WO2019044410A1 - Light observation device - Google Patents

Light observation device Download PDF

Info

Publication number
WO2019044410A1
WO2019044410A1 PCT/JP2018/029500 JP2018029500W WO2019044410A1 WO 2019044410 A1 WO2019044410 A1 WO 2019044410A1 JP 2018029500 W JP2018029500 W JP 2018029500W WO 2019044410 A1 WO2019044410 A1 WO 2019044410A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal
output signal
excitation
receiving unit
Prior art date
Application number
PCT/JP2018/029500
Other languages
French (fr)
Japanese (ja)
Inventor
大山 達史
宮下 万里子
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018130623A external-priority patent/JP7026337B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880046536.3A priority Critical patent/CN110869749A/en
Publication of WO2019044410A1 publication Critical patent/WO2019044410A1/en
Priority to US16/784,933 priority patent/US11363215B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present disclosure relates to a light observation device.
  • Patent Documents 1 to 4 disclose that an object is analyzed by acquiring Excitation Emission Matrix (EEM) information.
  • EEM information is also referred to as "fluorescent fingerprint" and means three-dimensional data obtained by measuring a fluorescence spectrum while continuously changing the wavelength of excitation light to be applied to a sample.
  • a technology has been conventionally developed to obtain information on an object by irradiating the object with light and measuring the reflected light from the object.
  • the present disclosure provides a highly versatile light observation apparatus.
  • a light observation apparatus is a group of reflected light returned from at least a part and fluorescence generated from the at least part when irradiated light is irradiated to at least part of an object.
  • a first light receiving unit that receives a first light including at least one selected light and an ambient light, and outputs a first output signal representing a light receiving intensity of the first light;
  • a second light receiving unit provided at a position not overlapping the optical path of one light, receiving a second light including the ambient light, and outputting a second output signal representing a light receiving intensity of the second light ,
  • Signal processing circuit attenuates a first signal component corresponding to the ambient light from the first output signal by calculation of the first output signal and the second output signal.
  • fluorescence generated from the object when irradiation light having an excitation wavelength selected from a plurality of different excitation wavelengths is irradiated to the object
  • a signal processing circuit that receives a first light including ambient light and outputs a first output signal representing a received light intensity of the first light.
  • the signal processing circuit is a signal component included in the first output signal, and a signal component whose correlation between the signal intensity of the signal component and the excitation wavelength is smaller than a reference value corresponds to the ambient light.
  • the first output signal is attenuated as a signal component of one.
  • a computer readable recording medium is a computer readable recording medium storing a program, and when the program is executed by the computer, the first light receiving unit includes: At least one light selected from the group consisting of the reflected light returned from the at least one part and the fluorescence generated from the at least one when the irradiation light is irradiated to at least one part of the object, and the ambient light , And outputting a first output signal representing the received light intensity of the first light, and receiving a second light including the ambient light in a second light receiving unit Outputting a second output signal representing the received light intensity of the second light, and the signal processing circuit calculating the first output signal and the second output signal.
  • a step of the first output signal attenuating a first signal component corresponding to the ambient light, is executed.
  • a computer readable recording medium is a computer readable recording medium storing a program, wherein the first light receiving unit when the program is executed by the computer.
  • the first light including the fluorescent light generated from the target and the ambient light when the target is irradiated with illumination light having an excitation wavelength selected from a plurality of different excitation wavelengths, Outputting a first output signal representing the received light intensity of the first light, and the signal processing circuit including a signal component included in the first output signal, the signal intensity of the signal component and the excitation wavelength Attenuating from the first output signal a signal component whose correlation with is smaller than a reference value as a first signal component corresponding to the ambient light.
  • a highly versatile light observation apparatus can be provided.
  • FIG. 1 is a block diagram showing the configuration of the light observation apparatus according to the first embodiment.
  • FIG. 2 is a diagram showing a specific configuration of the light source unit and the first light receiving unit of the light observation device according to the first embodiment.
  • FIG. 3 is a diagram showing an example of an ideal fluorescent fingerprint when there is no ambient light.
  • FIG. 4 is a flowchart showing the operation of the light observation apparatus according to the first embodiment.
  • FIG. 5 is a diagram showing an example of the spectrum of ambient light.
  • FIG. 6 is a diagram showing an example of a fluorescent fingerprint based on an output signal output from the first light receiving unit of the light observation device according to the first embodiment.
  • FIG. 7 is a diagram showing an output signal output from the first light receiving unit of the light observation device according to the first embodiment.
  • FIG. 1 is a block diagram showing the configuration of the light observation apparatus according to the first embodiment.
  • FIG. 2 is a diagram showing a specific configuration of the light source unit and the first light receiving unit of the light observation device according to
  • FIG. 8 is a view showing an example of a fluorescent fingerprint based on a signal generated by the signal processing circuit of the light observation apparatus according to the first embodiment, in which a signal component corresponding to ambient light is attenuated.
  • FIG. 9 is a diagram showing a signal generated by the signal processing circuit of the light observation apparatus according to the first embodiment, in which a signal component corresponding to ambient light is attenuated.
  • FIG. 10 is a block diagram showing the configuration of the light observation apparatus according to the second embodiment.
  • FIG. 11 is a flowchart showing an operation of the light observation device according to the second embodiment.
  • FIG. 12 is a diagram illustrating an example of a fluorescent fingerprint based on light received by the first light receiving unit of the light observation device according to the second embodiment when the excitation light is not irradiated to the object.
  • FIG. 13 is a block diagram showing the configuration of the light observation apparatus according to the third embodiment.
  • FIG. 14 is a block diagram showing a configuration of a light observation apparatus according to a modification of the third embodiment.
  • FIG. 15 is a block diagram showing the configuration of the light observation apparatus according to the fourth embodiment.
  • FIG. 16 is a diagram schematically showing the principle of the light observation device according to the fourth embodiment.
  • FIG. 17 is a diagram showing time change of a signal output from the first light receiving unit of the light observation device according to the fourth embodiment.
  • FIG. 18 is a diagram showing time change of a signal output from the second light receiving unit of the light observation device according to the fourth embodiment.
  • FIG. 19 is a diagram illustrating a signal generated by the signal processing circuit of the light observation device according to the fourth embodiment, in which a signal component corresponding to ambient light is attenuated from the first output signal.
  • a light observation apparatus is a group of reflected light returned from at least a part and fluorescence generated from the at least part when irradiated light is irradiated to at least part of an object.
  • a first light receiving unit that receives a first light including at least one selected light and an ambient light, and outputs a first output signal representing a light receiving intensity of the first light;
  • a second light receiving unit provided at a position not overlapping the optical path of one light, receiving a second light including the ambient light, and outputting a second output signal representing a light receiving intensity of the second light ,
  • Signal processing circuit attenuates a first signal component corresponding to the ambient light from the first output signal by calculation of the first output signal and the second output signal.
  • the light observation device is not limited to limited conditions such as a dark room, and can be used, for example, for component analysis of an object located in a space illuminated by indoor illumination light.
  • the light observation device it is possible to provide a highly versatile light observation apparatus.
  • the light observation device includes the second light receiving unit, the light including at least one light selected from the group consisting of the reflected light returned from the object by the first light receiving unit and the fluorescence generated from the object
  • the second light receiving unit can receive light not including the at least one light.
  • the second light receiving unit can be used exclusively for receiving the ambient light, the received light intensity of the ambient light can be accurately obtained without being affected by the disturbance light. Therefore, since the accuracy of light observation is enhanced, the detection accuracy of the object can also be enhanced.
  • the irradiation light may have an excitation wavelength selected from a plurality of different excitation wavelengths, and the first light may include the fluorescence.
  • an organic substance or the like that emits fluorescence can be detected.
  • human vomit and pollen can be detected.
  • the first light may include the reflected light.
  • particulate matter such as PM 2.5 which does not emit fluorescence can be detected.
  • each of the first light receiving unit and the second light receiving unit includes a plurality of pixels, and the first light receiving unit and the second light receiving unit
  • the light receiving unit may constitute an image sensor.
  • one image sensor can be shared as the first light receiving unit and the second light receiving unit, so that the configuration of the light observation apparatus can be simplified.
  • fluorescence generated from the object when irradiation light having an excitation wavelength selected from a plurality of different excitation wavelengths is irradiated to the object
  • a signal processing circuit that receives a first light including ambient light and outputs a first output signal representing a received light intensity of the first light.
  • the signal processing circuit is a signal component included in the first output signal, and a signal component whose correlation between the signal intensity of the signal component and the excitation wavelength is smaller than a reference value corresponds to the ambient light.
  • the first output signal is attenuated as a signal component of one.
  • the intensity of fluorescence depends on the excitation wavelength
  • the intensity of ambient light does not depend on the excitation wavelength. That is, it is assumed that the component having a small correlation between the signal intensity and the excitation wavelength is a component containing a large amount of ambient light. Therefore, by attenuating the component whose correlation between the signal intensity and the excitation wavelength is smaller than the reference value, the signal component corresponding to the ambient light can be attenuated accurately.
  • the light observation device is not limited to limited conditions such as a dark room, and can be used, for example, for component analysis of an object located in a space illuminated by indoor illumination light.
  • the accuracy of the fluorescence observation is enhanced, the analysis accuracy of the component of the object can also be enhanced.
  • the first light receiving unit receives the first light at a plurality of observation wavelengths different from one another, and the signal processing circuit performs the plurality of excitations on each of the plurality of observation wavelengths.
  • the signal strength of the first output signal corresponding to the first excitation wavelength selected from the wavelengths and the signal strength of the first output signal corresponding to the second excitation wavelength selected from the plurality of excitation wavelengths Calculating a difference absolute value of the signal component, and the signal component at the observation wavelength corresponding to the difference absolute value, the signal component being a signal component included in the first output signal when the The first output signal may be attenuated as the first signal component.
  • a component having a small correlation between the signal intensity and the excitation wavelength can be appropriately determined, so that the signal component corresponding to the ambient light can be attenuated accurately. Therefore, since the accuracy of fluorescence observation is enhanced, the analysis accuracy of the component of the object can also be enhanced.
  • the first light receiving unit further receives the second light incident on the first light receiving unit, and A second output signal representing the light reception intensity for each observed wavelength of the light of No. 2; and the signal processing circuit generates a signal component corresponding to the ambient light from the first output signal to the second output signal It may be attenuated as
  • the signal processing circuit may further specify the component included in the object based on the signal strength of the first output signal in which the first signal component is attenuated.
  • the light observation apparatus can grasp what substance is present at the place, it is possible to promptly take measures according to the substance. For example, when a virus is detected, the virus can be rapidly cleaned and can be used for the prevention of infection and the like.
  • the first light receiving unit receives the first light at a plurality of observation wavelengths different from one another, and the signal processing circuit outputs the first output in which the first signal component is attenuated.
  • the component included in the object may be identified by evaluating the signal strength of the signal for each combination of the plurality of excitation wavelengths and the plurality of observation wavelengths.
  • the light observation apparatus may further include a light source that emits the irradiation light toward the target.
  • the light observation device includes the light source, the irradiation light of the intensity sufficient to generate at least one light selected from the group consisting of the reflected light returned from the object and the fluorescence generated from the object is targeted It is possible to irradiate the object. Therefore, the light observation apparatus according to the present aspect can be used, for example, for component analysis of an object even if there is no light source that emits illumination light around the object, and the versatility is extremely high.
  • the ambient light may be indoor illumination light.
  • the light observation apparatus can be used for component analysis of not only an object disposed in a dark room or a measuring apparatus but also an object present in daily living space, for example. Extremely high.
  • the light observation device can be used to confirm the position of a virus or fungus existing in a room by using a virus or fungus as an example of the object.
  • the light observation device can detect, for example, attached norovirus when a person infected with the norovirus touches the doorknob or the table.
  • the object may be human vomit.
  • the light observation apparatus for example, since the fluorescence of the organic substance contained in the remaining vomit can be observed, it is possible to confirm the position of part of the scattered vomit. Moreover, when the light observation apparatus according to this aspect is used after cleaning the vomiting substance, it is possible to confirm that the vomiting substance remains. Therefore, the effect of cleaning can be confirmed.
  • the object may be fine particles scattered in a space.
  • the light observation method when at least a part of the object is irradiated with the irradiation light, the light observation method includes the reflected light returned from the at least a part and the fluorescence generated from the at least a part Obtaining a first output signal representing the received light intensity of the first light including at least one light selected from the group and the ambient light; and receiving the received light intensity of the second light including the ambient light Attenuating a first signal component corresponding to the ambient light from the first output signal by obtaining a second output signal representing the signal and calculating the first output signal and the second output signal And b.
  • fluorescence generated from the target when environment is irradiated with irradiation light having excitation wavelengths selected from a plurality of different excitation wavelengths, and environment Obtaining a first output signal representing the intensity of the first light including light; and a signal component included in the first output signal, wherein the signal intensity of the signal component is correlated with the excitation wavelength Attenuating a signal component smaller than a reference value from the first output signal as a first signal component corresponding to the ambient light.
  • a program is a program executed by a computer, and when at least a part of the target is irradiated with the irradiation light in the first light receiving unit, the at least a part
  • the first light including at least one light selected from the group consisting of the reflected light that has returned and the fluorescence generated from the at least a part, and the ambient light is received, and the received light intensity of the first light is represented Outputting the first output signal; and causing the second light receiving unit to receive the second light including the ambient light and outputting a second output signal representing the received light intensity of the second light
  • Attenuating a first signal component corresponding to the ambient light from the first output signal by computing the first output signal and the second output signal in the signal processing circuit.
  • a program is a program executed by a computer, and an irradiation light having an excitation wavelength selected from a plurality of different excitation wavelengths is an object in the first light receiving unit. And a step of causing the first light including the fluorescence and the ambient light generated from the object to be received, and outputting a first output signal representing the received light intensity of the first light, and a signal
  • the signal processing circuit is a signal component included in the first output signal
  • the ambient light is a signal component whose correlation between the signal intensity of the signal component and the excitation wavelength is smaller than a reference value.
  • Attenuating from the first output signal as a first signal component corresponding to
  • a computer readable recording medium is a computer readable recording medium storing a program, and when the program is executed by the computer, the first light receiving unit includes: At least one light selected from the group consisting of the reflected light returned from the at least one part and the fluorescence generated from the at least one when the irradiation light is irradiated to at least one part of the object, and the ambient light , And outputting a first output signal representing the received light intensity of the first light, and receiving a second light including the ambient light in a second light receiving unit Outputting a second output signal representing the received light intensity of the second light, and the signal processing circuit calculating the first output signal and the second output signal.
  • a step of the first output signal attenuating a first signal component corresponding to the ambient light, is executed.
  • a computer readable recording medium is a computer readable recording medium storing a program, wherein the first light receiving unit when the program is executed by the computer.
  • the first light including the fluorescent light generated from the target and the ambient light when the target is irradiated with illumination light having an excitation wavelength selected from a plurality of different excitation wavelengths, Outputting a first output signal representing the received light intensity of the first light, and the signal processing circuit including a signal component included in the first output signal, the signal intensity of the signal component and the excitation wavelength Attenuating from the first output signal a signal component whose correlation with is smaller than a reference value as a first signal component corresponding to the ambient light.
  • all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram represents a semiconductor device, a semiconductor integrated circuit (IC), or a large scale integration (LSI). It may be implemented by one or more electronic circuits, including: The LSI or IC may be integrated on one chip or may be configured by combining a plurality of chips. For example, functional blocks other than storage elements may be integrated on one chip.
  • LSI or “IC” is used here, the term is changed depending on the degree of integration, and may be called system LSI, VLSI (very large scale integration), or ULSI (ultra large scale integration).
  • a Field Programmable Gate Array (FPGA) programmed after the manufacture of the LSI, or a reconfigurable logic device capable of reconfiguring junctions inside the LSI or setting up circuit sections inside the LSI can also be used for the same purpose.
  • FPGA Field Programmable Gate Array
  • circuits, units, devices, members or parts can be performed by software processing.
  • the software is recorded on a non-transitory recording medium such as one or more ROMs, optical disks, hard disk drives, etc., and the software is identified by the software when it is executed by a processor.
  • the functions are performed by a processor and peripherals.
  • the required hardware devices, for example interface may comprise a.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
  • FIG. 1 is a block diagram showing a configuration of a light observation apparatus 10 according to the present embodiment.
  • the light observation device 10 receives light including at least one light selected from the group consisting of reflected light returned from the object 11 and fluorescence generated from the object 11 when the object 11 is irradiated with irradiation light. And detecting the object 11 based on the intensity of the at least one light included in the received light.
  • the light observation device 10 is a fluorescence observation device, and as shown in FIG. 1, the first light 14 containing fluorescence generated from the object 11 when the object 11 is irradiated with the excitation light 13. Is received, and a fluorescent fingerprint is generated based on the intensity of the fluorescence contained in the received first light 14 (hereinafter referred to as observation light).
  • the light observation device 10 further performs component analysis of the object 11 based on the fluorescent fingerprint.
  • the light observation device 10 attenuates the signal component corresponding to the environmental light 12 from the output signal representing the light reception intensity of the observation light received by the first light reception unit 30 to obtain a fluorescence component. Generates a signal corresponding to The light observation device 10 generates a fluorescent fingerprint based on the signal in which the signal component corresponding to the ambient light 12 is attenuated.
  • the ambient light 12 is, for example, indoor illumination light.
  • the indoor illumination light is specifically white light emitted from a fluorescent lamp or an LED lamp.
  • the object 11 is, for example, a human vomit.
  • the vomit contains an organic substance that emits fluorescence when irradiated with the excitation light 13.
  • the organic substance include, but are not limited to, tryptophan, tyrosine, vitamin A, vitamin B2, and NADH (nicotinamide adenine dinucleotide).
  • Tryptophan generates fluorescence having a peak at 310 nm when irradiated with excitation light 13 having an excitation wavelength of 280 nm. Furthermore, tryptophan produces fluorescence having a peak at 310 nm even when the excitation light 13 having an excitation wavelength of 270 nm is irradiated.
  • Tyrosine generates fluorescence having a peak at 300 nm when the excitation light 13 having an excitation wavelength of 275 nm is irradiated.
  • Vitamin A generates fluorescence having a peak at 425 nm when irradiated with excitation light 13 whose excitation wavelength is 325 nm.
  • Vitamin B2 generates fluorescence having a peak at 520 nm when the excitation light 13 having an excitation wavelength of 450 nm is irradiated.
  • NADH generates fluorescence having a peak at 460 nm when the excitation light 13 having an excitation wavelength of 350 nm is irradiated.
  • the object 11 may be fine particles scattered in the space.
  • the object 11 may be organic matter such as pollen scattered in space or house dust.
  • excitation light 13 For example, by irradiating excitation light 13 to a protein that constitutes pollen, the protein is excited to generate fluorescence.
  • the light observation device 10 can specify the component of the object 11 by specifying the combination of the wavelength of the emitted excitation light 13 (that is, the excitation wavelength) and the wavelength of the observed fluorescence. .
  • FIG. 2 is a diagram showing a specific configuration of the light source unit 20 and the first light receiving unit 30 of the light observation device 10 according to the present embodiment.
  • the light observation device 10 includes a light source unit 20, a first light receiving unit 30, and a signal processing circuit 40.
  • the signal processing circuit 40 is not shown in FIG.
  • the light source unit 20 is an example of a light source that irradiates the irradiation light toward the object 11.
  • the light source unit 20 irradiates the target object 11 with excitation light 13 which is an example of irradiation light.
  • the light source unit 20 irradiates the object 11 with a plurality of excitation lights 13 having different excitation wavelengths.
  • the light source unit 20 includes a plurality of excitation light sources 21, a plurality of filters 22, a plurality of optical fibers 23, and a light emitting lens 24.
  • Each of the plurality of excitation light sources 21 is a light source that emits light (for example, white light) having a wide wavelength band.
  • Each of the plurality of excitation light sources 21 is, for example, a discharge lamp such as a halogen lamp or a solid light emitting element such as an LED, but is not limited thereto.
  • the plurality of filters 22 are provided in one-to-one correspondence with the plurality of excitation light sources 21.
  • Each of the plurality of filters 22 is provided in an optical path formed by an optical fiber 23 connecting the corresponding excitation light source 21 and the light emission lens 24.
  • Each of the plurality of filters 22 is a band pass filter having a corresponding excitation wavelength as a central wavelength.
  • the bandwidth of each of the plurality of filters 22 is, for example, 10 nm or more and 50 nm or less.
  • the pass bands of each of the plurality of filters 22 do not overlap each other, for example.
  • Each of the plurality of filters 22 passes light of the corresponding excitation wavelength among the light emitted from the corresponding excitation light source 21.
  • the light source unit 20 includes six excitation light sources 21 and six filters 22 respectively corresponding to six excitation wavelengths.
  • the six excitation wavelengths are, for example, 270 nm, 275 nm, 280 nm, 325 nm, 350 nm and 450 nm. These wavelengths are wavelengths selected in advance according to the type of the object 11.
  • an effective excitation wavelength is used as the excitation light 13 for tryptophan, tyrosine, vitamin A, vitamin B2 and NADH described above, but the invention is not limited thereto.
  • the number of excitation light sources 21 included in the light source unit 20 is not limited to six, and may be two, ten, or a large number of ten or more.
  • the plurality of optical fibers 23 are provided, for example, in one-to-one correspondence with the plurality of excitation light sources 21.
  • the plurality of optical fibers 23 respectively connect the corresponding excitation light source 21 and the light emission lens 24 to form an optical path for guiding the excitation light 13 emitted from the excitation light source 21 to the light emission lens 24.
  • the light emitting lens 24 is a light transmitting lens for emitting the excitation light 13 toward the object 11.
  • the light source unit 20 may include only one excitation light source 21 emitting an excitation wavelength having a sufficient intensity in a wide range including a plurality of excitation wavelengths. In this case, by switching the plurality of filters 22 for each excitation wavelength, the light source unit 20 can irradiate the object 11 with the excitation light 13 for each excitation wavelength. Moreover, the light source part 20 may be provided with the several excitation light source 21 which radiate
  • the light source unit 20 may irradiate the excitation light 13 to the object 11 while continuously changing the excitation wavelength.
  • the light source unit 20 may sequentially irradiate the object 11 with a plurality of excitation lights 13 having different excitation wavelengths while changing the excitation wavelength in steps of 10 nm in a range of 220 nm to 550 nm.
  • the configuration of the light source unit 20 shown in FIG. 2 is merely an example, and the light source unit 20 may not include the optical fiber 23 and the light emitting lens 24.
  • the first light receiving unit 30 is at least one selected from the group consisting of reflected light returned from the object 11 and fluorescence generated from the object 11 when the irradiation light from the light source unit 20 is irradiated to the object 11. It receives a first light 14 including one light and an ambient light 12 and outputs a first output signal representing the received light intensity of the first light 14.
  • the irradiation light is excitation light 13 having an excitation wavelength selected from a plurality of different excitation wavelengths.
  • At least one light included in the first light 14 is fluorescence generated from the object 11 by being excited by the irradiation light. That is, in the present embodiment, the observation light which is the first light 14 includes the fluorescence generated from the object 11 and the ambient light 12.
  • the first light receiving unit 30 is excited by the excitation light 13 and emits fluorescence emitted from the object 11 when the excitation light 13 having the excitation wavelength selected from a plurality of different excitation wavelengths is irradiated. And outputs a first output signal representing the received light intensity for each observed wavelength of the first light 14.
  • the first light 14 includes not only fluorescence but also ambient light 12. Further, since the environmental light 12 is irradiated to the object 11, the first light 14 includes the environmental light 12 reflected by the object 11.
  • the first output signal includes a plurality of output signals for each excitation wavelength. That is, the first light receiving unit 30 outputs an output signal corresponding to each of the plurality of excitation wavelengths.
  • the signal intensity of the output signal for each excitation wavelength represents the light reception intensity for each observation wavelength.
  • the first light receiving unit 30 includes a plurality of light detectors 31, a plurality of filters 32, a plurality of optical fibers 33, and a light receiving lens 34.
  • Each of the plurality of photodetectors 31 receives light from the object 11 and outputs an electrical signal representing the intensity of the received light.
  • each of the plurality of photodetectors 31 is a photoelectric conversion element such as a photodiode.
  • Each of the plurality of photodetectors 31 receives the light that has passed through the corresponding filter 32, and thus outputs a signal representing the light reception intensity for each wavelength of the light transmitted by the filter 32.
  • the plurality of filters 32 are provided in one-to-one correspondence with the plurality of photodetectors 31.
  • Each of the plurality of filters 32 is a band pass filter having a bandwidth of 10 nm or more and 50 nm or less, each having a different wavelength as a central wavelength.
  • the transmission bands of each of the plurality of filters 32 do not overlap each other, for example.
  • the first light receiving unit 30 includes five light detectors 31 and five filters 32.
  • the wavelengths of light transmitted by each of the five filters 32 are, for example, 300 nm, 310 nm, 425 nm, 460 nm, and 520 nm. These wavelengths are wavelengths selected in advance according to the type of the object 11.
  • the wavelength of fluorescence emitted by tryptophan, tyrosine, vitamin A, vitamin B2 and NADH described above is used, the present invention is not limited thereto.
  • the number of photodetectors 31 and filters 32 provided in the first light receiving unit 30 is not limited to five, and may be two, ten, or a large number of ten or more.
  • the plurality of optical fibers 33 are provided in one-to-one correspondence with the plurality of light detectors 31.
  • Each of the plurality of optical fibers 33 connects the corresponding photodetector 31 and the light receiving lens 34, and guides the light (that is, observation light) incident on the light receiving lens 34 to each of the plurality of light detectors 31. It is formed.
  • the light receiving lens 34 is a light transmitting lens on which the light reached from the object 11 is incident.
  • the first light receiving unit 30 may include only one photodetector 31 having sufficient sensitivity in a wide range including a plurality of observation wavelengths.
  • the photodetector 31 sequentially receives the light of each observation wavelength by sequentially functioning the plurality of filters 32 (specifically, sequentially transmitting the observation light to the plurality of optical fibers 33) be able to.
  • the first light receiving unit 30 may receive the observation light while continuously changing the wavelength to be received.
  • the first light receiving unit 30 may receive observation light while changing the target wavelength in steps of 1 nm in a range of 230 nm to 700 nm. Thereby, the first light receiving unit 30 can generate and output the first output signal with high wavelength resolution.
  • the configuration of the first light receiving unit 30 illustrated in FIG. 2 is merely an example, and the first light receiving unit 30 may not include the optical fiber 33 and the light receiving lens 34.
  • the signal processing circuit 40 processes the first output signal output from the first light receiving unit 30.
  • the signal processing circuit 40 is realized by, for example, an integrated circuit including a processor and the like.
  • the signal processing circuit 40 includes an attenuation unit 41, an evaluation unit 42, and a specifying unit 43.
  • the attenuator 41 attenuates, from the first output signal, a signal component that is included in the first output signal and whose correlation between the signal intensity of the signal component and the excitation wavelength is smaller than the reference value. Specifically, a signal component that is included in the first output signal and whose correlation between the signal intensity of the signal component and the excitation wavelength is smaller than the reference value is a signal component corresponding to the ambient light 12 . That is, the attenuator 41 attenuates the signal component corresponding to the ambient light 12 from the first output signal to generate a signal in which the signal component corresponding to the ambient light 12 is attenuated.
  • the attenuation unit 41 corresponds to the signal intensity corresponding to the first excitation wavelength selected from the plurality of excitation wavelengths and the second excitation wavelength selected from the plurality of excitation wavelengths.
  • the difference absolute value with the signal strength to be calculated is calculated. Furthermore, when the calculated difference absolute value is equal to or less than the threshold, the attenuation unit 41 attenuates the signal component at the observation wavelength corresponding to the difference absolute value.
  • the attenuation unit 41 attenuates the intensity of the signal component at the observation wavelength corresponding to the difference absolute value which is equal to or less than the threshold value to 1/10.
  • the degree of attenuation is not limited to this, and may be 1/2 to 1/100.
  • the attenuation unit 41 may set the intensity of the signal component at the wavelength to be attenuated to zero.
  • the evaluation unit 42 evaluates the signal strength of the first output signal whose signal component is attenuated for each combination of the excitation wavelength and the observation wavelength. Specifically, the evaluation unit 42 generates a fluorescent fingerprint based on the signal in which the signal component corresponding to the ambient light 12 is attenuated.
  • FIG. 3 is a view showing an example of an ideal fluorescent fingerprint when there is no ambient light 12.
  • the fluorescent fingerprint is three-dimensional data represented by signal intensity (specifically, intensity of fluorescence) with respect to a combination of the wavelength of excitation light 13 and the wavelength of observation light (specifically, fluorescence).
  • the vertical axis indicates the wavelength of the excitation light 13 (that is, the excitation wavelength), and the horizontal axis indicates the coordinates of the same signal intensity continuously in two-dimensional coordinates indicating the wavelength of the observation light (that is, the observation wavelength).
  • Fig. 6 illustrates connecting isointensity lines. Further, in FIG. 3, the area where the signal intensity is the highest is indicated by hatching of dots.
  • the example shown in the same figure shows an example of a fluorescent fingerprint having a large signal intensity when the excitation wavelength is 280 nm and the observation wavelength is 340 nm. .
  • FIG. 3 has shown the result of having observed all of excitation wavelength and observation wavelength by 5 nm intervals.
  • the fluorescence emitted from the object 11 has wavelength dependence (that is, excitation wavelength dependence) to the excitation light 13.
  • the identifying unit 43 identifies the component of the object 11 based on the signal strength of the first output signal obtained by attenuating the signal component. Specifically, the specifying unit 43 specifies the component of the object 11 based on the signal strength for each combination of the excitation wavelength and the observation wavelength. The identifying unit 43 identifies the substance included in the object 11 by referring to the correspondence table between the substance and the wavelength.
  • the correspondence table is, for example, a combination of an effective excitation wavelength and a wavelength of fluorescence emitted when the excitation light 13 having the excitation wavelength is irradiated to a plurality of substances such as an organic substance (hereinafter referred to as a fluorescence wavelength).
  • a fluorescence wavelength an organic substance
  • the excitation wavelengths are 270 nm and 280 nm
  • the fluorescence wavelength is 310 nm.
  • tyrosine, vitamin A, vitamin B2 and NADH, and other organic substances are associated.
  • the correspondence table is stored in a memory or the like included in the specifying unit 43, the present invention is not limited to this.
  • the correspondence table may be stored, for example, in another device such as a server device, and the identification unit 43 may refer to the correspondence table by communicating with the other device.
  • the specifying unit 43 specifies, for example, a combination having a large signal intensity among a plurality of combinations of the excitation wavelength and the observation wavelength based on the fluorescent fingerprint.
  • the identifying unit 43 identifies the combination of the excitation wavelength and the observation wavelength at which the signal intensity is maximum in the fluorescent fingerprint, and refers to the correspondence table based on the identified combination to thereby select the substance corresponding to the identified combination. Identify. For example, when the combination of the excitation wavelength and the observation wavelength that maximizes the signal intensity is 270 nm and 280 nm and the fluorescence wavelength is 310 nm, the identification unit 43 includes tryptophan in the object 11. Identify what you The result specified by the identification unit 43 is output to the outside together with, for example, the fluorescent fingerprint.
  • FIG. 4 is a flowchart showing the operation of the light observation device 10 according to the present embodiment.
  • a human vomit will be described as an example.
  • the staff wipes off the vomiting material. After that, the presence or absence of the remaining vomit is detected by using the light observation device 10 according to the present embodiment with the area where the wiping is performed and the vicinity thereof as a range.
  • lighting devices such as fluorescent lights are installed.
  • the light emitted from the lighting device is emitted as environmental light 12 to the area where the vomit was wiped off and the vicinity thereof.
  • FIG. 5 is a view showing an example of the spectrum of the ambient light 12. Specifically, FIG. 5 shows the spectrum of white light emitted from a fluorescent lamp. As shown in FIG. 5, the ambient light 12 contains a wavelength component in the visible light band, and has a peak at a predetermined wavelength. In the example illustrated in FIG. 5, the wavelengths of the peaks included in the ambient light 12 (that is, peak wavelengths) are 400 nm, 430 nm, 480 nm, 540 nm, and 610 nm.
  • the light source unit 20 irradiates the object 11 with the excitation light 13 (S10). Specifically, the light source unit 20 sequentially illuminates the plurality of excitation lights 13 having different excitation wavelengths onto the object 11 by sequentially turning on the plurality of excitation light sources 21. For example, the excitation light 13 is irradiated to the object 11 in the order of 270 nm, 275 nm, 280 nm, 325 nm, 350 nm, and 450 nm.
  • the first light receiving unit 30 receives the light from the object 11 each time the excitation light 13 having different excitation wavelength is irradiated, and generates an output signal representing the received light intensity of the received light (S12). That is, the first light receiving unit 30 generates an output signal for each excitation wavelength.
  • the photodetectors 31 receive observation light emitted from the object 11 for each observation wavelength.
  • Each of the photodetectors 31 performs photoelectric conversion of the received light to generate an output signal representing the light reception intensity of the observation wavelength.
  • an output signal representing the light reception intensity for each observation wavelength with respect to the irradiated excitation light 13 is obtained.
  • the first light receiving unit 30 generates an output signal each time the excitation light 13 is irradiated, thereby generating an output signal for each excitation wavelength and outputting the output signal to the signal processing circuit 40. Thereby, the first light receiving unit 30 outputs a first output signal including an output signal for each excitation wavelength.
  • FIG. 6 is a view showing an example of a fluorescent fingerprint based on an output signal output from the first light receiving unit 30 of the light observation device 10 according to the present embodiment.
  • the vertical axis indicates the excitation wavelength
  • the horizontal axis indicates the isointensity lines that continuously connect the coordinates having the same signal intensity in two-dimensional coordinates indicating the observation wavelength.
  • the area where the signal strength is the highest is indicated by hatching of dots.
  • FIG. 7 is a diagram showing an output signal output from the first light receiving unit 30 of the light observation device 10 according to the present embodiment.
  • the horizontal axis indicates the observation wavelength
  • the vertical axis indicates the signal strength of the output signal.
  • Each of a plurality of graphs in FIG. 7 shows an output signal for each excitation wavelength.
  • the excitation wavelength is 10 types of wavelengths selected in 10 nm steps from the range of 220 nm or more and 310 nm or less.
  • the graph with the lowest signal strength at the observation wavelength of 350 nm is the output signal with the excitation wavelength of 220 nm
  • the graph with the highest signal strength is the output signal with the excitation wavelength of 310 nm. is there.
  • the excitation wavelength increases in this order from the graph with the lowest signal intensity to the highest graph at an observation wavelength of 350 nm.
  • FIG. 6 and FIG. 7 show the same first output signal except for the illustrated method.
  • observation wavelengths are 430 nm, 480 nm, 540 nm and 610 nm, regions of vertical streaks with high signal strength are generated. That is, when the observation wavelengths are 430 nm, 480 nm, 540 nm and 610 nm, it means that observation light of high intensity is received regardless of the excitation wavelength.
  • These observation wavelengths correspond to the peak wavelength of the ambient light 12 shown in FIG.
  • the signal intensity is increased regardless of the excitation wavelength at the peak wavelength of the ambient light 12, specifically, 430 nm, 480 nm, 540 nm and 610 nm. That is, the ambient light 12 has no excitation wavelength dependency. By attenuating the component of the ambient light 12, the fluorescence intensity from the object 11 can be acquired.
  • the attenuator 41 of the signal processing circuit 40 attenuates the signal component of the ambient light 12 from the first output signal (S14). Specifically, the attenuation unit 41 first selects arbitrary two excitation wavelengths from a plurality of excitation wavelengths of the excitation light 13 irradiated to the object 11. Here, as an example, the attenuation unit 41 selects 240 nm as the first excitation wavelength and 270 nm as the second excitation wavelength.
  • the attenuation unit 41 calculates, for each observation wavelength, the difference absolute value between the signal strength of the output signal corresponding to the selected first excitation wavelength and the signal strength of the output signal corresponding to the selected second excitation wavelength. Calculate Furthermore, the attenuation unit 41 determines, for each observation wavelength, whether the calculated difference absolute value is equal to or less than a predetermined threshold.
  • the attenuation unit 41 estimates that the observation wavelength at which the absolute difference value is equal to or less than the threshold is a wavelength component included in the ambient light 12, and attenuates the signal component at the observation wavelength. In the example shown in FIG. 6 and FIG. 7, the attenuator 41 attenuates the signal components having observation wavelengths of 430 nm, 480 nm, 540 nm and 610 nm. For example, the attenuation unit 41 reduces the signal strength of the first output signal to 1/10 at observation wavelengths of 430 nm, 480 nm, 540 nm, and 610 nm. Specifically, the attenuation unit 41 reduces the signal strength of each of the output signals for each excitation wavelength constituting the first output signal to 1/10. A signal obtained by attenuating the signal component corresponding to the ambient light 12 is shown in FIG. 8 and FIG.
  • FIG. 8 is a view showing an example of a fluorescent fingerprint based on a signal generated by the signal processing circuit 40 of the light observation apparatus 10 according to the present embodiment and having the signal component corresponding to the ambient light 12 attenuated.
  • FIG. 9 is a diagram showing a signal generated by the signal processing circuit 40 of the light observation device 10 according to the present embodiment, in which the signal component corresponding to the ambient light 12 is attenuated. 8 and 9 correspond to FIGS. 6 and 7, respectively.
  • the signals shown in FIGS. 8 and 9 are signal components corresponding to the ambient light 12, that is, signals from which the signal components having no excitation wavelength dependency have been removed from the first output signal.
  • the fluorescent fingerprint generated based on the signal in which the signal component corresponding to the ambient light 12 is attenuated has the same excitation as the fluorescent fingerprint shown in FIG.
  • the dependency between the wavelength and the observed wavelength is more clearly identified than the fluorescent fingerprint shown in FIG. Therefore, the component of the object 11 can be identified by using the fluorescent fingerprint.
  • the fluorescent fingerprint shown in FIG. 8 is generated by the evaluation unit 42.
  • the identification unit 43 of the signal processing circuit 40 identifies the component of the object 11 based on the signal in which the signal component corresponding to the ambient light 12 is attenuated (S16). Specifically, the identification unit 43 identifies the combination of the excitation wavelength and the observation wavelength with high signal strength based on the fluorescent fingerprint generated from the signal in which the signal component corresponding to the ambient light 12 is attenuated. By referring to the table, the substance corresponding to the combination is identified.
  • a signal component corresponding to the ambient light 12 is selected from the first output signal based on the light from the object 11 irradiated with the ambient light 12. Attenuate.
  • the fluorescent fingerprint generated based on the signal in which the signal component corresponding to the ambient light 12 is attenuated is fluorescence similar to the fluorescent fingerprint generated based on the light from the object 11 to which the ambient light 12 is not irradiated. The excitation wavelength dependency of is confirmed. Therefore, the component of the object 11 can be identified with high accuracy based on the fluorescent fingerprint generated based on the signal in which the signal component corresponding to the ambient light 12 is attenuated.
  • the light observation device 10 can specify the component of the object 11 even when the object 11 is irradiated with the ambient light 12. Therefore, according to the present embodiment, it is possible to provide the light observation device 10 with high versatility.
  • the light observation apparatus is different from the light observation apparatus 10 according to the first embodiment in the method of attenuating the first output signal.
  • the ambient light 12 is a second output signal representing the light receiving intensity for each observed wavelength of the second light incident on the light receiving unit when the excitation light 13 is not irradiated. Attenuate the first output signal as a corresponding signal component.
  • FIG. 10 is a block diagram showing a configuration of the light observation device 110 according to the present embodiment.
  • the light observation device 110 includes a light source unit 120, a first light receiving unit 130, and a signal processing circuit 140.
  • the light source unit 120, the first light receiving unit 130, and the signal processing circuit 140 correspond to the light source unit 20, the first light receiving unit 30, and the signal processing circuit 40 according to the first embodiment, respectively.
  • differences from the first embodiment will be mainly described, and the description of the common points will be omitted or simplified.
  • the light source unit 120 can switch on / off of the irradiation of the excitation light 13 to the object 11. Specifically, the light source unit 120 switches on / off of the irradiation of the excitation light 13 based on an external input such as a user operation and a light reception result by the first light receiver 130.
  • the light source unit 120 is connected to, for example, a controller that switches on / off of the irradiation of the excitation light 13.
  • the light source unit 120 when the light source unit 120 receives an operation to start fluorescence observation from the user, the light source unit 120 emits the excitation light 13, and the first light receiving unit 130 outputs the first output signal, and then emits the excitation light 13. Stop.
  • the light source unit 120 may start the irradiation of the excitation light 13 after the first light receiving unit 130 outputs the second output signal when the user receives an operation to start fluorescence observation. .
  • the first light receiving unit 130 receives the second light incident on the first light receiving unit 130 when the excitation light 13 is not irradiated to the object 11, and the second light is observed for each observation wavelength of the second light.
  • a second output signal representing the received light intensity is output.
  • the second light does not include the fluorescence emitted from the object 11 due to the irradiation of the excitation light 13.
  • the signal processing circuit 140 includes an attenuation unit 141 instead of the attenuation unit 41.
  • the attenuator 141 attenuates the first output signal to the second output signal as signal components corresponding to the ambient light 12.
  • the attenuation unit 141 attenuates the signal component corresponding to the environmental light 12 by subtracting the signal intensity of the second output signal from the signal intensity of the first output signal for each observation wavelength. Generate a signal.
  • FIG. 11 is a flowchart showing the operation of the light observation device 110 according to the present embodiment.
  • the irradiation of the excitation light 13 (S10) and the acquisition of the first output signal (S12) are the same as the processing shown in FIG. Specifically, the signal processing circuit 40 obtains the first output signal shown in FIGS. 6 and 7.
  • the light source unit 120 stops the irradiation of the excitation light 13 (S23). Specifically, the light source unit 120 stops the emission of the excitation light 13 after the first light receiving unit 130 outputs the first output signal.
  • the first output signal is stored, for example, in a storage unit (not shown) or the like included in the signal processing circuit 140.
  • the first light receiving unit 130 receives the light (that is, the second light) from the object 11, and outputs a second output signal representing the light receiving intensity for each observation wavelength of the light (S24). .
  • FIG. 12 is a view showing an example of a fluorescent fingerprint based on light received by the first light receiving unit 130 of the light observation apparatus 110 according to the present embodiment when the excitation light 13 is not irradiated to the object 11. is there.
  • FIG. 12 is not what was actually measured but is created by simulation. Therefore, the spectrum of the ambient light 12 shown in FIG. 5 is strictly different.
  • the attenuator 141 attenuates the first output signal to the second output signal as a signal component corresponding to the ambient light 12 (S25). Specifically, since the fluorescent fingerprint shown in FIG. 12 is removed from the fluorescent fingerprint shown in FIG. 6, a signal corresponding to the fluorescent fingerprint shown in FIG. 8 is generated.
  • the identifying unit 43 identifies the component of the object 11 based on the signal in which the signal component corresponding to the ambient light 12 is attenuated (S16).
  • the specific process is the same as that of the first embodiment.
  • the optical observation device 110 there is no need to specify a signal component having no excitation wavelength dependency, and the second output signal is simply subtracted from the first output signal. By doing this, a signal component corresponding to the ambient light 12 is attenuated. Therefore, the amount of processing related to signal processing can be reduced.
  • the light observation apparatus 110 can acquire the light reception intensity
  • the light observation apparatus differs from the light observation apparatus 110 according to the second embodiment in the method of generating the second output signal.
  • the light observation apparatus includes a second light receiving unit that generates and outputs a second output signal.
  • FIG. 13 is a block diagram showing a configuration of the light observation device 210 according to the present embodiment.
  • the light observation device 210 includes a light source unit 20 and a signal processing circuit 240 instead of the light source unit 120 and the signal processing circuit 140 as compared to the light observation device 110 according to the second embodiment.
  • the second light receiving unit 230 is newly provided.
  • differences from the second embodiment will be mainly described, and the description of the common points will be omitted or simplified.
  • the second light receiving unit 230 is provided at a position not overlapping the optical path of the fluorescence generated by the object 11.
  • the second light receiving unit 230 is disposed such that the light receiving surface of the first light receiving unit 30 and the light receiving surface of the second light receiving unit 230 face in different directions.
  • the light receiving surface of the first light receiving unit 30 is disposed on the first surface of the housing of the light observation apparatus 210, and the second surface on the second surface facing the first surface is used.
  • the light receiving surface of the light receiving unit 230 is disposed.
  • the second light receiving unit 230 receives the second light 15 corresponding to the ambient light 12 and outputs a second output signal representing the light receiving intensity of the second light 15.
  • the second light receiving unit 230 receives the second light 15 and outputs a second output signal representing the light reception intensity of the second light 15 for each observed wavelength.
  • the second light receiving unit 230 is a component of the environmental light 12 that is reflected by a region different from the region irradiated with the irradiation light emitted from the light source unit 20 and the environmental light 12. And a component directly incident on the second light receiving unit 230 are received as the second light 15.
  • the configuration of the second light receiving unit 230 is, for example, the same as that of the first light receiving unit 30 shown in FIG.
  • the first light receiving unit 30 and the second light receiving unit 230 may be different portions in one light receiving device.
  • the light observation device 210 may include an image sensor including the first light receiving unit 30 and the second light receiving unit 230.
  • the light observation device 211 illustrated in FIG. 14 includes the image sensor 250 including the first light receiving unit 30 and the second light receiving unit 230.
  • FIG. 14 is a block diagram showing a configuration of a light observation apparatus 211 according to a modification of the third embodiment.
  • the image sensor 250 is an image sensor having a light receiving area in which a plurality of pixels are arranged.
  • the first light receiving unit 30 and the second light receiving unit 230 are respectively different areas in the light receiving area.
  • the distance between the first area corresponding to the first light receiving unit 30 and the second area corresponding to the second light receiving unit 230 is the object 11 Larger than the spot size of the fluorescence generated by.
  • the second light 15 hardly contains the excitation light 13 and the fluorescence excited by the excitation light 13 but contains the ambient light 12. Therefore, the second output signal is considered to be equivalent to the second output signal in the second embodiment.
  • the signal processing circuit 240 includes an attenuation unit 241 instead of the attenuation unit 141.
  • the attenuation unit 241 attenuates the signal component corresponding to the ambient light 12 from the first output signal by calculation of the first output signal and the second output signal. Specifically, the attenuation unit 241 attenuates the first output signal to the second output signal as a signal component corresponding to the ambient light 12. More specifically, the attenuation unit 241 attenuates the signal component corresponding to the environmental light 12 by subtracting the signal intensity of the second output signal from the signal intensity of the first output signal for each observation wavelength. Generate a signal.
  • the light observation device 210 since the light observation device 210 according to the present embodiment includes the second light receiving unit 230, while the first light receiving unit 30 receives light including fluorescence from the object 11 at the same time,
  • the second light receiving unit 230 can receive light containing no fluorescence by the excitation light 13.
  • the second light receiving unit 230 can be used exclusively for receiving the ambient light 12, the light receiving intensity of the ambient light 12 can be accurately obtained without being affected by disturbance light such as fluorescence. Therefore, the accuracy of the fluorescence observation is enhanced, so that the analysis accuracy of the component of the object 11 can also be enhanced.
  • the light observation apparatus is different from the light observation apparatus according to the first to third embodiments in an object to be detected. Further, in the light observation apparatus according to the present embodiment, not the fluorescence emitted by the object but the reflected light (specifically, the backscattered light) from the object is received.
  • FIG. 15 is a block diagram showing a configuration of the light observation device 310 according to the present embodiment.
  • FIG. 16 is a diagram schematically showing the principle of the light observation device 310 according to the present embodiment.
  • the light observation device 310 is different from the light observation device 210 according to the third embodiment in the light source unit 320 instead of the light source unit 20, the first light receiving unit 30, and the signal processing circuit 240. , And the first light receiving unit 330 and the signal processing circuit 340 are different.
  • differences from the third embodiment will be mainly described, and the description of the common points will be omitted or simplified.
  • the object 311 is a fine particle that does not emit fluorescence among the fine particles (so-called aerosol) scattered in the space.
  • the object 311 is a particulate matter such as PM 2.5 or PM 10, yellow sand, or dust.
  • the target object 311 is, for example, an inorganic substance containing no organic substance, but may be an organic substance such as pollen. As schematically shown in FIG. 16, the object 311 is localized and floated within a range of, for example, 50 cm 3.
  • the light source unit 320 is an example of a light source that emits the irradiation light 16 toward the object 311.
  • the irradiation light 16 emitted from the light source unit 320 does not have to excite the object 311, and thus light of a wavelength selected from a wide wavelength band can be used.
  • the light source unit 320 includes a laser diode or an LED having a wavelength in the range of 300 nm to 1400 nm.
  • the wavelength of the light source unit 320 is, for example, near infrared light or infrared light of 780 nm or more.
  • a laser diode or LED emits pulsed light.
  • the light source unit 320 may include, for example, the light emitting lens 24 as in the first embodiment.
  • the light emitting lens 24 is, for example, a collimating lens. The light emitted from the laser diode or the LED is converted into parallel light by the light emitting lens 24, and is output as the irradiation light 16.
  • the first light receiving unit 330 when the irradiation light 16 from the light source unit 320 is irradiated to the object 311, the reflected light in which at least a part of the irradiation light 16 is reflected by the object 311, and the environmental light 12 , And outputs a first output signal representing the received light intensity of the first light 14.
  • the reflected light is backscattered light by Mie scattering from the object 311.
  • a photodiode or a photomultiplier tube (PMT) can be used.
  • the irradiation light 16 is not wavelength-converted by the object 311, the wavelength of the reflected light and the wavelength of the irradiation light 16 are substantially the same. For this reason, the observation wavelength by the first light receiving unit 330 is, for example, the same as the wavelength of the irradiation light 16 emitted by the light source unit 320.
  • the first light receiving unit 330 is provided at a 90 ° side position with respect to the emission direction of the irradiation light 16 from the light source unit 320.
  • a half mirror 332 is provided on the path of the irradiation light 16. The half mirror 332 transmits the irradiation light 16 emitted from the light source unit 320 and reflects the reflection light from the object 311. The reflected light thus reflected is received by the first light receiver 330.
  • the second light receiving unit 230 receives the second light 15 corresponding to the ambient light 12 and outputs a second output signal representing the light receiving intensity of the second light 15. Do.
  • the second light receiving unit 230 is provided so that the light receiving range does not overlap with the first light receiving unit 330.
  • the signal processing circuit 340 does not include the evaluation unit 42 and the identification unit 43, and includes an attenuation unit 341.
  • the attenuator 341 attenuates the signal component corresponding to the ambient light 12 from the first output signal by calculation of the first output signal and the second output signal. For example, the attenuator 341 attenuates the first output signal to the second output signal as a signal component corresponding to the ambient light 12.
  • the light source unit 320 emits the irradiation light 16. As shown in FIG. 16, when the object 311 is present, at least a part of the irradiation light 16 emitted from the light source unit 320 is reflected by the object 311. At this time, light reflected backward, that is, backscattered light 382 is reflected by the half mirror 332 and received by the first light receiving unit 330.
  • the rest of the irradiation light 16 emitted from the light source unit 320 is reflected by the wall surface 390 or the like.
  • the reflected light 392 is also received by the first light receiver 330 in the same manner as the backscattered light 382.
  • FIG. 17 is a diagram showing a time change of a signal output from the first light receiving unit 330 of the light observation device 310 according to the present embodiment.
  • the horizontal axis indicates the elapsed time from the point of time when the irradiation light 16 which is pulse light is emitted.
  • the vertical axis represents the signal strength of the first output signal output from the first light receiving unit 330. The same applies to FIGS. 18 and 19 described later.
  • a peak 384 corresponding to the backscattered light 382 appears.
  • the time when the peak 384 appears corresponds to the distance from the light source unit 320 and the first light receiving unit 330 to the object 311.
  • the size of peak 384 corresponds, for example, to the size or concentration of particles of object 311.
  • the first output signal includes a signal component corresponding to the ambient light 12 as shown in FIG. As shown in FIG. 18, when the intensity of the ambient light 12 varies, as shown in FIG. 17, it becomes difficult to detect the peak 384 mixed with the variation of the intensity of the ambient light 12.
  • FIG. 18 is a diagram showing a time change of a signal output from the second light receiving unit 230 of the light observation device 310 according to the present embodiment.
  • the second light receiving unit 230 none of the irradiation light 16, the back scattered light 382 and the reflected light 392 is received, and the ambient light 12 around the light observation device 310 is received. Therefore, the second output signal output from the second light receiving unit 230 corresponds to a signal component corresponding to the ambient light 12.
  • the attenuator 341 of the signal processing circuit 340 attenuates the signal component corresponding to the ambient light 12 from the first output signal shown in FIG. Specifically, the attenuation unit 341 attenuates the second output signal shown in FIG. 18 from the first output signal shown in FIG. This generates the signal shown in FIG.
  • FIG. 19 is a diagram showing a signal generated by the signal processing circuit 340 of the light observation device 310 according to the present embodiment, from which the signal component corresponding to the ambient light 12 is attenuated from the first output signal.
  • the signal processing circuit 340 specifies the type and position of the object 311 based on, for example, the time and size of the peak 384.
  • a peak 394 corresponding to the reflected light 392 by the wall surface 390 appears.
  • the time at which the peak 394 appears corresponds to the distance from the light source unit 320 and the first light receiving unit 330 to the wall surface 390.
  • the magnitude of peak 394 is greater than the magnitude of peak 384.
  • the peak 394 appears without the peak 384 appearing.
  • the object 311 does not exist between the light source unit 320 and the wall surface 390.
  • the light source unit 320 may emit the excitation light 13 as the irradiation light.
  • the object 311 is an organic substance
  • the fluorescence is received by the first light receiver 330.
  • the object 311 is an inorganic substance that does not emit fluorescence
  • the backscattered light by Mie scattering is received by the first light receiving unit 330. Since the wavelengths are different between the fluorescence and the backscattered light, the wavelength separation by the first light receiving unit 330 makes it possible to determine which wavelength component light is received. Thereby, it can be determined whether the object 311 is an organic substance or an inorganic substance.
  • the light detector 31 may be an image sensor in which pixels, which are a plurality of photoelectric conversion elements, are arranged in a matrix.
  • the light detector 31 since two-dimensional fluorescence observation can be performed, component analysis of a plurality of objects 11 present in a predetermined region can be performed simultaneously. Specifically, since a fluorescent fingerprint is obtained for each pixel of the image sensor, component analysis of the object 11 can be performed for each pixel.
  • the light observation device 10 may not include the light source unit 20.
  • another excitation light source may irradiate the excitation light 13 to the object 11, and the light observation device 10 may receive fluorescence generated by the excitation light 13 irradiated to the object 11.
  • the light observation device 10 may use a wavelength component included in the ambient light 12 as the excitation light 13.
  • the signal processing circuit 40 of the light observation device 10 may not include the specifying unit 43.
  • the signal processing circuit 40 may be provided with an output terminal for outputting fluorescence fingerprint data, a communication interface, or the like, instead of the identification unit 43.
  • the signal processing circuit 40 may output the fluorescent fingerprint data to the server device.
  • the present invention is not limited thereto.
  • the object 11 is not particularly limited as long as it contains a substance that emits fluorescence when irradiated with the excitation light 13.
  • the object 11 may be an object that does not emit fluorescence.
  • the present disclosure can be realized as a light observation method including, as a step, processing performed by the signal processing circuit of the light observation apparatus according to each embodiment.
  • the signal processing circuit generates fluorescence from the object 11 when the object 11 is irradiated with excitation light 13 having excitation wavelengths selected from a plurality of different excitation wavelengths, and A first output signal representing the intensity of each of the plurality of observation wavelengths of the first light 14 including the ambient light 12 is obtained (Step S12 in FIG. 4).
  • the signal processing circuit attenuates the signal component corresponding to the environmental light 12 from the acquired first output signal, and attenuates the signal intensity of the first output signal corresponding to the environmental light 12, Evaluation is performed for each combination of excitation wavelength and observation wavelength (step S14 in FIG. 4).
  • the signal processing circuit may specify the component of the object 11 based on the signal obtained by attenuating the signal component corresponding to the ambient light 12 (step S16 in FIG. 4).
  • the signal processing circuit is composed of the reflected light returned from the object 11 and the fluorescence generated from the object 11 when the irradiation light from the light source is irradiated to the object 11.
  • a first output signal representing the received light intensity of the first light 14 including at least one light selected from the group and the ambient light 12 is obtained (step S12 in FIG. 11).
  • the signal processing circuit obtains a second output signal representing the received light intensity of the second light 15 including the ambient light 12 (step S24 in FIG. 11).
  • the acquisition of the first output signal and the acquisition of the second output signal may be performed simultaneously, or either may be performed first.
  • the signal processing circuit attenuates the signal component corresponding to the ambient light 12 from the first output signal by calculation of the first output signal and the second output signal (step S25 in FIG. 11).
  • the present disclosure can not only be realized as a light observation method, but also as a program for causing a computer to execute each step included in the light observation method, and a recording medium such as a DVD (Digital Versatile Disc) recording the program. It can also be realized. Each step described above is realized by the computer reading and executing the program stored in the recording medium.
  • the program may be pre-recorded on the recording medium, or may be supplied to the recording medium via a wide area communication network including the Internet.
  • each component of the signal processing circuit of the light observation apparatus may be configured by dedicated hardware, or realized by executing a software program suitable for each component. It may be done.
  • Each component may be realized by a program execution unit such as a central processing unit (CPU) or processor reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory.
  • the type of processor is not limited as long as the function can be realized by executing a program.
  • the processor is configured of one or more electronic circuits including a semiconductor integrated circuit such as an integrated circuit (IC) or a large scale integration (LSI).
  • IC integrated circuit
  • LSI large scale integration
  • the plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips.
  • the plurality of chips may be integrated into one device or may be distributed and provided to a plurality of devices.
  • the above-described general or specific aspects may be realized by a system, an apparatus, an integrated circuit, a computer program, or a computer readable recording medium, and the system, the apparatus, the integrated circuit, the computer program, and the recording It may be realized by any combination of media.
  • the present disclosure can be used as a highly versatile light observation device, and can be used, for example, as an analysis device of an object.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A light observation device according to an embodiment of the present disclosure comprises: a first light reception unit for, if irradiation light has been irradiated onto a portion or more of an object, receiving first light including ambient light and at least one type of light selected from the group consisting of reflected light that has returned from the portion or more of the object and fluorescence emitted from the portion or more of the object and outputting a first output signal expressing the received light intensity of the first light; a second light reception unit that is provided in a position that does not overlap with the optical path of said at least one type of light and is for receiving second light including the ambient light and outputting a second output signal expressing the received light intensity of the second light; and a signal processing circuit. The signal processing circuit attenuates a first signal component of the first output signal that corresponds to the ambient light on the basis of computation carried out on the first output signal and second output signal.

Description

光観測装置Optical observation device
 本開示は、光観測装置に関する。 The present disclosure relates to a light observation device.
 従来、蛍光特性を利用して対象物の分析を行う手法が開発されている。例えば、特許文献1から4には、励起蛍光マトリクス(Excitation Emission Matrix:EEM)情報を取得することで、対象物の分析を行うことが開示されている。EEM情報は、「蛍光指紋」とも言われ、試料に照射する励起光の波長を連続的に変化させながら蛍光スペクトルを測定することによって得られる3次元データを意味する。その他、対象物に光を照射し、対象物からの反射光を測定することで対象物に関する情報を取得する技術が従来開発されている。 Heretofore, methods for analyzing an object using fluorescence characteristics have been developed. For example, Patent Documents 1 to 4 disclose that an object is analyzed by acquiring Excitation Emission Matrix (EEM) information. EEM information is also referred to as "fluorescent fingerprint" and means three-dimensional data obtained by measuring a fluorescence spectrum while continuously changing the wavelength of excitation light to be applied to a sample. In addition, a technology has been conventionally developed to obtain information on an object by irradiating the object with light and measuring the reflected light from the object.
特開2010-185719号公報Unexamined-Japanese-Patent No. 2010-185719 特許第3706914号公報Patent No. 3706914 特開2010-266380号公報JP, 2010-266380, A 特許第5985709号公報Patent No. 5985709
 しかしながら、上記従来の蛍光指紋を測定する技術では、対象物の分析が可能な条件が、暗室内若しくは消灯した実験室内、又は、測定装置内などの限られた条件に限定される。また、蛍光を発しない対象物を検知することができない。このように、従来の技術は、限られた使用条件でしか使用できず、汎用性が低い。 However, in the above-mentioned conventional technique for measuring a fluorescent fingerprint, conditions under which analysis of an object is possible are limited to limited conditions such as in a dark room or a turned-off laboratory or in a measuring apparatus. In addition, it is not possible to detect an object that does not emit fluorescence. Thus, the prior art can only be used under limited use conditions and has low versatility.
 そこで、本開示は、汎用性が高い光観測装置を提供する。 Thus, the present disclosure provides a highly versatile light observation apparatus.
 本開示の一態様に係る光観測装置は、対象物の少なくとも一部に照射光が照射された場合に、前記少なくとも一部から戻った反射光及び前記少なくとも一部から発生した蛍光からなる群から選択される少なくとも1つの光と、環境光と、を含む第1の光を受光し、前記第1の光の受光強度を表す第1の出力信号を出力する第1の受光部と、前記少なくとも1つの光の光路と重ならない位置に設けられ、前記環境光を含む第2の光を受光し、前記第2の光の受光強度を表す第2の出力信号を出力する第2の受光部と、信号処理回路と、を備える。前記信号処理回路は、前記第1の出力信号と前記第2の出力信号との演算により、前記第1の出力信号から前記環境光に相当する第1の信号成分を減衰させる。 A light observation apparatus according to an aspect of the present disclosure is a group of reflected light returned from at least a part and fluorescence generated from the at least part when irradiated light is irradiated to at least part of an object. A first light receiving unit that receives a first light including at least one selected light and an ambient light, and outputs a first output signal representing a light receiving intensity of the first light; A second light receiving unit provided at a position not overlapping the optical path of one light, receiving a second light including the ambient light, and outputting a second output signal representing a light receiving intensity of the second light , Signal processing circuit. The signal processing circuit attenuates a first signal component corresponding to the ambient light from the first output signal by calculation of the first output signal and the second output signal.
 また、本開示の他の一態様に係る光観測装置は、互いに異なる複数の励起波長から選択される励起波長を有する照射光が対象物に照射された場合に、前記対象物から発生する蛍光、及び環境光を含む第1の光を受光し、前記第1の光の受光強度を表す第1の出力信号を出力する第1の受光部と、信号処理回路と、を備える。前記信号処理回路は、前記第1の出力信号に含まれる信号成分であって、前記信号成分の信号強度と前記励起波長との相関が基準値より小さい信号成分を、前記環境光に相当する第1の信号成分として、前記第1の出力信号から減衰させる。 In the light observation device according to another aspect of the present disclosure, fluorescence generated from the object when irradiation light having an excitation wavelength selected from a plurality of different excitation wavelengths is irradiated to the object, And a signal processing circuit that receives a first light including ambient light and outputs a first output signal representing a received light intensity of the first light. The signal processing circuit is a signal component included in the first output signal, and a signal component whose correlation between the signal intensity of the signal component and the excitation wavelength is smaller than a reference value corresponds to the ambient light. The first output signal is attenuated as a signal component of one.
 また、本開示の一態様に係るコンピュータ読み取り可能な記録媒体は、プログラムを格納したコンピュータ読み取り可能な記録媒体であって、前記プログラムが前記コンピュータによって実行されるときに、第1の受光部に、対象物の少なくとも一部に照射光が照射された場合に、前記少なくとも一部から戻った反射光及び前記少なくとも一部から発生した蛍光からなる群から選択される少なくとも1つの光と、環境光と、を含む第1の光を受光させ、前記第1の光の受光強度を表す第1の出力信号を出力させるステップと、第2の受光部に、前記環境光を含む第2の光を受光させ、前記第2の光の受光強度を表す第2の出力信号を出力させるステップと、信号処理回路に、前記第1の出力信号と前記第2の出力信号との演算により、前記第1の出力信号から前記環境光に相当する第1の信号成分を減衰させるステップと、が実行される。 Further, a computer readable recording medium according to an aspect of the present disclosure is a computer readable recording medium storing a program, and when the program is executed by the computer, the first light receiving unit includes: At least one light selected from the group consisting of the reflected light returned from the at least one part and the fluorescence generated from the at least one when the irradiation light is irradiated to at least one part of the object, and the ambient light , And outputting a first output signal representing the received light intensity of the first light, and receiving a second light including the ambient light in a second light receiving unit Outputting a second output signal representing the received light intensity of the second light, and the signal processing circuit calculating the first output signal and the second output signal. A step of the first output signal attenuating a first signal component corresponding to the ambient light, is executed.
 また、本開示の他の一態様に係るコンピュータ読み取り可能な記録媒体は、プログラムを格納したコンピュータ読み取り可能な記録媒体であって、前記プログラムが前記コンピュータによって実行されるときに、第1の受光部に、互いに異なる複数の励起波長から選択される励起波長を有する照射光が対象物に照射された場合に、前記対象物から発生する蛍光、及び環境光を含む第1の光を受光させ、前記第1の光の受光強度を表す第1の出力信号を出力させるステップと、信号処理回路に、前記第1の出力信号に含まれる信号成分であって、前記信号成分の信号強度と前記励起波長との相関が基準値より小さい信号成分を、前記環境光に相当する第1の信号成分として、前記第1の出力信号から減衰させるステップと、が実行される。 A computer readable recording medium according to another aspect of the present disclosure is a computer readable recording medium storing a program, wherein the first light receiving unit when the program is executed by the computer. The first light including the fluorescent light generated from the target and the ambient light when the target is irradiated with illumination light having an excitation wavelength selected from a plurality of different excitation wavelengths, Outputting a first output signal representing the received light intensity of the first light, and the signal processing circuit including a signal component included in the first output signal, the signal intensity of the signal component and the excitation wavelength Attenuating from the first output signal a signal component whose correlation with is smaller than a reference value as a first signal component corresponding to the ambient light.
 本開示によれば、汎用性が高い光観測装置を提供することができる。 According to the present disclosure, a highly versatile light observation apparatus can be provided.
図1は、実施の形態1に係る光観測装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the light observation apparatus according to the first embodiment. 図2は、実施の形態1に係る光観測装置の光源部及び第1の受光部の具体的な構成を示す図である。FIG. 2 is a diagram showing a specific configuration of the light source unit and the first light receiving unit of the light observation device according to the first embodiment. 図3は、環境光がない場合の理想的な蛍光指紋の一例を示す図である。FIG. 3 is a diagram showing an example of an ideal fluorescent fingerprint when there is no ambient light. 図4は、実施の形態1に係る光観測装置の動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the light observation apparatus according to the first embodiment. 図5は、環境光のスペクトルの一例を示す図である。FIG. 5 is a diagram showing an example of the spectrum of ambient light. 図6は、実施の形態1に係る光観測装置の第1の受光部が出力した出力信号に基づく蛍光指紋の一例を示す図である。FIG. 6 is a diagram showing an example of a fluorescent fingerprint based on an output signal output from the first light receiving unit of the light observation device according to the first embodiment. 図7は、実施の形態1に係る光観測装置の第1の受光部が出力した出力信号を示す図である。FIG. 7 is a diagram showing an output signal output from the first light receiving unit of the light observation device according to the first embodiment. 図8は、実施の形態1に係る光観測装置の信号処理回路が生成した、環境光に相当する信号成分が減衰された信号に基づく蛍光指紋の一例を示す図である。FIG. 8 is a view showing an example of a fluorescent fingerprint based on a signal generated by the signal processing circuit of the light observation apparatus according to the first embodiment, in which a signal component corresponding to ambient light is attenuated. 図9は、実施の形態1に係る光観測装置の信号処理回路が生成した、環境光に相当する信号成分が減衰された信号を示す図である。FIG. 9 is a diagram showing a signal generated by the signal processing circuit of the light observation apparatus according to the first embodiment, in which a signal component corresponding to ambient light is attenuated. 図10は、実施の形態2に係る光観測装置の構成を示すブロック図である。FIG. 10 is a block diagram showing the configuration of the light observation apparatus according to the second embodiment. 図11は、実施の形態2に係る光観測装置の動作を示すフローチャートである。FIG. 11 is a flowchart showing an operation of the light observation device according to the second embodiment. 図12は、実施の形態2に係る光観測装置の第1の受光部が、励起光が対象物に照射されていないときに受光した光に基づく蛍光指紋の一例を示す図である。FIG. 12 is a diagram illustrating an example of a fluorescent fingerprint based on light received by the first light receiving unit of the light observation device according to the second embodiment when the excitation light is not irradiated to the object. 図13は、実施の形態3に係る光観測装置の構成を示すブロック図である。FIG. 13 is a block diagram showing the configuration of the light observation apparatus according to the third embodiment. 図14は、実施の形態3の変形例に係る光観測装置の構成を示すブロック図である。FIG. 14 is a block diagram showing a configuration of a light observation apparatus according to a modification of the third embodiment. 図15は、実施の形態4に係る光観測装置の構成を示すブロック図である。FIG. 15 is a block diagram showing the configuration of the light observation apparatus according to the fourth embodiment. 図16は、実施の形態4に係る光観測装置の原理を模式的に示す図である。FIG. 16 is a diagram schematically showing the principle of the light observation device according to the fourth embodiment. 図17は、実施の形態4に係る光観測装置の第1の受光部から出力される信号の時間変化を示す図である。FIG. 17 is a diagram showing time change of a signal output from the first light receiving unit of the light observation device according to the fourth embodiment. 図18は、実施の形態4に係る光観測装置の第2の受光部から出力される信号の時間変化を示す図である。FIG. 18 is a diagram showing time change of a signal output from the second light receiving unit of the light observation device according to the fourth embodiment. 図19は、実施の形態4に係る光観測装置の信号処理回路が生成する、第1の出力信号から、環境光に相当する信号成分が減衰された信号を示す図である。FIG. 19 is a diagram illustrating a signal generated by the signal processing circuit of the light observation device according to the fourth embodiment, in which a signal component corresponding to ambient light is attenuated from the first output signal.
 (本開示の概要)
 本開示の一態様に係る光観測装置は、対象物の少なくとも一部に照射光が照射された場合に、前記少なくとも一部から戻った反射光及び前記少なくとも一部から発生した蛍光からなる群から選択される少なくとも1つの光と、環境光と、を含む第1の光を受光し、前記第1の光の受光強度を表す第1の出力信号を出力する第1の受光部と、前記少なくとも1つの光の光路と重ならない位置に設けられ、前記環境光を含む第2の光を受光し、前記第2の光の受光強度を表す第2の出力信号を出力する第2の受光部と、信号処理回路と、を備える。前記信号処理回路は、前記第1の出力信号と前記第2の出力信号との演算により、前記第1の出力信号から前記環境光に相当する第1の信号成分を減衰させる。
(Summary of this disclosure)
A light observation apparatus according to an aspect of the present disclosure is a group of reflected light returned from at least a part and fluorescence generated from the at least part when irradiated light is irradiated to at least part of an object. A first light receiving unit that receives a first light including at least one selected light and an ambient light, and outputs a first output signal representing a light receiving intensity of the first light; A second light receiving unit provided at a position not overlapping the optical path of one light, receiving a second light including the ambient light, and outputting a second output signal representing a light receiving intensity of the second light , Signal processing circuit. The signal processing circuit attenuates a first signal component corresponding to the ambient light from the first output signal by calculation of the first output signal and the second output signal.
 これにより、環境光が対象物に照射されている場合であっても第1の出力信号から環境光に相当する信号成分を減衰させることで、環境光の影響を抑制することができる。したがって、本態様に係る光観測装置は、暗室などの限られた条件に限定されず、例えば、室内照明光に照らされた空間内に位置する対象物の成分分析に利用することができる。このように、本態様によれば、汎用性が高い光観測装置を提供することができる。 Thereby, even when environmental light is irradiated to the object, the influence of the environmental light can be suppressed by attenuating the signal component corresponding to the environmental light from the first output signal. Therefore, the light observation device according to this aspect is not limited to limited conditions such as a dark room, and can be used, for example, for component analysis of an object located in a space illuminated by indoor illumination light. Thus, according to this aspect, it is possible to provide a highly versatile light observation apparatus.
 また、光観測装置が第2の受光部を備えるので、第1の受光部によって対象物から戻った反射光及び対象物から発生した蛍光からなる群から選択される少なくとも1つの光を含む光の受光を行いながら同時に、第2の受光部によってその少なくとも1つの光を含まない光の受光を行うことができる。例えば、第2の受光部を環境光の受光の専用に利用することができるので、外乱光の影響を受けずに環境光の受光強度を精度良く取得することができる。したがって、光観測の精度が高まるので、対象物の検出精度も高めることができる。 In addition, since the light observation device includes the second light receiving unit, the light including at least one light selected from the group consisting of the reflected light returned from the object by the first light receiving unit and the fluorescence generated from the object At the same time as receiving light, the second light receiving unit can receive light not including the at least one light. For example, since the second light receiving unit can be used exclusively for receiving the ambient light, the received light intensity of the ambient light can be accurately obtained without being affected by the disturbance light. Therefore, since the accuracy of light observation is enhanced, the detection accuracy of the object can also be enhanced.
 また、例えば、前記照射光は、互いに異なる複数の励起波長から選択される励起波長を有し、前記第1の光は、前記蛍光を含んでいてもよい。 Also, for example, the irradiation light may have an excitation wavelength selected from a plurality of different excitation wavelengths, and the first light may include the fluorescence.
 これにより、蛍光を発する有機物などを検出することができる。例えば、人の嘔吐物、及び、花粉などを検出することができる。 Thereby, an organic substance or the like that emits fluorescence can be detected. For example, human vomit and pollen can be detected.
 また、例えば、前記第1の光は、前記反射光を含んでいてもよい。 Also, for example, the first light may include the reflected light.
 これにより、蛍光を発しないPM2.5などの粒子状物質を検出することができる。 Thereby, particulate matter such as PM 2.5 which does not emit fluorescence can be detected.
 また、例えば、本開示の一態様に係る光観測装置は、前記第1の受光部及び前記第2の受光部の各々は、複数の画素を含み、前記第1の受光部及び前記第2の受光部はイメージセンサを構成していてもよい。 Also, for example, in the light observation device according to an aspect of the present disclosure, each of the first light receiving unit and the second light receiving unit includes a plurality of pixels, and the first light receiving unit and the second light receiving unit The light receiving unit may constitute an image sensor.
 これにより、1つのイメージセンサを第1の受光部及び第2の受光部として共用することができるので、光観測装置の構成を簡素化することができる。 Thus, one image sensor can be shared as the first light receiving unit and the second light receiving unit, so that the configuration of the light observation apparatus can be simplified.
 また、本開示の他の一態様に係る光観測装置は、互いに異なる複数の励起波長から選択される励起波長を有する照射光が対象物に照射された場合に、前記対象物から発生する蛍光、及び環境光を含む第1の光を受光し、前記第1の光の受光強度を表す第1の出力信号を出力する第1の受光部と、信号処理回路と、を備える。前記信号処理回路は、前記第1の出力信号に含まれる信号成分であって、前記信号成分の信号強度と前記励起波長との相関が基準値より小さい信号成分を、前記環境光に相当する第1の信号成分として、前記第1の出力信号から減衰させる。 In the light observation device according to another aspect of the present disclosure, fluorescence generated from the object when irradiation light having an excitation wavelength selected from a plurality of different excitation wavelengths is irradiated to the object, And a signal processing circuit that receives a first light including ambient light and outputs a first output signal representing a received light intensity of the first light. The signal processing circuit is a signal component included in the first output signal, and a signal component whose correlation between the signal intensity of the signal component and the excitation wavelength is smaller than a reference value corresponds to the ambient light. The first output signal is attenuated as a signal component of one.
 蛍光の強度は励起波長に依存する一方で、環境光の強度は励起波長には依存しない。つまり、信号強度と励起波長との相関が小さい成分は、環境光が多く含まれた成分であると推測される。したがって、信号強度と励起波長との相関が基準値より小さい成分を減衰させることで、環境光に相当する信号成分を精度良く減衰させることができる。これにより、本態様に係る光観測装置は、暗室などの限られた条件に限定されず、例えば、室内照明光に照らされた空間内に位置する対象物の成分分析に利用することができる。このように、本態様によれば、汎用性が高い光観測装置を提供することができる。また、蛍光観測の精度が高まるので、対象物の成分の分析精度も高めることができる。 While the intensity of fluorescence depends on the excitation wavelength, the intensity of ambient light does not depend on the excitation wavelength. That is, it is assumed that the component having a small correlation between the signal intensity and the excitation wavelength is a component containing a large amount of ambient light. Therefore, by attenuating the component whose correlation between the signal intensity and the excitation wavelength is smaller than the reference value, the signal component corresponding to the ambient light can be attenuated accurately. Thereby, the light observation device according to the present aspect is not limited to limited conditions such as a dark room, and can be used, for example, for component analysis of an object located in a space illuminated by indoor illumination light. Thus, according to this aspect, it is possible to provide a highly versatile light observation apparatus. In addition, since the accuracy of the fluorescence observation is enhanced, the analysis accuracy of the component of the object can also be enhanced.
 また、例えば、前記第1の受光部は、互いに異なる複数の観測波長において、前記第1の光を受光し、前記信号処理回路は、前記複数の観測波長の各々に対して、前記複数の励起波長から選択された第1の励起波長に対応する前記第1の出力信号の信号強度と前記複数の励起波長から選択された第2の励起波長に対応する前記第1の出力信号の信号強度との差分絶対値を算出し、前記差分絶対値が閾値以下である場合に、前記第1の出力信号に含まれる信号成分であって、前記差分絶対値に対応する観測波長における信号成分を、前記第1の信号成分として、前記第1の出力信号から減衰させてもよい。 Also, for example, the first light receiving unit receives the first light at a plurality of observation wavelengths different from one another, and the signal processing circuit performs the plurality of excitations on each of the plurality of observation wavelengths. The signal strength of the first output signal corresponding to the first excitation wavelength selected from the wavelengths and the signal strength of the first output signal corresponding to the second excitation wavelength selected from the plurality of excitation wavelengths Calculating a difference absolute value of the signal component, and the signal component at the observation wavelength corresponding to the difference absolute value, the signal component being a signal component included in the first output signal when the The first output signal may be attenuated as the first signal component.
 これにより、信号強度と励起波長との相関が小さい成分を適切に判定することができるので、環境光に相当する信号成分を精度良く減衰させることができる。したがって、蛍光観測の精度が高まるので、対象物の成分の分析精度も高めることができる。 As a result, a component having a small correlation between the signal intensity and the excitation wavelength can be appropriately determined, so that the signal component corresponding to the ambient light can be attenuated accurately. Therefore, since the accuracy of fluorescence observation is enhanced, the analysis accuracy of the component of the object can also be enhanced.
 また、例えば、前記第1の受光部は、さらに、前記対象物に対して前記励起光が照射されていない場合に、当該第1の受光部に入射する第2の光を受光し、前記第2の光の観測波長毎の受光強度を表す第2の出力信号を出力し、前記信号処理回路は、前記第1の出力信号から前記第2の出力信号を、前記環境光に相当する信号成分として減衰させてもよい。 Also, for example, when the excitation light is not irradiated to the object, the first light receiving unit further receives the second light incident on the first light receiving unit, and A second output signal representing the light reception intensity for each observed wavelength of the light of No. 2; and the signal processing circuit generates a signal component corresponding to the ambient light from the first output signal to the second output signal It may be attenuated as
 これにより、励起光が照射されずに蛍光がほとんど発生していない場合に光を受光するので、受光した光が実質的に環境光に起因する成分となる。したがって、環境光の受光強度を精度良く取得することができるので、蛍光観測の精度が高められ、対象物の成分の分析精度も高めることができる。 As a result, since light is received when excitation light is not emitted and almost no fluorescence is generated, the received light substantially becomes a component resulting from ambient light. Therefore, since the light reception intensity | strength of environmental light can be acquired accurately, the precision of fluorescence observation can be raised and the analysis precision of the component of a target object can also be raised.
 また、例えば、前記信号処理回路は、さらに、前記第1の信号成分が減衰された前記第1の出力信号の信号強度に基づいて、前記対象物に含まれる成分を特定してもよい。 Also, for example, the signal processing circuit may further specify the component included in the object based on the signal strength of the first output signal in which the first signal component is attenuated.
 これにより、対象物の成分分析を行うことができる。このため、本態様に係る光観測装置は、その場でどのような物質が存在しているかを把握することができるので、物質に応じた対処を速やかに行うことができる。例えば、ウイルスが検出された場合には、速やかにウイルスの浄化を行うことができ、感染の予防などに利用することができる。 This allows component analysis of the object. For this reason, since the light observation apparatus according to this aspect can grasp what substance is present at the place, it is possible to promptly take measures according to the substance. For example, when a virus is detected, the virus can be rapidly cleaned and can be used for the prevention of infection and the like.
 また、例えば、前記第1の受光部は、互いに異なる複数の観測波長において、前記第1の光を受光し、前記信号処理回路は、前記第1の信号成分が減衰された前記第1の出力信号の信号強度を、前記複数の励起波長及び前記複数の観測波長の組み合わせ毎に評価することにより、前記対象物に含まれる前記成分を特定してもよい。 Also, for example, the first light receiving unit receives the first light at a plurality of observation wavelengths different from one another, and the signal processing circuit outputs the first output in which the first signal component is attenuated. The component included in the object may be identified by evaluating the signal strength of the signal for each combination of the plurality of excitation wavelengths and the plurality of observation wavelengths.
 これにより、いわゆる蛍光指紋に基づいて精度良く対象物の成分分析を行うことができる。 Thereby, component analysis of the object can be performed with high accuracy based on so-called fluorescent fingerprints.
 また、例えば、本開示の一態様または他の一態様に係る光観測装置は、さらに、前記照射光を前記対象物に向けて照射する光源を備えてもよい。 Also, for example, the light observation apparatus according to one aspect or the other aspect of the present disclosure may further include a light source that emits the irradiation light toward the target.
 これにより、光観測装置が光源を備えるので、対象物から戻った反射光及び対象物から発生した蛍光からなる群から選択される少なくとも1つの光を発生させるのに十分な強度の照射光を対象物に照射することができる。したがって、本態様に係る光観測装置は、対象物の周囲に照射光を発する光源がない場合であっても、例えば、対象物の成分分析に利用することができ、汎用性が極めて高い。 Thereby, since the light observation device includes the light source, the irradiation light of the intensity sufficient to generate at least one light selected from the group consisting of the reflected light returned from the object and the fluorescence generated from the object is targeted It is possible to irradiate the object. Therefore, the light observation apparatus according to the present aspect can be used, for example, for component analysis of an object even if there is no light source that emits illumination light around the object, and the versatility is extremely high.
 また、例えば、前記環境光は、室内照明光であってもよい。 Also, for example, the ambient light may be indoor illumination light.
 これにより、例えばLED(Light Emitting Diode)又は蛍光灯などの照明光が照らされた室内においても対象物から戻った反射光及び対象物から発生した蛍光からなる群から選択される少なくとも1つの光を観測することができる。このため、本態様に係る光観測装置は、例えば、暗室又は計測装置の内部に配置された対象物だけでなく、日常の生活空間に存在する対象物の成分分析に利用することができ、汎用性が極めて高い。 Thus, for example, at least one light selected from the group consisting of reflected light returned from an object and fluorescence generated from an object even in a room illuminated with illumination light such as a LED (Light Emitting Diode) or a fluorescent lamp It can be observed. For this reason, the light observation apparatus according to this aspect can be used for component analysis of not only an object disposed in a dark room or a measuring apparatus but also an object present in daily living space, for example. Extremely high.
 具体的には、光観測装置は、対象物の一例としてウイルス又は菌を利用することで、室内に存在するウイルス又は菌の位置の確認に利用することができる。光観測装置は、例えば、ノロウイルスに感染した人物がドアノブ又はテーブルなどを触ったときに付着したノロウイルスを検出することができる。 Specifically, the light observation device can be used to confirm the position of a virus or fungus existing in a room by using a virus or fungus as an example of the object. The light observation device can detect, for example, attached norovirus when a person infected with the norovirus touches the doorknob or the table.
 また、例えば、前記対象物は、人の嘔吐物であってもよい。 Also, for example, the object may be human vomit.
 例えば人が床に嘔吐した場合に、嘔吐物の一部が飛散して、どの範囲までに飛び散ったのかを肉眼では確認できない。清掃しきれなかった嘔吐物が残存している場合にウイルスなどが増殖する恐れがある。本態様に係る光観測装置によれば、例えば、残存した嘔吐物に含まれる有機物の蛍光を観測することができるので、飛散した嘔吐物の一部の位置を確認することができる。また、嘔吐物の清掃後に、本態様に係る光観測装置を利用した場合には、嘔吐物の残存を確認することができる。したがって、清掃の効果を確認することができる。 For example, when a person vomits on the floor, a part of the vomiting material is scattered, and it can not be confirmed with the naked eye to which range it splattered. When vomits that can not be cleaned up remain, there is a risk that viruses etc. will multiply. According to the light observation apparatus according to this aspect, for example, since the fluorescence of the organic substance contained in the remaining vomit can be observed, it is possible to confirm the position of part of the scattered vomit. Moreover, when the light observation apparatus according to this aspect is used after cleaning the vomiting substance, it is possible to confirm that the vomiting substance remains. Therefore, the effect of cleaning can be confirmed.
 また、例えば、前記対象物は、空間中に飛散する微粒子であってもよい。 Also, for example, the object may be fine particles scattered in a space.
 これにより、花粉又は埃などの微粒子を検出することができる。 Thereby, fine particles such as pollen or dust can be detected.
 また、本開示の一態様に係る光観測方法は、対象物の少なくとも一部に照射光が照射された場合に、前記少なくとも一部から戻った反射光及び前記少なくとも一部から発生した蛍光からなる群から選択される少なくとも1つの光と、環境光と、を含む第1の光の受光強度を表す第1の出力信号を取得するステップと、前記環境光を含む第2の光の受光強度を表す第2の出力信号を取得するステップと、前記第1の出力信号と前記第2の出力信号との演算により、前記第1の出力信号から前記環境光に相当する第1の信号成分を減衰させるステップと、を含む。 In the light observation method according to one aspect of the present disclosure, when at least a part of the object is irradiated with the irradiation light, the light observation method includes the reflected light returned from the at least a part and the fluorescence generated from the at least a part Obtaining a first output signal representing the received light intensity of the first light including at least one light selected from the group and the ambient light; and receiving the received light intensity of the second light including the ambient light Attenuating a first signal component corresponding to the ambient light from the first output signal by obtaining a second output signal representing the signal and calculating the first output signal and the second output signal And b.
 これにより、上述した光観測装置と同様に、汎用性が高い光観測方法を実現することができる。 Thus, it is possible to realize a highly versatile light observation method as in the light observation device described above.
 また、本開示の一態様に係る蛍光観測方法は、互いに異なる複数の励起波長から選択される励起波長を有する照射光が対象物に照射された場合に、前記対象物から発生する蛍光、及び環境光を含む第1の光の強度を表す第1の出力信号を取得するステップと、前記第1の出力信号に含まれる信号成分であって、前記信号成分の信号強度と前記励起波長との相関が基準値より小さい信号成分を、前記環境光に相当する第1の信号成分として、前記第1の出力信号から減衰させるステップと、を含む。 In the fluorescence observation method according to one aspect of the present disclosure, fluorescence generated from the target when environment is irradiated with irradiation light having excitation wavelengths selected from a plurality of different excitation wavelengths, and environment Obtaining a first output signal representing the intensity of the first light including light; and a signal component included in the first output signal, wherein the signal intensity of the signal component is correlated with the excitation wavelength Attenuating a signal component smaller than a reference value from the first output signal as a first signal component corresponding to the ambient light.
 これにより、上述した光観測装置と同様に、汎用性が高い光観測方法を実現することができる。 Thus, it is possible to realize a highly versatile light observation method as in the light observation device described above.
 また、本開示の一態様に係るプログラムは、コンピュータで実行されるプログラムであって、第1の受光部に、対象物の少なくとも一部に照射光が照射された場合に、前記少なくとも一部から戻った反射光及び前記少なくとも一部から発生した蛍光からなる群から選択される少なくとも1つの光と、環境光と、を含む第1の光を受光させ、前記第1の光の受光強度を表す第1の出力信号を出力させるステップと、第2の受光部に、前記環境光を含む第2の光を受光させ、前記第2の光の受光強度を表す第2の出力信号を出力させるステップと、信号処理回路に、前記第1の出力信号と前記第2の出力信号との演算により、前記第1の出力信号から前記環境光に相当する第1の信号成分を減衰させるステップと、を含む。 Further, a program according to an aspect of the present disclosure is a program executed by a computer, and when at least a part of the target is irradiated with the irradiation light in the first light receiving unit, the at least a part The first light including at least one light selected from the group consisting of the reflected light that has returned and the fluorescence generated from the at least a part, and the ambient light is received, and the received light intensity of the first light is represented Outputting the first output signal; and causing the second light receiving unit to receive the second light including the ambient light and outputting a second output signal representing the received light intensity of the second light And attenuating a first signal component corresponding to the ambient light from the first output signal by computing the first output signal and the second output signal in the signal processing circuit. Including.
 また、本開示の他の一態様に係るプログラムは、コンピュータで実行されるプログラムであって、第1の受光部に、互いに異なる複数の励起波長から選択される励起波長を有する照射光が対象物に照射された場合に、前記対象物から発生する蛍光、及び環境光を含む第1の光を受光させ、前記第1の光の受光強度を表す第1の出力信号を出力させるステップと、信号処理回路に、前記信号処理回路は、前記第1の出力信号に含まれる信号成分であって、前記信号成分の信号強度と前記励起波長との相関が基準値より小さい信号成分を、前記環境光に相当する第1の信号成分として、前記第1の出力信号から減衰させるステップと、を含む。 In addition, a program according to another aspect of the present disclosure is a program executed by a computer, and an irradiation light having an excitation wavelength selected from a plurality of different excitation wavelengths is an object in the first light receiving unit. And a step of causing the first light including the fluorescence and the ambient light generated from the object to be received, and outputting a first output signal representing the received light intensity of the first light, and a signal In the processing circuit, the signal processing circuit is a signal component included in the first output signal, and the ambient light is a signal component whose correlation between the signal intensity of the signal component and the excitation wavelength is smaller than a reference value. And Attenuating from the first output signal as a first signal component corresponding to
 また、本開示の一態様に係るコンピュータ読み取り可能な記録媒体は、プログラムを格納したコンピュータ読み取り可能な記録媒体であって、前記プログラムが前記コンピュータによって実行されるときに、第1の受光部に、対象物の少なくとも一部に照射光が照射された場合に、前記少なくとも一部から戻った反射光及び前記少なくとも一部から発生した蛍光からなる群から選択される少なくとも1つの光と、環境光と、を含む第1の光を受光させ、前記第1の光の受光強度を表す第1の出力信号を出力させるステップと、第2の受光部に、前記環境光を含む第2の光を受光させ、前記第2の光の受光強度を表す第2の出力信号を出力させるステップと、信号処理回路に、前記第1の出力信号と前記第2の出力信号との演算により、前記第1の出力信号から前記環境光に相当する第1の信号成分を減衰させるステップと、が実行される。 Further, a computer readable recording medium according to an aspect of the present disclosure is a computer readable recording medium storing a program, and when the program is executed by the computer, the first light receiving unit includes: At least one light selected from the group consisting of the reflected light returned from the at least one part and the fluorescence generated from the at least one when the irradiation light is irradiated to at least one part of the object, and the ambient light , And outputting a first output signal representing the received light intensity of the first light, and receiving a second light including the ambient light in a second light receiving unit Outputting a second output signal representing the received light intensity of the second light, and the signal processing circuit calculating the first output signal and the second output signal. A step of the first output signal attenuating a first signal component corresponding to the ambient light, is executed.
 また、本開示の他の一態様に係るコンピュータ読み取り可能な記録媒体は、プログラムを格納したコンピュータ読み取り可能な記録媒体であって、前記プログラムが前記コンピュータによって実行されるときに、第1の受光部に、互いに異なる複数の励起波長から選択される励起波長を有する照射光が対象物に照射された場合に、前記対象物から発生する蛍光、及び環境光を含む第1の光を受光させ、前記第1の光の受光強度を表す第1の出力信号を出力させるステップと、信号処理回路に、前記第1の出力信号に含まれる信号成分であって、前記信号成分の信号強度と前記励起波長との相関が基準値より小さい信号成分を、前記環境光に相当する第1の信号成分として、前記第1の出力信号から減衰させるステップと、が実行される。 A computer readable recording medium according to another aspect of the present disclosure is a computer readable recording medium storing a program, wherein the first light receiving unit when the program is executed by the computer. The first light including the fluorescent light generated from the target and the ambient light when the target is irradiated with illumination light having an excitation wavelength selected from a plurality of different excitation wavelengths, Outputting a first output signal representing the received light intensity of the first light, and the signal processing circuit including a signal component included in the first output signal, the signal intensity of the signal component and the excitation wavelength Attenuating from the first output signal a signal component whose correlation with is smaller than a reference value as a first signal component corresponding to the ambient light.
 本開示において、回路、ユニット、装置、部材又は部の全部又は一部、又はブロック図の機能ブロックの全部又は一部は、半導体装置、半導体集積回路(IC)、又はLSI(large scale integration)を含む一つ又は複数の電子回路によって実行されてもよい。LSI又はICは、一つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、一つのチップに集積されてもよい。ここでは、LSIまたはICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(very large scale integration)、若しくはULSI(ultra large scale integration)と呼ばれるものであってもよい。 LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、又はLSI内部の接合関係の再構成又はLSI内部の回路区画のセットアップができるreconfigurable logic deviceも同じ目的で使うことができる。 In the present disclosure, all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram represents a semiconductor device, a semiconductor integrated circuit (IC), or a large scale integration (LSI). It may be implemented by one or more electronic circuits, including: The LSI or IC may be integrated on one chip or may be configured by combining a plurality of chips. For example, functional blocks other than storage elements may be integrated on one chip. Although the term “LSI” or “IC” is used here, the term is changed depending on the degree of integration, and may be called system LSI, VLSI (very large scale integration), or ULSI (ultra large scale integration). A Field Programmable Gate Array (FPGA) programmed after the manufacture of the LSI, or a reconfigurable logic device capable of reconfiguring junctions inside the LSI or setting up circuit sections inside the LSI can also be used for the same purpose.
 さらに、回路、ユニット、装置、部材又は部の全部又は一部の機能又は操作は、ソフトウエア処理によって実行することが可能である。この場合、ソフトウエアは一つ又は複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウエアが処理装置(processor)によって実行されたときに、そのソフトウエアで特定された機能が処理装置(processor)および周辺装置によって実行される。システム又は装置は、ソフトウエアが記録されている一つ又は複数の非一時的記録媒体、処理装置(processor)、及び必要とされるハードウエアデバイス、例えばインタフェース、を備えていても良い。 Furthermore, all or part of the functions or operations of the circuits, units, devices, members or parts can be performed by software processing. In this case, the software is recorded on a non-transitory recording medium such as one or more ROMs, optical disks, hard disk drives, etc., and the software is identified by the software when it is executed by a processor. The functions are performed by a processor and peripherals. System or apparatus, one or more non-transitory recording medium software has been recorded, the processing device (processor), and The required hardware devices, for example interface may comprise a.
 以下では、実施の形態について、図面を参照しながら具体的に説明する。 Embodiments will be specifically described below with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that all the embodiments described below show general or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. Further, among the components in the following embodiments, components not described in the independent claim indicating the highest concept are described as arbitrary components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Further, each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
 (実施の形態1)
 [1-1.概要]
 まず、実施の形態1に係る光観測装置の概要について、図1を用いて説明する。図1は、本実施の形態に係る光観測装置10の構成を示すブロック図である。
Embodiment 1
[1-1. Overview]
First, an outline of the light observation apparatus according to the first embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing a configuration of a light observation apparatus 10 according to the present embodiment.
 光観測装置10は、対象物11に照射光を照射した場合に対象物11から戻った反射光及び対象物11から発生した蛍光からなる群から選択される少なくとも1つの光を含む光を受光し、受光した光に含まれる、前記少なくとも1つの光の強度に基づいて対象物11の検知を行う。具体的には、光観測装置10は、蛍光観測装置であり、図1に示すように、対象物11に励起光13を照射した場合に対象物11から発生した蛍光を含む第1の光14を受光し、受光した第1の光14(以下、観測光と記載する)に含まれる蛍光の強度に基づいて蛍光指紋を生成する。光観測装置10は、さらに、蛍光指紋に基づいて対象物11の成分分析を行う。 The light observation device 10 receives light including at least one light selected from the group consisting of reflected light returned from the object 11 and fluorescence generated from the object 11 when the object 11 is irradiated with irradiation light. And detecting the object 11 based on the intensity of the at least one light included in the received light. Specifically, the light observation device 10 is a fluorescence observation device, and as shown in FIG. 1, the first light 14 containing fluorescence generated from the object 11 when the object 11 is irradiated with the excitation light 13. Is received, and a fluorescent fingerprint is generated based on the intensity of the fluorescence contained in the received first light 14 (hereinafter referred to as observation light). The light observation device 10 further performs component analysis of the object 11 based on the fluorescent fingerprint.
 本実施の形態では、対象物11には、環境光12が照射されている。このため、観測光には、蛍光だけでなく、環境光12が含まれる。したがって、本実施の形態に係る光観測装置10は、第1の受光部30が受光した観測光の受光強度を表す出力信号から、環境光12に相当する信号成分を減衰させることで、蛍光成分に相当する信号を生成する。光観測装置10は、環境光12に相当する信号成分が減衰された信号に基づいて蛍光指紋を生成する。 In the present embodiment, ambient light 12 is irradiated to the object 11. For this reason, the observation light includes not only fluorescence but also ambient light 12. Therefore, the light observation device 10 according to the present embodiment attenuates the signal component corresponding to the environmental light 12 from the output signal representing the light reception intensity of the observation light received by the first light reception unit 30 to obtain a fluorescence component. Generates a signal corresponding to The light observation device 10 generates a fluorescent fingerprint based on the signal in which the signal component corresponding to the ambient light 12 is attenuated.
 環境光12は、例えば室内照明光である。室内照明光は、具体的には蛍光灯又はLEDランプなどから出射される白色光である。 The ambient light 12 is, for example, indoor illumination light. The indoor illumination light is specifically white light emitted from a fluorescent lamp or an LED lamp.
 対象物11は、例えば人の嘔吐物である。嘔吐物には、励起光13が照射された場合に蛍光を発する有機物が含まれている。有機物は、例えばトリプトファン、チロシン、ビタミンA、ビタミンB2及びNADH(ニコチンアミドアデニンジヌクレオチド)などであるが、これらに限らない。 The object 11 is, for example, a human vomit. The vomit contains an organic substance that emits fluorescence when irradiated with the excitation light 13. Examples of the organic substance include, but are not limited to, tryptophan, tyrosine, vitamin A, vitamin B2, and NADH (nicotinamide adenine dinucleotide).
 トリプトファンは、励起波長が280nmである励起光13が照射された場合に、310nmにピークを有する蛍光を発生させる。さらに、トリプトファンは、励起波長が270nmである励起光13が照射された場合にも、310nmにピークを有する蛍光を発生させる。 Tryptophan generates fluorescence having a peak at 310 nm when irradiated with excitation light 13 having an excitation wavelength of 280 nm. Furthermore, tryptophan produces fluorescence having a peak at 310 nm even when the excitation light 13 having an excitation wavelength of 270 nm is irradiated.
 チロシンは、励起波長が275nmである励起光13が照射された場合に、300nmにピークを有する蛍光を発生させる。ビタミンAは、励起波長が325nmである励起光13が照射された場合に、425nmにピークを有する蛍光を発生させる。ビタミンB2は、励起波長が450nmである励起光13が照射された場合に、520nmにピークを有する蛍光を発生させる。NADHは、励起波長が350nmである励起光13が照射された場合に、460nmにピークを有する蛍光を発生させる。 Tyrosine generates fluorescence having a peak at 300 nm when the excitation light 13 having an excitation wavelength of 275 nm is irradiated. Vitamin A generates fluorescence having a peak at 425 nm when irradiated with excitation light 13 whose excitation wavelength is 325 nm. Vitamin B2 generates fluorescence having a peak at 520 nm when the excitation light 13 having an excitation wavelength of 450 nm is irradiated. NADH generates fluorescence having a peak at 460 nm when the excitation light 13 having an excitation wavelength of 350 nm is irradiated.
 なお、対象物11は、空間中に飛散する微粒子であってもよい。具体的には、対象物11は、空間中に飛散する花粉、ハウスダストなどの有機物であってもよい。例えば、花粉を構成するタンパク質に励起光13を照射することで、タンパク質が励起されて蛍光を発生させる。 The object 11 may be fine particles scattered in the space. Specifically, the object 11 may be organic matter such as pollen scattered in space or house dust. For example, by irradiating excitation light 13 to a protein that constitutes pollen, the protein is excited to generate fluorescence.
 このように、物質毎に、有効な励起波長と、その励起波長を有する励起光13による蛍光の波長との組み合わせが決まっている。したがって、光観測装置10は、照射した励起光13の波長(すなわち、励起波長)と、観測された蛍光の波長との組み合わせを特定することで、対象物11の成分の特定を行うことができる。 Thus, the combination of the effective excitation wavelength and the wavelength of the fluorescence by the excitation light 13 having the excitation wavelength is determined for each substance. Therefore, the light observation device 10 can specify the component of the object 11 by specifying the combination of the wavelength of the emitted excitation light 13 (that is, the excitation wavelength) and the wavelength of the observed fluorescence. .
 [1-2.構成]
 次に、光観測装置10の構成について、図1及び図2を用いて説明する。図2は、本実施の形態に係る光観測装置10の光源部20及び第1の受光部30の具体的な構成を示す図である。
[1-2. Constitution]
Next, the configuration of the light observation apparatus 10 will be described with reference to FIGS. 1 and 2. FIG. 2 is a diagram showing a specific configuration of the light source unit 20 and the first light receiving unit 30 of the light observation device 10 according to the present embodiment.
 図1及び図2に示すように、光観測装置10は、光源部20と、第1の受光部30と、信号処理回路40とを備える。なお、図2には、信号処理回路40を示していない。 As shown in FIGS. 1 and 2, the light observation device 10 includes a light source unit 20, a first light receiving unit 30, and a signal processing circuit 40. The signal processing circuit 40 is not shown in FIG.
 [1-2-1.光源部]
 光源部20は、照射光を対象物11に向けて照射する光源の一例である。光源部20は、照射光の一例である励起光13を対象物11に向けて照射する。本実施の形態では、光源部20は、互いに励起波長が異なる複数の励起光13を対象物11に照射する。具体的には、図2に示すように、光源部20は、複数の励起光源21と、複数のフィルタ22と、複数の光ファイバ23と、光出射レンズ24とを備える。
[1-2-1. Light source section]
The light source unit 20 is an example of a light source that irradiates the irradiation light toward the object 11. The light source unit 20 irradiates the target object 11 with excitation light 13 which is an example of irradiation light. In the present embodiment, the light source unit 20 irradiates the object 11 with a plurality of excitation lights 13 having different excitation wavelengths. Specifically, as shown in FIG. 2, the light source unit 20 includes a plurality of excitation light sources 21, a plurality of filters 22, a plurality of optical fibers 23, and a light emitting lens 24.
 複数の励起光源21はそれぞれ、広い波長帯域を持つ光(例えば、白色光)を出射する光源である。複数の励起光源21の各々は、例えばハロゲンランプなどの放電ランプ、又は、LEDなどの固体発光素子であるが、これに限らない。 Each of the plurality of excitation light sources 21 is a light source that emits light (for example, white light) having a wide wavelength band. Each of the plurality of excitation light sources 21 is, for example, a discharge lamp such as a halogen lamp or a solid light emitting element such as an LED, but is not limited thereto.
 複数のフィルタ22は、複数の励起光源21と一対一に対応させて設けられている。複数のフィルタ22はそれぞれ、対応する励起光源21と光出射レンズ24とを接続する光ファイバ23が形成する光路に設けられている。 The plurality of filters 22 are provided in one-to-one correspondence with the plurality of excitation light sources 21. Each of the plurality of filters 22 is provided in an optical path formed by an optical fiber 23 connecting the corresponding excitation light source 21 and the light emission lens 24.
 複数のフィルタ22の各々は、対応する励起波長を中心波長とするバンドパスフィルタである。複数のフィルタ22の各々の帯域幅は、例えば10nm以上50nm以下である。複数のフィルタ22の各々の通過帯域は、例えば互いに重複していない。複数のフィルタ22はそれぞれ、対応する励起光源21から出射される光のうち、対応する励起波長の光を通過させる。 Each of the plurality of filters 22 is a band pass filter having a corresponding excitation wavelength as a central wavelength. The bandwidth of each of the plurality of filters 22 is, for example, 10 nm or more and 50 nm or less. The pass bands of each of the plurality of filters 22 do not overlap each other, for example. Each of the plurality of filters 22 passes light of the corresponding excitation wavelength among the light emitted from the corresponding excitation light source 21.
 例えば、光源部20は、6個の励起光源21と、6つの励起波長にそれぞれ対応する6個のフィルタ22とを備える。6つの励起波長は、例えば270nm、275nm、280nm、325nm、350nm及び450nmである。なお、これらの波長は、対象物11の種類に応じて予め選択された波長である。ここでは、上述したトリプトファン、チロシン、ビタミンA、ビタミンB2及びNADHに対する励起光13として有効な励起波長を用いているが、これらに限らない。また、光源部20が備える励起光源21の個数についても6個に限らず、2個でもよく、10個でもよく、10個以上の多数でもよい。 For example, the light source unit 20 includes six excitation light sources 21 and six filters 22 respectively corresponding to six excitation wavelengths. The six excitation wavelengths are, for example, 270 nm, 275 nm, 280 nm, 325 nm, 350 nm and 450 nm. These wavelengths are wavelengths selected in advance according to the type of the object 11. Here, an effective excitation wavelength is used as the excitation light 13 for tryptophan, tyrosine, vitamin A, vitamin B2 and NADH described above, but the invention is not limited thereto. The number of excitation light sources 21 included in the light source unit 20 is not limited to six, and may be two, ten, or a large number of ten or more.
 複数の光ファイバ23は、例えば、複数の励起光源21と一対一に対応させて設けられている。複数の光ファイバ23はそれぞれ、対応する励起光源21と光出射レンズ24とを接続し、励起光源21が出射した励起光13を光出射レンズ24まで導く光路を形成している。 The plurality of optical fibers 23 are provided, for example, in one-to-one correspondence with the plurality of excitation light sources 21. The plurality of optical fibers 23 respectively connect the corresponding excitation light source 21 and the light emission lens 24 to form an optical path for guiding the excitation light 13 emitted from the excitation light source 21 to the light emission lens 24.
 光出射レンズ24は、対象物11に向けて励起光13を出射させるための透光レンズである。 The light emitting lens 24 is a light transmitting lens for emitting the excitation light 13 toward the object 11.
 なお、光源部20は、複数の励起波長を含む広い範囲に十分な強度を有する励起波長を発する1つのみの励起光源21を備えてもよい。この場合、複数のフィルタ22を励起波長毎に切り替えることで、光源部20は、励起波長毎の励起光13を対象物11に照射することができる。また、光源部20は、互いに異なる波長にピークを有する光を出射する複数の励起光源21を備えてもよい。 The light source unit 20 may include only one excitation light source 21 emitting an excitation wavelength having a sufficient intensity in a wide range including a plurality of excitation wavelengths. In this case, by switching the plurality of filters 22 for each excitation wavelength, the light source unit 20 can irradiate the object 11 with the excitation light 13 for each excitation wavelength. Moreover, the light source part 20 may be provided with the several excitation light source 21 which radiate | emits the light which has a peak in a mutually different wavelength.
 光源部20は、励起波長を時間連続的に変化させながら励起光13を対象物11に照射してもよい。例えば、光源部20は、220nm以上550nm以下の範囲において10nm刻みで励起波長を変化させながら、互いに励起波長が異なる複数の励起光13を順次対象物11に照射してもよい。 The light source unit 20 may irradiate the excitation light 13 to the object 11 while continuously changing the excitation wavelength. For example, the light source unit 20 may sequentially irradiate the object 11 with a plurality of excitation lights 13 having different excitation wavelengths while changing the excitation wavelength in steps of 10 nm in a range of 220 nm to 550 nm.
 また、図2に示す光源部20の構成は、一例に過ぎず、光源部20は、光ファイバ23及び光出射レンズ24を備えていなくてもよい。 Further, the configuration of the light source unit 20 shown in FIG. 2 is merely an example, and the light source unit 20 may not include the optical fiber 23 and the light emitting lens 24.
 [1-2-2.第1の受光部]
 第1の受光部30は、光源部20からの照射光が対象物11に照射された場合に対象物11から戻った反射光及び対象物11から発生した蛍光からなる群から選択される少なくとも1つの光と、環境光12と、を含む第1の光14を受光し、第1の光14の受光強度を表す第1の出力信号を出力する。本実施の形態では、照射光は、互いに異なる複数の励起波長から選択される励起波長を有する励起光13である。第1の光14に含まれる少なくとも1つの光は、照射光により励起されて対象物11から発生する蛍光である。つまり、本実施の形態では、第1の光14である観測光には、対象物11から発生した蛍光と、環境光12とが含まれる。
1-2-2. First light receiving unit]
The first light receiving unit 30 is at least one selected from the group consisting of reflected light returned from the object 11 and fluorescence generated from the object 11 when the irradiation light from the light source unit 20 is irradiated to the object 11. It receives a first light 14 including one light and an ambient light 12 and outputs a first output signal representing the received light intensity of the first light 14. In the present embodiment, the irradiation light is excitation light 13 having an excitation wavelength selected from a plurality of different excitation wavelengths. At least one light included in the first light 14 is fluorescence generated from the object 11 by being excited by the irradiation light. That is, in the present embodiment, the observation light which is the first light 14 includes the fluorescence generated from the object 11 and the ambient light 12.
 具体的には、第1の受光部30は、互いに異なる複数の励起波長から選択される励起波長を有する励起光13が照射された場合に励起光13により励起されて対象物11から発生する蛍光を含む第1の光14を受光し、第1の光14の観測波長毎の受光強度を表す第1の出力信号を出力する。上述したように、第1の光14には、蛍光だけでなく、環境光12が含まれる。また、対象物11に環境光12が照射されているので、第1の光14には、対象物11によって反射された環境光12が含まれる。 Specifically, the first light receiving unit 30 is excited by the excitation light 13 and emits fluorescence emitted from the object 11 when the excitation light 13 having the excitation wavelength selected from a plurality of different excitation wavelengths is irradiated. And outputs a first output signal representing the received light intensity for each observed wavelength of the first light 14. As described above, the first light 14 includes not only fluorescence but also ambient light 12. Further, since the environmental light 12 is irradiated to the object 11, the first light 14 includes the environmental light 12 reflected by the object 11.
 本実施の形態では、第1の出力信号には、励起波長毎の複数の出力信号が含まれる。すなわち、第1の受光部30は、複数の励起波長の各々に対応する出力信号を出力する。励起波長毎の出力信号の信号強度は、観測波長毎の受光強度を表している。 In the present embodiment, the first output signal includes a plurality of output signals for each excitation wavelength. That is, the first light receiving unit 30 outputs an output signal corresponding to each of the plurality of excitation wavelengths. The signal intensity of the output signal for each excitation wavelength represents the light reception intensity for each observation wavelength.
 図2に示すように、第1の受光部30は、複数の光検出器31と、複数のフィルタ32と、複数の光ファイバ33と、受光レンズ34とを備える。 As shown in FIG. 2, the first light receiving unit 30 includes a plurality of light detectors 31, a plurality of filters 32, a plurality of optical fibers 33, and a light receiving lens 34.
 複数の光検出器31はそれぞれ、対象物11からの光を受光し、受光した光の強度を表す電気信号を出力する。具体的には、複数の光検出器31はそれぞれ、フォトダイオードなどの光電変換素子である。複数の光検出器31はそれぞれ、対応するフィルタ32を通過した光を受光するので、フィルタ32が透過した光の波長毎の受光強度を表す信号を出力する。 Each of the plurality of photodetectors 31 receives light from the object 11 and outputs an electrical signal representing the intensity of the received light. Specifically, each of the plurality of photodetectors 31 is a photoelectric conversion element such as a photodiode. Each of the plurality of photodetectors 31 receives the light that has passed through the corresponding filter 32, and thus outputs a signal representing the light reception intensity for each wavelength of the light transmitted by the filter 32.
 複数のフィルタ32は、複数の光検出器31と一対一に対応させて設けられている。複数のフィルタ32はそれぞれ、互いに異なる波長を中心波長とし、帯域幅が10nm以上50nm以下のバンドパスフィルタである。複数のフィルタ32の各々の透過帯域は、例えば互いに重複していない。 The plurality of filters 32 are provided in one-to-one correspondence with the plurality of photodetectors 31. Each of the plurality of filters 32 is a band pass filter having a bandwidth of 10 nm or more and 50 nm or less, each having a different wavelength as a central wavelength. The transmission bands of each of the plurality of filters 32 do not overlap each other, for example.
 例えば、第1の受光部30は、5個の光検出器31及び5個のフィルタ32を備える。5個のフィルタ32の各々が透過する光の波長(すなわち、観測波長)は、例えば300nm、310nm、425nm、460nm及び520nmである。なお、これらの波長は、対象物11の種類に応じて予め選択された波長である。ここでは、上述したトリプトファン、チロシン、ビタミンA、ビタミンB2及びNADHが発する蛍光の波長を用いているが、これらに限らない。また、第1の受光部30が備える光検出器31及びフィルタ32の個数についても5個に限らず、2個でもよく、10個でもよく、10個以上の多数でもよい。 For example, the first light receiving unit 30 includes five light detectors 31 and five filters 32. The wavelengths of light transmitted by each of the five filters 32 (that is, the observation wavelengths) are, for example, 300 nm, 310 nm, 425 nm, 460 nm, and 520 nm. These wavelengths are wavelengths selected in advance according to the type of the object 11. Here, although the wavelength of fluorescence emitted by tryptophan, tyrosine, vitamin A, vitamin B2 and NADH described above is used, the present invention is not limited thereto. The number of photodetectors 31 and filters 32 provided in the first light receiving unit 30 is not limited to five, and may be two, ten, or a large number of ten or more.
 複数の光ファイバ33は、複数の光検出器31と一対一に対応させて設けられている。複数の光ファイバ33はそれぞれ、対応する光検出器31と受光レンズ34とを接続し、受光レンズ34に入射した光(すなわち、観測光)を複数の光検出器31の各々にまで導く光路を形成している。 The plurality of optical fibers 33 are provided in one-to-one correspondence with the plurality of light detectors 31. Each of the plurality of optical fibers 33 connects the corresponding photodetector 31 and the light receiving lens 34, and guides the light (that is, observation light) incident on the light receiving lens 34 to each of the plurality of light detectors 31. It is formed.
 受光レンズ34は、対象物11から到達した光が入射する透光レンズである。 The light receiving lens 34 is a light transmitting lens on which the light reached from the object 11 is incident.
 なお、第1の受光部30は、複数の観測波長を含む広い範囲に十分な感度を有する1つのみの光検出器31を備えてもよい。この場合、例えば、複数のフィルタ32を順次機能させる(具体的には、観測光を複数の光ファイバ33に順次伝送させる)ことにより、光検出器31は、観測波長毎の光を順次受光することができる。 The first light receiving unit 30 may include only one photodetector 31 having sufficient sensitivity in a wide range including a plurality of observation wavelengths. In this case, for example, the photodetector 31 sequentially receives the light of each observation wavelength by sequentially functioning the plurality of filters 32 (specifically, sequentially transmitting the observation light to the plurality of optical fibers 33) be able to.
 例えば、第1の受光部30は、受光対象とする波長を時間連続的に変化させながら観測光を受光してもよい。例えば、第1の受光部30は、230nm以上700nm以下の範囲において1nm刻みで対象波長を変化させながら観測光を受光してもよい。これにより、第1の受光部30は、波長分解能が高い第1の出力信号を生成し出力することができる。 For example, the first light receiving unit 30 may receive the observation light while continuously changing the wavelength to be received. For example, the first light receiving unit 30 may receive observation light while changing the target wavelength in steps of 1 nm in a range of 230 nm to 700 nm. Thereby, the first light receiving unit 30 can generate and output the first output signal with high wavelength resolution.
 また、図2に示す第1の受光部30の構成は、一例に過ぎず、第1の受光部30は、光ファイバ33及び受光レンズ34を備えていなくてもよい。 The configuration of the first light receiving unit 30 illustrated in FIG. 2 is merely an example, and the first light receiving unit 30 may not include the optical fiber 33 and the light receiving lens 34.
 [1-2-3.信号処理回路]
 信号処理回路40は、第1の受光部30から出力される第1の出力信号を処理する。信号処理回路40は、例えば、プロセッサなどを含む集積回路で実現される。
[1-2-3. Signal processing circuit]
The signal processing circuit 40 processes the first output signal output from the first light receiving unit 30. The signal processing circuit 40 is realized by, for example, an integrated circuit including a processor and the like.
 具体的には、図1に示すように、信号処理回路40は、減衰部41と、評価部42と、特定部43とを備える。 Specifically, as shown in FIG. 1, the signal processing circuit 40 includes an attenuation unit 41, an evaluation unit 42, and a specifying unit 43.
 減衰部41は、第1の出力信号に含まれる信号成分であって、その信号成分の信号強度と励起波長との相関が基準値より小さい信号成分を、第1の出力信号から減衰させる。具体的には、第1の出力信号に含まれる信号成分であって、その信号成分の信号強度と励起波長との相関が基準値より小さい信号成分は、環境光12に相当する信号成分である。つまり、減衰部41は、第1の出力信号から環境光12に相当する信号成分を減衰させることで、環境光12に相当する信号成分が減衰された信号を生成する。 The attenuator 41 attenuates, from the first output signal, a signal component that is included in the first output signal and whose correlation between the signal intensity of the signal component and the excitation wavelength is smaller than the reference value. Specifically, a signal component that is included in the first output signal and whose correlation between the signal intensity of the signal component and the excitation wavelength is smaller than the reference value is a signal component corresponding to the ambient light 12 . That is, the attenuator 41 attenuates the signal component corresponding to the ambient light 12 from the first output signal to generate a signal in which the signal component corresponding to the ambient light 12 is attenuated.
 具体的には、減衰部41は、観測波長毎に、複数の励起波長から選択された第1の励起波長に対応する信号強度と、複数の励起波長から選択された第2の励起波長に対応する信号強度との差分絶対値を算出する。さらに、減衰部41は、算出した差分絶対値が閾値以下である場合に、当該差分絶対値に対応する観測波長における信号成分を減衰させる。 Specifically, for each observation wavelength, the attenuation unit 41 corresponds to the signal intensity corresponding to the first excitation wavelength selected from the plurality of excitation wavelengths and the second excitation wavelength selected from the plurality of excitation wavelengths. The difference absolute value with the signal strength to be calculated is calculated. Furthermore, when the calculated difference absolute value is equal to or less than the threshold, the attenuation unit 41 attenuates the signal component at the observation wavelength corresponding to the difference absolute value.
 減衰部41は、例えば、閾値以下になった差分絶対値に対応する観測波長における信号成分の強度を1/10に減衰させる。なお、減衰の程度は、これに限らず、1/2から1/100でもよい。また、減衰部41は、減衰対象の波長における信号成分の強度を0にしてもよい。 For example, the attenuation unit 41 attenuates the intensity of the signal component at the observation wavelength corresponding to the difference absolute value which is equal to or less than the threshold value to 1/10. The degree of attenuation is not limited to this, and may be 1/2 to 1/100. Furthermore, the attenuation unit 41 may set the intensity of the signal component at the wavelength to be attenuated to zero.
 評価部42は、信号成分が減衰された第1の出力信号の信号強度を、励起波長及び観測波長の組み合わせ毎に評価する。具体的には、評価部42は、環境光12に相当する信号成分が減衰された信号に基づいて蛍光指紋を生成する。 The evaluation unit 42 evaluates the signal strength of the first output signal whose signal component is attenuated for each combination of the excitation wavelength and the observation wavelength. Specifically, the evaluation unit 42 generates a fluorescent fingerprint based on the signal in which the signal component corresponding to the ambient light 12 is attenuated.
 図3は、環境光12がない場合の理想的な蛍光指紋の一例を示す図である。蛍光指紋は、励起光13の波長と、観測光(具体的には、蛍光)の波長との組み合わせに対する信号強度(具体的には、蛍光の強度)で表される3次元データである。 FIG. 3 is a view showing an example of an ideal fluorescent fingerprint when there is no ambient light 12. The fluorescent fingerprint is three-dimensional data represented by signal intensity (specifically, intensity of fluorescence) with respect to a combination of the wavelength of excitation light 13 and the wavelength of observation light (specifically, fluorescence).
 図3では、縦軸は励起光13の波長(すなわち、励起波長)を示し、横軸は観測光の波長(すなわち、観測波長)を示す2次元座標において、信号強度が等しい座標を連続的に結ぶ等強度線を図示している。また、図3では、信号強度が最も高い領域に、ドットの網掛けを付して示している。なお、図3では明確には表現されていないが、同図に示す例は、励起波長が280nmであり、かつ、観測波長が340nmである場合の信号強度が大きい蛍光指紋の一例を示している。また、図3は、励起波長及び観測波長のいずれも5nm刻みで観測した結果を示している。 In FIG. 3, the vertical axis indicates the wavelength of the excitation light 13 (that is, the excitation wavelength), and the horizontal axis indicates the coordinates of the same signal intensity continuously in two-dimensional coordinates indicating the wavelength of the observation light (that is, the observation wavelength). Fig. 6 illustrates connecting isointensity lines. Further, in FIG. 3, the area where the signal intensity is the highest is indicated by hatching of dots. Although not clearly represented in FIG. 3, the example shown in the same figure shows an example of a fluorescent fingerprint having a large signal intensity when the excitation wavelength is 280 nm and the observation wavelength is 340 nm. . Moreover, FIG. 3 has shown the result of having observed all of excitation wavelength and observation wavelength by 5 nm intervals.
 図3に示すように、対象物11から発せられる蛍光は、励起光13に対する波長依存性(すなわち、励起波長依存性)を有する。 As shown in FIG. 3, the fluorescence emitted from the object 11 has wavelength dependence (that is, excitation wavelength dependence) to the excitation light 13.
 特定部43は、信号成分を減衰させた第1の出力信号の信号強度に基づいて、対象物11の成分を特定する。具体的には、特定部43は、励起波長及び観測波長の組み合わせ毎の信号強度に基づいて、対象物11の成分を特定する。特定部43は、物質と波長との対応テーブルを参照することで、対象物11に含まれる物質を特定する。 The identifying unit 43 identifies the component of the object 11 based on the signal strength of the first output signal obtained by attenuating the signal component. Specifically, the specifying unit 43 specifies the component of the object 11 based on the signal strength for each combination of the excitation wavelength and the observation wavelength. The identifying unit 43 identifies the substance included in the object 11 by referring to the correspondence table between the substance and the wavelength.
 対応テーブルは、例えば有機物などの複数の物質に対して、有効な励起波長と、その励起波長を有する励起光13を照射した場合に発する蛍光の波長(以下、蛍光波長と記載する)との組み合わせが対応付けられている。例えば、物質がトリプトファンである場合、励起波長が270nm及び280nmで、かつ、蛍光波長が310nmであることが対応付けられている。チロシン、ビタミンA、ビタミンB2及びNADH、並びに、その他の有機物などについても同様である。 The correspondence table is, for example, a combination of an effective excitation wavelength and a wavelength of fluorescence emitted when the excitation light 13 having the excitation wavelength is irradiated to a plurality of substances such as an organic substance (hereinafter referred to as a fluorescence wavelength). Are associated. For example, when the substance is tryptophan, it is correlated that the excitation wavelengths are 270 nm and 280 nm, and the fluorescence wavelength is 310 nm. The same applies to tyrosine, vitamin A, vitamin B2 and NADH, and other organic substances.
 対応テーブルは、特定部43が備えるメモリなどに記憶されているが、これに限らない。対応テーブルは、例えばサーバ装置などの他の装置に記憶されていてもよく、特定部43は、当該他の装置と通信することで、対応テーブルを参照してもよい。 Although the correspondence table is stored in a memory or the like included in the specifying unit 43, the present invention is not limited to this. The correspondence table may be stored, for example, in another device such as a server device, and the identification unit 43 may refer to the correspondence table by communicating with the other device.
 本実施の形態では、特定部43は、蛍光指紋に基づいて、励起波長と観測波長との複数の組み合わせのうち、例えば信号強度が大きい組み合わせを特定する。例えば、特定部43は、蛍光指紋において信号強度が最大となる励起波長と観測波長との組み合わせを特定し、特定した組み合わせに基づいて対応テーブルを参照することで、特定した組み合わせに対応する物質を特定する。例えば、信号強度が最大となる励起波長と観測波長との組み合わせが、励起波長が270nm及び280nmで、かつ、蛍光波長が310nmである場合、特定部43は、対象物11にトリプトファンが含まれていることを特定する。特定部43が特定した結果は、例えば、蛍光指紋とともに外部に出力される。 In the present embodiment, the specifying unit 43 specifies, for example, a combination having a large signal intensity among a plurality of combinations of the excitation wavelength and the observation wavelength based on the fluorescent fingerprint. For example, the identifying unit 43 identifies the combination of the excitation wavelength and the observation wavelength at which the signal intensity is maximum in the fluorescent fingerprint, and refers to the correspondence table based on the identified combination to thereby select the substance corresponding to the identified combination. Identify. For example, when the combination of the excitation wavelength and the observation wavelength that maximizes the signal intensity is 270 nm and 280 nm and the fluorescence wavelength is 310 nm, the identification unit 43 includes tryptophan in the object 11. Identify what you The result specified by the identification unit 43 is output to the outside together with, for example, the fluorescent fingerprint.
 [1-3.動作]
 続いて、本実施の形態に係る光観測装置10の動作について、図4を用いて説明する。図4は、本実施の形態に係る光観測装置10の動作を示すフローチャートである。
[1-3. Operation]
Subsequently, the operation of the light observation device 10 according to the present embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing the operation of the light observation device 10 according to the present embodiment.
 ここでは、対象物11として、人の嘔吐物を例に説明する。例えば、病院又は介護施設などにおいて病人又は被介護者が嘔吐したとき、スタッフは、嘔吐物の拭き取りを行う。その後、拭き取りを行った場所及びその近傍を範囲として、本実施の形態に係る光観測装置10を利用して、残存している嘔吐物の有無を検出する。 Here, as the object 11, a human vomit will be described as an example. For example, when a sick person or a care recipient vomits in a hospital or a nursing home or the like, the staff wipes off the vomiting material. After that, the presence or absence of the remaining vomit is detected by using the light observation device 10 according to the present embodiment with the area where the wiping is performed and the vicinity thereof as a range.
 病院又は介護施設には、蛍光灯などの照明装置が設置されている。照明装置が出射する光が環境光12として、嘔吐物の拭き取りを行った場所及びその近傍に照射される。 In hospitals or nursing homes, lighting devices such as fluorescent lights are installed. The light emitted from the lighting device is emitted as environmental light 12 to the area where the vomit was wiped off and the vicinity thereof.
 図5は、環境光12のスペクトルの一例を示す図である。具体的には、図5は、蛍光灯から出射される白色光のスペクトルを示している。図5に示すように、環境光12は、可視光帯域の波長成分を含んでおり、所定の波長にピークを有する。図5に示す例では、環境光12が含むピークの波長(すなわち、ピーク波長)は、400nm、430nm、480nm、540nm及び610nmである。 FIG. 5 is a view showing an example of the spectrum of the ambient light 12. Specifically, FIG. 5 shows the spectrum of white light emitted from a fluorescent lamp. As shown in FIG. 5, the ambient light 12 contains a wavelength component in the visible light band, and has a peak at a predetermined wavelength. In the example illustrated in FIG. 5, the wavelengths of the peaks included in the ambient light 12 (that is, peak wavelengths) are 400 nm, 430 nm, 480 nm, 540 nm, and 610 nm.
 図4に示すように、まず、光源部20が対象物11に対して励起光13を照射する(S10)。具体的には、光源部20は、複数の励起光源21を順次点灯させることで、励起波長が異なる複数の励起光13を順次、対象物11に照射する。例えば、対象物11には、270nm、275nm、280nm、325nm、350nm、450nmの順で励起光13が照射される。 As shown in FIG. 4, first, the light source unit 20 irradiates the object 11 with the excitation light 13 (S10). Specifically, the light source unit 20 sequentially illuminates the plurality of excitation lights 13 having different excitation wavelengths onto the object 11 by sequentially turning on the plurality of excitation light sources 21. For example, the excitation light 13 is irradiated to the object 11 in the order of 270 nm, 275 nm, 280 nm, 325 nm, 350 nm, and 450 nm.
 第1の受光部30は、励起波長が異なる励起光13が照射される度に対象物11からの光を受光し、受光した光の受光強度を表す出力信号を生成する(S12)。すなわち、第1の受光部30は、励起波長毎に出力信号を生成する。 The first light receiving unit 30 receives the light from the object 11 each time the excitation light 13 having different excitation wavelength is irradiated, and generates an output signal representing the received light intensity of the received light (S12). That is, the first light receiving unit 30 generates an output signal for each excitation wavelength.
 具体的には、1つの励起波長(例えば270nm)の励起光13を受光した場合に、全ての光検出器31がそれぞれ、対象物11から発せられる観測光を観測波長毎に受光する。全ての光検出器31はそれぞれ、受光した光の光電変換を行うことで、観測波長の受光強度を表す出力信号を生成する。光検出器31からの出力信号をまとめることで、照射した励起光13に対する、観測波長毎の受光強度を表す出力信号が得られる。第1の受光部30は、励起光13が照射される度に出力信号を生成することで、励起波長毎に出力信号を生成して信号処理回路40に出力する。これにより、第1の受光部30は、励起波長毎の出力信号を含む第1の出力信号を出力する。 Specifically, when the excitation light 13 of one excitation wavelength (for example, 270 nm) is received, all the photodetectors 31 receive observation light emitted from the object 11 for each observation wavelength. Each of the photodetectors 31 performs photoelectric conversion of the received light to generate an output signal representing the light reception intensity of the observation wavelength. By putting together the output signals from the light detector 31, an output signal representing the light reception intensity for each observation wavelength with respect to the irradiated excitation light 13 is obtained. The first light receiving unit 30 generates an output signal each time the excitation light 13 is irradiated, thereby generating an output signal for each excitation wavelength and outputting the output signal to the signal processing circuit 40. Thereby, the first light receiving unit 30 outputs a first output signal including an output signal for each excitation wavelength.
 図6は、本実施の形態に係る光観測装置10の第1の受光部30が出力した出力信号に基づく蛍光指紋の一例を示す図である。図6では、縦軸は励起波長を示し、横軸は観測波長を示す2次元座標において、信号強度が等しい座標を連続的に結ぶ等強度線を図示している。また、図6では、信号強度が最も高い領域に、ドットの網掛けを付して示している。 FIG. 6 is a view showing an example of a fluorescent fingerprint based on an output signal output from the first light receiving unit 30 of the light observation device 10 according to the present embodiment. In FIG. 6, the vertical axis indicates the excitation wavelength, and the horizontal axis indicates the isointensity lines that continuously connect the coordinates having the same signal intensity in two-dimensional coordinates indicating the observation wavelength. Further, in FIG. 6, the area where the signal strength is the highest is indicated by hatching of dots.
 図7は、本実施の形態に係る光観測装置10の第1の受光部30が出力した出力信号を示す図である。なお、図7では、横軸が観測波長を示しており、縦軸が出力信号の信号強度を示している。図7における複数のグラフはそれぞれ、励起波長毎の出力信号を示している。ここで、励起波長は、220nm以上310nm以下の範囲から10nm刻みで選択された10種類の波長である。 FIG. 7 is a diagram showing an output signal output from the first light receiving unit 30 of the light observation device 10 according to the present embodiment. In FIG. 7, the horizontal axis indicates the observation wavelength, and the vertical axis indicates the signal strength of the output signal. Each of a plurality of graphs in FIG. 7 shows an output signal for each excitation wavelength. Here, the excitation wavelength is 10 types of wavelengths selected in 10 nm steps from the range of 220 nm or more and 310 nm or less.
 具体的には、図7において、観測波長が350nmの位置において信号強度が最も低いグラフが、励起波長が220nmの出力信号であり、信号強度が最も高いグラフが、励起波長が310nmの出力信号である。観測波長が350nmの位置において信号強度が最も低いグラフから最も高いグラフまで、この順で励起波長が大きくなっている。 Specifically, in FIG. 7, the graph with the lowest signal strength at the observation wavelength of 350 nm is the output signal with the excitation wavelength of 220 nm, and the graph with the highest signal strength is the output signal with the excitation wavelength of 310 nm. is there. The excitation wavelength increases in this order from the graph with the lowest signal intensity to the highest graph at an observation wavelength of 350 nm.
 なお、図6と図7とは、図示の方法が異なるだけで、同じ第1の出力信号を示している。 6 and FIG. 7 show the same first output signal except for the illustrated method.
 図6から分かるように、観測波長が430nm、480nm、540nm及び610nmの場合に、信号強度が大きい縦筋の領域が発生している。つまり、観測波長が430nm、480nm、540nm及び610nmの場合には、励起波長によらずに強い強度の観測光が受光されたことを意味している。これらの観測波長は、図5で示す環境光12のピーク波長に相当している。 As can be seen from FIG. 6, when the observation wavelengths are 430 nm, 480 nm, 540 nm and 610 nm, regions of vertical streaks with high signal strength are generated. That is, when the observation wavelengths are 430 nm, 480 nm, 540 nm and 610 nm, it means that observation light of high intensity is received regardless of the excitation wavelength. These observation wavelengths correspond to the peak wavelength of the ambient light 12 shown in FIG.
 図7においても同様に、環境光12のピーク波長、具体的には、430nm、480nm、540nm及び610nmにおいて、励起波長によらずに信号強度が大きくなっている。つまり、環境光12は、励起波長依存性を有していない。この環境光12の成分を減衰させることで、対象物11からの蛍光強度を取得することができる。 Also in FIG. 7, the signal intensity is increased regardless of the excitation wavelength at the peak wavelength of the ambient light 12, specifically, 430 nm, 480 nm, 540 nm and 610 nm. That is, the ambient light 12 has no excitation wavelength dependency. By attenuating the component of the ambient light 12, the fluorescence intensity from the object 11 can be acquired.
 図4に戻り、本実施の形態では、信号処理回路40の減衰部41は、第1の出力信号から環境光12の信号成分を減衰させる(S14)。具体的には、減衰部41は、まず、対象物11に照射した励起光13の複数の励起波長から任意の2つの励起波長を選択する。ここでは、一例として、減衰部41は、第1の励起波長として240nmを、第2の励起波長として270nmを選択する。 Returning to FIG. 4, in the present embodiment, the attenuator 41 of the signal processing circuit 40 attenuates the signal component of the ambient light 12 from the first output signal (S14). Specifically, the attenuation unit 41 first selects arbitrary two excitation wavelengths from a plurality of excitation wavelengths of the excitation light 13 irradiated to the object 11. Here, as an example, the attenuation unit 41 selects 240 nm as the first excitation wavelength and 270 nm as the second excitation wavelength.
 次に、減衰部41は、観測波長毎に、選択した第1の励起波長に対応する出力信号の信号強度と、選択した第2の励起波長に対応する出力信号の信号強度との差分絶対値を算出する。さらに、減衰部41は、観測波長毎に、算出した差分絶対値が所定の閾値以下であるか否かを判定する。 Next, the attenuation unit 41 calculates, for each observation wavelength, the difference absolute value between the signal strength of the output signal corresponding to the selected first excitation wavelength and the signal strength of the output signal corresponding to the selected second excitation wavelength. Calculate Furthermore, the attenuation unit 41 determines, for each observation wavelength, whether the calculated difference absolute value is equal to or less than a predetermined threshold.
 減衰部41は、差分絶対値が閾値以下になる観測波長を、環境光12に含まれる波長成分であると推定し、当該観測波長における信号成分を減衰させる。図6及び図7に示す例では、減衰部41は、観測波長が430nm、480nm、540nm及び610nmの信号成分を減衰させる。例えば、減衰部41は、観測波長が430nm、480nm、540nm及び610nmにおける、第1の出力信号の信号強度を1/10にする。具体的には、減衰部41は、第1の出力信号を構成する励起波長毎の出力信号の各々の信号強度を1/10にする。これにより、環境光12に相当する信号成分を減衰させることで得られた信号を図8及び図9に示す。 The attenuation unit 41 estimates that the observation wavelength at which the absolute difference value is equal to or less than the threshold is a wavelength component included in the ambient light 12, and attenuates the signal component at the observation wavelength. In the example shown in FIG. 6 and FIG. 7, the attenuator 41 attenuates the signal components having observation wavelengths of 430 nm, 480 nm, 540 nm and 610 nm. For example, the attenuation unit 41 reduces the signal strength of the first output signal to 1/10 at observation wavelengths of 430 nm, 480 nm, 540 nm, and 610 nm. Specifically, the attenuation unit 41 reduces the signal strength of each of the output signals for each excitation wavelength constituting the first output signal to 1/10. A signal obtained by attenuating the signal component corresponding to the ambient light 12 is shown in FIG. 8 and FIG.
 図8は、本実施の形態に係る光観測装置10の信号処理回路40が生成した、環境光12に相当する信号成分が減衰された信号に基づく蛍光指紋の一例を示す図である。図9は、本実施の形態に係る光観測装置10の信号処理回路40が生成した、環境光12に相当する信号成分が減衰された信号を示す図である。図8及び図9はそれぞれ、図6及び図7に対応している。 FIG. 8 is a view showing an example of a fluorescent fingerprint based on a signal generated by the signal processing circuit 40 of the light observation apparatus 10 according to the present embodiment and having the signal component corresponding to the ambient light 12 attenuated. FIG. 9 is a diagram showing a signal generated by the signal processing circuit 40 of the light observation device 10 according to the present embodiment, in which the signal component corresponding to the ambient light 12 is attenuated. 8 and 9 correspond to FIGS. 6 and 7, respectively.
 図8及び図9に示す信号は、環境光12に相当する信号成分、すなわち、励起波長依存性を有しない信号成分が第1の出力信号から除去された信号である。図4、図6及び図8を比較して分かるように、環境光12に相当する信号成分が減衰された信号に基づいて生成された蛍光指紋は、図4に示す蛍光指紋と同様に、励起波長と観測波長との間にある依存関係が、図6に示す蛍光指紋よりもはっきりと確認される。したがって、当該蛍光指紋を利用することで、対象物11の成分の特定を行うことができる。なお、図8に示す蛍光指紋は、評価部42によって生成される。 The signals shown in FIGS. 8 and 9 are signal components corresponding to the ambient light 12, that is, signals from which the signal components having no excitation wavelength dependency have been removed from the first output signal. As can be seen by comparing FIG. 4, FIG. 6 and FIG. 8, the fluorescent fingerprint generated based on the signal in which the signal component corresponding to the ambient light 12 is attenuated has the same excitation as the fluorescent fingerprint shown in FIG. The dependency between the wavelength and the observed wavelength is more clearly identified than the fluorescent fingerprint shown in FIG. Therefore, the component of the object 11 can be identified by using the fluorescent fingerprint. The fluorescent fingerprint shown in FIG. 8 is generated by the evaluation unit 42.
 図4に戻り、本実施の形態では、信号処理回路40の特定部43は、環境光12に相当する信号成分が減衰された信号に基づいて対象物11の成分を特定する(S16)。具体的には、特定部43は、環境光12に相当する信号成分が減衰された信号から生成される蛍光指紋に基づいて、信号強度が大きい励起波長と観測波長との組み合わせを特定し、対応テーブルを参照することで、当該組み合わせに対応する物質を特定する。 Returning to FIG. 4, in the present embodiment, the identification unit 43 of the signal processing circuit 40 identifies the component of the object 11 based on the signal in which the signal component corresponding to the ambient light 12 is attenuated (S16). Specifically, the identification unit 43 identifies the combination of the excitation wavelength and the observation wavelength with high signal strength based on the fluorescent fingerprint generated from the signal in which the signal component corresponding to the ambient light 12 is attenuated. By referring to the table, the substance corresponding to the combination is identified.
 以上のように、本実施の形態に係る光観測装置10によれば、環境光12が照射された対象物11からの光に基づく第1の出力信号から、環境光12に相当する信号成分を減衰させる。環境光12に相当する信号成分が減衰された信号に基づいて生成された蛍光指紋は、環境光12が照射されていない対象物11からの光に基づいて生成された蛍光指紋と同様に、蛍光の励起波長依存性が確認される。したがって、環境光12に相当する信号成分が減衰された信号に基づいて生成される蛍光指紋に基づいて、対象物11の成分の特定を精度良く行うことができる。 As described above, according to the light observation device 10 according to the present embodiment, a signal component corresponding to the ambient light 12 is selected from the first output signal based on the light from the object 11 irradiated with the ambient light 12. Attenuate. The fluorescent fingerprint generated based on the signal in which the signal component corresponding to the ambient light 12 is attenuated is fluorescence similar to the fluorescent fingerprint generated based on the light from the object 11 to which the ambient light 12 is not irradiated. The excitation wavelength dependency of is confirmed. Therefore, the component of the object 11 can be identified with high accuracy based on the fluorescent fingerprint generated based on the signal in which the signal component corresponding to the ambient light 12 is attenuated.
 このように、本実施の形態に係る光観測装置10は、対象物11に環境光12が照射されている場合であっても、対象物11の成分の特定を行うことができる。したがって、本実施の形態によれば、汎用性の高い光観測装置10を提供することができる。 Thus, the light observation device 10 according to the present embodiment can specify the component of the object 11 even when the object 11 is irradiated with the ambient light 12. Therefore, according to the present embodiment, it is possible to provide the light observation device 10 with high versatility.
 (実施の形態2)
 続いて、実施の形態2について説明する。
Second Embodiment
Subsequently, the second embodiment will be described.
 実施の形態2に係る光観測装置は、実施の形態1に係る光観測装置10と比較して、第1の出力信号を減衰させる方法が相違している。具体的には、本実施の形態では、励起光13が照射されていない場合に受光部に入射する第2の光の観測波長毎の受光強度を表す第2の出力信号を、環境光12に相当する信号成分として第1の出力信号から減衰させる。 The light observation apparatus according to the second embodiment is different from the light observation apparatus 10 according to the first embodiment in the method of attenuating the first output signal. Specifically, in the present embodiment, the ambient light 12 is a second output signal representing the light receiving intensity for each observed wavelength of the second light incident on the light receiving unit when the excitation light 13 is not irradiated. Attenuate the first output signal as a corresponding signal component.
 [2-1.構成]
 まず、本実施の形態に係る光観測装置の構成について、図10を用いて説明する。図10は、本実施の形態に係る光観測装置110の構成を示すブロック図である。
[2-1. Constitution]
First, the configuration of the light observation apparatus according to the present embodiment will be described with reference to FIG. FIG. 10 is a block diagram showing a configuration of the light observation device 110 according to the present embodiment.
 図10に示すように、光観測装置110は、光源部120と、第1の受光部130と、信号処理回路140とを備える。光源部120、第1の受光部130、信号処理回路140はそれぞれ、実施の形態1に係る光源部20、第1の受光部30及び信号処理回路40に相当する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。 As shown in FIG. 10, the light observation device 110 includes a light source unit 120, a first light receiving unit 130, and a signal processing circuit 140. The light source unit 120, the first light receiving unit 130, and the signal processing circuit 140 correspond to the light source unit 20, the first light receiving unit 30, and the signal processing circuit 40 according to the first embodiment, respectively. In the following, differences from the first embodiment will be mainly described, and the description of the common points will be omitted or simplified.
 光源部120は、対象物11に対する励起光13の照射のオンオフを切り替えることができる。具体的には、光源部120は、ユーザ操作などの外部入力、及び、第1の受光部130による受光結果に基づいて、励起光13の照射のオンオフを切り替える。光源部120は、例えば、励起光13の照射のオンオフを切り替えるコントローラに接続されている。 The light source unit 120 can switch on / off of the irradiation of the excitation light 13 to the object 11. Specifically, the light source unit 120 switches on / off of the irradiation of the excitation light 13 based on an external input such as a user operation and a light reception result by the first light receiver 130. The light source unit 120 is connected to, for example, a controller that switches on / off of the irradiation of the excitation light 13.
 例えば、光源部120は、蛍光観測の開始の操作をユーザから受け付けた場合に励起光13を照射し、第1の受光部130から第1の出力信号が出力された後、励起光13の照射を停止する。あるいは、光源部120は、蛍光観測の開始の操作をユーザから受け付けた場合に、第1の受光部130から第2の出力信号が出力された後、励起光13の照射を開始してもよい。 For example, when the light source unit 120 receives an operation to start fluorescence observation from the user, the light source unit 120 emits the excitation light 13, and the first light receiving unit 130 outputs the first output signal, and then emits the excitation light 13. Stop. Alternatively, the light source unit 120 may start the irradiation of the excitation light 13 after the first light receiving unit 130 outputs the second output signal when the user receives an operation to start fluorescence observation. .
 第1の受光部130は、対象物11に対して励起光13が照射されていない場合に第1の受光部130に入射する第2の光を受光し、第2の光の観測波長毎の受光強度を表す第2の出力信号を出力する。第2の光には、励起光13の照射に起因して対象物11から発せられる蛍光が含まれていない。 The first light receiving unit 130 receives the second light incident on the first light receiving unit 130 when the excitation light 13 is not irradiated to the object 11, and the second light is observed for each observation wavelength of the second light. A second output signal representing the received light intensity is output. The second light does not include the fluorescence emitted from the object 11 due to the irradiation of the excitation light 13.
 信号処理回路140は、減衰部41の代わりに減衰部141を備える。減衰部141は、第1の出力信号から第2の出力信号を、環境光12に相当する信号成分として減衰させる。具体的には、減衰部141は、観測波長毎に、第1の出力信号の信号強度から第2の出力信号の信号強度を減算することで、環境光12に相当する信号成分が減衰された信号を生成する。 The signal processing circuit 140 includes an attenuation unit 141 instead of the attenuation unit 41. The attenuator 141 attenuates the first output signal to the second output signal as signal components corresponding to the ambient light 12. Specifically, the attenuation unit 141 attenuates the signal component corresponding to the environmental light 12 by subtracting the signal intensity of the second output signal from the signal intensity of the first output signal for each observation wavelength. Generate a signal.
 [2-2.動作]
 続いて、本実施の形態に係る光観測装置110の動作について、図11を用いて説明する。図11は、本実施の形態に係る光観測装置110の動作を示すフローチャートである。
[2-2. Operation]
Subsequently, the operation of the light observation device 110 according to the present embodiment will be described using FIG. FIG. 11 is a flowchart showing the operation of the light observation device 110 according to the present embodiment.
 図11に示すように、励起光13の照射(S10)及び第1の出力信号の取得(S12)は、図4で示した処理と同じである。具体的には、信号処理回路40は、図6及び図7に示す第1の出力信号を取得する。 As shown in FIG. 11, the irradiation of the excitation light 13 (S10) and the acquisition of the first output signal (S12) are the same as the processing shown in FIG. Specifically, the signal processing circuit 40 obtains the first output signal shown in FIGS. 6 and 7.
 次に、光源部120は、励起光13の照射を停止する(S23)。具体的には、光源部120は、第1の受光部130から第1の出力信号が出力された後、励起光13の照射を停止する。第1の出力信号は、例えば、信号処理回路140が備える記憶部(図示せず)などに保存される。 Next, the light source unit 120 stops the irradiation of the excitation light 13 (S23). Specifically, the light source unit 120 stops the emission of the excitation light 13 after the first light receiving unit 130 outputs the first output signal. The first output signal is stored, for example, in a storage unit (not shown) or the like included in the signal processing circuit 140.
 次に、第1の受光部130は、対象物11からの光(すなわち第2の光)を受光し、当該光の観測波長毎の受光強度を表す第2の出力信号を出力する(S24)。 Next, the first light receiving unit 130 receives the light (that is, the second light) from the object 11, and outputs a second output signal representing the light receiving intensity for each observation wavelength of the light (S24). .
 図12は、本実施の形態に係る光観測装置110の第1の受光部130が、励起光13が対象物11に照射されていないときに受光した光に基づく蛍光指紋の一例を示す図である。なお、図12は、実測したものではなく、シミュレーションにより作成したものである。このため、図5で示した環境光12のスペクトルとは厳密には異なっている。 FIG. 12 is a view showing an example of a fluorescent fingerprint based on light received by the first light receiving unit 130 of the light observation apparatus 110 according to the present embodiment when the excitation light 13 is not irradiated to the object 11. is there. In addition, FIG. 12 is not what was actually measured but is created by simulation. Therefore, the spectrum of the ambient light 12 shown in FIG. 5 is strictly different.
 図12に示すように、環境光12のピーク波長に相当する波長帯域に、信号強度が大きい縦筋が見られる。図12に示す蛍光指紋では、励起光13が対象物11に照射されていないので、励起波長に依存する成分が含まれていない。 As shown in FIG. 12, in the wavelength band corresponding to the peak wavelength of the ambient light 12, vertical streaks with large signal strength can be seen. In the fluorescent fingerprint shown in FIG. 12, since the excitation light 13 is not irradiated to the object 11, the component depending on the excitation wavelength is not included.
 次に、減衰部141は、第1の出力信号から第2の出力信号を、環境光12に相当する信号成分として減衰させる(S25)。具体的には、図6に示す蛍光指紋から図12に示す蛍光指紋が除去されるので、図8に示す蛍光指紋に相当する信号が生成される。 Next, the attenuator 141 attenuates the first output signal to the second output signal as a signal component corresponding to the ambient light 12 (S25). Specifically, since the fluorescent fingerprint shown in FIG. 12 is removed from the fluorescent fingerprint shown in FIG. 6, a signal corresponding to the fluorescent fingerprint shown in FIG. 8 is generated.
 最後に、特定部43は、環境光12に相当する信号成分が減衰された信号に基づいて対象物11の成分を特定する(S16)。具体的な処理は、実施の形態1と同様である。 Finally, the identifying unit 43 identifies the component of the object 11 based on the signal in which the signal component corresponding to the ambient light 12 is attenuated (S16). The specific process is the same as that of the first embodiment.
 以上のように、本実施の形態に係る光観測装置110によれば、励起波長依存性を有しない信号成分を特定する必要がなく、単に、第1の出力信号から第2の出力信号を減算することで、環境光12に相当する信号成分が減衰された信号を生成する。したがって、信号処理に係る処理量を削減することができる。 As described above, according to the optical observation device 110 according to the present embodiment, there is no need to specify a signal component having no excitation wavelength dependency, and the second output signal is simply subtracted from the first output signal. By doing this, a signal component corresponding to the ambient light 12 is attenuated. Therefore, the amount of processing related to signal processing can be reduced.
 また、励起光13が照射されずに対象物11から蛍光がほとんど発生していない場合に光を受光するので、受光した光のほとんどが環境光12に起因する成分となる。したがって、光観測装置110は、環境光12の受光強度を精度良く取得することができるので、蛍光観測の精度が高められ、対象物の分析精度も高めることができる。 In addition, since light is received when little fluorescence is generated from the object 11 without being irradiated with the excitation light 13, most of the received light is a component caused by the ambient light 12. Therefore, since the light observation apparatus 110 can acquire the light reception intensity | strength of the environmental light 12 precisely, the precision of fluorescence observation can be raised and the analysis precision of a target object can also be raised.
 (実施の形態3)
 続いて、実施の形態3について説明する。
Third Embodiment
Subsequently, the third embodiment will be described.
 実施の形態3に係る光観測装置は、実施の形態2に係る光観測装置110と比較して、第2の出力信号の生成方法が相違している。具体的には、本実施の形態では、光観測装置は、第2の出力信号を生成して出力する第2の受光部を備える。 The light observation apparatus according to the third embodiment differs from the light observation apparatus 110 according to the second embodiment in the method of generating the second output signal. Specifically, in the present embodiment, the light observation apparatus includes a second light receiving unit that generates and outputs a second output signal.
 図13は、本実施の形態に係る光観測装置210の構成を示すブロック図である。 FIG. 13 is a block diagram showing a configuration of the light observation device 210 according to the present embodiment.
 図13に示すように、光観測装置210は、実施の形態2に係る光観測装置110と比較して、光源部120及び信号処理回路140の代わりに光源部20及び信号処理回路240を備える点と、新たに第2の受光部230を備える点が相違する。以下では、実施の形態2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。 As shown in FIG. 13, the light observation device 210 includes a light source unit 20 and a signal processing circuit 240 instead of the light source unit 120 and the signal processing circuit 140 as compared to the light observation device 110 according to the second embodiment. And the second light receiving unit 230 is newly provided. In the following, differences from the second embodiment will be mainly described, and the description of the common points will be omitted or simplified.
 第2の受光部230は、対象物11で発生した蛍光の光路と重ならない位置に設けられる。例えば、第1の受光部30の受光面と、第2の受光部230の受光面とが互いに異なる方向を向くように、第2の受光部230が配置される。具体的には、例えば、光観測装置210の筐体の第1の面上に第1の受光部30の受光面が配置され、第1の面と対向する第2の面上に第2の受光部230の受光面が配置される。このように第2の受光部230を設けることにより、第2の受光部230には、対象物11で発生した蛍光は入射しない。 The second light receiving unit 230 is provided at a position not overlapping the optical path of the fluorescence generated by the object 11. For example, the second light receiving unit 230 is disposed such that the light receiving surface of the first light receiving unit 30 and the light receiving surface of the second light receiving unit 230 face in different directions. Specifically, for example, the light receiving surface of the first light receiving unit 30 is disposed on the first surface of the housing of the light observation apparatus 210, and the second surface on the second surface facing the first surface is used. The light receiving surface of the light receiving unit 230 is disposed. By providing the second light receiving unit 230 in this manner, the fluorescence generated in the object 11 does not enter the second light receiving unit 230.
 第2の受光部230は、環境光12に相当する第2の光15を受光し、第2の光15の受光強度を表す第2の出力信号を出力する。本実施の形態では、第2の受光部230は、第2の光15を受光し、第2の光15の観測波長毎の受光強度を表す第2の出力信号を出力する。具体的には、第2の受光部230は、環境光12のうち、光源部20から出射された照射光が照射されている領域とは異なる領域で反射された成分と、環境光12のうち、第2の受光部230に直接入射する成分と、を第2の光15として受光する。第2の受光部230の構成は、例えば、図2に示した第1の受光部30と同様である。 The second light receiving unit 230 receives the second light 15 corresponding to the ambient light 12 and outputs a second output signal representing the light receiving intensity of the second light 15. In the present embodiment, the second light receiving unit 230 receives the second light 15 and outputs a second output signal representing the light reception intensity of the second light 15 for each observed wavelength. Specifically, the second light receiving unit 230 is a component of the environmental light 12 that is reflected by a region different from the region irradiated with the irradiation light emitted from the light source unit 20 and the environmental light 12. And a component directly incident on the second light receiving unit 230 are received as the second light 15. The configuration of the second light receiving unit 230 is, for example, the same as that of the first light receiving unit 30 shown in FIG.
 なお、第1の受光部30と第2の受光部230は、1つの受光装置の中の異なる一部分であってもよい。例えば、光観測装置210は、第1の受光部30及び第2の受光部230を含むイメージセンサを備えてもよい。 The first light receiving unit 30 and the second light receiving unit 230 may be different portions in one light receiving device. For example, the light observation device 210 may include an image sensor including the first light receiving unit 30 and the second light receiving unit 230.
 例えば、図14に示す光観測装置211は、第1の受光部30及び第2の受光部230を含むイメージセンサ250を備える。なお、図14は、実施の形態3の変形例に係る光観測装置211の構成を示すブロック図である。 For example, the light observation device 211 illustrated in FIG. 14 includes the image sensor 250 including the first light receiving unit 30 and the second light receiving unit 230. FIG. 14 is a block diagram showing a configuration of a light observation apparatus 211 according to a modification of the third embodiment.
 イメージセンサ250は、複数の画素が配列された受光領域を有するイメージセンサである。この場合、第1の受光部30及び第2の受光部230は、それぞれ、受光領域における互いに異なる領域である。具体的には、例えば、イメージセンサ250受光領域において、第1の受光部30に相当する第1の領域と、第2の受光部230に相当する第2の領域との間隔は、対象物11で発生した蛍光のスポットサイズよりも大きい。 The image sensor 250 is an image sensor having a light receiving area in which a plurality of pixels are arranged. In this case, the first light receiving unit 30 and the second light receiving unit 230 are respectively different areas in the light receiving area. Specifically, for example, in the light receiving area of the image sensor 250, the distance between the first area corresponding to the first light receiving unit 30 and the second area corresponding to the second light receiving unit 230 is the object 11 Larger than the spot size of the fluorescence generated by.
 第2の光15には、励起光13と、励起光13によって励起された蛍光とがほとんど含まれておらず、環境光12が含まれている。したがって、第2の出力信号は、実施の形態2における第2の出力信号と同等であると考えられる。 The second light 15 hardly contains the excitation light 13 and the fluorescence excited by the excitation light 13 but contains the ambient light 12. Therefore, the second output signal is considered to be equivalent to the second output signal in the second embodiment.
 信号処理回路240は、減衰部141の代わりに減衰部241を備える。減衰部241は、第1の出力信号と第2の出力信号との演算により、第1の出力信号から環境光12に相当する信号成分を減衰させる。具体的には、減衰部241は、第1の出力信号から第2の出力信号を、環境光12に相当する信号成分として減衰させる。より具体的には、減衰部241は、観測波長毎に、第1の出力信号の信号強度から第2の出力信号の信号強度を減算することで、環境光12に相当する信号成分が減衰された信号を生成する。 The signal processing circuit 240 includes an attenuation unit 241 instead of the attenuation unit 141. The attenuation unit 241 attenuates the signal component corresponding to the ambient light 12 from the first output signal by calculation of the first output signal and the second output signal. Specifically, the attenuation unit 241 attenuates the first output signal to the second output signal as a signal component corresponding to the ambient light 12. More specifically, the attenuation unit 241 attenuates the signal component corresponding to the environmental light 12 by subtracting the signal intensity of the second output signal from the signal intensity of the first output signal for each observation wavelength. Generate a signal.
 以上のように、本実施の形態に係る光観測装置210は、第2の受光部230を備えるので、第1の受光部30によって対象物11からの蛍光を含む光の受光を行いながら同時に、第2の受光部230によって励起光13による蛍光を含まない光の受光を行うことができる。例えば、第2の受光部230を環境光12の受光の専用に利用することができるので、蛍光などの外乱光の影響を受けずに環境光12の受光強度を精度良く取得することができる。したがって、蛍光観測の精度が高まるので、対象物11の成分の分析精度も高めることができる。 As described above, since the light observation device 210 according to the present embodiment includes the second light receiving unit 230, while the first light receiving unit 30 receives light including fluorescence from the object 11 at the same time, The second light receiving unit 230 can receive light containing no fluorescence by the excitation light 13. For example, since the second light receiving unit 230 can be used exclusively for receiving the ambient light 12, the light receiving intensity of the ambient light 12 can be accurately obtained without being affected by disturbance light such as fluorescence. Therefore, the accuracy of the fluorescence observation is enhanced, so that the analysis accuracy of the component of the object 11 can also be enhanced.
 (実施の形態4)
 続いて、実施の形態4について説明する。
Embodiment 4
Subsequently, the fourth embodiment will be described.
 実施の形態4に係る光観測装置では、実施の形態1から3に係る光観測装置と比較して、検知する対象となる対象物が相違する。また、本実施の形態に係る光観測装置では、対象物が発する蛍光ではなく、対象物からの反射光(具体的には、後方散乱光)を受光する。 The light observation apparatus according to the fourth embodiment is different from the light observation apparatus according to the first to third embodiments in an object to be detected. Further, in the light observation apparatus according to the present embodiment, not the fluorescence emitted by the object but the reflected light (specifically, the backscattered light) from the object is received.
 [4-1.構成]
 図15は、本実施の形態に係る光観測装置310の構成を示すブロック図である。図16は、本実施の形態に係る光観測装置310の原理を模式的に示す図である。
[4-1. Constitution]
FIG. 15 is a block diagram showing a configuration of the light observation device 310 according to the present embodiment. FIG. 16 is a diagram schematically showing the principle of the light observation device 310 according to the present embodiment.
 図15に示すように、光観測装置310は、実施の形態3に係る光観測装置210と比較して、光源部20、第1の受光部30及び信号処理回路240の代わりに、光源部320、第1の受光部330及び信号処理回路340を備える点が相違する。以下では、実施の形態3との相違点を中心に説明し、共通点の説明を省略又は簡略化する。 As shown in FIG. 15, the light observation device 310 is different from the light observation device 210 according to the third embodiment in the light source unit 320 instead of the light source unit 20, the first light receiving unit 30, and the signal processing circuit 240. , And the first light receiving unit 330 and the signal processing circuit 340 are different. In the following, differences from the third embodiment will be mainly described, and the description of the common points will be omitted or simplified.
 本実施の形態では、対象物311は、空間中に飛散する微粒子(いわゆる、エアロゾル)のうち、蛍光を発しない微粒子である。例えば、対象物311は、PM2.5、PM10などの粒子状物質、黄砂、又は、埃などである。対象物311は、例えば、有機物を含まない無機物であるが、花粉などの有機物であってもよい。図16に模式的に示すように、対象物311は、例えば、50cm立方の範囲内に局在して浮遊している。 In the present embodiment, the object 311 is a fine particle that does not emit fluorescence among the fine particles (so-called aerosol) scattered in the space. For example, the object 311 is a particulate matter such as PM 2.5 or PM 10, yellow sand, or dust. The target object 311 is, for example, an inorganic substance containing no organic substance, but may be an organic substance such as pollen. As schematically shown in FIG. 16, the object 311 is localized and floated within a range of, for example, 50 cm 3.
 光源部320は、照射光16を対象物311に向けて照射する光源の一例である。光源部320が出射する照射光16は、対象物311を励起させる必要がないので、広い波長帯域から選択された波長の光を利用することができる。例えば、光源部320は、300nm以上1400nm以下の範囲に含まれる波長を有するレーザダイオード又はLEDを有する。光源部320の波長は、例えば、780nm以上の近赤外光あるいは赤外光である。例えば、レーザダイオード又はLEDは、パルス光を出射する。 The light source unit 320 is an example of a light source that emits the irradiation light 16 toward the object 311. The irradiation light 16 emitted from the light source unit 320 does not have to excite the object 311, and thus light of a wavelength selected from a wide wavelength band can be used. For example, the light source unit 320 includes a laser diode or an LED having a wavelength in the range of 300 nm to 1400 nm. The wavelength of the light source unit 320 is, for example, near infrared light or infrared light of 780 nm or more. For example, a laser diode or LED emits pulsed light.
 光源部320は、実施の形態1と同様に、例えば、光出射レンズ24を備えていてもよい。光出射レンズ24は、例えばコリメートレンズである。レーザダイオード又はLEDから発せられた光は、光出射レンズ24によって平行光に変換され、照射光16として出力される。 The light source unit 320 may include, for example, the light emitting lens 24 as in the first embodiment. The light emitting lens 24 is, for example, a collimating lens. The light emitted from the laser diode or the LED is converted into parallel light by the light emitting lens 24, and is output as the irradiation light 16.
 第1の受光部330は、光源部320からの照射光16が対象物311に照射された場合に、照射光16の少なくとも一部が対象物311によって反射された反射光、及び、環境光12を含む第1の光14を受光し、第1の光14の受光強度を表す第1の出力信号を出力する。本実施の形態では、具体的には、反射光は、対象物311からのミー散乱による後方散乱光である。第1の受光部330には、例えば、フォトダイオード、または光電子増倍管(PMT:Photomultiplier tube)が使用できる。 In the first light receiving unit 330, when the irradiation light 16 from the light source unit 320 is irradiated to the object 311, the reflected light in which at least a part of the irradiation light 16 is reflected by the object 311, and the environmental light 12 , And outputs a first output signal representing the received light intensity of the first light 14. Specifically, in the present embodiment, the reflected light is backscattered light by Mie scattering from the object 311. For the first light receiver 330, for example, a photodiode or a photomultiplier tube (PMT) can be used.
 本実施の形態では、対象物311によって照射光16が波長変換されないので、反射光の波長と照射光16の波長とが実質的に同じである。このため、第1の受光部330による観測波長は、例えば、光源部320が出射する照射光16の波長と同じである。 In the present embodiment, since the irradiation light 16 is not wavelength-converted by the object 311, the wavelength of the reflected light and the wavelength of the irradiation light 16 are substantially the same. For this reason, the observation wavelength by the first light receiving unit 330 is, for example, the same as the wavelength of the irradiation light 16 emitted by the light source unit 320.
 第1の受光部330は、例えば、図16に示すように、光源部320からの照射光16の出射方向に対して、90°側方の位置に設けられている。照射光16の経路上には、ハーフミラー332が設けられている。ハーフミラー332は、光源部320から出射された照射光16を透過させ、かつ、対象物311からの反射光を反射する。反射された反射光は、第1の受光部330によって受光される。 For example, as shown in FIG. 16, the first light receiving unit 330 is provided at a 90 ° side position with respect to the emission direction of the irradiation light 16 from the light source unit 320. A half mirror 332 is provided on the path of the irradiation light 16. The half mirror 332 transmits the irradiation light 16 emitted from the light source unit 320 and reflects the reflection light from the object 311. The reflected light thus reflected is received by the first light receiver 330.
 なお、第2の受光部230は、実施の形態3と同様に、環境光12に相当する第2の光15を受光し、第2の光15の受光強度を表す第2の出力信号を出力する。例えば、第2の受光部230は、第1の受光部330とは受光範囲が重複しないように設けられる。 As in the third embodiment, the second light receiving unit 230 receives the second light 15 corresponding to the ambient light 12 and outputs a second output signal representing the light receiving intensity of the second light 15. Do. For example, the second light receiving unit 230 is provided so that the light receiving range does not overlap with the first light receiving unit 330.
 信号処理回路340は、評価部42及び特定部43を備えず、減衰部341を備える。減衰部341は、第1の出力信号と第2の出力信号との演算により、第1の出力信号から環境光12に相当する信号成分を減衰させる。減衰部341は、例えば、第1の出力信号から第2の出力信号を、環境光12に相当する信号成分として減衰させる。 The signal processing circuit 340 does not include the evaluation unit 42 and the identification unit 43, and includes an attenuation unit 341. The attenuator 341 attenuates the signal component corresponding to the ambient light 12 from the first output signal by calculation of the first output signal and the second output signal. For example, the attenuator 341 attenuates the first output signal to the second output signal as a signal component corresponding to the ambient light 12.
 [4-2.動作]
 続いて、本実施の形態に係る光観測装置310の動作について、図16から図19を用いて説明する。
[4-2. Operation]
Subsequently, the operation of the light observation device 310 according to the present embodiment will be described using FIGS. 16 to 19.
 本実施の形態では、まず、光源部320が照射光16を照射する。図16に示されるように、対象物311が存在する場合、光源部320から出射された照射光16の少なくとも一部が対象物311によって反射される。このとき、後方に反射された光、すなわち、後方散乱光382は、ハーフミラー332によって反射され、第1の受光部330によって受光される。 In the present embodiment, first, the light source unit 320 emits the irradiation light 16. As shown in FIG. 16, when the object 311 is present, at least a part of the irradiation light 16 emitted from the light source unit 320 is reflected by the object 311. At this time, light reflected backward, that is, backscattered light 382 is reflected by the half mirror 332 and received by the first light receiving unit 330.
 また、光源部320から出射された照射光16の残りは、壁面390などによって反射される。その反射光392も後方散乱光382と同様に、第1の受光部330によって受光される。 In addition, the rest of the irradiation light 16 emitted from the light source unit 320 is reflected by the wall surface 390 or the like. The reflected light 392 is also received by the first light receiver 330 in the same manner as the backscattered light 382.
 図17は、本実施の形態に係る光観測装置310の第1の受光部330から出力される信号の時間変化を示す図である。図17において、横軸は、パルス光である照射光16を出射した時点からの経過時刻を示している。縦軸は、第1の受光部330から出力される第1の出力信号の信号強度を表している。なお、後述する図18及び図19においても同様である。 FIG. 17 is a diagram showing a time change of a signal output from the first light receiving unit 330 of the light observation device 310 according to the present embodiment. In FIG. 17, the horizontal axis indicates the elapsed time from the point of time when the irradiation light 16 which is pulse light is emitted. The vertical axis represents the signal strength of the first output signal output from the first light receiving unit 330. The same applies to FIGS. 18 and 19 described later.
 図17に示すように、照射光16が出射された後、後方散乱光382に相当するピーク384が現れる。ピーク384が現れる時刻は、光源部320及び第1の受光部330から対象物311までの距離に相当する。ピーク384の大きさは、例えば、対象物311の粒子の大きさ又は濃度に相当する。 As shown in FIG. 17, after the irradiation light 16 is emitted, a peak 384 corresponding to the backscattered light 382 appears. The time when the peak 384 appears corresponds to the distance from the light source unit 320 and the first light receiving unit 330 to the object 311. The size of peak 384 corresponds, for example, to the size or concentration of particles of object 311.
 第1の受光部330には環境光12も入射するので、第1の出力信号には、図18に示すような環境光12に相当する信号成分が含まれる。図18に示すように、環境光12の強弱に変動がある場合、図17に示すように、ピーク384が環境光12の強弱の変動に紛れて検出するのが難しくなる。 Since ambient light 12 also enters the first light receiving unit 330, the first output signal includes a signal component corresponding to the ambient light 12 as shown in FIG. As shown in FIG. 18, when the intensity of the ambient light 12 varies, as shown in FIG. 17, it becomes difficult to detect the peak 384 mixed with the variation of the intensity of the ambient light 12.
 ここで、図18は、本実施の形態に係る光観測装置310の第2の受光部230から出力される信号の時間変化を示す図である。第2の受光部230では、照射光16、後方散乱光382及び反射光392のいずれも受光されず、光観測装置310の周囲の環境光12が受光される。このため、第2の受光部230から出力される第2の出力信号は、環境光12に相当する信号成分に相当する。 Here, FIG. 18 is a diagram showing a time change of a signal output from the second light receiving unit 230 of the light observation device 310 according to the present embodiment. In the second light receiving unit 230, none of the irradiation light 16, the back scattered light 382 and the reflected light 392 is received, and the ambient light 12 around the light observation device 310 is received. Therefore, the second output signal output from the second light receiving unit 230 corresponds to a signal component corresponding to the ambient light 12.
 本実施の形態では、信号処理回路340の減衰部341が、図17に示される第1の出力信号から、環境光12に相当する信号成分を減衰させる。具体的には、減衰部341は、図17に示される第1の出力信号から、図18に示される第2の出力信号を減衰させる。これにより、図19に示される信号が生成される。 In the present embodiment, the attenuator 341 of the signal processing circuit 340 attenuates the signal component corresponding to the ambient light 12 from the first output signal shown in FIG. Specifically, the attenuation unit 341 attenuates the second output signal shown in FIG. 18 from the first output signal shown in FIG. This generates the signal shown in FIG.
 図19は、本実施の形態に係る光観測装置310の信号処理回路340が生成する、第1の出力信号から環境光12に相当する信号成分が減衰された信号を示す図である。図19に示されるように、環境光12に相当する信号成分が減衰されているので、対象物311からの反射光である後方散乱光382に相当するピーク384を精度良く検出することができる。信号処理回路340は、例えば、ピーク384の時刻及び大きさに基づいて、対象物311の種類及び位置を特定する。 FIG. 19 is a diagram showing a signal generated by the signal processing circuit 340 of the light observation device 310 according to the present embodiment, from which the signal component corresponding to the ambient light 12 is attenuated from the first output signal. As shown in FIG. 19, since the signal component corresponding to the ambient light 12 is attenuated, it is possible to detect the peak 384 corresponding to the back scattered light 382 which is the reflected light from the object 311 with high accuracy. The signal processing circuit 340 specifies the type and position of the object 311 based on, for example, the time and size of the peak 384.
 なお、ピーク384が現れた後に、壁面390による反射光392に相当するピーク394が現れる。ピーク394が現れる時刻は、光源部320及び第1の受光部330から壁面390までの距離に相当する。ピーク394の大きさは、ピーク384の大きさよりも大きい。 In addition, after the peak 384 appears, a peak 394 corresponding to the reflected light 392 by the wall surface 390 appears. The time at which the peak 394 appears corresponds to the distance from the light source unit 320 and the first light receiving unit 330 to the wall surface 390. The magnitude of peak 394 is greater than the magnitude of peak 384.
 対象物311が存在しない場合、ピーク384が現れることなく、ピーク394が現れる。これにより、光源部320と壁面390との間には、対象物311が存在しないことが分かる。 When the object 311 is not present, the peak 394 appears without the peak 384 appearing. Thus, it can be seen that the object 311 does not exist between the light source unit 320 and the wall surface 390.
 なお、本実施の形態において、光源部320は、照射光として励起光13を照射してもよい。この場合、対象物311が有機物である場合には、蛍光が第1の受光部330によって受光される。対象物311が、蛍光を発しない無機物である場合には、ミー散乱による後方散乱光が第1の受光部330によって受光される。蛍光と後方散乱光とでは波長が異なるので、第1の受光部330によって波長分離することで、いずれの波長成分の光を受光したかを判別することが可能になる。これにより、対象物311が有機物であるか無機物であるかを判別することができる。 In the present embodiment, the light source unit 320 may emit the excitation light 13 as the irradiation light. In this case, when the object 311 is an organic substance, the fluorescence is received by the first light receiver 330. When the object 311 is an inorganic substance that does not emit fluorescence, the backscattered light by Mie scattering is received by the first light receiving unit 330. Since the wavelengths are different between the fluorescence and the backscattered light, the wavelength separation by the first light receiving unit 330 makes it possible to determine which wavelength component light is received. Thereby, it can be determined whether the object 311 is an organic substance or an inorganic substance.
 (他の実施の形態)
 以上、1つ又は複数の態様に係る光観測装置について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
(Other embodiments)
As mentioned above, although the light observation device concerning one or a plurality of modes was explained based on an embodiment, this indication is not limited to these embodiments. As long as various modifications that can occur to those skilled in the art are made to the present embodiment, and forms configured by combining components in different embodiments are included within the scope of the present disclosure, without departing from the gist of the present disclosure. Be
 例えば、光検出器31は、複数の光電変換素子である画素が行列状に配列されたイメージセンサでもよい。これにより、2次元的に蛍光観測を行うことができるので、所定の領域内に存在する複数の対象物11の成分分析を同時に行うことができる。具体的には、イメージセンサの画素毎に蛍光指紋が得られるので、画素毎に対象物11の成分分析を行うことができる。 For example, the light detector 31 may be an image sensor in which pixels, which are a plurality of photoelectric conversion elements, are arranged in a matrix. Thereby, since two-dimensional fluorescence observation can be performed, component analysis of a plurality of objects 11 present in a predetermined region can be performed simultaneously. Specifically, since a fluorescent fingerprint is obtained for each pixel of the image sensor, component analysis of the object 11 can be performed for each pixel.
 また、例えば、光観測装置10は、光源部20を備えていなくてもよい。例えば、他の励起光源が対象物11に励起光13を照射し、光観測装置10は、対象物11に照射された励起光13によって発生する蛍光を受光してもよい。あるいは、光観測装置10は、環境光12に含まれる波長成分を励起光13として利用してもよい。 In addition, for example, the light observation device 10 may not include the light source unit 20. For example, another excitation light source may irradiate the excitation light 13 to the object 11, and the light observation device 10 may receive fluorescence generated by the excitation light 13 irradiated to the object 11. Alternatively, the light observation device 10 may use a wavelength component included in the ambient light 12 as the excitation light 13.
 また、例えば、光観測装置10の信号処理回路40は、特定部43を備えていなくてもよい。例えば、信号処理回路40は、特定部43の代わりに、蛍光指紋データを出力する出力端子又は通信インタフェースなどを備えていてもよい。信号処理回路40は、サーバ装置に蛍光指紋データを出力してもよい。 In addition, for example, the signal processing circuit 40 of the light observation device 10 may not include the specifying unit 43. For example, the signal processing circuit 40 may be provided with an output terminal for outputting fluorescence fingerprint data, a communication interface, or the like, instead of the identification unit 43. The signal processing circuit 40 may output the fluorescent fingerprint data to the server device.
 また、例えば、上記の実施の形態では、対象物11が人の嘔吐物、花粉、ハウスダストなどである例について示したが、これに限らない。対象物11は、励起光13を照射した場合に蛍光を発する物質を含んでいれば、特に限定されない。また、対象物11は、実施の形態4でも示したように、蛍光を発しない物体であってもよい。 Also, for example, in the above-described embodiment, although the example in which the object 11 is human vomit, pollen, house dust, or the like has been described, the present invention is not limited thereto. The object 11 is not particularly limited as long as it contains a substance that emits fluorescence when irradiated with the excitation light 13. In addition, as described in the fourth embodiment, the object 11 may be an object that does not emit fluorescence.
 また、例えば、本開示は、各実施の形態に係る光観測装置の信号処理回路が行う処理をステップとして含む光観測方法として実現することもできる。 Also, for example, the present disclosure can be realized as a light observation method including, as a step, processing performed by the signal processing circuit of the light observation apparatus according to each embodiment.
 例えば、光観測方法では、まず、信号処理回路が、互いに異なる複数の励起波長から選択される励起波長を有する励起光13が対象物11に照射された場合に対象物11から発生する蛍光、及び、環境光12を含む第1の光14の複数の観測波長毎の強度を表す第1の出力信号を取得する(図4のステップS12)。次に、信号処理回路は、取得した第1の出力信号から環境光12に相当する信号成分を減衰させ、環境光12に相当する信号成分を減衰させた第1の出力信号の信号強度を、励起波長及び観測波長の組み合わせ毎に評価する(図4のステップS14)。また、信号処理回路は、環境光12に相当する信号成分が減衰された信号に基づいて対象物11の成分を特定してもよい(図4のステップS16)。 For example, in the light observation method, first, the signal processing circuit generates fluorescence from the object 11 when the object 11 is irradiated with excitation light 13 having excitation wavelengths selected from a plurality of different excitation wavelengths, and A first output signal representing the intensity of each of the plurality of observation wavelengths of the first light 14 including the ambient light 12 is obtained (Step S12 in FIG. 4). Next, the signal processing circuit attenuates the signal component corresponding to the environmental light 12 from the acquired first output signal, and attenuates the signal intensity of the first output signal corresponding to the environmental light 12, Evaluation is performed for each combination of excitation wavelength and observation wavelength (step S14 in FIG. 4). Further, the signal processing circuit may specify the component of the object 11 based on the signal obtained by attenuating the signal component corresponding to the ambient light 12 (step S16 in FIG. 4).
 また、別の光観測方法では、まず、信号処理回路が、光源からの照射光が対象物11に照射された場合に、対象物11から戻った反射光及び対象物11で発生した蛍光からなる群から選択される少なくとも1つの光と、環境光12と、を含む第1の光14の受光強度を表す第1の出力信号を取得する(図11のステップS12)。次に、信号処理回路は、環境光12を含む第2の光15の受光強度を表す第2の出力信号を取得する(図11のステップS24)。なお、第1の出力信号の取得と第2の出力信号の取得とは、同時に行われてもよく、いずれが先に行われてもよい。次に、信号処理回路は、第1の出力信号と第2の出力信号との演算により、第1の出力信号から環境光12に相当する信号成分を減衰させる(図11のステップS25)。 In another light observation method, first, the signal processing circuit is composed of the reflected light returned from the object 11 and the fluorescence generated from the object 11 when the irradiation light from the light source is irradiated to the object 11. A first output signal representing the received light intensity of the first light 14 including at least one light selected from the group and the ambient light 12 is obtained (step S12 in FIG. 11). Next, the signal processing circuit obtains a second output signal representing the received light intensity of the second light 15 including the ambient light 12 (step S24 in FIG. 11). The acquisition of the first output signal and the acquisition of the second output signal may be performed simultaneously, or either may be performed first. Next, the signal processing circuit attenuates the signal component corresponding to the ambient light 12 from the first output signal by calculation of the first output signal and the second output signal (step S25 in FIG. 11).
 なお、本開示は、光観測方法として実現できるだけでなく、光観測方法に含まれる各ステップをコンピュータに実行させるためのプログラム、及び、そのプログラムを記録したDVD(Digital Versatile Disc)などの記録媒体として実現することもできる。コンピュータが記録媒体に格納されたプログラムを読取り、実行することにより、上述した各ステップが実現される。プログラムは、記録媒体に予め記録されていてもよく、あるいは、インターネットなどを含む広域通信網を介して記録媒体に供給されてもよい。 The present disclosure can not only be realized as a light observation method, but also as a program for causing a computer to execute each step included in the light observation method, and a recording medium such as a DVD (Digital Versatile Disc) recording the program. It can also be realized. Each step described above is realized by the computer reading and executing the program stored in the recording medium. The program may be pre-recorded on the recording medium, or may be supplied to the recording medium via a wide area communication network including the Internet.
 また、上記の各実施の形態において、光観測装置の信号処理回路の各構成要素は、専用のハードウェアで構成されてもよく、あるいは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 In each of the above embodiments, each component of the signal processing circuit of the light observation apparatus may be configured by dedicated hardware, or realized by executing a software program suitable for each component. It may be done. Each component may be realized by a program execution unit such as a central processing unit (CPU) or processor reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory.
 このとき、プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は限られない。例えば、プロセッサは、IC(Integrated Circuit)又はLSI(Large Scale Integration)などの半導体集積回路を含む1つ又は複数の電子回路で構成される。複数の電子回路は、1つのチップに集積されてもよく、複数のチップに設けられてもよい。複数のチップは、1つの装置に集約されてもよく、複数の装置に分散して備えられてもよい。 At this time, the type of processor is not limited as long as the function can be realized by executing a program. For example, the processor is configured of one or more electronic circuits including a semiconductor integrated circuit such as an integrated circuit (IC) or a large scale integration (LSI). The plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips. The plurality of chips may be integrated into one device or may be distributed and provided to a plurality of devices.
 以上のように、上述した包括的又は具体的な態様は、システム、装置、集積回路、コンピュータプログラム又はコンピュータ読み取り可能な記録媒体で実現されてもよく、システム、装置、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 As described above, the above-described general or specific aspects may be realized by a system, an apparatus, an integrated circuit, a computer program, or a computer readable recording medium, and the system, the apparatus, the integrated circuit, the computer program, and the recording It may be realized by any combination of media.
 また、上記の各実施の形態は、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Further, various modifications, replacements, additions, omissions and the like can be made in the above-described embodiments within the scope of the claims or the equivalents thereof.
 本開示は、汎用性が高い光観測装置として利用でき、例えば、対象物の分析装置などに利用することができる。 The present disclosure can be used as a highly versatile light observation device, and can be used, for example, as an analysis device of an object.
10、110、210、211、310 光観測装置
11、311 対象物
12 環境光
13 励起光
14 第1の光
15 第2の光
16 照射光
20、120、320 光源部
21 励起光源
22、32 フィルタ
23、33 光ファイバ
24 光出射レンズ
30、130、330 第1の受光部
31 光検出器
34 受光レンズ
40、140、240、340 信号処理回路
41、141、241、341 減衰部
42 評価部
43 特定部
230 第2の受光部
250 イメージセンサ
332 ハーフミラー
382 後方散乱光
384、394 ピーク
390 壁面
392 反射光
10, 110, 210, 211, 310 Light observation device 11, 311 Object 12 Environment light 13 Excitation light 14 First light 15 Second light 16 Irradiation light 20, 120, 320 Light source part 21 Excitation light source 22, 32 Filter 23, 33 optical fiber 24 light emitting lens 30, 130, 330 first light receiving unit 31 light detector 34 light receiving lens 40, 140, 240, 340 signal processing circuit 41, 141, 241, 341 attenuation unit 42 evaluation unit 43 identification Part 230 Second light receiving part 250 Image sensor 332 Half mirror 382 Backscattered light 384, 394 Peak 390 Wall 392 Reflected light

Claims (20)

  1.  対象物の少なくとも一部に照射光が照射された場合に、前記少なくとも一部から戻った反射光及び前記少なくとも一部から発生した蛍光からなる群から選択される少なくとも1つの光と、環境光と、を含む第1の光を受光し、前記第1の光の受光強度を表す第1の出力信号を出力する第1の受光部と、
     前記少なくとも1つの光の光路と重ならない位置に設けられ、前記環境光を含む第2の光を受光し、前記第2の光の受光強度を表す第2の出力信号を出力する第2の受光部と、
     信号処理回路と、を備え、
     前記信号処理回路は、前記第1の出力信号と前記第2の出力信号との演算により、前記第1の出力信号から前記環境光に相当する第1の信号成分を減衰させる、
     光観測装置。
    At least one light selected from the group consisting of the reflected light returned from the at least one part and the fluorescence generated from the at least one when the irradiation light is irradiated to at least one part of the object, and the ambient light And a first light receiving unit that receives a first light including the first light and outputs a first output signal representing a light reception intensity of the first light.
    A second light reception provided at a position not overlapping the optical path of the at least one light, receiving a second light including the ambient light, and outputting a second output signal representing a light receiving intensity of the second light Department,
    A signal processing circuit;
    The signal processing circuit attenuates a first signal component corresponding to the ambient light from the first output signal by calculation of the first output signal and the second output signal.
    Light observation device.
  2.  前記照射光は、互いに異なる複数の励起波長から選択される励起波長を有し、
     前記第1の光は、前記蛍光を含む、
     請求項1に記載の光観測装置。
    The illumination light has an excitation wavelength selected from a plurality of different excitation wavelengths,
    The first light includes the fluorescence
    The light observation device according to claim 1.
  3.  前記第1の光は、前記反射光を含む、
     請求項1に記載の光観測装置。
    The first light includes the reflected light,
    The light observation device according to claim 1.
  4.  前記第1の受光部及び前記第2の受光部の各々は、複数の画素を含み、
     前記第1の受光部及び前記第2の受光部は、イメージセンサを構成している、
     請求項1に記載の光観測装置。
    Each of the first light receiving unit and the second light receiving unit includes a plurality of pixels,
    The first light receiving unit and the second light receiving unit constitute an image sensor.
    The light observation device according to claim 1.
  5.  前記信号処理回路は、さらに、
     前記第1の信号成分が減衰された前記第1の出力信号の信号強度に基づいて、前記対象物に含まれる成分を特定する、
     請求項2に記載の光観測装置。
    The signal processing circuit further includes
    The component included in the object is identified based on the signal strength of the first output signal in which the first signal component is attenuated.
    The light observation device according to claim 2.
  6.  前記第1の受光部は、互いに異なる複数の観測波長において、前記第1の光を受光し、
     前記信号処理回路は、前記第1の信号成分が減衰された前記第1の出力信号の信号強度を、前記複数の励起波長及び前記複数の観測波長の組み合わせ毎に評価することにより、前記対象物に含まれる前記成分を特定する、
     請求項5に記載の光観測装置。
    The first light receiving unit receives the first light at a plurality of different observation wavelengths.
    The signal processing circuit evaluates the signal strength of the first output signal, in which the first signal component is attenuated, for each combination of the plurality of excitation wavelengths and the plurality of observation wavelengths, to thereby obtain the object. Identify the components contained in
    The light observation device according to claim 5.
  7.  さらに、前記照射光を前記対象物に向けて照射する光源を備える、
     請求項1に記載の光観測装置。
    And a light source for irradiating the irradiation light toward the object.
    The light observation device according to claim 1.
  8.  前記環境光は、室内照明光である、
     請求項1に記載の光観測装置。
    The ambient light is indoor illumination light,
    The light observation device according to claim 1.
  9.  前記対象物は、人の嘔吐物である、
     請求項1に記載の光観測装置。
    The object is a human vomit.
    The light observation device according to claim 1.
  10.  前記対象物は、空間中に飛散する微粒子である、
     請求項1に記載の光観測装置。
    The object is a fine particle scattering in space,
    The light observation device according to claim 1.
  11.  互いに異なる複数の励起波長から選択される励起波長を有する照射光が対象物に照射された場合に、前記対象物から発生する蛍光、及び環境光を含む第1の光を受光し、前記第1の光の受光強度を表す第1の出力信号を出力する第1の受光部と、
     信号処理回路と、を備え、
     前記信号処理回路は、前記第1の出力信号に含まれる信号成分であって、前記信号成分の信号強度と前記励起波長との相関が基準値より小さい信号成分を、前記環境光に相当する第1の信号成分として、前記第1の出力信号から減衰させる、
     光観測装置。
    When the object is irradiated with illumination light having an excitation wavelength selected from a plurality of different excitation wavelengths, the first light including the fluorescence and the ambient light generated from the object is received, and the first light is emitted. A first light receiving unit that outputs a first output signal representing the light receiving intensity of the light;
    A signal processing circuit;
    The signal processing circuit is a signal component included in the first output signal, and a signal component whose correlation between the signal intensity of the signal component and the excitation wavelength is smaller than a reference value corresponds to the ambient light. Attenuate the first output signal as a one signal component,
    Light observation device.
  12.  前記第1の受光部は、互いに異なる複数の観測波長において、前記第1の光を受光し、
     前記信号処理回路は、
     前記複数の観測波長の各々に対して、前記複数の励起波長から選択された第1の励起波長に対応する前記第1の出力信号の信号強度と前記複数の励起波長から選択された第2の励起波長に対応する前記第1の出力信号の信号強度との差分絶対値を算出し、
     前記差分絶対値が閾値以下である場合に、前記第1の出力信号に含まれる信号成分であって、前記差分絶対値に対応する観測波長における信号成分を、前記第1の信号成分として、前記第1の出力信号から減衰させる、
     請求項11に記載の光観測装置。
    The first light receiving unit receives the first light at a plurality of different observation wavelengths.
    The signal processing circuit
    For each of the plurality of observation wavelengths, a signal strength of the first output signal corresponding to a first excitation wavelength selected from the plurality of excitation wavelengths and a second selected from the plurality of excitation wavelengths Calculating a difference absolute value from the signal intensity of the first output signal corresponding to the excitation wavelength;
    A signal component at an observation wavelength corresponding to the difference absolute value, which is a signal component included in the first output signal when the difference absolute value is equal to or less than a threshold, is the first signal component. Attenuate from the first output signal,
    The light observation device according to claim 11.
  13.  前記信号処理回路は、さらに、
     前記第1の信号成分が減衰された前記第1の出力信号の信号強度に基づいて、前記対象物に含まれる成分を特定する、
     請求項11に記載の光観測装置。
    The signal processing circuit further includes
    The component included in the object is identified based on the signal strength of the first output signal in which the first signal component is attenuated.
    The light observation device according to claim 11.
  14.  前記第1の受光部は、互いに異なる複数の観測波長において、前記第1の光を受光し、
     前記信号処理回路は、前記第1の信号成分が減衰された前記第1の出力信号の信号強度を、前記複数の励起波長及び前記複数の観測波長の組み合わせ毎に評価することにより、前記対象物に含まれる前記成分を特定する、
     請求項13に記載の光観測装置。
    The first light receiving unit receives the first light at a plurality of different observation wavelengths.
    The signal processing circuit evaluates the signal strength of the first output signal, in which the first signal component is attenuated, for each combination of the plurality of excitation wavelengths and the plurality of observation wavelengths, to thereby obtain the object. Identify the components contained in
    The light observation device according to claim 13.
  15.  さらに、前記照射光を前記対象物に向けて照射する光源を備える、
     請求項11に記載の光観測装置。
    And a light source for irradiating the irradiation light toward the object.
    The light observation device according to claim 11.
  16.  前記環境光は、室内照明光である、
     請求項11に記載の光観測装置。
    The ambient light is indoor illumination light,
    The light observation device according to claim 11.
  17.  前記対象物は、人の嘔吐物である、
     請求項11に記載の光観測装置。
    The object is a human vomit.
    The light observation device according to claim 11.
  18.  前記対象物は、空間中に飛散する微粒子である、
     請求項11に記載の光観測装置。
    The object is a fine particle scattering in space,
    The light observation device according to claim 11.
  19.  プログラムを格納したコンピュータ読み取り可能な記録媒体であって、
     前記プログラムが前記コンピュータによって実行されるときに、
     第1の受光部に、対象物の少なくとも一部に照射光が照射された場合に、前記少なくとも一部から戻った反射光及び前記少なくとも一部から発生した蛍光からなる群から選択される少なくとも1つの光と、環境光と、を含む第1の光を受光させ、前記第1の光の受光強度を表す第1の出力信号を出力させるステップと、
     第2の受光部に、前記環境光を含む第2の光を受光させ、前記第2の光の受光強度を表す第2の出力信号を出力させるステップと、
     信号処理回路に、前記第1の出力信号と前記第2の出力信号との演算により、前記第1の出力信号から前記環境光に相当する第1の信号成分を減衰させるステップと、
    が実行される、コンピュータ読み取り可能な記録媒体。
    A computer readable recording medium storing a program, comprising:
    When the program is executed by the computer
    At least one selected from the group consisting of the reflected light returned from the at least one portion and the fluorescence generated from the at least one portion when at least a portion of the object is irradiated with the irradiation light in the first light receiving portion Receiving a first light comprising one light and an ambient light, and outputting a first output signal representing the received light intensity of the first light;
    Causing the second light receiving unit to receive the second light including the ambient light and outputting a second output signal representing the light receiving intensity of the second light;
    Attenuating a first signal component corresponding to the ambient light from the first output signal by computing the first output signal and the second output signal in the signal processing circuit;
    A computer readable recording medium on which is executed.
  20.  プログラムを格納したコンピュータ読み取り可能な記録媒体であって、
     前記プログラムが前記コンピュータによって実行されるときに、
     第1の受光部に、互いに異なる複数の励起波長から選択される励起波長を有する照射光が対象物に照射された場合に、前記対象物から発生する蛍光、及び環境光を含む第1の光を受光させ、前記第1の光の受光強度を表す第1の出力信号を出力させるステップと、
     信号処理回路に、前記第1の出力信号に含まれる信号成分であって、前記信号成分の信号強度と前記励起波長との相関が基準値より小さい信号成分を、前記環境光に相当する第1の信号成分として、前記第1の出力信号から減衰させるステップと、
    が実行される、コンピュータ読み取り可能な記録媒体。
    A computer readable recording medium storing a program, comprising:
    When the program is executed by the computer
    The first light including the fluorescence generated from the target and the ambient light when the target is irradiated with the irradiation light having the excitation wavelength selected from the plurality of different excitation wavelengths in the first light receiving unit. Outputting a first output signal representing the received light intensity of the first light;
    A signal processing circuit, a signal component included in the first output signal, the signal component whose correlation between the signal intensity of the signal component and the excitation wavelength is smaller than a reference value corresponds to the ambient light; Attenuating from said first output signal as a signal component of
    A computer readable recording medium on which is executed.
PCT/JP2018/029500 2017-08-29 2018-08-07 Light observation device WO2019044410A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880046536.3A CN110869749A (en) 2017-08-29 2018-08-07 Optical observation device
US16/784,933 US11363215B2 (en) 2017-08-29 2020-02-07 Light observation apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017164411 2017-08-29
JP2017-164411 2017-08-29
JP2018130623A JP7026337B2 (en) 2017-08-29 2018-07-10 Optical observation device
JP2018-130623 2018-07-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/784,933 Continuation US11363215B2 (en) 2017-08-29 2020-02-07 Light observation apparatus

Publications (1)

Publication Number Publication Date
WO2019044410A1 true WO2019044410A1 (en) 2019-03-07

Family

ID=65526180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029500 WO2019044410A1 (en) 2017-08-29 2018-08-07 Light observation device

Country Status (1)

Country Link
WO (1) WO2019044410A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571118B1 (en) * 1998-05-04 2003-05-27 Board Of Regents, The University Of Texas System Combined fluorescence and reflectance spectroscopy
JP2003210193A (en) * 2002-01-22 2003-07-29 Microbiosystems Lp Method and apparatus for detecting presence of microbe and determining physiological status thereof
US20090283698A1 (en) * 2008-05-15 2009-11-19 Neoprobe Corporation Hand-Held Probe for Intra-Operative Detection of Fluorescence Labeled Compounds and Antibodies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571118B1 (en) * 1998-05-04 2003-05-27 Board Of Regents, The University Of Texas System Combined fluorescence and reflectance spectroscopy
JP2003210193A (en) * 2002-01-22 2003-07-29 Microbiosystems Lp Method and apparatus for detecting presence of microbe and determining physiological status thereof
US20090283698A1 (en) * 2008-05-15 2009-11-19 Neoprobe Corporation Hand-Held Probe for Intra-Operative Detection of Fluorescence Labeled Compounds and Antibodies

Similar Documents

Publication Publication Date Title
DK2706515T3 (en) Apparatus and method for detecting light scattering signals
US9810633B2 (en) Classification of surface features using fluoresence
JP2000097841A5 (en)
KR20180036779A (en) Online process monitoring
US9488593B2 (en) Surface features mapping
JP2016224034A (en) Grain particle sensor device
CN100526883C (en) Reflection photometer of gold label immune test paper
US9689788B2 (en) Method for measuring fine particulates and fine particulate sensor for determining the particle size of fine particulates
US8373851B2 (en) Measuring system and measuring method, in particular for determining blood glucose
WO2020175070A1 (en) Scatterer measurement method and scatterer measurement device
US20140234984A1 (en) Optical measurement
JP7026337B2 (en) Optical observation device
JP2007333409A (en) Suspended particle measurement device
WO2019044410A1 (en) Light observation device
CN207779900U (en) Raman spectrum detection device based on reflected optical power and image recognition
JP2006010353A (en) Fine particle measuring instrument
CN110018137A (en) Optical sensor
US10436699B2 (en) Analyzing system and analyzing apparatus
JPS62293143A (en) Measuring instrument for corpuscle
JP2022519845A (en) Sample analysis methods, analyzers and computer programs
WO2019230624A1 (en) Particle size distribution measuring device and program for particle size distribution measuring device
JP2009128252A (en) End face inspection method and end face inspection apparatus
WO2023233562A1 (en) Fine particle measurement sensor
US20230304933A1 (en) Analysis device and analysis method
JPH03249650A (en) Mask inspecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849839

Country of ref document: EP

Kind code of ref document: A1