WO2019049288A1 - 建設機械 - Google Patents

建設機械 Download PDF

Info

Publication number
WO2019049288A1
WO2019049288A1 PCT/JP2017/032372 JP2017032372W WO2019049288A1 WO 2019049288 A1 WO2019049288 A1 WO 2019049288A1 JP 2017032372 W JP2017032372 W JP 2017032372W WO 2019049288 A1 WO2019049288 A1 WO 2019049288A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
guidance
target surface
unit
acquisition unit
Prior art date
Application number
PCT/JP2017/032372
Other languages
English (en)
French (fr)
Inventor
坂本 博史
和重 黒髪
陽平 鳥山
麻里子 水落
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to KR1020197005703A priority Critical patent/KR102159066B1/ko
Priority to PCT/JP2017/032372 priority patent/WO2019049288A1/ja
Priority to JP2019510381A priority patent/JP6712674B2/ja
Priority to CN201780053919.9A priority patent/CN109790702B/zh
Priority to US16/333,349 priority patent/US20190211532A1/en
Priority to EP17923987.6A priority patent/EP3680397B1/en
Publication of WO2019049288A1 publication Critical patent/WO2019049288A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/20Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of display used
    • B60R2300/207Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of display used using multi-purpose displays, e.g. camera image and navigation or video on same display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/8033Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for pedestrian protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/8093Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for obstacle warning
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Definitions

  • the present invention relates to a construction machine.
  • design data three-dimensional data
  • design data three-dimensional data
  • a guidance device that supports the operation of a work device by presenting it to an operator is being put to practical use.
  • Patent Document 1 when excavating a target excavating surface set in advance based on design data with a working device including a boom, an arm, and a bucket, There is disclosed a guidance device which supports the operation of the operator by displaying an image of the positional relationship between the surface and the tip of the bucket on a monitor in the driver's cabin to improve the work efficiency.
  • Patent Document 2 is for civil engineering work using a database of underground burial objects and ground structures stored in advance. Generates a map, detects the position and orientation of construction equipment, and displays it on the screen together with a map for civil engineering work, thereby suppressing damage to obstacles such as underground buried objects and ground structures, and supporting safe driving A civil engineering work system is disclosed.
  • Patent Document 3 in a construction machine such as a hydraulic shovel having a revolving structure, a total of three entering object detecting devices provided behind and on the left and right of the upper revolving structure detect an entering object in a predetermined area, and a lamp Also disclosed is a technology for assisting the safe driving of the operator by presenting information to the operator using an alarm device such as H. et al.
  • the present invention has been made in view of the above, and, even when the operator is gazing at the screen of the guidance device, the operator reliably confirms information on obstacles with high real-time nature such as an approach object around the vehicle body. It is an object of the present invention to provide a construction machine that can be presented to
  • the present application includes a plurality of means for solving the above problems, and an example thereof is an articulated work apparatus mounted on the main end of a vehicle and connected with a plurality of driven members, and A plurality of hydraulic actuators for respectively driving a plurality of driven members; and a plurality of operation lever devices disposed in a driver's cab on which an operator rides, for respectively instructing the operation of the plurality of hydraulic actuators according to the amount of operation
  • a design data acquisition unit for acquiring design data predetermined for a work target by the work device
  • a work device position acquisition unit for acquiring position information of the work device
  • the design data acquisition unit According to the design data and the position information of the work device acquired by the work device position acquisition unit, the target surface of the work object by the work device is set.
  • Guidance display unit that displays a target surface setting unit to be used, the target surface set by the target surface setting unit, and position information of the work device acquired by the work device position acquisition unit on a monitor for guidance in the driver's cab ,
  • An obstacle detection unit that detects an obstacle around the construction machine, and an obstacle detection unit that acquires position information of the obstacle detected by the obstacle detection unit.
  • a device, and the guidance display unit of the guidance device displays the position information of the obstacle acquired by the obstacle position acquisition unit of the obstacle detection device on the guidance monitor.
  • the present invention even when the operator looks at the screen of the guidance device, it is possible to reliably present the operator with information on obstacles with high real-time nature such as an approach object around the vehicle body. Both work efficiency and convenience can be achieved.
  • the hydraulic shovel provided with a bucket (1c) is illustrated and demonstrated as an attachment of the front-end
  • the present invention may be applied to a hydraulic shovel provided with an attachment other than a bucket, as long as it is a construction machine provided with a guidance device for assisting the operator by displaying an image on.
  • FIG. 1 is a diagram showing a hydraulic drive system of a hydraulic shovel shown as an example of a construction machine in the present embodiment together with its control unit.
  • FIG. 2 is a figure which shows typically the external appearance of the hydraulic shovel which concerns on this Embodiment.
  • the hydraulic shovel of this embodiment includes a hydraulic pump 2, a boom cylinder 3a driven by pressure oil from the hydraulic pump 2, an arm cylinder 3b, a bucket cylinder 3c, a swing motor 3d, and left and right travel.
  • a plurality of hydraulic actuators including the motors 3e and 3f, a plurality of operating lever devices 4a to 4f provided corresponding to the respective hydraulic actuators 3a to 3f, and hydraulic actuators controlled by the operating lever devices 4a to 4f
  • a control unit 9 having a function of controlling the flow control valves 5a to 5f by inputting an operation signal of 4f.
  • the operation lever devices 4a to 4f are electric lever devices that output electric signals as operation signals
  • the flow control valves 5a to 5f are electric hydraulic conversion devices that convert electric signals to pilot pressure, for example, proportional electromagnetic It is an electric / hydraulic operation type valve equipped with valves at both ends.
  • the control unit 9 receives operation signals of the operation lever devices 4a to 4f, generates a flow control valve drive signal according to the input signals, and drives and controls the flow control valves 5a to 5f.
  • the hydraulic shovel comprises a vehicle body (construction machine main body) 1B consisting of an upper swing body 1d and a lower traveling body 1e, and a boom 1a, an arm 1b and a bucket 1c pivoting in the vertical direction. And an articulated working device 1A attached to the front of the upper revolving superstructure 1d, and a base end of the boom 1a of the working equipment 1A is supported at the front of the upper revolving superstructure 1d.
  • the boom 1a, the arm 1b, the bucket 1c, the upper swing body 1d and the lower traveling body 1e shown in FIG. 2 are the boom cylinder 3a, the arm cylinder 3b, the bucket cylinder 3c, the swing motor 3d and the left and right traveling motor 3e shown in FIG. , 3f, and their operation is instructed by the control lever devices 4a to 4f.
  • Angle detectors 8a and 8b as posture sensors for detecting respective rotation angles as state quantities relating to the position and posture of the working device 1A on the respective pivot points of the boom 1a, the arm 1b and the bucket 1c of the working device 1A. , 8c are provided.
  • the angle detectors 8a, 8b and 8c may be collectively referred to as the attitude sensor 8 for the sake of simplicity of the description.
  • the guidance apparatus 410 and the obstacle detection apparatus 420 are provided in the hydraulic shovel configured as described above (see FIG. 4A and the like described later).
  • the guidance device 410 supports the operator's operation by presenting the target surface based on the design data and the position information of the working device.
  • the obstacle detection device 420 detects an obstacle or an approach object in the vicinity of the vehicle body of the construction machine in real time, and notifies the operator as needed.
  • FIG. 3 is a hardware configuration diagram showing a guidance device and an obstacle detection device according to the present embodiment together with peripheral configurations.
  • the hydraulic shovel according to the present embodiment is provided at each of the pivots of the setting device 7 for acquiring design data from the database 400 of the management office, the boom 1 a, the arm 1 b, and the bucket 1 c.
  • a control unit 310 for example, a microcomputer that executes a display process on a guidance monitor 415 installed in the driver's cab according to the input signals.
  • the control unit 310 includes an input unit 91, a central processing unit (CPU) 92 as a processor, a read only memory (ROM) 93 and a random access memory (RAM) 94 as a storage device, and an output unit 95. ing.
  • the input unit 91 receives an instruction signal from the setting device 7, an angle signal from the attitude sensor 8 (angle detectors 8a, 8b, 8c), and a position signal from the satellite positioning system 301, and performs A / D conversion.
  • the ROM 93 is a recording medium in which a control program is stored, and the CPU 92 performs predetermined arithmetic processing on signals taken in from the input unit 91, the ROM 93, and the RAM 94 in accordance with the control program stored in the ROM 93.
  • the output unit 95 generates a signal for output according to the calculation result in the CPU 92 and outputs the signal to the guidance monitor 415 to display images of the bucket 1 c and the target surface on the screen of the guidance monitor 415. Or display it.
  • the control unit 310 includes semiconductor memories such as the ROM 93 and the RAM 94 as storage devices, the control unit 310 may include a magnetic storage device such as a hard disk drive and store the control program therein.
  • the hydraulic shovel includes a camera 302 for imaging the periphery of a vehicle body to detect an obstacle, and an IC tag receiver 303 for receiving information on an IC tag carried by a worker around the vehicle body.
  • the control unit 320 (for example, a microcomputer) is provided to execute display processing on the obstacle detection monitor 424 installed in the driver's cab according to these input signals.
  • the control unit 320 includes an input unit 391, a central processing unit (CPU) 392 which is a processor, a read only memory (ROM) 393 which is a storage unit, a random access memory (RAM) 394 and an output unit 395. ing.
  • the input unit 391 inputs a video signal from the camera 302 and a received signal from the IC tag receiver 303, and performs A / D conversion.
  • the ROM 393 is a recording medium storing a control program, and the CPU 392 performs predetermined arithmetic processing on signals taken in from the input unit 391, the ROM 393, and the RAM 394 in accordance with the control program stored in the ROM 393.
  • the output unit 395 creates a signal for output according to the calculation result in the CPU 392, and outputs the signal to the obstacle detection monitor 424 to detect position information of the detected obstacle on the obstacle detection monitor 424. Or display it on the screen of.
  • the output unit 395 also outputs the detected position information of the obstacle to the control unit 310, and shares the information with the control unit 310.
  • the control unit 320 includes semiconductor memories such as the ROM 393 and the RAM 394 as storage devices, the control unit 320 may include a magnetic storage device such as a hard disk drive and store the control program therein.
  • FIG. 4A is a functional block diagram showing a guidance device and an obstacle detection device according to the present embodiment together with peripheral configurations.
  • the guidance device 410 includes a design data acquisition unit 411, a work device position acquisition unit 412, a target surface setting unit 413, a guidance display unit 414, and a guidance monitor 415.
  • the functional units of the guidance device 410 excluding the guidance monitor 415 are realized by being programmed and executed by the control unit 310.
  • the design data acquisition unit 411 acquires design data of a corresponding construction site from a database 400 such as a construction drawing in a management office using communication means such as a wireless LAN (Local Area Network).
  • the design data can be acquired by the operator operating the setting device 7 configured by a switch or the like in the driver's cab, and may be acquired using a recording medium such as a USB memory.
  • the setting device 7 is constituted by, for example, switches provided on the grips of the operating lever devices 4a to 4f or an operation device similar thereto, and the switch 7a used to acquire design data and the design data acquired once are used. It has a switch 7b to be cleared.
  • a wireless LAN Local Area Network
  • the work device position acquisition unit 412 receives an angle signal from the posture sensor 8 (angle detectors 8a, 8b, 8c) that measures the angle of the pivot of the boom 1a, the arm 1b, and the bucket 1c.
  • the position of the bucket 1c in the coordinate system (for example, the pivot point of the boom 1a is set as the origin) of the vehicle body is calculated using the dimensions of the machine (the work apparatus 1A and the vehicle body 1B).
  • the satellite positioning system 301 such as GPS (Global Positioning System) or GNSS (Global Navigation Satellite System) is mounted on the vehicle body 1B
  • the position of the bucket 1c is based on the earth-based coordinates using the position information. It may be expressed by a system.
  • the position of the bucket 1c is converted from the vehicle-based coordinate system to the earth-based coordinate system using the position signal input from the satellite positioning system 301 and the information of the dimensions of the construction machine and the mounting position of the satellite positioning system 301 Do the processing. Further, the work device position acquisition unit 412 outputs the position information of the bucket 1 c to the target surface setting unit 413 and the guidance display unit 414.
  • the target surface setting unit 413 sets a target surface from the design data acquired by the design data acquisition unit 411 based on the position of the bucket 1 c acquired by the work device position acquisition unit 412. For example, the design data output from the design data acquisition unit 411 and the position of the bucket 1c output from the work device position acquisition unit 412 are input, and design data within a predetermined range centering on the position of the bucket 1c is extracted. Thus, the target plane is set, and the information is output to the guidance display unit 314.
  • the guidance display unit 414 displays the target surface set by the target surface setting unit 413 and the position information of the bucket 1 c acquired by the work device position acquisition unit 412 on the guidance monitor 415 in the driving room. For example, image information indicating the positional relationship between the position of the bucket 1 c output from the work device position acquisition unit 412 and the target surface output from the target surface setting unit 413 is generated, and the image is displayed on the screen of the guidance monitor 415 Perform processing to display on.
  • a target surface based on design data is obtained by the guidance device 410 configured by the design data acquisition unit 411, the work device position acquisition unit 412, the target surface setting unit 413, the guidance display unit 414, and the guidance monitor 415 in the driver's cabin.
  • the operator's operation can be supported by presenting the position information of the work apparatus and the work apparatus.
  • the obstacle detection device 420 includes an obstacle detection unit 421, an obstacle position acquisition unit 422, an obstacle display unit 423, and an obstacle detection monitor 424.
  • the functional units of the obstacle detection device 420 excluding the obstacle detection monitor 424 are implemented by being programmed and executed by the control unit 320.
  • the obstacle detection unit 421 detects an obstacle or an approach object around the construction machine by processing information of an image captured by the camera 302 installed on the vehicle body 1B. In addition, when it is possible to receive information such as an IC tag possessed by a worker on the site, it is also possible to detect the worker who enters the vicinity of the construction machine using the information.
  • the obstacle position acquisition unit 422 acquires the position of the obstacle based on the information of the obstacle detected by the obstacle detection unit 421. For example, according to the size of the obstacle or approach detected in the above-mentioned image processing, position information in the coordinate system with the camera 302 as the origin is calculated, and the vehicle body is based on the dimensions of the construction machine and the mounting position of the camera 302 Convert to coordinate system at reference. In addition, the position of the obstacle or approach is expressed by the earth reference coordinate system when the information of the satellite positioning system 301 for measuring the construction machine position on the earth basis can be used similarly to the work device position acquisition unit 412. You may.
  • the operation is performed based on the radio wave intensity of the IC tag received by the IC tag receiver 303 and the attachment position of the IC tag receiver 303 Calculate the staff's position information.
  • the obstacle position acquisition unit 422 outputs the obstacle display unit 423 and the guidance display unit 414 to the obstacle display unit 423 and the guidance display unit 414, of the obstacle and the approach object around the construction machine and the position information of the worker.
  • the obstacle display unit 423 displays the position information of the obstacle acquired by the obstacle position acquisition unit 422 on the monitor 424 for obstacle detection in the driving room. For example, image information around the construction machine in which the position of the obstacle output from the obstacle position acquisition unit 422 is marked is generated and displayed on the screen of the obstacle detection monitor 424.
  • the obstacle detection device 420 configured of the obstacle detection unit 421 that uses information such as a camera and an IC tag and the obstacle position acquisition unit 422 that acquires the detected position of the obstacle Obstacles and intruders can be detected in real time.
  • the guidance display unit 414 inputs the position information of the obstacle acquired by the obstacle position acquisition unit 422 and displays the position information on the guidance monitor 415 in the driver's cabin. Furthermore, when the position of the obstacle acquired by the obstacle position acquisition unit 422 is included in the target plane set by the target plane setting unit 413 or in the vicinity thereof, the guidance display unit 414 The display method of the target surface on the guidance monitor 415 is changed. Details of the display method will be described later.
  • FIG. 4B is a flowchart showing the processing content of the guidance display unit.
  • FIG. 4B the processing in the case where the position of the obstacle acquired by the obstacle position acquisition unit 422 is included in the target surface set by the target surface setting unit 413 is shown as an example.
  • the guidance display unit 414 first reads the position of the bucket 1c acquired by the work device position acquisition unit 412, and if the position of the bucket 1c is not expressed in the car body based coordinate system, the car body based coordinate system It converts into the position in (step S451). Next, processing for displaying the position of the bucket 1c on the guidance monitor 415 is performed based on the position of the bucket 1c in the transformed vehicle-based coordinate system (step S452). Next, the target surface acquired by the target surface setting unit 413 is read, and if the target surface is not represented in the vehicle-based coordinate system, it is converted to the target surface in the vehicle-based coordinate system as in step S451 (step S453).
  • step S454 processing for displaying the target surface on the guidance monitor 415 is performed based on the target surface in the transformed vehicle-based coordinate system (step S454).
  • step S454 processing for displaying the target surface on the guidance monitor 415 is performed based on the target surface in the transformed vehicle-based coordinate system (step S454).
  • step S455 processing for displaying the target surface on the guidance monitor 415 is performed based on the target surface in the transformed vehicle-based coordinate system.
  • step S455 processing for displaying the target surface on the guidance monitor 415 is performed based on the target surface in the transformed vehicle-based coordinate system.
  • the target surface converted in step S453 is compared with the position of the obstacle converted in step S455, and whether the position of the obstacle is inside the target surface, that is, obstacle It is determined whether the position of the object is included inside the target surface (step S456).
  • step S456 when the position of the obstacle is set to point P with respect to three points (O, A, B) indicating the target surface, the point P determined by the following (formula 1) Consider the range of existence of
  • Vector OP coefficient s ⁇ vector OA + coefficient t ⁇ vector OB (Equation 1) If the condition of “coefficient s + coefficient t ⁇ 1” and “coefficient s ⁇ 0” and “coefficient t ⁇ 0” is satisfied for the coefficients s and t in the above (Equation 1), the point P meets the circumference of the triangle OAB It will exist inside.
  • step S456 determines whether the position of the obstacle is included in the inside of the target surface (the obstacle is present). If the determination result in step S456 is YES, that is, if it is determined that the position of the obstacle is included in the inside of the target surface (the obstacle is present), the target surface is highlighted (step S457) , And return to the process of step S451.
  • highlighting of the target surface for example, it is conceivable to fill the inside of three points (O, A, B) indicating the target surface or to display the line of the line segments OA, OB, AB thick. . The details of these display methods will be described later. If the determination result in step S456 is NO, that is, if it is determined that the position of the obstacle is not included in the target surface (no obstacle), the process returns to step S451.
  • FIGS. 5A and 5B schematically show display examples of the display screen in the guidance apparatus in the absence of an obstacle
  • FIG. 5A is an example in which the display is configured as a cross-sectional view of the hydraulic shovel viewed from the side
  • FIG. 5B shows an example in which the display is configured as a three-dimensional view looking over a hydraulic shovel.
  • the design data 500 acquired by the design data acquisition unit 411 (composed of line segments ab, bc, line segments cd and line segments de) and the boom 1a acquired by the work device position acquisition unit 412
  • the work device 1A including the bucket 1c is displayed on the screen of the guidance monitor 415 based on the information on the position of the arm 1b and the bucket 1c and the construction machine position.
  • the target surface setting unit 413 sets the line segment ab of the design data 500 as a target surface close to the bucket 1c based on the position information of the bucket 1c.
  • the distance (for example, x [m]) between the bucket 1c and the target plane ab is displayed, and the operator can grasp the positional relationship between the target excavation plane and the bucket 1c on the screen by these displays. Can.
  • FIG. 5B based on the design data 510 (hatched area in the figure) acquired by the design data acquisition unit 411 and the position of the boom 1a, the arm 1b, and the bucket 1c acquired by the work device position acquisition unit 412 and the construction machine position.
  • the work device 1A including the bucket 1c is displayed on the screen of the guidance monitor 415 in a bird's-eye view.
  • the target surface setting unit 413 sets an area surrounded by the line segments ab, bc and ca based on the positional information of the bucket 1c as a target surface close to the bucket 1c There is.
  • the distance (for example, x [m]) between the bucket 1c and the target surface abc is displayed, and with these displays, the operator looks at the position of the hydraulic shovel which is a construction machine and targets the excavated surface And the positional relationship between the bucket 1c and the bucket 1c can be grasped on the screen.
  • FIG. 6 is a diagram showing a state in which the worker on the right side of the construction machine is detected by communicating with an IC tag or the like possessed by the worker as an example of detection of an obstacle.
  • the IC tag receiver 303 is attached so that the right side of the construction machine is a detection range.
  • the IC tag receiver 303 includes a magnetic field generator, and generates a constant magnetic field 602 around the construction machine (in this example, a certain range on the right side).
  • the IC tag 601 reacts to the magnetic field 602 and detects information by communication means such as wireless to the IC tag receiver 303, ie, the magnetic field 602. And information specific to the magnetic field 602 are transmitted.
  • the IC tag receiver 303 outputs the detection information received from the IC tag 601 to the control unit 320.
  • the control unit 320 calculates the position information of the obstacle (in this case, the position information of the obstacle is the right side of the construction machine) by the function of the obstacle position acquisition unit 422 of the obstacle detection device 420.
  • the position information of the obstacle for example, the distance between the IC tag receiver 303 and the IC tag 601 is estimated from the radio wave intensity contained in the input signal of the IC tag receiver 303, and the construction machine of the IC tag receiver 303
  • the position information of the obstacle is calculated by referring to the design information of the construction machine in consideration of the mounting position on the upper side, the size of the vehicle body 1B, and the like.
  • the control unit 320 outputs the calculated position information of the obstacle to the control unit 310.
  • the control unit 310 displays the detected position of the worker (position information of the obstacle) detected on the guidance monitor 415 on the basis of the detected position information of the obstacle by the function of the guidance display unit 414 of the guidance device 410.
  • FIG. 7 is a view schematically showing an example of a display screen in the obstacle detection device.
  • an image obtained by marking the worker 600 detected by the obstacle detection unit 421 based on the input signal from the camera 302 or the IC tag receiver 303 with the detection frame 710 is an obstacle detection.
  • the display is displayed on the screen of the monitor 424, and by combining these displays and information presentation means such as an alarm, the operator can react to obstacles and intruding objects around the construction machine.
  • FIGS. 8A and 8B schematically show display examples of the display screen in the guidance apparatus when there is an obstacle
  • FIG. 8A shows an example in which the display is configured as a cross-sectional view of the construction machine as viewed from the side
  • FIG. 8B shows an example in which the display is configured by a three-dimensional view looking over the construction machine.
  • FIG. 8A shows a case where the worker 600 is detected as an obstacle near the target plane ab based on input signals from the camera 302 and the IC tag receiver 303.
  • the guidance display unit 414 compares the position information of the obstacle output from the obstacle position acquisition unit 422 with the information on the target surface ab output from the target surface setting unit 413, and the position of the obstacle is the target surface. If it is included in or near the ab, the display method of the target plane ab is changed to the highlighting 500a. Specifically, display processing is performed to change the display mode such as thickening the line of the target surface ab, changing the color, or blinking the target surface ab, and highlighting the target surface ab. Note that FIG.
  • FIG. 8A exemplifies a case where the line of the target surface ab is thickened.
  • the detection position (position information of the obstacle) of the worker is displayed on the guidance monitor 415 of the guidance device 410.
  • the operator 600 is shown with an arrow to explain how the operator 600 is detected close to the target surface ab, but the guidance monitor with the operator 600 as an icon or the like is shown. It does not need to be displayed at 415.
  • FIG. 8B shows a scene in which the worker 600 is detected as an obstacle near the target surface abc based on input signals from the camera 302 and the IC tag receiver 303.
  • the guidance display unit 414 compares the position information of the obstacle output from the obstacle position acquisition unit 422 with the information on the target surface abc output from the target surface setting unit 413, and the position of the obstacle is the target surface.
  • the display method of the target plane abc is changed to highlighting 510a. Specifically, display processing is performed to change the display mode such as changing the color of the target surface abc, blinking the target surface abc, etc., and highlighting the target surface abc. Note that FIG.
  • FIG. 8B shows the case where the color of the target surface abc is changed (shown as black for convenience of illustration).
  • the detection position of the operator is displayed on the guidance monitor 415 of the guidance device 410. There is.
  • FIG. 9 is a view schematically showing another example of the display of the display screen in the guidance apparatus when there is an obstacle, and shows an example in which the display is configured by a cross-sectional view of the construction machine as viewed from the side.
  • an obstacle detection icon 910 is provided on the display screen of the guidance monitor 415.
  • an area to be notified in four directions is displayed around a compass that indicates the direction in which the vehicle 1B is directly opposed (in this case, the direction in which the work device 1A is facing is positive).
  • the guidance display unit 414 is an area on the right side of the obstacle detection icon 910 (that is, an area indicating the right side of the construction machine body) based on the position information of the obstacle (in this case, the right side of the construction machine body). Is highlighted to present the position information of the obstacle to the operator.
  • a design data acquisition unit 411 acquires design data predetermined for a work target by the work apparatus 1A
  • a work apparatus position acquisition unit 412 acquires position information of the work apparatus 1A
  • a design A target surface setting unit 413 that sets a target surface of a work target by the work apparatus 1A according to the design data acquired by the data acquisition unit 411 and the position information of the work apparatus 1A acquired by the work apparatus position acquisition unit 412
  • a guidance device 410 having a guidance display unit 414 that displays the target surface set by the surface setting unit 413 and the position information of the work device 1A acquired by the work device position acquisition unit 412 on the guidance monitor 415 in the driver's cabin
  • An obstacle detection unit 421 that detects an obstacle in the vicinity, and position information of the obstacle detected by the obstacle detection unit 421
  • An obstacle detection device 420 having an obstacle position acquisition unit 422 to be obtained, and the guidance display unit 414 of the guidance device 410 acquires position information of the obstacle acquired by the obstacle position acquisition unit 422 of the
  • the position information of the obstacle can be more reliably presented to the operator by changing the display method of the target plane that the operator is most likely to gaze at.
  • an articulated type attached to the construction machine main body (for example, the vehicle body 1B) and configured by connecting a plurality of driven members (for example, the boom 1a, the arm 1b, and the bucket 1c)
  • the plurality of hydraulic devices for example, the boom cylinder 3a, the arm cylinder 3b, and the bucket cylinder 3c) for driving the work apparatus 1A, the plurality of driven members, and the plurality of hydraulic actuators
  • Design data acquisition for acquiring predetermined design data on a work object by the work device, in a construction machine provided with a plurality of control lever devices 4a to 4f for respectively instructing the operation of the hydraulic actuator according to the operation amount
  • a target surface setting unit 413 configured to set a target surface of a work target by the work device according to the acquired design data and the position information of the work device acquired by the work device position acquisition unit;
  • a guidance device 410 having
  • position information of the obstacle acquired by the obstacle position acquisition unit 422 is: If it is included in the target surface set by the target surface setting unit 413 or if it is determined that the target surface is in the vicinity, the display mode of the target surface is changed to a display mode different from the other cases. It shall be.
  • the present invention is not limited to the above embodiment, and includes various modifications and combinations within the scope not departing from the gist of the present invention. Further, the present invention is not limited to the one provided with all the configurations described in the above embodiment, but also includes one in which a part of the configuration is deleted.
  • each of the configurations, functions, and the like described above may be realized by designing a part or all of them with, for example, an integrated circuit. Further, each configuration, function, etc. described above may be realized by software by the processor interpreting and executing a program that realizes each function.
  • obstacle position acquisition unit 423 ... obstacle display unit, 424 ... monitor for obstacle detection, 500 ... design data, 500a, 510a, 910a ... highlighting, 510 ... design data, 600 ... work 601, IC tag, 602, magnetic field, 710, detection frame, 910, obstacle detection icon

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

作業装置1Aによる作業対象について予め定められた設計データと作業装置1Aの位置情報とに応じて設定された作業装置1Aによる作業対象の目標面と作業装置1Aの位置情報とを運転室内のガイダンス用モニタ415に表示するガイダンス表示部414を有するガイダンス装置410と、建設機械周辺で検知された障害物の位置情報を取得する障害物位置取得部422を有する障害物検知装置420とを備え、ガイダンス装置410のガイダンス表示部414は、障害物検知装置420の障害物位置取得部422で取得された障害物の位置情報をガイダンス用モニタ415に表示する。これにより、オペレータがガイダンス装置の画面を注視しているときであっても、車体周辺の進入物のようなリアルタイム性の高い障害物の情報を確実にオペレータに提示することができ、作業効率と利便性の両立を図ることができる。

Description

建設機械
 本発明は、建設機械に関する。
 近年は施工現場の情報化が進んでおり、施工管理などを行う外部システムで設計図から作成した3次元データ(以下、設計データと称する)と建設機械に取付けられた作業装置の位置情報とをオペレータに提示することによって、作業装置の操作を支援するガイダンス装置が実用化されつつある。
 例えば、ブーム、アーム及びバケットが回動可能に連結されてなる作業装置を有する油圧ショベルにおいて、その作業装置で行う掘削作業としては、バケットを直線状に移動させる法面掘削や水平均し作業などがある。しかしながら、ブーム、アーム及びバケットのそれぞれの軌道は円弧状であるので、バケットを直線状に移動させるように作業装置を操作するためには、オペレータに熟練した複合操作が要求される。
 そこで、オペレータの操作を支援する技術として、例えば、特許文献1には、設計データに基づいて予め設定した目標掘削面をブーム、アーム、バケットから構成される作業装置で掘削する場合に、目標掘削面とバケット先端の位置関係を運転室内のモニタに画像表示することによりオペレータの操作を支援し、作業効率の向上を図るガイダンス装置が開示されている。
 一方で、施工現場の安全運転を支援するための技術開発も進められており、例えば、特許文献2には、予め記憶された地中埋設物や地上構造物等のデータベースを用いて土木作業用マップを生成し、建設機械の位置や向き等を検知して土木作業用マップと共に画面表示することにより、地中埋設物や地上構造物等の障害物の損傷を抑制し、安全運転を支援する土木作業システムが開示されている。
 また、特許文献3には、旋回体を有する油圧ショベル等の建設機械において、上部旋回体の後方と左右に設けられた計3個の進入物検知装置で所定領域の進入物を検知し、ランプ等の警報装置を用いてオペレータへの情報提示を行うことにより、オペレータの安全運転を支援する技術も開示されている。
特開2001-123476号公報
特開2002-339407号公報
特開2015-190159号公報
 上記従来技術のように、建設機械においては、作業効率や利便性の向上を目的としてオペレータを支援するための情報が多様化している。
 しかしながら、特許文献1に記載されているガイダンス装置を使用する場合、法面掘削や水平均し等の作業中には、オペレータがガイダンス装置の画面を注視することになる。したがって、特許文献3に記載されている進入物検知装置からの情報提示に対してはオペレータの反応が遅れる可能性が高い。また、特許文献2に記載されている土木作業システムを使用する場合、障害物も含めたマップの情報をオペレータに提示してガイダンスするため、予めデータベースに記憶されている地中埋設物や地上構造物等の障害物に対してはオペレータが迅速に対応することが可能であるが、特許文献3に記載されている進入物検知装置からの情報提示に対してはオペレータの反応が遅れるおそれがあり、作業効率と利便性の両立が困難である。
 本発明は上記に鑑みてなされたものであり、オペレータがガイダンス装置の画面を注視しているときであっても、車体周辺の進入物のようなリアルタイム性の高い障害物の情報を確実にオペレータに提示することができ、作業効率と利便性の両立を図ることができる建設機械を提供することを目的とする。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、車両本端に取り付けられ、複数の被駆動部材を連結して構成された多関節型の作業装置と、前記複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータと、オペレータが搭乗する運転室に配置され、前記複数の油圧アクチュエータの動作を操作量に応じてそれぞれ指示するための複数の操作レバー装置とを備えた建設機械において、前記作業装置による作業対象について予め定められた設計データを取得する設計データ取得部、前記作業装置の位置情報を取得する作業装置位置取得部、前記設計データ取得部で取得した前記設計データと前記作業装置位置取得部で取得した前記作業装置の位置情報とに応じて前記作業装置による作業対象の目標面を設定する目標面設定部、及び、前記目標面設定部で設定した前記目標面と前記作業装置位置取得部で取得した前記作業装置の位置情報とを前記運転室内のガイダンス用モニタに表示するガイダンス表示部を有するガイダンス装置と、前記建設機械周辺の障害物を検知する障害物検知部、及び、前記障害物検知部で検知された障害物の位置情報を取得する障害物位置取得部を有する障害物検知装置とを備え、前記ガイダンス装置の前記ガイダンス表示部は、前記障害物検知装置の前記障害物位置取得部で取得された前記障害物の位置情報を前記ガイダンス用モニタに表示するものとする。
 本発明によれば、オペレータがガイダンス装置の画面を注視しているときであっても、車体周辺の進入物のようなリアルタイム性の高い障害物の情報を確実にオペレータに提示することができ、作業効率と利便性の両立を図ることができる。
建設機械の一例として示す油圧ショベルの油圧駆動装置をその制御ユニットと共に示す図である。 油圧ショベルの外観を模式的に示す図である。 ガイダンス装置および障害物検知装置を周辺構成と共に示すハードウェア構成図である。 ガイダンス装置および障害物検知装置を周辺構成と共に示す機能ブロック図である。 ガイダンス表示部の処理内容を示すフローチャートである。 障害物無しの場合のガイダンス装置における表示画面の表示例を概略的に示す図であり、油圧ショベルを横から見た断面図で表示を構成した例を示す図である。 障害物無しの場合のガイダンス装置における表示画面の表示例を概略的に示す図であり、油圧ショベルを俯瞰した立体図で表示を構成した例を示す図である。 障害物を検知例として、作業員が所持しているICタグ等と通信することにより建設機械の右側方の作業員を検知する様子を示す図である。 障害物検知装置における表示画面の一例を概略的に示す図である。 障害物有りの場合のガイダンス装置における表示画面の表示例を概略的に示す図であり、建設機械を横から見た断面図で表示を構成した例を示す図である。 障害物有りの場合のガイダンス装置における表示画面の表示例を概略的に示す図であり、建設機械を俯瞰した立体図で表示を構成した例を示す図である。 障害物有りの場合のガイダンス装置における表示画面の表示の他の例を概略的に示す図であり、建設機械を横から見た断面図で表示を構成した例を示す図である。
 以下、本発明の実施の形態を図面を参照しつつ説明する。
 なお、以下においては、作業装置の先端のアタッチメントとしてバケット(1c)を備える油圧ショベルを例示して説明するが、目標掘削面(目標面)とアタッチメントの位置関係を運転室内のモニタ(表示装置)に画像表示してオペレータの支援を行うガイダンス装置を備えた建設機械であれば、バケット以外のアタッチメントを備える油圧ショベルに本発明を適用しても構わない。
 図1は、本実施の形態において建設機械の一例として示す油圧ショベルの油圧駆動装置をその制御ユニットと共に示す図である。また、図2は、本実施の形態に係る油圧ショベルの外観を模式的に示す図である。
 図1おいて、本実施の形態の油圧ショベルは、油圧ポンプ2と、この油圧ポンプ2からの圧油により駆動されるブームシリンダ3a、アームシリンダ3b、バケットシリンダ3c、旋回モータ3d及び左右の走行モータ3e,3fを含む複数の油圧アクチュエータと、これら油圧アクチュエータ3a~3fのそれぞれに対応して設けられた複数の操作レバー装置4a~4fと、これら操作レバー装置4a~4fによって制御され、油圧アクチュエータ3a~3fに供給される圧油の流量を制御する複数の流量制御弁5a~5fと、油圧ポンプ2の吐出圧力が設定値以上になった場合に開くリリーフ弁6と、操作レバー装置4a~4fの操作信号を入力し流量制御弁5a~5fを制御する機能を有する制御ユニット9とを有し、これらは油圧ショベルの被駆動部材を駆動する油圧駆動装置を構成している。
 本実施形態では、操作レバー装置4a~4fは、操作信号として電気信号を出力する電気レバー装置であり、流量制御弁5a~5fは電気信号をパイロット圧に変換する電気油圧変換装置、例えば比例電磁弁を両端に備えた電気・油圧操作方式の弁である。制御ユニット9は、操作レバー装置4a~4fの操作信号を入力し、入力信号に応じた流量制御弁駆動信号を生成して流量制御弁5a~5fを駆動・制御する。
 また、図2に示すように、油圧ショベルは、上部旋回体1d及び下部走行体1eからなる車体(建設機械本体)1Bと、垂直方向にそれぞれ回動するブーム1a、アーム1b及びバケット1cからなり、上部旋回体1dの前方に取り付けられた多関節型の作業装置1Aとで構成され、作業装置1Aのブーム1aの基端は上部旋回体1dの前部に支持されている。
 図2のブーム1a、アーム1b、バケット1c、上部旋回体1d及び下部走行体1eは、それぞれ、図1に示すブームシリンダ3a、アームシリンダ3b、バケットシリンダ3c、旋回モータ3d及び左右の走行モータ3e,3fによりそれぞれ駆動され、それらの動作は操作レバー装置4a~4fにより指示される。
 作業装置1Aのブーム1a、アーム1b及びバケット1cのそれぞれの回動支点には、作業装置1Aの位置と姿勢に関する状態量としてそれぞれの回動角を検出する姿勢センサとしての角度検出器8a,8b,8cが設けられている。なお、以下では説明の簡単のために角度検出器8a,8b,8cをまとめて姿勢センサ8と記載する場合がある。
 以上のように構成した油圧ショベルに、本実施の形態に係わるガイダンス装置410と障害物検知装置420とが設けられている(後の図4A等参照)。ガイダンス装置410は、設計データに基づく目標面と作業装置の位置情報を提示することでオペレータの操作を支援するものである。また、障害物検知装置420は、建設機械の車体周辺の障害物や進入物をリアルタイムに検知し、必要に応じてオペレータに報知するものである。
 図3は、本実施の形態に係るガイダンス装置および障害物検知装置を周辺構成と共に示すハードウェア構成図である。
 図3において、本実施の形態の油圧ショベルは、管理事務所のデータベース400から設計データを取得するための設定器7と、ブーム1a、アーム1b及びバケット1cのそれぞれの回動支点に設けられ、作業装置1Aの位置と姿勢に関する状態量としてそれぞれの回動角を検出する姿勢センサ8と、GPS(Global Positioning System)やGNSS(Global Navigation Satellite System)等を用いて地球基準での車体位置を計測する衛星測位システム301と、これらの入力信号に応じて、運転室内に設置されたガイダンス用モニタ415への表示処理を実行する制御ユニット310(例えば、マイクロコンピュータ)を備えている。
 制御ユニット310は、入力部91と、プロセッサである中央処理装置(CPU)92と、記憶装置であるリードオンリーメモリ(ROM)93及びランダムアクセスメモリ(RAM)94と、出力部95とを有している。入力部91は、設定器7からの指示信号、姿勢センサ8(角度検出器8a,8b,8c)からの角度信号、衛星測位システム301からの位置信号を入力し、A/D変換を行う。ROM93は、制御プログラムが記憶された記録媒体であり、CPU92は、ROM93に記憶された制御プログラムに従って入力部91、ROM93、およびRAM94から取り入れた信号に対して所定の演算処理を行う。出力部95は、CPU92での演算結果に応じた出力用の信号を作成し、その信号をガイダンス用モニタ415に出力することで、バケット1c及び目標面等の画像をガイダンス用モニタ415の画面上に表示させたりする。なお、制御ユニット310は、記憶装置としてROM93及びRAM94という半導体メモリを備えているが、ハードディスクドライブ等の磁気記憶装置を備え、これに制御プログラムを記憶しても良い。
 また、本実施の形態の油圧ショベルは、障害物を検知するために車体周辺を撮像するカメラ302と、車体周辺の作業員が所持しているICタグの情報を受信するICタグ受信機303と、これらの入力信号に応じて、運転室内に設置された障害物検知用モニタ424への表示処理を実行する制御ユニット320(例えば、マイクロコンピュータ)を備えている。
 制御ユニット320は、入力部391と、プロセッサである中央処理装置(CPU)392と、記憶装置であるリードオンリーメモリ(ROM)393及びランダムアクセスメモリ(RAM)394と、出力部395とを有している。入力部391は、カメラ302からの映像信号、ICタグ受信機303からの受信信号を入力し、A/D変換を行う。ROM393は、制御プログラムが記憶された記録媒体であり、CPU392は、ROM393に記憶された制御プログラムに従って入力部391、ROM393、および、RAM394から取り入れた信号に対して所定の演算処理を行う。出力部395は、CPU392での演算結果に応じた出力用の信号を作成し、その信号を障害物検知用モニタ424に出力することで、検知した障害物の位置情報を障害物検知用モニタ424の画面上に表示させたりする。また、出力部395は、検知した障害物の位置情報を制御ユニット310にも出力し、その情報を制御ユニット310と共有する。なお、制御ユニット320は、記憶装置としてROM393及びRAM394という半導体メモリを備えているが、ハードディスクドライブ等の磁気記憶装置を備え、これに制御プログラムを記憶しても良い。
 図4Aは、本実施の形態に係るガイダンス装置および障害物検知装置を周辺構成と共に示す機能ブロック図である。
 ガイダンス装置410は、設計データ取得部411、作業装置位置取得部412、目標面設定部413、ガイダンス表示部414、および、ガイダンス用モニタ415を有している。なお、ガイダンス用モニタ415を除くガイダンス装置410の各機能部は、制御ユニット310にプログラミングされて実行されることで実現される。
 設計データ取得部411では、管理事務所にある施工図面等のデータベース400から無線LAN(Local Area Network)等の通信手段を用いて該当する施工現場の設計データを取得する。この設計データは、運転室内のスイッチ等で構成される設定器7をオペレータが操作することによって取得することが可能であり、USBメモリ等の記録媒体を用いて取得しても良い。設定器7は、例えば、操作レバー装置4a~4fのグリップ上に設けられたスイッチ又はこれに類する操作装置で構成されており、設計データの取得に用いられるスイッチ7aと、一旦取得した設計データをクリアするスイッチ7bを備えている。設計データ取得部411では、スイッチ7aが押下されると、無線LAN(Local Area Network)等の通信手段により、管理事務所のデータベース400から所定の設計データをダウンロードし、制御ユニット310に記憶する処理を行う。また、記憶した設計データを所定のフォーマット(例えば、地球座標系での点群データ)に変換し、その情報を目標面設定部413に出力する。一方で、スイッチ7bが押下されると記憶された設計データをクリアする。
 作業装置位置取得部412では、ブーム1a、アーム1b、バケット1cの回動支点の角度を計測する姿勢センサ8(角度検出器8a、8b、8c)から角度信号を入力し、その角度情報と建設機械(作業装置1A及び車体1B)の寸法を用いて車体基準の座標系(例えば、ブーム1aの回動支点を原点とする)におけるバケット1cの位置を演算する。なお、バケット1cの位置は、車体1BにGPS(Global Positioning System)やGNSS(Global Navigation Satellite System)等の衛星測位システム301が搭載されている場合には、その位置情報を用いて地球基準の座標系で表現しても良い。例えば、衛星測位システム301から入力した位置信号と、建設機械の寸法及び衛星測位システム301の取付け位置の情報を用いて、バケット1cの位置を車体基準の座標系から地球基準の座標系に変換する処理を行う。また、作業装置位置取得部412は、バケット1cの位置情報を目標面設定部413およびガイダンス表示部414に出力する。
 目標面設定部413では、作業装置位置取得部412で取得したバケット1cの位置に基づいて設計データ取得部411で取得した設計データから目標面を設定する。例えば、設計データ取得部411から出力された設計データと作業装置位置取得部412から出力されたバケット1cの位置を入力し、バケット1cの位置を中心として所定の範囲内にある設計データを抽出することにより目標面を設定し、その情報をガイダンス表示部314に出力する。
 ガイダンス表示部414では、目標面設定部413で設定した目標面と作業装置位置取得部412で取得したバケット1cの位置情報を運転室内のガイダンス用モニタ415に表示する処理を行う。例えば、作業装置位置取得部412から出力されたバケット1cの位置と目標面設定部413から出力された目標面との位置関係を示す画像情報を生成し、その画像をガイダンス用モニタ415の画面上に表示させる処理を行う。
 このように、設計データ取得部411、作業装置位置取得部412、目標面設定部413、ガイダンス表示部414、運転室内のガイダンス用モニタ415で構成されるガイダンス装置410により、設計データに基づく目標面と作業装置の位置情報を提示することでオペレータの操作を支援することができる。
 障害物検知装置420は、障害物検知部421、障害物位置取得部422、障害物表示部423、および、障害物検知用モニタ424を有している。なお、障害物検知用モニタ424を除く障害物検知装置420の各機能部は、制御ユニット320にプログラミングされて実行されることで実現される。
 障害物検知部421では、車体1Bに設置されたカメラ302で撮像した画像の情報を処理することにより、建設機械周辺の障害物や進入物を検知する。また、現場の作業員が持つICタグ等の情報を受信できる場合は、その情報を用いて建設機械周辺に進入する作業員を検知することも可能である。
 障害物位置取得部422では、障害物検知部421で検知した障害物の情報に基づいて障害物の位置を取得する。例えば、上述の画像処理で検知した障害物や進入物の大きさに応じて、カメラ302を原点とする座標系における位置情報を演算し、建設機械の寸法及びカメラ302の取付け位置に基づいて車体基準での座標系に変換する。なお、障害物や進入物の位置は、作業装置位置取得部412と同様に、地球基準での建設機械位置を計測する衛星測位システム301の情報を利用できる場合には地球基準の座標系で表現しても良い。ICタグ等の情報を受信して建設機械周辺に進入する作業員を検知する場合には、ICタグ受信機303により受信したICタグの電波強度とICタグ受信機303の取付け位置に基づいて作業員の位置情報を演算する。また、障害物位置取得部422は、建設機械周辺の障害物や進入物及び作業員の位置情報を障害物表示部423およびガイダンス表示部414に出力する。
障害物表示部423では、障害物位置取得部422で取得した障害物の位置情報を運転室内の障害物検知用モニタ424に表示する。例えば、障害物位置取得部422から出力された障害物の位置をマーキングした建設機械周辺の画像情報を生成し、障害物検知用モニタ424の画面上に表示させる処理を行う。
 このように、カメラやICタグ等の情報を利用した障害物検知部421と、検知した障害物の位置を取得する障害物位置取得部422で構成される障害物検知装置420により、建設機械周辺の障害物や進入物をリアルタイムに検知することが可能になる。
 また、ガイダンス表示部414は、障害物位置取得部422で取得した障害物の位置情報を入力し、運転室内のガイダンス用モニタ415に表示する。さらに、ガイダンス表示部414は、障害物位置取得部422で取得した障害物の位置が、目標面設定部413で設定した目標面に含まれる、または、その近傍である場合には、運転室内のガイダンス用モニタ415における目標面の表示方法を変更する。表示方法の詳細については後述する。
 図4Bは、ガイダンス表示部の処理内容を示すフローチャートである。
 図4Bにおいては、障害物位置取得部422で取得した障害物の位置が、目標面設定部413で設定した目標面に含まれる場合の処理を一例として示している。
 図4Bにおいて、ガイダンス表示部414は、まず、作業装置位置取得部412で取得したバケット1cの位置を読込み、バケット1cの位置が車体基準の座標系で表現されていない場合は車体基準の座標系における位置に変換する(ステップS451)。次に、変換された車体基準の座標系におけるバケット1cの位置に基づいてガイダンス用モニタ415にバケット1cの位置を表示する処理を行う(ステップS452)。次に、目標面設定部413で取得した目標面を読込み、目標面が車体基準の座標系で表現されていない場合は、ステップS451と同様に車体基準の座標系における目標面に変換する(ステップS453)。次に、変換された車体基準の座標系における目標面に基づいてガイダンス用モニタ415に目標面を表示する処理を行う(ステップS454)。次に、障害物位置取得部422で取得した障害物の位置を読込み、障害物の位置が車体基準の座標系で表現されていない場合は、ステップS451,S453と同様に車体基準の座標系における位置に変換する(ステップS455)。
 次に、車体基準の座標系において、ステップS453で変換された目標面とステップS455で変換された障害物の位置を照合し、障害物の位置が目標面の内部に有るかどうか、すなわち、障害物の位置が目標面の内部に含まれているかどうかを判定する(ステップS456)。
 ステップS456の判定方法としては、例えば、目標面を示す3点(O,A,B)に対して障害物の位置を点Pとした場合には、下記の(式1)で定められる点Pの存在範囲を考える。
 ベクトルOP=係数s×ベクトルOA+係数t×ベクトルOB ・・・(式1)
 上記の(式1)における係数s,tについて、「係数s+係数t≧1」かつ「係数s≧0」かつ「係数t≧0」の条件が成立すれば、点Pは三角形OABの周を含む内部に存在することになる。したがって、目標面を示す3点(O,A,B)と障害物の位置Pを、車体基準の座標系の原点を通る車体1Bと平行な面に投影し、その投影した平面(いわゆるxy平面)で上記の(式1)及び点Pの存在範囲の考え方を適用すれば、障害物の位置が目標面の内部に含まれているかどうかを判定することができる。
 ステップS456での判定結果がYESの場合、すなわち、障害物の位置が目標面の内部に含まれている(障害物有り)と判定された場合には、目標面を強調表示し(ステップS457)、ステップS451の処理に戻る。目標面の強調表示としては、例えば、目標面を示す3点(O,A,B)の内部を塗りつぶしたり、または、線分OA,OB,ABの線を太く表示したりすることが考えられる。なお、これらの表示方法の詳細については後述する。また、ステップS456での判定結果がNOの場合、すなわち、障害物の位置が目標面の内部に含まれていない(障害物無し)と判定された場合には、ステップS451の処理に戻る。
 図5A及び図5Bは、障害物無しの場合のガイダンス装置における表示画面の表示例を概略的に示す図であり、図5Aは油圧ショベルを横から見た断面図で表示を構成した例を、図5Bは油圧ショベルを俯瞰した立体図で表示を構成した例をそれぞれ示している。
 図5Aでは、設計データ取得部411で取得した設計データ500(線分ab、線分bc、線分cd及び線分deで構成される)と、作業装置位置取得部412で取得したブーム1a、アーム1b、バケット1cの位置と建設機械位置の情報に基づいてバケット1cを含む作業装置1Aがガイダンス用モニタ415の画面上に表示されている。また、図の破線で示すように、目標面設定部413によりバケット1cの位置情報に基づいて設計データ500の線分abがバケット1cに近い目標面として設定されている。さらに、バケット1cと目標面abとの距離(例えば、x[m])が表示されており、これらの表示により、オペレータは目標とする掘削面とバケット1cの位置関係を画面上で把握することができる。
 図5Bでは、設計データ取得部411で取得した設計データ510(図のハッチング領域)と、作業装置位置取得部412で取得したブーム1a、アーム1b、バケット1cの位置と建設機械位置の情報に基づいてバケット1cを含む作業装置1Aがガイダンス用モニタ415の画面上に俯瞰表示されている。また、図の破線で示すように、目標面設定部413によりバケット1cの位置情報に基づいて線分ab、線分bc、線分caで囲まれる領域がバケット1cに近い目標面として設定されている。さらに、バケット1cと目標面abcとの距離(例えば、x[m])が表示されており、これらの表示により、オペレータは建設機械である油圧ショベルの位置を俯瞰しながら、目標とする掘削面とバケット1cの位置関係を画面上で把握することができる。
 図6は、障害物を検知例として、作業員が所持しているICタグ等と通信することにより建設機械の右側方の作業員を検知する様子を示す図である。
 図6においては、ICタグ受信機303が建設機械の右側方を検知範囲とするように取り付けられている。ICタグ受信機303は磁界発生装置を備えており、建設機械の周囲(本例では右側方の一定の範囲)に一定の磁界602を発生させている。このとき、ICタグ601を所持する作業員600が磁界602の範囲に進入すると、ICタグ601が磁界602に反応してICタグ受信機303に無線等の通信手段により検知情報、すなわち、磁界602を検知したことや磁界602に固有の情報などを送信する。ICタグ受信機303は、ICタグ601から受信した検知情報を制御ユニット320に出力する。制御ユニット320は、障害物検知装置420の障害物位置取得部422の機能により障害物の位置情報(この場合、障害物の位置情報は建設機械の右側方)を演算する。障害物の位置情報の算出方法としては、例えば、ICタグ受信機303の入力信号に含まれる電波強度からICタグ受信機303とICタグ601の距離を推定し、ICタグ受信機303の建設機械上における取り付け位置や車体1Bの寸法などを考慮して、建設機械の設計情報などを参照することにより障害物の位置情報を演算する。制御ユニット320は、演算された障害物の位置情報を制御ユニット310に出力する。制御ユニット310は、ガイダンス装置410のガイダンス表示部414の機能により、検知した障害物の位置情報に基づいてガイダンス用モニタ415に検知した作業員の検知位置(障害物の位置情報)を表示する。
 図7は、障害物検知装置における表示画面の一例を概略的に示す図である。
 図7では、カメラ302で撮像した画像に対し、カメラ302やICタグ受信機303の入力信号に基づいて障害物検知部421で検知した作業員600を検知枠710でマーキングした画像が障害物検知用モニタ424の画面上に表示されており、これらの表示と警報等の情報提示手段を組合せることにより、オペレータは建設機械周辺の障害物や進入物に対して反応することが可能になる。
 図8A及び図8Bは、障害物有りの場合のガイダンス装置における表示画面の表示例を概略的に示す図であり、図8Aは建設機械を横から見た断面図で表示を構成した例を、図8Bは建設機械を俯瞰した立体図で表示を構成した例をそれぞれ示している。
 図8Aでは、カメラ302やICタグ受信機303の入力信号に基づいて、目標面abの近くで作業員600が障害物として検知された場合を示している。この場合、ガイダンス表示部414は、障害物位置取得部422から出力された障害物の位置情報と目標面設定部413から出力された目標面abの情報を比較し、障害物の位置が目標面abに含まれる、または、その近傍である場合には、目標面abの表示方法を強調表示500aに変更する。具体的には、目標面abの線を太くする、色を変える、目標面abを点滅させる等のように表示様態を変更する表示処理を行い、目標面abを強調表示する。なお、図8Aでは、目標面abの線を太くする場合を例示している。このように、図8Aにおいては、目標面abの表示方法を強調表示500aに変更することにより、ガイダンス装置410のガイダンス用モニタ415に作業員の検知位置(障害物の位置情報)を表示している。なお、図8Aでは、作業員600が目標面abの近くに接近して検知された様子を説明するために作業員600を矢印と共に図示しているが、作業員600をアイコン等でガイダンス用モニタ415に表示する必要はない。
 図8Bでは、カメラ302やICタグ受信機303の入力信号に基づいて、目標面abcの近くで作業員600が障害物として検知されているシーンである。この場合、ガイダンス表示部414は、障害物位置取得部422から出力された障害物の位置情報と目標面設定部413から出力された目標面abcの情報を比較し、障害物の位置が目標面abcに含まれる、または、その近傍である場合には、目標面abcの表示方法を強調表示510aに変更する。具体的には、目標面abcの色を変える、目標面abcを点滅させる等のように表示様態を変更する表示処理を行い、目標面abcを強調表示する。なお、図8Bでは、目標面abcの色を変える(図示の都合上、黒塗りで示す)場合を示している。このように、図8Bにおいては、目標面abの表示方法を強調表示500aに変更することにより、ガイダンス装置410のガイダンス用モニタ415に作業員の検知位置(障害物の位置情報)を表示している。
 図9は、障害物有りの場合のガイダンス装置における表示画面の表示の他の例を概略的に示す図であり、建設機械を横から見た断面図で表示を構成した例を示している。
 図9では、ガイダンス用モニタ415の表示画面に障害物検知用アイコン910が設けられている。障害物検知用アイコン910は、車体1Bの正対方向(この場合、作業装置1Aの向いている方向が正)を示すコンパスの周囲に4方向の報知対象のエリアが表示されている。ガイダンス表示部414は、障害物の位置情報(この場合、建設機械本体の右側方)に基づいて、障害物検知用アイコン910の右側方のエリア(すなわち、建設機械本体の右側方を示すエリア)を強調表示910aとすることにより、オペレータに障害物の位置情報を提示する。
 以上のように構成した本実施の形態の効果を説明する。
 従来技術のように、建設機械においては、作業効率や利便性の向上を目的としてオペレータを支援するための情報が多様化している。しかしながら、ガイダンス装置を使用する場合、法面掘削や水平均し等の作業中には、オペレータがガイダンス装置の画面を注視することになる。したがって、進入物検知装置からの情報提示に対してはオペレータの反応が遅れる可能性が高い。また、障害物も含めたマップの情報をオペレータに提示してガイダンスするような従来技術においては、予めデータベースに記憶されている地中埋設物や地上構造物等の障害物に対してはオペレータが迅速に対応することが可能であるが、進入物検知装置からの情報提示に対しては、やはり、オペレータの反応が遅れるおそれがあり、作業効率と利便性の両立が困難である。
 これに対して本実施の形態においては、作業装置1Aによる作業対象について予め定められた設計データを取得する設計データ取得部411、作業装置1Aの位置情報を取得する作業装置位置取得部412、設計データ取得部411で取得した設計データと作業装置位置取得部412で取得した作業装置1Aの位置情報とに応じて作業装置1Aによる作業対象の目標面を設定する目標面設定部413、及び、目標面設定部413で設定した目標面と作業装置位置取得部412で取得した作業装置1Aの位置情報とを運転室内のガイダンス用モニタ415に表示するガイダンス表示部414を有するガイダンス装置410と、建設機械周辺の障害物を検知する障害物検知部421、及び、障害物検知部421で検知された障害物の位置情報を取得する障害物位置取得部422を有する障害物検知装置420とを備え、ガイダンス装置410のガイダンス表示部414は、障害物検知装置420の障害物位置取得部422で取得された障害物の位置情報をガイダンス用モニタ415に表示するように構成したので、オペレータがガイダンス装置の画面を注視しているときであっても、車体周辺の進入物のようなリアルタイム性の高い障害物の情報を確実にオペレータに提示することができ、作業効率と利便性の両立を図ることができる。
 すなわち、油圧ショベル等の建設機械において、実際に掘削作業を行っている場合には、オペレータはガイダンス用モニタの画面表示を注視しているため、障害物検知用モニタの画面表示を注視できていない場合が考えられる。また、エンジン音など実作業中に発生する騒音や振動等の影響により、警報等の情報提示手段に対しても反応が遅れることが考えられる。これに対して本実施の形態においては、オペレータがガイダンス用モニタ415の画面表示を注視しており、障害物検知用モニタ424の画面表示を注視していない場合でも、ガイダンス用モニタ415と同一の画面に障害物や進入物の情報(障害物の位置情報)を提示することで、車体周辺に進入する作業員のようにリアルタイム性の高い障害物の情報を確実にオペレータに提示することができ、作業効率と利便性を両立することができる。特に、オペレータが最も注視していると予想される目標面の表示方法を変更することにより、障害物の位置情報をより確実にオペレータに提示することができる。
 次に上記の各実施の形態の特徴について説明する。
 (1)上記の実施の形態では、建設機械本体(例えば、車体1B)に取り付けられ、複数の被駆動部材(例えば、ブーム1a、アーム1b、バケット1c)を連結して構成された多関節型の作業装置1Aと、前記複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータ(例えば、ブームシリンダ3a、アームシリンダ3b、バケットシリンダ3c)と、オペレータが搭乗する運転室に配置され、前記複数の油圧アクチュエータの動作を操作量に応じてそれぞれ指示するための複数の操作レバー装置4a~4fとを備えた建設機械において、前記作業装置による作業対象について予め定められた設計データを取得する設計データ取得部411、前記作業装置の位置情報を取得する作業装置位置取得部412、前記設計データ取得部で取得した前記設計データと前記作業装置位置取得部で取得した前記作業装置の位置情報とに応じて前記作業装置による作業対象の目標面を設定する目標面設定部413、及び、前記目標面設定部で設定した前記目標面と前記作業装置位置取得部で取得した前記作業装置の位置情報とを前記運転室内のガイダンス用モニタ415に表示するガイダンス表示部414を有するガイダンス装置410と、前記建設機械周辺の障害物を検知する障害物検知部421、及び、前記障害物検知部で検知された障害物の位置情報を取得する障害物位置取得部422を有する障害物検知装置420とを備え、前記ガイダンス装置の前記ガイダンス表示部は、前記障害物検知装置の前記障害物位置取得部で取得された前記障害物の位置情報を前記ガイダンス用モニタに表示するものとする。
 これにより、オペレータがガイダンス装置の画面を注視しているときであっても、車体周辺の進入物のようなリアルタイム性の高い障害物の情報を確実にオペレータに提示することができ、作業効率と利便性の両立を図ることができる。
 (2)また、上記の実施の形態では、(1)の建設機械において、前記ガイダンス装置410の前記ガイダンス表示部414は、前記障害物位置取得部422で取得された障害物の位置情報が、前記目標面設定部413で設定した目標面に含まれる場合、または、前記目標面の近傍であると判断される場合には、前記目標面の表示様態をその他の場合とは異なる表示様態に変更するものとする。
 <付記>
 なお、上記の実施の形態においては、エンジン等の原動機で油圧ポンプを駆動する一般的な油圧ショベルを例に挙げて説明したが、油圧ポンプをエンジン及びモータで駆動するハイブリッド式の油圧ショベルや、油圧ポンプをモータのみで駆動する電動式の油圧ショベル等にも本発明が適用可能であることは言うまでもない。
 また、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例や組み合わせが含まれる。また、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等により実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
 1A…作業装置、1B…車体(建設機械本体)、1a…ブーム、1b…アーム、1c…バケット、1d…上部旋回体、1e…下部走行体、2…油圧ポンプ、3…計、3a…ブームシリンダ、3b…アームシリンダ、3c…バケットシリンダ、3d…旋回モータ、3e…走行モータ、3f…走行モータ、4a…操作レバー装置~4f…操作レバー装置、5a~5f…流量制御弁、6…リリーフ弁、7…設定器、7a,7b…スイッチ、8…姿勢センサ、8a~8c…角度検出器、9…制御ユニット、91…入力部、92…中央処理装置(CPU)、93…リードオンリーメモリ(ROM)、94…ランダムアクセスメモリ(RAM)、95…出力部、301…衛星測位システム、302…カメラ、303…タグ受信機、310…制御ユニット、314…ガイダンス表示部、320…制御ユニット、391…入力部、392…中央処理装置(CPU)、393…リードオンリーメモリ(ROM)、394…ランダムアクセスメモリ(RAM)、395…出力部、400…データベース、410…ガイダンス装置、411…設計データ取得部、412…作業装置位置取得部、413…目標面設定部、414…ガイダンス表示部、415…ガイダンス用モニタ、420…障害物検知装置、421…障害物検知部、422…障害物位置取得部、423…障害物表示部、424…障害物検知用モニタ、500…設計データ、500a,510a,910a…強調表示、510…設計データ、600…作業員、601…ICタグ、602…磁界、710…検知枠、910…障害物検知用アイコン

Claims (2)

  1.  建設機械本体に取り付けられ、複数の被駆動部材を連結して構成された多関節型の作業装置と、
     前記複数の被駆動部材をそれぞれ駆動する複数の油圧アクチュエータと、
     オペレータが搭乗する運転室に配置され、前記複数の油圧アクチュエータの動作を操作量に応じてそれぞれ指示するための複数の操作レバー装置とを備えた建設機械において、
     前記作業装置による作業対象について予め定められた設計データを取得する設計データ取得部、
     前記作業装置の位置情報を取得する作業装置位置取得部、
     前記設計データ取得部で取得した前記設計データと前記作業装置位置取得部で取得した前記作業装置の位置情報とに応じて前記作業装置による作業対象の目標面を設定する目標面設定部、及び、
     前記目標面設定部で設定した前記目標面と前記作業装置位置取得部で取得した前記作業装置の位置情報とを前記運転室内のガイダンス用モニタに表示するガイダンス表示部を有するガイダンス装置と、
     前記建設機械周辺の障害物を検知する障害物検知部、及び、
     前記障害物検知部で検知された障害物の位置情報を取得する障害物位置取得部を有する障害物検知装置とを備え、
     前記ガイダンス装置の前記ガイダンス表示部は、前記障害物検知装置の前記障害物位置取得部で取得された前記障害物の位置情報を前記ガイダンス用モニタに表示することを特徴とする建設機械。
  2.  請求項1記載の建設機械において、
     前記ガイダンス装置の前記ガイダンス表示部は、
     前記障害物位置取得部で取得された障害物の位置情報が、前記目標面設定部で設定した目標面に含まれる場合、または、前記目標面の近傍であると判断される場合には、前記目標面の表示様態をその他の場合とは異なる表示様態に変更することを特徴とする建設機械。
PCT/JP2017/032372 2017-09-07 2017-09-07 建設機械 WO2019049288A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197005703A KR102159066B1 (ko) 2017-09-07 2017-09-07 건설 기계
PCT/JP2017/032372 WO2019049288A1 (ja) 2017-09-07 2017-09-07 建設機械
JP2019510381A JP6712674B2 (ja) 2017-09-07 2017-09-07 建設機械
CN201780053919.9A CN109790702B (zh) 2017-09-07 2017-09-07 工程机械
US16/333,349 US20190211532A1 (en) 2017-09-07 2017-09-07 Construction machine
EP17923987.6A EP3680397B1 (en) 2017-09-07 2017-09-07 Construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032372 WO2019049288A1 (ja) 2017-09-07 2017-09-07 建設機械

Publications (1)

Publication Number Publication Date
WO2019049288A1 true WO2019049288A1 (ja) 2019-03-14

Family

ID=65633776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032372 WO2019049288A1 (ja) 2017-09-07 2017-09-07 建設機械

Country Status (6)

Country Link
US (1) US20190211532A1 (ja)
EP (1) EP3680397B1 (ja)
JP (1) JP6712674B2 (ja)
KR (1) KR102159066B1 (ja)
CN (1) CN109790702B (ja)
WO (1) WO2019049288A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149531A1 (ja) * 2022-02-04 2023-08-10 株式会社小松製作所 作業機械の監視システム及び作業機械の監視方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3680400B1 (en) 2015-12-28 2021-09-22 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Shovel
CN109804121B (zh) * 2016-09-30 2022-03-08 住友建机株式会社 挖土机
JP6927821B2 (ja) * 2017-09-15 2021-09-01 株式会社小松製作所 表示システム、及び表示装置
JP7330107B2 (ja) * 2017-12-21 2023-08-21 住友建機株式会社 ショベル及びショベルの管理システム
JP6900897B2 (ja) * 2017-12-25 2021-07-07 コベルコ建機株式会社 建設機械の障害物検出装置
US10801180B2 (en) * 2018-06-11 2020-10-13 Deere & Company Work machine self protection system
JP7289232B2 (ja) * 2019-07-12 2023-06-09 株式会社小松製作所 作業機械および作業機械の制御システム
US11091100B2 (en) * 2019-10-03 2021-08-17 Deere & Company Work vehicle multi-camera vision systems
JP7261721B2 (ja) * 2019-10-15 2023-04-20 日立建機株式会社 施工支援システムおよび作業機械
JP2023176830A (ja) * 2022-06-01 2023-12-13 ヤンマーホールディングス株式会社 作業機械の制御方法、作業機械用制御プログラム、作業機械用制御システム及び作業機械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123476A (ja) 1999-10-26 2001-05-08 Hitachi Constr Mach Co Ltd 掘削機械の表示システム及び記録媒体
JP2002339407A (ja) 2001-05-16 2002-11-27 Komatsu Ltd 土木作業システム
JP2003034206A (ja) * 2001-07-19 2003-02-04 Nissan Motor Co Ltd 車両用駐車支援装置
JP2014205955A (ja) * 2013-04-10 2014-10-30 株式会社小松製作所 掘削機械の施工管理装置、油圧ショベルの施工管理装置、掘削機械及び施工管理システム
JP2015190159A (ja) 2014-03-27 2015-11-02 住友建機株式会社 ショベル及びその制御方法
WO2016174953A1 (ja) * 2015-04-28 2016-11-03 株式会社小松製作所 作業機械の周辺監視装置及び作業機械の周辺監視方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090043462A1 (en) * 2007-06-29 2009-02-12 Kenneth Lee Stratton Worksite zone mapping and collision avoidance system
US9611620B2 (en) * 2009-09-04 2017-04-04 Philip Paull Apparatus and method for enhanced grading control
KR101751405B1 (ko) * 2010-10-22 2017-06-27 히다치 겡키 가부시키 가이샤 작업 기계의 주변 감시 장치
JP6258582B2 (ja) * 2012-12-28 2018-01-10 株式会社小松製作所 建設機械の表示システムおよびその制御方法
WO2017094626A1 (ja) * 2015-11-30 2017-06-08 住友重機械工業株式会社 作業機械用周辺監視システム
JP6096980B2 (ja) * 2015-12-18 2017-03-15 株式会社小松製作所 施工情報表示装置および施工情報の表示方法
JP6707344B2 (ja) * 2015-12-25 2020-06-10 株式会社小松製作所 作業車両および作業車両の制御方法
JP6626710B2 (ja) * 2015-12-25 2019-12-25 株式会社小松製作所 作業車両および作業車両の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123476A (ja) 1999-10-26 2001-05-08 Hitachi Constr Mach Co Ltd 掘削機械の表示システム及び記録媒体
JP2002339407A (ja) 2001-05-16 2002-11-27 Komatsu Ltd 土木作業システム
JP2003034206A (ja) * 2001-07-19 2003-02-04 Nissan Motor Co Ltd 車両用駐車支援装置
JP2014205955A (ja) * 2013-04-10 2014-10-30 株式会社小松製作所 掘削機械の施工管理装置、油圧ショベルの施工管理装置、掘削機械及び施工管理システム
JP2015190159A (ja) 2014-03-27 2015-11-02 住友建機株式会社 ショベル及びその制御方法
WO2016174953A1 (ja) * 2015-04-28 2016-11-03 株式会社小松製作所 作業機械の周辺監視装置及び作業機械の周辺監視方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3680397A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149531A1 (ja) * 2022-02-04 2023-08-10 株式会社小松製作所 作業機械の監視システム及び作業機械の監視方法

Also Published As

Publication number Publication date
JPWO2019049288A1 (ja) 2019-11-07
EP3680397B1 (en) 2023-08-09
JP6712674B2 (ja) 2020-06-24
CN109790702A (zh) 2019-05-21
US20190211532A1 (en) 2019-07-11
KR20190034282A (ko) 2019-04-01
EP3680397A4 (en) 2021-04-14
KR102159066B1 (ko) 2020-09-23
EP3680397A1 (en) 2020-07-15
CN109790702B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2019049288A1 (ja) 建設機械
US10385543B2 (en) Construction management system, construction management method, and management device
KR101695914B1 (ko) 토공공사 수행시 굴삭기의 형상정보를 실시간 제공하는 굴삭기 3d 토공 bim 시스템
US20190330825A1 (en) Image display system for work machine
CA3029812C (en) Image display system of work machine, remote operation system of work machine, work machine, and method for displaying image of work machine
WO2020003631A1 (ja) 表示制御装置、および表示制御方法
JPWO2016158265A1 (ja) 作業機械
US20180245314A1 (en) Shape measuring system and shape measuring method
JP2008144379A (ja) 遠隔操縦作業機の画像処理システム
JP7420733B2 (ja) 表示制御システムおよび表示制御方法
WO2020003632A1 (ja) 表示制御装置、表示制御システムおよび表示制御方法
JP2024052764A (ja) 表示制御装置及び表示方法
JP6473648B2 (ja) 遠隔操作ロボット
JP6616149B2 (ja) 施工方法、作業機械の制御システム及び作業機械
JP6529058B1 (ja) 建設機械管理システム、建設機械管理プログラム、建設機械管理方法、建設機械および建設機械の外部管理装置
US20230267895A1 (en) Display control device and display control method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019510381

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197005703

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017923987

Country of ref document: EP

Effective date: 20200407