU 40 is provided with a torque command distribution unit 44 that distributes the torque command to the drive sources 35 a, 35 b, 3, 3 according to the rule defined.
  • the torque command for the internal combustion engine 35a is transmitted to the internal combustion engine control means 47, and is used for valve opening control etc. by the internal combustion engine control means 47.
  • a torque command to the drive wheel side generator motor 35b is transmitted to the drive wheel side motor generator control means 48 and executed.
  • Torque commands for the driven wheels 3 and 3 are transmitted to the individual control means 39 and 39.
  • the part of the torque command distribution means 44 to be output to the individual control means 39, 39 is referred to as an individual motor generator command means 45.
  • the individual motor generator command means 45 also has a function of giving to the individual control means 39 a torque command serving as a command of a braking force with which the motor 3 shares braking by regenerative braking in response to the signal of the operation amount of the brake operation means 57. Prepare.
  • the individual control means 39 is an inverter device, and an inverter 41 for converting DC power of the medium voltage battery 49 into three-phase AC voltage, and a control unit 42 for controlling the output of the inverter 41 by PWM control etc.
  • the inverter 41 includes a bridge circuit (not shown) and the like by a semiconductor switching element and the like.
  • the control unit 42 controls the motor 3 to follow the torque command generated by the individual motor generator command unit 45, for example, so that the generated torque matches. That is, the control unit 42 calculates the current to be applied to the motor 3 from the command torque, the rotation speed (which can be easily calculated in the case of the rotation angle sensor) detected by the rotation detector 27 (FIG. 1), and the test result. . Furthermore, the voltage applied to the motor 3 is calculated from the calculated current, the rotation angle, and the value of the current sensor (not shown). The calculated voltage is applied to the motor 3 to generate a torque that matches the command torque.
  • the individual control means 39 is separately provided for the two motors 3 and 3, it may be housed in one case and the control unit 42 may be shared by both individual control means 39, 39. .
  • FIG. 14 is a power supply system diagram as an example of a vehicle equipped with the system for a vehicle shown in FIG.
  • a low voltage battery 50 and a medium power battery 49 are provided as batteries, and both the batteries 49 and 50 are connected via a DC / DC converter 51.
  • the motor generator 35b on the drive wheel side of FIG. 13 is connected to the medium power system in parallel with the motor 3 on the driven wheel side, although not shown in FIG.
  • a low voltage load 52 is connected to the low voltage system, and a medium voltage load 53 is connected to the medium voltage system.
  • the low voltage battery 50 is a battery generally used in various automobiles as a power supply of a control system or the like, and is, for example, 12 V or 24 V.
  • the low voltage load 52 includes basic components such as a starter motor of the internal combustion engine 35a, lights, a host ECU 40, and other ECUs (not shown).
  • the low voltage battery 50 may be referred to as an auxiliary battery for electrical equipment accessories, and the medium voltage battery 49 may be referred to as an auxiliary battery for an electric system or the like.
  • the medium voltage battery 49 has a higher voltage than the low voltage battery 50 and is lower than a high voltage battery (100 V or more, for example, about 200 to 400 V) used in a strong hybrid vehicle etc. It is a voltage that does not cause a problem, and a 48V battery used in recent years for mild hybrids is preferable.
  • a medium voltage battery 49 such as a 48V battery can be mounted relatively easily on a vehicle equipped with a conventional internal combustion engine, and can reduce fuel consumption by power assist and regeneration with electric power as a mild hybrid.
  • the medium voltage load 53 of the 48V system is the accessory component, and is a power assist motor, an electric pump, an electric power steering, a supercharger, an air compressor, or the like which is the motor generator 35b on the drive wheel side.
  • the power assist output is lower than that of high voltage (100V or higher strong hybrid vehicles etc.)
  • the risk of electric shock to occupants and maintenance workers can be reduced. it can.
  • the insulation coating of the wire can be thinned, the weight and volume of the wire can be reduced.
  • the volume of the motor or generator can be reduced. From these things, it contributes to the fuel consumption reduction effect of vehicles.
  • the vehicle system is suitable for accessory parts of such mild hybrid vehicles, and is applied as a power assist and a power regeneration part.
  • CMGs, GMGs, and belt-driven starter motors may be employed conventionally in mild hybrid vehicles, all of them are power assists for internal combustion engines or power devices. Or because it regenerates, it is affected by the efficiency of the transmission device and speed reducer.
  • the power regeneration In this case, the kinetic energy of the car body can be used directly.
  • CMG, GMG, a belt drive type starter motor, etc. are mounted, they need to be incorporated in consideration from the design stage of the vehicle 30, and it is difficult to retrofit.
  • the motor 3 of the system for this vehicle to fit in the driven wheel 10 in B even complete vehicles can be mounted in part exchange the same steps, even for finished vehicles of the internal combustion engine 35a only
  • a 48V system can be configured.
  • the vehicle power unit 1 according to any one of the embodiments, and a battery for a motor generator
  • the drive voltage or regenerative voltage for rotational drive of the motor is 60 V or less
  • Another auxiliary drive motor generator 35b may be mounted on the vehicle equipped with the vehicle system of this embodiment as shown in FIG. At that time, the power assist amount and the regenerative electric energy for the vehicle 30 can be increased, which further contributes to the fuel consumption reduction.
  • the power unit for a vehicle may be applied to the drive wheel. It is also possible to apply the vehicle power unit to the drive wheel and the driven wheel, respectively.
  • the vehicle system shown in FIG. 13 has a function of generating electric power, but may be a system which does not perform rotational drive by power feeding.
  • a generator-equipped wheel bearing apparatus including a generator 3 that does not share an electric motor and a wheel bearing 2 is mounted.
  • the bearing assembly for a wheel with a generator has the same configuration as that of the power unit for a vehicle according to any of the embodiments except for a motor generator which also serves as a motor.
  • the braking power can be generated by storing the regenerative power generated by the generator 3 in the medium voltage battery 49.
  • the braking performance can also be improved by using it together with or using the mechanical brake operating means 57.
  • the individual control means 39 can be configured as an AC / DC converter (not shown) rather than an inverter.
  • the AC / DC converter device has a function of charging the regenerative power of the generator 3 to the medium voltage battery 49 by converting a three-phase AC voltage into a DC voltage, and the control method is easy compared to an inverter, Miniaturization is possible.
  • the wheel bearing 2 includes a hub ring to which one partial inner ring is fitted as a rotary ring, and the outer ring which is a fixed ring and the hub ring and the partial inner ring
  • the 3rd generation structure comprised by union it does not limit to this.
  • a structure in which a hub having a hub flange and a member having a raceway surface of a rolling element are combined is a rotating wheel as referred to in the present specification.
  • the wheel bearing 2 may be, for example, a first generation structure including an outer ring mainly serving as a fixed ring and an inner ring fitted to the outer peripheral surface of a hub having a hub flange, and the outer ring serving as a fixed ring
  • the inner ring rotation type second generation structure may be provided with an inner ring fitted to an outer peripheral surface of a hub having a hub flange.
  • the combination of the hub and the inner ring corresponds to the "rotating wheel" in the present specification.
  • the wheel bearing 2 may be of an outer ring rotation type second generation structure including an outer ring which is a rotating ring having a hub flange and an inner ring which is a fixed ring.
  • Vehicle power unit 2 Wheel bearing 3
  • Motor generator (motor, generator) 4 ...
  • Outer ring (fixed ring) 5 ...
  • Inner ring (turning wheel) 7 ...
  • Hub flange 8 ... knuckle (frame of underbody frame) 9, 9
  • Brake rotor 18 Stator 19
  • Rotor 24 Stator holding member (intermediate member) 31 ... Insulation material Kp ... Brake caliper

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

This vehicle power device (1) comprises: a wheel bearing (2) that has a fixed ring (4) and a rotating ring (5); and an electric motor (3) that has a stator (18) and a rotor (19). The stator (18) and the rotor (19) of the motor generator (3) are smaller in diameter than the outer periphery (12b) of a brake rotor (12), and the whole of the electric motor (3) except for an attachment portion to be attached to a hub flange (7) is located in an axial range (L1) between the hub flange (7) and the outboard side surface of an underbody frame component (8). An insulating layer (9) is interposed between the fixed ring (4) and the stator (18).

Description

車両用動力装置および発電機付き車輪用軸受装置POWER DEVICE FOR VEHICLE AND BEARING DEVICE WITH GENERATOR 関連出願Related application
 本出願は、2017年10月17日出願の特願2017-200780および2018年9月5日出願の特願2018-165590の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application Nos. 201722007/2007 filed on Oct. 17, 2017 and Japanese Patent Application No. 2018/165590 filed on September 5, 2018, which are incorporated by reference in their entirety. Quoted as making money.
 この発明は、車輪用軸受と発電機とを備えた車両用動力装置および発電機付き車輪用軸受装置に関し、発電機を搭載することにより生じる軸受内外輪の電位差を無くすことにより、軸受内での電食を防止することができる技術に関する。 The present invention relates to a vehicular power unit including a bearing for a wheel and a generator, and a bearing unit for a wheel with a generator, wherein the potential difference between the inner and outer rings of the bearing caused by mounting the generator is eliminated in the bearing. The present invention relates to a technology capable of preventing electrolytic corrosion.
 ロータとステータを有する車輪用軸受において、固定輪とハブフランジの電位差によって転動体と軸受軌道面の間でスパークが発生すると、このスパークによって軸受転動体および転動面が溶融し、なし地状または波板状の電食が生じる。電食すると軸受から異音が鳴り、また軸受短寿命の原因となる。 In a wheel bearing having a rotor and a stator, when a spark is generated between the rolling element and the bearing raceway surface due to the potential difference between the fixed ring and the hub flange, the bearing rolling element and the rolling surface are melted by the spark Corrugated electrolytic corrosion occurs. When electrolytic corrosion occurs, noise is emitted from the bearings, which also causes short bearing life.
 モータを駆動源とする車輪駆動装置において、転がり軸受部の電食を防止する技術が提案されている(特許文献1)。この技術では、インナーロータ型のモータを駆動源とする車輪駆動装置において、ロータとステータを電気的に通電するために、ステータと電気的に接続した円錐面もしくは球面の接触体を、ロータへ押圧することで車輪用軸受の転がり軸受部の電食を防止する。 In a wheel drive device which uses a motor as a drive source, a technique for preventing electrolytic corrosion of a rolling bearing portion has been proposed (Patent Document 1). In this technology, in a wheel drive device that uses an inner rotor type motor as a drive source, in order to electrically energize the rotor and the stator, a conical surface or spherical contact body electrically connected to the stator is pressed against the rotor This prevents electrolytic corrosion of the rolling bearing portion of the wheel bearing.
 図15に示すように、本件出願人は、車輪用軸受とブレーキロータの間に構成されたアウターロータ型のモータを備える車輪構造において、車輪用軸受の固定輪とハブフランジとの間に通電ブラシBrを取り付けた技術を提案している(特願2017-113246)。車輪用軸受の内外輪で発生する電位差を通電ブラシBrで通電させることで、ロータとステータ間の電位差を無くし、転動体60を通じたハブフランジと固定輪の間での通電を防ぎ、軸受の電食を防ぐ。 As shown in FIG. 15, in the wheel structure provided with the outer rotor type motor configured between the wheel bearing and the brake rotor, the applicant applies the current-carrying brush between the fixed wheel of the wheel bearing and the hub flange. The technology to which Br is attached is proposed (Japanese Patent Application No. 2017-113246). By energizing the potential difference generated between the inner and outer rings of the wheel bearing with the energizing brush Br, the potential difference between the rotor and the stator is eliminated, the energization between the hub flange and the fixed wheel through the rolling element 60 is prevented, Prevent food.
特許第5402619号公報Patent No. 5402619
 特許文献1に記載された構成では、インナーロータ型のモータを駆動源とする車両駆動装置にしか対応していない。また接触体をロータへ押圧する電食防止ユニットの部品点数が多く、構造が複雑で製造コストが高くなる。そこで、図15の構成では、車輪用軸受の固定輪とハブフランジの間に通電ブラシBrを設けることで、アウターロータ型のモータを駆動源とする車両駆動装置に対応している。この場合、車輪用軸受の内外輪で発生する電位差を、通電ブラシBrに通電させることで、電位差を無くし、転動体60のスパークによる電食を防ぐ。しかし、前記円錐面または球面の接触体あるいは通電ブラシBrは、車輪用軸受が回転中に摺動し続けるため、摩耗により通電能力が低下し、定期的な交換が必要となる。 The configuration described in Patent Document 1 corresponds only to a vehicle drive device that uses an inner rotor type motor as a drive source. Further, the number of parts of the galvanic corrosion preventing unit for pressing the contact body to the rotor is large, the structure is complicated and the manufacturing cost is high. Therefore, in the configuration shown in FIG. 15, the current-carrying brush Br is provided between the fixed wheel of the wheel bearing and the hub flange, which corresponds to a vehicle drive device using an outer rotor type motor as a drive source. In this case, the potential difference is eliminated by supplying the potential difference generated in the inner and outer rings of the wheel bearing to the current-carrying brush Br, and the electrolytic corrosion due to the spark of the rolling element 60 is prevented. However, since the contact surface of the conical surface or the spherical surface or the current-carrying brush Br continues to slide during rotation of the wheel bearing, the current-carrying capacity is reduced due to wear, and periodical replacement is required.
 この発明の目的は、車輪用軸受の電食を防ぐことができると共に、絶縁の機能に関してメンテナンスフリーとなる車両用動力装置および発電機付き車輪用軸受装置を提供することである。 An object of the present invention is to provide a vehicular power unit and a generator-equipped wheel bearing unit capable of preventing electrolytic corrosion of a bearing for a wheel and being maintenance-free with respect to the function of insulation.
 この発明における第1の構成の車両用動力装置は、固定輪、およびハブフランジを有し前記固定輪に転動体を介して回転自在に支持されて前記ハブフランジに車両の車輪およびブレーキロータが取付けられる回転輪を有する車輪用軸受と、
 前記車輪用軸受の前記固定輪に取付けられたステータ、および前記車輪用軸受の前記回転輪に取付けられたロータを有する電動機と、を備えた車両用動力装置において、
 前記ステータおよび前記ロータの一部または全部が、前記ブレーキロータにおける、ブレーキキャリパが押し付けられる部分となる外周部よりも小径であり、且つ、前記電動機におけるハブフランジへの取付部を除く全体が、前記ハブフランジと、前記車両における足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置し、
 前記固定輪と前記ステータとの間に絶縁層が介在している。
According to a first aspect of the present invention, a vehicle power unit has a fixed wheel and a hub flange, and is rotatably supported by the fixed wheel via a rolling element, and the wheel and brake rotor of the vehicle are attached to the hub flange. A wheel bearing having a rotating wheel
A vehicle power unit comprising: a stator attached to the fixed wheel of the wheel bearing; and an electric motor having a rotor attached to the rotary wheel of the wheel bearing.
The stator and part or all of the rotor are smaller in diameter than the outer peripheral part of the brake rotor where the brake caliper is pressed, and the entire portion excluding the mounting portion to the hub flange of the electric motor is the above. In an axial range between the hub flange and the outboard side of the undercarriage part of the vehicle,
An insulating layer is interposed between the fixed ring and the stator.
 この構成によると、電動機のロータが、車輪用軸受の回転輪に取付けられたダイレクトドライブ形式であるため、車両用動力装置全体の部品点数が少なく構成が簡易で省スペースで済み、車両重量の増加も抑えられる。 According to this configuration, since the rotor of the motor is a direct drive type mounted on the rotating wheel of the wheel bearing, the number of parts of the entire vehicle power unit is small, the configuration is simple and space saving is realized, and the weight of the vehicle is increased. Can be suppressed.
 ステータおよびロータの一部または全部が、ブレーキロータの外周部よりも小径であり、且つ、電動機におけるハブフランジへの取付部を除く全体が、ハブフランジと、足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置する。このため、ブレーキロータ内に電動機を設置するスペースを確保してこの電動機をコンパクトに収めることができる。 Part or all of the stator and the rotor are smaller in diameter than the outer periphery of the brake rotor, and the whole of the motor except for the attachment to the hub flange is the hub flange and the outboard side of the underframe part. Located in the axial range between. For this reason, the space which installs an electric motor in a brake rotor is secured, and this electric motor can be stored compactly.
 ところで従来構造の電食防止ユニット等では部品点数が多いため、ブレーキロータ内に全ての構成部品が収まる車両用動力装置に対し、前記電食防止ユニットを設置するスペースを確保することが困難である。前記のブレーキロータ内に全ての構成部品が収まる車両用動力装置だからこそ、通常のインホイールモータよりもコンパクトな絶縁構造が必要であるところ、この構成によれば、固定輪とステータとの間の僅かな環状空間を利用して同環状空間に絶縁層を介在させることで、車両用動力装置全体を大径化することなく(換言すれば、ブレーキロータ内に車両用動力装置の構成部品が収まることを阻害されずに)前記絶縁層により転動体への通電を遮断することができる。 By the way, it is difficult to secure a space for installing the electric corrosion preventing unit for a vehicle power unit in which all the components fit in the brake rotor because the electric corrosion preventing unit of the conventional structure has a large number of parts. . This construction requires an insulation structure that is more compact than a typical in-wheel motor because it is a vehicle power unit that fits all the components in the brake rotor. According to this configuration, a small amount of space between the fixed wheel and the stator By interposing the insulating layer in the annular space by utilizing the annular space, the diameter of the entire vehicle power unit can be increased without increasing the diameter of the vehicle (in other words, the components of the vehicle power unit can be accommodated in the brake rotor) Can be cut off by the insulating layer.
 また、電食対策として、通電ブラシを用いた構成に比べて以下の利点が挙げられる。
(1)電食対策の確認をする際の点検が容易である。
 上記理由として車両用動力装置を組み立てた状態において、通電ブラシによる手法では、軸受内外輪間の電気抵抗の測定だけで、通電ブラシによって軸受内外輪間で導通しているか確認できない。一方、固定輪とステータとの間に絶縁層を介在させた本発明の構成では、ステータと固定輪間もしくはステータと回転輪間での電気抵抗の測定により絶縁されていれば、電食は生じ得ない。
(2)絶縁層は通電ブラシのように摩耗しないので取り換える必要がなくコストが抑えられる。上記理由として、絶縁層は摺動しないため、運転時間の経過による劣化が生じない。
Moreover, the following advantages are mentioned as a countermeasure against galvanic corrosion compared with the structure which used the electricity supply brush.
(1) It is easy to check when checking for electrical corrosion measures.
As the above reason, in a state where the power unit for a vehicle is assembled, it is not possible to check whether the inner and outer rings of the bearing are electrically connected by the current-carrying brush only by measuring the electrical resistance between the inner and outer rings. On the other hand, in the configuration of the present invention in which the insulating layer is interposed between the fixed ring and the stator, if the insulation is measured by measuring the electrical resistance between the stator and the fixed ring or between the stator and the rotating ring, electrolytic corrosion occurs. I can not get it.
(2) Since the insulating layer does not wear as in the case of a current-carrying brush, there is no need to replace it and the cost can be reduced. As the above-mentioned reason, since the insulating layer does not slide, deterioration due to the elapse of the operation time does not occur.
 前述のように、固定輪とステータとの間に絶縁層を介在させたため、この絶縁層により転動体への通電を遮断することにより、車輪用軸受の電食を防ぐことができる。車輪用軸受の電食を防ぐことによって、車輪用軸受の転動体および転動面の異常を防ぎ、車輪用軸受の長寿命化が期待できるうえ、車輪用軸受からの異音を未然に防止し得る。前記絶縁層は、通電ブラシ等のように摩耗することなく交換する必要がないため、絶縁の機能に関してメンテナンスフリーとなる。したがって、通電ブラシ等を用いる従来例よりもコスト低減を図れる。 As described above, since the insulating layer is interposed between the fixed ring and the stator, the electrical corrosion of the wheel bearing can be prevented by interrupting the current flow to the rolling elements by the insulating layer. By preventing electrolytic corrosion of the wheel bearing, abnormalities of the rolling element and rolling surface of the wheel bearing can be prevented, life extension of the wheel bearing can be expected, and noise from the wheel bearing can be prevented beforehand. obtain. Since the insulating layer does not need to be replaced without being worn like a current-carrying brush or the like, maintenance is free with respect to the function of insulation. Therefore, the cost can be reduced as compared with the conventional example using a conductive brush or the like.
 前記電動機は、前記ステータが前記車輪用軸受の外周に位置し、前記ロータが前記ステータの半径方向外方に位置するアウターロータ型であってもよい。この場合、インナーロータ型よりもロータとステータとが対向する面積を増やすことができる。これにより、限られた空間内で出力トルクを最大化することが可能となる。 The electric motor may be an outer rotor type in which the stator is located on the outer periphery of the wheel bearing and the rotor is located radially outward of the stator. In this case, the area in which the rotor and the stator face can be increased more than in the inner rotor type. This makes it possible to maximize the output torque in a limited space.
 前記電動機は、前記車輪を回転駆動可能な電動発電機であってもよい。従来の内燃機関等を搭載した車両に、前記電動発電機を備えた車両用動力装置を搭載する場合、電動発電機による動力アシストにより燃費低減することができる。従来例の減速機構を搭載した構成では、車輪用軸受周辺に電動発電機を設置する必要がなく、軸受内外輪に電位差が生じない構成とすることができる。軸受内外輪間で電動発電機のステータとロータを構成する場合に、軸受内外輪間に電位差が発生する。そのため、本発明は、車輪用軸受にダイレクトドライブ形式の電動発電機を搭載した構成に限るものとする。 The motor may be a motor generator capable of rotationally driving the wheel. When the vehicle power unit provided with the motor generator is mounted on a vehicle equipped with a conventional internal combustion engine or the like, the fuel efficiency can be reduced by the power assist by the motor generator. In the configuration in which the reduction gear mechanism of the conventional example is mounted, there is no need to install a motor generator around the wheel bearing, and a configuration in which no potential difference occurs in the inner and outer rings of the bearing can be obtained. When the stator and the rotor of the motor generator are formed between the bearing inner and outer rings, a potential difference is generated between the bearing inner and outer rings. Therefore, the present invention is limited to the configuration in which the direct drive type motor generator is mounted on the wheel bearing.
 前記電動機の回転駆動用の駆動電圧または回生電圧が60V以下であってもよい。この場合、いわゆるストロングハイブリッド車等に用いられる100V以上の高電圧バッテリーよりも低電圧で、かつ作業時に感電による人体の影響が問題とならない程度のいわゆる中電圧バッテリーを車両に搭載することができる。これにより、例えば、内燃機関のみの車両においても、車両の大幅な改造をすることなく、マイルドハイブリッド車両にすることができる。 The driving voltage or regenerative voltage for rotational driving of the motor may be 60 V or less. In this case, a so-called medium-voltage battery can be mounted on the vehicle at a lower voltage than a high-voltage battery of 100 V or more used in a so-called strong hybrid vehicle etc. As a result, for example, even in a vehicle having only an internal combustion engine, a mild hybrid vehicle can be obtained without significant modification of the vehicle.
 前記固定輪と前記ステータとの間に、前記固定輪を前記足回りフレーム部品に固定する中間部材を備え、この中間部材と前記固定輪との間、および前記中間部材と前記ステータとの間のいずれか一方または両方に前記絶縁層を備えてもよい。中間部材とステータとの間に絶縁層を備える場合、この絶縁層を例えば樹脂材料またはゴム材料等の軟材料とすることができる。中間部材とステータの間に作用する力は、発電機により発生する力のみで、それ程大きな強度を必要としないからである。中間部材と固定輪の間に絶縁層を備える場合、中間部材と固定輪の間において、この絶縁層は剛性のある絶縁材料を必要とする。中間部材と固定輪の間には、車重と車両の運動により発生する力が作用するためである。 Between the fixed ring and the stator, there is provided an intermediate member for fixing the fixed ring to the frame frame part, and between the intermediate member and the fixed ring and between the intermediate member and the stator Either or both may be equipped with the said insulating layer. When the insulating layer is provided between the intermediate member and the stator, the insulating layer can be made of a soft material such as a resin material or a rubber material. This is because the force acting between the intermediate member and the stator is only the force generated by the generator and does not require so much strength. If an insulating layer is provided between the intermediate member and the fixed ring, the insulating layer needs a rigid insulating material between the intermediate member and the fixed ring. The force generated by the motion of the vehicle and the vehicle acts between the intermediate member and the fixed wheel.
 前記固定輪と前記ステータとの間に、前記固定輪を前記足回りフレーム部品に固定する中間部材を備え、この中間部材が絶縁材料で構成されていてもよい。この場合、中間部材の他に絶縁材料から成る部材を設けるよりも、部品点数を低減でき、構造を簡素化することができる。 An intermediate member may be provided between the fixed ring and the stator to fix the fixed ring to the undercarriage frame part, and the intermediate member may be made of an insulating material. In this case, the number of parts can be reduced and the structure can be simplified as compared to providing a member made of an insulating material in addition to the intermediate member.
 第1の構成において、前記ロータと前記回転輪との間に絶縁材を備えてもよい。前述の軸受内外輪間の電位差による転動体への通電に加え、電動機のロータ、ステータ間で微量な渦電流の発生により、ロータから回転輪を通って転動体に通電するおそれがある。この構成によれば、固定輪とステータとの間に絶縁層を介在させる構成に加え、ロータと回転輪との間に絶縁材を備えることで、ロータと回転輪間で絶縁され、転動体の電食をより確実に防ぐことができる。 In the first configuration, an insulating material may be provided between the rotor and the rotating wheel. In addition to the energization of the rolling elements by the potential difference between the inner and outer rings of the bearing described above, the generation of a small amount of eddy current between the rotor of the motor and the stator may cause the rolling elements to energize the rolling elements from the rotor. According to this configuration, in addition to the configuration in which the insulating layer is interposed between the fixed wheel and the stator, by providing the insulating material between the rotor and the rotating wheel, the rotor and the rotating wheel are insulated, and Electric corrosion can be prevented more reliably.
 この発明における第2の発明の車両用動力装置は、固定輪、およびハブフランジを有し前記固定輪に転動体を介して回転自在に支持されて前記ハブフランジに車両の車輪およびブレーキロータが取付けられる回転輪を有する車輪用軸受と、
 前記車輪用軸受の前記固定輪に取付けられたステータ、および前記車輪用軸受の前記回転輪に取付けられたロータを有する電動機と、を備えた車両用動力装置において、
 前記ステータおよび前記ロータの一部または全部が、前記ブレーキロータにおける、ブレーキキャリパが押し付けられる部分となる外周部よりも小径であり、且つ、前記電動機におけるハブフランジへの取付部を除く全体が、前記ハブフランジと、前記車両における足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置し、
 前記転動体が絶縁材で構成されている。
A power unit for a vehicle according to a second aspect of the present invention has a fixed wheel and a hub flange, and is rotatably supported by the fixed wheel via a rolling element, and the wheel and brake rotor of the vehicle are attached to the hub flange. A wheel bearing having a rotating wheel
A vehicle power unit comprising: a stator attached to the fixed wheel of the wheel bearing; and an electric motor having a rotor attached to the rotary wheel of the wheel bearing.
The stator and part or all of the rotor are smaller in diameter than the outer peripheral part of the brake rotor where the brake caliper is pressed, and the entire portion excluding the mounting portion to the hub flange of the electric motor is the above. In an axial range between the hub flange and the outboard side of the undercarriage part of the vehicle,
The rolling element is made of an insulating material.
 この構成によると、転動体が絶縁材料で構成されているため、転動体への通電を遮断することで車輪用軸受の電食を防ぐことができる。車輪用軸受の電食を防ぐことによって、車輪用軸受の転動体および転動面の異常を防ぎ、車輪用軸受の長寿命化が期待できる。前記絶縁材料で構成された転動体は、通電ブラシ等のように摩耗することなく交換する必要がないため、絶縁の機能に関してメンテナンスフリーとなる。したがって、通電ブラシ等を用いる従来例よりもコスト低減を図れる。 According to this configuration, since the rolling elements are made of the insulating material, it is possible to prevent the electrolytic corrosion of the wheel bearing by interrupting the energization of the rolling elements. By preventing the electrolytic corrosion of the wheel bearing, abnormalities of the rolling element and the rolling surface of the wheel bearing can be prevented, and the life extension of the wheel bearing can be expected. Since the rolling element made of the insulating material does not need to be replaced without being worn like a current-carrying brush or the like, it becomes maintenance free with respect to the function of insulation. Therefore, the cost can be reduced as compared with the conventional example using a conductive brush or the like.
 この発明における発電機付き車輪用軸受装置は、固定輪、およびハブフランジを有し前記固定輪に転動体を介して回転自在に支持されて前記ハブフランジに車両の車輪およびブレーキロータが取付けられる回転輪を有する車輪用軸受と、
 前記車輪用軸受の前記固定輪に取付けられたステータ、および前記車輪用軸受の前記回転輪に取付けられたロータを有する発電機と、を備えた発電機付き車輪用軸受装置において、
 前記ステータおよび前記ロータの一部または全部が、前記ブレーキロータにおける、ブレーキキャリパが押し付けられる部分となる外周部よりも小径であり、且つ、前記発電機におけるハブフランジへの取付部を除く全体が、前記ハブフランジと、前記車両における足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置し、
 前記固定輪と前記ステータとの間に絶縁層が介在している。
The generator-equipped wheel bearing device in the present invention has a fixed wheel and a hub flange, and is rotatably supported by the fixed wheel via a rolling element, and a wheel and a brake rotor of a vehicle are attached to the hub flange. A wheel bearing having a wheel;
A generator bearing bearing device comprising: a stator attached to the fixed wheel of the wheel bearing; and a generator having a rotor attached to the rotating wheel of the wheel bearing;
Part or all of the stator and the rotor are smaller in diameter than the outer peripheral part of the brake rotor where the brake caliper is pressed, and the whole excluding the mounting portion to the hub flange in the generator is In an axial range between the hub flange and the outboard side of an undercarriage part of the vehicle,
An insulating layer is interposed between the fixed ring and the stator.
 この構成によれば、固定輪とステータとの間の僅かな環状空間を利用して同環状空間に絶縁層を介在させることで、発電機付き車輪用軸受装置全体を大径化することなく(換言すれば、ブレーキロータ内に発電機付き車輪用軸受装置の構成部品が収まることを阻害されずに)前記絶縁層により転動体への通電を遮断することができる。これにより車輪用軸受の電食を防ぐことができる。その他第1の構成の車両用動力装置と同様の作用効果を奏する。 According to this configuration, by interposing the insulating layer in the annular space utilizing a slight annular space between the fixed ring and the stator, the entire diameter of the generator-equipped wheel bearing apparatus is not increased ( In other words, it is possible to cut off the current flow to the rolling elements by the insulating layer without impeding that the components of the generator-equipped wheel bearing assembly are contained in the brake rotor. This can prevent electrolytic corrosion of the wheel bearing. In addition, the same effects as those of the power unit for a vehicle according to the first configuration are obtained.
 前記ロータと前記回転輪との間に絶縁材を備えてもよい。前述の軸受内外輪間の電位差による転動体への通電に加え、発電機のロータ、ステータ間で微量な渦電流の発生により、ロータから回転輪を通って転動体に通電するおそれがある。この構成によれば、固定輪とステータとの間に絶縁層を介在させる構成に加え、ロータと回転輪との間に絶縁材を備えることで、ロータと回転輪間で絶縁され、転動体の電食をより確実に防ぐことができる。 An insulating material may be provided between the rotor and the rotating wheel. In addition to the energization of the rolling elements due to the potential difference between the inner and outer rings of the bearing described above, the generation of a small amount of eddy current between the rotor and the stator of the generator may cause the rolling elements to energize the rolling elements from the rotor. According to this configuration, in addition to the configuration in which the insulating layer is interposed between the fixed wheel and the stator, by providing the insulating material between the rotor and the rotating wheel, the rotor and the rotating wheel are insulated, and Electric corrosion can be prevented more reliably.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the present invention. In particular, any combination of two or more of the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の実施形態に係る車両用動力装置(発電機付き車輪用軸受装置)の断面図である。 同車両用動力装置の側面図である。 同車両用動力装置の正面図である。 図1のIV-IV線断面図である。 同車両用動力装置の中間部材をナックル面から見た斜視図である。 この発明の他の実施形態に係る車両用動力装置の断面図である。 この発明のさらに他の実施形態に係る車両用動力装置の断面図である。 この発明のさらに他の実施形態に係る車両用動力装置の断面図である。 この発明のさらに他の実施形態に係る車両用動力装置の断面図である。 図9のX-X線断面図である。 同車両用動力装置における絶縁材の固定方法を概略示す断面図である。 この発明のさらに他の実施形態に係る車両用動力装置の断面図である。 いずれかの車両用動力装置を備えた車両の車両用システムの概念構成を示すブロック図である。 同車両用システムを搭載した車両の一例となる電源系統図である。 従来例の車両用動力装置の断面図である。
The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
FIG. 1 is a cross-sectional view of a power unit for a vehicle (bearing device with a generator) according to an embodiment of the present invention. It is a side view of the power unit for the same vehicles. It is a front view of the power unit for the same vehicles. It is the IV-IV sectional view taken on the line of FIG. It is the perspective view which looked at the intermediate member of the power unit for the same vehicles from the knuckle surface. FIG. 6 is a cross-sectional view of a vehicular power unit according to another embodiment of the present invention. It is a cross-sectional view of a vehicular power unit according to still another embodiment of the present invention. It is a cross-sectional view of a vehicular power unit according to still another embodiment of the present invention. It is a cross-sectional view of a vehicular power unit according to still another embodiment of the present invention. It is XX sectional drawing of FIG. It is sectional drawing which shows roughly the fixing method of the insulating material in the power plant for the same vehicles. It is a cross-sectional view of a vehicular power unit according to still another embodiment of the present invention. FIG. 1 is a block diagram showing a conceptual configuration of a vehicle system of a vehicle provided with any of the vehicle power devices. It is a power supply system figure used as an example of the vehicles carrying the system for vehicles. It is sectional drawing of the power unit for vehicles of a prior art example.
 この発明の実施形態に係る車両用動力装置を図1ないし図5と共に説明する。図1に示すように、この車両用動力装置1は、車輪用軸受2と、電動機を兼用する発電機である電動発電機3とを備える。なお、この発明の実施形態に係る発電機付き車輪用軸受装置は、車両用動力装置1において、電動発電機3に代えて電動機を兼用しない発電機を採用することにより構成することができる。すなわち、この発電機付き車輪用軸受装置は、電動機を兼用しない発電機3と、車輪用軸受2とを備える。この発電機付き車輪用軸受装置は、車両用動力装置1に対し、電動機を兼用する電動発電機3を除き同一構成である。 A vehicular power unit according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5. As shown in FIG. 1, the vehicle power unit 1 includes a wheel bearing 2 and a motor generator 3 which is a generator that doubles as an electric motor. In addition, the bearing apparatus for wheels with a generator which concerns on embodiment of this invention can be comprised by employ | adopting the generator which does not serve as an electric motor instead of the motor generator 3 in the vehicle motive power apparatus 1. FIG. That is, the generator-equipped wheel bearing apparatus includes the generator 3 that does not share the motor, and the wheel bearing 2. The generator-equipped wheel bearing device has the same configuration as the vehicle power unit 1 except for the motor generator 3 which also serves as an electric motor.
 <車輪用軸受2について>
 車輪用軸受2は、固定輪である外輪4と、複列の転動体6と、回転輪である内輪5とを有する。外輪4に複列の転動体6を介して内輪5が回転自在に支持されている。外輪4と内輪5との間の軸受空間には、グリースが封入されている。内輪5は、ハブ輪5aと、このハブ輪5aのインボード側の外周面に嵌合された部分内輪5bとを有する。ハブ輪5aは、外輪4よりも軸方向のアウトボード側に突出した箇所にハブフランジ7を有する。
<About wheel bearing 2>
The wheel bearing 2 has an outer ring 4 which is a fixed ring, rolling elements 6 in double rows, and an inner ring 5 which is a rotating ring. The inner ring 5 is rotatably supported by the outer ring 4 via the rolling elements 6 in double rows. Grease is enclosed in the bearing space between the outer ring 4 and the inner ring 5. The inner ring 5 has a hub ring 5a and a partial inner ring 5b fitted to the inboard outer peripheral surface of the hub ring 5a. The hub wheel 5 a has a hub flange 7 at a location protruding toward the outboard side in the axial direction with respect to the outer ring 4.
 ハブフランジ7のアウトボード側の側面には、車輪のリム(図示せず)とブレーキロータ12とケース底部11(後述する)とが軸方向に重なった状態で、ハブボルト13により取り付けられている。前記リムの外周に図示外のタイヤが取付けられている。なおこの明細書において、車両用動力装置が車両に搭載された状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の車幅方向の中央寄りとなる側をインボード側と呼ぶ。 A wheel rim (not shown), a brake rotor 12 and a case bottom 11 (described later) are attached to the side surface on the outboard side of the hub flange 7 by a hub bolt 13 in an axially overlapping manner. A tire not shown is mounted on the outer periphery of the rim. In this specification, when the power unit for a vehicle is mounted on a vehicle, the side closer to the outside in the vehicle width direction of the vehicle is called the outboard side, and the side closer to the center in the vehicle width direction is the inboard Call it the side.
 <ブレーキについて>
 図2および図3に示すように、ブレーキは、ディスク式のブレーキロータ12と、ブレーキキャリパKpとを備える摩擦ブレーキである。図1は、図3のI-I線断面図である。図1に示すように、ブレーキロータ12は、平板状部12aと、外周部12bとを有する。平板状部12aは、ハブフランジ7にケース底部11を介して重なる環状で且つ平板状の部材である。外周部12bは、平板状部12aから外輪4の外周側へ延びる。外周部12bは、平板状部12aの外周縁部からインボード側に円筒状に延びる円筒状部12baと、この円筒状部12baのインボード側端から外径側に平板状に延びる平板部12bbとを有する。
<About the brake>
As shown in FIGS. 2 and 3, the brake is a friction brake provided with a disc-type brake rotor 12 and a brake caliper Kp. FIG. 1 is a cross-sectional view taken along line II of FIG. As shown in FIG. 1, the brake rotor 12 has a flat portion 12 a and an outer peripheral portion 12 b. The flat portion 12 a is an annular and flat member overlapping the hub flange 7 via the case bottom 11. The outer circumferential portion 12 b extends from the flat plate portion 12 a to the outer circumferential side of the outer ring 4. The outer peripheral portion 12b is a cylindrical portion 12ba cylindrically extending from the outer peripheral edge of the flat portion 12a to the inboard side, and a flat portion 12bb extending from the inboard end of the cylindrical portion 12ba to the outer diameter side And.
 ブレーキキャリパKpは、ブレーキロータ12の平板部12bbを挟み付ける摩擦パッドを有する。ブレーキキャリパKpは、車両における足回りフレーム部品であるナックル8に取付けられている。ブレーキキャリパKpは、油圧式および機械式のいずれであってもよく、また電動モータ式であってもよい。 The brake caliper Kp has a friction pad that holds the flat plate portion 12bb of the brake rotor 12 therebetween. The brake caliper Kp is attached to a knuckle 8 which is an underbody frame part of a vehicle. The brake caliper Kp may be either hydraulic or mechanical, and may be electric motor.
 <電動発電機3について>
 この例の電動発電機3は、車輪の回転で発電を行い、給電されることによって車輪を回転駆動可能な走行補助用の電動発電機(電動機)である。以後、電動発電機3を電動機3と言う場合がある。電動発電機3は、回転ケース15と、ステータ18と、ロータ19とを有する。回転ケース15は、ハブフランジ7に取付けられ、ロータ19およびステータ18を覆う。電動発電機3は、ロータ19がステータ18の半径方向外方に位置するアウターロータ型である。また、電動発電機3のロータ19が、車輪用軸受2の回転輪である内輪5に取付けられたダイレクトドライブ形式である。
<About the motor generator 3>
The motor generator 3 of this example is a motor generator (motor) for travel assistance which can generate electric power by rotation of the wheels and can rotationally drive the wheels by being supplied with electricity. Hereinafter, the motor generator 3 may be referred to as the motor 3. The motor generator 3 has a rotating case 15, a stator 18 and a rotor 19. The rotating case 15 is attached to the hub flange 7 and covers the rotor 19 and the stator 18. The motor generator 3 is an outer rotor type in which the rotor 19 is located radially outward of the stator 18. Further, the rotor 19 of the motor generator 3 is a direct drive type mounted on the inner ring 5 which is a rotating wheel of the wheel bearing 2.
 この電動発電機3は、ステータ18およびロータ19の全部がブレーキロータ12の外周部12bよりも小径である。さらに電動発電機3におけるハブフランジ7への取付部を除く全体が、ハブフランジ7と、ナックル8のアウトボード側面8aとの間の軸方向範囲L1に位置する。 In the motor generator 3, all of the stator 18 and the rotor 19 are smaller in diameter than the outer peripheral portion 12 b of the brake rotor 12. Furthermore, the whole of the motor generator 3 except for the attachment portion to the hub flange 7 is located in the axial range L1 between the hub flange 7 and the outboard side surface 8 a of the knuckle 8.
 電動発電機3は、アウターロータ型のIPM(Interior Permanent Magnet)同期モータ(もしくはIPMSM(Interior Permanent Magnet Synchronous Motor)と標記)である。もしくは電動発電機3はSPM同期モータでもよい。その他、電動発電機3は、スイッチトリラクタンスモータ(Switched reluctance motor;略称:SRモータ)、インダクションモータ(Induction Motor;略称:IM)等各種形式が採用できる。各モータ形式において、ステータ18の巻き線形式として分布巻、集中巻の各形式が採用できる。 The motor generator 3 is an outer rotor type IPM (Interior Permanent Magnet) synchronous motor (or denoted as IPMSM (Interior Permanent Magnet Synchronous Motor)). Alternatively, the motor generator 3 may be an SPM synchronous motor. In addition, the motor generator 3 can adopt various types such as a switched reluctance motor (abbreviation: SR motor), an induction motor (induction motor: abbreviation: IM) and the like. In each motor type, each type of distributed winding and concentrated winding can be adopted as a winding type of the stator 18.
 回転ケース15は、有底円筒状のケース本体16から成る。ケース本体16は、ケース底部11と、ケース円筒状部25とを有する。これらケース底部11と、ケース円筒状部25とは一体もしくは別体で形成されている。ケース底部11は、ブレーキロータ12の平板状部12aと、ハブフランジ7との間に挟まれる平板状で且つ環状の部材である。このケース底部11の外周縁部からインボード側にケース円筒状部25が円筒状に延びる。 The rotating case 15 is composed of a bottomed cylindrical case body 16. The case main body 16 has a case bottom 11 and a case cylindrical portion 25. The case bottom 11 and the case cylindrical portion 25 are integrally or separately formed. The case bottom 11 is a flat and annular member sandwiched between the flat portion 12 a of the brake rotor 12 and the hub flange 7. A case cylindrical portion 25 extends cylindrically from the outer peripheral edge of the case bottom 11 toward the inboard side.
 ケース円筒状部25の内周面には、アウトボード側からインボード側に順次、小径部、中径部および大径部が設けられている。図4に示すように、ロータ19は、ケース円筒状部25の前記中径部に圧入などにより設けられる磁性体19aと、この磁性体19aに内蔵される複数の永久磁石19bとを備える。図1に示すように、ケース円筒状部25のうち、前記小径部と前記中径部とを繋ぐ段差部に、ロータ19のアウトボード側端が当接することで、回転ケース15に対しロータ19が軸方向に位置決めされる。 A small diameter portion, a medium diameter portion and a large diameter portion are provided on the inner peripheral surface of the case cylindrical portion 25 sequentially from the outboard side to the inboard side. As shown in FIG. 4, the rotor 19 includes a magnetic body 19 a provided by press-fitting or the like in the middle diameter portion of the case cylindrical portion 25 and a plurality of permanent magnets 19 b built in the magnetic body 19 a. As shown in FIG. 1, the outboard side end of the rotor 19 abuts on the stepped portion connecting the small diameter portion and the medium diameter portion of the case cylindrical portion 25, whereby the rotor 19 with respect to the rotation case 15 is obtained. Are positioned in the axial direction.
 ステータ18は、外輪4の外周面に、絶縁層9、および、中間部材であるステータ保持部材24を介して取付けられている。図1および図4に示すように、ステータ18は、コア18aと、このコア18aの各ティースに巻回されたコイル18bとを有する。コイル18bは配線17(図1)に接続されている。 The stator 18 is attached to the outer peripheral surface of the outer ring 4 via the insulating layer 9 and a stator holding member 24 which is an intermediate member. As shown in FIGS. 1 and 4, the stator 18 has a core 18 a and coils 18 b wound around the teeth of the core 18 a. The coil 18 b is connected to the wiring 17 (FIG. 1).
 図1に示すように、ステータ保持部材24は、ステータ18の内周面およびアウトボード側端面に接してこのステータ18を保持する。ステータ18は、例えば、ステータ保持部材24に対し、圧入またはボルト締結などにより回転方向および径方向に固定されている。さらにステータ保持部材24は、外輪4の外周面に、絶縁層9を介して圧入などにより固定されている。 As shown in FIG. 1, the stator holding member 24 holds the stator 18 in contact with the inner peripheral surface of the stator 18 and the end face on the outboard side. The stator 18 is, for example, fixed to the stator holding member 24 in the rotational direction and the radial direction by press-fitting or bolt fastening. Further, the stator holding member 24 is fixed to the outer peripheral surface of the outer ring 4 via the insulating layer 9 by press fitting or the like.
 ステータ保持部材24とナックル8はボルト20により締結される。ステータ保持部材24のインボード側端面とナックル8のアウトボード側面との間に、ユニットカバー22のカバー立板部22aと介在されている。図5に示すように、中間部材であるステータ保持部材24のうち、インボード側(ナックル面側)の端面には、コイル18b(図1)の結線を、このステータ保持部材24の外径側から内径側へ通す連通孔24cが円周方向に複数(この例では六つ)設けられている。例えば、ステータ保持部材24におけるインボード側の端面に、円周等配の切欠きを設けることで、複数の連通孔24cが形成される。なお複数の連通孔24cは、円周等配である必要なく、また一般的にU相,V相,W相の三線から成る配線17(図1)を通す連通孔であればよい。図1に示すように、ナックル8には、ユニットカバー22における円筒部22bの外周面の挿入を許す貫通孔8bが形成され、この貫通孔8bの周囲に、複数のボルト20の挿通孔(図示せず)が形成されている。 The stator holding member 24 and the knuckle 8 are fastened by a bolt 20. Between the inboard side end face of the stator holding member 24 and the outboard side face of the knuckle 8, the cover standing plate portion 22a of the unit cover 22 is interposed. As shown in FIG. 5, of the stator holding member 24 which is an intermediate member, on the end face on the inboard side (knuckle surface side), the wire connection of the coil 18b (FIG. 1) A plurality of (six in this example) communication holes 24c are provided in the circumferential direction to be passed from the inside to the inside diameter side. For example, a plurality of communication holes 24 c are formed by providing notches of equal circumferential distribution on the end surface on the inboard side of the stator holding member 24. The plurality of communication holes 24c need not be circumferentially equidistant, and may be communication holes generally passing through the wiring 17 (FIG. 1) formed of three lines of U-phase, V-phase and W-phase. As shown in FIG. 1, the knuckle 8 is formed with a through hole 8b for allowing insertion of the outer peripheral surface of the cylindrical portion 22b in the unit cover 22. Through holes 8b of the unit cover 22 are inserted through a plurality of bolts 20 (see FIG. 1). Not shown) is formed.
 図1および図5に示すように、ステータ保持部材24には、軸方向に延びる雌ねじ24dが円周等配に複数形成されている。カバー立板部22aには、前記各雌ねじ24dと同位相の貫通孔(図示せず)が形成されている。各ボルト20は、ナックル8のインボード側から同ナックル8の前記挿通孔に挿通され、カバー立板部22aの貫通孔を通して、ステータ保持部材24の各雌ねじ24dに螺合されている。 As shown in FIGS. 1 and 5, a plurality of female threads 24d extending in the axial direction are circumferentially equidistantly formed on the stator holding member 24. As shown in FIG. Through holes (not shown) in the same phase as the respective female screws 24 d are formed in the cover upright plate portion 22 a. The bolts 20 are inserted from the inboard side of the knuckles 8 into the insertion holes of the knuckles 8 and screwed to the female screws 24 d of the stator holding member 24 through the through holes of the cover upright plate portion 22 a.
 <絶縁層9について>
 図1に示すように、ステータ保持部材24の内周面に、半径方向外方に凹む環状凹み24aが形成されている。この環状凹み24aに、円筒状で所望の剛性を有する絶縁材料から成る絶縁層9が挿入されている。絶縁層9の材質として、例えば、樹脂材料またはゴム材料などの絶縁性を有する軟材料、あるいはセラミックスなどの絶縁材料が挙げられる。中間部材であるステータ保持部材24と外輪4の間には、車重と車両の運動により発生する力が作用するため、剛性を有する絶縁材料から成る絶縁層9が好ましい。
<About insulating layer 9>
As shown in FIG. 1, an annular recess 24 a that is recessed outward in the radial direction is formed on the inner peripheral surface of the stator holding member 24. An insulating layer 9 made of an insulating material having a cylindrical shape and desired rigidity is inserted in the annular recess 24a. Examples of the material of the insulating layer 9 include an insulating soft material such as a resin material or a rubber material, or an insulating material such as a ceramic. An insulating layer 9 made of a rigid insulating material is preferable because a force generated by the vehicle weight and the motion of the vehicle acts between the stator holding member 24 which is the intermediate member and the outer ring 4.
 絶縁層9の軸方向長さすなわち幅寸法は、外輪4の外周面の幅寸法と略同一で外輪4の外周面を全て覆うように形成され、絶縁層9の径方向の厚みは、この電動発電機3の駆動電圧に応じて適宜に設定されている。このような絶縁層9により、転動体6への通電を遮断することにより、車輪用軸受2の電食を防止し得る。なお、例えば、ステータ保持部材24の内周面および外輪4の外周面のいずれか一方または両方に、絶縁材料を塗布または溶射により絶縁層9を形成してもよい。 The axial length, that is, the width dimension of the insulating layer 9 is substantially the same as the width dimension of the outer peripheral surface of the outer ring 4 and is formed so as to cover all the outer peripheral surface of the outer ring 4. According to the drive voltage of the generator 3, it sets suitably. By interrupting the current flow to the rolling elements 6 by such an insulating layer 9, the electrolytic corrosion of the wheel bearing 2 can be prevented. For example, the insulating layer 9 may be formed by applying or spraying an insulating material on either or both of the inner circumferential surface of the stator holding member 24 and the outer circumferential surface of the outer ring 4.
 <シール構造について>
 回転ケース15とナックル8のアウトボード側面との間には、電動発電機3および車輪用軸受2内部への水および異物の侵入を防ぐシール部材23が配置されている。シール部材23は、互いに対向する環状のシール板および弾性シール部材を有する。回転ケース15のケース円筒状部25における前記大径部およびこの端面に、環状のロータ端リング部材26がボルトにより固定されている。ロータ端リング部材26と、ナックル8のアウトボード側面8aとの間には、アキシアル隙間が形成されている。
<About seal structure>
A seal member 23 is disposed between the rotation case 15 and the outboard side surface of the knuckle 8 to prevent the entry of water and foreign matter into the motor generator 3 and the wheel bearing 2. The seal member 23 has an annular seal plate and an elastic seal member facing each other. An annular rotor end ring member 26 is fixed to the large diameter portion and the end face of the case cylindrical portion 25 of the rotation case 15 by bolts. An axial gap is formed between the rotor end ring member 26 and the outboard side surface 8 a of the knuckle 8.
 なおロータ端リング部材26の外周面に環状溝が形成され、この環状溝にOリングが設けられている。このOリングにより、回転ケース15の端部内周面とロータ端リング部材26との接触面を密封している。このロータ端リング部材26は、磁性体19a(図4)に内蔵される永久磁石19b(図4)の軸方向についての位置決め部材を兼ねる。 An annular groove is formed on the outer peripheral surface of the rotor end ring member 26, and an O-ring is provided in the annular groove. The O-ring seals the contact surface between the end inner peripheral surface of the rotating case 15 and the rotor end ring member 26. The rotor end ring member 26 also serves as a positioning member in the axial direction of the permanent magnet 19 b (FIG. 4) incorporated in the magnetic body 19 a (FIG. 4).
 <回転検出器等について>
 この車両用動力装置1には、回転検出器27が設けられている。この回転検出器27は、ステータ18の中空内部に位置する。この回転検出器27は、走行補助用の電動発電機3の回転を制御するために、外輪4に対する内輪5の回転角度あるいは回転速度を検出する。回転検出器27は、被検出部保持部材28等に取付けられた被検出部27aと、ステータ保持部材24の内周面に取付けられて前記被検出部27aを検出するセンサ部27bとを有する。この回転検出器27として例えばレゾルバが適用される。なお回転検出器27としては、レゾルバに限定されるものではなく、例えば、エンコーダ、パルサーリングあるいはホールセンサなど形式を問わず採用可能である。
<About the rotation detector etc.>
The vehicle power unit 1 is provided with a rotation detector 27. The rotation detector 27 is located inside the hollow of the stator 18. The rotation detector 27 detects the rotation angle or rotation speed of the inner ring 5 with respect to the outer ring 4 in order to control the rotation of the motor generator 3 for driving assistance. The rotation detector 27 has a detected portion 27a attached to the detected portion holding member 28 and the like, and a sensor portion 27b attached to the inner peripheral surface of the stator holding member 24 to detect the detected portion 27a. For example, a resolver is applied as the rotation detector 27. The rotation detector 27 is not limited to the resolver, and may be, for example, an encoder, a pulser ring or a Hall sensor regardless of the type.
 <配線類等>
 ユニットカバー22の円筒部22bのインボード側端には、このインボード側端を覆うコネクタカバー66が複数のボルトにより着脱自在に取付けられている。このコネクタカバー66に、いわゆるパネルマウント型のパワー線用コネクタ67を介して、この電動発電機3の配線17が支持されている。コネクタカバー66には、パネルマウント型のセンサコネクタ64も支持されている。
<Wires etc>
A connector cover 66 covering the inboard end is detachably attached to the inboard end of the cylindrical portion 22b of the unit cover 22 by a plurality of bolts. The wiring 17 of the motor generator 3 is supported by the connector cover 66 via a so-called panel mount type power line connector 67. The connector cover 66 also supports a panel mount type sensor connector 64.
 <作用効果>
 以上説明した車両用動力装置1によれば、電動発電機3のロータ19が、車輪用軸受2の回転輪である内輪5に取付けられたダイレクトドライブ形式であるため、減速機構等を備える構成よりも車両用動力装置全体の部品点数が少なく構成が簡易で省スペースで済み、車両重量の増加も抑えられる。従来例の減速機構を搭載した構成では、車輪用軸受周辺に電動機を設置する必要がなく、軸受内外輪に電位差が生じない構成とすることができる。軸受内外輪間で電動機のステータとロータを構成する場合に、軸受内外輪間に電位差が発生する。そのため、本発明の実施形態は、車輪用軸受にダイレクトドライブ形式の電動発電機を搭載した構成に限るものとする。
<Function effect>
According to the power unit 1 for a vehicle described above, since the rotor 19 of the motor generator 3 is a direct drive type attached to the inner ring 5 which is a rotating wheel of the wheel bearing 2, a configuration including a speed reduction mechanism etc. Also, the number of parts of the entire power plant for a vehicle is small, the configuration is simple, space is saved, and the increase in the weight of the vehicle can be suppressed. In the configuration in which the reduction gear mechanism of the conventional example is mounted, there is no need to install an electric motor around the wheel bearing, and a configuration in which no potential difference occurs in the inner and outer rings of the bearing can be obtained. When the stator and the rotor of the motor are formed between the bearing inner and outer rings, a potential difference is generated between the bearing inner and outer rings. Therefore, the embodiment of the present invention is limited to the configuration in which the direct drive type motor generator is mounted on the wheel bearing.
 ステータ18およびロータ19の全部がブレーキロータ12の外周部12bよりも小径で、且つ、電動発電機3におけるハブフランジ7への取付部を除く全体が、ハブフランジ7と、ナックル8のアウトボード側面8aとの間の軸方向範囲L1に位置する。このため、ブレーキロータ12内に電動発電機3を設置するスペースを確保してこの電動発電機3をコンパクトに収めることができる。 The whole of the stator 18 and the rotor 19 is smaller in diameter than the outer peripheral portion 12b of the brake rotor 12, and the whole of the motor generator 3 excluding the mounting portion to the hub flange 7 is the hub flange 7 and the outboard side face of the knuckle 8. It is located in the axial range L1 between 8a and 8a. For this reason, the space which installs motor generator 3 in brake rotor 12 is secured, and this motor generator 3 can be stored compactly.
 ところで従来構造の電食防止ユニット等では部品点数が多いため、ブレーキロータ内に全ての構成部品が収まる車両用動力装置に対し、前記電食防止ユニットを設置するスペースを確保することが困難である。前記のブレーキロータ内に全ての構成部品が収まる車両用動力装置だからこそ、通常のインホイールモータよりもコンパクトな絶縁構造が必要であるところ、この構成によれば、外輪4とステータ18との間の僅かな環状空間を利用して同環状空間に絶縁層9を介在させることで、車両用動力装置1全体を大径化することなく(換言すれば、ブレーキロータ12内に車両用動力装置1の構成部品が収まることを阻害されずに)絶縁層9により転動体6への通電を遮断することができる。 By the way, it is difficult to secure a space for installing the electric corrosion preventing unit for a vehicle power unit in which all the components fit in the brake rotor because the electric corrosion preventing unit of the conventional structure has a large number of parts. . The vehicle power unit, in which all the components fit within the brake rotor, requires a more compact insulating structure than a conventional in-wheel motor. According to this configuration, the space between the outer ring 4 and the stator 18 By interposing the insulating layer 9 in the annular space using a slight annular space, the diameter of the entire vehicle power unit 1 is not increased (in other words, the vehicle power unit 1 is installed in the brake rotor 12). The insulation layer 9 can cut off the current flow to the rolling elements 6 without inhibiting the components from being contained.
 また、電食対策として、通電ブラシを用いた構成に比べて以下の利点が挙げられる。
(1)電食対策の確認をする際の点検が容易である。
 上記理由として車両用動力装置を組み立てた状態において、通電ブラシによる手法では、軸受内外輪間の電気抵抗の測定だけで、通電ブラシによって軸受内外輪間で導通しているか確認できない。一方、固定輪である外輪4とステータ18との間に絶縁層9を介在させた本実施形態の構成では、ステータ18と外輪4間もしくはステータ18と内輪5間での電気抵抗の測定により絶縁されていれば、電食は生じ得ない。
(2)絶縁層9は通電ブラシのように摩耗しないので取り換える必要がなくコストが抑えられる。上記理由として、絶縁層9は摺動しないため、運転時間による劣化が生じない。
Moreover, the following advantages are mentioned as a countermeasure against galvanic corrosion compared with the structure which used the electricity supply brush.
(1) It is easy to check when checking for electrical corrosion measures.
As the above reason, in a state where the power unit for a vehicle is assembled, it is not possible to check whether the inner and outer rings of the bearing are electrically connected by the current-carrying brush only by measuring the electrical resistance between the inner and outer rings. On the other hand, in the configuration of the present embodiment in which the insulating layer 9 is interposed between the outer ring 4 as the fixed ring and the stator 18, the insulation is obtained by measuring the electrical resistance between the stator 18 and the outer ring 4 or between the stator 18 and the inner ring 5. If done, electrolytic corrosion can not occur.
(2) Since the insulating layer 9 does not wear like a current-carrying brush, there is no need to replace it, and the cost can be reduced. As the above-mentioned reason, since the insulating layer 9 does not slide, deterioration due to the operation time does not occur.
 前述のように、固定輪である外輪4とステータ18との間に絶縁層9を介在させたため、この絶縁層9により転動体6への通電を遮断することにより、車輪用軸受2の電食を防ぐことができる。車輪用軸受2の電食を防ぐことによって、車輪用軸受2の転動体6および転動面の異常を防ぎ、車輪用軸受2の長寿命化が期待できるうえ、車輪用軸受2からの異音を未然に防止し得る。前記絶縁層9は、通電ブラシ等のように摩耗することなく交換する必要がないため、絶縁の機能に関してメンテナンスフリーとなる。したがって、通電ブラシ等を用いる従来例よりもコスト低減を図れる。 As described above, since the insulating layer 9 is interposed between the outer ring 4 which is the fixed ring and the stator 18, the electric corrosion of the wheel bearing 2 is prevented by interrupting the current flow to the rolling elements 6 by the insulating layer 9. You can prevent. By preventing the electrolytic corrosion of the wheel bearing 2, abnormalities of the rolling element 6 and the rolling surface of the wheel bearing 2 can be prevented, and life extension of the wheel bearing 2 can be expected, and abnormal noise from the wheel bearing 2 Can be prevented in advance. Since the insulating layer 9 does not need to be replaced without being worn like a current-carrying brush or the like, maintenance is free with respect to the function of insulation. Therefore, the cost can be reduced as compared with the conventional example using a conductive brush or the like.
 電動発電機3はロータ19がステータ18の半径方向外方に位置するアウターロータ型であるため、インナーロータ型よりもロータ19とステータ18とが対向する面積を増やすことができる。これにより、限られた空間内で出力トルクを最大化することが可能となる。 Since the motor generator 3 is an outer rotor type in which the rotor 19 is located outward in the radial direction of the stator 18, the area in which the rotor 19 and the stator 18 face each other can be increased compared to the inner rotor type. This makes it possible to maximize the output torque in a limited space.
 <他の実施形態について>
 以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
<Other Embodiments>
In the following description, the portions corresponding to the items described in advance in each embodiment are denoted by the same reference numerals, and the redundant description will be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding embodiment unless otherwise stated. The same function and effect are exhibited from the same configuration. Not only the combination of the portions specifically described in the embodiments but also the embodiments may be partially combined if any problem does not occur in the combination.
 図6に示すように、車両用動力装置1は、ステータ保持部材24とステータ18との間に絶縁層9Aを備えてもよい。円筒状の絶縁層9Aの内周面がステータ保持部材24の外周面に固定されている。ステータ保持部材24におけるアウトボード側の外周面には、半径方向外方に所定小距離突出するフランジ部24bが形成されている。このフランジ部24bに、絶縁層9Aのアウトボード側端面が接して軸方向に位置決めされている。 As shown in FIG. 6, the vehicle power unit 1 may include an insulating layer 9A between the stator holding member 24 and the stator 18. The inner peripheral surface of the cylindrical insulating layer 9A is fixed to the outer peripheral surface of the stator holding member 24. A flange portion 24 b which protrudes a predetermined small distance outward in the radial direction is formed on the outer peripheral surface of the stator holding member 24 on the outboard side. The outboard side end face of the insulating layer 9A is in contact with the flange portion 24b and positioned in the axial direction.
 絶縁層9Aの幅寸法は、ステータ18の幅寸法と略同一でステータ保持部材24の外周面を絶縁層9Aで覆うように形成されている。この絶縁層9Aの材質として、例えば、樹脂材料またはゴム材料などの絶縁性を有する軟材料が適用される。ステータ保持部材24とステータ18の間に作用する力は、電動発電機3により発生する力のみで、それ程大きな強度を必要としないからである。この構成によれば、前述のセラミックスなどの絶縁材料を用いるものよりコスト低減を図れる。その他前述の実施形態と同様の作用効果を奏する。なおステータ保持部材24とステータ18との間の絶縁層9Aの材質として、セラミックスなどの絶縁材料を用いることも可能である。 The width dimension of the insulating layer 9A is substantially the same as the width dimension of the stator 18, and is formed so as to cover the outer peripheral surface of the stator holding member 24 with the insulating layer 9A. As a material of the insulating layer 9A, for example, a soft material having insulation such as a resin material or a rubber material is applied. The force acting between the stator holding member 24 and the stator 18 is only the force generated by the motor generator 3 and does not require so much strength. According to this configuration, the cost can be reduced more than that using the above-described insulating material such as ceramics. In addition, the same operation and effect as those of the above-described embodiment can be obtained. As a material of insulating layer 9A between stator holding member 24 and stator 18, it is also possible to use insulating materials, such as ceramics.
 図7に示すように、中間部材であるステータ保持部材24が絶縁材料で構成されていてもよい。この場合、ステータ保持部材24の他に絶縁材料から成る部材を設けるよりも、部品点数を低減でき、構造化を簡素化することができる。これによりコスト低減を図れる。その他、中間部材であるステータ保持部材24と外輪4とが、別部材ではなく同一材料から成る一体の構成でもよい。この場合、外輪4の外周面にステータ18の内周面が嵌合された形態となる。この構成によると、中間部材と車輪用軸受2の剛性を高くすることができ、部品点数を削減することができる。 As shown in FIG. 7, the stator holding member 24 which is an intermediate member may be made of an insulating material. In this case, the number of parts can be reduced and the structuring can be simplified as compared to providing a member made of an insulating material in addition to the stator holding member 24. This can reduce the cost. In addition, the stator holding member 24 which is an intermediate member and the outer ring 4 may be an integral structure made of the same material instead of separate members. In this case, the inner peripheral surface of the stator 18 is fitted to the outer peripheral surface of the outer ring 4. According to this configuration, the rigidity of the intermediate member and the wheel bearing 2 can be increased, and the number of parts can be reduced.
 図8に示すように、転動体6が絶縁材料で構成されていてもよい。この絶縁材料としてセラミックス等を適用し得る。この場合、転動体6が絶縁材料で構成されているため、転動体6への通電を遮断することで車輪用軸受2の電食を防ぐことができる。 As shown in FIG. 8, the rolling elements 6 may be made of an insulating material. Ceramics etc. can be applied as this insulating material. In this case, since the rolling element 6 is made of an insulating material, the electric corrosion of the wheel bearing 2 can be prevented by interrupting the current flow to the rolling element 6.
 この例の電動発電機3は、ステータ18およびロータ19の全部がブレーキロータ12の外周部12bよりも小径であるが、この例に限定されるものではない。例えば、ステータ18およびロータ19の一部がブレーキロータ12の外周部12bよりも小径であってもよい。図示しないが、電動発電機は、ロータがステータの半径方向内方に位置するインナーロータ型であってもよい。 In the motor generator 3 of this example, although all of the stator 18 and the rotor 19 have a diameter smaller than that of the outer peripheral portion 12b of the brake rotor 12, the present invention is not limited to this example. For example, a part of the stator 18 and the rotor 19 may be smaller in diameter than the outer peripheral portion 12 b of the brake rotor 12. Although not shown, the motor generator may be an inner rotor type in which the rotor is located radially inward of the stator.
 図9~図11に示すように、外輪4とステータ18との間に絶縁層9を介在させた構成(図1参照)に加えて、ロータ19と内輪(回転輪)5との間に絶縁材31を介在させてもよい。図9および図10に示すように、回転ケース15のうち、ケース円筒状部25におけるアウトボード側の基端部と、ケース底部11との間にリング状の絶縁材31が取付けられている。この絶縁材31は内輪5と同軸である。この例の回転ケース15では、ケース底部11とケース円筒状部25とは、別体で構成され、後述するボルトにより絶縁材31を介在させて固定されている。 In addition to the configuration in which the insulating layer 9 is interposed between the outer ring 4 and the stator 18 as shown in FIGS. 9 to 11 (see FIG. 1), insulation is provided between the rotor 19 and the inner ring (rotating ring) 5 The material 31 may be interposed. As shown in FIGS. 9 and 10, a ring-shaped insulating material 31 is attached between the base end of the case cylindrical portion 25 on the outboard side of the rotation case 15 and the case bottom 11. The insulating material 31 is coaxial with the inner ring 5. In the rotation case 15 of this example, the case bottom 11 and the case cylindrical portion 25 are separately formed, and fixed by interposing the insulating material 31 by a bolt described later.
 図11に示すように、ケース円筒状部25のアウトボード側の基端部には、円周方向所定間隔おきに複数の雌ねじが形成され、絶縁材31およびケース底部11には、前記複数の雌ねじに同位相のボルト孔、座繰り孔が形成されている。ボルト29が回転ケース15のアウトボード側から各ボルト孔にそれぞれ挿通され各雌ねじに締結されている。絶縁材31およびボルト29の材質として、樹脂材料またはセラミックスなどの剛性のある絶縁部材が好ましい。 As shown in FIG. 11, a plurality of internal threads are formed at predetermined intervals in the circumferential direction at the base end of the case cylindrical portion 25 on the outboard side, and the insulating material 31 and the case bottom 11 In the female screw, bolt holes and countersunk holes of the same phase are formed. Bolts 29 are respectively inserted into the bolt holes from the outboard side of the rotation case 15 and fastened to the respective female screws. As a material of the insulating material 31 and the bolt 29, a rigid insulating member such as a resin material or a ceramic is preferable.
 前述の軸受内外輪間の電位差による転動体6への通電に加え、電動発電機3のロータ19、ステータ18間で微量な渦電流の発生により、ロータ19から内輪5を通って転動体6に通電するおそれがある。この構成によれば、外輪4とステータ18との間に絶縁層9を介在させる構成に加え、ロータ19と内輪5との間に絶縁材31を備えることで、ロータ19と内輪5間で絶縁され、転動体6の電食をより確実に防ぐことができる。 In addition to the energization of the rolling elements 6 due to the potential difference between the inner and outer rings of the bearing described above, a slight amount of eddy current is generated between the rotor 19 and the stator 18 of the motor generator 3. There is a risk of energizing. According to this configuration, in addition to the configuration in which the insulating layer 9 is interposed between the outer ring 4 and the stator 18, the insulating material 31 is provided between the rotor 19 and the inner ring 5, whereby insulation is provided between the rotor 19 and the inner ring 5. Thus, the electrolytic corrosion of the rolling element 6 can be prevented more reliably.
 この構成の変形例として、図示しないが、回転ケース15全体に絶縁材料を塗布もしくは溶射し、または回転ケース15の材質を樹脂またはセラミックスにしてもよい。この変形例によれば、前記構成と同様の効果を得ることができる。この場合、前記絶縁材料、前記回転ケース15の材質を樹脂またはセラミックスにしたものが、それぞれ本明細書でいう「絶縁材」に相当する。図9の構成と、回転ケース15全体に絶縁材料を塗布もしくは溶射した変形例とを備えた構成としてもよい。 As a modified example of this configuration, although not shown, an insulating material may be applied or sprayed over the entire rotation case 15, or the material of the rotation case 15 may be resin or ceramics. According to this modification, the same effect as that of the above-described configuration can be obtained. In this case, those in which the material of the insulating material and the rotation case 15 is made of resin or ceramic correspond to the "insulating material" in the present specification. The configuration shown in FIG. 9 and a modified example in which an insulating material is applied or sprayed on the entire rotating case 15 may be provided.
 図12に示すように、ステータ保持部材24とステータ18との間に絶縁層9Aを備えた構成(図6参照)に加えて、ロータ19と内輪5との間に絶縁材31を備えてもよい。この例の回転ケース15においても、ケース底部11とケース円筒状部25とは別体で構成され、前記ボルトにより絶縁材31を介在させて固定されている。この構成によれば、ロータ19と内輪5との間に絶縁材31を備えることで、ロータ19と内輪5間で絶縁され、転動体6の電食をより確実に防ぐことができる。 As shown in FIG. 12, in addition to the configuration having the insulating layer 9A between the stator holding member 24 and the stator 18 (see FIG. 6), the insulating material 31 may be provided between the rotor 19 and the inner ring 5 as well. Good. Also in the rotation case 15 of this example, the case bottom 11 and the case cylindrical portion 25 are separately formed, and are fixed by interposing the insulating material 31 by the bolt. According to this configuration, by providing the insulating material 31 between the rotor 19 and the inner ring 5, the rotor 19 and the inner ring 5 are insulated, and the electrolytic corrosion of the rolling elements 6 can be more reliably prevented.
 <車両用システムについて>
 図13は、いずれかの実施形態に係る車両用動力装置1を用いた車両用システムの概念構成を示すブロック図である。この車両用システムにおいて、車両用動力装置1は、主駆動源と機械的に非連結である従動輪10を持つ車両において、従動輪10に対して搭載される。車両用動力装置1における車輪用軸受2(図1,図6~図8,図9,図12)は、従動輪10を支持する軸受である。
<About the system for vehicles>
FIG. 13 is a block diagram showing a conceptual configuration of a system for a vehicle using the power unit 1 for a vehicle according to any one of the embodiments. In the vehicle system, the vehicle power plant 1, in a vehicle having a driven wheel 10 B is a main drive source mechanically unconnected, is mounted against the driven wheel 10 B. Wheel bearing 2 in the vehicle power unit 1 (FIG. 1, 6-8, 9, 12) is a bearing supporting the driven wheel 10 B.
 主駆動源35は、ガソリンエンジンまたはディーゼルエンジン等の内燃機関、または電動発電機(電動モータ)、または両者を組み合わせたハイブリッド型の駆動源である。前記「電動発電機」は、回転付与による発電が可能な電動モータを称す。図示の例では、車両30は、前輪が駆動輪10、後輪が従動輪10となる前輪駆動車であって、主駆動源35が内燃機関35aと駆動輪側の電動発電機35bとを有するハイブッリド車(以下、「HEV」と称することがある)である。 The main drive source 35 is an internal combustion engine such as a gasoline engine or a diesel engine, or a motor generator (electric motor), or a hybrid drive source combining both. The "motor generator" refers to an electric motor capable of generating power by rotation. In the illustrated example, the vehicle 30 is a front wheel drive car whose front wheels are drive wheels 10 A and rear wheels are driven wheels 10 B, and the main drive source 35 is an internal combustion engine 35 a and a motor generator 35 b on the drive wheels side. It is a hybrid car (hereinafter may be referred to as "HEV").
 具体的には、駆動輪側の電動発電機35bが48V等の中電圧で駆動されるマイルドハイブリッド形式である。ハイブリッドはストロングハイブリッドとマイルドハイブリッドとに大別されるが、マイルドハイブリッドは、主要駆動源が内燃機関であって、発進時や加速時等にモータで走行の補助を主に行う形式を言い、EV(電気自動車)モードでは通常の走行を暫くは行えても長時間行うことができないことでストロングハイブリッドと区別される。同図の例の内燃機関35aは、クラッチ36および変速機37を介して駆動輪10のドライブシャフトに接続され、変速機37に駆動輪側の電動発電機35bが接続されている。 Specifically, it is a mild hybrid type in which the motor generator 35b on the drive wheel side is driven by a medium voltage such as 48V. Hybrids can be broadly divided into Strong Hybrids and Mild Hybrids, but Mild Hybrids, whose main drive source is an internal combustion engine, is a type that mainly assists driving with a motor when starting or accelerating. In the (electric car) mode, it can be distinguished from the strong hybrid because normal travel can be performed for a while but can not be performed for a long time. Internal combustion engine 35a of the example of the figure, is connected to the drive shaft of the drive wheel 10 A via the clutch 36 and the transmission 37, the motor generator 35b of the driving wheel is connected to the transmission 37.
 この車両用システムは、従動輪10の回転駆動を行う走行補助用の発電機である電動機3と、この電動機3の制御を行う個別制御手段39と、上位ECU40に設けられて前記個別制御手段39に駆動および回生の制御を行わせる指令を出力する個別電動発電機指令手段45とを備える。電動機3は、蓄電手段に接続されている。この蓄電手段は、バッテリー(蓄電池)またはキャパシタ、コンデンサ等を用いることができ、その形式や車両30への搭載位置は問わないが、この実施形態では、車両30に搭載された低電圧バッテリー50および中電圧バッテリー49のうちの中電圧バッテリー49とされている。 System for a vehicle includes an electric motor 3 is a power generator for the drive assistance for rotating driving of the driven wheels 10 B, the individual control means 39 for controlling the electric motor 3, the individual control unit provided in the upper ECU40 And an individual motor generator command means 45 for outputting a command for performing control of drive and regeneration at 39. The motor 3 is connected to the storage means. The storage means may be a battery (storage battery) or a capacitor, a capacitor, etc. The type and mounting position on the vehicle 30 are not limited. In this embodiment, the low voltage battery 50 mounted on the vehicle 30 and The medium voltage battery 49 of the medium voltage battery 49 is used.
 従動輪用の電動機3は、変速機を用いないダイレクトドライブモータである。電動機3は、電力を供給することで電動機として作用し、また車両30の運動エネルギーを電力に変換する発電機としても作用する。電動機3は、内輪5(図1)にロータ19(図1)が取付けられているため、電動機3に電流を印加し、車両の進行方向にトルクを発生させると内輪5(図1)が回転駆動され、逆方向にトルクを発生させることで回生電力が得られる。この電動機3の回転駆動用の駆動電圧または回生電圧が60V以下である。 The driven wheel motor 3 is a direct drive motor that does not use a transmission. The motor 3 acts as a motor by supplying electric power, and also acts as a generator that converts kinetic energy of the vehicle 30 into electric power. As the motor 3 has the rotor 19 (FIG. 1) attached to the inner ring 5 (FIG. 1), the current is applied to the motor 3 and torque is generated in the traveling direction of the vehicle. Regenerative power is obtained by being driven and generating torque in the reverse direction. The driving voltage or regenerative voltage for rotational driving of the motor 3 is 60 V or less.
 <車両30の制御系について>
 上位ECU40は、車両30の統合制御を行う手段であり、トルク指令生成手段43を備える。このトルク指令生成手段43は、アクセルペダル等のアクセル操作手段56およびブレーキペダル等のブレーキ操作手段57からそれぞれ入力される操作量の信号に従ってトルク指令を生成する。この車両30は、主駆動源35として内燃機関35aおよび駆動輪側の電動発電機35bを備え、また二つの従動輪10,10をそれぞれ駆動する二つの電動機3,3を備えるため、前記トルク指令を各駆動源35a,35b,3,3に定められた規則によって分配するトルク指令分配手段44が上位ECU40に設けられている。
<About Control System of Vehicle 30>
The host ECU 40 is a unit that performs integrated control of the vehicle 30, and includes a torque command generation unit 43. The torque command generation unit 43 generates a torque command in accordance with signals of operation amounts respectively input from an accelerator operation unit 56 such as an accelerator pedal and a brake operation unit 57 such as a brake pedal. The vehicle 30 includes a motor generator 35b of the internal combustion engine 35a and the drive wheel as the main drive source 35, and because with the two electric motors 3, 3 for driving two driven wheels 10 B, 10 B, respectively, wherein The host ECU 40 is provided with a torque command distribution unit 44 that distributes the torque command to the drive sources 35 a, 35 b, 3, 3 according to the rule defined.
 内燃機関35aに対するトルク指令は内燃機関制御手段47に伝達され、内燃機関制御手段47によるバルブ開度制御等に用いられる。駆動輪側の発電電動機35bに対するトルク指令は、駆動輪側電動発電機制御手段48に伝達されて実行される。従動輪側の電動機3,3に対するトルク指令は、個別制御手段39,39に伝達される。前記トルク指令分配手段44のうち、個別制御手段39,39へ出力する部分を個別電動発電機指令手段45と称している。この個別電動発電機指令手段45は、ブレーキ操作手段57の操作量の信号に対して、電動機3が回生制動により制動を分担する制動力の指令となるトルク指令を個別制御手段39へ与える機能も備える。 The torque command for the internal combustion engine 35a is transmitted to the internal combustion engine control means 47, and is used for valve opening control etc. by the internal combustion engine control means 47. A torque command to the drive wheel side generator motor 35b is transmitted to the drive wheel side motor generator control means 48 and executed. Torque commands for the driven wheels 3 and 3 are transmitted to the individual control means 39 and 39. The part of the torque command distribution means 44 to be output to the individual control means 39, 39 is referred to as an individual motor generator command means 45. The individual motor generator command means 45 also has a function of giving to the individual control means 39 a torque command serving as a command of a braking force with which the motor 3 shares braking by regenerative braking in response to the signal of the operation amount of the brake operation means 57. Prepare.
 個別制御手段39はインバータ装置であり、中電圧バッテリー49の直流電力を三相の交流電圧に変換するインバータ41と、前記トルク指令等によりインバータ41の出力をPWM制御等で制御する制御部42とを有する。インバータ41は、半導体スイッチング素子等によるブリッジ回路(図示せず)等を備える。 The individual control means 39 is an inverter device, and an inverter 41 for converting DC power of the medium voltage battery 49 into three-phase AC voltage, and a control unit 42 for controlling the output of the inverter 41 by PWM control etc. Have. The inverter 41 includes a bridge circuit (not shown) and the like by a semiconductor switching element and the like.
 制御部42は、例えば、個別電動発電機指令手段45より与えられるトルク指令に対して、発生するトルクが一致するように電動機3を追従制御する。すなわち制御部42は、指令トルクと、回転検出器27(図1)で検出される回転速度(回転角度センサの場合、容易に算出可能)と、試験結果から電動機3に印加する電流を算出する。さらに算出した電流と回転角度と図示外の電流センサの値から電動機3に印加する電圧を算出する。算出した電圧を電動機3に印加し、指令トルクと一致するトルクを発生する。なお個別制御手段39は、二つの電動機3,3に対して個別に設けられるが、一つの筐体内に収められ、制御部42を両個別制御手段39,39で共有する構成であってもよい。 The control unit 42 controls the motor 3 to follow the torque command generated by the individual motor generator command unit 45, for example, so that the generated torque matches. That is, the control unit 42 calculates the current to be applied to the motor 3 from the command torque, the rotation speed (which can be easily calculated in the case of the rotation angle sensor) detected by the rotation detector 27 (FIG. 1), and the test result. . Furthermore, the voltage applied to the motor 3 is calculated from the calculated current, the rotation angle, and the value of the current sensor (not shown). The calculated voltage is applied to the motor 3 to generate a torque that matches the command torque. Although the individual control means 39 is separately provided for the two motors 3 and 3, it may be housed in one case and the control unit 42 may be shared by both individual control means 39, 39. .
 図14は、図13に示した車両用システムを搭載した車両の一例となる電源系統図である。同図の例では、バッテリーとして低電圧バッテリー50と中電力バッテリー49とが設けられ、両バッテリー49,50は、DC/DCコンバータ51を介して接続されている。電動機3は二つあるが、代表して一つで図示している。図13の駆動輪側の電動発電機35bは、図14では図示を省略しているが、従動輪側の電動機3と並列に中電力系統に接続されている。低電圧系統には低電圧負荷52が接続され、中電圧系統には中電圧負荷53が接続される。低電圧負荷52および中電圧負荷53は、それぞれ複数あるが、代表して一つで示している。 FIG. 14 is a power supply system diagram as an example of a vehicle equipped with the system for a vehicle shown in FIG. In the example of the figure, a low voltage battery 50 and a medium power battery 49 are provided as batteries, and both the batteries 49 and 50 are connected via a DC / DC converter 51. Although there are two electric motors 3, one is representatively shown. The motor generator 35b on the drive wheel side of FIG. 13 is connected to the medium power system in parallel with the motor 3 on the driven wheel side, although not shown in FIG. A low voltage load 52 is connected to the low voltage system, and a medium voltage load 53 is connected to the medium voltage system. There are a plurality of low voltage loads 52 and a plurality of medium voltage loads 53, but one is representatively shown.
 低電圧バッテリー50は、制御系等の電源として各種の自動車一般に用いられているバッテリーであり、例えば12Vまたは24Vとされる。低電圧負荷52としては、内燃機関35aのスタータモータ、灯火類、上位ECU40およびその他のECU(図示せず)等の基幹部品がある。低電圧バッテリー50は電装補機類用補助バッテリーと称し、中電圧バッテリー49は電動システム用補助バッテリー等と称してもよい。 The low voltage battery 50 is a battery generally used in various automobiles as a power supply of a control system or the like, and is, for example, 12 V or 24 V. The low voltage load 52 includes basic components such as a starter motor of the internal combustion engine 35a, lights, a host ECU 40, and other ECUs (not shown). The low voltage battery 50 may be referred to as an auxiliary battery for electrical equipment accessories, and the medium voltage battery 49 may be referred to as an auxiliary battery for an electric system or the like.
 中電圧バッテリー49は、低電圧バッテリー50よりも電圧が高く、かつストロングハイブリッド車等に用いられる高圧バッテリー(100V以上、例えば200~400V程度)よりも低く、かつ作業時に感電による人体への影響が問題とならない程度の電圧であり、近年マイルドハイブリッドに用いられている48Vバッテリーが好ましい。48Vバッテリー等の中電圧バッテリー49は、従来の内燃機関を搭載した車両に比較的容易に搭載することができ、マイルドハイブリッドとして電力による動力アシストや回生により、燃費低減することができる。 The medium voltage battery 49 has a higher voltage than the low voltage battery 50 and is lower than a high voltage battery (100 V or more, for example, about 200 to 400 V) used in a strong hybrid vehicle etc. It is a voltage that does not cause a problem, and a 48V battery used in recent years for mild hybrids is preferable. A medium voltage battery 49 such as a 48V battery can be mounted relatively easily on a vehicle equipped with a conventional internal combustion engine, and can reduce fuel consumption by power assist and regeneration with electric power as a mild hybrid.
 前記48V系統の中電圧負荷53は前記アクセサリー部品であり、前記駆動輪側の電動発電機35bである動力アシストモータ、電動ポンプ、電動パワーステアリング、スーパーチャージャ、およびエアーコンプレッサなどである。アクセサリーによる負荷を48V系統で構成することで、高電圧(100V以上のストロングハイブリッド車など)よりも動力アシストの出力が低くなるものの、乗員やメンテナンス作業者への感電の危険性を低くすることができる。電線の絶縁被膜を薄くすることができるので、電線の重量や体積を減らすことができる。また、12Vよりも小さな電流量で大きな電力量を入出力することができるため、電動機または発電機の体積を小さくすることができる。これらのことから、車両の燃費低減効果に寄与する。 The medium voltage load 53 of the 48V system is the accessory component, and is a power assist motor, an electric pump, an electric power steering, a supercharger, an air compressor, or the like which is the motor generator 35b on the drive wheel side. By configuring the load of accessories with a 48V system, although the power assist output is lower than that of high voltage (100V or higher strong hybrid vehicles etc.), the risk of electric shock to occupants and maintenance workers can be reduced. it can. Since the insulation coating of the wire can be thinned, the weight and volume of the wire can be reduced. Further, since a large amount of power can be input / output with a current amount smaller than 12 V, the volume of the motor or generator can be reduced. From these things, it contributes to the fuel consumption reduction effect of vehicles.
 この車両用システムは、こうしたマイルドハイブリッド車のアクセサリー部品に好適であり、動力アシストおよび電力回生部品として適用される。なお、従来よりマイルドハイブリッド車において、CMG、GMG、ベルト駆動式スタータモータ(いずれも図示せず)などが採用されることがあるが、これらはいずれも、内燃機関または動力装置に対して動力アシストまたは回生するため、伝達装置および減速機などの効率の影響を受ける。 The vehicle system is suitable for accessory parts of such mild hybrid vehicles, and is applied as a power assist and a power regeneration part. Although CMGs, GMGs, and belt-driven starter motors (none of which are shown) may be employed conventionally in mild hybrid vehicles, all of them are power assists for internal combustion engines or power devices. Or because it regenerates, it is affected by the efficiency of the transmission device and speed reducer.
 これに対してこの実施形態の車両用システムは従動輪10に対して搭載されるため、内燃機関35aおよび電動モータ(図示せず)等の主駆動源とは切り離されており、電力回生の際には車体の運動エネルギーを直接利用することができる。また、CMG、GMG、ベルト駆動式スタータモータなどを搭載する際には、車両30の設計段階から考慮して組み込む必要があり、後付けすることが難しい。 Since contrast to the vehicle system of this embodiment is mounted with respect to the driven wheels 10 B, and the main drive source is disconnected such as an internal combustion engine 35a and the electric motor (not shown), the power regeneration In this case, the kinetic energy of the car body can be used directly. In addition, when CMG, GMG, a belt drive type starter motor, etc. are mounted, they need to be incorporated in consideration from the design stage of the vehicle 30, and it is difficult to retrofit.
 これに対して、従動輪10内に収まるこの車両用システムの電動機3は、完成車であっても部品交換と同等の工数で取り付けることができ、内燃機関35aのみの完成車に対しても48Vのシステムを構成することができる。内燃機関35aのみ備えた既存の車両に、いずれかの実施形態に係る車両用動力装置1と、電動発電機用のバッテリーとして、この電動機の回転駆動用の駆動電圧または回生電圧が60V以下の前記中電圧バッテリー49とを搭載することで、車両の大幅な改造をすることなく、マイルドハイブリッド車両にすることができる。この実施形態の車両用システムを搭載した車両に、図13の例のように別の補助駆動用の電動発電機35bが搭載されていても構わない。その際は車両30に対する動力アシスト量や回生電力量を増加させることができ、さらに燃費低減に寄与する。 In contrast, the motor 3 of the system for this vehicle to fit in the driven wheel 10 in B, even complete vehicles can be mounted in part exchange the same steps, even for finished vehicles of the internal combustion engine 35a only A 48V system can be configured. In an existing vehicle equipped with only an internal combustion engine 35a, the vehicle power unit 1 according to any one of the embodiments, and a battery for a motor generator, the drive voltage or regenerative voltage for rotational drive of the motor is 60 V or less By mounting the medium voltage battery 49, it is possible to make a mild hybrid vehicle without significant modification of the vehicle. Another auxiliary drive motor generator 35b may be mounted on the vehicle equipped with the vehicle system of this embodiment as shown in FIG. At that time, the power assist amount and the regenerative electric energy for the vehicle 30 can be increased, which further contributes to the fuel consumption reduction.
 図示しないが、いずれかの実施形態に係る車両用動力装置を駆動輪に適用してもよい。車両用動力装置を駆動輪および従動輪にそれぞれ適用することも可能である。 Although not shown, the power unit for a vehicle according to any of the embodiments may be applied to the drive wheel. It is also possible to apply the vehicle power unit to the drive wheel and the driven wheel, respectively.
 図13に示す車両用システムは、発電を行う機能を有するが、給電による回転駆動をしないシステムとしてもよい。この車両用システムには、電動機を兼用しない発電機3と、車輪用軸受2とを備える発電機付き車輪用軸受装置が搭載される。この発電機付き車輪用軸受装置は、いずれかの実施形態の車両用動力装置に対し、電動機を兼用する電動発電機を除き同一構成である。この場合、発電機3が発電した回生電力を中電圧バッテリー49に蓄えることにより、制動力を発生させることができる。機械式のブレーキ操作手段57と併用や使い分けで、制動性能も向上させることができる。このように発電を行う機能に限定した場合、個別制御手段39はインバータ装置ではなく、AC/DCコンバータ装置(図示せず)として構成することができる。前記AC/DCコンバータ装置は、3相交流電圧を直流電圧に変換することで、発電機3の回生電力を中電圧バッテリー49に充電する機能を備え、インバータと比較すると制御方法が容易であり、小型化が可能となる。 The vehicle system shown in FIG. 13 has a function of generating electric power, but may be a system which does not perform rotational drive by power feeding. On this vehicle system, a generator-equipped wheel bearing apparatus including a generator 3 that does not share an electric motor and a wheel bearing 2 is mounted. The bearing assembly for a wheel with a generator has the same configuration as that of the power unit for a vehicle according to any of the embodiments except for a motor generator which also serves as a motor. In this case, the braking power can be generated by storing the regenerative power generated by the generator 3 in the medium voltage battery 49. The braking performance can also be improved by using it together with or using the mechanical brake operating means 57. When limited to the function of generating power as described above, the individual control means 39 can be configured as an AC / DC converter (not shown) rather than an inverter. The AC / DC converter device has a function of charging the regenerative power of the generator 3 to the medium voltage battery 49 by converting a three-phase AC voltage into a DC voltage, and the control method is easy compared to an inverter, Miniaturization is possible.
 加えて、本願における車両用動力装置1において、車輪用軸受2は、回転輪として、一つの部分内輪が嵌合されたハブ輪を備え、固定輪である外輪と、ハブ輪および部分内輪の嵌合体で構成された第3世代構造としているが、これに限定するものではない。
 ハブフランジを有するハブと、転動体の軌道面を有する部材とを合わせた構造体が本明細書でいう回転輪となる。車輪用軸受2は、例えば、主に固定輪である外輪と、ハブフランジを有するハブの外周面に嵌合された内輪とを備えた第1世代構造であってもよく、固定輪である外輪と、ハブフランジを有するハブの外周面に嵌合された内輪とを備えた内輪回転形式の第2世代構造であってもよい。これらの例では、前記ハブと前記内輪とが組み合わさったものが本明細書でいう「回転輪」に相当する。車輪用軸受2は、ハブフランジを有する回転輪である外輪と、固定輪である内輪とを備えた外輪回転形式の第2世代構造であってもよい。
In addition, in the power unit 1 for a vehicle according to the present application, the wheel bearing 2 includes a hub ring to which one partial inner ring is fitted as a rotary ring, and the outer ring which is a fixed ring and the hub ring and the partial inner ring Although it is set as the 3rd generation structure comprised by union, it does not limit to this.
A structure in which a hub having a hub flange and a member having a raceway surface of a rolling element are combined is a rotating wheel as referred to in the present specification. The wheel bearing 2 may be, for example, a first generation structure including an outer ring mainly serving as a fixed ring and an inner ring fitted to the outer peripheral surface of a hub having a hub flange, and the outer ring serving as a fixed ring The inner ring rotation type second generation structure may be provided with an inner ring fitted to an outer peripheral surface of a hub having a hub flange. In these examples, the combination of the hub and the inner ring corresponds to the "rotating wheel" in the present specification. The wheel bearing 2 may be of an outer ring rotation type second generation structure including an outer ring which is a rotating ring having a hub flange and an inner ring which is a fixed ring.
 以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although the form for implementing this invention was demonstrated based on embodiment, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is indicated not by the above description but by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.
1…車両用動力装置
2…車輪用軸受
3…電動発電機(電動機、発電機)
4…外輪(固定輪)
5…内輪(回転輪)
7…ハブフランジ
8…ナックル(足回りフレーム部品)
9,9A…絶縁層
12…ブレーキロータ
18…ステータ
19…ロータ
24…ステータ保持部材(中間部材)
31…絶縁材
Kp…ブレーキキャリパ
1 Vehicle power unit 2 Wheel bearing 3 Motor generator (motor, generator)
4 ... Outer ring (fixed ring)
5 ... Inner ring (turning wheel)
7 ... Hub flange 8 ... knuckle (frame of underbody frame)
9, 9 A Insulating layer 12 Brake rotor 18 Stator 19 Rotor 24 Stator holding member (intermediate member)
31 ... Insulation material Kp ... Brake caliper

Claims (10)

  1.  固定輪、およびハブフランジを有し前記固定輪に転動体を介して回転自在に支持されて前記ハブフランジに車両の車輪およびブレーキロータが取付けられる回転輪を有する車輪用軸受と、
     前記車輪用軸受の前記固定輪に取付けられたステータ、および前記車輪用軸受の前記回転輪に取付けられたロータを有する電動機と、
    を備えた車両用動力装置であって、
     前記ステータおよび前記ロータの一部または全部が、前記ブレーキロータにおける、ブレーキキャリパが押し付けられる部分となる外周部よりも小径であり、且つ、前記電動機におけるハブフランジへの取付部を除く全体が、前記ハブフランジと、前記車両における足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置し、
     前記固定輪と前記ステータとの間に絶縁層が介在している車両用動力装置。
    A wheel bearing having a fixed wheel, and a wheel flange having a hub flange and rotatably supported by the fixed wheel via rolling elements and having the wheel and brake rotor of the vehicle attached to the hub flange;
    An electric motor having a stator attached to the fixed wheel of the wheel bearing, and a rotor attached to the rotating wheel of the wheel bearing;
    A power unit for a vehicle comprising
    The stator and part or all of the rotor are smaller in diameter than the outer peripheral part of the brake rotor where the brake caliper is pressed, and the entire portion excluding the mounting portion to the hub flange of the electric motor is the above. In an axial range between the hub flange and the outboard side of the undercarriage part of the vehicle,
    A power plant for a vehicle, wherein an insulating layer is interposed between the fixed wheel and the stator.
  2.  請求項1に記載の車両用動力装置において、前記電動機は、前記ステータが前記車輪用軸受の外周に位置し、前記ロータが前記ステータの半径方向外方に位置するアウターロータ型である車両用動力装置。 The vehicular power apparatus according to claim 1, wherein the electric motor is an outer rotor type in which the stator is located on the outer periphery of the wheel bearing and the rotor is located radially outward of the stator. apparatus.
  3.  請求項1または請求項2に記載の車両用動力装置において、前記電動機は、前記車輪を回転駆動可能な電動発電機である車両用動力装置。 The power unit for vehicles according to claim 1 or 2, wherein the electric motor is a motor generator capable of rotationally driving the wheels.
  4.  請求項3に記載の車両用動力装置において、前記電動機の回転駆動用の駆動電圧または回生電圧が60V以下である車両用動力装置。 The power unit for vehicles according to claim 3, wherein a drive voltage or a regenerative voltage for rotational drive of the electric motor is 60 V or less.
  5.  請求項1ないし請求項4のいずれか1項に記載の車両用動力装置において、前記固定輪と前記ステータとの間に、前記固定輪を前記足回りフレーム部品に固定する中間部材を備え、この中間部材と前記固定輪との間、および前記中間部材と前記ステータとの間のいずれか一方または両方に前記絶縁層を備えた車両用動力装置。 The power unit for a vehicle according to any one of claims 1 to 4, further comprising an intermediate member for fixing the fixed wheel to the underbody frame part, between the fixed wheel and the stator. A power plant for a vehicle comprising the insulating layer at any one or both of an intermediate member and the fixed wheel, and between the intermediate member and the stator.
  6.  請求項1ないし請求項4のいずれか1項に記載の車両用動力装置において、前記固定輪と前記ステータとの間に、前記固定輪を前記足回りフレーム部品に固定する中間部材を備え、この中間部材が絶縁材料で構成されている車両用動力装置。 The power unit for a vehicle according to any one of claims 1 to 4, further comprising an intermediate member for fixing the fixed wheel to the underbody frame part, between the fixed wheel and the stator. A vehicle power unit wherein the intermediate member is made of an insulating material.
  7.  請求項1ないし請求項6のいずれか1項に記載の車両用動力装置において、前記ロータと前記回転輪との間に絶縁材を備えた車両用動力装置。 The power unit for vehicles according to any one of claims 1 to 6, wherein an insulating material is provided between the rotor and the rotating wheel.
  8.  固定輪、およびハブフランジを有し前記固定輪に転動体を介して回転自在に支持されて前記ハブフランジに車両の車輪およびブレーキロータが取付けられる回転輪を有する車輪用軸受と、
     前記車輪用軸受の前記固定輪に取付けられたステータ、および前記車輪用軸受の前記回転輪に取付けられたロータを有する電動機と、
    を備えた車両用動力装置において、
     前記ステータおよび前記ロータの一部または全部が、前記ブレーキロータにおける、ブレーキキャリパが押し付けられる部分となる外周部よりも小径であり、且つ、前記電動機におけるハブフランジへの取付部を除く全体が、前記ハブフランジと、前記車両における足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置し、
     前記転動体が絶縁材料で構成されている車両用動力装置。
    A wheel bearing having a fixed wheel, and a wheel flange having a hub flange and rotatably supported by the fixed wheel via rolling elements and having the wheel and brake rotor of the vehicle attached to the hub flange;
    An electric motor having a stator attached to the fixed wheel of the wheel bearing, and a rotor attached to the rotating wheel of the wheel bearing;
    In a vehicle power unit provided with
    The stator and part or all of the rotor are smaller in diameter than the outer peripheral part of the brake rotor where the brake caliper is pressed, and the entire portion excluding the mounting portion to the hub flange of the electric motor is the above. In an axial range between the hub flange and the outboard side of the undercarriage part of the vehicle,
    A power device for a vehicle, wherein the rolling element is made of an insulating material.
  9.  固定輪、およびハブフランジを有し前記固定輪に転動体を介して回転自在に支持されて前記ハブフランジに車両の車輪およびブレーキロータが取付けられる回転輪を有する車輪用軸受と、
     前記車輪用軸受の前記固定輪に取付けられたステータ、および前記車輪用軸受の前記回転輪に取付けられたロータを有する発電機と、
    を備えた発電機付き車輪用軸受装置であって、
     前記ステータおよび前記ロータの一部または全部が、前記ブレーキロータにおける、ブレーキキャリパが押し付けられる部分となる外周部よりも小径であり、且つ、前記発電機におけるハブフランジへの取付部を除く全体が、前記ハブフランジと、前記車両における足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置し、
     前記固定輪と前記ステータとの間に絶縁層が介在している発電機付き車輪用軸受装置。
    A wheel bearing having a fixed wheel, and a wheel flange having a hub flange and rotatably supported by the fixed wheel via rolling elements and having the wheel and brake rotor of the vehicle attached to the hub flange;
    A generator having a stator attached to the fixed wheel of the wheel bearing, and a rotor attached to the rotating wheel of the wheel bearing;
    A generator-equipped wheel bearing apparatus comprising:
    Part or all of the stator and the rotor are smaller in diameter than the outer peripheral part of the brake rotor where the brake caliper is pressed, and the whole excluding the mounting portion to the hub flange in the generator is In an axial range between the hub flange and the outboard side of an undercarriage part of the vehicle,
    A bearing device for a wheel with a generator, wherein an insulating layer is interposed between the fixed wheel and the stator.
  10.  請求項9に記載の発電機付き車輪用軸受装置において、前記ロータと前記回転輪との間に絶縁材を備えた発電機付き車輪用軸受装置。 The bearing device for a wheel with a generator according to claim 9, wherein the insulating material is provided between the rotor and the rotating wheel.
PCT/JP2018/038534 2017-10-17 2018-10-16 Vehicle power device and wheel bearing device with generator WO2019078216A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18868945.9A EP3699010A4 (en) 2017-10-17 2018-10-16 Vehicle power device and wheel bearing device with generator
CN201880067602.5A CN111263706B (en) 2017-10-17 2018-10-16 Power unit for vehicle and wheel bearing device with generator
US16/850,576 US11447003B2 (en) 2017-10-17 2020-04-16 Vehicle power device and wheel bearing device with generator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017200780 2017-10-17
JP2017-200780 2017-10-17
JP2018-165590 2018-09-05
JP2018165590A JP7140608B2 (en) 2017-10-17 2018-09-05 Power unit for vehicle and bearing unit for wheel with generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/850,576 Continuation US11447003B2 (en) 2017-10-17 2020-04-16 Vehicle power device and wheel bearing device with generator

Publications (1)

Publication Number Publication Date
WO2019078216A1 true WO2019078216A1 (en) 2019-04-25

Family

ID=66173340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038534 WO2019078216A1 (en) 2017-10-17 2018-10-16 Vehicle power device and wheel bearing device with generator

Country Status (1)

Country Link
WO (1) WO2019078216A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114454721A (en) * 2022-03-30 2022-05-10 广汽埃安新能源汽车有限公司 Method for reducing electric corrosion of motor bearing of electric automobile and electric automobile
WO2022264877A1 (en) * 2021-06-14 2022-12-22 Ntn株式会社 Vehicular power device and vehicle wheel bearing device with power generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492290A1 (en) * 1990-12-21 1992-07-01 FIAT AUTO S.p.A. Driving wheel unit for an electric traction vehicle
JP2007016846A (en) * 2005-07-06 2007-01-25 Ntn Corp Bearing device for in-wheel motor
JP2007153266A (en) * 2005-12-08 2007-06-21 Mitsubishi Motors Corp In-wheel motor
JP2007162923A (en) * 2005-12-16 2007-06-28 Toyota Motor Corp Abrasion powder adsorption device
US20140117743A1 (en) * 2011-07-07 2014-05-01 Schaeffler Technologies AG & Co. KG Drive system with ventilation
JP2017113246A (en) 2015-12-24 2017-06-29 サミー株式会社 Slot machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492290A1 (en) * 1990-12-21 1992-07-01 FIAT AUTO S.p.A. Driving wheel unit for an electric traction vehicle
JP2007016846A (en) * 2005-07-06 2007-01-25 Ntn Corp Bearing device for in-wheel motor
JP2007153266A (en) * 2005-12-08 2007-06-21 Mitsubishi Motors Corp In-wheel motor
JP2007162923A (en) * 2005-12-16 2007-06-28 Toyota Motor Corp Abrasion powder adsorption device
US20140117743A1 (en) * 2011-07-07 2014-05-01 Schaeffler Technologies AG & Co. KG Drive system with ventilation
JP2017113246A (en) 2015-12-24 2017-06-29 サミー株式会社 Slot machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3699010A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264877A1 (en) * 2021-06-14 2022-12-22 Ntn株式会社 Vehicular power device and vehicle wheel bearing device with power generator
CN114454721A (en) * 2022-03-30 2022-05-10 广汽埃安新能源汽车有限公司 Method for reducing electric corrosion of motor bearing of electric automobile and electric automobile

Similar Documents

Publication Publication Date Title
US10752104B2 (en) Bearing device for wheels with auxiliary power device
JP7156787B2 (en) Wheel bearing device and vehicle equipped with this wheel bearing device
US11990822B2 (en) Vehicle power unit and vehicle wheel bearing with generator
JP7025176B2 (en) Vehicle power unit
JP7089939B2 (en) Motors and vehicle power units equipped with this motor, generators and bearings for wheels with generators equipped with this generator
US11641146B2 (en) Wheel bearing system with generator
WO2020162399A1 (en) Vehicle power device and wheel bearing device equipped with generator
WO2021251299A1 (en) Vehicle power device and wheel bearing with generator
WO2019138965A1 (en) Wheel bearing apparatus and vehicle provided with wheel bearing apparatus
US11447003B2 (en) Vehicle power device and wheel bearing device with generator
WO2019078216A1 (en) Vehicle power device and wheel bearing device with generator
WO2020162400A1 (en) Vehicle power device equipped with electric motor and generator-attached wheel bearing equipped with generator
WO2018225696A1 (en) Generator-equipped wheel bearing device and system for vehicles
WO2019049973A1 (en) Bearing device for vehicle wheel, and vehicle provided with bearing device for vehicle wheel
JP7349961B2 (en) Bearings for vehicle power units and wheels with generators
JP2019048555A (en) Bearing device for wheel with generator and vehicle provided with bearing device for wheel with generator
JP2019049314A (en) Bearing device for wheel with power generator and vehicle provided with bearing device for wheel with power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018868945

Country of ref document: EP

Effective date: 20200518