WO2019044917A1 - Device for analyzing chlorine concentration, method for analyzing chlorine concentration, device for producing titanium tetrachloride, and method for producing sponge titanium - Google Patents

Device for analyzing chlorine concentration, method for analyzing chlorine concentration, device for producing titanium tetrachloride, and method for producing sponge titanium Download PDF

Info

Publication number
WO2019044917A1
WO2019044917A1 PCT/JP2018/031991 JP2018031991W WO2019044917A1 WO 2019044917 A1 WO2019044917 A1 WO 2019044917A1 JP 2018031991 W JP2018031991 W JP 2018031991W WO 2019044917 A1 WO2019044917 A1 WO 2019044917A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine
containing gas
chlorine concentration
titanium
concentration
Prior art date
Application number
PCT/JP2018/031991
Other languages
French (fr)
Japanese (ja)
Inventor
山本 仁
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to JP2019539592A priority Critical patent/JP6816293B2/en
Publication of WO2019044917A1 publication Critical patent/WO2019044917A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/02Halides of titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Definitions

  • the present invention relates to a chlorine concentration analyzer, a chlorine concentration analyzer, a titanium tetrachloride manufacturing apparatus, and a sponge titanium manufacturing method using the same.
  • a process of producing titanium tetrachloride by reacting titanium oxide in raw material ore with chlorine using a chlorination furnace is known.
  • a chlorine source supplied into the chlorination furnace for example, a chlorine-containing gas generated in a manufacturing process of titanium oxide, a chlorine-containing gas generated in an electrolysis process of magnesium chloride of sponge titanium, and a purchased chlorine gas can be used.
  • the chlorine-containing gas generated in the manufacturing plant the amount of chlorine gas purchased can be reduced as much as possible, and economics and productivity can be improved.
  • the chlorine-containing gas generated in the manufacturing process of titanium oxide contains more impurities than the purchased chlorine gas etc., and the chlorine concentration in the generated gas may fluctuate depending on the type of titanium oxide to be manufactured. It is preferable to constantly monitor the chlorine concentration in the chlorine-containing gas supplied to the chlorination furnace. The current situation is that gas supply control is being performed based on assumptions and empirical rules.
  • JP-A-2006-519156 proposes a method of performing on-line analysis of chlorine gas concentration in chlorinator exhaust gas or burner exhaust gas with an ultraviolet chlorine analyzer in the production process of titanium dioxide.
  • Patent Document 1 the ultraviolet chlorine analyzer as exemplified in Patent Document 1 is very expensive itself. Therefore, by introducing an expensive analyzer into the feed gas analysis of the chlorination furnace, the profitability of sponge titanium may be reduced and the economy may be impaired.
  • the present invention provides a chlorine concentration analyzer capable of always and inexpensively analyzing the chlorine concentration in a chlorine-containing gas containing a high concentration of chlorine, a chlorine concentration analysis method, a titanium tetrachloride manufacturing apparatus and Provided is a method of producing sponge titanium.
  • the present inventor has found that it is effective to perform chlorine concentration analysis using an absorptiometric method using an LED light source capable of irradiating ultraviolet light.
  • the present invention completed on the basis of the above findings, in one aspect, includes a measuring cell for containing a chlorine-containing gas, a light emitting unit including an LED light source for irradiating ultraviolet light to the chlorine-containing gas flowing in the measuring cell, and a measuring cell
  • the chlorine concentration analyzer includes the light receiving unit that receives the ultraviolet light that has passed through and the calculating unit that calculates the chlorine concentration in the chlorine-containing gas based on the output signal from the light receiving unit.
  • the chlorine concentration analyzer according to the present invention comprises the LED light source emitting ultraviolet light having a wavelength of 200 to 350 nm.
  • the light receiving unit includes a solar cell.
  • the chlorine concentration of the chlorine-containing gas is 1% by mass or more.
  • a chlorine-containing gas is allowed to flow into the measurement cell, and the chlorine-containing gas flowing in the measurement cell is irradiated with ultraviolet light from a light emitting unit including an LED light source capable of irradiating ultraviolet light.
  • a chlorine concentration analysis method is provided that includes: receiving the ultraviolet light transmitted through the measurement cell in the light receiving unit; and calculating the chlorine concentration in the chlorine-containing gas based on the output signal from the light receiving unit.
  • the chlorine concentration analysis method according to the present invention includes, in one embodiment, irradiating a chlorine-containing gas with ultraviolet light having a wavelength of 200 nm to 350 nm.
  • the chlorine concentration analysis method according to the present invention includes, in another embodiment, using a solar cell in the light receiving unit.
  • the method for analyzing chlorine concentration according to the present invention includes, in yet another embodiment, analyzing a chlorine-containing gas having a chlorine concentration of 1% by mass or more.
  • the chlorine-containing gas includes at least one of a chlorine-containing gas generated in a manufacturing process of titanium oxide and a chlorine-containing gas generated in an electrolysis process of magnesium chloride. .
  • a chlorination furnace for producing titanium tetrachloride by contacting a raw material ore containing titanium oxide with a chlorine-containing gas, a supply pipe for supplying the chlorine-containing gas into the chlorination furnace, and a supply pipe And a chlorine concentration analyzer for continuously analyzing the concentration of chlorine in the chlorine-containing gas flowing in the supply pipe.
  • the chlorine-containing gas is at least one of a chlorine-containing gas generated in a titanium oxide manufacturing process and a chlorine-containing gas generated in an electrolysis process of magnesium chloride. including.
  • the apparatus for producing titanium tetrachloride according to the present invention further includes, in another embodiment, a mechanism for adjusting the supply amount of the chlorine-containing gas supplied to the chlorination furnace based on the analysis result of the chlorine concentration by the chlorine concentration analyzer. .
  • a method for producing sponge titanium comprising producing titanium sponge using the titanium tetrachloride obtained by the above-mentioned apparatus for producing titanium tetrachloride.
  • a chlorine concentration analyzer capable of always and inexpensively analyzing the chlorine concentration in a chlorine-containing gas containing a high concentration of chlorine, a chlorine concentration analysis method, a titanium tetrachloride production apparatus and a sponge titanium A manufacturing method can be provided.
  • FIG. 1 is explanatory drawing which shows an example of the manufacturing process of sponge titanium which used the Kroll method.
  • the manufacturing process of sponge titanium includes a chlorination process (S1), a distillation process (S2), a reduction separation process (S3), a crushing process (S4), and an electrolysis process (S5).
  • the raw material ore containing titanium oxide is supplied to the chlorination furnace 101 and is brought into contact with a chlorine-containing gas in the chlorination furnace 101 to generate titanium tetrachloride.
  • the generated titanium tetrachloride is cooled by a condenser 102 connected to a chlorination furnace 101 and recovered to obtain a crude titanium tetrachloride solution.
  • the crude titanium tetrachloride solution is pumped by a pump (not shown) and sent to the pretreatment tank 103, hydrogen sulfide is added in the pretreatment tank 103, and the crude titanium tetrachloride is subjected to sulfurization treatment to obtain vanadium chloride etc. Impurities are removed.
  • the crude titanium tetrachloride solution pretreated in the pretreatment tank 103 is heated in the evaporation vessel 104 and then distilled in the distillation column 105 to obtain purified titanium tetrachloride (distillation step S2).
  • a raw material of sponge titanium can be obtained by subjecting this purified titanium tetrachloride to reduction separation processing in the reduction separation step S3.
  • the reduction separation step S3 titanium tetrachloride is reduced with magnesium in a reduction furnace formed of a stainless steel or iron container under an argon atmosphere, and sponge titanium is generated while intermittently extracting magnesium chloride as a by-product.
  • the sponge titanium produced in the reduction furnace is transferred to the separation furnace, and the separation furnace and the condenser connected to the separation furnace are evacuated to perform vacuum separation processing.
  • the sponge titanium after vacuum separation processing is crushed to a predetermined size in the crushing step S4, and then stored in a closed container for product shipment.
  • the titanium sponge produced in this step can be used to produce a desired product such as titanium ingot or titanium alloy.
  • magnesium chloride produced as a by-product in the reduction separation step S3 is carried to the electrolysis step S5 and accommodated in the electrolytic cell 106, and is separated into metallic magnesium and chlorine gas (chlorine-containing gas) by molten salt electrolysis.
  • the chlorine-containing gas obtained in the electrolysis step can be supplied from the electrolytic cell 106 into the chlorination furnace 101 through the supply pipe 107 connected to the chlorination furnace 101.
  • a supply line (not shown) for supplying the chlorine-containing gas recovered in the titanium oxide production process or the chlorine gas purchased from the outside is connected. That is, the supply pipe 107 connected to the chlorination furnace 101 contains at least one of the chlorine-containing gas generated in the manufacturing process of titanium oxide and the chlorine-containing gas generated in the electrolysis process of magnesium chloride of sponge titanium.
  • the chlorine concentration in the chlorine-containing gas recovered in the titanium oxide production step is lower in chlorine concentration than the chlorine-containing gas obtained in the electrolysis step S5. Therefore, by supplying the chlorine-containing gas recovered in the titanium oxide production process to the chlorination furnace 101, the chlorine concentration in the chlorination furnace 101 may be lower than expected.
  • a chlorine concentration analyzer 1 is connected to a supply pipe 107 for supplying a chlorine-containing gas to the chlorination furnace 101, and can continuously analyze the concentration of chlorine supplied into the chlorination furnace 101;
  • the adjustment mechanism 2 which controls supply_amount
  • the installation position of the chlorine concentration analyzer 1 is not particularly limited, and it may be disposed at any position where the chlorine concentration in the chlorine-containing gas flowing into the chlorination furnace 101 can be analyzed.
  • the chlorine concentration analyzer 1 includes a measurement cell 10 that contains a chlorine-containing gas, and a light emitting unit 20 that includes an LED light source 21 that emits ultraviolet light to the chlorine-containing gas flowing in the measurement cell 10.
  • the light receiving unit 30 receives the ultraviolet light transmitted through the measurement cell 10, and the operation unit 50 calculates the chlorine concentration in the chlorine-containing gas based on the output signal from the light receiving unit 30.
  • the chlorine-containing gas can be circulated continuously inside the measuring cell 10.
  • a pair of transmission plates 11 for transmitting the light from the light emitting unit 20 to the light receiving unit 30 via the measurement cell 10 is disposed in a portion facing the light emitting unit 20 and the light receiving unit 30 of the measurement cell 10 .
  • the material of the transmission plate 11 is not particularly limited, but can be made of, for example, quartz glass.
  • the light emitting unit 20 can include an LED light source 21, a constant current driver for driving the LED light source 21, and an AC / DC converter 23 that converts a DC voltage supplied to the constant current driver from an AC voltage.
  • an LED light source 21 of the light emitting unit 20 since it is not necessary to use an expensive xenon lamp or a power source as in the prior art, the chlorine concentration in the chlorine containing gas can be analyzed more simply and economically.
  • the LED light source 21 used it is preferable to use a deep ultraviolet LED which emits ultraviolet light having a wavelength of 200 to 350 nm, preferably 250 to 300 nm.
  • a deep ultraviolet LED that emits ultraviolet light having a wavelength of 200 to 350 nm, preferably 250 to 300 nm, as the LED light source 21 chlorine molecules contained in the chlorine-containing gas can be more appropriately It can be detected.
  • the LED light source 21 emits ultraviolet light including 254 nm, which is a chlorine molecule absorption wavelength, by using the LED light source 21 having an emission center wavelength of 260 to 270 nm and a half width of 15 nm. Therefore, the absorption by chlorine can be properly analyzed.
  • the conventional expensive chlorine concentration analyzer emits a very wide range of wavelengths, and from among them, only the target wavelength is dispersed and analyzed from the absorption wavelength and absorbance of the substance.
  • the chlorine concentration analyzer 1 according to the present embodiment, by selectively irradiating light of a wavelength suitable for detection of chlorine molecules from the LED light source 21, there is no need to install a spectroscope or the like on the light receiving unit 30 side. It is possible to obtain a simpler chlorine concentration analyzer 1 suitable for analysis of chlorine concentration.
  • the use of a surface-mounted deep ultraviolet LED as the LED light source 21 can miniaturize the device.
  • the light receiving unit 30 is not particularly limited as long as it includes an element that converts light into an electrical signal.
  • a photodiode, an amorphous solar cell, or the like can be used.
  • a solar cell By using a solar cell, a cheaper and simpler chlorine concentration analyzer 1 can be obtained.
  • the LED light source 21 is used for the light emitting unit 20, and the light emitting unit 20 emits light of a wavelength necessary for chlorine concentration analysis.
  • the apparatus can be simplified using a solar cell or the like.
  • a display meter 40 and an operation unit 50 are connected to the light receiving unit 30. Based on the calibration curve data prepared in advance from the relationship between the chlorine concentration of the measurement gas determined by the existing Orsat method and the display meter voltage output from the light receiving unit 30 and displayed on the display meter 40, the calculation unit 50 The chlorine concentration in the chlorine-containing gas that has flowed into the measurement cell 10 can be calculated.
  • the light emitting unit 20 it is preferable to shield light around the measurement cell 10, the light emitting unit 20, and the light receiving unit 30. Thereby, the light reception accuracy of the light receiving unit 30 can be improved, and the density analysis accuracy can be further improved.
  • the chlorine-containing gas is circulated in the measuring cell 10, and the light emitting unit 20 includes the LED light source 21 capable of irradiating ultraviolet light. Then, the ultraviolet light is irradiated to the chlorine-containing gas flowing in the measuring cell 10. Then, the ultraviolet light transmitted through the measurement cell 10 is received by the light receiving unit 30, and the chlorine concentration in the chlorine-containing gas is calculated by the calculating unit 50 based on the output signal from the light receiving unit 30.
  • the chlorine concentration in the chlorine-containing gas flowing in the measuring cell 10 specifically 1% by mass to 100% by mass, more specifically
  • the chlorination furnace 101 is further provided with the adjustment mechanism 2 for adjusting the supply amount of the chlorine-containing gas supplied to the chlorination furnace 101 based on the analysis result of the chlorine concentration by the chlorine concentration analyzer 1. Since it is possible to manually or automatically adjust the concentration of chlorine gas supplied to the inside to a more appropriate range, titanium tetrachloride can be stably produced in the chlorination furnace 101.

Abstract

Provided is a device for analyzing chlorine concentration, comprising: a measurement cell 10 for housing chlorine-containing gas; a light-emitting unit 20 provided with a LED light source 21 for irradiating the chlorine-containing gas flowing through the measurement cell 10 with UV rays; a light-receiving unit 30 for receiving the UV rays transmitted through the measurement cell 10; and a calculation unit 50 for calculating the chlorine concentration in the chlorine-containing gas on the basis of an output signal from the light-receiving unit 30.

Description

塩素濃度分析装置、塩素濃度分析方法、四塩化チタンの製造装置及びスポンジチタンの製造方法Chlorine analyzer, chlorine analyzer, method of manufacturing titanium tetrachloride, and method of manufacturing sponge titanium
 本発明は、塩素濃度分析装置、塩素濃度分析方法、四塩化チタンの製造装置及びこれを用いたスポンジチタンの製造方法に関する。 The present invention relates to a chlorine concentration analyzer, a chlorine concentration analyzer, a titanium tetrachloride manufacturing apparatus, and a sponge titanium manufacturing method using the same.
 スポンジチタンの造液工程においては塩化炉を用いて原料鉱石中の酸化チタンを塩素と反応させ、四塩化チタンを製造する工程が知られている。塩化炉内へ供給される塩素源としては、例えば、酸化チタンの製造工程で発生する塩素含有ガス、スポンジチタンの塩化マグネシウムの電解工程で発生する塩素含有ガス及び購入した塩素ガスが利用できる。製造工場内で発生する塩素含有ガスを利用することにより、購入した塩素ガスの使用量をできるだけ少なくでき、経済性及び生産性の向上が図られている。 In the process of producing titanium sponge, a process of producing titanium tetrachloride by reacting titanium oxide in raw material ore with chlorine using a chlorination furnace is known. As a chlorine source supplied into the chlorination furnace, for example, a chlorine-containing gas generated in a manufacturing process of titanium oxide, a chlorine-containing gas generated in an electrolysis process of magnesium chloride of sponge titanium, and a purchased chlorine gas can be used. By using the chlorine-containing gas generated in the manufacturing plant, the amount of chlorine gas purchased can be reduced as much as possible, and economics and productivity can be improved.
 塩化炉において原料鉱石の処理を効率良く行うためには、塩化炉に供給する塩素濃度をできるだけ正確に把握することが望ましい。特に、酸化チタンの製造工程で発生する塩素含有ガスは、購入した塩素ガス等に比べて不純物を多く含み、製造する酸化チタンの種類に応じて発生ガス中の塩素濃度が変動する場合があるため、塩化炉へ供給する塩素含有ガス中の塩素濃度を常時監視することが好ましい。現状は、想定や経験則に基づくガスの供給制御が行われているのが実情である。 In order to process raw material ore efficiently in the chlorination furnace, it is desirable to grasp the chlorine concentration supplied to the chlorination furnace as accurately as possible. In particular, the chlorine-containing gas generated in the manufacturing process of titanium oxide contains more impurities than the purchased chlorine gas etc., and the chlorine concentration in the generated gas may fluctuate depending on the type of titanium oxide to be manufactured. It is preferable to constantly monitor the chlorine concentration in the chlorine-containing gas supplied to the chlorination furnace. The current situation is that gas supply control is being performed based on assumptions and empirical rules.
 塩素濃度の分析方法としては、オルザット法を用いたガス分析法が一般的である。しかしながら、オルザット法を用いたガス分析では、ガスサンプリングを行って濃度分析を行うため、塩化炉へ供給される供給ガス中の塩素濃度を常時監視することができない。 As an analysis method of chlorine concentration, a gas analysis method using the Orzat method is general. However, in gas analysis using the Orzat method, since concentration analysis is performed by gas sampling, it is not possible to constantly monitor the concentration of chlorine in the supply gas supplied to the chlorination furnace.
 特表2006-519156号公報は、二酸化チタンの製造工程において、クロリネーター排ガス又はバーナー排ガス中の塩素ガス濃度を紫外線塩素分析装置によりオンライン分析する方法が提案されている。 JP-A-2006-519156 proposes a method of performing on-line analysis of chlorine gas concentration in chlorinator exhaust gas or burner exhaust gas with an ultraviolet chlorine analyzer in the production process of titanium dioxide.
特表2006-519156号公報Japanese Patent Application Publication No. 2006-519156
 しかしながら、特許文献1に例示されるような紫外線塩素分析装置は、装置自体が非常に高価である。そのため、高価な分析装置を塩化炉の供給ガス分析に導入することにより、却ってスポンジチタンの収益性を低下させ、経済性を損なう場合がある。 However, the ultraviolet chlorine analyzer as exemplified in Patent Document 1 is very expensive itself. Therefore, by introducing an expensive analyzer into the feed gas analysis of the chlorination furnace, the profitability of sponge titanium may be reduced and the economy may be impaired.
 一方で現在市販されている安価な塩素ガス濃度計は、塩素ガスの漏れなどを検知する濃度1%未満の塩素濃度を分析するための塩素濃度計が主流であるため、造液工程の塩化炉に供給されるような高濃度の塩素ガスの濃度分析を行うことができない。 On the other hand, low-cost chlorine gas densitometers currently on the market today are mainly used for analyzing chlorine concentration below 1% concentration to detect leakage of chlorine gas etc. Analysis of high concentration chlorine gas as supplied to
 上記課題を鑑み、本発明は、高濃度の塩素を含む塩素含有ガス中の塩素濃度を安価に且つ常時分析することが可能な塩素濃度分析装置、塩素濃度分析方法、四塩化チタンの製造装置及びスポンジチタンの製造方法を提供する。 In view of the above problems, the present invention provides a chlorine concentration analyzer capable of always and inexpensively analyzing the chlorine concentration in a chlorine-containing gas containing a high concentration of chlorine, a chlorine concentration analysis method, a titanium tetrachloride manufacturing apparatus and Provided is a method of producing sponge titanium.
 本発明者は鋭意検討を重ねたところ、紫外線を照射可能なLED光源を用いて、吸光光度法を用いた塩素濃度分析を行うことが有効であることを見出した。 As a result of intensive studies, the present inventor has found that it is effective to perform chlorine concentration analysis using an absorptiometric method using an LED light source capable of irradiating ultraviolet light.
 以上の知見を基礎として完成した本発明は一側面において、塩素含有ガスを収容する測定セルと、測定セル内を流れる塩素含有ガスに対し、紫外線を照射するLED光源を備える発光部と、測定セルを透過した紫外線を受光する受光部と、受光部からの出力信号に基づいて塩素含有ガス中の塩素濃度を演算する演算部とを備える塩素濃度分析装置が提供される。 The present invention completed on the basis of the above findings, in one aspect, includes a measuring cell for containing a chlorine-containing gas, a light emitting unit including an LED light source for irradiating ultraviolet light to the chlorine-containing gas flowing in the measuring cell, and a measuring cell The chlorine concentration analyzer includes the light receiving unit that receives the ultraviolet light that has passed through and the calculating unit that calculates the chlorine concentration in the chlorine-containing gas based on the output signal from the light receiving unit.
 本発明に係る塩素濃度分析装置は一実施態様において、LED光源が、200~350nmの波長を有する紫外線を照射することを含む。 In one embodiment, the chlorine concentration analyzer according to the present invention comprises the LED light source emitting ultraviolet light having a wavelength of 200 to 350 nm.
 本発明に係る塩素濃度分析装置は別の一実施態様において、受光部が、太陽電池を含む。 In another embodiment of the chlorine concentration analyzer according to the present invention, the light receiving unit includes a solar cell.
 本発明に係る塩素濃度分析装置は更に別の一実施態様において、塩素含有ガスの塩素濃度が1質量%以上である。 In still another embodiment of the chlorine concentration analyzer according to the present invention, the chlorine concentration of the chlorine-containing gas is 1% by mass or more.
 本発明は別の一側面において、測定セル内に塩素含有ガスを流すことと、紫外線を照射可能なLED光源を含む発光部から、測定セル内を流れる塩素含有ガスに対して紫外線を照射することと、受光部において測定セルを透過した紫外線を受光することと、受光部からの出力信号に基づいて塩素含有ガス中の塩素濃度を演算することとを含む塩素濃度分析方法が提供される。 In another aspect of the present invention, a chlorine-containing gas is allowed to flow into the measurement cell, and the chlorine-containing gas flowing in the measurement cell is irradiated with ultraviolet light from a light emitting unit including an LED light source capable of irradiating ultraviolet light. A chlorine concentration analysis method is provided that includes: receiving the ultraviolet light transmitted through the measurement cell in the light receiving unit; and calculating the chlorine concentration in the chlorine-containing gas based on the output signal from the light receiving unit.
 本発明に係る塩素濃度分析方法は一実施態様において、200nm~350nmの波長を有する紫外線を塩素含有ガスに照射することを含む。 The chlorine concentration analysis method according to the present invention includes, in one embodiment, irradiating a chlorine-containing gas with ultraviolet light having a wavelength of 200 nm to 350 nm.
 本発明に係る塩素濃度分析方法は別の一実施態様において、受光部に太陽電池を用いることを含む。 The chlorine concentration analysis method according to the present invention includes, in another embodiment, using a solar cell in the light receiving unit.
 本発明に係る塩素濃度分析方法は更に別の一実施態様において、塩素濃度が1質量%以上の塩素含有ガスを分析することを含む。 The method for analyzing chlorine concentration according to the present invention includes, in yet another embodiment, analyzing a chlorine-containing gas having a chlorine concentration of 1% by mass or more.
 本発明に係る塩素濃度分析方法は別の一実施態様において、塩素含有ガスが、酸化チタンの製造工程で発生する塩素含有ガス及び塩化マグネシウムの電解工程で発生する塩素含有ガスの少なくともいずれかを含む。 In another embodiment of the method for analyzing chlorine concentration according to the present invention, the chlorine-containing gas includes at least one of a chlorine-containing gas generated in a manufacturing process of titanium oxide and a chlorine-containing gas generated in an electrolysis process of magnesium chloride. .
 本発明は更に別の一側面において、酸化チタンを含む原料鉱石を塩素含有ガスと接触させて四塩化チタンを製造する塩化炉と、塩化炉内に塩素含有ガスを供給する供給配管と、供給配管に接続され、供給配管内を流れる塩素含有ガス中の塩素濃度を連続的に分析する上記塩素濃度分析装置とを備える四塩化チタンの製造装置が提供される。 In still another aspect of the present invention, a chlorination furnace for producing titanium tetrachloride by contacting a raw material ore containing titanium oxide with a chlorine-containing gas, a supply pipe for supplying the chlorine-containing gas into the chlorination furnace, and a supply pipe And a chlorine concentration analyzer for continuously analyzing the concentration of chlorine in the chlorine-containing gas flowing in the supply pipe.
 本発明に係る四塩化チタンの製造装置は別の一実施態様において、塩素含有ガスが、酸化チタンの製造工程で発生する塩素含有ガス及び塩化マグネシウムの電解工程で発生する塩素含有ガスの少なくともいずれかを含む。 In another embodiment of the titanium tetrachloride production apparatus according to the present invention, the chlorine-containing gas is at least one of a chlorine-containing gas generated in a titanium oxide manufacturing process and a chlorine-containing gas generated in an electrolysis process of magnesium chloride. including.
 本発明に係る四塩化チタンの製造装置は別の一実施態様において、塩素濃度分析装置による塩素濃度の分析結果に基づいて、塩化炉へ供給する塩素含有ガスの供給量を調整する機構を更に備える。 The apparatus for producing titanium tetrachloride according to the present invention further includes, in another embodiment, a mechanism for adjusting the supply amount of the chlorine-containing gas supplied to the chlorination furnace based on the analysis result of the chlorine concentration by the chlorine concentration analyzer. .
 本発明は更に別の一側面において、上記四塩化チタンの製造装置で得られる四塩化チタンを用いて、スポンジチタンを製造することを含むスポンジチタンの製造方法が提供される。 According to still another aspect of the present invention, there is provided a method for producing sponge titanium, comprising producing titanium sponge using the titanium tetrachloride obtained by the above-mentioned apparatus for producing titanium tetrachloride.
 本発明によれば、高濃度の塩素を含む塩素含有ガス中の塩素濃度を安価に且つ常時分析することが可能な塩素濃度分析装置、塩素濃度分析方法、四塩化チタンの製造装置及びスポンジチタンの製造方法が提供できる。 According to the present invention, a chlorine concentration analyzer capable of always and inexpensively analyzing the chlorine concentration in a chlorine-containing gas containing a high concentration of chlorine, a chlorine concentration analysis method, a titanium tetrachloride production apparatus and a sponge titanium A manufacturing method can be provided.
クロール法を用いたスポンジチタンの製造工程の一例を示す説明図である。It is an explanatory view showing an example of a manufacturing process of sponge titanium using a Kroll method. 本発明の実施の形態に係る塩素濃度分析装置の一例を示す概略図である。It is the schematic which shows an example of the chlorine concentration analyzer which concerns on embodiment of this invention. 本発明の実施の形態に係る塩素濃度分析装置に用いられるLEDの発光中心波長と塩素分子の吸収波長との関係を表すグラフである。It is a graph showing the relationship between the luminescence center wavelength of LED used for the chlorine concentration analyzer based on embodiment of this invention, and the absorption wavelength of a chlorine molecule.
 以下、図面を参照しながら本発明の実施の形態について説明する。以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment shown below is an example of an apparatus and method for embodying the technical idea of the present invention, and the technical idea of the present invention includes the structure, arrangement, and the like of components as described below. It does not identify.
(スポンジチタンの製造)
 図1は、クロール法を用いたスポンジチタンの製造工程の一例を示す説明図である。スポンジチタンの製造工程は、塩化工程(S1)、蒸留工程(S2)、還元分離工程(S3)、破砕工程(S4)、電解工程(S5)を含む。
(Production of titanium sponge)
FIG. 1: is explanatory drawing which shows an example of the manufacturing process of sponge titanium which used the Kroll method. The manufacturing process of sponge titanium includes a chlorination process (S1), a distillation process (S2), a reduction separation process (S3), a crushing process (S4), and an electrolysis process (S5).
 酸化チタンを含む原料鉱石は、塩化炉101へ供給され、塩化炉101内において塩素含有ガスと接触させることにより、四塩化チタンを発生させる。発生した四塩化チタンは塩化炉101に接続されたコンデンサー102で冷却され、回収されることにより、粗四塩化チタン液が得られる。 The raw material ore containing titanium oxide is supplied to the chlorination furnace 101 and is brought into contact with a chlorine-containing gas in the chlorination furnace 101 to generate titanium tetrachloride. The generated titanium tetrachloride is cooled by a condenser 102 connected to a chlorination furnace 101 and recovered to obtain a crude titanium tetrachloride solution.
 粗四塩化チタン液はポンプ(図示省略)により汲み上げられて前処理槽103へ送られ、前処理槽103において硫化水素を添加し、粗四塩化チタンに対して硫化処理することによりバナジウム塩化物等の不純物が取り除かれる。前処理槽103で前処理された粗四塩化チタン液は、蒸発釜104で加熱され、その後蒸留塔105で蒸留処理されることにより、精製四塩化チタンが得られる(蒸留工程S2)。この精製四塩化チタンを還元分離工程S3で還元分離処理することによりスポンジチタンの原料が得られる。 The crude titanium tetrachloride solution is pumped by a pump (not shown) and sent to the pretreatment tank 103, hydrogen sulfide is added in the pretreatment tank 103, and the crude titanium tetrachloride is subjected to sulfurization treatment to obtain vanadium chloride etc. Impurities are removed. The crude titanium tetrachloride solution pretreated in the pretreatment tank 103 is heated in the evaporation vessel 104 and then distilled in the distillation column 105 to obtain purified titanium tetrachloride (distillation step S2). A raw material of sponge titanium can be obtained by subjecting this purified titanium tetrachloride to reduction separation processing in the reduction separation step S3.
 還元分離工程S3では、アルゴン雰囲気のステンレス製若しくは鉄製の容器から形成される還元炉内で四塩化チタンをマグネシウムで還元し、副生物の塩化マグネシウムを間欠的に抜き出しながらスポンジチタンを発生させる。次に、還元炉で生成したスポンジチタンを分離炉に移し、分離炉及び分離炉に接続されたコンデンサーを真空引きして真空分離処理を行う。真空分離処理後のスポンジチタンは、破砕工程S4において、所定のサイズに粉砕した後、製品出荷用に密閉容器内に収容される。本工程で製造されたスポンジチタンを用いて、チタンインゴッドやチタン合金等の所望の製品を製造することができる。 In the reduction separation step S3, titanium tetrachloride is reduced with magnesium in a reduction furnace formed of a stainless steel or iron container under an argon atmosphere, and sponge titanium is generated while intermittently extracting magnesium chloride as a by-product. Next, the sponge titanium produced in the reduction furnace is transferred to the separation furnace, and the separation furnace and the condenser connected to the separation furnace are evacuated to perform vacuum separation processing. The sponge titanium after vacuum separation processing is crushed to a predetermined size in the crushing step S4, and then stored in a closed container for product shipment. The titanium sponge produced in this step can be used to produce a desired product such as titanium ingot or titanium alloy.
 一方、還元分離工程S3において副生物として生成される塩化マグネシウムは、電解工程S5に運ばれて電解槽106内へ収容され、溶融塩電解法により金属マグネシウムと塩素ガス(塩素含有ガス)とに分離する。電解工程で得られた塩素含有ガスは、電解槽106から塩化炉101に接続された供給配管107を介して塩化炉101内へ供給可能になっている。 On the other hand, magnesium chloride produced as a by-product in the reduction separation step S3 is carried to the electrolysis step S5 and accommodated in the electrolytic cell 106, and is separated into metallic magnesium and chlorine gas (chlorine-containing gas) by molten salt electrolysis. Do. The chlorine-containing gas obtained in the electrolysis step can be supplied from the electrolytic cell 106 into the chlorination furnace 101 through the supply pipe 107 connected to the chlorination furnace 101.
 また、塩化炉101に接続された供給配管107には、酸化チタン製造工程で回収された塩素含有ガス或いは外部から購入した塩素ガスを供給するための供給ライン(図示せず)が接続されている。即ち、塩化炉101に接続された供給配管107には、酸化チタンの製造工程で発生する塩素含有ガス及びスポンジチタンの塩化マグネシウムの電解工程で発生する塩素含有ガスの少なくともいずれかが含まれる。 Further, to the supply pipe 107 connected to the chlorination furnace 101, a supply line (not shown) for supplying the chlorine-containing gas recovered in the titanium oxide production process or the chlorine gas purchased from the outside is connected. . That is, the supply pipe 107 connected to the chlorination furnace 101 contains at least one of the chlorine-containing gas generated in the manufacturing process of titanium oxide and the chlorine-containing gas generated in the electrolysis process of magnesium chloride of sponge titanium.
 酸化チタン製造工程で回収された塩素含有ガス中の塩素濃度は、電解工程S5で得られる塩素含有ガスと比べて塩素濃度が低い。そのため、酸化チタン製造工程で回収された塩素含有ガスを塩化炉101へ供給することにより、塩化炉101内の塩素濃度が想定よりも低くなる場合がある。 The chlorine concentration in the chlorine-containing gas recovered in the titanium oxide production step is lower in chlorine concentration than the chlorine-containing gas obtained in the electrolysis step S5. Therefore, by supplying the chlorine-containing gas recovered in the titanium oxide production process to the chlorination furnace 101, the chlorine concentration in the chlorination furnace 101 may be lower than expected.
 本実施形態では、塩化炉101へ塩素含有ガスを供給する供給配管107に接続され、塩化炉101内へ供給される塩素濃度を連続的に分析可能な塩素濃度分析装置1と、塩素濃度分析装置1の塩素濃度の分析結果に基づいて、塩素含有ガスの供給量を制御する調整機構2とを備えることができる。これにより、塩化炉101内の塩素濃度を常時適切な濃度に調整することができるため、四塩化チタンを安定的に生産して、スポンジチタンの製造工程のより効率的な処理を進めることができる。なお、塩素濃度分析装置1の設置位置は特に限定されず、塩化炉101へ流入する塩素含有ガス中の塩素濃度を分析可能な位置であれば、いずれに配置されてもよい。 In this embodiment, a chlorine concentration analyzer 1 is connected to a supply pipe 107 for supplying a chlorine-containing gas to the chlorination furnace 101, and can continuously analyze the concentration of chlorine supplied into the chlorination furnace 101; The adjustment mechanism 2 which controls supply_amount | feed_rate of chlorine containing gas based on the analysis result of 1 chlorine concentration can be provided. As a result, since the chlorine concentration in the chlorination furnace 101 can be always adjusted to an appropriate concentration, titanium tetrachloride can be stably produced, and more efficient processing of the sponge titanium production process can be advanced. . The installation position of the chlorine concentration analyzer 1 is not particularly limited, and it may be disposed at any position where the chlorine concentration in the chlorine-containing gas flowing into the chlorination furnace 101 can be analyzed.
(塩素濃度分析装置)
 本発明の実施の形態に係る塩素濃度分析装置1の概要を図2に示す。図2に示すように、塩素濃度分析装置1は、塩素含有ガスを収容する測定セル10と、測定セル10内を流れる塩素含有ガスに対し、紫外線を照射するLED光源21を備える発光部20と、測定セル10を透過した紫外線を受光する受光部30と、受光部30からの出力信号に基づいて塩素含有ガス中の塩素濃度を演算する演算部50とを備える。
(Chlorine concentration analyzer)
The outline | summary of the chlorine concentration analyzer 1 which concerns on embodiment of this invention is shown in FIG. As shown in FIG. 2, the chlorine concentration analyzer 1 includes a measurement cell 10 that contains a chlorine-containing gas, and a light emitting unit 20 that includes an LED light source 21 that emits ultraviolet light to the chlorine-containing gas flowing in the measurement cell 10. The light receiving unit 30 receives the ultraviolet light transmitted through the measurement cell 10, and the operation unit 50 calculates the chlorine concentration in the chlorine-containing gas based on the output signal from the light receiving unit 30.
 塩素含有ガスは測定セル10の内部を連続的に流通できるようになっている。測定セル10の発光部20及び受光部30と対向する部分には、発光部20からの光を測定セル10を介して受光部30へと透過させるための一対の透過板11が配置されている。透過板11の材質は特に限定されないが、例えば石英ガラス製とすることができる。 The chlorine-containing gas can be circulated continuously inside the measuring cell 10. A pair of transmission plates 11 for transmitting the light from the light emitting unit 20 to the light receiving unit 30 via the measurement cell 10 is disposed in a portion facing the light emitting unit 20 and the light receiving unit 30 of the measurement cell 10 . The material of the transmission plate 11 is not particularly limited, but can be made of, for example, quartz glass.
 発光部20は、LED光源21と、LED光源21を駆動させるための定電流ドライバと、定電流ドライバへ供給する直流電圧を交流電圧から変換するAC/DCコンバータ23を備えることができる。発光部20のLED光源21を用いることで、従来のような高価なキセノンランプや電源を使用する必要がないため、塩素含有ガス中の塩素濃度がより簡易で経済的に分析可能となる。 The light emitting unit 20 can include an LED light source 21, a constant current driver for driving the LED light source 21, and an AC / DC converter 23 that converts a DC voltage supplied to the constant current driver from an AC voltage. By using the LED light source 21 of the light emitting unit 20, since it is not necessary to use an expensive xenon lamp or a power source as in the prior art, the chlorine concentration in the chlorine containing gas can be analyzed more simply and economically.
 使用されるLED光源21としては、200~350nm、好ましくは250~300nmの波長を有する紫外線を照射する深紫外線LEDを用いることが好ましい。本実施形態によれば、200~350nm、好ましくは250~300nmの波長を有する紫外線を照射する深紫外線LEDをLED光源21として使用することで、塩素含有ガス中に含まれる塩素分子をより適切に検出することができる。具体的には、図3に示すように、発光中心波長が260~270nm、半値幅が15nmのLED光源21を用いることにより、LED光源21が塩素分子吸収波長である254nmを含む紫外線を発光するため、塩素による吸光を適切に分析することができる。 As the LED light source 21 used, it is preferable to use a deep ultraviolet LED which emits ultraviolet light having a wavelength of 200 to 350 nm, preferably 250 to 300 nm. According to the present embodiment, by using a deep ultraviolet LED that emits ultraviolet light having a wavelength of 200 to 350 nm, preferably 250 to 300 nm, as the LED light source 21, chlorine molecules contained in the chlorine-containing gas can be more appropriately It can be detected. Specifically, as shown in FIG. 3, the LED light source 21 emits ultraviolet light including 254 nm, which is a chlorine molecule absorption wavelength, by using the LED light source 21 having an emission center wavelength of 260 to 270 nm and a half width of 15 nm. Therefore, the absorption by chlorine can be properly analyzed.
 従来の高価な塩素濃度分析装置では、非常に広範囲の波長を発光しその中から目的とする波長のみを分光してその物質の吸収波長と吸光度から分析を行っていた。本実施形態に係る塩素濃度分析装置1では、塩素分子の検出に適した波長の光をLED光源21から選択的に照射することで、受光部30側に分光器等を設置する必要がなく、より簡易で且つ塩素濃度の分析に適した塩素濃度分析装置1を得ることができる。LED光源21としては、表面実装型の深紫外線LEDを用いることで、装置の小型化を図ることができる。 The conventional expensive chlorine concentration analyzer emits a very wide range of wavelengths, and from among them, only the target wavelength is dispersed and analyzed from the absorption wavelength and absorbance of the substance. In the chlorine concentration analyzer 1 according to the present embodiment, by selectively irradiating light of a wavelength suitable for detection of chlorine molecules from the LED light source 21, there is no need to install a spectroscope or the like on the light receiving unit 30 side. It is possible to obtain a simpler chlorine concentration analyzer 1 suitable for analysis of chlorine concentration. The use of a surface-mounted deep ultraviolet LED as the LED light source 21 can miniaturize the device.
 受光部30としては、光を電気信号に変換する素子を備えるものであれば特に限定されない。例えば、フォトダイオード、アモルファス太陽電池などを用いることができる。太陽電池を用いることで、より安価で簡便な塩素濃度分析装置1が得られる。なお、上述のように、本実施形態に係る塩素濃度分析装置1では、発光部20にLED光源21が使用され、発光部20から塩素濃度の分析に必要な波長の光を出すため、受光部30において目的の波長を取り出すための分光やダイオードアレイが不要となり、太陽電池などを利用して装置の簡略化を図ることができる。 The light receiving unit 30 is not particularly limited as long as it includes an element that converts light into an electrical signal. For example, a photodiode, an amorphous solar cell, or the like can be used. By using a solar cell, a cheaper and simpler chlorine concentration analyzer 1 can be obtained. As described above, in the chlorine concentration analyzer 1 according to the present embodiment, the LED light source 21 is used for the light emitting unit 20, and the light emitting unit 20 emits light of a wavelength necessary for chlorine concentration analysis. At 30, there is no need for a spectrum or diode array for taking out the target wavelength, and the apparatus can be simplified using a solar cell or the like.
 受光部30には表示計40及び演算部50が接続されている。演算部50は、既存のオルザット法で求められた測定ガスの塩素濃度と受光部30から出力され表示計40に表示された表示計電圧との関係から予め作製された検量線データに基づいて、測定セル10内に流入した塩素含有ガス中の塩素濃度を算出することができる。 A display meter 40 and an operation unit 50 are connected to the light receiving unit 30. Based on the calibration curve data prepared in advance from the relationship between the chlorine concentration of the measurement gas determined by the existing Orsat method and the display meter voltage output from the light receiving unit 30 and displayed on the display meter 40, the calculation unit 50 The chlorine concentration in the chlorine-containing gas that has flowed into the measurement cell 10 can be calculated.
 なお、測定セル10、発光部20及び受光部30の周辺は遮光することが好ましい。これにより、受光部30の受光精度を向上させることができ、濃度分析精度をより向上させることができる。 In addition, it is preferable to shield light around the measurement cell 10, the light emitting unit 20, and the light receiving unit 30. Thereby, the light reception accuracy of the light receiving unit 30 can be improved, and the density analysis accuracy can be further improved.
 図2の塩素濃度分析装置1を用いて塩素含有ガス中の塩素濃度を分析する場合には、測定セル10内に塩素含有ガスを流通させ、紫外線を照射可能なLED光源21を含む発光部20から、測定セル10内を流れる塩素含有ガスに対して紫外線を照射する。そして、受光部30において測定セル10を透過した紫外線を受光し、受光部30からの出力信号に基づいて演算部50により、塩素含有ガス中の塩素濃度を演算する。 When the chlorine concentration in the chlorine-containing gas is analyzed using the chlorine concentration analyzer 1 of FIG. 2, the chlorine-containing gas is circulated in the measuring cell 10, and the light emitting unit 20 includes the LED light source 21 capable of irradiating ultraviolet light. Then, the ultraviolet light is irradiated to the chlorine-containing gas flowing in the measuring cell 10. Then, the ultraviolet light transmitted through the measurement cell 10 is received by the light receiving unit 30, and the chlorine concentration in the chlorine-containing gas is calculated by the calculating unit 50 based on the output signal from the light receiving unit 30.
 このように、本発明の実施の形態に係る塩素濃度分析装置1によれば、測定セル10内を流れる塩素含有ガス中の塩素濃度、具体的には1質量%~100質量%、更に具体的には50~98質量%程度の高濃度の塩素を含むガスを安価で常時連続的に分析することが可能となる。これにより、図1の塩化炉101内へ供給される塩素含有ガス中の塩素濃度を常時把握することが可能となり、塩化炉101において四塩化チタンを安定的に生産することができる。 As described above, according to the chlorine concentration analyzer 1 according to the embodiment of the present invention, the chlorine concentration in the chlorine-containing gas flowing in the measuring cell 10, specifically 1% by mass to 100% by mass, more specifically In addition, it is possible to analyze a gas containing chlorine at a high concentration of about 50 to 98 mass% at low cost and continuously at all times. As a result, it becomes possible to constantly grasp the chlorine concentration in the chlorine-containing gas supplied into the chlorination furnace 101 of FIG. 1, and titanium tetrachloride can be stably produced in the chlorination furnace 101.
 従来、塩化炉101内の塩素濃度をオルザット法により分析するためには、電解槽106に繋がる供給配管107からサンプルを抽出する作業を行っていた。本実施形態に係る塩素濃度分析装置1によれば、サンプル抽出のための作業が不要となり連続して濃度を分析することが可能となる。また、電解槽106へのMgCl2注入作業及び電解槽106からのMg汲み出し作業による蓋の開放による空気の巻き込みを抑制することができる。 Conventionally, in order to analyze the chlorine concentration in the chlorination furnace 101 by the Orsat method, an operation of extracting a sample from the supply pipe 107 connected to the electrolytic cell 106 has been performed. According to the chlorine concentration analyzer 1 according to the present embodiment, the operation for sample extraction is unnecessary, and it becomes possible to analyze the concentration continuously. In addition, it is possible to suppress the entrapment of air due to the opening of the lid due to the MgCl 2 injection operation into the electrolytic cell 106 and the Mg extraction operation from the electrolytic cell 106.
 更に、図1に示すように、塩素濃度分析装置1による塩素濃度の分析結果に基づいて塩化炉101へ供給する塩素含有ガスの供給量を調整する調整機構2を更に備えることにより、塩化炉101内へ供給する塩素ガス濃度をより適正な範囲へ手動又は自動で調整することが可能となるため、塩化炉101において四塩化チタンを安定的に生産することができる。 Furthermore, as shown in FIG. 1, the chlorination furnace 101 is further provided with the adjustment mechanism 2 for adjusting the supply amount of the chlorine-containing gas supplied to the chlorination furnace 101 based on the analysis result of the chlorine concentration by the chlorine concentration analyzer 1. Since it is possible to manually or automatically adjust the concentration of chlorine gas supplied to the inside to a more appropriate range, titanium tetrachloride can be stably produced in the chlorination furnace 101.
1…塩素濃度分析装置
2…調整機構
10…測定セル
11…透過板
20…発光部
21…LED光源
23…AC/DCコンバータ
30…受光部
40…表示計
50…演算部
101…塩化炉
102…コンデンサー
103…前処理槽
104…蒸発釜
105…蒸留塔
106…電解槽
107…供給配管
DESCRIPTION OF SYMBOLS 1 ... Chlorine concentration analyzer 2 ... Adjustment mechanism 10 ... Measurement cell 11 ... Transmission plate 20 ... Light emission part 21 ... LED light source 23 ... AC / DC converter 30 ... Light reception part 40 ... Display meter 50 ... Calculation part 101 ... Chlorination furnace 102 ... Condenser 103 ... Pretreatment tank 104 ... Evaporation pot 105 ... Distillation column 106 ... Electrolysis tank 107 ... Supply piping

Claims (13)

  1.  塩素含有ガスを収容する測定セルと、
     前記測定セル内を流れる前記塩素含有ガスに対し、紫外線を照射するLED光源を備える発光部と、
     前記測定セルを透過した前記紫外線を受光する受光部と、
     前記受光部からの出力信号に基づいて前記塩素含有ガス中の塩素濃度を演算する演算部と
     を備えることを特徴とする塩素濃度分析装置。
    A measuring cell containing a chlorine-containing gas,
    A light emitting unit including an LED light source for irradiating ultraviolet light to the chlorine-containing gas flowing in the measurement cell;
    A light receiving unit that receives the ultraviolet light transmitted through the measurement cell;
    And a calculation unit for calculating the chlorine concentration in the chlorine-containing gas based on the output signal from the light receiving unit.
  2.  前記LED光源が、200~350nmの波長を有する紫外線を照射することを特徴とする請求項1に記載の塩素濃度分析装置。 The chlorine concentration analyzer according to claim 1, wherein the LED light source emits ultraviolet light having a wavelength of 200 to 350 nm.
  3.  前記受光部が、太陽電池を含むことを特徴とする請求項1又は2に記載の塩素濃度分析装置。 The chlorine concentration analyzer according to claim 1, wherein the light receiving unit includes a solar cell.
  4.  塩素含有ガスの塩素濃度が1質量%以上であることを特徴とする請求項1~3のいずれか1項に記載の塩素濃度分析装置。 The chlorine concentration analyzer according to any one of claims 1 to 3, wherein the chlorine concentration of the chlorine-containing gas is 1 mass% or more.
  5.  測定セル内に塩素含有ガスを流すことと、
     紫外線を照射可能なLED光源を含む発光部から、前記測定セル内を流れる前記塩素含有ガスに対して紫外線を照射することと、
     受光部において前記測定セルを透過した前記紫外線を受光することと、
     前記受光部からの出力信号に基づいて前記塩素含有ガス中の塩素濃度を演算することと
     を含むことを特徴とする塩素濃度分析方法。
    Flowing a chlorine-containing gas into the measuring cell;
    Irradiating the chlorine-containing gas flowing in the measurement cell with ultraviolet light from a light emitting unit including an LED light source capable of irradiating ultraviolet light;
    Receiving the ultraviolet light transmitted through the measurement cell in a light receiving unit;
    Calculating a chlorine concentration in the chlorine-containing gas based on an output signal from the light receiving unit.
  6.  200nm~350nmの波長を有する紫外線を前記塩素含有ガスに照射することを含む請求項5に記載の塩素濃度分析方法。 The chlorine concentration analysis method according to claim 5, comprising irradiating the chlorine-containing gas with ultraviolet light having a wavelength of 200 nm to 350 nm.
  7.  前記受光部に太陽電池を用いることを含む請求項5又は6に記載の塩素濃度分析方法。 The chlorine concentration analysis method according to claim 5 or 6 including using a solar cell for said light sensing portion.
  8.  塩素濃度が1質量%以上の塩素含有ガスを分析することを含む請求項5~7のいずれか1項に記載の塩素濃度分析方法。 The method for analyzing chlorine concentration according to any one of claims 5 to 7, comprising analyzing a chlorine-containing gas having a chlorine concentration of 1 mass% or more.
  9.  前記塩素含有ガスが、酸化チタンの製造工程で発生する塩素含有ガス及び塩化マグネシウムの電解工程で発生する塩素含有ガスの少なくともいずれかを含むことを特徴とする請求項5~8のいずれか1項に記載の塩素濃度分析方法。 The chlorine-containing gas includes at least one of a chlorine-containing gas generated in a manufacturing process of titanium oxide and a chlorine-containing gas generated in an electrolysis process of magnesium chloride. The chlorine concentration analysis method described in.
  10.  酸化チタンを含む原料鉱石を塩素含有ガスと接触させて四塩化チタンを製造する塩化炉と、
     前記塩化炉内に前記塩素含有ガスを供給する供給配管と、
     前記供給配管に接続され、前記供給配管内を流れる前記塩素含有ガス中の塩素濃度を連続的に分析する請求項1~4のいずれか1項に記載の塩素濃度分析装置と
     を備えることを特徴とする四塩化チタンの製造装置。
    A chlorination furnace for producing titanium tetrachloride by bringing a raw material ore containing titanium oxide into contact with a chlorine-containing gas,
    Supply piping for supplying the chlorine-containing gas into the chlorination furnace;
    The chlorine concentration analyzer according to any one of claims 1 to 4, which is connected to the supply pipe and continuously analyzes the chlorine concentration in the chlorine-containing gas flowing in the supply pipe. Production equipment for titanium tetrachloride.
  11.  前記塩素含有ガスが、酸化チタンの製造工程で発生する塩素含有ガス及び塩化マグネシウムの電解工程で発生する塩素含有ガスの少なくともいずれかを含むことを特徴とする請求項10に記載の四塩化チタンの製造装置。 11. The titanium tetrachloride according to claim 10, wherein the chlorine-containing gas contains at least one of a chlorine-containing gas generated in a manufacturing process of titanium oxide and a chlorine-containing gas generated in an electrolysis process of magnesium chloride. manufacturing device.
  12.  前記塩素濃度分析装置による前記塩素濃度の分析結果に基づいて、前記塩化炉へ供給する前記塩素含有ガスの供給量を調整する機構を更に備えることを特徴とする請求項10又は11に記載の四塩化チタンの製造装置。 12. The system according to claim 10, further comprising a mechanism for adjusting the supply amount of the chlorine-containing gas supplied to the chlorination furnace based on the analysis result of the chlorine concentration by the chlorine concentration analyzer. Production equipment for titanium chloride.
  13.  請求項10~12のいずれか1項に記載の四塩化チタンの製造装置で得られる四塩化チタンを用いて、スポンジチタンを製造することを含むスポンジチタンの製造方法。
     
    A method of producing sponge titanium comprising producing sponge titanium using titanium tetrachloride obtained by the apparatus for producing titanium tetrachloride according to any one of claims 10 to 12.
PCT/JP2018/031991 2017-09-01 2018-08-29 Device for analyzing chlorine concentration, method for analyzing chlorine concentration, device for producing titanium tetrachloride, and method for producing sponge titanium WO2019044917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019539592A JP6816293B2 (en) 2017-09-01 2018-08-29 Chlorine concentration analyzer, chlorine concentration analysis method, titanium tetrachloride manufacturing device and sponge titanium manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017168772 2017-09-01
JP2017-168772 2017-09-01

Publications (1)

Publication Number Publication Date
WO2019044917A1 true WO2019044917A1 (en) 2019-03-07

Family

ID=65527438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031991 WO2019044917A1 (en) 2017-09-01 2018-08-29 Device for analyzing chlorine concentration, method for analyzing chlorine concentration, device for producing titanium tetrachloride, and method for producing sponge titanium

Country Status (2)

Country Link
JP (1) JP6816293B2 (en)
WO (1) WO2019044917A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021714A (en) * 2019-07-30 2021-02-18 株式会社フジキン Abnormality detection method
WO2022024407A1 (en) * 2020-07-28 2022-02-03 株式会社トラステック愛知 Gas concentration detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184900B (en) * 2021-05-12 2022-08-12 攀钢集团钒钛资源股份有限公司 Titanium tetrachloride production method and system and raw material ratio adjusting method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113786A (en) * 1976-03-18 1977-09-24 Cerberus Ag Apparatus for detecting fine particle such as smoke
JPH06508443A (en) * 1992-04-06 1994-09-22 ローズマウント アナリティカル インコーポレイテッド photometer
JP2006519156A (en) * 2003-02-25 2006-08-24 トロノックス エルエルシー Improved method for producing titanium dioxide
US20100208239A1 (en) * 2009-02-18 2010-08-19 Nicholas Materer Chlorine dioxide sensor
JP2015081830A (en) * 2013-10-22 2015-04-27 日機装株式会社 Analyser
WO2017146109A1 (en) * 2016-02-23 2017-08-31 東邦チタニウム株式会社 Metallic container or tube, method for producing sponge titanium, and method for producing titanium processed product or titanium cast product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843302A (en) * 1994-07-30 1996-02-16 Horiba Ltd Ultravoilet analyzer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113786A (en) * 1976-03-18 1977-09-24 Cerberus Ag Apparatus for detecting fine particle such as smoke
JPH06508443A (en) * 1992-04-06 1994-09-22 ローズマウント アナリティカル インコーポレイテッド photometer
JP2006519156A (en) * 2003-02-25 2006-08-24 トロノックス エルエルシー Improved method for producing titanium dioxide
US20100208239A1 (en) * 2009-02-18 2010-08-19 Nicholas Materer Chlorine dioxide sensor
JP2015081830A (en) * 2013-10-22 2015-04-27 日機装株式会社 Analyser
WO2017146109A1 (en) * 2016-02-23 2017-08-31 東邦チタニウム株式会社 Metallic container or tube, method for producing sponge titanium, and method for producing titanium processed product or titanium cast product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021714A (en) * 2019-07-30 2021-02-18 株式会社フジキン Abnormality detection method
JP7249031B2 (en) 2019-07-30 2023-03-30 株式会社フジキン Anomaly detection method
WO2022024407A1 (en) * 2020-07-28 2022-02-03 株式会社トラステック愛知 Gas concentration detection device
JP2022024437A (en) * 2020-07-28 2022-02-09 株式会社トラステック愛知 Gas concentration detector

Also Published As

Publication number Publication date
JPWO2019044917A1 (en) 2020-05-28
JP6816293B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2019044917A1 (en) Device for analyzing chlorine concentration, method for analyzing chlorine concentration, device for producing titanium tetrachloride, and method for producing sponge titanium
Yu et al. Determination of calcium and zinc in gluconates oral solution and blood samples by liquid cathode glow discharge-atomic emission spectrometry
Yu et al. Simultaneously determination of multi metal elements in water samples by liquid cathode glow discharge-atomic emission spectrometry
US10241035B2 (en) Spectrophotometric sensors and methods of using same
Hu et al. Raman spectroscopy and ionic structure of Na3AlF6-Al2O3 melts
Liu Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection
Giersz et al. Sensitive determination of Hg together with Mn, Fe, Cu by combined photochemical vapor generation and pneumatic nebulization in the programmable temperature spray chamber and inductively coupled plasma optical emission spectrometry
Zheng et al. Online mercury determination by laser-induced breakdown spectroscopy with the assistance of solution cathode glow discharge
CN101144795A (en) Impulse melting-flying time mass spectrometry analysis method for element
US10641711B2 (en) Method for analyzing nitrogen in metal sample, apparatus for analyzing nitrogen in metal sample, method for adjusting nitrogen concentration in molten steel, and method for manufacturing steel
Gorska et al. Application of atmospheric pressure glow discharge generated in contact with liquids for determination of chloride and bromide in water and juice samples by optical emission spectrometry
Manjusha et al. Direct determination of impurities in high purity chemicals by electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES)
Peng et al. Solution anode glow discharge optical emission spectrometry: Volatile hydride introduction from the gas jet nozzle cathode for ultrasensitive determination of lead
Greda et al. Direct analysis of wines from the province of Lower Silesia (Poland) by microplasma source optical emission spectrometry
Shutov et al. Comparison of the characteristics of DC discharges with a liquid anode and a liquid cathode over aqueous solutions of zinc nitrate
Sakudo et al. Comparison of the vibration mode of metals in HNO3 by a partial least-squares regression analysis of near-infrared spectra
Etxebarria et al. Optimisation of flow-injection-hydride generation inductively coupled plasma spectrometric determination of selenium in electrolytic manganese
Nakahara et al. Continuous-flow determination of aqueous sulfur by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry with gas-phase sample introduction
Wang et al. Research on characterization and modeling for ultraviolet degradation of imidacloprid based on absorbance change
Xiong et al. Capillary point Discharge-Optical emission spectrometer: Field portable mercury analyzer
EP2473568B1 (en) Titanium bearing material flow control in the manufacture of titanium tetrachloride with silica content monitoring of the titanium product using feedback and feed forward responses
JP5585786B2 (en) Measuring method of total organic carbon
JP2005249551A (en) Analyzing method and its device for impurity in mixed gas
JP3606339B2 (en) Concentration measuring device
JP6493379B2 (en) Metal slab cleanliness evaluation method and metal slab cleanliness evaluation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852279

Country of ref document: EP

Kind code of ref document: A1