WO2019054414A1 - Chemical for crude oil recovery - Google Patents

Chemical for crude oil recovery Download PDF

Info

Publication number
WO2019054414A1
WO2019054414A1 PCT/JP2018/033831 JP2018033831W WO2019054414A1 WO 2019054414 A1 WO2019054414 A1 WO 2019054414A1 JP 2018033831 W JP2018033831 W JP 2018033831W WO 2019054414 A1 WO2019054414 A1 WO 2019054414A1
Authority
WO
WIPO (PCT)
Prior art keywords
crude oil
oil recovery
chemical solution
chemical
mass
Prior art date
Application number
PCT/JP2018/033831
Other languages
French (fr)
Japanese (ja)
Inventor
智 村上
太田 勇夫
エドモンド サウスウェル,ジョン
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017175511A external-priority patent/JP2021006595A/en
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to AU2018333735A priority Critical patent/AU2018333735B2/en
Priority to CN201880059143.6A priority patent/CN111094505A/en
Publication of WO2019054414A1 publication Critical patent/WO2019054414A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants

Definitions

  • the present invention is used in surfactant flooding in an enhanced oil recovery (hereinafter referred to as “Enhanced Oil Recovery”) (hereinafter referred to as “EOR”) flooding method in which crude oil is recovered by injecting it into the oil reservoir of inland or submarine oil field
  • EOR enhanced Oil Recovery
  • the invention relates to a crude oil recovery chemical solution which is excellent in high temperature salt resistance and high in crude oil recovery rate.
  • a three-stage method of primary, secondary and tertiary is applied in which different recovery methods are applied to each time series.
  • Primary recovery methods include self-injection oil extraction methods that use the natural pressure and gravity of oil reservoirs, and artificial oil extraction methods that use artificial oil collection techniques such as pumps, etc.
  • Primary oil recovery crude oil implemented by combining these methods The recovery rate is said to be about 20% at the maximum.
  • the secondary recovery method includes a water flooding method and an oil layer pressure maintenance method in which water and natural gas are injected to reduce the oil layer pressure and increase the oil production amount after production declines in the primary recovery method.
  • EOR attacks include heat attack, gas attack, microbial attack and chemical attack.
  • Chemical flooding includes polymer flooding, surfactant flooding, micelle flooding, etc.
  • a chemical solution according to the purpose is injected into the oil layer to enhance the fluidity of crude oil, or act between water and oil.
  • the surface tension is reduced or a micellar state is created between the injected gas and the oil.
  • alkyl allyl sulfonate is used alone as a surfactant, or used together with alkyl allyl sulfonate and a cosurfactant and / or an adjuvant.
  • Alkyl allyl sulfonates are commonly used because they can not only lower the interfacial tension between oil and water, but also exhibit different phase behavior as described below when used with different salt concentrations There is.
  • surfactants used in the present method petroleum sulfonate, alkyl allyl sulfonate, alkane sulfonate, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyhydric alcohol fatty acid ester, alkyl trimethyl ester Various anionic, non-ionic and cationic surfactants such as ammonium salts are disclosed.
  • a micelle solution for petroleum recovery containing an internal olefin sulfonate having 10 to 30 carbon atoms and an ⁇ -olefin sulfonate having 10 to 30 carbon atoms is disclosed (see Patent Document 4).
  • Patent Document 6 discloses a specific alkylxylene sulfonate as a surfactant for EOR with low interfacial tension.
  • Patent Document 7 discloses a method of injecting nanoparticles of (for example, silicon dioxide etc.) into a hydrocarbon storage layer or oil well.
  • colloidal silica surface-treated with a silane coupling agent is disclosed, for example, as an anodic deposition type electrodeposition coating composition comprising an acrylic polycarboxylic acid resin neutralized with an amine or ammonium and a curing agent. (See Patent Document 8).
  • Patent Document 7 the separation pressure is increased by injecting nanoparticles mixed in a wetting agent composed of a carrier fluid of water or hydrocarbon into a hydrocarbon storage layer or oil well, and the oil adhering to the rock surface A method of efficiently tearing off drops has been disclosed.
  • the nanoparticles be stable in the wetting agent, but for that purpose, the heat resistance of the wetting agent containing nanoparticles is required.
  • the salt resistance of the wetting agent containing nanoparticles is also required.
  • an anionic surfactant that has the effect of removing crude oil adhering to rocks such as sandstone or carbonate in the underground or marine oil reservoir is indispensable.
  • the anionic surfactant is poor in high-temperature salt resistance, and when injected into a high-temperature high-salt oil layer, it decomposes in a short time, and the crude oil recovery effect can not be sufficiently exhibited.
  • Colloidal silica is also said to have a crude oil recovery effect, but colloidal silica alone has poor high-temperature salt resistance, and it is also gelled in a short time when injected into a high-temperature, high-salt oil phase, and the crude oil recovery effect is sufficient Can not
  • crude oil recovery agent that contains an anionic surfactant and colloidal silica to simultaneously realize heat resistance and salt resistance and to realize efficient crude oil recovery.
  • crude oil recovery chemicals are often recovered several months after being injected into the underground or submarine oil reservoir. Stable even in unusually harsh environments exposed to seawater or salt water containing high concentrations of sodium ions, calcium ions and chloride ions, etc. under high temperature such as 100 ° C for several months, and crude oil There is a need for a drug that can exert its recovery effect.
  • the present invention is directed to a chemical solution used in surfactant flooding in EOR flooding in which crude oil is recovered by injecting it into the oil reservoir of inland or submarine oil field, that is, excellent in high temperature salt resistance. It is an object of the present invention to provide a crude oil recovery chemical solution having a high crude oil recovery rate.
  • silane compounds, aqueous silica sol having an average particle diameter of 3 to 200 nm, two or more types of anionic surfactants, and one or more types of nonionic surfactants It has been found that a chemical solution obtained by combining the above is used as a crude oil recovery chemical solution which is excellent in heat resistance and salt resistance and excellent in crude oil recovery.
  • a chemical solution obtained by combining the above is used as a crude oil recovery chemical solution which is excellent in heat resistance and salt resistance and excellent in crude oil recovery.
  • sodium chloride, magnesium chloride, sodium sulfate and calcium chloride are mainly added in addition to high temperature salt resistance to seawater. It has been found that it is a chemical solution for crude oil recovery that is excellent in high temperature salt resistance to artificial seawater as a component and is excellent in crude oil recovery.
  • the present invention comprises, as a first aspect, a silane compound, an aqueous silica sol having an average particle diameter of 3 to 200 nm, two or more anionic surfactants, and one or more nonionic surfactants.
  • the invention relates to a crude oil recovery chemical solution excellent in high-temperature salt resistance, characterized by As a second aspect, the high temperature salt resistance according to the first aspect, wherein the aqueous silica sol comprises silica particles formed by bonding at least a part of the silane compound to the surface of at least a part of the silica particles in the sol.
  • the aqueous silica sol comprises silica particles formed by bonding at least a part of the silane compound to the surface of at least a part of the silica particles in the sol.
  • a silane having at least one organic functional group selected from the group consisting of vinyl, ether, epoxy, styryl, methacryl, acryl, amino and isocyanurate groups is a chemical solution for crude oil recovery excellent in high-temperature salt resistance as described in the first aspect or the second aspect, which is at least one compound selected from the group consisting of a coupling agent, alkoxysilane, silazane and siloxane.
  • the first aspect to the third aspect wherein the aqueous silica sol is contained in 0.01% by mass to 30% by mass on a basis of the total mass of the crude oil recovery chemical solution in terms of solid content of silica.
  • the present invention relates to a crude oil recovery chemical solution excellent in high-temperature salt resistance described in any one of the viewpoints.
  • the silane compound is contained in a ratio such that the ratio of the mass of the silane compound to the mass of the solid silica component of the aqueous silica sol is 0.1 to 10.0.
  • the present invention relates to a crude oil recovery chemical solution excellent in high-temperature salt resistance described in any one of the four viewpoints.
  • the anionic surfactant is sodium salt or potassium salt of fatty acid, alkyl benzene sulfonate, higher alcohol sulfate, polyoxyethylene alkyl ether sulfate, ⁇ -sulfo fatty acid ester, ⁇ -olefin sulfonic acid Selected from the group consisting of salts, monoalkyl phosphate esters and alkane sulfonates,
  • the present invention relates to a crude oil recovery chemical solution excellent in high-temperature salt resistance as described in any one of the first to fifth aspects.
  • the present invention relates to a crude oil recovery chemical solution excellent in high-temperature salt resistance described in one paragraph.
  • the anionic surfactant is contained at a ratio of 0.4 or more and less than 5.0 as a mass ratio with respect to the silica solid content of the chemical solution for recovering crude oil, and a chemical solution for recovering crude oil
  • the anionic surfactant is contained at a ratio of 0.001 or more and less than 0.4 as a mass ratio with respect to the silica solid content of the chemical solution for crude oil recovery, and a chemical solution for crude oil recovery
  • the nonionic surfactant has an HLB value of 3.0 or more and 20.0 or less, and It is selected from the group consisting of polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, alkyl glucoside, polyoxyethylene fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester and fatty acid alkanolamide.
  • the present invention relates to a crude oil recovery chemical solution excellent in high-temperature salt resistance as described in any one of the first to ninth aspects.
  • the nonionic surfactant is contained in an amount of 0.001% by mass to 30% by mass based on the total mass of the crude oil recovery chemical solution.
  • the present invention relates to a crude oil recovery chemical solution excellent in high temperature salt resistance.
  • a method of recovering crude oil from an underground hydrocarbon-containing bed (A) A crude oil recovery chemical solution containing a silane compound, an aqueous silica sol having an average particle diameter of 3 to 200 nm, two or more anionic surfactants, and one or more nonionic surfactants Press-in process, (B) recovering crude oil from a production well by the chemical solution injected into the underground layer; Related to the method.
  • the crude oil recovery chemical solution is adjusted to a pH of 7 or more and less than 12, and the anionic surfactant is 0.4 or more as a mass ratio to the silica solids of the crude oil recovery chemical solution.
  • the method according to the twelfth aspect which is contained in an amount of less than 5.0.
  • the crude oil recovery chemical solution is adjusted to a pH of 2 or more and less than 7, and the anionic surfactant is contained in a mass ratio of 0.001 or more to the silica solids of the crude oil recovery chemical solution.
  • the method according to the twelfth aspect which is contained in an amount of less than 0.4.
  • the chemical solution for crude oil recovery according to the present invention is excellent in high-temperature salt resistance, and does not cause problems such as gelation even when the chemical solution is diluted with seawater and injected into the oil reservoir of inland or submarine oil field. It is a stable chemical solution. Further, the chemical solution for crude oil recovery of the present invention is expected to improve the effect of removing crude oil from the rock surface not only by the crude oil peeling effect of the anionic surfactant but also by the wedge effect of the nanosilica particles contained in the chemical solution. It is a chemical for crude oil recovery that can recover crude oil with a high recovery rate.
  • the chemical solution for crude oil recovery of the present invention is characterized by containing a silane compound, an aqueous silica sol having an average particle diameter of 3 to 200 nm, two or more anionic surfactants, and one or more nonionic surfactants.
  • a silane compound containing a silane compound, an aqueous silica sol having an average particle diameter of 3 to 200 nm, two or more anionic surfactants, and one or more nonionic surfactants.
  • medical solution for crude oil recovery of this invention can select an optimal use by making the pH value into seven or more and less than 12 or making a pH value into two or more and less than 7.
  • a crude oil recovery chemical solution having a pH value of 7 or more and less than 12 is excellent under salt water containing chloride ion, sodium ion, calcium ion, magnesium ion and the like (for example, assumed use in inland underground oil reservoir) Show high temperature salt tolerance.
  • the chemical solution for crude oil recovery whose pH value is 2 or more and less than 7 is in seawater (for example, use in the submarine oil reservoir of submarine oil field is assumed) It also exhibits very good high temperature salt tolerance.
  • the chemical solution for crude oil recovery of the present invention may be adjusted to a pH value up to 12 using an aqueous alkali metal solution such as sodium hydroxide or potassium hydroxide, ammonia water, an aqueous solution of basic amine or the like. Excellent high temperature salt resistance can be obtained.
  • the stability of the aqueous silica sol, the anionic surfactant, and the nonionic surfactant in the chemical solution may be deteriorated, which may cause gelation or decomposition. Not desirable.
  • the pH value of the chemical solution is more than 12
  • the magnesium ion in seawater or artificial seawater and the water-soluble strong alkali component in the chemical solution cause a neutralization reaction to generate poorly water-soluble magnesium hydroxide, and for crude oil recovery It is not preferable because it causes aggregation of the drug solution.
  • An aqueous silica sol refers to a colloidal dispersion system in which an aqueous solvent is used as a dispersion medium and colloidal silica particles are used as a dispersoid, and it can be manufactured by a known method using water glass (sodium silicate aqueous solution) as a raw material.
  • the average particle size of the aqueous silica sol refers to the average particle size of colloidal silica particles which are dispersoids.
  • the average particle size of the aqueous silica sol refers to the specific surface area diameter or the particle size of the Sears method obtained by measurement by a nitrogen adsorption method (BET method) unless otherwise specified.
  • the particle size of the Sears method is as described in the literature: GW. Sears, Anal. Chem.
  • the average particle diameter of the aqueous silica sol (colloidal silica particles) according to the nitrogen adsorption method (BET method) or the shears method can be 3 to 200 nm, 3 to 150 nm, 3 to 100 nm, or 3 to 30 nm. .
  • the silica particles in the aqueous silica sol are in the dispersed state or in the aggregated state by measuring the average particle size (DLS average particle size) by the dynamic light scattering method.
  • the DLS average particle size represents the average value of secondary particle sizes (dispersed particle sizes), and the DLS average particle size in the state of being completely dispersed is an average particle size (nitrogen adsorption method (BET method) or Sears). It is said that the specific surface area diameter obtained by measurement according to the method is about twice as large as the average particle size of primary particles.
  • aqueous silica sol manufactured by Nissan Chemical Industries, Ltd .: Snowtex (registered trademark) ST-O has an average particle diameter (BET method) of 10 to 11 nm and a DLS average particle diameter of 15 to It is 20 nm.
  • the high temperature salt resistance evaluation sample of the chemical for recovery of crude oil containing this aqueous silica sol has a DLS average particle diameter of 25 nm or less, and as a result, the silica particles are substantially dispersed in the chemical solution. Is shown.
  • the DLS average particle size after the high temperature salt tolerance test is almost the same as the DLS average particle size of the chemical solution, for example, DLS average particle size after the high temperature salt tolerance test / DLS average particle of the chemical solution If the ratio of diameters is 1.1 or less, it indicates that the same dispersion state as the chemical solution is maintained even after the high temperature salt resistance test. However, when the high temperature salt resistance of the chemical solution is poor, the DLS particle diameter after the high temperature salt resistance test becomes very large, indicating a state of aggregation.
  • the ratio of DLS average particle diameter / average particle diameter of the chemical solution after the high temperature salt resistance test is 1.5 or less (the rate of change of average particle diameter is 50% or less) It can be judged that the ratio is 1.1 or less (the change rate is 10% or less) without deterioration of the silica sol, and it can be judged that the high temperature salt resistance is very good.
  • the average particle size of the aqueous silica sol is 3 to 200 nm, preferably 3 to 150 nm, more preferably 3 to 100 nm as measured by a nitrogen adsorption method (BET method) or a shears method. If the average particle size is smaller than 3 nm, the chemical solution becomes unstable, which is not preferable. On the other hand, when the average particle size is larger than 200 nm, the pores of sandstone or carbonate rock existing in the underground oil field formation are blocked, so that the oil recovery is unfavorably deteriorated.
  • BET method nitrogen adsorption method
  • the concentration of silica (SiO 2 ) in the aqueous silica sol to be used is preferably 5 to 55% by mass.
  • aqueous silica sol can be used. Further, those having a silica concentration of 5 to 50% by mass in the aqueous silica sol are generally commercially available, and are preferable because they are easily available.
  • the aqueous silica sol can be used also for alkaline aqueous silica sol and acidic aqueous silica sol, but acidic aqueous silica sol is more preferable.
  • acidic aqueous silica sols include Snowtex (registered trademark) ST-OXS, ST-OS, ST-O, ST-O-40, ST-OL, ST-OYL and ST-OZL. And -35 (all manufactured by Nissan Chemical Industries, Ltd.).
  • the aqueous silica sol is preferably contained in an amount of 0.01% by mass to 30.0% by mass based on the total mass of the crude oil recovery chemical solution in terms of solid content of silica, more preferably The content is 10.0% by mass to 25.0% by mass, for example, 15.0% by mass to 25.0% by mass.
  • At least a part of a silane compound described later may be bonded to the surface of a part of the silica particles in the aqueous silica sol.
  • the particle size of the silica particles in the aqueous silica sol in which the silane compound is bound to the surface can be easily measured by a commercially available apparatus as the aforementioned dynamic light scattering particle size.
  • the chemical solution for crude oil recovery of the present invention is characterized by containing a silane compound.
  • a silane compound By containing the silane compound, the high temperature salt resistance of the aqueous silica sol is greatly improved, so that the crude oil recovery effect is maintained.
  • a silane compound a silane coupling agent having at least one kind of group selected from the group consisting of vinyl group, ether group, epoxy group, styryl group, methacryl group, acrylic group, amino group and isocyanurate group as an organic functional group
  • alkoxysilanes, silazanes, siloxanes and the like other than those mentioned above can be mentioned as preferable silane compounds.
  • silane coupling agent having the above vinyl group or styryl group, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silanevinylmethyldimethoxysilane, vinyltriacetoxysilane, allyltrichlorosilane And allyltrimethoxysilane, allyltriethoxysilane, p-styryltrimethoxysilane and the like.
  • silane coupling agent having an epoxy group examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldi Ethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) propyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) propyltriethoxysilane, 2- (3,4-) Epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) methyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) methyltri Ethoxysilane [(
  • silane coupling agent having a methacryl group (methacryloyl group) and an acryl group (acryloyl group) examples include 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltriethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, Examples thereof include 3-methacryloyloxypropylmethyldiethoxysilane, 3-acryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxysilane and the like.
  • silane coupling agent having an isocyanurate group tris- (3-trimethoxysilylpropyl) isocyanurate, tris- (3-triethoxysilylpropyl) isocyanurate, etc.
  • silane coupling agent Examples include 3-isocyanatepropyltriethoxysilane, 3-isocyanatepropyltrimethoxysilane and the like.
  • an amphiphilic silane coupling agent having an ether group, an epoxy group, a methacryl group or an acrylic group is more preferable.
  • At least a part of the above-mentioned silane compound may be bonded to the surface of a part of the silica particles in the above-mentioned aqueous silica sol.
  • the silica particles formed by bonding a silane compound to at least a part of the surface include, for example, silica particles whose surface is coated with a silane compound.
  • the crude oil recovery chemical solution of the present invention comprises silica particles in which the aqueous silica sol comprises at least a portion of the silane compound bonded to the surface of at least a portion of the silica particles in the sol. .
  • silica particles (hereinafter also referred to as silica particles surface-treated with a silane compound) in which at least a part of the silane compound is bonded to at least a part of the surface are silica particles (silica solid content) in an aqueous silica sol.
  • the silane compound is added to the aqueous silica sol at a ratio such that the mass ratio of the above-mentioned silane compound is 0.1 to 10.0, and then heat treated, for example, at 50 to 100 ° C. for 1 to 20 hours. You can get it.
  • the surface treatment amount with the above-mentioned silane compound that is, the number of silane compounds bonded to the surface of the silica particle is, for example, about 0.1 to 12 per 1 nm 2 of the silica particle surface.
  • the heat treatment temperature is less than 50 ° C.
  • the rate of partial hydrolysis is slowed and the efficiency of surface treatment is deteriorated.
  • the heat treatment time is less than 1 hour, the partial hydrolysis reaction of the silane compound is insufficient, and even if it is longer than 20 hours, the partial hydrolysis reaction of the silane compound is almost saturated. It does not have to be long.
  • ⁇ Anionic surfactant> In the crude oil recovery chemical solution of the present invention, two or more kinds of anionic surfactants are used. For example, 2 to 5 anionic surfactants, or 2 to 4 anionic surfactants, or 2 to 3 anionic surfactants, or 2 anionic surfactants can be combined.
  • the surfactants by using a drug solution containing two or more types of anionic surfactants rather than a drug solution containing only one type of anionic surfactant, the surfactants mutually enter each other to form a more compact micelle. By forming (packing effect), a more preferable effect of stabilizing the surfactant itself can be obtained. As a result, the anionic surfactant becomes stable, and the crude oil recovery effect is maintained.
  • the chemical solution of the present invention is intended to stabilize the chemical solution which is expected to be used under high temperature brine such as crude oil recovery by utilizing the packing effect by blending a plurality of surfactants, and such packing under high temperature brine
  • high temperature brine such as crude oil recovery
  • sodium salt and potassium salt of fatty acid, alkylbenzene sulfonate, higher alcohol sulfate, polyoxyethylene alkyl ether sulfate, ⁇ -sulfo fatty acid ester, ⁇ -olefin sulfonate, monoalkyl phosphorus Acid ester salts and alkane sulfonates can be mentioned.
  • alkyl benzene sulfonates include sodium salts, potassium salts and lithium salts, and there are sodium C10 to C16 alkyl benzene sulfonates, C10 to C16 alkyl benzene sulfonic acids, sodium alkyl naphthalene sulfonates and the like.
  • higher alcohol sulfate ester salts include sodium dodecyl sulfate having 12 carbon atoms (sodium lauryl sulfate), triethanolamine lauryl sulfate, triethanolammonium lauryl sulfate and the like.
  • the polyoxyethylene alkyl ether sulfate is sodium polyoxyethylene styrenated phenyl ether sulfate, polyoxyethylene styrenated phenyl ether ammonium sulfate, polyoxyethylene decyl ether sodium sulfate, polyoxyethylene decyl ether ammonium sulfate, polyoxyethylene lauryl ether sodium sulfate And polyoxyethylene lauryl ether ammonium sulfate, polyoxyethylene tridecyl ether sodium sulfate, and polyoxyethylene oleyl cetyl ether sodium sulfate.
  • ⁇ -olefin sulfonates include sodium ⁇ -olefin sulfonates.
  • alkane sulfonates include sodium 2-ethylhexyl sulfate.
  • the blending ratio of the ⁇ -olefin sulfonate and the higher alcohol sulfate is not particularly limited.
  • ⁇ -olefin sulfonate: higher alcohol sulfate 5: 1 to 1: 5
  • the anionic surfactant is preferably contained in a total amount of 0.001% by mass to 20% by mass, based on the total mass in the crude oil recovery chemical solution.
  • the amount is less than 0.001% by mass, it is not preferable because the high-temperature salt resistance and the crude oil recovery ability of the chemical solution deteriorate.
  • the content is more than 20% by mass, emulsification of the recovered oil and surfactant is severe, and separation of the oil and surfactant becomes difficult, which is not preferable.
  • the chemical solution for crude oil recovery of the present invention can select an optimum application depending on whether the pH value is 7 or more and less than 12 or the pH value is 2 or more and less than 7.
  • the amount of the anionic surfactant it is possible to make the chemical solution more excellent in high-temperature salt resistance.
  • the anionic surfactant may have a mass ratio of 0.4 to less than 5.0 with respect to the silica solid content of the chemical for recovery of crude oil.
  • the anionic surfactant may have a mass ratio of 0.001 or more and less than 0.4 with respect to the silica solid content of the crude oil recovery chemical solution.
  • it is contained in an amount of
  • Nonionic surfactant In the chemical solution for crude oil recovery of the present invention, in addition to the above two anionic surfactants, one or more nonionic surfactants are used. For example, 1 to 5 non-ionic surfactants, or 1 to 4 non-ionic surfactants, or 1 to 3 non-ionic surfactants, or a combination of 1 to 2 non-ionic surfactants Or one non-ionic surfactant can be used.
  • the anionic surfactant and the nonionic surfactant enter each other, and only two or more anionic surfactants are contained.
  • the more preferable effect of stabilizing the surfactant itself can be obtained.
  • the anionic surfactant and the nonionic surfactant become stable, and the crude oil recovery effect is maintained.
  • nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, alkyl glucoside, polyoxyethylene fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, fatty acid alkanol It is selected from amides.
  • polyoxyethylene alkyl ether polyoxyethylene dodecyl ether (polyoxyethylene lauryl ether), polyoxyalkylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyalkylene tridecyl ether, polyoxyethylene myristyl ether
  • poly Examples thereof include oxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene behenyl ether, polyoxyethylene 2-ethylhexyl ether, and polyoxyethylene isodecyl ether.
  • polyoxyethylene alkylphenol ether examples include polyoxyethylene styrenated phenyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene distynylated phenyl ether, and polyoxyethylene tribenzyl phenyl ether.
  • alkyl glucosides include decyl glucoside and lauryl glucoside.
  • polyoxyethylene fatty acid esters include polyoxyethylene monolaurate, polyoxyethylene monostearate, polyoxyethylene monooleate, polyethylene glycol distearate, polyethylene glycol diolate, polypropylene glycol diolate and the like.
  • sorbitan fatty acid esters As sorbitan fatty acid esters, sorbitan monocaprylate, sorbitan monolaurate, sorbitan monomyristate, sorbitan monopalmitate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan Monosesquiolates and their ethylene oxide adducts.
  • polyoxyethylene sorbitan fatty acid ester polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, polyoxy acid
  • ethylene sorbitan trioleate polyoxyethylene sorbitan triisostearate and the like.
  • fatty acid alkanolamides include coconut oil fatty acid diethanolamide, beef tallow fatty acid diethanolamide, lauric acid diethanolamide, oleic acid diethanolamide and the like.
  • polyoxyethylene polyoxypropylene glycol such as polyoxyethylene fatty acid ester or polyoxyalkyl glycol, polyoxyethylene hydrogenated castor oil ether, sorbitan fatty acid ester alkyl ether, alkyl polyglucoside, sorbitan monooleate, Sugar fatty acid esters can also be used.
  • polyoxyethylene alkyl ether and polyoxyethylene alkyl phenol ether are more preferable because they have good high-temperature salt resistance of the drug solution.
  • the nonionic surfactant one having an HLB value of 3.0 or more and 20.0 or less is preferably used. It is more preferable to use a nonionic surfactant having an HLB value of 10.0 or more and 20.0 or less from the viewpoint of the high temperature salt resistance of the chemical solution.
  • nonionic surfactants with an HLB value of 14.0 or more and 20.0 or less are used. It is more preferable to do.
  • the HLB value of the mixture determined from the weight average of the HLB value and the blending ratio is adjusted to be 10.0 or more and 20.0 or less. It is preferable to do.
  • the hydrophobicity of the non-ionic surfactant is strong, so that the aqueous silica sol and the water-soluble anionic surfactant and the non-ionic surfactant are not mixed in the prepared chemical solution, and the two layers are mixed. Not desirable because of separation.
  • the nonionic surfactant is preferably contained in an amount of 0.001% by mass to 30% by mass, based on the total mass in the chemical solution for crude oil recovery. If the amount is less than 0.001% by mass, the heat resistance and the salt resistance of the chemical solution deteriorate, which is not preferable. When the content is more than 30% by mass, the viscosity of the chemical solution becomes very high, which is not preferable. In addition, even if it is a chemical solution containing only one type of nonionic surfactant or a chemical solution containing 2 or more and 5 or less types of nonionic surfactants, excellent high-temperature salt resistance can be obtained, and a good crude oil recovery ability can be obtained.
  • Water-soluble polymers such as hydroxyethyl cellulose and its salts, hydroxypropyl methylcellulose and its salts, carboxymethyl cellulose and its salts, pectin, guar gum xanthan gum, damarind gum, carrageenan etc. can be further added to increase the viscosity of the drug solution. .
  • the chemical solution for crude oil recovery according to the present invention is a combination of an aqueous silica sol and a silane compound, in particular, silica obtained by combining at least a part of the silane compound on at least a part of the surface as silica particles in the aqueous silica sol.
  • silica obtained by combining at least a part of the silane compound on at least a part of the surface as silica particles in the aqueous silica sol.
  • the surfactant is improved.
  • the surfactants mutually enter each other to form a more compact micelle and stabilize the surfactant itself. Therefore, it is considered that it becomes a chemical solution for crude oil recovery excellent in high temperature salt resistance.
  • the procedure for recovering crude oil from the underground hydrocarbon-containing layer using the crude oil recovery chemical solution of the present invention includes, for example, (a) injecting the crude oil recovery chemical solution of the present invention into the underground layer; (B) It can be implemented including the process of recovering crude oil from a production well with the above-mentioned chemical liquid injected into the underground layer.
  • the chemical solution for crude oil recovery is adjusted to a pH of 7 to less than 12, and the anionic surfactant is 0.4 to 5.0 as a mass ratio to the silica solid content of the chemical solution for crude oil recovery.
  • the anionic surfactant is used relative to the solid content of silica in the chemical solution for crude oil recovery, By containing it in an amount of 0.001 or more and less than 0.4 as a mass ratio, it becomes a chemical solution for crude oil recovery which is more excellent in high-temperature salt resistance, and thus a higher crude oil recovery ability can be expected.
  • Electrical conductivity An electrical conductivity meter (manufactured by Toho DK Co., Ltd.) was used. Viscosity: A B-type viscometer (manufactured by Tokyo Keiki Co., Ltd.) was used. Surface tension: A surface tension meter DY-500 (manufactured by Kyowa Interface Chemical Co., Ltd.) was used.
  • Teflon (registered trademark) sealable container put 65 g of brine test sample (a), and after sealing, place the Teflon (registered trademark) container in a dryer at 100 ° C. and maintain it at 100 ° C. for a predetermined time
  • the appearance, pH, electric conductivity, viscosity of the brine test sample (a), and the DLS average particle size of the aqueous silica sol (silica particles) in the sample were evaluated.
  • the determination of the high-temperature salt resistance was as follows based on the measurement results of the DLS average particle diameter of the aqueous silica sol (silica particles) in the sample and the evaluation of the appearance after holding for a predetermined time under high temperature.
  • the aqueous sol was prepared in the same manner as in Synthesis Example 1 except that 7.9 g of 3-glycidoxypropyltrimethoxysilane (Dynasylan GLYMO manufactured by Evonik Co., Ltd.) was added such that the mass ratio of the silane compound was 0.20. Obtained.
  • the aqueous sol was prepared in the same manner as in Synthesis Example 1 except that 15.8 g of 3-glycidoxypropyltrimethoxysilane (Dynasylan GLYMO manufactured by Evonik Co., Ltd.) was added such that the mass ratio of the silane compound was 0.40. Obtained.
  • the aqueous sol was prepared in the same manner as in Synthesis Example 1 except that 31.6 g of 3-glycidoxypropyltrimethoxysilane (Dynasylan GLYMO manufactured by Evonik Co., Ltd.) was added such that the mass ratio of the silane compound was 0.80. Obtained.
  • An aqueous sol was obtained in the same manner as in Synthesis Example 1 except that 32.8 g of methoxysilane (Dynasylan GLYMO manufactured by Evonik Co., Ltd.) was added.
  • Example 1 A stirrer was placed in a 300 ml polystyrene bottle, and 91.0 g of pure water was charged. While stirring with a magnetic stirrer, 2.3 g of the anionic surfactant ⁇ -olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was charged, and stirred until completely dissolved. Subsequently, 4.7 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added and stirred until completely dissolved.
  • Shinolin registered trademark
  • the drug solution of Example 2 was manufactured in the same operation as Example 1 except that After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 30 hours, the sample was taken out and the high temperature salt resistance was evaluated.
  • the drug solution of Example 3 was manufactured in the same operation as Example 1 except that After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 30 hours, the sample was taken out and the high temperature salt resistance was evaluated.
  • the chemical solution of Example 4 was manufactured by the same operation as Example 2 except for the above. After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 30 hours, the sample was taken out and the high temperature salt resistance was evaluated.
  • a drug solution of Example 5 was produced in the same manner as Example 2, except that 21.4 g of the diluted active ingredient 70% diluted with water was charged. After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 30 hours, the sample was taken out and the high temperature salt resistance was evaluated.
  • Example 6 A stirrer was placed in a 300 ml polystyrene bottle, and 99.5 g of pure water was charged. While stirring with a magnetic stirrer, 1.8 g of an anionic surfactant sodium ⁇ -olefin sulfonate (Neogen (registered trademark) AO-90 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was added and stirred until completely dissolved. Subsequently, 5.3 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added and stirred until completely dissolved.
  • an anionic surfactant sodium dodecyl sulfate Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.
  • Example 7 A stirrer was placed in a 300 ml polystyrene bottle, and 99.6 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant ⁇ -olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
  • an anionic surfactant sodium dodecyl sulfate Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.
  • Example 8 A stirrer was placed in a 300 ml polystyrene bottle, and 99.6 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant ⁇ -olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
  • an anionic surfactant sodium dodecyl sulfate Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.
  • Example 9 A stirrer was placed in a 300 ml polystyrene bottle, and 99.6 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant ⁇ -olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
  • an anionic surfactant sodium dodecyl sulfate Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.
  • a seawater test sample was prepared according to the high temperature salt resistance evaluation-3 and held at 100 ° C. for 60 hours, then the sample was taken out and the high temperature salt resistance was evaluated.
  • Example 10 A stirrer was placed in a 300 ml polystyrene bottle, and 99.6 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant ⁇ -olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
  • an anionic surfactant sodium dodecyl sulfate Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.
  • Example 11 A stirrer was placed in a 300 ml polystyrene bottle, and 99.6 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant ⁇ -olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
  • an anionic surfactant sodium dodecyl sulfate Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.
  • Example 12 A stirrer was placed in a 300 ml polystyrene bottle, and 48.8 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant ⁇ -olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
  • an anionic surfactant sodium dodecyl sulfate Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.
  • Example 13 A stirrer was placed in a 300 ml polystyrene bottle, and 6.4 g of pure water and 131.1 g of an aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 4 were charged and stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 3.5 g of an anionic surfactant sodium ⁇ -olefin sulfonate (Lipan Specialty Chemicals KK Lipoan (registered trademark) LB-440 active ingredient 36.3%) Charged and stirred.
  • an anionic surfactant sodium ⁇ -olefin sulfonate Lipan Specialty Chemicals KK Lipoan (registered trademark) LB-440 active ingredient 36.3%
  • Example 14 A stirrer was placed in a 300 ml styrene bottle, and 14.7 g of pure water and 131.1 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 4 were charged, and stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 1.2 g of an anionic surfactant sodium ⁇ -olefin sulfonate (Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%) 1.2 g Charged and stirred.
  • an anionic surfactant sodium ⁇ -olefin sulfonate Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%
  • Example 15 A stirrer was placed in a 300 ml polystyrene bottle, and 15.5 g of pure water and 131.1 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 4 were charged, and stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 1.2 g of an anionic surfactant sodium ⁇ -olefin sulfonate (Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%) 1.2 g Charged and stirred.
  • an anionic surfactant sodium ⁇ -olefin sulfonate Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%
  • Example 15 A seawater test sample was prepared according to the high temperature salt resistance evaluation-3 and held at 100 ° C. for 60 hours, then the sample was taken out and the high temperature salt resistance was evaluated.
  • Example 16 A stirrer was placed in a 300 ml polystyrene bottle, and 14.0 g of pure water and 131.1 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 4 were charged, and stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 1.2 g of an anionic surfactant sodium ⁇ -olefin sulfonate (Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%) 1.2 g Charged and stirred.
  • an anionic surfactant sodium ⁇ -olefin sulfonate Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%
  • Example 17 A stirrer was placed in a 300 ml polystyrene bottle, and 90.1 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant ⁇ -olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
  • an anionic surfactant sodium dodecyl sulfate Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.
  • Example 18 A stirrer was placed in a 300 ml styrene bottle, and 18.4 g of pure water and 127.4 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 6 were charged and stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 1.2 g of an anionic surfactant sodium ⁇ -olefin sulfonate (Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%) 1.2 g Charged and stirred.
  • an anionic surfactant sodium ⁇ -olefin sulfonate Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%
  • Example 19 A stirrer was placed in a 300 ml polystyrene bottle, and 15.3 g of pure water and 130.5 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 7 were charged and stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 1.2 g of an anionic surfactant sodium ⁇ -olefin sulfonate (Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%) 1.2 g Charged and stirred.
  • an anionic surfactant sodium ⁇ -olefin sulfonate Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%
  • Example 20 The drug solution of Example 20 was produced in the same manner as in Example 13. After preparing a seawater test sample according to the high temperature salt resistance evaluation-4 and holding it at 100 ° C. for 75 days (1800 hours), the sample was taken out and the high temperature salt resistance was evaluated.
  • Example 21 The chemical solution of Example 21 was manufactured in the same manner as in Example 14. After preparing a seawater test sample according to the high temperature salt resistance evaluation-4 and holding it at 100 ° C. for 75 days (1800 hours), the sample was taken out and the high temperature salt resistance was evaluated.
  • Example 1 The same operation as in Example 1 is carried out in the same manner as in Example 1 except that 22.0 g of aqueous silica sol (Snowtex (registered trademark) ST-O manufactured by Nissan Chemical Industries, Ltd.) is charged instead of the aqueous silica sol produced in Synthesis Example 2. A chemical solution was produced (without containing a silane compound). A brine test sample (a) was prepared according to High Temperature Salt Tolerance Evaluation-1 and after keeping for 7 days at room temperature, the sample was removed and the salt tolerance was evaluated.
  • aqueous silica sol Snowtex (registered trademark) ST-O manufactured by Nissan Chemical Industries, Ltd.
  • a chemical solution was produced (without containing a silane compound).
  • a brine test sample (a) was prepared according to High Temperature Salt Tolerance Evaluation-1 and after keeping for 7 days at room temperature, the sample was removed and the salt tolerance was evaluated.
  • Example 2 The drug solution of Example 2 was produced by the same operation as Example 1 except that 22.0 g of the aqueous silica sol produced in Synthesis Example 1 was charged instead of the aqueous silica sol produced in Synthesis Example 2 (mass of silane compound relative to silica Ratio: 0.09).
  • a brine test sample (a) was prepared according to High Temperature Salt Tolerance Evaluation-1 and after keeping for 7 days at room temperature, the sample was removed and the salt tolerance was evaluated.
  • Example 4 was manufactured in the same operation as Example 4 (except that the HLB value of the nonionic surfactant is low) except for the above.
  • the prepared drug solution was completely separated into two layers from an aqueous phase consisting of an aqueous silica sol and a water-soluble anionic surfactant and an oil phase consisting of a nonionic surfactant. For this reason, high temperature salt tolerance could not be evaluated.
  • Comparative example 3 A stirrer was placed in a 300 ml polystyrene bottle, and 128.0 g of pure water was charged. After adding 22.0 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 4 while stirring with a magnetic stirrer, the solution of Comparative Example 3 was produced by stirring for 1 hour (containing only silane and silica, No surfactant)). After preparing a brine test sample (b) according to the high temperature salt resistance evaluation-2 and holding at 100 ° C. for 60 hours, the sample was taken out and the high temperature salt resistance was evaluated.
  • HLB 14.3 polyoxyethylene styrenated phenyl ether (Daigen Kogyo Co., Ltd. Neugen (registered trademark) EA-157) is diluted with pure water and the active ingredient is 70% After charging 21.4 g of the solution, the solution was stirred for 1 hour to produce a chemical solution of Comparative Example 4 (containing only a surfactant, no addition of silica and silane). After preparing a brine test sample (b) according to the high temperature salt resistance evaluation-2 and holding at 100 ° C. for 60 hours, the sample was taken out and the high temperature salt resistance was evaluated.
  • Table 1 shows the results of the high temperature salt resistance test of the example
  • Table 2 shows the results of the high temperature salt resistance test of the comparative example.
  • surface and a nonionic surfactant represents the following.
  • ⁇ Anionic surfactant> AOS: sodium ⁇ -olefin sulfonate "Neogen (registered trademark) AO-90", 98.0% active ingredient, Daiichi Kogyo Seiyaku Co., Ltd.
  • AOS sodium ⁇ -olefin sulfonate “Lipolan® LB-440”, 36.3% of active ingredient, Lion Specialty Chemicals Co., Ltd.
  • EA-127 Polyoxyethylene styrenated phenyl ether "Nuygen (registered trademark) EA-127", 100% active ingredient, Daiichi Kogyo Seiyaku Co., Ltd.
  • EA-137 polyoxyethylene styrenated phenyl ether "Nuygen (registered trademark) EA-137", active ingredient 100%, Daiichi Kogyo Seiyaku Co., Ltd.
  • EA-157 polyoxyethylene styrenated phenyl ether "Nuygen (registered trademark) EA-157", active ingredient 100%, Daiichi Kogyo Seiyaku Co., Ltd.
  • EA-207D polyoxyethylene styrenated phenyl ether "Nuygen (registered trademark) EA-207D", 55% of active ingredient, Daiichi Kogyo Seiyaku Co., Ltd.
  • TDS-90 polyoxyethylene tridecyl ether "Nuygen (registered trademark) TDS-90", 100% active ingredient, Daiichi Kogyo Seiyaku Co., Ltd.
  • an oil obtained by dyeing n-decane (manufactured by Nacalai Tesque, Inc.) with a red oil-based pigment (manufactured by Inaguma Dye Co., Ltd., oil scarlet) was used.
  • a Berea sandstone sample a sample having a permeability of about 150 mD, a pore volume of about 5 ml, a length of 1.5 inches and a diameter of 1 inch, dried at 60 ° C. for 1 day was used.
  • the Berea sandstone sample is saturated with salt water by immersing the Berea sandstone sample in 3% by mass sodium chloride aqueous solution in a vacuum vessel and depressurizing the inside of the vessel using a vacuum pump, then the Berea sandstone sample is taken out and weighed
  • the saltwater saturation was determined by the method.
  • a brine saturated Berea sandstone sample was set in the core holder of a sweeping oil recovery unit SRP-350 (manufactured by Vinci).
  • Ondina Oil-15 dyed with a red oily pigment (Ashikuma Dyes Inc. oil scarlet) was used.
  • a Berea sandstone sample a Berea sandstone sample dried at 60 ° C. for 1 day and having a permeability of about 150 mD, a pore volume of about 5 ml, a length of 1.5 inches and a diameter of 1 inch was used.
  • a crude oil substitute (red-colored paraffin oil) is injected into the berea sandstone sample while applying a lateral pressure of 2000 psi to the berea sandstone sample using a hydraulic pump, and then the berea sandstone sample is removed It removed from the core holder and the amount of oil saturation was calculated
  • artificial seawater prepared in ⁇ High-temperature salt resistance evaluation-3> is injected into the berea sandstone sample at a flow rate of 2 ml / min.
  • the recovery rate of salted water was determined. Subsequently, the sample for crude oil recovery performance evaluation of the example or the comparative example prepared as described above is pressed into a berea sandstone sample at a flow rate of 2 ml / min, and the oil recovery rate swept by chemical solution from the volume of the drained paraffin oil I asked for.
  • Table 3 (Table 3-1, Table 3-2) shows the results of the oil recovery rates of the examples and comparative examples.
  • the chemical solution for crude oil recovery of the present invention is a chemical solution suitable for surfactant attack in the EOR attack of crude oil recovery. Since the chemical solution for crude oil recovery of the present invention contains a surfactant, the effect of enhanced recovery of crude oil can be expected by reducing the water-oil interfacial tension in the oil layer and improving the replacement efficiency of oil with water.
  • the crude oil is to be enhanced and recovered, it is common to dilute the chemical solution and inject it into the underground or submarine oil reservoir. At this time, inexpensive seawater is often used for dilution. Therefore, the surface tension of each of the high-temperature salt resistance evaluation samples prepared in Example 5, Example 6, Example 7, Example 11, Example 13, and Example 14 was measured as conditions close to actual use situations. .
  • Comparative Example 3 prepared with pure water, ⁇ high-temperature salt resistance evaluation -3>, artificial seawater, and salt water having a salt concentration of 4% by mass (sodium chloride concentration 3.2% by mass, calcium chloride concentration 0.8% Surface tension was measured. Table 4 shows the measurement results of surface tension.
  • Example 1 Table 1-1, Table 1-2
  • any layer separation or gelation was not observed even after heating for a long time at 100 ° C. in brine.
  • the ratio of the DLS average particle size after the high temperature salt resistance test to the DLS average particle size of the chemical solution is 1.3 or less.
  • Example 4 to 14 and Examples 16 to 21 all have the above ratio of 1.1 or less, and it is confirmed that the chemical is stable without causing deterioration of the silica sol and is excellent in high-temperature salt resistance. It was done.
  • the ratio of the DLS average particle diameter after the high temperature salt resistance test to the DLS average particle diameter of the chemical solution is 1.0 in all after 1800 hours (75 days) at 100 ° C. It was confirmed that the chemical was stable and had a high temperature and high salt resistance without deterioration.
  • Example 2 the chemical solution of Example 1 using the aqueous silica sol containing no silane compound already had the DLS average particle size at the stage of preparing the high temperature salt resistance evaluation sample before the high temperature salt resistance evaluation test. Became large and aggregated, and a white gel was formed after 7 days at room temperature (normal temperature), resulting in very poor salt resistance. Also in the chemical solution of Example 2 using an aqueous silica sol in which the mass ratio of the silane compound to the silica in the aqueous silica sol is less than 0.1, white turbidity occurs after ⁇ high-temperature salt resistance evaluation-1> and solid-liquid separation occurs immediately.
  • Example 3 which does not contain a nonionic surfactant, is immediately whitened after preparation of the high temperature salt resistance evaluation sample and a white cloudy gel precipitates (DLS average particle diameter: 2768 nm observed), and high temperature salt resistance evaluation is performed. It could not be done, and the result was that the salt resistance was very bad even at room temperature (normal temperature).
  • the drug solution of Example 4 using a nonionic surfactant having an HLB value of less than 3 separates two layers of water and oil at the preparation stage of the drug solution, because the hydrophobicity of the nonionic surfactant is strong.
  • Example 8 Example 13, Example 14, Example 15
  • the chemical solution of Example 16 obtained high oil recovery with crude oil substitute n-decane and paraffin oil.
  • the chemical solution of Comparative Example 3 containing only an aqueous silica sol surface-treated with a silane compound (surfactant-free addition) had good high-temperature salt resistance as shown in Table 2; 1, as shown in Table 3-2), the oil recovery rate is relative to any of Example 8 (n-decane) or Example 13, Example 14, Example 15 and Example 16 (paraffin oil) But it was quite low.
  • the chemical solution of Comparative Example 4 containing only the surfactant without containing the aqueous silica sol had good high-temperature salt resistance as shown in Table 2, but as shown in Table 3 (Table 3-1) [Crude oil The recovered liquid of Evaluation of Recoverability-1] was highly emulsified, and it was difficult to separate oil and water, resulting in that oil recovery could not be substantially performed.
  • the chemical solution of Example 1 containing an aqueous silica sol which has not been surface-treated with a silane compound causes the pressure of the hydraulic pump to rise immediately after starting chemical solution sweep in the evaluation of [Crude oil recovery evaluation 1]. The drug solution could not be injected. It is considered that this is because the chemical solution is coagulated and clogging occurs in the Berea sandstone.
  • the chemical solution for crude oil recovery of the present invention is a high-performance chemical solution for crude oil recovery, which is excellent in high-temperature salt resistance and excellent in oil recovery rate.
  • Examples 5 to 7, Example 11, Example 13 and Example 14 were all pure water, artificial seawater, and 4 mass% salt concentration due to the addition effect of the surfactant.
  • the surface tension was lower than that of the above-mentioned saline solution (sodium chloride concentration: 3.2 mass%, calcium chloride concentration: 0.8 mass%) and the chemical solution of Comparative Example 3.
  • the water-oil interfacial tension decreases in the oil reservoir, the efficiency of oil substitution by water improves, and the effect of enhanced recovery of crude oil can be expected.

Abstract

[Problem] To provide a chemical for crude oil recovery, which has high crude oil recovery rate, while having excellent salt tolerance at high temperatures. [Solution] A chemical for crude oil recovery, which has excellent salt tolerance at high temperatures, and which is characterized by containing a silane compound, an aqueous silica sol having an average particle diameter of 3-200 nm, two or more anionic surfactants, and one or more nonionic surfactants.

Description

原油回収用薬液Chemical recovery for crude oil
 本発明は、内陸又は海底油田の油層内に注入して原油を回収する原油増進回収(“Enhanced Oil Recovery”、以後、“EOR”と略する)攻法のうち、界面活性剤攻法で使用される、高温耐塩性に優れ、原油回収率の高い原油回収用薬液に関する。 The present invention is used in surfactant flooding in an enhanced oil recovery (hereinafter referred to as “Enhanced Oil Recovery”) (hereinafter referred to as “EOR”) flooding method in which crude oil is recovered by injecting it into the oil reservoir of inland or submarine oil field The invention relates to a crude oil recovery chemical solution which is excellent in high temperature salt resistance and high in crude oil recovery rate.
 油層から原油を回収(採取)する方法には、時系列別にそれぞれ異なる回収法が適用される、一次、二次、三次(又はEOR(増進))という、3段階の方法が適用されている。
 一次回収法には、油層の自然の圧力や重力を利用する自噴採油法と、ポンプなどの人工的な採油技術を用いた人工採油法が挙げられ、これらを組み合わせて実施される一次回収の原油回収率は最大で20%程度と言われている。二次回収法には、一次回収法で生産が減退した後、水や天然ガスを圧入して油層圧の回復及び産油量の増加を図る水攻法や油層圧維持法が挙げられる。これら一次、二次回収を合わせても、原油回収率は40%程度とされ、原油の大部分は地下油層に残留した状態にある。そのため、より多くの、また既に回収が容易な部分からは原油が回収されている油層から、さらなる原油を回収するために、三次回収法、すなわちEOR攻法で原油を増進回収する方法が提案されている。
As a method of recovering (collecting) crude oil from the oil reservoir, a three-stage method of primary, secondary and tertiary (or EOR (promotion)) is applied in which different recovery methods are applied to each time series.
Primary recovery methods include self-injection oil extraction methods that use the natural pressure and gravity of oil reservoirs, and artificial oil extraction methods that use artificial oil collection techniques such as pumps, etc. Primary oil recovery crude oil implemented by combining these methods The recovery rate is said to be about 20% at the maximum. The secondary recovery method includes a water flooding method and an oil layer pressure maintenance method in which water and natural gas are injected to reduce the oil layer pressure and increase the oil production amount after production declines in the primary recovery method. Even in the combined primary and secondary recovery, the crude oil recovery rate is about 40%, and most of the crude oil remains in the underground oil reservoir. Therefore, in order to recover additional crude oil from the oil reservoir where crude oil is recovered from more, and already easy to recover, proposed is a method of enhanced recovery of crude oil by tertiary recovery method, that is, EOR flooding. ing.
 EOR攻法には、熱攻法、ガス攻法、微生物攻法、ケミカル攻法などがある。ケミカル攻法には、ポリマー攻法、界面活性剤攻法、ミセル攻法などがあり、目的に応じた薬液を油層内に圧入して、原油の流動性を高めたり、水-油間に作用する表面張力を減らしたり、圧入ガスと油との間にミセル状態を作り出すなどして、原油回収率の向上を図る攻法である。 EOR attacks include heat attack, gas attack, microbial attack and chemical attack. Chemical flooding includes polymer flooding, surfactant flooding, micelle flooding, etc. A chemical solution according to the purpose is injected into the oil layer to enhance the fluidity of crude oil, or act between water and oil. In order to improve the recovery rate of crude oil, the surface tension is reduced or a micellar state is created between the injected gas and the oil.
 界面活性剤攻法は、界面活性剤を主成分とする溶液を含む一連の流体を油層に圧入することで、原油と水との間の界面張力を低下させ、毛管現象により捕捉されている原油を引き出して採収する攻法である。本攻法において、界面活性剤として例えばアルキルアリルスルホネートが単独で使用され、あるいはアルキルアリルスルホネートと補助界面活性剤および/又は補助剤と共に使用されている。アルキルアリルスルホネートは、油と水間の界面張力を下げることができるだけでなく、様々な塩濃度と共に使用された時に、後述するように種々の相の挙動を示すことから、一般的に使用されている。すなわち、低塩濃度では、アルキルアリルスルホネートは、水性相に留まるが、高塩濃度では油相に留まる傾向にある。中点の塩濃度では、マイクロエマルジョンが形成されて、かなりの量の油と塩水がマイクロエマルジョン相に存在することとなり、高い原油回収能を示すことが知られている。
 ミセル攻法は、水と原油とからマイクロエマルジョンを作り、ミセル溶液と呼ばれるミクロエマルジョンを地下貯留層に注入し、石油を回収する方法であり、ミセル溶液を製造するために多くの界面活性剤が開示されている(特許文献1~3参照)。本攻法で使用される界面活性剤として、石油スルホネート、アルキルアリルスルホネート、アルカンスルホネート、ポリオキシエチレンアルキルエーテルサルフェート、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、多価アルコール脂肪酸エステル、アルキルトリメチルアンモニウム塩などのアニオン型、非イオン型、カチオン型の各種界面活性剤が開示されている。
 また、炭素数10~30のインターナルオレフィンスルホネートと炭素数10~30のα-オレフィンスルホネートを含む石油回収用ミセル溶液が開示されている(特許文献4参照)。
Surfactant flooding reduces the interfacial tension between crude oil and water by forcing a series of fluids containing a surfactant-based solution into the oil layer, and the crude oil trapped by capillary action It is an attack to pull out and collect. In the present method, for example, alkyl allyl sulfonate is used alone as a surfactant, or used together with alkyl allyl sulfonate and a cosurfactant and / or an adjuvant. Alkyl allyl sulfonates are commonly used because they can not only lower the interfacial tension between oil and water, but also exhibit different phase behavior as described below when used with different salt concentrations There is. That is, at low salt concentrations, alkyl allyl sulfonates tend to remain in the aqueous phase, but at high salt concentrations tend to remain in the oil phase. At mid-point salt concentrations, microemulsions are formed and significant amounts of oil and brine are present in the microemulsion phase, which is known to exhibit high crude oil recovery.
Micellar flooding is a method of making a microemulsion from water and crude oil, injecting a microemulsion called a micellar solution into an underground reservoir, and recovering petroleum, and many surfactants are used to produce a micelle solution. Patent documents 1 to 3 have been disclosed. As surfactants used in the present method, petroleum sulfonate, alkyl allyl sulfonate, alkane sulfonate, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyhydric alcohol fatty acid ester, alkyl trimethyl ester Various anionic, non-ionic and cationic surfactants such as ammonium salts are disclosed.
In addition, a micelle solution for petroleum recovery containing an internal olefin sulfonate having 10 to 30 carbon atoms and an α-olefin sulfonate having 10 to 30 carbon atoms is disclosed (see Patent Document 4).
 また、従来のポリマー攻法の1つであるマイセラースラグ(石油製品スルフォネート、助剤、塩水および油の混合物)とポリマーの両方を圧入するマイセラーポリマー攻法では安定した原油回収率が得られないとして、脂肪酸とアルカノールアミンとの反応生成物およびそのアルキレンオキシド付加物であるアミド系化合物からなる非イオン性界面活性剤と水溶性ポリマーからなる原油回収用薬剤が提案され、高い原油回収率が安定して得られることが開示されている。(特許文献5参照)。
 さらに、界面張力の低いEOR用界面活性剤として、特定のアルキルキシレンスルホネートが提案されている(特許文献6参照)。
 そして、炭化水素貯蔵層又は油井から原油、ガス、水の回収率を改善する方法として、水又はα-オレフィンスルホン酸塩からなる炭化水素のキャリア流体からなる湿潤剤中に混合された1~100nmのナノ粒子(例えば二酸化ケイ素など)を炭化水素貯蔵層又は油井に注入する方法が開示されている(特許文献7参照)。
Also, stable crude oil recovery can be obtained with the Micellar Slag (petroleum product sulfonate, auxiliaries, a mixture of salt water and oil) and polymer injection, which is one of the conventional polymer flooding methods, and polymer injection. Also, a crude oil recovery agent comprising a nonionic surfactant comprising a reaction product of a fatty acid and an alkanolamine and an amide compound which is an alkylene oxide adduct thereof and a water-soluble polymer is proposed, and a high crude oil recovery rate is It is disclosed that it can be obtained stably. (See Patent Document 5).
Furthermore, a specific alkylxylene sulfonate has been proposed as a surfactant for EOR with low interfacial tension (see Patent Document 6).
And, as a method of improving the recovery of crude oil, gas and water from a hydrocarbon storage layer or oil well, 1 to 100 nm mixed in a wetting agent consisting of a carrier fluid of water or a hydrocarbon consisting of α-olefin sulfonate Patent Document 7 discloses a method of injecting nanoparticles of (for example, silicon dioxide etc.) into a hydrocarbon storage layer or oil well.
 一方、シランカップリング剤で表面処理されたコロイダルシリカについて、例えば、アミンまたはアンモニウムで中和されたアクリル系ポリカルボン酸樹脂、硬化剤とともに配合されてなる陽極析出型電着塗料組成物として開示されている(特許文献8参照)。 On the other hand, colloidal silica surface-treated with a silane coupling agent is disclosed, for example, as an anodic deposition type electrodeposition coating composition comprising an acrylic polycarboxylic acid resin neutralized with an amine or ammonium and a curing agent. (See Patent Document 8).
米国特許第3,506,070号明細書U.S. Pat. No. 3,506,070 米国特許第3,613,786号明細書U.S. Pat. No. 3,613,786 米国特許第3,740,343号明細書U.S. Pat. No. 3,740,343 特公平1-35157号公報Japanese Examined Patent Publication 1-35157 特公平5-86989号公報Tokuhei 5-86 989 特許5026264号明細書Patent 5026264 specification 米国公開特許2010/0096139号明細書US Patent Publication No. 2010/0096139 特許4033970号明細書Patent 4033970 specification
 特許文献7には、水又は炭化水素のキャリア流体からなる湿潤剤中に混合されたナノ粒子を、炭化水素貯蔵層又は油井に注入することにより分離圧が高まり、岩石表面に付着している油滴を効率的に引き剥がす方法が開示されている。この効果をより一層発現するためには、湿潤剤中でナノ粒子が安定であることが求められるものの、そのためには、ナノ粒子を含有する湿潤剤の耐熱性が求められることとなる。また、海底の炭化水素貯蔵層又は油井で効果を発揮するためには、ナノ粒子を含有する湿潤剤の耐塩性も求められる。 In Patent Document 7, the separation pressure is increased by injecting nanoparticles mixed in a wetting agent composed of a carrier fluid of water or hydrocarbon into a hydrocarbon storage layer or oil well, and the oil adhering to the rock surface A method of efficiently tearing off drops has been disclosed. In order to further develop this effect, it is required that the nanoparticles be stable in the wetting agent, but for that purpose, the heat resistance of the wetting agent containing nanoparticles is required. In addition, in order to be effective in a hydrocarbon storage layer or oil well on the seabed, the salt resistance of the wetting agent containing nanoparticles is also required.
 原油回収用薬液の原油回収性を高めるためには、地下又は海底油層内の砂岩又は炭酸塩性などの岩石に付着した原油を引き剥がす効果のあるアニオン界面活性剤の存在が不可欠である。しかしアニオン界面活性剤は高温耐塩性が悪く、高温高塩濃度の油層内に注入すると短時間で分解し、原油回収効果を十分に発揮できない。またコロイダルシリカも原油回収効果があると言われているが、コロイダルシリカ単体では高温耐塩性が悪く、これも高温高塩度の油相内に注入すると短時間でゲル化し、原油回収効果を十分に発揮できない。 In order to improve the crude oil recovery of crude oil recovery chemicals, the presence of an anionic surfactant that has the effect of removing crude oil adhering to rocks such as sandstone or carbonate in the underground or marine oil reservoir is indispensable. However, the anionic surfactant is poor in high-temperature salt resistance, and when injected into a high-temperature high-salt oil layer, it decomposes in a short time, and the crude oil recovery effect can not be sufficiently exhibited. Colloidal silica is also said to have a crude oil recovery effect, but colloidal silica alone has poor high-temperature salt resistance, and it is also gelled in a short time when injected into a high-temperature, high-salt oil phase, and the crude oil recovery effect is sufficient Can not
 このため、アニオン界面活性剤とコロイダルシリカを含有し、耐熱性や耐塩性を同時に実現し、且つ、効率的な原油回収を実現できる原油回収用薬剤への要求がある。
 特に原油回収用薬液は、地下又は海底油層内に注入されてから数ヶ月経過後に回収されることも少なくない。数ヶ月にわたり100℃といった高温下で、しかも海水又は、ナトリウムイオン、カルシウムイオン及び塩素イオンなどを高濃度に含有する塩水に晒される、通常にない過酷な環境下にあっても安定であり、原油回収効果を発揮できる薬剤への要求がある。
For this reason, there is a demand for a crude oil recovery agent that contains an anionic surfactant and colloidal silica to simultaneously realize heat resistance and salt resistance and to realize efficient crude oil recovery.
In particular, crude oil recovery chemicals are often recovered several months after being injected into the underground or submarine oil reservoir. Stable even in unusually harsh environments exposed to seawater or salt water containing high concentrations of sodium ions, calcium ions and chloride ions, etc. under high temperature such as 100 ° C for several months, and crude oil There is a need for a drug that can exert its recovery effect.
 本発明は、内陸又は海底油田の油層内に注入して原油を回収するEOR攻法のうち、界面活性剤攻法で使用される薬液を対象とするものであり、すなわち、高温耐塩性に優れた原油回収率の高い原油回収用薬液を提供することを課題とするものである。 The present invention is directed to a chemical solution used in surfactant flooding in EOR flooding in which crude oil is recovered by injecting it into the oil reservoir of inland or submarine oil field, that is, excellent in high temperature salt resistance. It is an object of the present invention to provide a crude oil recovery chemical solution having a high crude oil recovery rate.
 上記課題を解決するために本発明者らが鋭意検討した結果、特にシラン化合物、平均粒子径が3~200nmの水性シリカゾル、2種類以上のアニオン界面活性剤及び1種類以上の非イオン界面活性剤とを採用し、これらを組み合わせた薬液が、耐熱性及び耐塩性に優れ、原油回収性に優れる原油回収用薬液となることを見出した。
 特に、本発明の原油回収用薬液を2以上7未満、及び7以上12未満のpH値に調整することにより、海水に対する高温耐塩性に加え、塩化ナトリウム、塩化マグネシウム、硫酸ナトリウム及び塩化カルシウムを主成分とする人工海水に対する高温耐塩性にも優れ、原油回収性に優れる原油回収用薬液となることを見出した。
As a result of intensive investigations by the present inventors to solve the above problems, in particular, silane compounds, aqueous silica sol having an average particle diameter of 3 to 200 nm, two or more types of anionic surfactants, and one or more types of nonionic surfactants It has been found that a chemical solution obtained by combining the above is used as a crude oil recovery chemical solution which is excellent in heat resistance and salt resistance and excellent in crude oil recovery.
In particular, by adjusting the crude oil recovery chemical solution of the present invention to a pH value of 2 or more and less than 7 and 12 or less, sodium chloride, magnesium chloride, sodium sulfate and calcium chloride are mainly added in addition to high temperature salt resistance to seawater. It has been found that it is a chemical solution for crude oil recovery that is excellent in high temperature salt resistance to artificial seawater as a component and is excellent in crude oil recovery.
 即ち、本発明は、第1観点として、シラン化合物と、平均粒子径が3~200nmの水性シリカゾルと、2種以上のアニオン界面活性剤と、1種以上の非イオン界面活性剤を含有することを特徴とする、高温耐塩性に優れた原油回収用薬液に関する。
 第2観点として、前記水性シリカゾルは、該ゾル中のシリカ粒子の少なくとも一部の表面に、前記シラン化合物の少なくとも一部が結合してなるシリカ粒子を含む、第1観点に記載の高温耐塩性に優れた原油回収用薬液に関する。
 第3観点として、前記シラン化合物が、ビニル基、エーテル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基及びイソシアヌレート基からなる群から選択される少なくとも一種の有機官能基を有するシランカップリング剤、アルコキシシラン、シラザン及びシロキサンからなる群から選択される少なくとも一種の化合物である、第1観点又は第2観点に記載の高温耐塩性に優れた原油回収用薬液に関する。
 第4観点として、前記水性シリカゾルが、シリカ固形分換算にて、原油回収用薬液の全質量を基準として、0.01質量%~30質量%にて含有されてなる、第1観点乃至第3観点のうち何れか一項に記載の高温耐塩性に優れた原油回収用薬液に関する。
 第5観点として、前記シラン化合物が、水性シリカゾルのシリカ固形分の質量に対する、シラン化合物の質量の比が0.1~10.0となる割合にて、含有されてなる、第1観点乃至第4観点のうち何れか一項に記載の高温耐塩性に優れた原油回収用薬液に関する。
 第6観点として、前記アニオン界面活性剤が、脂肪酸のナトリウム塩又はカリウム塩、アルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸塩、α-スルホ脂肪酸エステル、α-オレフィンスルホン酸塩、モノアルキルリン酸エステル塩、及びアルカンスルホン酸塩からなる群から選ばれる、
第1観点乃至第5観点のうち何れか一項に記載の高温耐塩性に優れた原油回収用薬液に関する。
 第7観点として、前記アニオン界面活性剤が、原油回収用薬液の全質量を基準として、0.001質量%~20質量%にて含有されてなる、第1観点乃至第6観点のうち何れか一項に記載の高温耐塩性に優れた原油回収用薬液に関する。
 第8観点として、前記アニオン界面活性剤が、前記原油回収用薬液のシリカ固形分に対して、質量比として0.4以上5.0未満となる割合にて含有され、かつ、原油回収用薬液が7以上12未満のpHを有する、第1観点乃至第7観点のうち何れか一項に記載の高温耐塩性に優れた原油回収用薬液。
 第9観点として、前記アニオン界面活性剤が、前記原油回収用薬液のシリカ固形分に対して、質量比として0.001以上0.4未満となる割合にて含有され、かつ、原油回収用薬液が2以上7未満のpHを有する、第1観点乃至第7観点のうち何れか一項に記載の原油回収用薬液。
 第10観点として、前記非イオン界面活性剤が、3.0以上20.0以下のHLB値を有し、且つ、
ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、アルキルグルコシド、ポリオキシエチレン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル及び脂肪酸アルカノールアミドからなる群から選ばれる、
第1観点乃至第9観点のうち何れか一項に記載の高温耐塩性に優れた原油回収用薬液に関する。
 第11観点として、前記非イオン界面活性剤が、原油回収用薬液の全質量を基準として、0.001質量%~30質量%にて含有されてなる、第1観点乃至第10観点に記載の高温耐塩性に優れた原油回収用薬液に関する。
 第12観点として、地下の炭化水素含有層から原油を回収する方法であって、
(a)シラン化合物と、平均粒子径が3~200nmの水性シリカゾルと、2種以上のアニオン界面活性剤と、1種以上の非イオン界面活性剤を含有する原油回収用薬液を、地下層に圧入する工程、
(b)地下層に圧入した前記薬液により生産井から原油を回収する工程、
を含む方法に関する。
 第13観点として、前記原油回収用薬液を7以上12未満のpHに調整し、かつ、前記アニオン界面活性剤を、前記原油回収用薬液のシリカ固形分に対して、質量比として0.4以上5.0未満となる量にて含有させる、第12観点に記載の方法に関する。
 第14観点として、前記原油回収用薬液を2以上7未満のpHに調整し、かつ、前記アニオン界面活性剤を、前記原油回収用薬液のシリカ固形分に対して、質量比として0.001以上0.4未満となる量にて含有させる、第12観点に記載の方法に関する。
That is, the present invention comprises, as a first aspect, a silane compound, an aqueous silica sol having an average particle diameter of 3 to 200 nm, two or more anionic surfactants, and one or more nonionic surfactants. The invention relates to a crude oil recovery chemical solution excellent in high-temperature salt resistance, characterized by
As a second aspect, the high temperature salt resistance according to the first aspect, wherein the aqueous silica sol comprises silica particles formed by bonding at least a part of the silane compound to the surface of at least a part of the silica particles in the sol. Related to crude oil recovery chemicals.
As a third aspect, a silane having at least one organic functional group selected from the group consisting of vinyl, ether, epoxy, styryl, methacryl, acryl, amino and isocyanurate groups. The present invention relates to a chemical solution for crude oil recovery excellent in high-temperature salt resistance as described in the first aspect or the second aspect, which is at least one compound selected from the group consisting of a coupling agent, alkoxysilane, silazane and siloxane.
As a fourth aspect, the first aspect to the third aspect, wherein the aqueous silica sol is contained in 0.01% by mass to 30% by mass on a basis of the total mass of the crude oil recovery chemical solution in terms of solid content of silica. The present invention relates to a crude oil recovery chemical solution excellent in high-temperature salt resistance described in any one of the viewpoints.
According to a fifth aspect, the silane compound is contained in a ratio such that the ratio of the mass of the silane compound to the mass of the solid silica component of the aqueous silica sol is 0.1 to 10.0. The present invention relates to a crude oil recovery chemical solution excellent in high-temperature salt resistance described in any one of the four viewpoints.
As a sixth aspect, the anionic surfactant is sodium salt or potassium salt of fatty acid, alkyl benzene sulfonate, higher alcohol sulfate, polyoxyethylene alkyl ether sulfate, α-sulfo fatty acid ester, α-olefin sulfonic acid Selected from the group consisting of salts, monoalkyl phosphate esters and alkane sulfonates,
The present invention relates to a crude oil recovery chemical solution excellent in high-temperature salt resistance as described in any one of the first to fifth aspects.
As a seventh aspect, any one of the first aspect to the sixth aspect, wherein the anionic surfactant is contained at 0.001% by mass to 20% by mass based on the total mass of the crude oil recovery chemical solution. The present invention relates to a crude oil recovery chemical solution excellent in high-temperature salt resistance described in one paragraph.
As an eighth aspect, the anionic surfactant is contained at a ratio of 0.4 or more and less than 5.0 as a mass ratio with respect to the silica solid content of the chemical solution for recovering crude oil, and a chemical solution for recovering crude oil The chemical | medical solution for crude oil collection excellent in the high-temperature salt tolerance as described in any one of 1st viewpoint thru | or 7th viewpoint which has pH of 7 or more and less than 12.
As a ninth aspect, the anionic surfactant is contained at a ratio of 0.001 or more and less than 0.4 as a mass ratio with respect to the silica solid content of the chemical solution for crude oil recovery, and a chemical solution for crude oil recovery The chemical | medical solution for crude oil recovery as described in any one of 1st viewpoint thru | or 7th viewpoints which have pH of 2 or more and less than 7.
As a tenth aspect, the nonionic surfactant has an HLB value of 3.0 or more and 20.0 or less, and
It is selected from the group consisting of polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, alkyl glucoside, polyoxyethylene fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester and fatty acid alkanolamide.
The present invention relates to a crude oil recovery chemical solution excellent in high-temperature salt resistance as described in any one of the first to ninth aspects.
According to an eleventh aspect, in the first to tenth aspects, the nonionic surfactant is contained in an amount of 0.001% by mass to 30% by mass based on the total mass of the crude oil recovery chemical solution. The present invention relates to a crude oil recovery chemical solution excellent in high temperature salt resistance.
According to a twelfth aspect of the present invention, there is provided a method of recovering crude oil from an underground hydrocarbon-containing bed,
(A) A crude oil recovery chemical solution containing a silane compound, an aqueous silica sol having an average particle diameter of 3 to 200 nm, two or more anionic surfactants, and one or more nonionic surfactants Press-in process,
(B) recovering crude oil from a production well by the chemical solution injected into the underground layer;
Related to the method.
As a thirteenth aspect, the crude oil recovery chemical solution is adjusted to a pH of 7 or more and less than 12, and the anionic surfactant is 0.4 or more as a mass ratio to the silica solids of the crude oil recovery chemical solution. The method according to the twelfth aspect, which is contained in an amount of less than 5.0.
As a fourteenth aspect, the crude oil recovery chemical solution is adjusted to a pH of 2 or more and less than 7, and the anionic surfactant is contained in a mass ratio of 0.001 or more to the silica solids of the crude oil recovery chemical solution. The method according to the twelfth aspect, which is contained in an amount of less than 0.4.
 本発明の原油回収用薬液は、高温耐塩性に優れており、該薬液を海水などで希釈して内陸又は海底油田の油層内に注入した場合においても、ゲル化等の不具合を生じることのない安定な薬液である。また本発明の原油回収用薬液は、アニオン界面活性剤の原油引き剥がし効果があるだけでなく、薬液に含まれるナノシリカ粒子のくさび効果により、岩石表面からの原油の引き剥がし効果の向上が見込まれ、高回収率で原油を回収できる原油回収用薬液である。 The chemical solution for crude oil recovery according to the present invention is excellent in high-temperature salt resistance, and does not cause problems such as gelation even when the chemical solution is diluted with seawater and injected into the oil reservoir of inland or submarine oil field. It is a stable chemical solution. Further, the chemical solution for crude oil recovery of the present invention is expected to improve the effect of removing crude oil from the rock surface not only by the crude oil peeling effect of the anionic surfactant but also by the wedge effect of the nanosilica particles contained in the chemical solution. It is a chemical for crude oil recovery that can recover crude oil with a high recovery rate.
 本発明の原油回収用薬液は、シラン化合物と、平均粒子径が3~200nmの水性シリカゾルと、2種以上のアニオン界面活性剤と、1種以上の非イオン界面活性剤を含有することを特徴とする。
 以下、各成分について詳細に説明する。
The chemical solution for crude oil recovery of the present invention is characterized by containing a silane compound, an aqueous silica sol having an average particle diameter of 3 to 200 nm, two or more anionic surfactants, and one or more nonionic surfactants. I assume.
Each component will be described in detail below.
<薬液のpH>
 本発明の原油回収用薬液は、そのpH値を7以上12未満とするか、又はpH値を2以上7未満とするかによって、最適な用途を選択することができる。詳細には、pH値が7以上12未満の原油回収用薬液は、塩化イオンとナトリウムイオン、カルシウムイオン、マグネシウムイオンなどを含有する塩水下(例えば内陸の地下油層における使用が想定される)で優れた高温耐塩性を示す。またpH値が2以上7未満の原油回収用薬液は、塩化イオンとナトリウムイオン、カルシウムイオン、マグネシウムイオンなどを含有する塩水に加え、海水(例えば海底油田の海底油層における使用が想定される)においても非常に優れた高温耐塩性を示す。
 また、本発明の原油回収用薬液は、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水溶液や、アンモニア水、塩基性のアミン水溶液などを用いて、そのpH値を12に至るまで調整しても優れた高温耐塩性を得ることができる。
 ただし、原油回収用薬液のpH値が2未満であると、薬液中の水性シリカゾル、アニオン界面活性剤及び非イオン界面活性剤の安定性が悪くなり、ゲル化や分解などを起こす虞があるため好ましくない。また薬液のpH値が12より大きいと、海水又は人工海水中のマグネシウムイオンと薬液中の水溶性の強アルカリ成分が中和反応を起こし、難水溶性の水酸化マグネシウムが生成され、原油回収用薬液の凝集を引き起こすため、好ましくない。
<PH of chemical solution>
The chemical | medical solution for crude oil recovery of this invention can select an optimal use by making the pH value into seven or more and less than 12 or making a pH value into two or more and less than 7. Specifically, a crude oil recovery chemical solution having a pH value of 7 or more and less than 12 is excellent under salt water containing chloride ion, sodium ion, calcium ion, magnesium ion and the like (for example, assumed use in inland underground oil reservoir) Show high temperature salt tolerance. Moreover, in addition to the salt solution containing chloride ion, sodium ion, calcium ion, magnesium ion etc., the chemical solution for crude oil recovery whose pH value is 2 or more and less than 7 is in seawater (for example, use in the submarine oil reservoir of submarine oil field is assumed) It also exhibits very good high temperature salt tolerance.
In addition, the chemical solution for crude oil recovery of the present invention may be adjusted to a pH value up to 12 using an aqueous alkali metal solution such as sodium hydroxide or potassium hydroxide, ammonia water, an aqueous solution of basic amine or the like. Excellent high temperature salt resistance can be obtained.
However, if the pH value of the crude oil recovery chemical solution is less than 2, the stability of the aqueous silica sol, the anionic surfactant, and the nonionic surfactant in the chemical solution may be deteriorated, which may cause gelation or decomposition. Not desirable. When the pH value of the chemical solution is more than 12, the magnesium ion in seawater or artificial seawater and the water-soluble strong alkali component in the chemical solution cause a neutralization reaction to generate poorly water-soluble magnesium hydroxide, and for crude oil recovery It is not preferable because it causes aggregation of the drug solution.
<水性シリカゾル>
 水性シリカゾルは、水性溶媒を分散媒とし、コロイダルシリカ粒子を分散質とするコロイド分散系をいい、水ガラス(ケイ酸ナトリウム水溶液)を原料として公知の方法により製造することができる。水性シリカゾルの平均粒子径とは、分散質であるコロイダルシリカ粒子の平均粒子径をいう。
<Aqueous silica sol>
An aqueous silica sol refers to a colloidal dispersion system in which an aqueous solvent is used as a dispersion medium and colloidal silica particles are used as a dispersoid, and it can be manufactured by a known method using water glass (sodium silicate aqueous solution) as a raw material. The average particle size of the aqueous silica sol refers to the average particle size of colloidal silica particles which are dispersoids.
 本発明において、水性シリカゾル(コロイダルシリカ粒子)の平均粒子径は、特に断りのない限り、窒素吸着法(BET法)により測定して得られる比表面積径又はシアーズ法粒子径をいう。
 窒素吸着法(BET法)により測定して得られる比表面積径(平均粒子径(比表面積径)D(nm))は、窒素吸着法で測定される比表面積S(m/g)から、D(nm)=2720/Sの式によって与えられる。
 シアーズ法粒子径は、文献:G.W.Sears,Anal.Chem.28(12)1981頁,1956年 コロイダルシリカ粒子径の迅速な測定法、に基づいて測定した平均粒子径をいう。詳細には、1.5gのSiOに相当するコロイダルシリカをpH4からpH9まで滴定するのに必要とした0.1N-NaOHの量からコロイダルシリカの比表面積を求め、これから算出した相当径(比表面積径)である。
 本発明において、水性シリカゾル(コロイダルシリカ粒子)の窒素吸着法(BET法)又はシアーズ法による平均粒子径は3~200nm、又は3~150nm、又は3~100nm、又は3~30nmとすることができる。
In the present invention, the average particle size of the aqueous silica sol (colloidal silica particles) refers to the specific surface area diameter or the particle size of the Sears method obtained by measurement by a nitrogen adsorption method (BET method) unless otherwise specified.
The specific surface area diameter (average particle diameter (specific surface area diameter) D (nm)) obtained by measurement by the nitrogen adsorption method (BET method) is from the specific surface area S (m 2 / g) measured by the nitrogen adsorption method. It is given by the equation D (nm) = 2720 / S.
The particle size of the Sears method is as described in the literature: GW. Sears, Anal. Chem. 28 (12) p.1981, 1956 This is an average particle size measured based on a rapid measurement method of colloidal silica particle size. In particular, to determine the specific surface area of the colloidal silica from the amount of 0.1 N-NaOH was required to titrate the colloidal silica corresponding to SiO 2 of 1.5g from pH4 to pH 9, equivalent size calculated therefrom (ratio Surface area diameter).
In the present invention, the average particle diameter of the aqueous silica sol (colloidal silica particles) according to the nitrogen adsorption method (BET method) or the shears method can be 3 to 200 nm, 3 to 150 nm, 3 to 100 nm, or 3 to 30 nm. .
 そして、薬液中でのシリカゾルのシリカ粒子は、動的光散乱法による平均粒子径(DLS平均粒子径)を測定することにより、水性シリカゾル中のシリカ粒子が分散状態にあるか、又は凝集状態にあるかを判断することができる。
 DLS平均粒子径は、2次粒子径(分散粒子径)の平均値を表しており、完全に分散している状態のDLS平均粒子径は、平均粒子径(窒素吸着法(BET法)又はシアーズ法により測定して得られる比表面積径であり、1次粒子径の平均値を表す)の2倍程度あると言われている。そして、DLS平均粒子径が大きくなるほど水性シリカゾル中のシリカ粒子が凝集状態になっていると判断できる。
 例えば、水性シリカゾルの一例として、日産化学(株)製の水性シリカゾル:スノーテックス(登録商標)ST-Oは、平均粒子径(BET法)が10~11nmであり、DLS平均粒子径は15~20nmである。後述する実施例において、この水性シリカゾルを含有する原油回収用薬液の高温耐塩性評価サンプルは、そのDLS平均粒子径が25nm以下であり、この結果は薬液中でシリカ粒子がほぼ分散状態にあることを示している。
And, by measuring the average particle size (DLS average particle size) by the dynamic light scattering method, the silica particles in the aqueous silica sol are in the dispersed state or in the aggregated state by measuring the average particle size (DLS average particle size) by the dynamic light scattering method. You can determine if there is.
The DLS average particle size represents the average value of secondary particle sizes (dispersed particle sizes), and the DLS average particle size in the state of being completely dispersed is an average particle size (nitrogen adsorption method (BET method) or Sears). It is said that the specific surface area diameter obtained by measurement according to the method is about twice as large as the average particle size of primary particles. And, it can be judged that the silica particles in the aqueous silica sol are in a state of aggregation as the DLS average particle diameter becomes larger.
For example, as an example of aqueous silica sol, aqueous silica sol manufactured by Nissan Chemical Industries, Ltd .: Snowtex (registered trademark) ST-O has an average particle diameter (BET method) of 10 to 11 nm and a DLS average particle diameter of 15 to It is 20 nm. In the examples to be described later, the high temperature salt resistance evaluation sample of the chemical for recovery of crude oil containing this aqueous silica sol has a DLS average particle diameter of 25 nm or less, and as a result, the silica particles are substantially dispersed in the chemical solution. Is shown.
 薬液の高温耐塩性が良い場合は、高温耐塩性試験後のDLS平均粒子径は、薬液のDLS平均粒子径とほぼ変わらず、例えば高温耐塩性試験後のDLS平均粒子径/薬液のDLS平均粒子径の比が1.1以下であれば、高温耐塩性試験後においても薬液と同様の分散状態を維持していることを示している。しかし、薬液の高温耐塩性が悪い場合は、高温耐塩性試験後のDLS粒子径は非常に大きくなり、凝集状態を示している。
 本発明の原油回収用薬液では、高温耐塩性試験後のDLS平均粒子径/薬液の平均粒子径の比が1.5以下(平均粒子径の変化率が50%以下)であれば耐塩性は良好であると判断でき、特にこの比が1.1以下(変化率が10%以下)のものはシリカゾルの変質がなく、高温耐塩性が非常に良好であると判断できる。
When the high temperature salt resistance of the chemical solution is good, the DLS average particle size after the high temperature salt tolerance test is almost the same as the DLS average particle size of the chemical solution, for example, DLS average particle size after the high temperature salt tolerance test / DLS average particle of the chemical solution If the ratio of diameters is 1.1 or less, it indicates that the same dispersion state as the chemical solution is maintained even after the high temperature salt resistance test. However, when the high temperature salt resistance of the chemical solution is poor, the DLS particle diameter after the high temperature salt resistance test becomes very large, indicating a state of aggregation.
In the chemical solution for crude oil recovery of the present invention, if the ratio of DLS average particle diameter / average particle diameter of the chemical solution after the high temperature salt resistance test is 1.5 or less (the rate of change of average particle diameter is 50% or less) It can be judged that the ratio is 1.1 or less (the change rate is 10% or less) without deterioration of the silica sol, and it can be judged that the high temperature salt resistance is very good.
 本発明において、水性シリカゾルの平均粒子径は窒素吸着法(BET法)又はシアーズ法による測定で3~200nmであり、好ましくは3~150nmであり、より好ましくは3~100nmである。平均粒子径が3nmより小さいと薬液が不安定になるので、好ましくない。一方、平均粒子径が200nmより大きいと、地下油田層内に存在する砂岩又は炭酸塩岩の孔隙を塞いでしまうため油回収性が悪くなり、好ましくない。 In the present invention, the average particle size of the aqueous silica sol is 3 to 200 nm, preferably 3 to 150 nm, more preferably 3 to 100 nm as measured by a nitrogen adsorption method (BET method) or a shears method. If the average particle size is smaller than 3 nm, the chemical solution becomes unstable, which is not preferable. On the other hand, when the average particle size is larger than 200 nm, the pores of sandstone or carbonate rock existing in the underground oil field formation are blocked, so that the oil recovery is unfavorably deteriorated.
 使用する水性シリカゾルにおけるシリカ(SiO)濃度としては5~55質量%が好ましい。 The concentration of silica (SiO 2 ) in the aqueous silica sol to be used is preferably 5 to 55% by mass.
 本発明において、水性シリカゾルは市販品を使用することができる。また水性シリカゾル中のシリカ濃度が5~50質量%のものが一般に市販されており、容易に入手できるので好ましい。
 また水性シリカゾルは、アルカリ性水性シリカゾルと酸性水性シリカゾルゾルとも使用できるが、酸性水性シリカゾルゾルの方がより好ましい。
In the present invention, commercially available aqueous silica sol can be used. Further, those having a silica concentration of 5 to 50% by mass in the aqueous silica sol are generally commercially available, and are preferable because they are easily available.
The aqueous silica sol can be used also for alkaline aqueous silica sol and acidic aqueous silica sol, but acidic aqueous silica sol is more preferable.
 市販品の酸性水性シリカゾルとしては、スノーテックス(登録商標)ST-OXS、同ST-OS、同ST-O、同ST-O-40、同ST-OL、同ST-OYL、同ST-OZL-35(以上、日産化学(株)製)、などが挙げられる。 Commercially available acidic aqueous silica sols include Snowtex (registered trademark) ST-OXS, ST-OS, ST-O, ST-O-40, ST-OL, ST-OYL and ST-OZL. And -35 (all manufactured by Nissan Chemical Industries, Ltd.).
 本発明において、水性シリカゾルは、シリカ固形分換算にて、原油回収用薬液の全質量を基準として、0.01質量%~30.0質量%にて含有されてなることが好ましく、より好ましくは10.0質量%~25.0質量%、例えば15.0質量%~25.0質量%である。 In the present invention, the aqueous silica sol is preferably contained in an amount of 0.01% by mass to 30.0% by mass based on the total mass of the crude oil recovery chemical solution in terms of solid content of silica, more preferably The content is 10.0% by mass to 25.0% by mass, for example, 15.0% by mass to 25.0% by mass.
 後述するように、本発明の原油回収用薬液において、前記水性シリカゾル中のシリカ粒子は、その一部の表面に、後述するシラン化合物の少なくとも一部が結合していてもよい。
 シラン化合物が表面に結合した水性シリカゾル中のシリカ粒子の粒子径は、前述の動的光散乱法粒子径として市販の装置によって容易に測定され得る。
As described later, in the crude oil recovery chemical solution of the present invention, at least a part of a silane compound described later may be bonded to the surface of a part of the silica particles in the aqueous silica sol.
The particle size of the silica particles in the aqueous silica sol in which the silane compound is bound to the surface can be easily measured by a commercially available apparatus as the aforementioned dynamic light scattering particle size.
<シラン化合物>
 本発明の原油回収用薬液は、シラン化合物を含有することを特徴とする。シラン化合物を含有することにより水性シリカゾルの高温耐塩性が大幅に向上するため、原油回収効果が維持される。
 シラン化合物としては、有機官能基としてビニル基、エーテル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基及びイソシアヌレート基からなる群から選択される少なくとも一種の基を有するシランカップリング剤、上記以外のアルコキシシラン、シラザン、シロキサン等を好ましいシラン化合物として挙げることができる。
<Silane compound>
The chemical solution for crude oil recovery of the present invention is characterized by containing a silane compound. By containing the silane compound, the high temperature salt resistance of the aqueous silica sol is greatly improved, so that the crude oil recovery effect is maintained.
As a silane compound, a silane coupling agent having at least one kind of group selected from the group consisting of vinyl group, ether group, epoxy group, styryl group, methacryl group, acrylic group, amino group and isocyanurate group as an organic functional group And alkoxysilanes, silazanes, siloxanes and the like other than those mentioned above can be mentioned as preferable silane compounds.
 上記ビニル基又はスチリル基を有するシランカップリング剤としては、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シランビニルメチルジメトキシシラン、ビニルトリアセトキシシラン、アリルトリクロロシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、p-スチリルトリメトキシシラン等が挙げられる。
 上記エポキシ基を有するシランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、〔(3-エチル-3-オキセタニル)メトキシ〕プロピルトリメトキシシラン、〔(3-エチル-3-オキセタニル)メトキシ〕プロピルトリエトキシシラン等が挙げられる。
 上記メタクリル基(メタクリロイル基)、アクリル基(アクリロイル基)を有するシランカップリング剤としては、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン等が挙げられる。
 上記アミノ基を有するシランカップリング剤としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリクロロシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン等が挙げられる。
 上記イソシアヌレート基を有するシランカップリング剤としてはトリス-(3-トリメトキシシリルプロピル)イソシアヌレート、トリス-(3-トリエトキシシリルプロピル)イソシアヌレート等、また、イソシアネート基を有するシランカップリング剤として3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン等を挙げることができる。
As the silane coupling agent having the above vinyl group or styryl group, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silanevinylmethyldimethoxysilane, vinyltriacetoxysilane, allyltrichlorosilane And allyltrimethoxysilane, allyltriethoxysilane, p-styryltrimethoxysilane and the like.
Examples of the silane coupling agent having an epoxy group include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldi Ethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) propyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) propyltriethoxysilane, 2- (3,4-) Epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) methyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) methyltri Ethoxysilane [(3-ethyl-3-oxetanyl) methoxy] propyl trimethoxy silane, it includes [(3-ethyl-3-oxetanyl) methoxy] propyl triethoxysilane.
Examples of the silane coupling agent having a methacryl group (methacryloyl group) and an acryl group (acryloyl group) include 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltriethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, Examples thereof include 3-methacryloyloxypropylmethyldiethoxysilane, 3-acryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxysilane and the like.
As a silane coupling agent having the above amino group, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyl Trichlorosilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl) -Butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane and the like.
As the above-mentioned silane coupling agent having an isocyanurate group, tris- (3-trimethoxysilylpropyl) isocyanurate, tris- (3-triethoxysilylpropyl) isocyanurate, etc., and as an isocyanate group-containing silane coupling agent Examples include 3-isocyanatepropyltriethoxysilane, 3-isocyanatepropyltrimethoxysilane and the like.
 また、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、エチルトリメトキシシラン、テトラエトキシシラン、n-プロピルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、n-プロピルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン等のアルコキシシラン;ヘキサメチルジシラザン等のシラザン;メチルメトキシシロキサン、ジメチル・フェニルメトキシシロキサン等のシロキサンなども使用できる。 Also, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, ethyltrimethoxysilane, tetraethoxysilane, n-propyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane , Phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, n-propyltrimethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, cyclohexylmethyldimethoxysilane, n-octyltrilesilane Alkoxysilanes such as ethoxysilane and n-decyltrimethoxysilane; silazanes such as hexamethyldisilazane; methyl methoxysiloxane Such a siloxane such as dimethyl phenylmethoxy siloxane may be used.
 これらシラン化合物の中でも、より好ましくは、エーテル基、エポキシ基、メタクリル基、アクリル基の官能基を有する両親媒性のシランカップリング剤が好ましい。
 例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシラン、3-アクリロイルオキシプロピルトリメトキシシランなどが挙げられる。
Among these silane compounds, an amphiphilic silane coupling agent having an ether group, an epoxy group, a methacryl group or an acrylic group is more preferable.
For example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-) Epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropyltriethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane, 3-acryloyloxypropyl Trimethoxysilane etc. are mentioned.
 本発明の原油回収用薬液において、上記シラン化合物は、水性シリカゾル中のシリカ固形分、すなわちシリカ粒子に対して、質量比で、シラン化合物/水性シリカゾル(シリカ:SiO)=0.1~10.0となる割合にて添加されてなることが好ましい。より好ましくは、同質量比が0.1~5.0となる割合にて添加されてなることである。
 水性シリカゾル中のシリカ粒子に対する、シラン化合物の質量比が0.1未満では、薬液の高温耐塩性が悪くなる虞があり、好ましくない。また同質量比を10.0より多く、すなわち、シラン化合物を大量に添加しても、それ以上の効果の向上は見込めない。
 本発明の原油回収用薬液において、前述の水性シリカゾル中のシリカ粒子は、その一部の表面に、上記シラン化合物の少なくとも一部が結合していてもよい。シラン化合物が表面の少なくとも一部に結合してなるシリカ粒子としては、例えばシラン化合物によって表面が被覆されたシリカ粒子も含まれる。表面の少なくとも一部にシラン化合物が結合したシリカ粒子、例えば、シラン化合物で表面が被覆されたシリカ粒子を用いることで、原油回収用薬液の高温耐塩性をより向上させることができる。
 従って、好ましい態様において、本発明の原油回収用薬液は、前記水性シリカゾルが、該ゾル中のシリカ粒子の少なくとも一部の表面に、前記シラン化合物の少なくとも一部が結合してなるシリカ粒子を含む。
In the chemical solution for crude oil recovery of the present invention, the above silane compound is a silane compound / aqueous silica sol (silica: SiO 2 ) = 0.1 to 10 by mass ratio to silica solid content in the aqueous silica sol, ie, silica particles. It is preferable to be added at a ratio of .0. More preferably, it is added at a ratio such that the same mass ratio is 0.1 to 5.0.
If the mass ratio of the silane compound to the silica particles in the aqueous silica sol is less than 0.1, the high temperature salt resistance of the chemical solution may be deteriorated, which is not preferable. Further, even if the same mass ratio is more than 10.0, that is, if a large amount of silane compound is added, no further improvement of the effect can be expected.
In the crude oil recovery chemical solution of the present invention, at least a part of the above-mentioned silane compound may be bonded to the surface of a part of the silica particles in the above-mentioned aqueous silica sol. The silica particles formed by bonding a silane compound to at least a part of the surface include, for example, silica particles whose surface is coated with a silane compound. By using a silica particle in which a silane compound is bonded to at least a part of the surface, for example, a silica particle whose surface is coated with a silane compound, the high temperature salt resistance of a chemical solution for crude oil recovery can be further improved.
Therefore, in a preferred embodiment, the crude oil recovery chemical solution of the present invention comprises silica particles in which the aqueous silica sol comprises at least a portion of the silane compound bonded to the surface of at least a portion of the silica particles in the sol. .
 前記シラン化合物の少なくとも一部が、少なくとも一部の表面に結合してなるシリカ粒子(以下、シラン化合物で表面処理されたシリカ粒子とも称する)は、水性シリカゾル中のシリカ粒子(シリカ固形分)に対して、上記シラン化合物の質量比が0.1~10.0となる割合にて、水性シリカゾルにシラン化合物を添加した後、例えば50~100℃で1時間~20時間加熱処理することで、得ることができる。
 このとき、上記シラン化合物による表面処理量、すなわち、シリカ粒子表面に結合したシラン化合物が、シリカ粒子表面の1nmあたり、例えば0.1~12個程度となることが好適である。
 上記加熱処理温度が50℃未満では、部分加水分解の速度が遅くなり表面処理の効率が悪くなり、一方100℃より高いと、シリカの乾燥ゲルが生ずるため、好ましくない。
 また上記加熱処理時間が1時間未満では、シラン化合物の部分加水分解反応が不十分であり、20時間より長くしてもシラン化合物の部分加水分解反応がほとんど飽和状態のため、これ以上加熱時間を長くしなくてもよい。
The silica particles (hereinafter also referred to as silica particles surface-treated with a silane compound) in which at least a part of the silane compound is bonded to at least a part of the surface are silica particles (silica solid content) in an aqueous silica sol. The silane compound is added to the aqueous silica sol at a ratio such that the mass ratio of the above-mentioned silane compound is 0.1 to 10.0, and then heat treated, for example, at 50 to 100 ° C. for 1 to 20 hours. You can get it.
At this time, it is preferable that the surface treatment amount with the above-mentioned silane compound, that is, the number of silane compounds bonded to the surface of the silica particle is, for example, about 0.1 to 12 per 1 nm 2 of the silica particle surface.
When the heat treatment temperature is less than 50 ° C., the rate of partial hydrolysis is slowed and the efficiency of surface treatment is deteriorated.
Further, if the heat treatment time is less than 1 hour, the partial hydrolysis reaction of the silane compound is insufficient, and even if it is longer than 20 hours, the partial hydrolysis reaction of the silane compound is almost saturated. It does not have to be long.
<アニオン界面活性剤>
 本発明の原油回収用薬液において、アニオン界面活性剤は2種以上使用される。例えば、2~5種のアニオン界面活性剤、又は2~4種のアニオン界面活性剤、又は2~3種のアニオン界面活性剤、又は2種のアニオン界面活性剤を組み合わせることができる。
 本発明において、1種類のアニオン界面活性剤だけを含有した薬液よりも、2種類以上のアニオン界面活性剤を含有する薬液とすることにより、界面活性剤同士が相互に入りこみ、より緻密なミセルを形成すること(パッキング効果)によって界面活性剤自体が安定化するというより好ましい効果を得られる。このため、アニオン界面活性剤が安定になり、原油回収効果が維持される。本発明の薬液は、複数の界面活性剤の配合によるパッキング効果を利用して、原油回収といった高温塩水下における使用が想定される薬液の安定化を図ったものであり、高温塩水下におけるこうしたパッキング効果の利用はこれまでにない発想である。
<Anionic surfactant>
In the crude oil recovery chemical solution of the present invention, two or more kinds of anionic surfactants are used. For example, 2 to 5 anionic surfactants, or 2 to 4 anionic surfactants, or 2 to 3 anionic surfactants, or 2 anionic surfactants can be combined.
In the present invention, by using a drug solution containing two or more types of anionic surfactants rather than a drug solution containing only one type of anionic surfactant, the surfactants mutually enter each other to form a more compact micelle. By forming (packing effect), a more preferable effect of stabilizing the surfactant itself can be obtained. As a result, the anionic surfactant becomes stable, and the crude oil recovery effect is maintained. The chemical solution of the present invention is intended to stabilize the chemical solution which is expected to be used under high temperature brine such as crude oil recovery by utilizing the packing effect by blending a plurality of surfactants, and such packing under high temperature brine The use of effects is an unprecedented idea.
 アニオン界面活性剤としては、脂肪酸のナトリウム塩及びカリウム塩、アルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸塩、α-スルホ脂肪酸エステル、α-オレフィンスルホン酸塩、モノアルキルリン酸エステル塩、及びアルカンスルホン酸塩が挙げられる。 As an anionic surfactant, sodium salt and potassium salt of fatty acid, alkylbenzene sulfonate, higher alcohol sulfate, polyoxyethylene alkyl ether sulfate, α-sulfo fatty acid ester, α-olefin sulfonate, monoalkyl phosphorus Acid ester salts and alkane sulfonates can be mentioned.
 例えばアルキルベンゼンスルホン酸塩は、ナトリウム塩、カリウム塩及びリチウム塩が挙げられ、C10~C16アルキルベンゼンスルホン酸ナトリウム、C10~C16アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸ナトリウムなどがある。
 高級アルコール硫酸エステル塩は、炭素原子数12のドデシル硫酸ナトリウム(ラウリル硫酸ナトリウム)、ラウリル硫酸トリエタノールアミン、ラウリル硫酸トリエタノールアンモニウムなどがある。
 ポリオキシエチレンアルキルエーテル硫酸塩は、ポリオキシエチレンスチレン化フェニルエーテル硫酸ナトリウム、ポリオキシエチレンスチレン化フェニルエーテル硫酸アンモニウム、ポリオキシエチレンデシルエーテル硫酸ナトリウム、ポリオキシエチレンデシルエーテル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム、ポリオキシエチレントリデシルエーテル硫酸ナトリウム、ポリオキシエチレンオレイルセチルエーテル硫酸ナトリウムなどがある。
 α-オレフィンスルホン酸塩は、α-オレフィンスルホン酸ナトリウムなどがある。
 アルカンスルホン酸塩は、2-エチルヘキシル硫酸ナトリウムなどがある。
For example, alkyl benzene sulfonates include sodium salts, potassium salts and lithium salts, and there are sodium C10 to C16 alkyl benzene sulfonates, C10 to C16 alkyl benzene sulfonic acids, sodium alkyl naphthalene sulfonates and the like.
Examples of higher alcohol sulfate ester salts include sodium dodecyl sulfate having 12 carbon atoms (sodium lauryl sulfate), triethanolamine lauryl sulfate, triethanolammonium lauryl sulfate and the like.
The polyoxyethylene alkyl ether sulfate is sodium polyoxyethylene styrenated phenyl ether sulfate, polyoxyethylene styrenated phenyl ether ammonium sulfate, polyoxyethylene decyl ether sodium sulfate, polyoxyethylene decyl ether ammonium sulfate, polyoxyethylene lauryl ether sodium sulfate And polyoxyethylene lauryl ether ammonium sulfate, polyoxyethylene tridecyl ether sodium sulfate, and polyoxyethylene oleyl cetyl ether sodium sulfate.
Examples of α-olefin sulfonates include sodium α-olefin sulfonates.
Examples of alkane sulfonates include sodium 2-ethylhexyl sulfate.
 中でも、アニオン界面活性剤として、α-オレフィンスルホン酸塩と高級アルコール硫酸エステル塩とを併用することが好ましい。この場合、α-オレフィンスルホン酸塩と高級アルコール硫酸エステル塩の配合割合は特に限定されないが、例えばモル比にて、α-オレフィンスルホン酸塩:高級アルコール硫酸エステル塩=5:1~1:5、例えば同3:1~1:3、同2:1~1:3、同1:1~1:2などとすることができる。
 アニオン界面活性剤は、原油回収用薬液中の全質量を基準として、合計で0.001質量%~20質量%含有することが好ましい。0.001質量%未満では、薬液の高温耐塩性、原油回収能が悪くなり、好ましくない。20質量%より多くなると回収した油と界面活性剤とのエマルジョン化が激しく、油と界面活性剤との分離が困難となるため好ましくない。
Among them, it is preferable to use an α-olefin sulfonate and a higher alcohol sulfate in combination as an anionic surfactant. In this case, the blending ratio of the α-olefin sulfonate and the higher alcohol sulfate is not particularly limited. For example, in molar ratio, α-olefin sulfonate: higher alcohol sulfate = 5: 1 to 1: 5 For example, 3: 1 to 1: 3, 1: 2 to 1: 3, 1: 1 to 1: 2, and the like.
The anionic surfactant is preferably contained in a total amount of 0.001% by mass to 20% by mass, based on the total mass in the crude oil recovery chemical solution. If the amount is less than 0.001% by mass, it is not preferable because the high-temperature salt resistance and the crude oil recovery ability of the chemical solution deteriorate. When the content is more than 20% by mass, emulsification of the recovered oil and surfactant is severe, and separation of the oil and surfactant becomes difficult, which is not preferable.
 前述したように、本発明の原油回収用薬液は、そのpH値を7以上12未満とするか、又はpH値を2以上7未満とするかによって、最適な用途を選択することができる。このとき、アニオン界面活性剤の量を調整することにより、高温耐塩性により優れる薬液とすることができる。
 例えば、原油回収用薬液を7以上12未満のpHに調整した場合、前記アニオン界面活性剤を、前記原油回収用薬液のシリカ固形分に対して、質量比として0.4以上5.0未満となる量にて含有させることが好ましい。
 また、原油回収用薬液を2以上7未満のpHに調整した場合、前記アニオン界面活性剤を、前記原油回収用薬液のシリカ固形分に対して、質量比として0.001以上0.4未満となる量にて含有させることが好ましい。
As described above, the chemical solution for crude oil recovery of the present invention can select an optimum application depending on whether the pH value is 7 or more and less than 12 or the pH value is 2 or more and less than 7. At this time, by adjusting the amount of the anionic surfactant, it is possible to make the chemical solution more excellent in high-temperature salt resistance.
For example, when the chemical solution for crude oil recovery is adjusted to a pH of 7 or more and less than 12, the anionic surfactant may have a mass ratio of 0.4 to less than 5.0 with respect to the silica solid content of the chemical for recovery of crude oil. Preferably, it is contained in an amount of
Further, when the crude oil recovery chemical solution is adjusted to a pH of 2 or more and less than 7, the anionic surfactant may have a mass ratio of 0.001 or more and less than 0.4 with respect to the silica solid content of the crude oil recovery chemical solution. Preferably, it is contained in an amount of
<非イオン界面活性剤>
 本発明の原油回収用薬液では、上記の2種のアニオン界面活性剤に加え、1種以上の非イオン界面活性剤を用いる。例えば、1~5種の非イオン界面活性剤、又は1~4種の非イオン界面活性剤、又は1~3種の非イオン界面活性剤、又は1~2種の非イオン界面活性剤の組み合わせ、又は1種の非イオン界面活性剤を用いることができる。
<Nonionic surfactant>
In the chemical solution for crude oil recovery of the present invention, in addition to the above two anionic surfactants, one or more nonionic surfactants are used. For example, 1 to 5 non-ionic surfactants, or 1 to 4 non-ionic surfactants, or 1 to 3 non-ionic surfactants, or a combination of 1 to 2 non-ionic surfactants Or one non-ionic surfactant can be used.
 本発明において、アニオン界面活性剤と非イオン界面活性剤の双方を含有する薬液とすることにより、アニオン界面活性剤と非イオン界面活性剤同士が相互に入りこみ、2種以上のアニオン界面活性剤だけよりも緻密なミセルを形成することによって、界面活性剤自体が安定化するというより好ましい効果を得られる。このため、アニオン界面活性剤と非イオン界面活性剤が安定になり、原油回収効果が維持される。 In the present invention, by using a chemical solution containing both an anionic surfactant and a nonionic surfactant, the anionic surfactant and the nonionic surfactant enter each other, and only two or more anionic surfactants are contained. By forming a more compact micelle, the more preferable effect of stabilizing the surfactant itself can be obtained. As a result, the anionic surfactant and the nonionic surfactant become stable, and the crude oil recovery effect is maintained.
 本発明において、非イオン界面活性剤は、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、アルキルグルコシド、ポリオキシエチレン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルカノールアミドから選ばれる。 In the present invention, nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, alkyl glucoside, polyoxyethylene fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, fatty acid alkanol It is selected from amides.
 例えば、ポリオキシエチレンアルキルエーテルとしては、ポリオキシエチレンドデシルエーテル(ポリオキシエチレンラウリルエーテル)、ポリオキシアルキレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシアルキレントリデシルエーテル、ポリオキシエチレンミリスチルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンベヘニルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンイソデシルエーテル等が挙げられる。
 ポリオキシエチレンアルキルフェノールエーテルとしては、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテルなどがある。
 アルキルグルコシドとしては、デシルグルコシド、ラウリルグルコシドなどがある。
 ポリオキシエチレン脂肪酸エステルとしては、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノオレート、ポリエチレングリコールジステアレート、ポリエチレングリコールジオレート、ポリプロピレングリコールジオレートなどがある。
 ソルビタン脂肪酸エステルとしては、ソルビタンモノカプリレート、ソルビタンモノラウレート、ソルビタンモノミリステート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、ソルビタンモノオレート、ソルビタントリオレート、ソルビタンモノセスキオレート、及びこれらのエチレンオキシド付加物などがある。
 ポリオキシエチレンソルビタン脂肪酸エステルとしては、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレート、ポリオキシエチレンソルビタントリオレート、ポリオキシエチレンソルビタントリイソステアレートなどがある。
 また脂肪酸アルカノールアミドとしては、ヤシ油脂肪酸ジエタノールアミド、牛脂脂肪酸ジエタノールアミド、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミドなどがある。
 さらに、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン脂肪酸エステルなどのポリオキシアルキルエーテル又はポリオキシアルキルグリコール、ポリオキシエチレン硬化ヒマシ油エーテル、ソルビタン脂肪酸エステルアルキルエーテル、アルキルポリグルコシド、ソルビタンモノオレート、ショ糖脂肪酸エステルなども使用できる。
 非イオン界面活性剤の中で、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテルが、薬液の高温耐塩性が良好で、より好ましい。
For example, as polyoxyethylene alkyl ether, polyoxyethylene dodecyl ether (polyoxyethylene lauryl ether), polyoxyalkylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyalkylene tridecyl ether, polyoxyethylene myristyl ether, poly Examples thereof include oxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene behenyl ether, polyoxyethylene 2-ethylhexyl ether, and polyoxyethylene isodecyl ether.
Examples of the polyoxyethylene alkylphenol ether include polyoxyethylene styrenated phenyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene distynylated phenyl ether, and polyoxyethylene tribenzyl phenyl ether.
Examples of alkyl glucosides include decyl glucoside and lauryl glucoside.
Examples of polyoxyethylene fatty acid esters include polyoxyethylene monolaurate, polyoxyethylene monostearate, polyoxyethylene monooleate, polyethylene glycol distearate, polyethylene glycol diolate, polypropylene glycol diolate and the like.
As sorbitan fatty acid esters, sorbitan monocaprylate, sorbitan monolaurate, sorbitan monomyristate, sorbitan monopalmitate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan Monosesquiolates and their ethylene oxide adducts.
As polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, polyoxy acid There are ethylene sorbitan trioleate, polyoxyethylene sorbitan triisostearate and the like.
Examples of fatty acid alkanolamides include coconut oil fatty acid diethanolamide, beef tallow fatty acid diethanolamide, lauric acid diethanolamide, oleic acid diethanolamide and the like.
Furthermore, polyoxyethylene polyoxypropylene glycol, polyoxyalkyl ether such as polyoxyethylene fatty acid ester or polyoxyalkyl glycol, polyoxyethylene hydrogenated castor oil ether, sorbitan fatty acid ester alkyl ether, alkyl polyglucoside, sorbitan monooleate, Sugar fatty acid esters can also be used.
Among the nonionic surfactants, polyoxyethylene alkyl ether and polyoxyethylene alkyl phenol ether are more preferable because they have good high-temperature salt resistance of the drug solution.
 非イオン界面活性剤のHLB値は、疎水性と親水性のバランスを表す数値であり、親水基を持たない物質をHLB=0、疎水基を持たず親水基だけの物質をHLB=20とする。
 本発明において、非イオン界面活性剤は、そのHLB値が3.0以上20.0以下のものを使用することが好ましい。薬液の高温耐塩性の観点から、HLB値が10.0以上20.0以下の非イオン界面活性剤を使用することがより好ましい。更に、人体や環境安全性の観点からみると、長時間の水生環境有害性がなく、いわゆる環境ホルモンの懸念がない、HLB値が14.0以上20.0以下の非イオン界面活性剤を使用することがより好ましい。また、HLB値の異なる2種類以上の非イオン界面活性剤を使用する場合は、HLB値と配合比の重量平均から求められる混合物のHLB値が10.0以上20.0以下になるように調整することが好ましい。
 HLB値が3.0未満の場合、非イオン界面活性剤の疎水性が強いため、調整した薬液において、水性シリカゾル及び水溶性アニオン界面活性剤と非イオン界面活性剤が混ざりあわず、2層に分離するため、好ましくない。
The HLB value of the nonionic surfactant is a numerical value representing the balance between hydrophobicity and hydrophilicity, and a substance having no hydrophilic group is HLB = 0, and a substance having no hydrophobic group and having only a hydrophilic group is HLB = 20. .
In the present invention, as the nonionic surfactant, one having an HLB value of 3.0 or more and 20.0 or less is preferably used. It is more preferable to use a nonionic surfactant having an HLB value of 10.0 or more and 20.0 or less from the viewpoint of the high temperature salt resistance of the chemical solution. Furthermore, from the viewpoint of human safety and environmental safety, there are no harmful effects on the aquatic environment for a long time, so there is no concern about so-called environmental hormones, and nonionic surfactants with an HLB value of 14.0 or more and 20.0 or less are used. It is more preferable to do. In addition, when using two or more kinds of nonionic surfactants having different HLB values, the HLB value of the mixture determined from the weight average of the HLB value and the blending ratio is adjusted to be 10.0 or more and 20.0 or less. It is preferable to do.
When the HLB value is less than 3.0, the hydrophobicity of the non-ionic surfactant is strong, so that the aqueous silica sol and the water-soluble anionic surfactant and the non-ionic surfactant are not mixed in the prepared chemical solution, and the two layers are mixed. Not desirable because of separation.
 非イオン界面活性剤は、原油回収用薬液中の全質量を基準として、0.001質量%~30質量%含有することが好ましい。0.001質量%未満では、薬液の耐熱性、耐塩性が悪くなり、好ましくない。30質量%より多くなると薬液の粘度が非常に高くなり、好ましくない。
 なお、1種類の非イオン界面活性剤だけを含有した薬液でも、2種類以上5種類以下の非イオン界面活性剤を含有した薬液でも、高温耐塩性に優れ、良好な原油回収能が得られる。
The nonionic surfactant is preferably contained in an amount of 0.001% by mass to 30% by mass, based on the total mass in the chemical solution for crude oil recovery. If the amount is less than 0.001% by mass, the heat resistance and the salt resistance of the chemical solution deteriorate, which is not preferable. When the content is more than 30% by mass, the viscosity of the chemical solution becomes very high, which is not preferable.
In addition, even if it is a chemical solution containing only one type of nonionic surfactant or a chemical solution containing 2 or more and 5 or less types of nonionic surfactants, excellent high-temperature salt resistance can be obtained, and a good crude oil recovery ability can be obtained.
<その他成分>
 薬液の粘度を高めるために、水溶性高分子のヒドロキシエチルセルロース及びその塩、ヒドロキシプロピルメチルセルロース及びその塩、カルボキシメチルセルロース及びその塩、ペクチン、グアーガムキサンダンカム、ダマリンドガム、カラギーナンなどをさらに添加することができる。
<Other ingredients>
Water-soluble polymers such as hydroxyethyl cellulose and its salts, hydroxypropyl methylcellulose and its salts, carboxymethyl cellulose and its salts, pectin, guar gum xanthan gum, damarind gum, carrageenan etc. can be further added to increase the viscosity of the drug solution. .
 本発明の原油回収用薬液は、水性シリカゾルとシラン化合物を併用すること、特に、水性シリカゾル中のシリカ粒子として、その少なくとも一部の表面に、前記シラン化合物の少なくとも一部が結合してなるシリカ粒子を含むものとすることにより、水性シリカゾル中のシリカ粒子と界面活性剤との相溶性が向上したものと考えられる。更に、2種類以上のアニオン界面活性剤及び1種類以上の非イオン界面活性剤を組み合わせることにより、界面活性剤同士が相互に入りこみ、より緻密なミセルを形成して界面活性剤自体が安定化することで、高温耐塩性に優れた原油回収用薬液になると考えられる。 The chemical solution for crude oil recovery according to the present invention is a combination of an aqueous silica sol and a silane compound, in particular, silica obtained by combining at least a part of the silane compound on at least a part of the surface as silica particles in the aqueous silica sol. By including the particles, it is considered that the compatibility between the silica particles in the aqueous silica sol and the surfactant is improved. Furthermore, by combining two or more types of anionic surfactants and one or more types of nonionic surfactants, the surfactants mutually enter each other to form a more compact micelle and stabilize the surfactant itself. Therefore, it is considered that it becomes a chemical solution for crude oil recovery excellent in high temperature salt resistance.
 なお、本発明の原油回収用薬液を用いて、地下の炭化水素含有層から原油を回収する際の手順としては、一例として(a)本発明の原油回収用薬液を地下層に圧入する工程と、(b)地下層に圧入した前記薬液とともに生産井から原油を回収する工程を含みて、実施することができる。
 このとき、原油回収用薬液を7以上12未満のpHに調整し、かつ、前記アニオン界面活性剤を、前記原油回収用薬液のシリカ固形分に対して、質量比として0.4以上5.0未満となる量にて含有させるか、或いは、原油回収用薬液を2以上7未満のpHに調整した場合には、前記アニオン界面活性剤を、前記原油回収用薬液のシリカ固形分に対して、質量比として0.001以上0.4未満となる量にて含有させることにより、高温耐塩性により優れる原油回収用薬液となることから、より高い原油回収能を期待できる。
The procedure for recovering crude oil from the underground hydrocarbon-containing layer using the crude oil recovery chemical solution of the present invention includes, for example, (a) injecting the crude oil recovery chemical solution of the present invention into the underground layer; (B) It can be implemented including the process of recovering crude oil from a production well with the above-mentioned chemical liquid injected into the underground layer.
At this time, the chemical solution for crude oil recovery is adjusted to a pH of 7 to less than 12, and the anionic surfactant is 0.4 to 5.0 as a mass ratio to the silica solid content of the chemical solution for crude oil recovery. When the chemical solution for crude oil recovery is adjusted to a pH of 2 or more and less than 7 or less, the anionic surfactant is used relative to the solid content of silica in the chemical solution for crude oil recovery, By containing it in an amount of 0.001 or more and less than 0.4 as a mass ratio, it becomes a chemical solution for crude oil recovery which is more excellent in high-temperature salt resistance, and thus a higher crude oil recovery ability can be expected.
 以下、合成例、実施例、比較例及び参考例に基づいてさらに詳述するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Synthesis Examples, Examples, Comparative Examples and Reference Examples, but the present invention is not limited to these Examples.
(測定装置)
 合成例で調製した水性シリカゾルの分析(pH値、電気伝導率、DLS平均粒子径)、並びに、実施例及び比較例にて製造した薬液の分析(pH値、電気伝導率、粘度、DLS平均粒子径)、該薬液を用いて調製したサンプルの高温耐塩性試験後のサンプルの分析は、以下の装置を用いて行なった。
・DLS平均粒子径(動的光散乱法粒子径):動的光散乱法粒子径測定装置 ゼーターサイザー ナノ(スペクトリス(株)マルバーン事業部製)を用いた。
・pH:pHメーター(東亞ディーケーケー(株)製)を用いた。
・電気伝導率:電気伝導率計(東亞ディーケーケー(株)製)を用いた。
・粘度:B型粘度計((株)東京計器製)を用いた。
・表面張力:表面張力計DY-500(協和界面化学(株)製)を用いた。
(measuring device)
Analysis (pH value, electric conductivity, DLS average particle size) of the aqueous silica sol prepared in the synthesis example, and analysis of the chemical solution manufactured in Examples and Comparative Examples (pH value, electric conductivity, viscosity, DLS average particle Diameter), analysis of the sample after the high temperature salt resistance test of the sample prepared using the said chemical | medical solution was performed using the following apparatuses.
-DLS average particle size (dynamic light scattering particle size): A dynamic light scattering particle size measuring apparatus Zeta Sizer Nano (manufactured by Spectris Co., Ltd., Malvern Division) was used.
PH: A pH meter (manufactured by Toho DKK Co., Ltd.) was used.
Electrical conductivity: An electrical conductivity meter (manufactured by Toho DK Co., Ltd.) was used.
Viscosity: A B-type viscometer (manufactured by Tokyo Keiki Co., Ltd.) was used.
Surface tension: A surface tension meter DY-500 (manufactured by Kyowa Interface Chemical Co., Ltd.) was used.
[原油回収用薬液の評価]
(高温耐塩性評価)
 (高温耐塩性評価-1)
 200mlのスチロール瓶に撹拌子を投入後、実施例又は比較例で製造した各薬液50gを投入し、マグネットスターラーで撹拌しながら、塩濃度6質量%のブライン溶液(塩化ナトリウム濃度4.8質量%、塩化カルシウム濃度1.2質量%)100gを投入し、1時間撹拌した。これを、4質量%の塩濃度下での薬液の耐熱性及び耐塩性を評価するブラインテストサンプル(a)とした。
 120mlのテフロン(登録商標)製の密閉できる容器に、ブラインテストサンプル(a)65gを入れ、密閉後、テフロン(登録商標)容器を100℃の乾燥機内に置き、100℃で所定時間保持した後、ブラインテストサンプル(a)の外観、pH、電気伝導率、粘度、サンプル中の水性シリカゾル(シリカ粒子)のDLS平均粒子径を評価した。
 なお高温耐塩性の判定は、高温下で所定時間保持後、サンプル中の水性シリカゾル(シリカ粒子)のDLS平均粒子径の測定結果並びに外観の評価に基づき、以下の通りとした。
<高温耐塩性の判定>
A:高温耐塩性試験後のDLS平均粒子径/薬液のDLS平均粒子径の比が1.1以下のもの、シリカゾルの変質がなく、高温耐塩性が非常に良好
B:高温耐塩性試験後のDLS平均粒子径/薬液のDLS平均粒子径の比が1.2~1.5のもの、高温耐塩性良好、
C:高温耐塩性試験後のDLS平均粒子径/薬液のDLS平均粒子径の比が1.6~8.0のもの、高温耐塩性普通
D:高温耐塩性試験後のDLS平均粒子径/薬液のDLS平均粒子径の比が8.1~20.0のもの、高温耐塩性悪い
E:高温耐塩性試験後のDLS平均粒子径/薬液のDLS平均粒子径の比が20.1以上のもの、又はシリカゾルがゲル化し白色沈殿物が生成したためDLS粒子径の測定ができなかったもの、高温耐塩性非常に悪い
[Evaluation of crude oil recovery chemicals]
(High temperature salt resistance evaluation)
(High temperature salt resistance evaluation-1)
A stirrer is charged into a 200 ml polystyrene bottle, 50 g of each chemical solution prepared in the example or comparative example is charged, and a salt solution having a salt concentration of 6 mass% (sodium chloride concentration 4.8 mass%) while stirring with a magnetic stirrer The solution was charged with 100 g of calcium chloride (1.2 mass%) and stirred for 1 hour. This was taken as a brine test sample (a) for evaluating the heat resistance and salt resistance of the chemical solution under a salt concentration of 4% by mass.
In a 120 ml Teflon (registered trademark) sealable container, put 65 g of brine test sample (a), and after sealing, place the Teflon (registered trademark) container in a dryer at 100 ° C. and maintain it at 100 ° C. for a predetermined time The appearance, pH, electric conductivity, viscosity of the brine test sample (a), and the DLS average particle size of the aqueous silica sol (silica particles) in the sample were evaluated.
The determination of the high-temperature salt resistance was as follows based on the measurement results of the DLS average particle diameter of the aqueous silica sol (silica particles) in the sample and the evaluation of the appearance after holding for a predetermined time under high temperature.
Determination of high temperature salt tolerance
A: The ratio of DLS average particle diameter / DLS average particle diameter of chemical solution after high temperature salt resistance test is 1.1 or less, there is no deterioration of silica sol, and high temperature salt resistance is very good B: after high temperature salt resistance test The ratio of DLS average particle diameter / DLS average particle diameter of chemical solution is 1.2 to 1.5, high temperature salt resistance is good,
C: DLS average particle size after high temperature salt resistance test / DLS average particle size ratio of chemical solution is 1.6 to 8.0, high temperature salt resistance ordinary D: DLS average particle size after high temperature salt resistance test / chemical solution The ratio of DLS average particle diameter is 8.1 to 20.0 and the high temperature salt resistance is poor E: DLS average particle diameter after high temperature salt resistance test / DLS average particle diameter ratio of chemical solution is 20.1 or more Or those that could not be measured for DLS particle size due to gelation of silica sol and formation of white precipitates, high temperature salt resistance very bad
(高温耐塩性評価-2)
 200mlのスチロール瓶に撹拌子を投入後、実施例又は比較例で製造した各薬液50gを投入し、マグネットスターラーで撹拌しながら、塩濃度15質量%のブライン溶液(塩化ナトリウム濃度12.0質量%、塩化カルシウム濃度3.0質量%)100gを投入し、1時間撹拌した。これを、API規格(アメリカ石油協会が定めた石油に関する規格)で定められた8質量%の塩化ナトリウムと2質量%の塩化カルシウムからなる10質量%の塩濃度下での薬液の耐熱性及び耐塩性を評価するブラインテストサンプル(b)とした。
 上記(高温耐塩性評価-1)と同じ操作により、高温耐塩性の判定を行った。
(High temperature salt resistance evaluation -2)
A stirrer is charged into a 200 ml polystyrene bottle, 50 g of each chemical solution prepared in the example or comparative example is charged, and a salt solution having a salt concentration of 15 mass% (sodium chloride concentration 12.0 mass%) while stirring with a magnetic stirrer , 100 mass% of calcium chloride concentration) was added, and stirred for 1 hour. The heat resistance and salt resistance of the chemical solution under a 10% by mass salt concentration consisting of 8% by mass sodium chloride and 2% by mass calcium chloride defined by API standards (a standard for petroleum established by the American Petroleum Institute). It was set as the brine test sample (b) which evaluates sex.
The high temperature salt resistance was judged by the same operation as the above (high temperature salt resistance evaluation-1).
(高温耐塩性評価-3)
 3Lポリエチレン製容器に純水2408gを入れた後、人工海水粉末(商品名マリンアートSF-1 富田製薬(株)製)92gを投入し、人工海水を調製した。200mlのスチロール瓶に撹拌子を投入後、実施例で製造した各薬液と純水及び人工海水をマグネットスターラーで撹拌しながら添加して、シリカ濃度1.0質量%の混合液150gを調製し、1時間撹拌した。これを、人工海水での薬液の耐熱性及び耐塩性を評価する海水テストサンプルとした。
 上記(高温耐塩性評価-1)と同じ操作により、高温耐塩性の判定を行った。
(High temperature salt resistance evaluation -3)
After 2408 g of pure water was placed in a 3 L polyethylene container, 92 g of artificial seawater powder (trade name: Marin Art SF-1 manufactured by Tomita Pharmaceutical Co., Ltd.) was charged to prepare artificial seawater. A stirrer is placed in a 200 ml polystyrene bottle, and each chemical solution, pure water and artificial seawater prepared in the example are added while stirring with a magnetic stirrer to prepare 150 g of a mixed solution with a silica concentration of 1.0 mass%, Stir for 1 hour. This was used as a seawater test sample to evaluate the heat resistance and salt tolerance of the chemical solution in artificial seawater.
The high temperature salt resistance was judged by the same operation as the above (high temperature salt resistance evaluation-1).
(高温耐塩性評価-4)
 3Lポリエチレン製容器に純水2408gを入れた後、人工海水粉末(商品名マリンアートSF-1 富田製薬(株)製)92gを投入し、人工海水を調製した。200mlのスチロール瓶に撹拌子を投入後、実施例で製造した各薬液と純水及び人工海水をマグネットスターラーで撹拌しながら添加して、シリカ濃度0.5質量%の混合液150gを調製し、1時間撹拌した。これを、人工海水での薬液の耐熱性及び耐塩性を評価する海水テストサンプルとした。
 上記(高温耐塩性評価-1)と同じ操作により、高温耐塩性の判定を行った。
(High temperature salt resistance evaluation-4)
After 2408 g of pure water was placed in a 3 L polyethylene container, 92 g of artificial seawater powder (trade name: Marin Art SF-1 manufactured by Tomita Pharmaceutical Co., Ltd.) was charged to prepare artificial seawater. A stirrer is placed in a 200 ml polystyrene bottle, and each chemical solution, pure water and artificial seawater prepared in the example are added while stirring with a magnetic stirrer to prepare 150 g of a mixed solution with a silica concentration of 0.5 mass%, Stir for 1 hour. This was used as a seawater test sample to evaluate the heat resistance and salt tolerance of the chemical solution in artificial seawater.
The high temperature salt resistance was judged by the same operation as the above (high temperature salt resistance evaluation-1).
[原油回収用薬液の調製:水性ゾルの調製]
(合成例1)
 500mlのガラス製ナスフラスコに水性シリカゾル(日産化学(株)製スノーテックス(登録商標)ST-O、シリカ濃度=20.5質量%、BET法平均粒子径11.0nm、DLS平均粒子径17.2nm)200gとマグネット撹拌子を投入した後、マグネットスターラーで撹拌しながら、水性シリカゾル中のシリカに対してシラン化合物の質量比が0.09になるように3-グリシドキシプロピルトリメトキシシラン(エボニック社製Dynasylan GLYMO)を4.0g投入した。続いて、水道水を流した冷却管をナスフラスコの上部に設置し、還流しながら水性ゾルを60℃に昇温し、60℃で3時間保持した後、冷却した。室温まで冷却後、水性ゾルを取り出した。
 水性シリカゾル中のシリカに対するシラン化合物の質量比0.09、シリカ固形分=20.2質量%、pH=3.1、電気伝導率=452μS/cm、DLS平均粒子径=24.3nmの、シラン化合物で表面処理された水性シリカゾルを含む水性ゾル204gを得た。
[Preparation of chemical solution for crude oil recovery: Preparation of aqueous sol]
Synthesis Example 1
In a 500 ml glass-made eggplant flask, aqueous silica sol (Snowtex (registered trademark) ST-O, manufactured by Nissan Chemical Industries, Ltd., silica concentration = 20.5 mass%, BET method average particle diameter 11.0 nm, DLS average particle diameter 17.3. After adding 200 g of a magnetic stirrer and 2 g of a magnetic stirrer, stirring with a magnetic stirrer, 3-glycidoxypropyltrimethoxysilane (a mass ratio of the silane compound to that of silica in the aqueous silica sol is 0.09). 4.0 g of Evonik Dynasylan GLYMO was introduced. Subsequently, a cooling pipe in which tap water was allowed to flow was installed at the top of the eggplant flask, the temperature of the aqueous sol was raised to 60 ° C. while refluxing, and maintained at 60 ° C. for 3 hours. After cooling to room temperature, the aqueous sol was taken out.
Silane having a mass ratio of silane compound to silica in aqueous silica sol of 0.09, silica solid content = 20.2 mass%, pH = 3.1, electric conductivity = 452 μS / cm, DLS average particle diameter = 24.3 nm 204 g of an aqueous sol containing an aqueous silica sol surface-treated with a compound was obtained.
(合成例2)
 水性シリカゾル(日産化学(株)製スノーテックス(登録商標)ST-O、シリカ濃度=20.5質量%、BET法平均粒子径11.0nm、DLS平均粒子径17.2nm)中のシリカに対して、シラン化合物の質量比が0.20になるように3-グリシドキシプロピルトリメトキシシラン(エボニック社製Dynasylan GLYMO)を7.9g投入した以外は、合成例1と同じ操作により水性ゾルを得た。
 水性シリカゾル中のシリカに対するシラン化合物の質量比0.2、シリカ固形分=20.6質量%、pH=2.9、電気伝導率=544μS/cm、DLS平均粒子径=19.5nmの、シラン化合物で表面処理された水性シリカゾルを含む水性ゾル208gを得た。
(Composition example 2)
Aqueous silica sol (Snowtex (registered trademark) ST-O, manufactured by Nissan Chemical Industries, Ltd., silica concentration = 20.5 mass%, BET method average particle diameter 11.0 nm, DLS average particle diameter 17.2 nm) The aqueous sol was prepared in the same manner as in Synthesis Example 1 except that 7.9 g of 3-glycidoxypropyltrimethoxysilane (Dynasylan GLYMO manufactured by Evonik Co., Ltd.) was added such that the mass ratio of the silane compound was 0.20. Obtained.
Silane having a weight ratio of silane compound to silica in aqueous silica sol of 0.2, solid content of silica = 20.6% by mass, pH = 2.9, electric conductivity = 544 μS / cm, DLS average particle diameter = 19.5 nm 208 g of an aqueous sol containing an aqueous silica sol surface-treated with a compound was obtained.
(合成例3)
 水性シリカゾル(日産化学(株)製スノーテックス(登録商標)ST-O、シリカ濃度=20.5質量%、BET法平均粒子径11.0nm、DLS平均粒子径17.2nm)中のシリカに対して、シラン化合物の質量比が0.40になるように3-グリシドキシプロピルトリメトキシシラン(エボニック社製Dynasylan GLYMO)を15.8g投入した以外は、合成例1と同じ操作により水性ゾルを得た。
 水性シリカゾル中のシリカに対するシラン化合物の質量比0.4、シリカ固形分=20.5質量%、pH=2.9、電気伝導率=474μS/cm、DLS平均粒子径=19.7nmの、シラン化合物で表面処理された水性シリカゾルを含む水性ゾル216gを得た。
(Composition example 3)
Aqueous silica sol (Snowtex (registered trademark) ST-O, manufactured by Nissan Chemical Industries, Ltd., silica concentration = 20.5 mass%, BET method average particle diameter 11.0 nm, DLS average particle diameter 17.2 nm) The aqueous sol was prepared in the same manner as in Synthesis Example 1 except that 15.8 g of 3-glycidoxypropyltrimethoxysilane (Dynasylan GLYMO manufactured by Evonik Co., Ltd.) was added such that the mass ratio of the silane compound was 0.40. Obtained.
Silane having a weight ratio of silane compound to silica in aqueous silica sol of 0.4, silica solid content = 20.5 mass%, pH = 2.9, electric conductivity = 474 μS / cm, DLS average particle diameter = 19.7 nm 216 g of an aqueous sol containing an aqueous silica sol surface-treated with the compound was obtained.
(合成例4)
 水性シリカゾル(日産化学(株)製スノーテックス(登録商標)ST-O、シリカ濃度=20.5質量%、BET法平均粒子径11.0nm、DLS平均粒子径17.2nm)中のシリカに対して、シラン化合物の質量比が0.80になるように3-グリシドキシプロピルトリメトキシシラン(エボニック社製Dynasylan GLYMO)を31.6g投入した以外は、合成例1と同じ操作により水性ゾルを得た。
 水性シリカゾル中のシリカに対するシラン化合物の質量比0.8、シリカ固形分=10.6質量%、pH=2.8、電気伝導率=413μS/cm、DLS平均粒子径=20.8nmの、シラン化合物で表面処理された水性シリカゾル231gを得た。
(Composition example 4)
Aqueous silica sol (Snowtex (registered trademark) ST-O, manufactured by Nissan Chemical Industries, Ltd., silica concentration = 20.5 mass%, BET method average particle diameter 11.0 nm, DLS average particle diameter 17.2 nm) The aqueous sol was prepared in the same manner as in Synthesis Example 1 except that 31.6 g of 3-glycidoxypropyltrimethoxysilane (Dynasylan GLYMO manufactured by Evonik Co., Ltd.) was added such that the mass ratio of the silane compound was 0.80. Obtained.
Silane having a weight ratio of silane compound to silica in aqueous silica sol of 0.8, solid content of silica = 10.6% by mass, pH = 2.8, electric conductivity = 413 μS / cm, DLS average particle diameter = 20.8 nm 231 g of an aqueous silica sol surface-treated with the compound was obtained.
(合成例5)
 500mlのガラス製ナスフラスコに水性シリカゾル(日産化学(株)製スノーテックス(登録商標)ST-OXS、シリカ濃度=10.4質量%、シアーズ法平均粒子径5.0nm、DLS平均粒子径=8.1nm)250gとマグネット撹拌子を投入した後、マグネットスターラーで撹拌しながら、水性シリカゾル中のシリカに対して、シラン化合物の質量比が3.4になるように3-グリシドキシプロピルトリメトキシシラン(エボニック社製Dynasylan GLYMO)を88.9g投入した。続いて、水道水を流した冷却管をナスフラスコの上部に設置し、還流しながら水性ゾルを60℃に昇温し、60℃で3時間保持した後、冷却した。室温まで冷却後、水性ゾルを取り出した。
 水性シリカゾル中のシリカに対するシラン化合物の質量比3.4、シリカ固形分=14.3質量%、pH=2.9、電気伝導率=163μS/cm、DLS平均粒8.1nmの、シラン化合物で表面処理された水性シリカゾル338gを得た。
(Composition example 5)
Aqueous silica sol (Snowtex (registered trademark) ST-OXS manufactured by Nissan Chemical Industries, Ltd., silica concentration = 10.4% by mass, Sears method average particle diameter 5.0 nm, DLS average particle diameter = 8) .3 nm) 3-glycidoxypropyltrimethoxy so that the mass ratio of the silane compound is 3.4 to the silica in the aqueous silica sol while stirring with a magnet stirrer after 250 g of the magnet stirrer and a magnet stirrer. 88.9 g of silane (Evonik Dynasylan GLYMO) was charged. Subsequently, a cooling pipe in which tap water was allowed to flow was installed at the top of the eggplant flask, the temperature of the aqueous sol was raised to 60 ° C. while refluxing, and maintained at 60 ° C. for 3 hours. After cooling to room temperature, the aqueous sol was taken out.
Silane compound with a mass ratio of silane compound to silica in aqueous silica sol 3.4, silica solid content = 14.3 mass%, pH = 2.9, conductivity = 163 μS / cm, DLS average particle size 8.1 nm 338 g of a surface-treated aqueous silica sol was obtained.
(合成例6)
 500mlのガラス製ナスフラスコに水性シリカゾル(日産化学(株)製スノーテックス(登録商標)ST-OL、シリカ濃度=20.0質量%、BET法平均粒子径46nm、DLS平均粒子径=75.8nm)200gとマグネット撹拌子を投入した後、マグネットスターラーで撹拌しながら、水性シリカゾル中のシリカに対して、シラン化合物の質量比が1.6になるように3-グリシドキシプロピルトリメトキシシラン(エボニック社製Dynasylan GLYMO)を31.9g投入した以外は、合成例1と同じ操作により水性ゾルを得た。
 水性シリカゾル中のシリカに対するシラン化合物の質量比=0.8、シリカ固形分=21.2質量%、pH=3.1、電気伝導率=160μS/cm、DLS平均粒子径=76.4nmの、シラン化合物で表面処理された水性シリカゾル231gを得た。
Synthesis Example 6
Aqueous silica sol (Snowtex (registered trademark) ST-OL manufactured by Nissan Chemical Industries, Ltd., silica concentration = 20.0 mass%, BET method average particle diameter 46 nm, DLS average particle diameter = 75.8 nm) After charging 200 g of the magnetic stirrer and then stirring with a magnetic stirrer, 3-glycidoxypropyltrimethoxysilane (the mass ratio of the silane compound is 1.6 with respect to the silica in the aqueous silica sol). An aqueous sol was obtained in the same manner as in Synthesis Example 1 except that 31.9 g of Evonik Dynasylan GLYMO was charged.
Mass ratio of silane compound to silica in aqueous silica sol = 0.8, solid content of silica = 21.2 mass%, pH = 3.1, electric conductivity = 160 μS / cm, DLS average particle diameter = 76.4 nm, 231 g of an aqueous silica sol surface-treated with a silane compound was obtained.
(合成例7)
 500mlのガラス製ナスフラスコに水性シリカゾル(日産化学(株)製スノーテックス(登録商標)ST-OZL-35、シリカ濃度=35.7質量%、BET法平均粒子径83nm、DLS平均粒子径126nm)115gと純水85gをマグネット撹拌子を投入した後、マグネットスターラーで撹拌しながら、水性シリカゾル中のシリカに対して、シラン化合物の質量比が0.8になるように3-グリシドキシプロピルトリメトキシシラン(エボニック社製Dynasylan GLYMO)を32.8g投入した以外は、合成例1と同じ操作により水性ゾルを得た。
 水性シリカゾル中のシリカに対するシラン化合物の質量比1,6、シリカ固形分=20.7質量%、pH=2.6、電気伝導率=579μS/cm、DLS平均粒=119nmの、シラン化合物で表面処理された水性シリカゾル232gを得た。
Synthesis Example 7
Aqueous silica sol (Snowtex® ST-OZL-35, manufactured by Nissan Chemical Industries, Ltd., silica concentration = 35.7 mass%, BET method average particle diameter 83 nm, DLS average particle diameter 126 nm) After charging 115 g of pure water and 85 g of pure water with a magnet stirrer, while stirring with a magnet stirrer, 3-glycidoxypropyl tri such that the mass ratio of silane compound to silica in aqueous silica sol is 0.8. An aqueous sol was obtained in the same manner as in Synthesis Example 1 except that 32.8 g of methoxysilane (Dynasylan GLYMO manufactured by Evonik Co., Ltd.) was added.
Mass ratio of silane compound to silica in aqueous silica sol 1,6, solid content of silica = 20.7% by mass, pH = 2.6, electric conductivity = 579 μS / cm, DLS average particle diameter = 119 nm, surface with silane compound 232 g of treated aqueous silica sol are obtained.
[原油回収用薬液の調製]
(実施例1)
 300mlのスチロール瓶に撹拌子を入れ、純水91.0gを投入した。マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(第一工業製薬(株)製ネオゲン(登録商標)AO-90)2.3gを投入し、完全に溶けきるまで撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)4.7gを投入し、完全に溶けきるまで撹拌した。
 続いて合成例2で製造した水性シリカゾル22.0gを投入し、続いて非イオン界面活性剤としてHLB=13.0のポリオキシエチレンノニルフェニルエーテル(シグマ社製試薬Tergitol(登録商標)NP-9)30.0gを投入した後、1時間撹拌して実施例1の薬液を製造した。
 高温耐塩性評価-1に従ってブラインテストサンプル(a)を調製し、100℃で30時間保持した後、サンプルを取り出し高温耐塩性を評価した。
[Preparation of chemical solution for crude oil recovery]
Example 1
A stirrer was placed in a 300 ml polystyrene bottle, and 91.0 g of pure water was charged. While stirring with a magnetic stirrer, 2.3 g of the anionic surfactant α-olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was charged, and stirred until completely dissolved. Subsequently, 4.7 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added and stirred until completely dissolved.
Subsequently, 22.0 g of the aqueous silica sol prepared in Synthesis Example 2 was added, and subsequently, polyoxyethylene nonylphenyl ether of HLB = 13.0 (non-ionic surfactant) (Reagent Tergitol (registered trademark) NP-9 manufactured by Sigma) After charging 30.0 g, the solution was stirred for 1 hour to produce the drug solution of Example 1.
After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 30 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(実施例2)
 純水の投入量を106.0gとし、非イオン界面活性剤としてHLB=13.0のポリオキシエチレンノニルフェニルエーテル(シグマ社製試薬Tergitol(登録商標)NP-9)の投入量を15.0gとした以外は、実施例1と同じ操作で実施例2の薬液を製造した。
 高温耐塩性評価-1に従ってブラインテストサンプル(a)を調製し、100℃で30時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 2)
The input amount of pure water is 106.0 g, and the input amount of polyoxyethylene nonyl phenyl ether with HLB = 13.0 as a nonionic surfactant (reagent for sigma, Tergitol (registered trademark) NP-9) 15.0 g The drug solution of Example 2 was manufactured in the same operation as Example 1 except that
After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 30 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(実施例3)
 純水の投入量を113.5gとし、非イオン界面活性剤としてHLB=13.0のポリオキシエチレンノニルフェニルエーテル(シグマ社製試薬Tergitol(登録商標)NP-9)の投入量を7.5gとした以外は、実施例1と同じ操作で実施例3の薬液を製造した。
 高温耐塩性評価-1に従ってブラインテストサンプル(a)を調製し、100℃で30時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 3)
The input amount of pure water is 113.5 g, and the input amount of polyoxyethylene nonylphenyl ether with HLB = 13.0 as a non-ionic surfactant (reagent for Tergitol (registered trademark) NP-9 manufactured by Sigma) 7.5 g The drug solution of Example 3 was manufactured in the same operation as Example 1 except that
After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 30 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(実施例4)
 非イオン界面活性剤としてHLB=13.0のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-137)を採用し、この投入量を15.0gとした以外は、実施例2と同じ操作で実施例4の薬液を製造した。
 高温耐塩性評価-1に従ってブラインテストサンプル(a)を調製し、100℃で30時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 4)
A polyoxyethylene styrenated phenyl ether (Nichigen (registered trademark) EA-137 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) of HLB = 13.0 was adopted as a non-ionic surfactant, and the amount of addition was 15.0 g. The chemical solution of Example 4 was manufactured by the same operation as Example 2 except for the above.
After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 30 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(実施例5)
 純水の投入量を99.6gとし、非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを21.4g投入した以外は、実施例2と同じ操作で実施例5の薬液を製造した。
 高温耐塩性評価-1に従ってブラインテストサンプル(a)を調製し、100℃で30時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 5)
Pure water input amount is 99.6 g, and polyoxyethylene styrenated phenyl ether (Daigen Kogyo Seiyaku Co., Ltd. Neugen (registered trademark) EA-157) of HLB = 14.3 is used as a non-ionic surfactant A drug solution of Example 5 was produced in the same manner as Example 2, except that 21.4 g of the diluted active ingredient 70% diluted with water was charged.
After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 30 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(実施例6)
 300mlのスチロール瓶に撹拌子を入れ、純水99.5gを投入した。マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(第一工業製薬(株)製ネオゲン(登録商標)AO-90)1.8gを投入し、完全に溶けきるまで撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)5.3gを投入し、完全に溶けきるまで撹拌した。
 続いて合成例2で製造した水性シリカゾル22.0gを投入し、続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを21.4g投入した後、1時間撹拌して実施例6の薬液を製造した。
 高温耐塩性評価-1に従ってブラインテストサンプル(a)を調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 6)
A stirrer was placed in a 300 ml polystyrene bottle, and 99.5 g of pure water was charged. While stirring with a magnetic stirrer, 1.8 g of an anionic surfactant sodium α-olefin sulfonate (Neogen (registered trademark) AO-90 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was added and stirred until completely dissolved. Subsequently, 5.3 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added and stirred until completely dissolved.
Subsequently, 22.0 g of the aqueous silica sol prepared in Synthesis Example 2 was added, and subsequently, polyoxyethylene styrenated phenyl ether of HLB = 14.3 (non-ionic surfactant, Neugen (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. Neugen (registered 21.4 g of a solution obtained by diluting trade mark EA-157) with pure water to make the active ingredient 70% was charged, and then stirred for 1 hour to produce a drug solution of Example 6.
After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 60 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(実施例7)
 300mlのスチロール瓶に撹拌子を入れ、純水99.6gを投入した。マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(第一工業製薬(株)製ネオゲン(登録商標)AO-90)3.5gを投入し、完全に溶けきるまで撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)3.5gを投入し、完全に溶けきるまで撹拌した。
 続いて合成例3で製造した水性シリカゾル22.0gを投入し、続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを21.4g投入した後、1時間撹拌して実施例7の薬液を製造した。
 高温耐塩性評価-1に従ってブラインテストサンプル(a)を調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 7)
A stirrer was placed in a 300 ml polystyrene bottle, and 99.6 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant α-olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
Subsequently, 22.0 g of the aqueous silica sol prepared in Synthesis Example 3 was added, and subsequently, polyoxyethylene styrenated phenyl ether of HLB = 14.3 (non-ionic surfactant, Neugen (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. Neugen (registered 21.4 g of a solution obtained by diluting EA (trademark) EA-157) with pure water to make the active ingredient 70% was added, and stirred for 1 hour to produce a drug solution of Example 7.
After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 60 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(実施例8)
 300mlのスチロール瓶に撹拌子を入れ、純水99.6gを投入した。マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(第一工業製薬(株)製ネオゲン(登録商標)AO-90)3.5gを投入し、完全に溶けきるまで撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)3.5gを投入し、完全に溶けきるまで撹拌した。
 続いて合成例3で製造した水性シリカゾル22.0gを投入し、続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを21.4g投入した後、1時間撹拌して実施例8の薬液を製造した。
 高温耐塩性評価-2に従ってブラインテストサンプル(b)を調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 8)
A stirrer was placed in a 300 ml polystyrene bottle, and 99.6 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant α-olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
Subsequently, 22.0 g of the aqueous silica sol prepared in Synthesis Example 3 was added, and subsequently, polyoxyethylene styrenated phenyl ether of HLB = 14.3 (non-ionic surfactant, Neugen (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. Neugen (registered 21.4 g of a solution obtained by diluting EA (trademark) EA-157) with pure water to make the active ingredient 70% was added, and stirred for 1 hour to produce a drug solution of Example 8.
After preparing a brine test sample (b) according to the high temperature salt resistance evaluation-2 and holding at 100 ° C. for 60 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(実施例9)
 300mlのスチロール瓶に撹拌子を入れ、純水99.6gを投入した。マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(第一工業製薬(株)製ネオゲン(登録商標)AO-90)3.5gを投入し、完全に溶けきるまで撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)3.5gを投入し、完全に溶けきるまで撹拌した。
 続いて合成例4で製造したシラン化合物で表面処理された水性シリカゾル22.0gを投入し、続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを21.4g投入した後、1時間撹拌して実施例9の薬液を製造した。
 高温耐塩性評価-3に従って海水テストサンプルを調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 9)
A stirrer was placed in a 300 ml polystyrene bottle, and 99.6 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant α-olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
Subsequently, 22.0 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 4 was added, and subsequently, polyoxyethylene styrenated phenyl ether with HLB = 14.3 as a nonionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd. 21.4 g of a product obtained by diluting Neugen (registered trademark) EA-157 manufactured by Co., Ltd. with pure water to make the active ingredient 70% was charged, and then stirred for 1 hour to produce a drug solution of Example 9.
A seawater test sample was prepared according to the high temperature salt resistance evaluation-3 and held at 100 ° C. for 60 hours, then the sample was taken out and the high temperature salt resistance was evaluated.
(実施例10)
 300mlのスチロール瓶に撹拌子を入れ、純水99.6gを投入した。マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(第一工業製薬(株)製ネオゲン(登録商標)AO-90)3.5gを投入し、完全に溶けきるまで撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)3.5gを投入し、完全に溶けきるまで撹拌した。
 続いて合成例3で製造したシラン化合物で表面処理された水性シリカゾル22.0gを投入し、続いて非イオン界面活性剤としてHLB=13.6のポリオキシエチレントリデシルエーテル(第一工業製薬(株)製ノイゲン(登録商標)TDS-90)を15.2g投入した後、1時間撹拌して実施例10の薬液を製造した。
 高温耐塩性評価-1に従ってブラインテストサンプル(a)を調製し、100℃で30時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 10)
A stirrer was placed in a 300 ml polystyrene bottle, and 99.6 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant α-olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
Subsequently, 22.0 g of an aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 3 was added, and subsequently polyoxyethylene tridecyl ether of HLB = 13.6 as a nonionic surfactant (Daiichi Kogyo Seiyaku Co. After adding 15.2 g of Neugen (registered trademark) TDS-90, manufactured by Co., Ltd., the solution was stirred for 1 hour to produce a drug solution of Example 10.
After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 30 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(実施例11)
 300mlのスチロール瓶に撹拌子を入れ、純水99.6gを投入した。マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(第一工業製薬(株)製ネオゲン(登録商標)AO-90)3.5gを投入し、完全に溶けきるまで撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)3.5gを投入し、完全に溶けきるまで撹拌した。
 続いて合成例4で製造したシラン化合物で表面処理された水性シリカゾル22.0gを投入し、続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを21.4g投入した後、1時間撹拌して実施例11の薬液を製造した。
 高温耐塩性評価-2に従ってブラインテストサンプル(b)を調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 11)
A stirrer was placed in a 300 ml polystyrene bottle, and 99.6 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant α-olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
Subsequently, 22.0 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 4 was added, and subsequently, polyoxyethylene styrenated phenyl ether with HLB = 14.3 as a nonionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd. 21.4 g of a product obtained by diluting Neugen (registered trademark) EA-157 manufactured by Co., Ltd. with pure water to make the active ingredient 70% was charged, and then stirred for 1 hour to produce a drug solution of Example 11.
After preparing a brine test sample (b) according to the high temperature salt resistance evaluation-2 and holding at 100 ° C. for 60 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(実施例12)
 300mlのスチロール瓶に撹拌子を入れ、純水48.8gを投入した。マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(第一工業製薬(株)製ネオゲン(登録商標)AO-90)3.5gを投入し、完全に溶けきるまで撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)3.5gを投入し、完全に溶けきるまで撹拌した。
 続いて合成例4で製造したシラン化合物で表面処理された水性シリカゾル72.8gを投入し、続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを21.4g投入した後、1時間撹拌して実施例12の薬液を製造した。
 高温耐塩性評価-3に従って海水テストサンプルを調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 12)
A stirrer was placed in a 300 ml polystyrene bottle, and 48.8 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant α-olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
Subsequently, 72.8 g of the aqueous silica sol surface-treated with the silane compound prepared in Synthesis Example 4 was charged, and subsequently, polyoxyethylene styrenated phenyl ether with HLB = 14.3 as a nonionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd. 21.4 g of a product obtained by diluting Neugen (registered trademark) EA-157 manufactured by Co., Ltd. with pure water to make the active ingredient 70% was charged, and then stirred for 1 hour to produce a drug solution of Example 12.
A seawater test sample was prepared according to the high temperature salt resistance evaluation-3 and held at 100 ° C. for 60 hours, then the sample was taken out and the high temperature salt resistance was evaluated.
(実施例13)
 300mlのスチロール瓶に撹拌子を入れ、純水6.4gと合成例4で製造したシラン化合物で表面処理された水性シリカゾル131.1gを投入しマグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(ライオン・スペシャリティー・ケミカルズ(株)製リポラン(登録商標)LB-440 有効成分36.3%)3.5gを投入し撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)1.3gを投入し、完全に溶けきるまで撹拌した。続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを7.7g投入した後、1時間撹拌して実施例13の薬液を製造した。
 高温耐塩性評価-3に従って海水テストサンプルを調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 13)
A stirrer was placed in a 300 ml polystyrene bottle, and 6.4 g of pure water and 131.1 g of an aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 4 were charged and stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 3.5 g of an anionic surfactant sodium α-olefin sulfonate (Lipan Specialty Chemicals KK Lipoan (registered trademark) LB-440 active ingredient 36.3%) Charged and stirred. Subsequently, 1.3 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added and stirred until completely dissolved. Then, as a nonionic surfactant, HLB = 14.3 polyoxyethylene styrenated phenyl ether (Daigen Kogyo Co., Ltd. Neugen (registered trademark) EA-157) is diluted with pure water and the active ingredient is 70% After charging 7.7 g of the solution, the solution was stirred for 1 hour to produce the drug solution of Example 13.
A seawater test sample was prepared according to the high temperature salt resistance evaluation-3 and held at 100 ° C. for 60 hours, then the sample was taken out and the high temperature salt resistance was evaluated.
(実施例14)
 300mlのスチロール瓶に撹拌子を入れ、純水14.7gと合成例4で製造したシラン化合物で表面処理された水性シリカゾル131.1gを投入しマグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(ライオン・スペシャリティー・ケミカルズ(株)製リポラン(登録商標)LB-440 有効成分36.3%)1.2gを投入し撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)0.45gを投入し、完全に溶けきるまで撹拌した。続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを2.6g投入した後、1時間撹拌して実施例14の薬液を製造した。
 高温耐塩性評価-3に従って海水テストサンプルを調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 14)
A stirrer was placed in a 300 ml styrene bottle, and 14.7 g of pure water and 131.1 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 4 were charged, and stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 1.2 g of an anionic surfactant sodium α-olefin sulfonate (Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%) 1.2 g Charged and stirred. Subsequently, 0.45 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added and stirred until completely dissolved. Then, as a nonionic surfactant, HLB = 14.3 polyoxyethylene styrenated phenyl ether (Daigen Kogyo Co., Ltd. Neugen (registered trademark) EA-157) is diluted with pure water and the active ingredient is 70% The solution was stirred for 1 hour to produce a drug solution of Example 14.
A seawater test sample was prepared according to the high temperature salt resistance evaluation-3 and held at 100 ° C. for 60 hours, then the sample was taken out and the high temperature salt resistance was evaluated.
(実施例15)
 300mlのスチロール瓶に撹拌子を入れ、純水15.5gと合成例4で製造したシラン化合物で表面処理された水性シリカゾル131.1gを投入しマグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(ライオン・スペシャリティー・ケミカルズ(株)製リポラン(登録商標)LB-440 有効成分36.3%)1.2gを投入し撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)0.45gを投入し、完全に溶けきるまで撹拌した。続いて非イオン界面活性剤としてHLB=11.7のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-127)を1.8g投入した後、1時間撹拌して実施例15の薬液を製造した。
 高温耐塩性評価-3に従って海水テストサンプルを調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 15)
A stirrer was placed in a 300 ml polystyrene bottle, and 15.5 g of pure water and 131.1 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 4 were charged, and stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 1.2 g of an anionic surfactant sodium α-olefin sulfonate (Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%) 1.2 g Charged and stirred. Subsequently, 0.45 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added and stirred until completely dissolved. Subsequently, 1.8 g of polyoxyethylene styrenated phenyl ether with HLB = 11.7 (Nuygen (registered trademark) EA-127 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) as a nonionic surfactant was added and then stirred for 1 hour The chemical solution of Example 15 was produced.
A seawater test sample was prepared according to the high temperature salt resistance evaluation-3 and held at 100 ° C. for 60 hours, then the sample was taken out and the high temperature salt resistance was evaluated.
(実施例16)
 300mlのスチロール瓶に撹拌子を入れ、純水14.0gと合成例4で製造したシラン化合物で表面処理された水性シリカゾル131.1gを投入しマグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(ライオン・スペシャリティー・ケミカルズ(株)製リポラン(登録商標)LB-440 有効成分36.3%)1.2gを投入し撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)0.45gを投入し、完全に溶けきるまで撹拌した。続いて非イオン界面活性剤としてHLB=18.7のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-207D、有効成分55%)を3.3g投入した後、1時間撹拌して実施例16の薬液を製造した。
 高温耐塩性評価-3に従って海水テストサンプルを調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 16)
A stirrer was placed in a 300 ml polystyrene bottle, and 14.0 g of pure water and 131.1 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 4 were charged, and stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 1.2 g of an anionic surfactant sodium α-olefin sulfonate (Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%) 1.2 g Charged and stirred. Subsequently, 0.45 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added and stirred until completely dissolved. Subsequently, 3.3 g of polyoxyethylene styrenated phenyl ether having HLB = 18.7 (Nuygen (registered trademark) EA-207D manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., 55% active ingredient) was added as a nonionic surfactant Thereafter, the solution was stirred for 1 hour to produce a drug solution of Example 16.
A seawater test sample was prepared according to the high temperature salt resistance evaluation-3 and held at 100 ° C. for 60 hours, then the sample was taken out and the high temperature salt resistance was evaluated.
(実施例17)
 300mlのスチロール瓶に撹拌子を入れ、純水90.1gを投入した。マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(第一工業製薬(株)製ネオゲン(登録商標)AO-90)3.5gを投入し、完全に溶けきるまで撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)3.5gを投入し、完全に溶けきるまで撹拌した。
 続いて合成例5で製造した水性シリカゾル31.5gを投入し、続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を21.4g投入した後、1時間撹拌して実施例17の薬液を製造した。
 高温耐塩性評価-1に従ってブラインテストサンプル(a)を調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 17)
A stirrer was placed in a 300 ml polystyrene bottle, and 90.1 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant α-olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved.
Subsequently, 31.5 g of the aqueous silica sol produced in Synthesis Example 5 was charged, and subsequently, polyoxyethylene styrenated phenyl ether (HLN = 14.3, manufactured by Daiichi Kogyo Seiyaku Co., Ltd. Neugen (registered trademark) as a nonionic surfactant). After 21.4 g of (trademark) EA-157) was added, the solution was stirred for 1 hour to produce a drug solution of Example 17.
After preparing a brine test sample (a) according to the high temperature salt resistance evaluation-1 and holding it at 100 ° C. for 60 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(実施例18)
  300mlのスチロール瓶に撹拌子を入れ、純水18.4gと合成例6で製造したシラン化合物で表面処理された水性シリカゾル127.4gを投入しマグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(ライオン・スペシャリティー・ケミカルズ(株)製リポラン(登録商標)LB-440 有効成分36.3%)1.2gを投入し撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)0.45gを投入し、完全に溶けきるまで撹拌した。続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを2.6g投入した後、1時間撹拌して実施例18の薬液を製造した。
 高温耐塩性評価-3に従って海水テストサンプルを調製し、100℃で30時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 18)
A stirrer was placed in a 300 ml styrene bottle, and 18.4 g of pure water and 127.4 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 6 were charged and stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 1.2 g of an anionic surfactant sodium α-olefin sulfonate (Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%) 1.2 g Charged and stirred. Subsequently, 0.45 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added and stirred until completely dissolved. Then, as a nonionic surfactant, HLB = 14.3 polyoxyethylene styrenated phenyl ether (Daigen Kogyo Co., Ltd. Neugen (registered trademark) EA-157) is diluted with pure water and the active ingredient is 70% The solution was stirred for 1 hour to produce a drug solution of Example 18.
A seawater test sample was prepared according to the high temperature salt resistance evaluation-3 and kept at 100 ° C. for 30 hours, then the sample was taken out and the high temperature salt resistance was evaluated.
(実施例19)
 300mlのスチロール瓶に撹拌子を入れ、純水15.3gと合成例7で製造したシラン化合物で表面処理された水性シリカゾル130.5gを投入しマグネットスターラーで撹拌した。続いて、マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(ライオン・スペシャリティー・ケミカルズ(株)製リポラン(登録商標)LB-440 有効成分36.3%)1.2gを投入し撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)0.4gを投入し、完全に溶けきるまで撹拌した。続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを2.6g投入した後、1時間撹拌して実施例19の薬液を製造した。
 高温耐塩性評価-3に従って海水テストサンプルを調製し、100℃で30時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 19)
A stirrer was placed in a 300 ml polystyrene bottle, and 15.3 g of pure water and 130.5 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 7 were charged and stirred with a magnetic stirrer. Subsequently, while stirring with a magnetic stirrer, 1.2 g of an anionic surfactant sodium α-olefin sulfonate (Lion Specialty Chemicals Ltd. Lipoan (registered trademark) LB-440 active ingredient 36.3%) 1.2 g Charged and stirred. Subsequently, 0.4 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Rika Co., Ltd.) was added and stirred until completely dissolved. Then, as a nonionic surfactant, HLB = 14.3 polyoxyethylene styrenated phenyl ether (Daigen Kogyo Co., Ltd. Neugen (registered trademark) EA-157) is diluted with pure water and the active ingredient is 70% The solution was stirred for 1 hour to produce a drug solution of Example 19.
A seawater test sample was prepared according to the high temperature salt resistance evaluation-3 and kept at 100 ° C. for 30 hours, then the sample was taken out and the high temperature salt resistance was evaluated.
(実施例20)
 実施例13と同様の手順にて、実施例20の薬液を製造した。
 高温耐塩性評価-4に従って海水テストサンプルを調製し、100℃で75日間(1800時間)保持した後、サンプルを取り出し高温耐塩性を評価した。
Example 20
The drug solution of Example 20 was produced in the same manner as in Example 13.
After preparing a seawater test sample according to the high temperature salt resistance evaluation-4 and holding it at 100 ° C. for 75 days (1800 hours), the sample was taken out and the high temperature salt resistance was evaluated.
(実施例21)
 実施例14と同様の手順にて、実施例21の薬液を製造した。
 高温耐塩性評価-4に従って海水テストサンプルを調製し、100℃で75日間(1800時間)保持した後、サンプルを取り出し高温耐塩性を評価した。
(Example 21)
The chemical solution of Example 21 was manufactured in the same manner as in Example 14.
After preparing a seawater test sample according to the high temperature salt resistance evaluation-4 and holding it at 100 ° C. for 75 days (1800 hours), the sample was taken out and the high temperature salt resistance was evaluated.
(例1)
 合成例2で製造した水性シリカゾルの代わりに、水性シリカゾル(日産化学(株)製スノーテックス(登録商標)ST-O)22.0gを投入した以外は、実施例1と同じ操作で例1の薬液を製造した(シラン化合物を含有せず)。
 高温耐塩性評価-1に従ってブラインテストサンプル(a)を調製し、室温で7日保持した後、サンプルを取り出し耐塩性を評価した。
(Example 1)
The same operation as in Example 1 is carried out in the same manner as in Example 1 except that 22.0 g of aqueous silica sol (Snowtex (registered trademark) ST-O manufactured by Nissan Chemical Industries, Ltd.) is charged instead of the aqueous silica sol produced in Synthesis Example 2. A chemical solution was produced (without containing a silane compound).
A brine test sample (a) was prepared according to High Temperature Salt Tolerance Evaluation-1 and after keeping for 7 days at room temperature, the sample was removed and the salt tolerance was evaluated.
(例2)
 合成例2で製造した水性シリカゾルの代わりに、合成例1で製造した水性シリカゾル22.0gを投入した以外は、実施例1と同じ操作で例2の薬液を製造した(シリカに対するシラン化合物の質量比:0.09)。
 高温耐塩性評価-1に従ってブラインテストサンプル(a)を調製し、室温で7日保持した後、サンプルを取り出し耐塩性を評価した。
(Example 2)
The drug solution of Example 2 was produced by the same operation as Example 1 except that 22.0 g of the aqueous silica sol produced in Synthesis Example 1 was charged instead of the aqueous silica sol produced in Synthesis Example 2 (mass of silane compound relative to silica Ratio: 0.09).
A brine test sample (a) was prepared according to High Temperature Salt Tolerance Evaluation-1 and after keeping for 7 days at room temperature, the sample was removed and the salt tolerance was evaluated.
(例3)
 非イオン界面活性剤としてHLB=13.0のポリオキシエチレンノニルフェニルエーテル(シグマ社製試薬Tergitol(登録商標)NP-9)の投入量を0gとした以外は、実施例1と同じ操作で例3の薬液を製造した(非イオン界面活性剤を含有せず)。
 高温耐塩性評価-1に従ってブラインテストサンプル(a)を調製したが、調製後、直ちに白濁し及び白色ゲルが析出した。
(Example 3)
An example was carried out in the same manner as in Example 1, except that the amount of non-ionic surfactant HLB = 13.0 polyoxyethylene nonylphenyl ether (Sigma Tergitol (registered trademark) NP-9) was changed to 0 g. A drug solution of 3 was produced (without containing a nonionic surfactant).
A brine test sample (a) was prepared according to the high temperature salt resistance evaluation-1, but immediately after preparation, it became cloudy and a white gel precipitated.
(例4)
 非イオン界面活性剤としてHLB=2.7のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-017)を採用し、この投入量を15.0gとした以外は、実施例4と同じ操作で例4を製造した(非イオン界面活性剤のHLB値が低値)。
 調製した薬液は、水性シリカゾルと水溶性アニオン界面活性剤からなる水相と非イオン界面活性剤からなる油相と完全に二層分離した。このため、高温耐塩性の評価はできなかった。
(Example 4)
A polyoxyethylene styrenated phenyl ether (Nichigen (registered trademark) EA-017 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) of HLB = 2.7 was adopted as a non-ionic surfactant, and the amount of addition was 15.0 g. Example 4 was manufactured in the same operation as Example 4 (except that the HLB value of the nonionic surfactant is low) except for the above.
The prepared drug solution was completely separated into two layers from an aqueous phase consisting of an aqueous silica sol and a water-soluble anionic surfactant and an oil phase consisting of a nonionic surfactant. For this reason, high temperature salt tolerance could not be evaluated.
(比較例1)
 300mlのスチロール瓶に撹拌子を入れ、純水99.6gを投入した。マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(第一工業製薬(株)製ネオゲン(登録商標)AO-90)6.8gを投入し、完全に溶けきるまで撹拌した。
 続いて合成例3で製造した水性シリカゾル22.0gを投入し、続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを21.4g投入した後、1時間撹拌して比較例1の薬液を製造した(アニオン界面活性剤を1種のみ含有)。
 高温耐塩性評価-2に従ってブラインテストサンプル(b)を調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Comparative example 1)
A stirrer was placed in a 300 ml polystyrene bottle, and 99.6 g of pure water was charged. While stirring with a magnetic stirrer, 6.8 g of the anionic surfactant α-olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was charged, and stirred until completely dissolved.
Subsequently, 22.0 g of the aqueous silica sol prepared in Synthesis Example 3 was added, and subsequently, polyoxyethylene styrenated phenyl ether of HLB = 14.3 (non-ionic surfactant, Neugen (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. Neugen (registered (Trademark) EA-157) was diluted with pure water to give 21.4 g of active ingredient 70%, and then stirred for 1 hour to produce a drug solution of Comparative Example 1 (only one type of anionic surfactant) Contained).
After preparing a brine test sample (b) according to the high temperature salt resistance evaluation-2 and holding at 100 ° C. for 60 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(比較例2)
 300mlのスチロール瓶に撹拌子を入れ、純水99.6gを投入した。マグネットスターラーで撹拌しながら、アニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)6.8gを投入し、完全に溶けきるまで撹拌した。
 続いて合成例3で製造した水性シリカゾル22.0gを投入し、続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを21.4g投入した後、1時間撹拌して比較例2の薬液を製造した(アニオン界面活性剤を1種のみ含有)。
 高温耐塩性評価-2に従ってブラインテストサンプル(b)を調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Comparative example 2)
A stirrer was placed in a 300 ml polystyrene bottle, and 99.6 g of pure water was charged. While stirring with a magnetic stirrer, 6.8 g of an anionic surfactant sodium dodecyl sulfate (Shinline Rika Co., Ltd. Shinoline (registered trademark) 90TK-T) was added and stirred until completely dissolved.
Subsequently, 22.0 g of the aqueous silica sol prepared in Synthesis Example 3 was added, and subsequently, polyoxyethylene styrenated phenyl ether of HLB = 14.3 (non-ionic surfactant, Neugen (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. Neugen (registered 21.4 g of a 70% active ingredient diluted with pure water (trademark EA-157) was added, and stirred for 1 hour to produce a drug solution of Comparative Example 2 (only one type of anionic surfactant). Contained).
After preparing a brine test sample (b) according to the high temperature salt resistance evaluation-2 and holding at 100 ° C. for 60 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(比較例3)
 300mlのスチロール瓶に撹拌子を入れ、純水128.0gを投入した。マグネットスターラーで撹拌しながら、合成例4で製造したシラン化合物で表面処理された水性シリカゾル22.0gを投入した後、1時間撹拌して比較例3の薬液を製造した(シラン・シリカのみ含有、界面活性剤を含有せず)。
 高温耐塩性評価-2に従ってブラインテストサンプル(b)を調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Comparative example 3)
A stirrer was placed in a 300 ml polystyrene bottle, and 128.0 g of pure water was charged. After adding 22.0 g of the aqueous silica sol surface-treated with the silane compound produced in Synthesis Example 4 while stirring with a magnetic stirrer, the solution of Comparative Example 3 was produced by stirring for 1 hour (containing only silane and silica, No surfactant)).
After preparing a brine test sample (b) according to the high temperature salt resistance evaluation-2 and holding at 100 ° C. for 60 hours, the sample was taken out and the high temperature salt resistance was evaluated.
(比較例4)
 300mlのスチロール瓶に撹拌子を入れ、純水121.6gを投入した。マグネットスターラーで撹拌しながら、アニオン界面活性剤α-オレフィンスルホン酸ナトリウム(第一工業製薬(株)製ネオゲン(登録商標)AO-90)3.5gを投入し、完全に溶けきるまで撹拌した。続いてアニオン界面活性剤ドデシル硫酸ナトリウム(新日本理化(株)製シノリン(登録商標)90TK-T)3.5gを投入し、完全に溶けきるまで撹拌した。続いて非イオン界面活性剤としてHLB=14.3のポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬(株)製ノイゲン(登録商標)EA-157)を純水で希釈して有効成分70%にしたものを21.4g投入した後、1時間撹拌して比較例4の薬液を製造した(界面活性剤のみを含有、シリカ・シラン無添加)。
 高温耐塩性評価-2に従ってブラインテストサンプル(b)を調製し、100℃で60時間保持した後、サンプルを取り出し高温耐塩性を評価した。
(Comparative example 4)
A stirrer was placed in a 300 ml polystyrene bottle, and 121.6 g of pure water was charged. While stirring with a magnetic stirrer, 3.5 g of an anionic surfactant α-olefin sulfonate sodium (Daigen Kogyo Seiyaku Co., Ltd. Neogen (registered trademark) AO-90) was added and stirred until completely dissolved. Subsequently, 3.5 g of an anionic surfactant sodium dodecyl sulfate (Shinolin (registered trademark) 90TK-T, manufactured by Shin Nippon Chemical Co., Ltd.) was added, and the mixture was stirred until completely dissolved. Then, as a nonionic surfactant, HLB = 14.3 polyoxyethylene styrenated phenyl ether (Daigen Kogyo Co., Ltd. Neugen (registered trademark) EA-157) is diluted with pure water and the active ingredient is 70% After charging 21.4 g of the solution, the solution was stirred for 1 hour to produce a chemical solution of Comparative Example 4 (containing only a surfactant, no addition of silica and silane).
After preparing a brine test sample (b) according to the high temperature salt resistance evaluation-2 and holding at 100 ° C. for 60 hours, the sample was taken out and the high temperature salt resistance was evaluated.
 表1に実施例の高温耐塩性試験結果を、表2に比較例の高温耐塩性試験結果を示す。
なお表中のアニオン界面活性剤及び非イオン界面活性剤の種類(符号)は以下を表す。
<アニオン界面活性剤>
・AOS:α-オレフィンスルホン酸ナトリウム「ネオゲン(登録商標)AO-90」、有効成分98.0%、第一工業製薬(株)
・AOS:α-オレフィンスルホン酸ナトリウム「リポラン(登録商標)LB-440」、有効成分36.3%、ライオン・スペシャリティー・ケミカルズ(株)
・SDS:ドデシル硫酸ナトリウム「シノリン(登録商標)90TK-T」、有効成分96.0%、新日本理化(株)
<非イオン界面活性剤>
・NP-9:ポリオキシエチレンノニルフェニルエーテル「Tergitol(登録商標) NP-9」、有効成分100%、シグマ社
・EA-017:ポリオキシエチレンスチレン化フェニルエーテル「ノイゲン(登録商標)EA-017」、有効成分100%、第一工業製薬(株)
・EA-127:ポリオキシエチレンスチレン化フェニルエーテル「ノイゲン(登録商標)EA-127」、有効成分100%、第一工業製薬(株)
・EA-137:ポリオキシエチレンスチレン化フェニルエーテル「ノイゲン(登録商標)EA-137」、有効成分100%、第一工業製薬(株)
・EA-157:ポリオキシエチレンスチレン化フェニルエーテル「ノイゲン(登録商標)EA-157」、有効成分100%、第一工業製薬(株)
・EA-207D:ポリオキシエチレンスチレン化フェニルエーテル「ノイゲン(登録商標)EA-207D」、有効成分55%、第一工業製薬(株)
・TDS-90:ポリオキシエチレントリデシルエーテル「ノイゲン(登録商標)TDS-90」、有効成分100%、第一工業製薬(株)
Table 1 shows the results of the high temperature salt resistance test of the example, and Table 2 shows the results of the high temperature salt resistance test of the comparative example.
In addition, the kind (code | symbol) of the anionic surfactant in a table | surface and a nonionic surfactant represents the following.
<Anionic surfactant>
AOS: sodium α-olefin sulfonate "Neogen (registered trademark) AO-90", 98.0% active ingredient, Daiichi Kogyo Seiyaku Co., Ltd.
AOS: sodium α-olefin sulfonate “Lipolan® LB-440”, 36.3% of active ingredient, Lion Specialty Chemicals Co., Ltd.
・ SDS: Sodium dodecyl sulfate "Sinoline (registered trademark) 90TK-T", 96.0% of active ingredient, Shin Nippon Chemical Co., Ltd.
<Nonionic surfactant>
-NP-9: polyoxyethylene nonyl phenyl ether "Tergitol (registered trademark) NP-9", active ingredient 100%, Sigma company-EA-017: polyoxyethylene styrenated phenyl ether "Neugen (registered trademark) EA-017 , 100% active ingredient, Daiichi Kogyo Seiyaku Co., Ltd.
EA-127: Polyoxyethylene styrenated phenyl ether "Nuygen (registered trademark) EA-127", 100% active ingredient, Daiichi Kogyo Seiyaku Co., Ltd.
EA-137: polyoxyethylene styrenated phenyl ether "Nuygen (registered trademark) EA-137", active ingredient 100%, Daiichi Kogyo Seiyaku Co., Ltd.
EA-157: polyoxyethylene styrenated phenyl ether "Nuygen (registered trademark) EA-157", active ingredient 100%, Daiichi Kogyo Seiyaku Co., Ltd.
-EA-207D: polyoxyethylene styrenated phenyl ether "Nuygen (registered trademark) EA-207D", 55% of active ingredient, Daiichi Kogyo Seiyaku Co., Ltd.
TDS-90: polyoxyethylene tridecyl ether "Nuygen (registered trademark) TDS-90", 100% active ingredient, Daiichi Kogyo Seiyaku Co., Ltd.
[原油回収性評価-1]
 実施例8、例1、比較例3及び比較例4の原油回収用薬液を用い、原油代替品(n-デカン)とベレア砂岩を用いて、地下油層を想定した原油回収評価を実施した。
 なお、実施例8、例1及び比較例3の原油回収用薬液は、3質量%塩化ナトリウム水溶液でシリカ濃度1.0質量になるように調整し、これを原油回収性能評価用サンプルとした。また比較例4の薬液は、薬液100gと3質量%塩化ナトリウム水溶液200gを混合した原油回収性評価用サンプルとした。
 原油代替品としては、n-デカン(ナカライテスク(株)製)を赤色油性顔料(藍熊染料(株)製オイルスカーレット)で染色した油を使用した。
 ベレア砂岩試料として、60℃で1日乾燥させた、浸透率約150mD、孔隙量約5ml、長さ1.5インチ及び直径1インチの試料を用いた。
[Crude oil recovery evaluation-1]
Using the crude oil recovery chemical solutions of Example 8, Example 1, Comparative Example 3 and Comparative Example 4 and using a crude oil substitute (n-decane) and a berea sandstone, a crude oil recovery evaluation was performed on the assumption of the underground oil layer.
In addition, the chemical | medical solution for crude oil recovery of Example 8, Example 1 and Comparative Example 3 was adjusted so that it might become 1.0 mass of silica concentration with 3 mass% sodium chloride aqueous solution, and this was made into the sample for crude oil recovery performance evaluation. Moreover, the chemical | medical solution of the comparative example 4 was used as the sample for crude oil collectability evaluation which mixed 100 g of chemical | medical solutions and 200 g of 3 mass% sodium chloride aqueous solution.
As a crude oil substitute, an oil obtained by dyeing n-decane (manufactured by Nacalai Tesque, Inc.) with a red oil-based pigment (manufactured by Inaguma Dye Co., Ltd., oil scarlet) was used.
As a Berea sandstone sample, a sample having a permeability of about 150 mD, a pore volume of about 5 ml, a length of 1.5 inches and a diameter of 1 inch, dried at 60 ° C. for 1 day was used.
 真空容器内でベレア砂岩試料を3質量%塩化ナトリウム水溶液の塩水に浸漬し、真空ポンプを用いて容器内を減圧することでベレア砂岩試料を塩水で飽和させた後、ベレア砂岩試料を取り出し、重量法で塩水飽和量を求めた。
 塩水で飽和させたベレア砂岩試料を、掃攻法油回収装置SRP-350(Vinci社製)のコアホルダにセットした。コアホルダの温度を60℃まで昇温した後、油圧ポンプを用いてベレア砂岩試料に2000psiの側圧かけながら原油代替品(赤色着色したn-デカン)をベレア砂岩試料に圧入した後、ベレア砂岩試料をコアホルダから取り出して重量法で油飽和量を求めた。
 油飽和させたベレア砂岩試料を掃攻法油回収装置SRP-350のコアホルダに再度セットした後に、3質量%塩化ナトリウム水溶液の塩水を流量2ml/分でベレア砂岩試料に圧入し、排出されたn-デカンの容積から塩水掃攻された油回収率を求めた。
 続いて上記の通りに調製した実施例又は比較例の原油回収性能評価用サンプルを、流量2ml/分でベレア砂岩試料に圧入し、排出されたn-デカンの容積から薬液掃攻された油回収率を求めた。
The Berea sandstone sample is saturated with salt water by immersing the Berea sandstone sample in 3% by mass sodium chloride aqueous solution in a vacuum vessel and depressurizing the inside of the vessel using a vacuum pump, then the Berea sandstone sample is taken out and weighed The saltwater saturation was determined by the method.
A brine saturated Berea sandstone sample was set in the core holder of a sweeping oil recovery unit SRP-350 (manufactured by Vinci). After raising the temperature of the core holder to 60 ° C, a crude oil substitute (red-colored n-decane) was injected into the berea sandstone sample while side pressure of 2000 psi was applied to the berea sandstone sample using a hydraulic pump, and then the berea sandstone sample was used It removed from the core holder and the amount of oil saturation was calculated | required by the weight method.
After setting the oil-saturated Berea sandstone sample again in the core holder of the sweeping method oil recovery unit SRP-350, brine of 3% by mass sodium chloride aqueous solution was injected into the Berea sandstone sample at a flow rate of 2 ml / min and discharged n From the volume of decane, the rate of recovery of salted water was determined.
Subsequently, the sample for crude oil recovery performance evaluation of the example or the comparative example prepared as described above is pressed into a berea sandstone sample at a flow rate of 2 ml / min, and the oil recovery swept away by chemical solution from the discharged n-decane volume The rate was determined.
[原油回収性評価-2]
 実施例13、実施例14、実施例15、実施例16、及び比較例3の原油回収用薬液を用い、原油代替品(パラフィンオイル)とベレア砂岩を用いて、海底油層を想定した原油回収評価を実施した。
 なお、実施例13、実施例14、実施例15、実施例16、及び比較例3の原油回収用薬液は、<高温耐塩性評価-3>で調製した人工海水でシリカ濃度1.0質量になるように調整し、これを原油回収性能評価用サンプルとした。
 原油代替品としては、原油を精製したパラフィンオイル((昭和シェル石油(株)製オンジナオイル-15)を赤色油性顔料(藍熊染料(株)製オイルスカーレット)で染色した油を使用した。
 ベレア砂岩試料として、60℃で1日乾燥させた、浸透率約150mD、孔隙量約5ml、長さ1.5インチ及び直径1インチのベレア砂岩試料を用いた。
[Crude oil recovery evaluation-2]
Crude oil recovery evaluation assuming a seabed oil layer using crude oil substitutes (paraffin oil) and Berea sandstone using the crude oil recovery chemical solutions of Example 13, Example 14, Example 15, Example 16 and Comparative Example 3 Carried out.
In addition, the chemical | medical solution for crude oil recovery of Example 13, Example 14, Example 15, Example 16, and the comparative example 3 is 1.0 mass of silica concentration with the artificial seawater prepared by <high-temperature salt-resistance evaluation -3>. The crude oil was adjusted to be used as a sample for crude oil recovery performance evaluation.
As a crude oil substitute, an oil obtained by staining a crude oil with a paraffin oil ((Showa Shell Petroleum Co., Ltd. Ondina Oil-15) dyed with a red oily pigment (Ashikuma Dyes Inc. oil scarlet) was used.
As a Berea sandstone sample, a Berea sandstone sample dried at 60 ° C. for 1 day and having a permeability of about 150 mD, a pore volume of about 5 ml, a length of 1.5 inches and a diameter of 1 inch was used.
 真空容器内でベレア砂岩試料を<高温耐塩性評価-3>で調製した人工海水を塩水として浸漬し、真空ポンプを用いて容器内を減圧することでベレア砂岩試料を塩水(人工海水)で飽和させた後、ベレア砂岩試料を取り出し、重量法で塩水飽和量を求めた。
 塩水(人工海水)で飽和させたベレア砂岩試料を掃攻法油回収装置SRP-350(Vinci社製)のコアホルダにセットした。コアホルダの温度を60℃まで昇温した後、油圧ポンプを用いてベレア砂岩試料に2000psiの側圧をかけながら原油代替品(赤色着色したパラフィンオイル)をベレア砂岩試料に圧入した後、ベレア砂岩試料をコアホルダから取り出して重量法で油飽和量を求めた。
 油飽和させたベレア砂岩試料を掃攻法油回収装置SRP-350のコアホルダに再度セットした後に、<高温耐塩性評価-3>で調製した人工海水を流量2ml/分でベレア砂岩試料に圧入し、排出されたパラフィンオイルの容積から塩水掃攻された油回収率を求めた。
 続いて上記の通りに調製した実施例又は比較例の原油回収性能評価用サンプルを、流量2ml/分でベレア砂岩試料に圧入し、排出されたパラフィンオイルの容積から薬液掃攻された油回収率を求めた。
Immerse artificial seawater prepared by <High temperature salt resistance evaluation -3> as salt water in a vacuum vessel as <salt water> and use a vacuum pump to depressurize the vessel to saturate the berea sandstone sample with salt water (artificial seawater) Then, a sample of Berea sandstone was taken out and the saltwater saturation was determined by weight method.
A Berea sandstone sample saturated with salt water (artificial seawater) was set in the core holder of a sweeping oil recovery apparatus SRP-350 (manufactured by Vinci). After raising the temperature of the core holder to 60 ° C, a crude oil substitute (red-colored paraffin oil) is injected into the berea sandstone sample while applying a lateral pressure of 2000 psi to the berea sandstone sample using a hydraulic pump, and then the berea sandstone sample is removed It removed from the core holder and the amount of oil saturation was calculated | required by the weight method.
After re-setting the oil-saturated Berea sandstone sample in the core holder of the sweeping oil recovery unit SRP-350, artificial seawater prepared in <High-temperature salt resistance evaluation-3> is injected into the berea sandstone sample at a flow rate of 2 ml / min. From the volume of paraffin oil discharged, the recovery rate of salted water was determined.
Subsequently, the sample for crude oil recovery performance evaluation of the example or the comparative example prepared as described above is pressed into a berea sandstone sample at a flow rate of 2 ml / min, and the oil recovery rate swept by chemical solution from the volume of the drained paraffin oil I asked for.
 表3(表3-1、表3-2)に、実施例及び比較例の油回収率の結果を示す。 Table 3 (Table 3-1, Table 3-2) shows the results of the oil recovery rates of the examples and comparative examples.
<表面張力評価>
 本発明の原油回収用薬液は、原油回収のEOR攻法のうち界面活性剤攻法に適した薬液である。本発明の原油回収用薬液は界面活性剤を含有しているため、油層内で水-油界面張力を低下させ、水による油の置換効率を向上させることにより原油の増進回収効果が期待できる。
 原油を増進回収する際、薬液を希釈して地下又は海底油層に圧入することが一般的である。このとき、希釈には安価な海水を使用されることが多い。
 そこで、実使用場面に近い条件として、実施例5、実施例6、実施例7、実施例11、実施例13、及び実施例14で調製した、各高温耐塩性評価サンプルの表面張力を測定した。
 また比較として、純水、<高温耐塩性評価-3>で調製した比較例3、人工海水、及び塩濃度4質量%の塩水(塩化ナトリウム濃度3.2質量%、塩化カルシウム濃度0.8質量%の塩水)の表面張力を測定した。
 表4に表面張力の測定結果を示す。
<Surface tension evaluation>
The chemical solution for crude oil recovery of the present invention is a chemical solution suitable for surfactant attack in the EOR attack of crude oil recovery. Since the chemical solution for crude oil recovery of the present invention contains a surfactant, the effect of enhanced recovery of crude oil can be expected by reducing the water-oil interfacial tension in the oil layer and improving the replacement efficiency of oil with water.
When the crude oil is to be enhanced and recovered, it is common to dilute the chemical solution and inject it into the underground or submarine oil reservoir. At this time, inexpensive seawater is often used for dilution.
Therefore, the surface tension of each of the high-temperature salt resistance evaluation samples prepared in Example 5, Example 6, Example 7, Example 11, Example 13, and Example 14 was measured as conditions close to actual use situations. .
In addition, as a comparison, Comparative Example 3 prepared with pure water, <high-temperature salt resistance evaluation -3>, artificial seawater, and salt water having a salt concentration of 4% by mass (sodium chloride concentration 3.2% by mass, calcium chloride concentration 0.8% Surface tension was measured.
Table 4 shows the measurement results of surface tension.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1(表1-1、表1-2)に示すように、実施例1~実施例12及び実施例17のpHが7以上12未満の薬液、実施例13~実施例16、実施例18~実施例21のpHが2以上7未満の薬液は、いずれも塩水中で100℃で長時間加熱した後においても層分離やゲル化が観察されなかった。また試料中の水性シリカゾル(シリカ粒子)のDLS平均粒子径についても、薬液のDLS平均粒子径に対する高温耐塩性試験後のDLS平均粒子径の比が1.3以下であり、特に実施例2、実施例4~実施例14、実施例16~21の薬液はいずれも上記比が1.1以下であり、シリカゾルの変質がなく、安定であり、高温耐塩性に優れた薬液であることが確認された。
 実施例20及び実施例21は、100℃で1800時間(75日)後のいずれも薬液のDLS平均粒子径に対する高温耐塩性試験後のDLS平均粒子径の比が1.0であり、シリカゾルの変質はなく、安定であり高温耐塩性に非常に優れた薬液である事が確認された。
As shown in Table 1 (Table 1-1, Table 1-2), the chemical solutions of Examples 1 to 12 and 17 and having a pH of 7 or more and less than 12; Examples 13 to 16; and Example 18 In the chemical solutions of Example 21 having a pH of 2 or more and less than 7, any layer separation or gelation was not observed even after heating for a long time at 100 ° C. in brine. Further, as to the DLS average particle size of the aqueous silica sol (silica particles) in the sample, the ratio of the DLS average particle size after the high temperature salt resistance test to the DLS average particle size of the chemical solution is 1.3 or less. The chemical solutions of Examples 4 to 14 and Examples 16 to 21 all have the above ratio of 1.1 or less, and it is confirmed that the chemical is stable without causing deterioration of the silica sol and is excellent in high-temperature salt resistance. It was done.
In Example 20 and Example 21, the ratio of the DLS average particle diameter after the high temperature salt resistance test to the DLS average particle diameter of the chemical solution is 1.0 in all after 1800 hours (75 days) at 100 ° C. It was confirmed that the chemical was stable and had a high temperature and high salt resistance without deterioration.
 一方、表2に示すように、シラン化合物を含有しない水性シリカゾルを使用した例1の薬液は、高温耐塩性評価試験の実施前に、高温耐塩性評価サンプルを調製した段階において既にDLS平均粒子径が大きくなり凝集し、室温(常温)下の7日後で白色ゲルが生成し、耐塩性が非常に悪い結果となった。
 また、水性シリカゾル中のシリカに対してシラン化合物の質量比が0.1未満となる水性シリカゾルを使用した例2の薬液においても、<高温耐塩性評価-1>後に白濁し、直ぐに固液分離が生じ、室温(常温)下の7日後で白色ゲルが多量に生成し、耐塩性が非常に悪い結果となった。
 さらに、非イオン界面活性剤を含有しない例3の薬液は、高温耐塩性評価サンプルの調製後に直ちに白濁して白濁ゲルが析出し(DLS平均粒子径:2768nmを観測)、高温耐塩性評価を実施できず、室温(常温)でも耐塩性が非常に悪いとする結果となった。
 また、HLB値が3未満の非イオン界面活性剤を使用した例4の薬液は、非イオン界面活性剤の疎水性が強いために、薬液の調製段階で水と油の2層分離し、高温耐塩性評価サンプルの調製に至らず、高温耐塩性評価はできなかった。
 そしてアニオン界面活性剤を1種のみの含有とした比較例1及び比較例2の薬液は、<耐塩性評価-1>後にいずれも白色ゲルが生成し、高温耐塩性が悪いとする結果となった。本発明に従う上記実施例1~21の薬液にあっては、アニオン界面活性剤を2種以上の配合とすることにより、パッキング効果が向上し安定化を実現してものと考えられる。
On the other hand, as shown in Table 2, the chemical solution of Example 1 using the aqueous silica sol containing no silane compound already had the DLS average particle size at the stage of preparing the high temperature salt resistance evaluation sample before the high temperature salt resistance evaluation test. Became large and aggregated, and a white gel was formed after 7 days at room temperature (normal temperature), resulting in very poor salt resistance.
Also in the chemical solution of Example 2 using an aqueous silica sol in which the mass ratio of the silane compound to the silica in the aqueous silica sol is less than 0.1, white turbidity occurs after <high-temperature salt resistance evaluation-1> and solid-liquid separation occurs immediately. And after 7 days at room temperature (normal temperature), a large amount of white gel was formed, resulting in very poor salt resistance.
Furthermore, the chemical solution of Example 3, which does not contain a nonionic surfactant, is immediately whitened after preparation of the high temperature salt resistance evaluation sample and a white cloudy gel precipitates (DLS average particle diameter: 2768 nm observed), and high temperature salt resistance evaluation is performed. It could not be done, and the result was that the salt resistance was very bad even at room temperature (normal temperature).
Also, the drug solution of Example 4 using a nonionic surfactant having an HLB value of less than 3 separates two layers of water and oil at the preparation stage of the drug solution, because the hydrophobicity of the nonionic surfactant is strong. It did not lead to preparation of a salt tolerance evaluation sample, and high temperature salt tolerance evaluation was not able to be performed.
And, in the chemical solutions of Comparative Examples 1 and 2 in which only one type of anionic surfactant is contained, a white gel is formed after <salt resistance evaluation-1>, and the result is that the high temperature salt resistance is bad. The In the chemical solutions of the above Examples 1 to 21 according to the present invention, it is considered that the packing effect is improved and stabilization is realized by blending two or more kinds of anionic surfactants.
 また表3(表3-1、表3-2)に示すように、薬液の油回収率(薬液掃攻の油回収率)に関して、実施例8、実施例13、実施例14、実施例15及び実施例16の薬液は、原油代替品であるn-デカン及びパラフィンオイルで高い油回収率が得られた。
 一方、シラン化合物で表面処理をした水性シリカゾルのみを含む(界面活性剤無添加)比較例3の薬液は、表2に示すように高温耐塩性は良好であったが、表3(表3-1、表3-2)に示すように、油回収率は実施例8(n-デカン)、又は、実施例13、実施例14、実施例15及び実施例16(パラフィンオイル)のいずれに対してもかなり低いものとなった。
 また水性シリカゾルを含有せず界面活性剤のみを含む比較例4の薬液は、表2に示すように高温耐塩性は良好であったが、表3(表3-1)に示すように[原油回収性評価-1]の回収液は乳化が激しく、油と水の分離が困難であり、実質的に油回収はできないとする結果となった。
 さらに、シラン化合物で表面処理していない水性シリカゾルを含む例1の薬液は、[原油回収性評価-1]の評価において、薬液掃攻を開始して直ぐに油圧ポンプの圧力が上昇し、これ以上薬液を圧入できなかった。これは薬液が凝集し、ベレア砂岩内で閉塞が生じたためと考えられる。
In addition, as shown in Table 3 (Table 3-1, Table 3-2), with regard to the oil recovery rate of the chemical solution (the oil recovery rate of the chemical solution sweeping), Example 8, Example 13, Example 14, Example 15 And the chemical solution of Example 16 obtained high oil recovery with crude oil substitute n-decane and paraffin oil.
On the other hand, the chemical solution of Comparative Example 3 containing only an aqueous silica sol surface-treated with a silane compound (surfactant-free addition) had good high-temperature salt resistance as shown in Table 2; 1, as shown in Table 3-2), the oil recovery rate is relative to any of Example 8 (n-decane) or Example 13, Example 14, Example 15 and Example 16 (paraffin oil) But it was quite low.
Further, the chemical solution of Comparative Example 4 containing only the surfactant without containing the aqueous silica sol had good high-temperature salt resistance as shown in Table 2, but as shown in Table 3 (Table 3-1) [Crude oil The recovered liquid of Evaluation of Recoverability-1] was highly emulsified, and it was difficult to separate oil and water, resulting in that oil recovery could not be substantially performed.
Furthermore, the chemical solution of Example 1 containing an aqueous silica sol which has not been surface-treated with a silane compound causes the pressure of the hydraulic pump to rise immediately after starting chemical solution sweep in the evaluation of [Crude oil recovery evaluation 1]. The drug solution could not be injected. It is considered that this is because the chemical solution is coagulated and clogging occurs in the Berea sandstone.
 以上の結果より、本発明の原油回収用薬液は、高温耐塩性に優れ、しかも油回収率が優れた高性能の原油回収用薬液であることが確認された。 From the above results, it was confirmed that the chemical solution for crude oil recovery of the present invention is a high-performance chemical solution for crude oil recovery, which is excellent in high-temperature salt resistance and excellent in oil recovery rate.
 また表4に示すように、実施例5~実施例7、実施例11、実施例13及び実施例14は、いずれも界面活性剤の添加効果により、純水、人工海水及び塩濃度4質量%の塩水(塩化ナトリウム濃度3.2質量%、塩化カルシウム濃度0.8質量%の塩水)、更には比較例3の薬液よりも表面張力が低くなった。このため、油層内で水-油界面張力が低下し、水による油の置換効率が向上し、原油の増進回収効果が期待できる結果となった。 Further, as shown in Table 4, Examples 5 to 7, Example 11, Example 13 and Example 14 were all pure water, artificial seawater, and 4 mass% salt concentration due to the addition effect of the surfactant. The surface tension was lower than that of the above-mentioned saline solution (sodium chloride concentration: 3.2 mass%, calcium chloride concentration: 0.8 mass%) and the chemical solution of Comparative Example 3. As a result, the water-oil interfacial tension decreases in the oil reservoir, the efficiency of oil substitution by water improves, and the effect of enhanced recovery of crude oil can be expected.

Claims (14)

  1. シラン化合物と、平均粒子径が3~200nmの水性シリカゾルと、2種以上のアニオン界面活性剤と、1種以上の非イオン界面活性剤を含有することを特徴とする、高温耐塩性に優れた原油回収用薬液。 Excellent in high-temperature salt resistance, characterized by containing a silane compound, an aqueous silica sol having an average particle size of 3 to 200 nm, two or more anionic surfactants, and one or more nonionic surfactants. Chemical recovery for crude oil.
  2. 前記水性シリカゾルは、該ゾル中のシリカ粒子の少なくとも一部の表面に、前記シラン化合物の少なくとも一部が結合してなるシリカ粒子を含む、請求項1に記載の高温耐塩性に優れた原油回収用薬液。 The high temperature salt resistant crude oil recovery according to claim 1, wherein the aqueous silica sol comprises silica particles in which at least a portion of the silane compound is bonded to the surface of at least a portion of the silica particles in the sol. Chemical solution.
  3. 前記シラン化合物が、ビニル基、エーテル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基及びイソシアヌレート基からなる群から選択される少なくとも一種の有機官能基を有するシランカップリング剤、アルコキシシラン、シラザン及びシロキサンからなる群から選択される少なくとも一種の化合物である、請求項1又は請求項2に記載の高温耐塩性に優れた原油回収用薬液。 Silane coupling agent having at least one organic functional group selected from the group consisting of vinyl group, ether group, epoxy group, epoxy group, styryl group, methacrylic group, acrylic group, amino group and isocyanurate group, alkoxy group, alkoxy group The chemical | medical solution for crude oil recovery excellent in the high-temperature salt tolerance according to claim 1 or 2, which is at least one compound selected from the group consisting of silane, silazane and siloxane.
  4. 前記水性シリカゾルが、シリカ固形分換算にて、原油回収用薬液の全質量を基準として、0.01質量%~30質量%にて含有されてなる、請求項1乃至請求項3のうち何れか一項に記載の高温耐塩性に優れた原油回収用薬液。 The aqueous silica sol according to any one of claims 1 to 3, wherein the aqueous silica sol is contained in an amount of 0.01% by mass to 30% by mass based on the total mass of the crude oil recovery chemical solution in terms of solid content of silica. A crude oil recovery chemical solution excellent in high-temperature salt resistance according to one aspect.
  5. 前記シラン化合物が、水性シリカゾルのシリカ固形分の質量に対する、シラン化合物の質量の比が0.1~10.0となる割合にて、含有されてなる、請求項1乃至請求項4のうち何れか一項に記載の高温耐塩性に優れた原油回収用薬液。 The method according to any one of claims 1 to 4, wherein the silane compound is contained in a ratio such that the ratio of the mass of the silane compound to the mass of the silica solid content of the aqueous silica sol is 0.1 to 10.0. The chemical | medical solution for crude oil recovery excellent in the high temperature salt tolerance as described in any one of-.
  6. 前記アニオン界面活性剤が、脂肪酸のナトリウム塩又はカリウム塩、アルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸塩、α-スルホ脂肪酸エステル、α-オレフィンスルホン酸塩、モノアルキルリン酸エステル塩、及びアルカンスルホン酸塩からなる群から選ばれる、
    請求項1乃至請求項5のうち何れか一項に記載の高温耐塩性に優れた原油回収用薬液。
    The said anionic surfactant is a sodium salt or potassium salt of fatty acid, alkyl benzene sulfonate, higher alcohol sulfate, polyoxyethylene alkyl ether sulfate, α-sulfo fatty acid ester, α-olefin sulfonate, monoalkyl phosphorus Selected from the group consisting of acid ester salts and alkane sulfonates,
    The chemical | medical solution for crude oil recovery excellent in the high temperature salt tolerance as described in any one of Claims 1 thru | or 5.
  7. 前記アニオン界面活性剤が、原油回収用薬液の全質量を基準として、0.001質量%~20質量%にて含有されてなる、請求項1乃至請求項6のうち何れか一項に記載の高温耐塩性に優れた原油回収用薬液。 The said anionic surfactant is contained by 0.001 mass%-20 mass% on the basis of the total mass of the chemical | medical solution for crude oil collection | recovery, It is described in any one of Claim 1 thru | or 6 A crude oil recovery chemical with excellent high temperature salt resistance.
  8. 前記アニオン界面活性剤が、前記原油回収用薬液のシリカ固形分に対して、質量比として0.4以上5.0未満となる割合にて含有され、かつ、原油回収用薬液が7以上12未満のpHを有する、請求項1乃至請求項7のうち何れか一項に高温耐塩性に優れた原油回収用薬液。 The anionic surfactant is contained at a ratio of 0.4 or more and less than 5.0 as a mass ratio with respect to the silica solid content of the chemical solution for crude oil recovery, and the chemical solution for crude oil recovery is 7 or more and less than 12 The chemical | medical solution for crude oil recovery excellent in high-temperature salt tolerance in any one of the Claims 1 thru | or 7 which have pH of these.
  9. 前記アニオン界面活性剤が、前記原油回収用薬液のシリカ固形分に対して、質量比として0.001以上0.4未満となる割合にて含有され、かつ、原油回収用薬液が2以上7未満のpHを有する、請求項1乃至請求項7のうち何れか一項に原油回収用薬液。 The anionic surfactant is contained at a ratio of 0.001 or more and less than 0.4 as a mass ratio with respect to the silica solid content of the chemical solution for crude oil recovery, and the chemical solution for crude oil recovery is 2 or more and less than 7 The chemical | medical solution for crude oil recovery in any one of Claim 1 thru | or 7 which has pH of these.
  10. 前記非イオン界面活性剤が、3.0以上20.0以下のHLB値を有し、且つ、
    ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、アルキルグルコシド、ポリオキシエチレン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル及び脂肪酸アルカノールアミドからなる群から選ばれる、
    請求項1乃至請求項9のうち何れか一項に記載の高温耐塩性に優れた原油回収用薬液。
    The nonionic surfactant has an HLB value of 3.0 or more and 20.0 or less, and
    It is selected from the group consisting of polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, alkyl glucoside, polyoxyethylene fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester and fatty acid alkanolamide.
    The chemical | medical solution for crude oil recovery excellent in the high temperature salt tolerance as described in any one of Claims 1 thru | or 9.
  11. 前記非イオン界面活性剤が、原油回収用薬液の全質量を基準として、0.001質量%~30質量%にて含有されてなる、請求項1乃至請求項10に記載の高温耐塩性に優れた原油回収用薬液。 The high temperature salt resistance according to any one of claims 1 to 10, wherein the nonionic surfactant is contained in an amount of 0.001% by mass to 30% by mass based on the total mass of the crude oil recovery chemical solution. Crude oil recovery chemical solution.
  12. 地下の炭化水素含有層から原油を回収する方法であって、
    (a)シラン化合物と、平均粒子径が3~200nmの水性シリカゾルと、2種以上のアニオン界面活性剤と、1種以上の非イオン界面活性剤を含有する原油回収用薬液を、地下層に圧入する工程、
    (b)地下層に圧入した前記薬液とともに生産井から原油を回収する工程、
    を含む方法。
    A method of recovering crude oil from an underground hydrocarbon-containing bed, comprising
    (A) A crude oil recovery chemical solution containing a silane compound, an aqueous silica sol having an average particle diameter of 3 to 200 nm, two or more anionic surfactants, and one or more nonionic surfactants Press-in process,
    (B) recovering crude oil from the production well together with the chemical solution injected into the underground layer;
    Method including.
  13. 前記原油回収用薬液を7以上12未満のpHに調整し、かつ、前記アニオン界面活性剤を、前記原油回収用薬液のシリカ固形分に対して、質量比として0.4以上5.0未満となる量にて含有させる、請求項12に記載の方法。 The crude oil recovery chemical solution is adjusted to a pH of 7 or more and less than 12, and the anionic surfactant is a mass ratio of 0.4 or more and less than 5.0 with respect to the silica solid content of the crude oil recovery chemical solution. The method according to claim 12, wherein the method comprises
  14. 前記原油回収用薬液を2以上7未満のpHに調整し、かつ、前記アニオン界面活性剤を、前記原油回収用薬液のシリカ固形分に対して、質量比として0.001以上0.4未満となる量にて含有させる、請求項12に記載の方法。
     
    The crude oil recovery chemical solution is adjusted to a pH of 2 or more and less than 7, and the anionic surfactant is a mass ratio of 0.001 or more and less than 0.4 with respect to the silica solid content of the crude oil recovery chemical solution. The method according to claim 12, wherein the method comprises
PCT/JP2018/033831 2017-09-13 2018-09-12 Chemical for crude oil recovery WO2019054414A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2018333735A AU2018333735B2 (en) 2017-09-13 2018-09-12 Crude oil recovery chemical fluid
CN201880059143.6A CN111094505A (en) 2017-09-13 2018-09-12 Liquid medicine for crude oil recovery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-175511 2017-09-13
JP2017175511A JP2021006595A (en) 2017-09-13 2017-09-13 Crude oil recovery chemical
JPPCT/JP2017/037208 2017-10-13
PCT/JP2017/037208 WO2019053907A1 (en) 2017-09-13 2017-10-13 Crude oil recovery chemical fluid

Publications (1)

Publication Number Publication Date
WO2019054414A1 true WO2019054414A1 (en) 2019-03-21

Family

ID=65722847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033831 WO2019054414A1 (en) 2017-09-13 2018-09-12 Chemical for crude oil recovery

Country Status (1)

Country Link
WO (1) WO2019054414A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377942B2 (en) 2017-04-06 2019-08-13 Nissan Chemical America Corporation Hydrocarbon formation treatment micellar solutions
US10563117B2 (en) 2017-09-13 2020-02-18 Nissan Chemical America Corporation Crude oil recovery chemical fluids
US10801310B2 (en) 2017-09-26 2020-10-13 Nissan Chemcial America Corporation Using gases and hydrocarbon recovery fluids containing nanoparticles to enhance hydrocarbon recovery
US10870794B2 (en) 2017-11-03 2020-12-22 Nissan Chemical America Corporation Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery
CN112300768A (en) * 2019-07-23 2021-02-02 中国石油化工股份有限公司 Nanoparticle-reinforced residual oil emulsion profile control and flooding agent and preparation method thereof
US10934478B2 (en) 2018-11-02 2021-03-02 Nissan Chemical America Corporation Enhanced oil recovery using treatment fluids comprising colloidal silica with a proppant
WO2021107048A1 (en) * 2019-11-28 2021-06-03 国際石油開発帝石株式会社 Silica nanoparticles for crude oil recovery using carbon dioxide, and crude oil recovery method
CN114106802A (en) * 2020-09-01 2022-03-01 宁波锋成先进能源材料研究院有限公司 Composition and preparation method and application thereof
CN114437698A (en) * 2020-10-19 2022-05-06 中国石油化工股份有限公司 Compound with oil displacement function and application thereof
WO2023080168A1 (en) * 2021-11-04 2023-05-11 日産化学株式会社 Chemical liquid for recovering crude oil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735787A (en) * 2009-12-22 2010-06-16 上海大学 Nano material-based water-based oil field injection agent and preparation method thereof
CN102838981A (en) * 2012-09-06 2012-12-26 陕西省石油化工研究设计院 Nanometer drag reducer for sandstone surface pretreatment and preparation method of nanometer drag reducer
CN106085401A (en) * 2016-06-07 2016-11-09 郑州东申石化科技有限公司 A kind of water injection in low-permeability oilfield well increasing injection agent and preparation method and application
WO2017083447A1 (en) * 2015-11-12 2017-05-18 Schlumberger Technology Corporation Compositions and methods for cleaning a wellbore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735787A (en) * 2009-12-22 2010-06-16 上海大学 Nano material-based water-based oil field injection agent and preparation method thereof
CN102838981A (en) * 2012-09-06 2012-12-26 陕西省石油化工研究设计院 Nanometer drag reducer for sandstone surface pretreatment and preparation method of nanometer drag reducer
WO2017083447A1 (en) * 2015-11-12 2017-05-18 Schlumberger Technology Corporation Compositions and methods for cleaning a wellbore
CN106085401A (en) * 2016-06-07 2016-11-09 郑州东申石化科技有限公司 A kind of water injection in low-permeability oilfield well increasing injection agent and preparation method and application

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975289B2 (en) 2017-04-06 2021-04-13 Nissan Chemical America Corporation Hydrocarbon formation treatment micellar solutions
US10557078B2 (en) 2017-04-06 2020-02-11 Nissan Chemical America Corporation Brine resistant silica sol
US10377942B2 (en) 2017-04-06 2019-08-13 Nissan Chemical America Corporation Hydrocarbon formation treatment micellar solutions
US11401454B2 (en) 2017-04-06 2022-08-02 Nissan Chemical America Corporation Hydrocarbon formation treatment micellar solutions
US11130906B2 (en) 2017-04-06 2021-09-28 Nissan Chemical America Corporation Brine resistant silica sol
US10563117B2 (en) 2017-09-13 2020-02-18 Nissan Chemical America Corporation Crude oil recovery chemical fluids
US10570331B2 (en) 2017-09-13 2020-02-25 Nissan Chemical America Corporation Crude oil recovery chemical fluid
US10801310B2 (en) 2017-09-26 2020-10-13 Nissan Chemcial America Corporation Using gases and hydrocarbon recovery fluids containing nanoparticles to enhance hydrocarbon recovery
US10870794B2 (en) 2017-11-03 2020-12-22 Nissan Chemical America Corporation Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery
US11180692B2 (en) 2017-11-03 2021-11-23 Nissan Chemical America Corporation Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery
US11274244B2 (en) 2017-11-03 2022-03-15 Nissan Chemical America Corporation Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery
US10934478B2 (en) 2018-11-02 2021-03-02 Nissan Chemical America Corporation Enhanced oil recovery using treatment fluids comprising colloidal silica with a proppant
CN112300768B (en) * 2019-07-23 2022-09-23 中国石油化工股份有限公司 Nanoparticle-reinforced residual oil emulsion profile control and flooding agent and preparation method thereof
CN112300768A (en) * 2019-07-23 2021-02-02 中国石油化工股份有限公司 Nanoparticle-reinforced residual oil emulsion profile control and flooding agent and preparation method thereof
WO2021107048A1 (en) * 2019-11-28 2021-06-03 国際石油開発帝石株式会社 Silica nanoparticles for crude oil recovery using carbon dioxide, and crude oil recovery method
US11834608B2 (en) 2019-11-28 2023-12-05 Inpex Corporation Silica nanoparticles for crude oil recovery using carbon dioxide, and crude oil recovery method
CN114667330A (en) * 2019-11-28 2022-06-24 株式会社Inpex Silica nanoparticles for recovery of crude oil using carbon dioxide and crude oil recovery process
CN114106802A (en) * 2020-09-01 2022-03-01 宁波锋成先进能源材料研究院有限公司 Composition and preparation method and application thereof
CN114106802B (en) * 2020-09-01 2023-06-30 宁波锋成先进能源材料研究院有限公司 Composition, preparation method and application thereof
CN114437698B (en) * 2020-10-19 2023-04-11 中国石油化工股份有限公司 Compound with oil displacement function and application thereof
CN114437698A (en) * 2020-10-19 2022-05-06 中国石油化工股份有限公司 Compound with oil displacement function and application thereof
WO2023080168A1 (en) * 2021-11-04 2023-05-11 日産化学株式会社 Chemical liquid for recovering crude oil

Similar Documents

Publication Publication Date Title
US10563117B2 (en) Crude oil recovery chemical fluids
WO2019054414A1 (en) Chemical for crude oil recovery
US11401454B2 (en) Hydrocarbon formation treatment micellar solutions
CN108291137B (en) Method for obtaining mineral oil using silica fluid
WO2021107048A1 (en) Silica nanoparticles for crude oil recovery using carbon dioxide, and crude oil recovery method
US20170107424A1 (en) Aqueous slurry for particulates transportation
CN116622355B (en) Oil displacement agent composition and preparation method and application thereof
JP2024502487A (en) Chemical solution for underground injection of crude oil and gas reservoirs containing antioxidants
CN106782989A (en) A kind of silicone-modified magnetic liquid of Silicon-oil-based carboxyl and preparation method thereof
US20170349810A1 (en) Nano-inhibitors
WO2023080168A1 (en) Chemical liquid for recovering crude oil
US10179322B2 (en) Application of hybrid aluminosilicates
RU2232878C2 (en) Formation face zone processing compound
US20240093084A1 (en) Chemical fluid containing an antioxidant for underground treatment of oil and gas reservoirs
Tuok et al. Experimental investigation of copper oxide nanofluids for enhanced oil recovery in the presence of cationic surfactant using a microfluidic model
US11873447B1 (en) Superhydrophobic nanoparticals and preparation method therefor, and superhydrophobic nanofluid
RU2099518C1 (en) Compound for treatment of bottom-hole formation zone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018333735

Country of ref document: AU

Date of ref document: 20180912

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18856069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP