WO2019038964A1 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
WO2019038964A1
WO2019038964A1 PCT/JP2018/009178 JP2018009178W WO2019038964A1 WO 2019038964 A1 WO2019038964 A1 WO 2019038964A1 JP 2018009178 W JP2018009178 W JP 2018009178W WO 2019038964 A1 WO2019038964 A1 WO 2019038964A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
conductor
magnetic
current sensor
current
Prior art date
Application number
PCT/JP2018/009178
Other languages
French (fr)
Japanese (ja)
Inventor
北森 宣匡
清水 康弘
仁志 坂口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880053907.0A priority Critical patent/CN111033276B/en
Publication of WO2019038964A1 publication Critical patent/WO2019038964A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices

Definitions

  • the present invention relates to a current sensor, and more particularly to a current sensor that detects the value of a current to be measured by measuring a magnetic field generated according to the current to be measured.
  • Patent Document 1 JP-A-2015-190930
  • Patent Document 2 JP-A-2007-78418
  • the current sensor described in Patent Document 1 includes a first magnetic sensor and a second magnetic sensor that detect magnetism, a current path, and a signal processing device.
  • the current path is wired in the first circumferential direction around the first magnetic sensor.
  • the current path is wired in a second winding direction opposite to the first winding direction around the second magnetic sensor.
  • the signal processing device processes output signals from the first magnetic sensor and the second magnetic sensor.
  • the first magnetic sensor and the signal processing device are disposed on the first metal plate.
  • the second magnetic sensor is disposed on the second metal plate.
  • an integrated chip on which a magnetic detection element is mounted is disposed in a step space provided between two flat lines parallel to each other.
  • the current sensor described in Patent Document 2 does not mention the mounting structure of the magnetic detection element in the integrated chip.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a current sensor in which measurement error due to temperature characteristics of a magnetoresistive element is reduced.
  • the current sensor according to the invention comprises a conductor and a magnetic sensor package.
  • a current to be measured flows through the conductor.
  • the magnetic sensor package includes a plurality of magnetic sensors, a signal processing circuit and a metal plate.
  • the plurality of magnetic sensors detect the strength of the magnetic field generated by the current.
  • the signal processing circuit processes signals output from the plurality of magnetic sensors.
  • the plurality of magnetic sensors, the signal processing circuit and the metal plate are covered with an insulating material.
  • the plurality of magnetic sensors and the signal processing circuit are mounted on the metal plate.
  • the plurality of magnetic sensors are formed in one magnetic sensor chip.
  • the signal processing circuit incorporates a temperature sensor that measures the temperature inside the magnetic sensor package.
  • the signal processing circuit corrects and processes signals output from the plurality of magnetic sensors based on the measurement results of the temperature sensor.
  • the magnetic sensor package further includes a plurality of external output terminals electrically connected to the signal processing circuit.
  • a part of the metal plate constitutes at least one external output terminal among the plurality of external output terminals.
  • the magnetic sensor package further includes a passive circuit electrically connected to the signal processing circuit.
  • the plurality of external output terminals are electrically connected to the signal processing circuit through the passive circuit.
  • the passive circuit is mounted on the metal plate and covered with the insulating material.
  • the magnetic sensor package further comprises an electrostatic shield.
  • An electrostatic shield is electrically connected to the metal plate and covered with the insulating material.
  • the plurality of magnetic sensors and the signal processing circuit are located in an area sandwiched between the metal plate and the electrostatic shield.
  • the magnetic sensor package further includes at least one bias magnet for positioning the plurality of magnetic sensors between each other to apply a bias magnetic field. At least one bias magnet is mounted on the metal plate and covered with the insulating material.
  • the conductor includes a front surface and a back surface, and has a length direction, a width direction orthogonal to the length direction, and a thickness direction orthogonal to the length direction and the width direction. It has a plate-like shape, and includes one flow passage portion and the other flow passage portion where the current is divided and flows halfway along the length direction.
  • the other flow passage portion is located in line with the one flow passage portion in the width direction.
  • a region surrounded by one flow passage portion and the other flow passage portion is formed.
  • the plurality of magnetic sensors are located inside the region as viewed from the width direction, and from one end of one channel portion in the width direction to the other channel portion as viewed from the thickness direction. It is located within the range to the end.
  • the conductor is provided with an opening extending in the longitudinal direction between one flow passage and the other flow passage.
  • the magnetic sensor package is fixed to the conductor in contact with at least a part of the edge of the opening.
  • the magnetic sensor package further includes a metal protruding piece electrically insulated from the metal plate.
  • the projecting piece is welded to the conductor in contact with at least one edge of the opening in the longitudinal direction.
  • the magnetic sensor package is fixed to the conductor by the weld between the projecting piece and the conductor.
  • the current sensor further comprises a mounting member.
  • the mounting member is fixed to the conductor and connected to the magnetic sensor package.
  • the mounting member is fixed to the conductor in contact with at least one edge of the opening in the longitudinal direction.
  • the mounting member and the magnetic sensor package are welded together.
  • the measurement error of the current sensor due to the temperature characteristic of the magnetoresistive element can be reduced.
  • FIG. 24 is a cross-sectional view of the current sensor of FIG.
  • FIG. 1 is a perspective view showing a configuration of a current sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view showing the configuration of the magnetic sensor package provided in the current sensor according to Embodiment 1 of the present invention.
  • the outer shape of the magnetic sensor package made of an insulating material is indicated by a two-dot chain line, and the insulating material is seen through. Further, in FIG. 1, the electrodes and the wiring are not shown for the sake of clarity. In FIG. 2, for convenience of explanation, the insulating material forming part of the magnetic sensor package is not shown.
  • the longitudinal direction of a conductor 110 described later is illustrated as an X-axis direction, the width direction of the conductor 110 as a Y-axis direction, and the thickness direction of the conductor 110 as a Z-axis direction.
  • the current sensor 100 includes a conductor 110 and a magnetic sensor package 120.
  • a current to be measured flows through the conductor 110.
  • the conductor 110 includes a front surface and a rear surface, and a width direction (Y-axis direction) orthogonal to the length direction (X-axis direction), the length direction (X-axis direction), and a length direction (X-axis direction) It has a plate shape having a thickness direction (Z-axis direction) orthogonal to the direction (Y-axis direction).
  • the conductor 110 includes one flow passage portion 111 and the other flow passage portion 115 in which the current to be measured is divided and flows halfway along the length direction (X-axis direction).
  • the other flow passage portion 115 is located in line with the one flow passage portion 111 in the width direction (Y-axis direction).
  • the conductor 110 is provided with an opening 119 extending in the longitudinal direction (X-axis direction) between one flow passage portion 111 and the other flow passage portion 115.
  • the opening 119 is located at the center of the conductor 110 in the width direction (Y-axis direction).
  • the opening 119 may not necessarily be located at the center of the conductor 110 in the width direction (Y-axis direction).
  • the conductor 110 is made of copper.
  • the material of the conductor 110 is not limited to this, and may be a metal such as silver, aluminum or iron, or an alloy containing these metals.
  • the conductor 110 may be surface-treated. For example, at least one plating layer made of a metal such as nickel, tin, silver or copper, or an alloy containing these metals may be provided on the surface of the conductor 110. Also, the conductor 110 may be coated with an insulating resin.
  • the conductor 110 is formed by casting.
  • the method of forming the conductor 110 is not limited to this, and the conductor 110 may be formed by cutting, pressing, or the like.
  • the magnetic sensor package 120 includes a first magnetic sensor 10, a second magnetic sensor 20, a signal processing circuit 30, and a metal plate 40.
  • the first magnetic sensor 10, the second magnetic sensor 20, the signal processing circuit 30 and the metal plate 40 are covered with an insulating material 121.
  • an insulating resin such as a silicone resin or an epoxy resin can be used.
  • Magnetic sensor package 120 further includes a plurality of external output terminals 50 electrically connected to signal processing circuit 30.
  • the tip side of each of the plurality of external output terminals 50 is not covered by the insulating material 121 and is exposed.
  • a part of the metal plate 40 constitutes at least one external output terminal of the plurality of external output terminals 50.
  • the magnetic sensor package 120 includes, as a plurality of external output terminals 50, a first external output terminal 51, a second external output terminal 52, a third external output terminal 53, and a fourth external output terminal 54. Including. A part of the metal plate 40 constitutes a second external output terminal 52.
  • the number of external output terminals is not limited to four, and may be plural.
  • the first magnetic sensor 10 and the second magnetic sensor 20 detect the strength of the magnetic field generated by the current of the measurement object flowing through the conductor 110.
  • each of the first magnetic sensor 10 and the second magnetic sensor 20 has a Hall element, and detects a magnetic field in the thickness direction (Z-axis direction).
  • Each of the first magnetic sensor 10 and the second magnetic sensor 20 outputs a positive value when a magnetic field directed to one side in the thickness direction (Z-axis direction) is detected, and the first magnetic sensor 10 and the second magnetic sensor 20 When a magnetic field directed to the other side is detected, a negative value is output.
  • Each of the first magnetic sensor 10 and the second magnetic sensor 20 is not limited to a magnetic sensor having a Hall element, but may be a magnetic sensor or a flux gate type magnetic sensor having an MI (Magneto Impedance) element utilizing a magnetic impedance effect. May be.
  • MI Magnetic Impedance
  • each of the first magnetic sensor 10 and the second magnetic sensor 20 may have a Wheatstone bridge type bridge circuit composed of four AMR (Anisotropic Magneto Resistance) elements.
  • AMR Anaisotropic Magneto Resistance
  • Each of the first magnetic sensor 10 and the second magnetic sensor 20 is replaced with an AMR element, and GMR (Giant Magneto Resistance), TMR (Tunnel Magneto Resistance), BMR (Ballistic Magneto Resistance), CMR (Colossal Magneto Resistance), etc. It may have a magnetoresistive element.
  • each of the first magnetic sensor 10 and the second magnetic sensor 20 may have a half bridge circuit composed of two magnetoresistance elements.
  • the first magnetic sensor 10 is formed in the first magnetic sensor chip 1C.
  • the second magnetic sensor 20 is formed on the second magnetic sensor chip 2C.
  • the signal processing circuit 30 processes the signals output from the first magnetic sensor 10 and the second magnetic sensor 20.
  • the signal processing circuit 30 calculates the value of the current to be measured flowing through the conductor 110 by computing the detection value of the first magnetic sensor 10 and the detection value of the second magnetic sensor 20.
  • the signal processing circuit 30 includes a differential amplifier.
  • the signal processing circuit 30 may include a subtractor.
  • the first magnetic sensor 10, the second magnetic sensor 20, and the signal processing circuit 30 are mounted on one metal plate 40.
  • the metal plate 40 has a substantially rectangular parallelepiped outer shape, and a portion to be the second external output terminal 52 protrudes from the end.
  • the first magnetic sensor chip 1C, the second magnetic sensor chip 2C, the signal processing circuit 30, and the plurality of external output terminals 50 are arranged in line in this order.
  • the first magnetic sensor chip 1C, the second magnetic sensor chip 2C, the signal processing circuit 30, and the plurality of external output terminals 50 are electrically connected to each other by wire bonding.
  • first magnetic sensor chip 1C a part of the plurality of first electrodes 1T provided in the first magnetic sensor chip 1C and the first magnetic sensor 10 correspond to the wiring 1L corresponding to each other. Connected to each other.
  • second magnetic sensor chip 2C a part of the plurality of second electrodes 2T provided in the second magnetic sensor chip 2C and the second magnetic sensor 20 are connected to each other by the corresponding wiring 2L. .
  • a part of the plurality of first electrodes 1T provided on the first magnetic sensor chip 1C corresponds to a part of the plurality of second electrodes 2T provided on the second magnetic sensor chip 2C Are connected to one another by wiring 3L.
  • a part of the plurality of second electrodes 2T provided in the second magnetic sensor chip 2C and a part of the plurality of third electrodes 30T provided in the signal processing circuit 30 correspond to the wiring 4L. Connected to each other. Some of the plurality of third electrodes 30T provided in the signal processing circuit 30 and the plurality of external output terminals 50 are connected to each other by the corresponding wires 5L.
  • the first magnetic sensor chip 1C, the second magnetic sensor chip 2C, the signal processing circuit 30, and the plurality of external output terminals 50 are electrically connected to one another, the output from the first magnetic sensor 10
  • the signal thus obtained and the signal output from the second magnetic sensor 20 are processed together in the signal processing circuit 30 and output from the plurality of external output terminals 50.
  • connection method of the first magnetic sensor chip 1C, the second magnetic sensor chip 2C, the signal processing circuit 30, and the metal plate 40 is not limited to wire bonding, and may be die bonding or flip chip.
  • die bonding material an epoxy-based or silicone-based material can be used.
  • the metal plate 40 is made of copper.
  • the material which comprises the metal plate 40 is not restricted to copper, What is necessary is just a metal with high heat conductivity and electrical conductivity.
  • the plating layer may be provided in the surface of the metal plate 40. FIG. Furthermore, the material and thickness of the metal plate 40 are appropriately set so that the metal plate 40 has sufficient strength.
  • the entire package may be formed by transfer molding, or the first magnetic sensor chip 1C, the second magnetic sensor chip may be formed into a molded body integrally formed with the metal plate 40 by premolding.
  • a 2C and signal processing circuit 30 may be implemented.
  • the magnetic sensor package 120 is mounted on the conductor 110 such that the metal plate 40 is positioned parallel to the conductor 110.
  • the magnetic sensor package 120 includes one flow passage portion 111, an opening portion 119, and the other so that the metal plate 40 faces each of the one flow passage portion 111 and the other flow passage portion 115. It is disposed above the flow path portion 115.
  • the magnetic sensor package 120 is arranged such that the middle position between the first magnetic sensor 10 and the second magnetic sensor 20 and the central position of the opening 119 coincide with each other in the width direction (Y-axis direction). It is arranged. The first magnetic sensor 10 and the second magnetic sensor 20 overlap the opening 119 when viewed in the thickness direction (Z-axis direction). The shortest distance between the first magnetic sensor 10 and the one flow passage portion 111 and the shortest distance between the second magnetic sensor 20 and the other flow passage portion 115 are substantially the same.
  • the first magnetic sensor 10 and the second magnetic sensor 20 are arranged at the above-described positions, when the current to be measured flows through the conductor 110, the first magnetic sensor 10 is provided with the one flow passage portion 111.
  • a circulating magnetic field mainly acts on the second magnetic sensor 20, and a magnetic field circulating on the other flow path portion 115 mainly acts on the second magnetic sensor 20.
  • the first magnetic sensor 10 detects the magnetic field directed to one side in the thickness direction (Z-axis direction), and the second magnetic sensor 20 detects the magnetic field directed to the other side in the thickness direction (Z-axis direction).
  • the phase of the detection value of the first magnetic sensor 10 and the phase of the detection value of the second magnetic sensor 20 become opposite. Therefore, when the strength of the magnetic field detected by the first magnetic sensor 10 is a positive value, the strength of the magnetic field detected by the second magnetic sensor 20 is a negative value.
  • the detection value of the first magnetic sensor 10 and the detection value of the second magnetic sensor 20 are calculated by the signal processing circuit 30. Specifically, the signal processing circuit 30 subtracts the detection value of the second magnetic sensor 20 from the detection value of the first magnetic sensor 10. From this result, the value of the current to be measured that has flowed through the conductor 110 is calculated.
  • the phase of the detection value of the first magnetic sensor 10 and the phase of the detection value of the second magnetic sensor 20 are in phase. Become. Therefore, if the strength of the magnetic field detected by the first magnetic sensor 10 is a positive value, the strength of the magnetic field detected by the second magnetic sensor 20 is a positive value. As a result, when the signal processing circuit 30 subtracts the detection value of the second magnetic sensor 20 from the detection value of the first magnetic sensor 10, the external magnetic field is hardly detected, and the influence thereof is reduced.
  • the magnetic field directions in which the detection value is positive may be opposite to each other.
  • the signal processing circuit 30 includes an adder or a summing amplifier instead of the differential amplifier.
  • the phase of the detection value of the first magnetic sensor 10 and the phase of the detection value of the second magnetic sensor 20 In phase. Therefore, if the strength of the magnetic field detected by the first magnetic sensor 10 is a positive value, the strength of the magnetic field detected by the second magnetic sensor 20 is a positive value.
  • the signal processing circuit 30 adds the detection value of the first magnetic sensor 10 and the detection value of the second magnetic sensor 20. From this result, the value of the current to be measured that has flowed through the conductor 110 is calculated.
  • the phase of the detection value of the first magnetic sensor 10 and the phase of the second magnetic sensor 20 is opposite to the phase. Therefore, when the strength of the magnetic field detected by the first magnetic sensor 10 is a positive value, the strength of the magnetic field detected by the second magnetic sensor 20 is a negative value. As a result, when the signal processing circuit 30 adds the detection value of the first magnetic sensor 10 and the detection value of the second magnetic sensor 20, the external magnetic field is hardly detected, and the influence thereof is reduced.
  • the current sensor 100 according to the present embodiment and the current sensor according to the first modification of the present embodiment can measure the current to be measured with high sensitivity while reducing the influence of the external magnetic field. .
  • the first magnetic sensor 10, the second magnetic sensor 20, and the signal processing circuit 30 are mounted on a single metal plate 40, the periphery of the first magnetic sensor 10 can be obtained. The difference between the temperature and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor 100 due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
  • the shortest distance between the first magnetic sensor 10 and the one flow passage portion 111 and the shortest distance between the second magnetic sensor 20 and the other flow passage portion 115 are substantially the same as each other, Since the amount of heat transferred to each of the first magnetic sensor 10 and the second magnetic sensor 20 is substantially the same, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 is smaller. can do. As a result, it is possible to further reduce the measurement error of the current sensor 100 due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
  • the first magnetic sensor 10 and the second magnetic sensor 20 can be disposed close to each other. Therefore, since the external magnetic field acts equally on both the first magnetic sensor 10 and the second magnetic sensor 20, the signal processing circuit 30 can reduce the influence of the external magnetic field. Further, the current sensor 100 can be miniaturized. Furthermore, since the length of the wiring connecting the first magnetic sensor 10, the second magnetic sensor 20, and the signal processing circuit 30 can be shortened, parasitic resistance and parasitic inductance can be reduced. Thereby, the induced electromotive force generated in the loop formed by the wiring can be reduced, the transient characteristic of the current sensor 100 can be improved, and in turn, the detection sensitivity of the current sensor 100 can be improved.
  • the conductor 110 and the magnetic sensor package 120 are separately configured, and the thermal resistance between the conductor 110 and the magnetic sensor package 120 is increased. Can suppress the heating of the first magnetic sensor 10 and the second magnetic sensor 20 due to the heat generation, thereby reducing the thermal influence on the first magnetic sensor 10 and the second magnetic sensor 20 and improving the reliability of the current sensor 100 it can.
  • the metal plate 40 since a part of the metal plate 40 constitutes the second external output terminal 52, the metal plate 40 and the plurality of external output terminals 50 are separately formed. Compared with the case, the mounting strength of the plurality of external output terminals 50 with the magnetic sensor package 120 can be increased, and the reliability of the current sensor 100 can be improved.
  • the arrangement of the first magnetic sensor 10, the second magnetic sensor 20, and the signal processing circuit 30 in the magnetic sensor package 120 is not limited to the above, and can be changed as appropriate.
  • the first magnetic sensor 10 and the second magnetic sensor 20 are disposed such that the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 are equal.
  • the number of magnetic sensors disposed is not limited to two, and may be four or more even numbers.
  • FIG. 3 is a perspective view showing a configuration of a current sensor according to a second modified example of the first embodiment of the present invention.
  • the current sensor according to the second modification of the first embodiment of the present invention is the same as the current sensor 100 according to the first embodiment of the present invention because it differs from the current sensor 100 according to the first embodiment of the present invention only in the shape of the conductor. The description will not be repeated for certain configurations.
  • a current sensor 100 a includes a conductor 110 a and a magnetic sensor package 120.
  • the conductor 110a includes one flow passage portion 111a and the other flow passage portion 115a in which the current to be measured is divided and flows halfway along the length direction (X-axis direction).
  • the other flow passage portion 115 a is located in line with the one flow passage portion 111 a in the width direction (Y-axis direction).
  • Each of the one flow passage portion 111 a and the other flow passage portion 115 a protrudes outward in the width direction (Y-axis direction).
  • the cross-sectional area along the width direction (Y-axis direction) of one flow passage portion 111a and the cross-sectional area along the width direction (Y-axis direction) of the other flow passage portion 115a are substantially the same.
  • the total cross-sectional area of the cross-sectional area is substantially the same as the cross-sectional area of the non-dividing portion along the width direction (Y-axis direction) of the conductor 110.
  • the conductor 110a can secure a flow passage area of substantially the same current as that of the portion not divided even in the flow dividing portion, and heat generation locally in one flow passage portion 111a and the other flow passage portion 115a. Can be suppressed. Thereby, it is possible to further suppress the heating of the first magnetic sensor 10 and the second magnetic sensor 20 due to the heat generation of the conductor 110, and to further reduce the thermal influence on the first magnetic sensor 10 and the second magnetic sensor 20. The reliability of the sensor 100 can be further improved.
  • the current sensor according to the second embodiment is the same as the current sensor 100 according to the first embodiment because the current sensor according to the second embodiment is different from the current sensor 100 according to the first embodiment only in that a plurality of magnetic sensors are formed in one magnetic sensor chip.
  • the same reference symbols are attached to the configurations that are and the description thereof will not be repeated.
  • FIG. 4 is a plan view showing the configuration of the magnetic sensor package provided in the current sensor according to Embodiment 2 of the present invention.
  • the insulating material forming part of the magnetic sensor package is not shown.
  • the current sensor according to Embodiment 2 of the present invention includes a magnetic sensor package 220.
  • the first magnetic sensor 10 and the second magnetic sensor 20 are formed in one magnetic sensor chip 3C.
  • the magnetic sensor chip 3C, the signal processing circuit 30, and the plurality of external output terminals 50 are arranged in line in this order.
  • the magnetic sensor chip 3C, the signal processing circuit 30, and the plurality of external output terminals 50 are electrically connected to each other by wire bonding.
  • a part of the plurality of first electrodes 1T provided in the magnetic sensor chip 3C and the first magnetic sensor 10 are connected to each other by the corresponding wiring 1L.
  • a part of the plurality of second electrodes 2T provided in the magnetic sensor chip 3C and the second magnetic sensor 20 are connected to each other by the corresponding wiring 2L.
  • a part of the plurality of first electrodes 1T and a part of the plurality of second electrodes 2T are connected to each other by the corresponding wiring 3L.
  • a part of the plurality of second electrodes 2T provided in the magnetic sensor chip 3C and a part of the plurality of third electrodes 30T provided in the signal processing circuit 30 are mutually connected by corresponding wires 4L. It is done.
  • Some of the plurality of third electrodes 30T provided in the signal processing circuit 30 and the plurality of external output terminals 50 are connected to each other by the corresponding wires 5L.
  • the magnetic sensor chip 3C, the signal processing circuit 30, and the plurality of external output terminals 50 are electrically connected to each other, the signal output from the first magnetic sensor 10, and the second magnetic sensor The signals output from 20 are processed together by the signal processing circuit 30 and output from the plurality of external output terminals 50.
  • the first magnetic sensor 10 and the second magnetic sensor 20 are formed in one magnetic sensor chip 3C. Therefore, the distance between the first magnetic sensor 10 and the second magnetic sensor 20 can be further reduced compared to the current sensor 100 according to the first embodiment.
  • the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be further reduced.
  • the magnetic sensor By mounting the chip 3 ⁇ / b> C on the metal plate 40, it is possible to reduce the variation in relative position between the first magnetic sensor 10 and the second magnetic sensor 20, so the reliability of the current sensor can be improved. .
  • the current sensor according to the third embodiment differs from the current sensor according to the second embodiment only in that the temperature sensor for measuring the temperature inside the magnetic sensor package is incorporated in the signal processing circuit.
  • the same components as those of the current sensor are denoted by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 5 is a plan view showing the configuration of the magnetic sensor package provided in the current sensor according to Embodiment 3 of the present invention.
  • the insulating material forming a part of the magnetic sensor package is not shown.
  • the current sensor according to Embodiment 3 of the present invention includes a magnetic sensor package 320.
  • the signal processing circuit 30 incorporates a temperature sensor 60 that measures the temperature inside the magnetic sensor package 320.
  • the signal processing circuit 30 corrects and processes signals output from the first magnetic sensor 10 and the second magnetic sensor 20 based on the measurement result of the temperature sensor 60.
  • the detection error of the 1st magnetic sensor 10 and the 2nd magnetic sensor 20 by the temperature characteristic of the magnetoresistive element which each of the 1st magnetic sensor 10 and the 2nd magnetic sensor 20 has can be corrected.
  • the current sensor according to the fourth embodiment is different from the current sensor according to the second embodiment mainly in that the magnetic sensor package includes a passive circuit electrically connected to the signal processing circuit, the second embodiment relates to the second embodiment.
  • the same components as those of the current sensor are denoted by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 6 is a plan view showing the configuration of the magnetic sensor package provided in the current sensor according to Embodiment 4 of the present invention.
  • the insulating material forming a part of the magnetic sensor package is not shown.
  • the current sensor according to the fourth embodiment of the present invention includes a magnetic sensor package 420.
  • the magnetic sensor package 420 includes a passive circuit 70 electrically connected to the signal processing circuit 30.
  • the plurality of external output terminals 50 are electrically connected to the signal processing circuit 30 through the passive circuit 70.
  • the signal processing circuit 30 is mounted on the metal plate 40 and covered with the insulating material 121.
  • the passive circuit 70 has a function such as a filter.
  • EMI Electro-Magnetic Interference
  • Embodiment 5 the current sensor according to the fifth embodiment of the present invention will be described.
  • the current sensor according to the fifth embodiment differs from the current sensor according to the fourth embodiment mainly in that the magnetic sensor package includes an electrostatic shield, and thus the configuration similar to that of the current sensor according to the fourth embodiment The same reference numerals are assigned and the description will not be repeated.
  • FIG. 7 is a plan view showing the configuration of the magnetic sensor package provided in the current sensor according to Embodiment 5 of the present invention.
  • FIG. 8 is a perspective view showing the configuration of a magnetic sensor package provided in the current sensor according to Embodiment 5 of the present invention.
  • the insulating material forming part of the magnetic sensor package is not shown.
  • the current sensor according to the fifth embodiment of the present invention includes a magnetic sensor package 520.
  • the magnetic sensor package 520 includes an electrostatic shield 80.
  • the electrostatic shield 80 is electrically connected to the metal plate 40 and is covered with the insulating material 121.
  • the electrostatic shield 80 is composed of a flat portion 81 opposed to the metal plate 40 and a circumferential surface portion 82 erected from the edge of the flat portion 81.
  • the electrostatic shield 80 and the metal plate 40 are integrally configured by bonding the metal plate 40 and the peripheral surface portion 82 to each other with a conductive bonding material such as solder or conductive paste.
  • the metal plate 40 and the circumferential surface portion 82 may be mechanically joined to each other by press fitting or the like.
  • a material which comprises the electrostatic shield 80 a nonmagnetic metal can be used and a metal with high thermal conductivity is more preferable.
  • the first magnetic sensor 10, the second magnetic sensor 20, the signal processing circuit 30 and the passive circuit 70 are located in an area sandwiched between the metal plate 40 and the electrostatic shield 80.
  • the first magnetic sensor 10, the second magnetic sensor 20, the signal processing circuit 30, and the passive circuit 70 are located in a space surrounded by the metal plate 40 and the electrostatic shield 80.
  • the metal plate 40 and the electrostatic shield 80 are in contact with each other, the heat of the metal plate 40 is diffused to the electrostatic shield 80, and the temperature inside the magnetic sensor package 520 is equalized. Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
  • FIG. 9 is a plan view showing the configuration of a magnetic sensor package provided in a current sensor according to a modification of Embodiment 5 of the present invention.
  • FIG. 10 is a perspective view showing a configuration of a magnetic sensor package provided in a current sensor according to a modification of Embodiment 5 of the present invention.
  • the insulating material which comprises a part of magnetic sensor package is not illustrated for convenience of explanation.
  • the current sensor according to the modification of the fifth embodiment of the present invention is the same as the current sensor according to the fifth embodiment of the present invention because only the shape of the electrostatic shield is different from that of the current sensor according to the fifth embodiment. The description will not be repeated.
  • the current sensor according to the modification of the fifth embodiment of the present invention includes a magnetic sensor package 520a.
  • the magnetic sensor package 520a includes an electrostatic shield 80a.
  • the electrostatic shield 80 a is electrically connected to the metal plate 40 and covered with the insulating material 121.
  • the electrostatic shield 80 a is configured of a flat portion 81 facing the metal plate 40 and a leg portion 82 a erected from a corner of the flat portion 81.
  • the electrostatic shield 80a and the metal plate 40 are integrally configured by bonding the metal plate 40 and the leg portion 82a to each other with a conductive bonding material such as solder or conductive paste.
  • the metal plate 40 and the leg portion 82a may be mechanically joined to each other by press-fitting or the like.
  • the first magnetic sensor 10, the second magnetic sensor 20, and the signal processing circuit 30 are located in an area sandwiched between the metal plate 40 and the electrostatic shield 80a. Thereby, the influence of the electric field due to the noise on the first magnetic sensor 10, the second magnetic sensor 20, and the signal processing circuit 30 can be reduced.
  • the electrostatic shield 80a is disposed only at a place important for reducing the influence of the electric field due to noise, and the electrostatic shield 80a is miniaturized as compared with the electrostatic shield 80.
  • the cost and weight of the current sensor can be reduced.
  • Embodiment 6 the current sensor according to the sixth embodiment of the present invention will be described.
  • the current sensor according to the sixth embodiment is mainly modified in that the magnetic sensor package includes at least one bias magnet for positioning a plurality of magnetic sensors between each other to apply a bias magnetic field. Since the configuration is the same as that of the current sensor according to the modification of the fifth embodiment, the same reference symbol is attached to the same configuration as that of the current sensor according to the embodiment, and the description thereof will not be repeated.
  • FIG. 11 is a plan view showing the configuration of the magnetic sensor package provided in the current sensor according to Embodiment 6 of the present invention.
  • FIG. 12 is a perspective view showing the configuration of a magnetic sensor package provided in the current sensor according to Embodiment 6 of the present invention.
  • the insulating material forming part of the magnetic sensor package is not shown.
  • the current sensor according to Embodiment 6 of the present invention includes a magnetic sensor package 620.
  • the magnetic sensor package 620 includes two bias magnets 90 that position the first magnetic sensor 10 and the second magnetic sensor 20 between each other to apply a bias magnetic field.
  • the two bias magnets 90 are mounted on the metal plate 40 and covered with the insulating material 121.
  • the bias magnet 90 may be composed of a sintered magnet, a bonded magnet or a thin film.
  • the type of the bias magnet 90 is not particularly limited, and a ferrite magnet, a samarium cobalt magnet, an alnico magnet, a neodymium magnet, or the like can be used.
  • the bias magnets 90 are disposed on both sides of the magnetic sensor chip 3C in the length direction (X-axis direction). A gap is provided between each of the two bias magnets 90 and the magnetic sensor chip 3C.
  • the number of bias magnets 90 disposed is not limited to two, and may be at least one.
  • a composite chip in which the bias magnet 90 is bonded to both sides of the magnetic sensor chip 3C may be mounted on the metal plate 40.
  • the current sensor can be miniaturized as compared with the case where the bias magnet is arranged outside the magnetic sensor package 620.
  • the metal plate 40 and the bias magnet 90 are in contact with each other, the heat of the metal plate 40 is diffused to the bias magnet 90, and the temperature inside the magnetic sensor package 620 is made uniform. Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
  • the contact between the metal plate 40 and the bias magnet 90 makes the internal temperature of the bias magnet 90 and the magnetic characteristics of the bias magnet 90 uniform.
  • the bias magnetic field applied to the first magnetic sensor 10 and the second magnetic sensor 20 is stabilized, and the detection sensitivity of each of the first magnetic sensor 10 and the second magnetic sensor 20 is stabilized.
  • the reliability of the current sensor can be improved.
  • FIG. 13 is a perspective view showing a configuration of a current sensor according to Embodiment 7 of the present invention.
  • the outer shape of the magnetic sensor package made of an insulating material is indicated by a two-dot chain line, and the insulating material is shown through it. Further, in FIG. 13, the electrodes and the wiring are not illustrated for the sake of easy viewing.
  • a current sensor 700 includes a conductor 710 and a magnetic sensor package 120.
  • the conductor 710 includes one flow passage portion 711 and the other flow passage portion 715 in which the current to be measured is divided and flows halfway along the length direction (X-axis direction).
  • the other flow passage portion 715 is located in line with the one flow passage portion 711 in the width direction (Y-axis direction).
  • An opening 119 extending in the length direction (X-axis direction) is provided between one flow passage portion 711 and the other flow passage portion 715.
  • the opening 119 is located at the center of the conductor 710 in the width direction (Y-axis direction).
  • the opening 119 may not necessarily be located at the center of the conductor 710 in the width direction (Y-axis direction).
  • One channel portion 711 bulges to the surface side of the conductor 710 as viewed in the width direction (Y-axis direction).
  • the other flow passage portion 715 bulges on the back surface side of the conductor 710 as viewed in the width direction (Y-axis direction).
  • One flow path portion 711 extends in the length direction (X-axis direction), with a first projection 712 and a second projection 713 projecting orthogonally to the surface of the conductor 710 at intervals. And an extending portion 714 connecting the first protruding portion 712 and the second protruding portion 713.
  • the shape of one flow passage portion 711 is not limited to this, and may have a C-shape or a semicircular shape as viewed from the width direction (Y-axis direction), for example.
  • the other flow path portions 715 extend in the length direction (X-axis direction), with the third projection 716 and the fourth projection 717 projecting orthogonally to the back surface of the conductor 710 at intervals. And an extending portion 718 connecting the third protrusion 716 and the fourth protrusion 717.
  • the shape of the other flow passage portion 715 is not limited to this, and may have a C-shape or a semicircular shape as viewed from the width direction (Y-axis direction), for example.
  • One flow passage portion 711 and the other flow passage portion 715 have shapes that are point-symmetrical to each other.
  • the one flow passage portion 711 and the other flow passage portion 715 may not necessarily have a point-symmetrical shape.
  • a region 710 h surrounded by one flow passage portion 711 and the other flow passage portion 715 is formed.
  • the magnetic sensor package 120 is inserted in a space formed by one flow passage portion 711 and the other flow passage portion 715.
  • the magnetic sensor package 120 is fixed to the conductor 710 by a bonding material or the like.
  • the first magnetic sensor 10 and the second magnetic sensor 20 are located inside the area 710 h when viewed from the width direction (Y-axis direction), and viewed from the thickness direction (Z-axis direction), It is located in the range from one end of one flow passage portion 711 in the width direction (Y-axis direction) to the other end of the other flow passage portion 715.
  • the magnetic sensor package 120 is arranged such that the middle position between the first magnetic sensor 10 and the second magnetic sensor 20 and the central position of the opening 119 coincide with each other in the width direction (Y-axis direction). It is arranged.
  • the current sensor 700 can measure the current of the measurement target with high sensitivity while reducing the influence of the external magnetic field.
  • the conductor 710 generates heat because the magnetic sensor package 120 is disposed in the space formed by the one flow passage portion 711 and the other flow passage portion 715.
  • the temperature inside the magnetic sensor package 120 is made uniform. Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor 700 due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
  • the current sensor 700 since the electric resistance value of one flow path portion 711 and the electric resistance value of the other flow path portion 715 are substantially the same, The calorific value of the one flow path portion 711 due to the flow can be made equal to the calorific value of the other flow path portion 715.
  • the first magnetic sensor 10 and the second magnetic sensor 10 can It is possible to effectively reduce the measurement error of the current sensor 700 due to the temperature characteristic of the magnetoresistive element that each of the magnetic sensors 20 has.
  • FIG. 14 is a perspective view showing a configuration of a current sensor according to a first modified example of the seventh embodiment of the present invention.
  • FIG. 15 is a perspective view showing a configuration of a current sensor according to a second modified embodiment of the seventh embodiment of the present invention.
  • FIG. 16 is a perspective view showing a configuration of a current sensor according to a third modified embodiment of the seventh embodiment of the present invention.
  • the current sensors according to the first to third modifications of the seventh embodiment of the present invention are different from the current sensor 700 according to the seventh embodiment of the present invention only in the shape of the conductor, so the current according to the seventh embodiment of the present invention The description of the same configuration as that of sensor 700 will not be repeated.
  • the current sensor 700 a includes a conductor 710 a and a magnetic sensor package 120.
  • the conductor 710 a includes one flow passage portion 711 and the other flow passage portion 115 in which the current to be measured is divided and flows halfway along the length direction (X-axis direction).
  • the other flow passage portion 115 is positioned side by side with one flow passage portion 711 in the width direction (Y-axis direction).
  • An opening 119 extending in the length direction (X-axis direction) is provided between one flow passage portion 711 and the other flow passage portion 115.
  • the opening 119 is located at the center of the conductor 710 a in the width direction (Y-axis direction).
  • the opening 119 may not necessarily be located at the center of the conductor 710 a in the width direction (Y-axis direction).
  • a region 710ah surrounded by one flow passage portion 711 and the other flow passage portion 115 is formed.
  • the magnetic sensor package 120 is inserted in the space formed by the one flow passage portion 711 and the other flow passage portion 115.
  • the first magnetic sensor 10 and the second magnetic sensor 20 are located inside the region 710ah when viewed from the width direction (Y-axis direction), and viewed from the thickness direction (Z-axis direction), It is located in the range from one end of one flow passage portion 711 in the width direction (Y-axis direction) to the other end of the other flow passage portion 115.
  • the magnetic sensor package 120 is arranged such that the middle position between the first magnetic sensor 10 and the second magnetic sensor 20 and the central position of the opening 119 coincide with each other in the width direction (Y-axis direction). It is arranged.
  • the current sensor 700a can measure the current of the measurement target with high sensitivity while reducing the influence of the external magnetic field.
  • the magnetic sensor package 120 is disposed in the space formed by the one flow passage portion 711 and the other flow passage portion 115, The temperature inside the magnetic sensor package 120 when the conductor 710 generates heat is made uniform. Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor 700a due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
  • a current sensor 700b includes a conductor 710b and a magnetic sensor package 120.
  • the conductor 710b includes one flow passage portion 711b and the other flow passage portion 715b in which the current to be measured is divided and flows halfway along the length direction (X-axis direction).
  • the other flow passage portion 715 b is located in line with the one flow passage portion 711 b in the width direction (Y-axis direction).
  • the conductor 710 b is located on the surface side of the conductor 710 b with one side in the length direction (X-axis direction) bordering the dividing portion as compared with the other side.
  • An opening 119 extending in the length direction (X-axis direction) is provided between one flow passage portion 711 b and the other flow passage portion 715 b.
  • the opening 119 is located at the center of the conductor 710 b in the width direction (Y-axis direction).
  • the opening 119 may not necessarily be located at the center of the conductor 710 b in the width direction (Y-axis direction).
  • One flow path portion 711b is orthogonal to an extending portion 714b extending in one length direction (X-axis direction) from one portion in the length direction (X-axis direction) of the conductor 710b, and orthogonal to the surface of the conductor 710b. It is bent, and it is comprised from the bent part 713b which connects the extension part 714b and the other part of the length direction (X-axis direction) of the conductor 710b.
  • the other flow path portion 715b is a bent portion 716b which is bent so as to be orthogonal to the back surface of the conductor 710b from one portion in the length direction (X axis direction) of the conductor 710b, and a length direction from the bent portion 716b (X axis direction And an extending portion 718b connecting the bent portion 716b, the extending portion 714b, and the other portion in the length direction (the X-axis direction) of the conductor 710b.
  • a region 710bh surrounded by one flow passage portion 711b and the other flow passage portion 715b is formed.
  • the magnetic sensor package 120 is inserted in a space formed by one flow passage portion 711 b and the other flow passage portion 715 b.
  • the first magnetic sensor 10 and the second magnetic sensor 20 are located inside the region 710bh when viewed from the width direction (Y-axis direction), and viewed from the thickness direction (Z-axis direction), It is located in the range from one end of one flow passage portion 711b to the other end of the other flow passage portion 715b in the width direction (Y-axis direction).
  • the magnetic sensor package 120 is arranged such that the middle position between the first magnetic sensor 10 and the second magnetic sensor 20 and the central position of the opening 119 coincide with each other in the width direction (Y-axis direction). It is arranged.
  • the current sensor 700b can measure the current of the measurement target with high sensitivity while reducing the influence of the external magnetic field.
  • the magnetic sensor package 120 is disposed in the space formed by the one flow passage portion 711b and the other flow passage portion 715b,
  • the temperature inside the magnetic sensor package 120 when the conductor 710 b generates heat is made uniform.
  • the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced.
  • a current sensor 700c includes a conductor 710c and a magnetic sensor package 120.
  • the conductor 710c includes one flow path portion 711b and the other flow path portion 715c in which the current to be measured is divided and flows halfway along the length direction (X-axis direction).
  • the other flow passage portion 715c is located in line with the one flow passage portion 711b in the width direction (Y-axis direction).
  • the conductor 710 c is located on the surface side of the conductor 710 c with one side in the length direction (X-axis direction) bordering the dividing portion as compared with the other side.
  • An opening 119 extending in the length direction (X-axis direction) is provided between one flow passage portion 711 b and the other flow passage portion 715 c.
  • the opening 119 is located at the center of the conductor 710 c in the width direction (Y-axis direction).
  • the opening 119 may not necessarily be located at the center of the conductor 710 c in the width direction (Y-axis direction).
  • the other flow path portion 715c extends in the length direction (X-axis direction), with a third projection 716c and a fourth projection 717 projecting orthogonally to the back surface of the conductor 710c, spaced apart from each other. , And an extending portion 718 connecting the third protruding portion 716 c and the fourth protruding portion 717.
  • the third protrusion 716 c connects one portion in the length direction (X-axis direction) of the conductor 710 c and the extension 718.
  • the fourth projecting portion 717 connects the extending portion 718 and the other portion in the length direction (X-axis direction) of the conductor 710c.
  • a region 710 ch surrounded by one flow passage portion 711 b and the other flow passage portion 715 c is formed.
  • the magnetic sensor package 120 is inserted in a space formed by one flow passage portion 711 b and the other flow passage portion 715 c.
  • the first magnetic sensor 10 and the second magnetic sensor 20 are located inside the area 710ch when viewed from the width direction (Y-axis direction), and viewed from the thickness direction (Z-axis direction), It is located in the range from one end of one flow passage portion 711b in the width direction (Y-axis direction) to the other end of the other flow passage portion 715c.
  • the magnetic sensor package 120 is arranged such that the middle position between the first magnetic sensor 10 and the second magnetic sensor 20 and the central position of the opening 119 coincide with each other in the width direction (Y-axis direction). It is arranged.
  • the current sensor 700c can measure the current of the measurement target with high sensitivity while reducing the influence of the external magnetic field.
  • the magnetic sensor package 120 is disposed in the space formed by one flow passage portion 711b and the other flow passage portion 715c.
  • the temperature inside the magnetic sensor package 120 when the conductor 710c generates heat is made uniform. Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor 700c due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
  • the current sensor according to the eighth embodiment differs from the current sensor 700 according to the seventh embodiment mainly in that the current sensor according to the eighth embodiment includes the attachment member. And do not repeat the description.
  • FIG. 17 is a perspective view showing the configuration of a current sensor according to Embodiment 8 of the present invention.
  • FIG. 18 is an exploded perspective view showing a configuration of a current sensor according to Embodiment 8 of the present invention.
  • the magnetic sensor package is shown only in the outer shape.
  • the current sensor 800 includes a conductor 710, a magnetic sensor package 120, and a mounting member 830.
  • the mounting member 830 includes a base 831 and a pair of engaging portions 832 that project from both ends in the lengthwise direction (X-axis direction) of the base 831 and engage with the openings 119 of the conductor 710.
  • the mounting member 830 is formed of resin, engineering plastic, ceramic, or the like having insulation.
  • the mounting member 830 is made of, for example, silicone resin, epoxy resin, polyphenylene sulfide, polybutylene terephthalate resin, liquid crystal polymer, urethane, nylon or the like.
  • the mounting member 830 is fixed to the conductor 710.
  • the mounting member 830 is fixed to the conductor 710 in contact with at least a part of the edge of the opening 119.
  • the mounting member 830 and the conductor 710 are bonded to each other by a bonding material applied in the vicinity of the contact portion.
  • the pair of engaging portions 832 of the mounting member 830 is inserted into and fixed to the opening 119 of the conductor 710.
  • the pair of engaging portions 832 of the mounting member 830 are in contact with both edges of the opening 119 in the longitudinal direction (X-axis direction) in a one-to-one correspondence.
  • the mounting member 830 is positioned with respect to the conductor 710 in the longitudinal direction (X-axis direction).
  • the pair of engaging portions 832 of the mounting member 830 correspond one-to-one to the side surface on the opening 119 side of one flow passage portion 711 and the side surface on the opening 119 side of the other flow passage portion 715. Are in contact with each other.
  • the mounting member 830 is positioned with respect to the conductor 710 in the width direction (Y-axis direction).
  • the mounting member 830 is connected to the magnetic sensor package 120.
  • the mounting member 830 is in contact with the magnetic sensor package 120 on the inner surface of the base 831 and the pair of engaging portions 832.
  • the mounting member 830 and the magnetic sensor package 120 are bonded to each other by a bonding material applied in the vicinity of the contact portion.
  • the magnetic sensor package 120 is indirectly attached to the conductor 710.
  • the edge in the longitudinal direction (X-axis direction) of the opening portion 119 of the conductor 710 is the portion with the smallest amount of deformation when the diverted portion of the conductor 710 is deformed by heat generation when current flows through the conductor 710.
  • the mounting member 830 is in contact with the edge in the length direction (X-axis direction) of the opening 119, which is the portion with the smallest amount of deformation when the branched portion of the conductor 710 generates heat. In a fixed state, it is fixed to the conductor 710. Therefore, the mounting member 830 is not easily affected by the deformation of the conductor 710 due to the heat generation, and the positional variation is suppressed.
  • the magnetic sensor package 120 Since the magnetic sensor package 120 is indirectly attached to the conductor 710 via the attachment member 830, the magnetic sensor package 120 is also less susceptible to the deformation due to the heat generation of the conductor 710, and the positional variation is suppressed. As a result, the fluctuation of the relative positional relationship between the first flow path portion 711 and the other flow path portion 715 divided from the conductor 710 and the first magnetic sensor 10 and the second magnetic sensor 20 is reduced, and the current sensor The reliability of 800 can be improved.
  • FIG. 19 is a perspective view showing a configuration of a current sensor according to a modification of Embodiment 8 of the present invention.
  • FIG. 20 is an exploded perspective view showing a configuration of a current sensor according to a modification of Embodiment 8 of the present invention.
  • the current sensor according to the modification of the eighth embodiment of the present invention is different from the current sensor 800 according to the eighth embodiment of the present invention mainly in that the mounting member and the magnetic sensor package are welded to each other. The description of the same configuration as that of the current sensor 800 according to the eighth embodiment will not be repeated.
  • a current sensor 800a according to a modification of Embodiment 8 of the present invention includes a conductor 710, a magnetic sensor package 820, and a mounting member 830a.
  • the magnetic sensor package 820 has a pair of protrusions 821 protruding from both sides in the longitudinal direction (X-axis direction). Each of the pair of protrusions 821 is provided with a through hole 822 penetrating in the thickness direction (Z-axis direction).
  • the mounting member 830 a has a cylindrical convex portion 833 which protrudes from the engaging portion 832 in the thickness direction (Z-axis direction) and is fitted to the through hole 822.
  • the shape of the convex portion 833 is not limited to a cylindrical shape, and may be a prismatic shape, an elliptical shape, or the like.
  • the mounting member 830a is made of a thermoplastic resin.
  • the insulating material forming a part of the magnetic sensor package 820 is another thermoplastic resin having a melting point higher than that of the thermoplastic resin forming the mounting member 830a.
  • the mounting member 830 a is connected to the magnetic sensor package 820.
  • the mounting member 830a and the magnetic sensor package 820 are joined to each other by welding of their connection parts. Thereby, the magnetic sensor package 820 is indirectly attached to the conductor 710.
  • the convex portion 833 is The attachment member 830a is inserted into the opening 119 of the conductor 710 and fixed while the attachment member 830a and the magnetic sensor package 820 are connected so as to be inserted into the through hole 822. Fix at 710.
  • the convex portion 833 By heating the assembly in this state at a temperature higher than the melting point of the thermoplastic resin forming the mounting member 830 a and lower than the melting points of other thermoplastic resins forming the magnetic sensor package 820, the convex portion 833. Melt the surface of Thereafter, by cooling the assembly, the surface of the molten convex portion 833 is fixed to the inner surface of the through hole 822. As a result, the magnetic sensor package 820 and the mounting member 830a are connected to each other.
  • the through hole 822 is provided in the projecting portion 821, but instead of the through hole 822, a concave portion into which the convex portion 833 can be inserted may be provided.
  • the insulating material that constitutes a part of the magnetic sensor package 820 may be a thermosetting resin instead of the other thermoplastic resin.
  • the portion that constitutes the convex portion 833 may be made of a thermoplastic resin, and the other portion may be made of another thermoplastic resin or thermosetting resin.
  • the current sensor according to Embodiment 9 of the present invention differs from the current sensor 700 according to the seventh embodiment mainly in that the conductor and the magnetic sensor package are welded to each other, and thus, the same as the current sensor 700 according to the seventh embodiment.
  • the same reference symbols are attached to the configurations that are and the description thereof will not be repeated.
  • FIG. 21 is a perspective view showing the configuration of a current sensor according to Embodiment 9 of the present invention.
  • FIG. 22 is an exploded perspective view showing the configuration of the current sensor according to Embodiment 9 of the present invention.
  • a current sensor 900 includes a conductor 710 and a magnetic sensor package 920.
  • the magnetic sensor package 920 is electrically insulated from the metal plate 40 and has a pair of metal projecting pieces 921 projecting from both sides in the longitudinal direction (X-axis direction).
  • the protruding piece 921 is made of substantially the same material as the conductor 710. However, the material forming the protruding piece 921 is not limited to the material substantially the same as the conductor 710, and may be a material that can be welded to the conductor 710.
  • the pair of projecting pieces 921 is welded to the conductor 710 in contact with at least one edge in the lengthwise direction (X-axis direction) of the opening 119.
  • the magnetic sensor package 920 is fixed to the conductor 710 by the weld 922 between the projecting piece 921 and the conductor 710. Welded portion 922 is provided in the vicinity of the contact portion between projecting piece 921 and conductor 710.
  • a pair of projecting pieces 921 are inserted into and fixed to the opening 119 of the conductor 710.
  • the pair of projecting pieces 921 are in contact with each other in a one-to-one correspondence with both edges in the longitudinal direction (X-axis direction) of the opening 119.
  • the magnetic sensor package 920 is positioned with respect to the conductor 710 in the longitudinal direction (X-axis direction).
  • the pair of projecting pieces 921 are in contact with each other in a one-to-one correspondence with the side surface on the opening 119 side of one flow passage portion 711 and the side surface on the opening 119 side of the other flow passage portion 715.
  • the magnetic sensor package 920 is positioned with respect to the conductor 710 in the width direction (Y-axis direction).
  • the magnetic sensor package 920 is fixed to the conductor 710 in contact with at least one edge in the length direction (X-axis direction) of the opening 119.
  • the magnetic sensor package 920 is directly attached to the conductor 710.
  • the protruding piece 921 is in contact with the edge in the length direction (X-axis direction) of the opening 119 which is the portion with the smallest amount of deformation when the divided portion of the conductor 710 generates heat.
  • the magnetic sensor package 920 is unlikely to be affected by the deformation of the conductor 710 due to the heat generation, and the positional variation is suppressed.
  • the fluctuation of the relative positional relationship between the first flow path portion 711 and the other flow path portion 715 divided from the conductor 710 and the first magnetic sensor 10 and the second magnetic sensor 20 is reduced, and the current sensor The reliability of 900 can be improved.
  • the welded portion 922 can be formed by various welding methods. The welding of the magnetic sensor package 920 and the conductor 710 by the welding portion 922 can improve the attachment reliability of the current sensor 900 to the conductor 710.
  • the projecting piece 921 may be provided with a curved portion bent in the height direction (Z-axis direction). In this case, the stress transmitted from the conductor 710 to the first magnetic sensor 10 and the second magnetic sensor 20 can be relieved by the bent portion of the protruding piece 921.
  • the central position of each of the first magnetic sensor 10 and the second magnetic sensor 20 can be grasped.
  • the current sensor according to Embodiment 10 of the present invention differs from the current sensor 700 according to the seventh embodiment mainly in that the conductor and the magnetic sensor package are insert-molded, and thus the same as the current sensor 700 according to the seventh embodiment.
  • the same reference symbols are attached to the configurations that are and the description thereof will not be repeated.
  • FIG. 23 is a perspective view showing the configuration of a current sensor according to Embodiment 10 of the present invention.
  • FIG. 24 is a cross-sectional view of the current sensor of FIG. 23 as viewed in the arrow direction of arrows XXIV-XXIV.
  • the current sensor 1000 includes a conductor 710 and a magnetic sensor package 120.
  • the conductor 710 and the magnetic sensor package 120 are integrated by the mold resin 1010 by being insert-molded.
  • the mold resin 1010 covers the entire diverted portion of the conductor 710. Specifically, a portion inserted in a space formed by one flow passage portion 711, the other flow passage portion 715, the opening portion 119, and one flow passage portion 711 and the other flow passage portion 715.
  • the magnetic sensor package 120 is covered by a mold resin 1010.
  • thermosetting resin such as epoxy resin or thermoplastic resin such as polyphenylene sulfide resin can be used.
  • An additive such as a silica filler may be added to the thermosetting resin.
  • the magnetic sensor package 120 disposed in the space formed by one flow passage portion 711 and the other flow passage portion 715 is covered with the mold resin 1010.
  • the temperature inside the magnetic sensor package 120 when the conductor 710 generates heat is made uniform.
  • the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced.
  • FIG. 25 is a perspective view showing the configuration of a current sensor according to a modification of Embodiment 10 of the present invention.
  • the current sensor according to the modification of the tenth embodiment of the present invention is the same as the current sensor 1000 according to the tenth embodiment of the present invention because it is different from the current sensor 1000 according to the tenth embodiment of the present invention. Description of the configuration will not be repeated.
  • FIG. 25 is a perspective view showing the configuration of a current sensor according to a modification of Embodiment 10 of the present invention.
  • a current sensor 1000 a according to a modification of Embodiment 10 of the present invention includes a conductor 710 and a magnetic sensor package 120.
  • the conductor 710 and the magnetic sensor package 120 are integrated by the mold resin 1010 a by being insert-molded.
  • the mold resin 1010 a is formed integrally with the conductor 710 in contact with at least one edge in the lengthwise direction (X-axis direction) of the opening 119.
  • the mold resin 1010 a is not in contact with the extension portion 714 of one flow passage portion 711 and the extension portion 718 of the other flow passage portion 715.
  • the mold resin 1010 a is integrally molded with the magnetic sensor package 120. Thereby, the magnetic sensor package 120 is indirectly attached to the conductor 710 via the mold resin 1010a.
  • the mold resin 1010a has an edge in the length direction (X-axis direction) of the opening 119 which is the portion with the smallest amount of deformation when the divided portion of the conductor 710 generates heat. Since the magnetic sensor package 120 is joined to the magnetic sensor package 120, the magnetic sensor package 120 is less susceptible to the deformation due to the heat generation of the conductor 710, and the positional variation is suppressed. As a result, the fluctuation of the relative positional relationship between the first flow path portion 711 and the other flow path portion 715 divided from the conductor 710 and the first magnetic sensor 10 and the second magnetic sensor 20 is reduced, and the current sensor The reliability of 1000a can be improved.
  • the current sensor according to the eleventh embodiment differs from the current sensor 700 according to the seventh embodiment mainly in that the magnetic sensor package is fixed to the opening of the conductor by the adhesive, and the current according to the seventh embodiment.
  • the same components as those of sensor 700 are denoted by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 26 is a perspective view showing a configuration of a current sensor according to Embodiment 11 of the present invention.
  • the current sensor 1100 according to Embodiment 11 of the present invention includes a conductor 710 and a magnetic sensor package 120.
  • the conductor 710 and the magnetic sensor package 120 are integrated by an adhesive 1110.
  • the adhesive 1110 is applied in the opening 119 of the conductor 110 so as to be in contact with at least one edge in the longitudinal direction (X-axis direction) of the opening 119.
  • a thermosetting adhesive such as epoxy can be used as the adhesive 1110.
  • the adhesive 1110 has an edge in the length direction (X-axis direction) of the opening 119 which is the portion with the smallest amount of deformation when the branched portion of the conductor 710 generates heat. Since the magnetic sensor package 120 is joined to the magnetic sensor package 120, the magnetic sensor package 120 is less susceptible to the deformation due to the heat generation of the conductor 710, and the positional variation is suppressed. As a result, the fluctuation of the relative positional relationship between the first flow path portion 711 and the other flow path portion 715 divided from the conductor 710 and the first magnetic sensor 10 and the second magnetic sensor 20 is reduced, and the current sensor The reliability of 1100 can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

A magnetic sensor package (120) includes a plurality of magnetic sensors, a signal processing circuit (30), and a metal plate (40). The magnetic sensors detect the strength of a magnetic field generated due to a current to be measured. The signal processing circuit (30) processes signals outputted from the magnetic sensors. The magnetic sensors, the signal processing circuit (30) and the metal plate (40) are covered with an insulating material (121). The magnetic sensors and the signal processing circuit (30) are mounted on the metal plate (40).

Description

電流センサCurrent sensor
 本発明は、電流センサに関し、被測定電流に応じて発生する磁界を測定することで被測定電流の値を検出する電流センサに関する。 The present invention relates to a current sensor, and more particularly to a current sensor that detects the value of a current to be measured by measuring a magnetic field generated according to the current to be measured.
 電流センサの構成を開示した先行文献として、特開2015-190930号公報(特許文献1)および特開2007-78418号公報(特許文献2)がある。 As prior art documents disclosing the configuration of the current sensor, there are JP-A-2015-190930 (Patent Document 1) and JP-A-2007-78418 (Patent Document 2).
 特許文献1に記載された電流センサは、磁気を検出する第1磁気センサおよび第2磁気センサと、電流路と、信号処理デバイスとを備える。電流路は、第1磁気センサの周囲において、第1周回方向に配線されている。電流路は、第2磁気センサの周囲において、第1周回方向とは反対の第2周回方向に配線されている。信号処理デバイスは、第1磁気センサおよび第2磁気センサからの出力信号を処理する。第1磁気センサおよび信号処理デバイスは、第1金属板上に配置されている。第2磁気センサは、第2金属板上に配置されている。 The current sensor described in Patent Document 1 includes a first magnetic sensor and a second magnetic sensor that detect magnetism, a current path, and a signal processing device. The current path is wired in the first circumferential direction around the first magnetic sensor. The current path is wired in a second winding direction opposite to the first winding direction around the second magnetic sensor. The signal processing device processes output signals from the first magnetic sensor and the second magnetic sensor. The first magnetic sensor and the signal processing device are disposed on the first metal plate. The second magnetic sensor is disposed on the second metal plate.
 特許文献2に記載された電流センサは、互いに平行な平板状の2本のラインの間に設けられた段差空間に磁気検出素子を搭載した集積チップを配置している。 In the current sensor described in Patent Document 2, an integrated chip on which a magnetic detection element is mounted is disposed in a step space provided between two flat lines parallel to each other.
特開2015-190930号公報JP, 2015-190930, A 特開2007-78418号公報JP, 2007-78418, A
 特許文献1に記載された電流センサにおいては、第1磁気センサと第2磁気センサとが互いに異なる金属板上に配置されているため、第1磁気センサの周囲の温度と第2磁気センサの周囲の温度とに差が生じる場合がある。この場合、第1磁気センサおよび第2磁気センサの各々が有する磁気抵抗素子の温度特性によって、電流センサの測定値に誤差が生じる。 In the current sensor described in Patent Document 1, since the first magnetic sensor and the second magnetic sensor are disposed on different metal plates, the temperature around the first magnetic sensor and the temperature around the second magnetic sensor There may be a difference between the In this case, the temperature characteristic of the magnetoresistive element of each of the first magnetic sensor and the second magnetic sensor causes an error in the measurement value of the current sensor.
 特許文献2に記載された電流センサにおいては、集積チップ内における磁気検出素子の実装構造について言及されていない。 The current sensor described in Patent Document 2 does not mention the mounting structure of the magnetic detection element in the integrated chip.
 本発明は上記の問題点に鑑みてなされたものであって、磁気抵抗素子の温度特性による測定誤差が低減された電流センサを提供することを目的とする。 The present invention has been made in view of the above problems, and it is an object of the present invention to provide a current sensor in which measurement error due to temperature characteristics of a magnetoresistive element is reduced.
 本発明に基づく電流センサは、導体と磁気センサパッケージとを備える。導体には、測定対象の電流が流れる。磁気センサパッケージは、複数の磁気センサ、信号処理回路および金属板を含む。複数の磁気センサは、上記電流により発生する磁界の強さを検出する。信号処理回路は、複数の磁気センサから出力された信号を処理する。複数の磁気センサ、信号処理回路および金属板は、絶縁性材料で覆われている。複数の磁気センサおよび信号処理回路は、上記金属板に搭載されている。 The current sensor according to the invention comprises a conductor and a magnetic sensor package. A current to be measured flows through the conductor. The magnetic sensor package includes a plurality of magnetic sensors, a signal processing circuit and a metal plate. The plurality of magnetic sensors detect the strength of the magnetic field generated by the current. The signal processing circuit processes signals output from the plurality of magnetic sensors. The plurality of magnetic sensors, the signal processing circuit and the metal plate are covered with an insulating material. The plurality of magnetic sensors and the signal processing circuit are mounted on the metal plate.
 本発明の一形態においては、複数の磁気センサは、1つの磁気センサチップに形成されている。 In one aspect of the present invention, the plurality of magnetic sensors are formed in one magnetic sensor chip.
 本発明の一形態においては、信号処理回路には、磁気センサパッケージの内部の温度を測定する温度センサが組み込まれている。信号処理回路は、複数の磁気センサから出力された信号を、温度センサの測定結果に基づいて補正して処理する。 In one form of the invention, the signal processing circuit incorporates a temperature sensor that measures the temperature inside the magnetic sensor package. The signal processing circuit corrects and processes signals output from the plurality of magnetic sensors based on the measurement results of the temperature sensor.
 本発明の一形態においては、磁気センサパッケージは、信号処理回路と電気的に接続された複数の外部出力端子をさらに含む。上記金属板の一部は、複数の外部出力端子のうちの少なくとも1つの外部出力端子を構成する。 In one aspect of the present invention, the magnetic sensor package further includes a plurality of external output terminals electrically connected to the signal processing circuit. A part of the metal plate constitutes at least one external output terminal among the plurality of external output terminals.
 本発明の一形態においては、磁気センサパッケージは、信号処理回路と電気的に接続された受動回路をさらに含む。複数の外部出力端子は、受動回路を通じて信号処理回路と電気的に接続されている。受動回路は、上記金属板に搭載されており、上記絶縁性材料で覆われている。 In one aspect of the invention, the magnetic sensor package further includes a passive circuit electrically connected to the signal processing circuit. The plurality of external output terminals are electrically connected to the signal processing circuit through the passive circuit. The passive circuit is mounted on the metal plate and covered with the insulating material.
 本発明の一形態においては、磁気センサパッケージは、静電シールドをさらに含む。静電シールドは、上記金属板に電気的に接続されており、上記絶縁性材料で覆われている。複数の磁気センサおよび信号処理回路は、上記金属板と静電シールドとの間に挟まれた領域に位置している。 In one form of the invention, the magnetic sensor package further comprises an electrostatic shield. An electrostatic shield is electrically connected to the metal plate and covered with the insulating material. The plurality of magnetic sensors and the signal processing circuit are located in an area sandwiched between the metal plate and the electrostatic shield.
 本発明の一形態においては、磁気センサパッケージは、複数の磁気センサを互いの間に位置させてバイアス磁界を印加する少なくとも1つのバイアス磁石をさらに含む。少なくとも1つのバイアス磁石は、上記金属板に搭載されており、上記絶縁性材料で覆われている。 In one aspect of the present invention, the magnetic sensor package further includes at least one bias magnet for positioning the plurality of magnetic sensors between each other to apply a bias magnetic field. At least one bias magnet is mounted on the metal plate and covered with the insulating material.
 本発明の一形態においては、導体は、表面および裏面を含み、長さ方向、上記長さ方向と直交する幅方向、および、上記長さ方向と上記幅方向とに直交する厚さ方向を有する板状の形状を有し、かつ、上記長さ方向における途中で、上記電流が分流されて流れる一方の流路部および他方の流路部を含む。他方の流路部は、上記幅方向において、一方の流路部と並んで位置している。上記幅方向から見て、一方の流路部と他方の流路部とによって囲まれた領域が形成されている。複数の磁気センサは、上記幅方向から見て、上記領域の内部に位置し、かつ、上記厚さ方向から見て、上記幅方向における一方の流路部の一端から他方の流路部の他端までの範囲内に位置している。 In one aspect of the present invention, the conductor includes a front surface and a back surface, and has a length direction, a width direction orthogonal to the length direction, and a thickness direction orthogonal to the length direction and the width direction. It has a plate-like shape, and includes one flow passage portion and the other flow passage portion where the current is divided and flows halfway along the length direction. The other flow passage portion is located in line with the one flow passage portion in the width direction. When viewed in the width direction, a region surrounded by one flow passage portion and the other flow passage portion is formed. The plurality of magnetic sensors are located inside the region as viewed from the width direction, and from one end of one channel portion in the width direction to the other channel portion as viewed from the thickness direction. It is located within the range to the end.
 本発明の一形態においては、導体は、一方の流路部と他方の流路部との間に、上記長さ方向に延在する開口部が設けられている。磁気センサパッケージは、開口部の縁の少なくとも一部に接して導体に固定されている。 In one aspect of the present invention, the conductor is provided with an opening extending in the longitudinal direction between one flow passage and the other flow passage. The magnetic sensor package is fixed to the conductor in contact with at least a part of the edge of the opening.
 本発明の一形態においては、磁気センサパッケージは、上記金属板とは電気的に絶縁された金属製の突出片をさらに含む。突出片は、開口部の上記長さ方向の少なくとも一方の縁に接して導体に溶接されている。突出片と導体との溶接部によって、磁気センサパッケージが導体に固定されている。 In one aspect of the present invention, the magnetic sensor package further includes a metal protruding piece electrically insulated from the metal plate. The projecting piece is welded to the conductor in contact with at least one edge of the opening in the longitudinal direction. The magnetic sensor package is fixed to the conductor by the weld between the projecting piece and the conductor.
 本発明の一形態においては、電流センサは、取付部材をさらに備える。取付部材は、導体に固定され、磁気センサパッケージと接続されている。取付部材は、開口部の上記長さ方向の少なくとも一方の縁に接して導体に固定されている。 In one form of the invention, the current sensor further comprises a mounting member. The mounting member is fixed to the conductor and connected to the magnetic sensor package. The mounting member is fixed to the conductor in contact with at least one edge of the opening in the longitudinal direction.
 本発明の一形態においては、取付部材と磁気センサパッケージとは、互いに溶着されている。 In one form of the invention, the mounting member and the magnetic sensor package are welded together.
 本発明によれば、磁気抵抗素子の温度特性による電流センサの測定誤差を低減できる。 According to the present invention, the measurement error of the current sensor due to the temperature characteristic of the magnetoresistive element can be reduced.
本発明の実施形態1に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。It is a top view which shows the structure of the magnetic sensor package with which the current sensor which concerns on Embodiment 1 of this invention is provided. 本発明の実施形態1の第2変形例に係る電流センサの構成を示す斜視図である。It is a perspective view showing the composition of the current sensor concerning the 2nd modification of Embodiment 1 of the present invention. 本発明の実施形態2に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。It is a top view which shows the structure of the magnetic sensor package with which the current sensor which concerns on Embodiment 2 of this invention is provided. 本発明の実施形態3に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。It is a top view which shows the structure of the magnetic sensor package with which the current sensor which concerns on Embodiment 3 of this invention is provided. 本発明の実施形態4に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。It is a top view which shows the structure of the magnetic sensor package with which the current sensor which concerns on Embodiment 4 of this invention is provided. 本発明の実施形態5に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。It is a top view which shows the structure of the magnetic sensor package with which the current sensor which concerns on Embodiment 5 of this invention is provided. 本発明の実施形態5に係る電流センサが備える磁気センサパッケージの構成を示す斜視図である。It is a perspective view which shows the structure of the magnetic sensor package with which the current sensor which concerns on Embodiment 5 of this invention is provided. 本発明の実施形態5の変形例に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。It is a top view showing the composition of the magnetic sensor package with which the current sensor concerning the modification of Embodiment 5 of the present invention is provided. 本発明の実施形態5の変形例に係る電流センサが備える磁気センサパッケージの構成を示す斜視図である。It is a perspective view showing the composition of the magnetic sensor package with which the current sensor concerning the modification of Embodiment 5 of the present invention is provided. 本発明の実施形態6に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。It is a top view which shows the structure of the magnetic sensor package with which the current sensor which concerns on Embodiment 6 of this invention is provided. 本発明の実施形態6に係る電流センサが備える磁気センサパッケージの構成を示す斜視図である。It is a perspective view which shows the structure of the magnetic sensor package with which the current sensor which concerns on Embodiment 6 of this invention is provided. 本発明の実施形態7に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 7 of this invention. 本発明の実施形態7の第1変形例に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on the 1st modification of Embodiment 7 of this invention. 本発明の実施形態7の第2変形例に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on the 2nd modification of Embodiment 7 of this invention. 本発明の実施形態7の第3変形例に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on the 3rd modification of Embodiment 7 of this invention. 本発明の実施形態8に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 8 of this invention. 本発明の実施形態8に係る電流センサの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the current sensor which concerns on Embodiment 8 of this invention. 本発明の実施形態8の変形例に係る電流センサの構成を示す斜視図である。It is a perspective view showing the composition of the current sensor concerning the modification of Embodiment 8 of the present invention. 本発明の実施形態8の変形例に係る電流センサの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the current sensor which concerns on the modification of Embodiment 8 of this invention. 本発明の実施形態9に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 9 of this invention. 本発明の実施形態9に係る電流センサの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the current sensor which concerns on Embodiment 9 of this invention. 本発明の実施形態10に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 10 of this invention. 図23の電流センサをXXIV-XXIV線矢印方向から見た断面図である。FIG. 24 is a cross-sectional view of the current sensor of FIG. 23 as viewed in the arrow direction of line XXIV-XXIV. 本発明の実施形態10の変形例に係る電流センサの構成を示す斜視図である。It is a perspective view showing the composition of the current sensor concerning the modification of Embodiment 10 of the present invention. 本発明の実施形態11に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 11 of this invention.
 以下、本発明の各実施形態に係る電流センサについて図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。 Hereinafter, the current sensor according to each embodiment of the present invention will be described with reference to the drawings. In the following description of the embodiments, the same or corresponding portions in the drawings are denoted by the same reference characters, and the description thereof will not be repeated.
 (実施形態1)
 図1は、本発明の実施形態1に係る電流センサの構成を示す斜視図である。図2は、本発明の実施形態1に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。図1においては、絶縁性材料で構成される磁気センサパッケージの外形を2点鎖線で示し、絶縁性材料を透視して図示している。また、図1においては、見やすくするために、電極および配線を図示していない。図2においては、説明の便宜上、磁気センサパッケージの一部を構成する絶縁性材料を図示していない。図1においては、後述する導体110の長さ方向をX軸方向、導体110の幅方向をY軸方向、導体110の厚さ方向をZ軸方向として、図示している。
(Embodiment 1)
FIG. 1 is a perspective view showing a configuration of a current sensor according to Embodiment 1 of the present invention. FIG. 2 is a plan view showing the configuration of the magnetic sensor package provided in the current sensor according to Embodiment 1 of the present invention. In FIG. 1, the outer shape of the magnetic sensor package made of an insulating material is indicated by a two-dot chain line, and the insulating material is seen through. Further, in FIG. 1, the electrodes and the wiring are not shown for the sake of clarity. In FIG. 2, for convenience of explanation, the insulating material forming part of the magnetic sensor package is not shown. In FIG. 1, the longitudinal direction of a conductor 110 described later is illustrated as an X-axis direction, the width direction of the conductor 110 as a Y-axis direction, and the thickness direction of the conductor 110 as a Z-axis direction.
 図1および図2に示すように、本発明の実施形態1に係る電流センサ100は、導体110と磁気センサパッケージ120とを備える。導体110には、測定対象の電流が流れる。導体110は、表面および裏面を含み、長さ方向(X軸方向)、長さ方向(X軸方向)と直交する幅方向(Y軸方向)、および、長さ方向(X軸方向)と幅方向(Y軸方向)とに直交する厚さ方向(Z軸方向)を有する板状である。導体110は、長さ方向(X軸方向)における途中で、測定対象の電流が分流されて流れる一方の流路部111および他方の流路部115を含む。他方の流路部115は、幅方向(Y軸方向)において、一方の流路部111と並んで位置している。 As shown in FIGS. 1 and 2, the current sensor 100 according to the first embodiment of the present invention includes a conductor 110 and a magnetic sensor package 120. A current to be measured flows through the conductor 110. The conductor 110 includes a front surface and a rear surface, and a width direction (Y-axis direction) orthogonal to the length direction (X-axis direction), the length direction (X-axis direction), and a length direction (X-axis direction) It has a plate shape having a thickness direction (Z-axis direction) orthogonal to the direction (Y-axis direction). The conductor 110 includes one flow passage portion 111 and the other flow passage portion 115 in which the current to be measured is divided and flows halfway along the length direction (X-axis direction). The other flow passage portion 115 is located in line with the one flow passage portion 111 in the width direction (Y-axis direction).
 導体110は、一方の流路部111と他方の流路部115との間に、長さ方向(X軸方向)に延在する開口部119が設けられている。開口部119は、幅方向(Y軸方向)にて導体110の中央に位置している。なお、開口部119は、必ずしも幅方向(Y軸方向)にて導体110の中央に位置していなくてもよい。 The conductor 110 is provided with an opening 119 extending in the longitudinal direction (X-axis direction) between one flow passage portion 111 and the other flow passage portion 115. The opening 119 is located at the center of the conductor 110 in the width direction (Y-axis direction). The opening 119 may not necessarily be located at the center of the conductor 110 in the width direction (Y-axis direction).
 本実施形態においては、導体110は、銅で構成されている。ただし、導体110の材料はこれに限られず、銀、アルミニウム若しくは鉄などの金属、またはこれらの金属を含む合金でもよい。 In the present embodiment, the conductor 110 is made of copper. However, the material of the conductor 110 is not limited to this, and may be a metal such as silver, aluminum or iron, or an alloy containing these metals.
 導体110は、表面処理が施されていてもよい。たとえば、ニッケル、錫、銀若しくは銅などの金属、またはこれらの金属を含む合金からなる、少なくとも1層のめっき層が、導体110の表面に設けられていてもよい。また、導体110は、絶縁性樹脂によって絶縁被覆されていてもよい。 The conductor 110 may be surface-treated. For example, at least one plating layer made of a metal such as nickel, tin, silver or copper, or an alloy containing these metals may be provided on the surface of the conductor 110. Also, the conductor 110 may be coated with an insulating resin.
 本実施形態においては、鋳造により導体110を形成している。ただし、導体110の形成方法はこれに限られず、切削加工またはプレス加工などにより導体110を形成してもよい。 In the present embodiment, the conductor 110 is formed by casting. However, the method of forming the conductor 110 is not limited to this, and the conductor 110 may be formed by cutting, pressing, or the like.
 磁気センサパッケージ120は、第1磁気センサ10、第2磁気センサ20、信号処理回路30および金属板40を含む。第1磁気センサ10、第2磁気センサ20、信号処理回路30および金属板40は、絶縁性材料121で覆われている。絶縁性材料121としては、シリコーン樹脂またはエポキシ樹脂などの絶縁性樹脂を用いることができる。 The magnetic sensor package 120 includes a first magnetic sensor 10, a second magnetic sensor 20, a signal processing circuit 30, and a metal plate 40. The first magnetic sensor 10, the second magnetic sensor 20, the signal processing circuit 30 and the metal plate 40 are covered with an insulating material 121. As the insulating material 121, an insulating resin such as a silicone resin or an epoxy resin can be used.
 磁気センサパッケージ120は、信号処理回路30と電気的に接続された複数の外部出力端子50をさらに含む。複数の外部出力端子50の各々の先端側は、絶縁性材料121に覆われておらず露出している。金属板40の一部は、複数の外部出力端子50のうちの少なくとも1つの外部出力端子を構成する。 Magnetic sensor package 120 further includes a plurality of external output terminals 50 electrically connected to signal processing circuit 30. The tip side of each of the plurality of external output terminals 50 is not covered by the insulating material 121 and is exposed. A part of the metal plate 40 constitutes at least one external output terminal of the plurality of external output terminals 50.
 本実施形態においては、磁気センサパッケージ120は、複数の外部出力端子50として、第1外部出力端子51、第2外部出力端子52、第3外部出力端子53、および、第4外部出力端子54を含む。金属板40の一部は、第2外部出力端子52を構成している。なお、外部出力端子の数は、4つに限られず、複数であればよい。 In the present embodiment, the magnetic sensor package 120 includes, as a plurality of external output terminals 50, a first external output terminal 51, a second external output terminal 52, a third external output terminal 53, and a fourth external output terminal 54. Including. A part of the metal plate 40 constitutes a second external output terminal 52. The number of external output terminals is not limited to four, and may be plural.
 第1磁気センサ10および第2磁気センサ20は、導体110を流れる測定対象の電流により発生する磁界の強さを検出する。本実施形態においては、第1磁気センサ10および第2磁気センサ20の各々は、ホール素子を有し、厚さ方向(Z軸方向)の磁界を検出する。第1磁気センサ10および第2磁気センサ20の各々は、厚さ方向(Z軸方向)の一方に向いた磁界を検出した場合に正の値で出力し、厚さ方向(Z軸方向)の他方に向いた磁界を検出した場合に負の値で出力する。 The first magnetic sensor 10 and the second magnetic sensor 20 detect the strength of the magnetic field generated by the current of the measurement object flowing through the conductor 110. In the present embodiment, each of the first magnetic sensor 10 and the second magnetic sensor 20 has a Hall element, and detects a magnetic field in the thickness direction (Z-axis direction). Each of the first magnetic sensor 10 and the second magnetic sensor 20 outputs a positive value when a magnetic field directed to one side in the thickness direction (Z-axis direction) is detected, and the first magnetic sensor 10 and the second magnetic sensor 20 When a magnetic field directed to the other side is detected, a negative value is output.
 なお、第1磁気センサ10および第2磁気センサ20の各々は、ホール素子を有する磁気センサに限られず、磁気インピーダンス効果を利用するMI(Magneto Impedance)素子を有する磁気センサまたはフラックスゲート型磁気センサなどでもよい。 Each of the first magnetic sensor 10 and the second magnetic sensor 20 is not limited to a magnetic sensor having a Hall element, but may be a magnetic sensor or a flux gate type magnetic sensor having an MI (Magneto Impedance) element utilizing a magnetic impedance effect. May be.
 若しくは、第1磁気センサ10および第2磁気センサ20の各々は、4つのAMR(Anisotropic Magneto Resistance)素子からなるホイートストンブリッジ型のブリッジ回路を有していてもよい。第1磁気センサ10および第2磁気センサ20の各々は、AMR素子に代えて、GMR(Giant Magneto Resistance)、TMR(Tunnel Magneto Resistance)、BMR(Ballistic Magneto Resistance)、CMR(Colossal Magneto Resistance)などの磁気抵抗素子を有していてもよい。また、第1磁気センサ10および第2磁気センサ20の各々が、2つの磁気抵抗素子からなるハーフブリッジ回路を有していてもよい。 Alternatively, each of the first magnetic sensor 10 and the second magnetic sensor 20 may have a Wheatstone bridge type bridge circuit composed of four AMR (Anisotropic Magneto Resistance) elements. Each of the first magnetic sensor 10 and the second magnetic sensor 20 is replaced with an AMR element, and GMR (Giant Magneto Resistance), TMR (Tunnel Magneto Resistance), BMR (Ballistic Magneto Resistance), CMR (Colossal Magneto Resistance), etc. It may have a magnetoresistive element. In addition, each of the first magnetic sensor 10 and the second magnetic sensor 20 may have a half bridge circuit composed of two magnetoresistance elements.
 本実施形態においては、第1磁気センサ10は、第1磁気センサチップ1Cに形成されている。第2磁気センサ20は、第2磁気センサチップ2Cに形成されている。 In the present embodiment, the first magnetic sensor 10 is formed in the first magnetic sensor chip 1C. The second magnetic sensor 20 is formed on the second magnetic sensor chip 2C.
 信号処理回路30は、第1磁気センサ10および第2磁気センサ20から出力された信号を処理する。信号処理回路30は、第1磁気センサ10の検出値と第2磁気センサ20の検出値とを演算することにより導体110を流れる測定対象の電流の値を算出する。本実施形態においては、信号処理回路30は、差動増幅器を含む。ただし、信号処理回路30が、減算器を含んでいてもよい。 The signal processing circuit 30 processes the signals output from the first magnetic sensor 10 and the second magnetic sensor 20. The signal processing circuit 30 calculates the value of the current to be measured flowing through the conductor 110 by computing the detection value of the first magnetic sensor 10 and the detection value of the second magnetic sensor 20. In the present embodiment, the signal processing circuit 30 includes a differential amplifier. However, the signal processing circuit 30 may include a subtractor.
 第1磁気センサ10、第2磁気センサ20および信号処理回路30は、1枚の金属板40に搭載されている。金属板40は、略直方体状の外形を有し、端部から第2外部出力端子52となる部分が突出している。 The first magnetic sensor 10, the second magnetic sensor 20, and the signal processing circuit 30 are mounted on one metal plate 40. The metal plate 40 has a substantially rectangular parallelepiped outer shape, and a portion to be the second external output terminal 52 protrudes from the end.
 本実施形態においては、第1磁気センサチップ1C、第2磁気センサチップ2C、信号処理回路30および複数の外部出力端子50が、この順で1列に並んで配置されている。第1磁気センサチップ1C、第2磁気センサチップ2C、信号処理回路30および複数の外部出力端子50は、ワイヤボンディングによって互いに電気的に接続されている。 In the present embodiment, the first magnetic sensor chip 1C, the second magnetic sensor chip 2C, the signal processing circuit 30, and the plurality of external output terminals 50 are arranged in line in this order. The first magnetic sensor chip 1C, the second magnetic sensor chip 2C, the signal processing circuit 30, and the plurality of external output terminals 50 are electrically connected to each other by wire bonding.
 具体的には、第1磁気センサチップ1Cにおいて、第1磁気センサチップ1Cに設けられている複数の第1電極1Tのうちの一部と、第1磁気センサ10とが、対応する配線1Lによって互いに接続されている。第2磁気センサチップ2Cにおいて、第2磁気センサチップ2Cに設けられている複数の第2電極2Tのうちの一部と、第2磁気センサ20とが、対応する配線2Lによって互いに接続されている。 Specifically, in the first magnetic sensor chip 1C, a part of the plurality of first electrodes 1T provided in the first magnetic sensor chip 1C and the first magnetic sensor 10 correspond to the wiring 1L corresponding to each other. Connected to each other. In the second magnetic sensor chip 2C, a part of the plurality of second electrodes 2T provided in the second magnetic sensor chip 2C and the second magnetic sensor 20 are connected to each other by the corresponding wiring 2L. .
 第1磁気センサチップ1Cに設けられている複数の第1電極1Tのうちの一部と、第2磁気センサチップ2Cに設けられている複数の第2電極2Tのうちの一部とが、対応する配線3Lによって互いに接続されている。 A part of the plurality of first electrodes 1T provided on the first magnetic sensor chip 1C corresponds to a part of the plurality of second electrodes 2T provided on the second magnetic sensor chip 2C Are connected to one another by wiring 3L.
 第2磁気センサチップ2Cに設けられている複数の第2電極2Tのうちの一部と、信号処理回路30に設けられている複数の第3電極30Tの一部とが、対応する配線4Lによって互いに接続されている。信号処理回路30に設けられている複数の第3電極30Tの一部と、複数の外部出力端子50とが、対応する配線5Lによって互いに接続されている。 A part of the plurality of second electrodes 2T provided in the second magnetic sensor chip 2C and a part of the plurality of third electrodes 30T provided in the signal processing circuit 30 correspond to the wiring 4L. Connected to each other. Some of the plurality of third electrodes 30T provided in the signal processing circuit 30 and the plurality of external output terminals 50 are connected to each other by the corresponding wires 5L.
 上記のように、第1磁気センサチップ1C、第2磁気センサチップ2C、信号処理回路30および複数の外部出力端子50が、互いに電気的に接続されていることにより、第1磁気センサ10から出力された信号と、第2磁気センサ20から出力された信号とが、信号処理回路30にて合わせて処理されて、複数の外部出力端子50から出力される。 As described above, since the first magnetic sensor chip 1C, the second magnetic sensor chip 2C, the signal processing circuit 30, and the plurality of external output terminals 50 are electrically connected to one another, the output from the first magnetic sensor 10 The signal thus obtained and the signal output from the second magnetic sensor 20 are processed together in the signal processing circuit 30 and output from the plurality of external output terminals 50.
 なお、第1磁気センサチップ1C、第2磁気センサチップ2C、信号処理回路30および金属板40の接続方法は、ワイヤボンディングに限られず、ダイボンドまたはフリップチップなどでもよい。ダイボンド材としては、エポキシ系またはシリコーン系の材料を用いることができる。 The connection method of the first magnetic sensor chip 1C, the second magnetic sensor chip 2C, the signal processing circuit 30, and the metal plate 40 is not limited to wire bonding, and may be die bonding or flip chip. As the die bonding material, an epoxy-based or silicone-based material can be used.
 本実施形態においては、金属板40は、銅で構成されている。ただし、金属板40を構成する材料は、銅に限られず、熱伝導性および電気伝導性の高い金属であればよい。また、上記の接続方法に応じて、良好な接続性を確保するために、金属板40の表面にめっき層が設けられていてもよい。さらに、金属板40が十分な強度を有するように、金属板40の材料および厚さが適宜設定される。 In the present embodiment, the metal plate 40 is made of copper. However, the material which comprises the metal plate 40 is not restricted to copper, What is necessary is just a metal with high heat conductivity and electrical conductivity. Moreover, according to said connection method, in order to ensure favorable connectivity, the plating layer may be provided in the surface of the metal plate 40. FIG. Furthermore, the material and thickness of the metal plate 40 are appropriately set so that the metal plate 40 has sufficient strength.
 磁気センサパッケージ120を形成する際には、パッケージ全体をトランスファーモールドにより形成してもよいし、金属板40をプリモールドにより一体成形した成形体に、第1磁気センサチップ1C、第2磁気センサチップ2Cおよび信号処理回路30を実装してもよい。 When the magnetic sensor package 120 is formed, the entire package may be formed by transfer molding, or the first magnetic sensor chip 1C, the second magnetic sensor chip may be formed into a molded body integrally formed with the metal plate 40 by premolding. A 2C and signal processing circuit 30 may be implemented.
 磁気センサパッケージ120は、金属板40が導体110と平行に位置するように、導体110上に載置されている。具体的には、金属板40が、一方の流路部111および他方の流路部115の各々と対向するように、磁気センサパッケージ120が、一方の流路部111、開口部119および他方の流路部115の上方に配置されている。 The magnetic sensor package 120 is mounted on the conductor 110 such that the metal plate 40 is positioned parallel to the conductor 110. Specifically, the magnetic sensor package 120 includes one flow passage portion 111, an opening portion 119, and the other so that the metal plate 40 faces each of the one flow passage portion 111 and the other flow passage portion 115. It is disposed above the flow path portion 115.
 第1磁気センサチップ1C、第2磁気センサチップ2C、信号処理回路30および複数の外部出力端子50が並ぶ方向と、幅方向(Y軸方向)とが、互いに平行になるように、磁気センサパッケージ120が配置されている。 Magnetic sensor package so that the direction in which the first magnetic sensor chip 1C, the second magnetic sensor chip 2C, the signal processing circuit 30, and the plurality of external output terminals 50 are aligned is parallel to the width direction (Y-axis direction) 120 are arranged.
 幅方向(Y軸方向)において、第1磁気センサ10と第2磁気センサ20との間の中間の位置と、開口部119の中央の位置とが、互いに一致するように、磁気センサパッケージ120が配置されている。厚さ方向(Z軸方向)から見て、第1磁気センサ10および第2磁気センサ20は、開口部119と重なっている。第1磁気センサ10と一方の流路部111との最短距離と、第2磁気センサ20と他方の流路部115との最短距離とは、互いに略同一である。 The magnetic sensor package 120 is arranged such that the middle position between the first magnetic sensor 10 and the second magnetic sensor 20 and the central position of the opening 119 coincide with each other in the width direction (Y-axis direction). It is arranged. The first magnetic sensor 10 and the second magnetic sensor 20 overlap the opening 119 when viewed in the thickness direction (Z-axis direction). The shortest distance between the first magnetic sensor 10 and the one flow passage portion 111 and the shortest distance between the second magnetic sensor 20 and the other flow passage portion 115 are substantially the same.
 第1磁気センサ10および第2磁気センサ20が上記の位置に配置されていることにより、導体110を測定対象の電流が流れた際に、第1磁気センサ10には一方の流路部111を周回する磁界が主に作用し、第2磁気センサ20には他方の流路部115を周回する磁界が主に作用する。 By arranging the first magnetic sensor 10 and the second magnetic sensor 20 at the above-described positions, when the current to be measured flows through the conductor 110, the first magnetic sensor 10 is provided with the one flow passage portion 111. A circulating magnetic field mainly acts on the second magnetic sensor 20, and a magnetic field circulating on the other flow path portion 115 mainly acts on the second magnetic sensor 20.
 その結果、第1磁気センサ10は、厚さ方向(Z軸方向)の一方に向いた磁界を検出し、第2磁気センサ20は、厚さ方向(Z軸方向)の他方に向いた磁界を検出する。これにより、導体110を流れる測定対象の電流により発生する磁界の強さについて、第1磁気センサ10の検出値の位相と、第2磁気センサ20の検出値の位相とは、逆相となる。よって、第1磁気センサ10の検出した磁界の強さを正の値とすると、第2磁気センサ20の検出した磁界の強さは負の値となる。 As a result, the first magnetic sensor 10 detects the magnetic field directed to one side in the thickness direction (Z-axis direction), and the second magnetic sensor 20 detects the magnetic field directed to the other side in the thickness direction (Z-axis direction). To detect. Thereby, with respect to the strength of the magnetic field generated by the current of the measurement object flowing through the conductor 110, the phase of the detection value of the first magnetic sensor 10 and the phase of the detection value of the second magnetic sensor 20 become opposite. Therefore, when the strength of the magnetic field detected by the first magnetic sensor 10 is a positive value, the strength of the magnetic field detected by the second magnetic sensor 20 is a negative value.
 第1磁気センサ10の検出値と第2磁気センサ20の検出値とは、信号処理回路30にて演算される。具体的には、信号処理回路30は、第1磁気センサ10の検出値から第2磁気センサ20の検出値を減算する。この結果から、導体110を流れた測定対象の電流の値が算出される。 The detection value of the first magnetic sensor 10 and the detection value of the second magnetic sensor 20 are calculated by the signal processing circuit 30. Specifically, the signal processing circuit 30 subtracts the detection value of the second magnetic sensor 20 from the detection value of the first magnetic sensor 10. From this result, the value of the current to be measured that has flowed through the conductor 110 is calculated.
 一方、第1磁気センサ10および第2磁気センサ20に作用した外部磁界の強さについて、第1磁気センサ10の検出値の位相と、第2磁気センサ20の検出値の位相とは、同相となる。よって、第1磁気センサ10の検出した磁界の強さを正の値とすると、第2磁気センサ20の検出した磁界の強さは正の値となる。その結果、信号処理回路30が第1磁気センサ10の検出値から第2磁気センサ20の検出値を減算することにより、外部磁界は、ほとんど検出されなくなり、その影響が低減される。 On the other hand, regarding the strength of the external magnetic field acting on the first magnetic sensor 10 and the second magnetic sensor 20, the phase of the detection value of the first magnetic sensor 10 and the phase of the detection value of the second magnetic sensor 20 are in phase. Become. Therefore, if the strength of the magnetic field detected by the first magnetic sensor 10 is a positive value, the strength of the magnetic field detected by the second magnetic sensor 20 is a positive value. As a result, when the signal processing circuit 30 subtracts the detection value of the second magnetic sensor 20 from the detection value of the first magnetic sensor 10, the external magnetic field is hardly detected, and the influence thereof is reduced.
 なお、第1磁気センサ10および第2磁気センサ20において、検出値が正となる磁界方向が互いに反対であってもよい。この第1変形例の場合、信号処理回路30は、差動増幅器に代えて加算器または加算増幅器を含む。 In the first magnetic sensor 10 and the second magnetic sensor 20, the magnetic field directions in which the detection value is positive may be opposite to each other. In the case of the first modification, the signal processing circuit 30 includes an adder or a summing amplifier instead of the differential amplifier.
 上記の第1変形例においては、導体110を流れる測定対象の電流により発生する磁界の強さについて、第1磁気センサ10の検出値の位相と、第2磁気センサ20の検出値の位相とは、同相となる。よって、第1磁気センサ10の検出した磁界の強さを正の値とすると、第2磁気センサ20の検出した磁界の強さは正の値となる。信号処理回路30は、第1磁気センサ10の検出値と第2磁気センサ20の検出値とを加算する。この結果から、導体110を流れた測定対象の電流の値が算出される。 In the first modification, regarding the strength of the magnetic field generated by the current to be measured flowing through the conductor 110, the phase of the detection value of the first magnetic sensor 10 and the phase of the detection value of the second magnetic sensor 20 , In phase. Therefore, if the strength of the magnetic field detected by the first magnetic sensor 10 is a positive value, the strength of the magnetic field detected by the second magnetic sensor 20 is a positive value. The signal processing circuit 30 adds the detection value of the first magnetic sensor 10 and the detection value of the second magnetic sensor 20. From this result, the value of the current to be measured that has flowed through the conductor 110 is calculated.
 一方、上記の第1変形例においては、第1磁気センサ10および第2磁気センサ20に作用した外部磁界の強さについて、第1磁気センサ10の検出値の位相と、第2磁気センサ20の検出値の位相とは、逆相となる。よって、第1磁気センサ10の検出した磁界の強さを正の値とすると、第2磁気センサ20の検出した磁界の強さは負の値となる。その結果、信号処理回路30が第1磁気センサ10の検出値と第2磁気センサ20の検出値とを加算することにより、外部磁界は、ほとんど検出されなくなり、その影響が低減される。 On the other hand, in the above first modified example, regarding the strength of the external magnetic field acting on the first magnetic sensor 10 and the second magnetic sensor 20, the phase of the detection value of the first magnetic sensor 10 and the phase of the second magnetic sensor 20. The phase of the detection value is opposite to the phase. Therefore, when the strength of the magnetic field detected by the first magnetic sensor 10 is a positive value, the strength of the magnetic field detected by the second magnetic sensor 20 is a negative value. As a result, when the signal processing circuit 30 adds the detection value of the first magnetic sensor 10 and the detection value of the second magnetic sensor 20, the external magnetic field is hardly detected, and the influence thereof is reduced.
 上記のように、本実施形態に係る電流センサ100および本実施形態の第1変形例に係る電流センサは、外部磁界の影響を低減しつつ、測定対象の電流を高感度に測定することができる。 As described above, the current sensor 100 according to the present embodiment and the current sensor according to the first modification of the present embodiment can measure the current to be measured with high sensitivity while reducing the influence of the external magnetic field. .
 本実施形態に係る電流センサ100においては、第1磁気センサ10、第2磁気センサ20および信号処理回路30が、1枚の金属板40に搭載されているため、第1磁気センサ10の周囲の温度と第2磁気センサ20の周囲の温度との差を小さくすることができる。その結果、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による電流センサ100の測定誤差を低減することができる。 In the current sensor 100 according to the present embodiment, since the first magnetic sensor 10, the second magnetic sensor 20, and the signal processing circuit 30 are mounted on a single metal plate 40, the periphery of the first magnetic sensor 10 can be obtained. The difference between the temperature and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor 100 due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
 特に、第1磁気センサ10と一方の流路部111との最短距離と、第2磁気センサ20と他方の流路部115との最短距離とが、互いに略同一であることにより、分流部から第1磁気センサ10および第2磁気センサ20の各々に伝熱される熱量が略同一となるため、第1磁気センサ10の周囲の温度と第2磁気センサ20の周囲の温度との差をより小さくすることができる。その結果、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による電流センサ100の測定誤差をより低減することができる。 In particular, since the shortest distance between the first magnetic sensor 10 and the one flow passage portion 111 and the shortest distance between the second magnetic sensor 20 and the other flow passage portion 115 are substantially the same as each other, Since the amount of heat transferred to each of the first magnetic sensor 10 and the second magnetic sensor 20 is substantially the same, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 is smaller. can do. As a result, it is possible to further reduce the measurement error of the current sensor 100 due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
 本実施形態に係る電流センサ100においては、第1磁気センサ10と第2磁気センサ20とを互いに近接させて配置することができる。そのため、外部磁界が第1磁気センサ10および第2磁気センサ20の両方に同等に作用するため、信号処理回路30にて外部磁界の影響を低減することができる。また、電流センサ100を小型化することができる。さらに、第1磁気センサ10、第2磁気センサ20および信号処理回路30を互いに接続する配線の長さを短くすることができるため、寄生抵抗および寄生インダクタンスを低減することができる。これにより、配線によって形成されるループに生じる誘導起電力を低減し、電流センサ100の過渡特性を向上することができ、ひいては、電流センサ100の検出感度を向上することができる。 In the current sensor 100 according to the present embodiment, the first magnetic sensor 10 and the second magnetic sensor 20 can be disposed close to each other. Therefore, since the external magnetic field acts equally on both the first magnetic sensor 10 and the second magnetic sensor 20, the signal processing circuit 30 can reduce the influence of the external magnetic field. Further, the current sensor 100 can be miniaturized. Furthermore, since the length of the wiring connecting the first magnetic sensor 10, the second magnetic sensor 20, and the signal processing circuit 30 can be shortened, parasitic resistance and parasitic inductance can be reduced. Thereby, the induced electromotive force generated in the loop formed by the wiring can be reduced, the transient characteristic of the current sensor 100 can be improved, and in turn, the detection sensitivity of the current sensor 100 can be improved.
 本実施形態に係る電流センサ100においては、導体110と、磁気センサパッケージ120とが、別体で構成されており、導体110と磁気センサパッケージ120との間の熱抵抗が大きくなるため、導体110の発熱によって第1磁気センサ10および第2磁気センサ20が加熱されることを抑制して第1磁気センサ10および第2磁気センサ20におよぶ熱影響を低減でき、電流センサ100の信頼性を向上できる。 In the current sensor 100 according to the present embodiment, the conductor 110 and the magnetic sensor package 120 are separately configured, and the thermal resistance between the conductor 110 and the magnetic sensor package 120 is increased. Can suppress the heating of the first magnetic sensor 10 and the second magnetic sensor 20 due to the heat generation, thereby reducing the thermal influence on the first magnetic sensor 10 and the second magnetic sensor 20 and improving the reliability of the current sensor 100 it can.
 本実施形態に係る電流センサ100においては、金属板40の一部が第2外部出力端子52を構成しているため、金属板40と複数の外部出力端子50とが別体で構成されている場合に比較して、複数の外部出力端子50の磁気センサパッケージ120との取り付け強度を高くして、電流センサ100の信頼性を向上できる。 In the current sensor 100 according to the present embodiment, since a part of the metal plate 40 constitutes the second external output terminal 52, the metal plate 40 and the plurality of external output terminals 50 are separately formed. Compared with the case, the mounting strength of the plurality of external output terminals 50 with the magnetic sensor package 120 can be increased, and the reliability of the current sensor 100 can be improved.
 なお、磁気センサパッケージ120内における、第1磁気センサ10、第2磁気センサ20および信号処理回路30の配置は、上記に限られず、適宜変更可能である。第1磁気センサ10の周囲の温度と第2磁気センサ20の周囲の温度とが等しくなるように、第1磁気センサ10および第2磁気センサ20が配置されていることが好ましい。配置される磁気センサの数は、2つに限られず、4つ以上の偶数でもよい。 The arrangement of the first magnetic sensor 10, the second magnetic sensor 20, and the signal processing circuit 30 in the magnetic sensor package 120 is not limited to the above, and can be changed as appropriate. Preferably, the first magnetic sensor 10 and the second magnetic sensor 20 are disposed such that the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 are equal. The number of magnetic sensors disposed is not limited to two, and may be four or more even numbers.
 また、導体110の形状も適宜変更可能である。図3は、本発明の実施形態1の第2変形例に係る電流センサの構成を示す斜視図である。本発明の実施形態1の第2変形例に係る電流センサは、導体の形状のみ本発明の実施形態1に係る電流センサ100と異なるため、本発明の実施形態1に係る電流センサ100と同様である構成については、説明を繰り返さない。 Also, the shape of the conductor 110 can be changed as appropriate. FIG. 3 is a perspective view showing a configuration of a current sensor according to a second modified example of the first embodiment of the present invention. The current sensor according to the second modification of the first embodiment of the present invention is the same as the current sensor 100 according to the first embodiment of the present invention because it differs from the current sensor 100 according to the first embodiment of the present invention only in the shape of the conductor. The description will not be repeated for certain configurations.
 図3に示すように、本発明の実施形態1の第2変形例に係る電流センサ100aは、導体110aと磁気センサパッケージ120とを備える。導体110aは、長さ方向(X軸方向)における途中で、測定対象の電流が分流されて流れる一方の流路部111aおよび他方の流路部115aを含む。他方の流路部115aは、幅方向(Y軸方向)において、一方の流路部111aと並んで位置している。一方の流路部111aおよび他方の流路部115aの各々は、幅方向(Y軸方向)において外側に突出している。 As shown in FIG. 3, a current sensor 100 a according to a second modification of the first embodiment of the present invention includes a conductor 110 a and a magnetic sensor package 120. The conductor 110a includes one flow passage portion 111a and the other flow passage portion 115a in which the current to be measured is divided and flows halfway along the length direction (X-axis direction). The other flow passage portion 115 a is located in line with the one flow passage portion 111 a in the width direction (Y-axis direction). Each of the one flow passage portion 111 a and the other flow passage portion 115 a protrudes outward in the width direction (Y-axis direction).
 一方の流路部111aの幅方向(Y軸方向)に沿った断面積と、他方の流路部115aの幅方向(Y軸方向)に沿った断面積とは、互いに略同一であり、これらの断面積の合計は、分流していない部分の導体110の幅方向(Y軸方向)沿った断面積と略同一である。 The cross-sectional area along the width direction (Y-axis direction) of one flow passage portion 111a and the cross-sectional area along the width direction (Y-axis direction) of the other flow passage portion 115a are substantially the same. The total cross-sectional area of the cross-sectional area is substantially the same as the cross-sectional area of the non-dividing portion along the width direction (Y-axis direction) of the conductor 110.
 その結果、導体110aは、分流部においても分流していない部分と略同一の電流の流路面積を確保することができ、一方の流路部111aおよび他方の流路部115aにおいて局所的な発熱が生ずることを抑制できる。これにより、導体110の発熱によって第1磁気センサ10および第2磁気センサ20が加熱されることをより抑制して第1磁気センサ10および第2磁気センサ20におよぶ熱影響をさらに低減でき、電流センサ100の信頼性をより向上できる。 As a result, the conductor 110a can secure a flow passage area of substantially the same current as that of the portion not divided even in the flow dividing portion, and heat generation locally in one flow passage portion 111a and the other flow passage portion 115a. Can be suppressed. Thereby, it is possible to further suppress the heating of the first magnetic sensor 10 and the second magnetic sensor 20 due to the heat generation of the conductor 110, and to further reduce the thermal influence on the first magnetic sensor 10 and the second magnetic sensor 20. The reliability of the sensor 100 can be further improved.
 (実施形態2)
 以下、本発明の実施形態2に係る電流センサについて説明する。なお、実施形態2に係る電流センサは、複数の磁気センサが1つの磁気センサチップに形成されている点のみ実施形態1に係る電流センサ100と異なるため、実施形態1に係る電流センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
Second Embodiment
Hereinafter, the current sensor according to the second embodiment of the present invention will be described. The current sensor according to the second embodiment is the same as the current sensor 100 according to the first embodiment because the current sensor according to the second embodiment is different from the current sensor 100 according to the first embodiment only in that a plurality of magnetic sensors are formed in one magnetic sensor chip. The same reference symbols are attached to the configurations that are and the description thereof will not be repeated.
 図4は、本発明の実施形態2に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。図4においては、説明の便宜上、磁気センサパッケージの一部を構成する絶縁性材料を図示していない。 FIG. 4 is a plan view showing the configuration of the magnetic sensor package provided in the current sensor according to Embodiment 2 of the present invention. In FIG. 4, for convenience of explanation, the insulating material forming part of the magnetic sensor package is not shown.
 図4に示すように、本発明の実施形態2に係る電流センサは、磁気センサパッケージ220を備える。本実施形態においては、第1磁気センサ10および第2磁気センサ20は、1つの磁気センサチップ3Cに形成されている。磁気センサチップ3C、信号処理回路30および複数の外部出力端子50が、この順で1列に並んで配置されている。磁気センサチップ3C、信号処理回路30および複数の外部出力端子50は、ワイヤボンディングによって互いに電気的に接続されている。 As shown in FIG. 4, the current sensor according to Embodiment 2 of the present invention includes a magnetic sensor package 220. In the present embodiment, the first magnetic sensor 10 and the second magnetic sensor 20 are formed in one magnetic sensor chip 3C. The magnetic sensor chip 3C, the signal processing circuit 30, and the plurality of external output terminals 50 are arranged in line in this order. The magnetic sensor chip 3C, the signal processing circuit 30, and the plurality of external output terminals 50 are electrically connected to each other by wire bonding.
 具体的には、磁気センサチップ3Cに設けられている複数の第1電極1Tのうちの一部と、第1磁気センサ10とが、対応する配線1Lによって互いに接続されている。磁気センサチップ3Cに設けられている複数の第2電極2Tのうちの一部と、第2磁気センサ20とが、対応する配線2Lによって互いに接続されている。 Specifically, a part of the plurality of first electrodes 1T provided in the magnetic sensor chip 3C and the first magnetic sensor 10 are connected to each other by the corresponding wiring 1L. A part of the plurality of second electrodes 2T provided in the magnetic sensor chip 3C and the second magnetic sensor 20 are connected to each other by the corresponding wiring 2L.
 複数の第1電極1Tのうちの一部と、複数の第2電極2Tのうちの一部とが、対応する配線3Lによって互いに接続されている。磁気センサチップ3Cに設けられている複数の第2電極2Tのうちの一部と、信号処理回路30に設けられている複数の第3電極30Tの一部とが、対応する配線4Lによって互いに接続されている。信号処理回路30に設けられている複数の第3電極30Tの一部と、複数の外部出力端子50とが、対応する配線5Lによって互いに接続されている。 A part of the plurality of first electrodes 1T and a part of the plurality of second electrodes 2T are connected to each other by the corresponding wiring 3L. A part of the plurality of second electrodes 2T provided in the magnetic sensor chip 3C and a part of the plurality of third electrodes 30T provided in the signal processing circuit 30 are mutually connected by corresponding wires 4L. It is done. Some of the plurality of third electrodes 30T provided in the signal processing circuit 30 and the plurality of external output terminals 50 are connected to each other by the corresponding wires 5L.
 上記のように、磁気センサチップ3C、信号処理回路30および複数の外部出力端子50が、互いに電気的に接続されていることにより、第1磁気センサ10から出力された信号と、第2磁気センサ20から出力された信号とが、信号処理回路30にて合わせて処理されて、複数の外部出力端子50から出力される。 As described above, since the magnetic sensor chip 3C, the signal processing circuit 30, and the plurality of external output terminals 50 are electrically connected to each other, the signal output from the first magnetic sensor 10, and the second magnetic sensor The signals output from 20 are processed together by the signal processing circuit 30 and output from the plurality of external output terminals 50.
 本実施形態に係る電流センサにおいては、第1磁気センサ10および第2磁気センサ20が、1つの磁気センサチップ3Cに形成されている。そのため、実施形態1に係る電流センサ100に比較して、第1磁気センサ10と第2磁気センサ20との間隔をさらに小さくすることができる。 In the current sensor according to the present embodiment, the first magnetic sensor 10 and the second magnetic sensor 20 are formed in one magnetic sensor chip 3C. Therefore, the distance between the first magnetic sensor 10 and the second magnetic sensor 20 can be further reduced compared to the current sensor 100 according to the first embodiment.
 これにより、第1磁気センサ10の周囲の温度と第2磁気センサ20の周囲の温度との差をさらに小さくすることができる。その結果、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による電流センサの測定誤差をさらに低減することができる。 Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be further reduced. As a result, it is possible to further reduce the measurement error of the current sensor due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
 また、実施形態1に係る電流センサ100のように、別体で構成された、第1磁気センサチップ1Cおよび第2磁気センサチップ2Cを、金属板40に実装する場合に比較して、磁気センサチップ3Cを金属板40に実装することにより、第1磁気センサ10と第2磁気センサ20との相対的な位置のばらつきを低減することができるため、電流センサの信頼性を向上することができる。 Also, as compared with the case where the first magnetic sensor chip 1C and the second magnetic sensor chip 2C, which are separately configured as in the current sensor 100 according to the first embodiment, are mounted on the metal plate 40, the magnetic sensor By mounting the chip 3 </ b> C on the metal plate 40, it is possible to reduce the variation in relative position between the first magnetic sensor 10 and the second magnetic sensor 20, so the reliability of the current sensor can be improved. .
 (実施形態3)
 以下、本発明の実施形態3に係る電流センサについて説明する。なお、実施形態3に係る電流センサは、信号処理回路に磁気センサパッケージの内部の温度を測定する温度センサが組み込まれている点のみ実施形態2に係る電流センサと異なるため、実施形態2に係る電流センサと同様である構成については同じ参照符号を付してその説明を繰り返さない。
(Embodiment 3)
Hereinafter, the current sensor according to the third embodiment of the present invention will be described. The current sensor according to the third embodiment differs from the current sensor according to the second embodiment only in that the temperature sensor for measuring the temperature inside the magnetic sensor package is incorporated in the signal processing circuit. The same components as those of the current sensor are denoted by the same reference numerals, and the description thereof will not be repeated.
 図5は、本発明の実施形態3に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。図5においては、説明の便宜上、磁気センサパッケージの一部を構成する絶縁性材料を図示していない。 FIG. 5 is a plan view showing the configuration of the magnetic sensor package provided in the current sensor according to Embodiment 3 of the present invention. In FIG. 5, for convenience of explanation, the insulating material forming a part of the magnetic sensor package is not shown.
 図5に示すように、本発明の実施形態3に係る電流センサは、磁気センサパッケージ320を備える。本実施形態においては、信号処理回路30には、磁気センサパッケージ320の内部の温度を測定する温度センサ60が組み込まれている。信号処理回路30は、第1磁気センサ10および第2磁気センサ20から出力された信号を、温度センサ60の測定結果に基づいて補正して処理する。 As shown in FIG. 5, the current sensor according to Embodiment 3 of the present invention includes a magnetic sensor package 320. In the present embodiment, the signal processing circuit 30 incorporates a temperature sensor 60 that measures the temperature inside the magnetic sensor package 320. The signal processing circuit 30 corrects and processes signals output from the first magnetic sensor 10 and the second magnetic sensor 20 based on the measurement result of the temperature sensor 60.
 これにより、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による第1磁気センサ10および第2磁気センサ20の検出誤差を補正することができる。その結果、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による電流センサの測定誤差を低減して、電流センサの信頼性を向上することができる。 Thereby, the detection error of the 1st magnetic sensor 10 and the 2nd magnetic sensor 20 by the temperature characteristic of the magnetoresistive element which each of the 1st magnetic sensor 10 and the 2nd magnetic sensor 20 has can be corrected. As a result, it is possible to reduce the measurement error of the current sensor due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has, and to improve the reliability of the current sensor.
 (実施形態4)
 以下、本発明の実施形態4に係る電流センサについて説明する。なお、実施形態4に係る電流センサは、磁気センサパッケージが信号処理回路と電気的に接続された受動回路を含む点が主に、実施形態2に係る電流センサと異なるため、実施形態2に係る電流センサと同様である構成については同じ参照符号を付してその説明を繰り返さない。
(Embodiment 4)
Hereinafter, the current sensor according to the fourth embodiment of the present invention will be described. The current sensor according to the fourth embodiment is different from the current sensor according to the second embodiment mainly in that the magnetic sensor package includes a passive circuit electrically connected to the signal processing circuit, the second embodiment relates to the second embodiment. The same components as those of the current sensor are denoted by the same reference numerals, and the description thereof will not be repeated.
 図6は、本発明の実施形態4に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。図6においては、説明の便宜上、磁気センサパッケージの一部を構成する絶縁性材料を図示していない。 FIG. 6 is a plan view showing the configuration of the magnetic sensor package provided in the current sensor according to Embodiment 4 of the present invention. In FIG. 6, for convenience of explanation, the insulating material forming a part of the magnetic sensor package is not shown.
 図6に示すように、本発明の実施形態4に係る電流センサは、磁気センサパッケージ420を備える。本実施形態においては、磁気センサパッケージ420は、信号処理回路30と電気的に接続された受動回路70を含む。複数の外部出力端子50は、受動回路70を通じて信号処理回路30と電気的に接続されている。信号処理回路30は、金属板40に搭載されており、絶縁性材料121で覆われている。 As shown in FIG. 6, the current sensor according to the fourth embodiment of the present invention includes a magnetic sensor package 420. In the present embodiment, the magnetic sensor package 420 includes a passive circuit 70 electrically connected to the signal processing circuit 30. The plurality of external output terminals 50 are electrically connected to the signal processing circuit 30 through the passive circuit 70. The signal processing circuit 30 is mounted on the metal plate 40 and covered with the insulating material 121.
 受動回路70は、フィルタなどの機能を有している。磁気センサパッケージ420が受動回路70を含むことにより、電流センサのEMI(Electro-Magnetic Interference)を抑制して、電流センサの信頼性を向上することができる。 The passive circuit 70 has a function such as a filter. By including the passive circuit 70 in the magnetic sensor package 420, it is possible to suppress the EMI (Electro-Magnetic Interference) of the current sensor and to improve the reliability of the current sensor.
 (実施形態5)
 以下、本発明の実施形態5に係る電流センサについて説明する。なお、実施形態5に係る電流センサは、磁気センサパッケージが静電シールドを含む点が主に、実施形態4に係る電流センサと異なるため、実施形態4に係る電流センサと同様である構成については同じ参照符号を付してその説明を繰り返さない。
Embodiment 5
Hereinafter, the current sensor according to the fifth embodiment of the present invention will be described. The current sensor according to the fifth embodiment differs from the current sensor according to the fourth embodiment mainly in that the magnetic sensor package includes an electrostatic shield, and thus the configuration similar to that of the current sensor according to the fourth embodiment The same reference numerals are assigned and the description will not be repeated.
 図7は、本発明の実施形態5に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。図8は、本発明の実施形態5に係る電流センサが備える磁気センサパッケージの構成を示す斜視図である。図7および図8においては、説明の便宜上、磁気センサパッケージの一部を構成する絶縁性材料を図示していない。 FIG. 7 is a plan view showing the configuration of the magnetic sensor package provided in the current sensor according to Embodiment 5 of the present invention. FIG. 8 is a perspective view showing the configuration of a magnetic sensor package provided in the current sensor according to Embodiment 5 of the present invention. In FIGS. 7 and 8, for convenience of explanation, the insulating material forming part of the magnetic sensor package is not shown.
 図7および図8に示すように、本発明の実施形態5に係る電流センサは、磁気センサパッケージ520を備える。本実施形態においては、磁気センサパッケージ520は、静電シールド80を含む。静電シールド80は、金属板40に電気的に接続されており、絶縁性材料121で覆われている。 As shown in FIGS. 7 and 8, the current sensor according to the fifth embodiment of the present invention includes a magnetic sensor package 520. In the present embodiment, the magnetic sensor package 520 includes an electrostatic shield 80. The electrostatic shield 80 is electrically connected to the metal plate 40 and is covered with the insulating material 121.
 本実施形態においては、静電シールド80は、金属板40と対向する平面部81と、平面部81の縁から立設された周面部82とから構成されている。 In the present embodiment, the electrostatic shield 80 is composed of a flat portion 81 opposed to the metal plate 40 and a circumferential surface portion 82 erected from the edge of the flat portion 81.
 静電シールド80と金属板40とは、半田または導電性ペーストなどの導電性を有する接合材によって、金属板40と周面部82とが互いに接合されることにより、一体に構成されている。なお、金属板40と周面部82とが、圧入などによって互いに機械的に接合されていてもよい。静電シールド80を構成する材料としては、非磁性の金属を用いることができ、熱伝導性の高い金属がより好ましい。 The electrostatic shield 80 and the metal plate 40 are integrally configured by bonding the metal plate 40 and the peripheral surface portion 82 to each other with a conductive bonding material such as solder or conductive paste. The metal plate 40 and the circumferential surface portion 82 may be mechanically joined to each other by press fitting or the like. As a material which comprises the electrostatic shield 80, a nonmagnetic metal can be used and a metal with high thermal conductivity is more preferable.
 第1磁気センサ10、第2磁気センサ20、信号処理回路30および受動回路70は、金属板40と静電シールド80との間に挟まれた領域に位置している。本実施形態においては、第1磁気センサ10、第2磁気センサ20、信号処理回路30および受動回路70は、金属板40と静電シールド80とに囲まれた空間内に位置している。 The first magnetic sensor 10, the second magnetic sensor 20, the signal processing circuit 30 and the passive circuit 70 are located in an area sandwiched between the metal plate 40 and the electrostatic shield 80. In the present embodiment, the first magnetic sensor 10, the second magnetic sensor 20, the signal processing circuit 30, and the passive circuit 70 are located in a space surrounded by the metal plate 40 and the electrostatic shield 80.
 これにより、第1磁気センサ10、第2磁気センサ20、信号処理回路30および受動回路70へのノイズによる電界の影響を低減することができる。 Thereby, the influence of the electric field due to the noise on the first magnetic sensor 10, the second magnetic sensor 20, the signal processing circuit 30, and the passive circuit 70 can be reduced.
 また、金属板40と静電シールド80とが接していることにより、金属板40の熱が静電シールド80に拡散し、磁気センサパッケージ520の内部の温度が均一化される。これにより、第1磁気センサ10の周囲の温度と第2磁気センサ20の周囲の温度との差を小さくすることができる。その結果、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による電流センサの測定誤差を低減することができる。 Further, since the metal plate 40 and the electrostatic shield 80 are in contact with each other, the heat of the metal plate 40 is diffused to the electrostatic shield 80, and the temperature inside the magnetic sensor package 520 is equalized. Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
 なお、静電シールド80は、少なくとも平面部81を有していればよい。図9は、本発明の実施形態5の変形例に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。図10は、本発明の実施形態5の変形例に係る電流センサが備える磁気センサパッケージの構成を示す斜視図である。図9および図10においては、説明の便宜上、磁気センサパッケージの一部を構成する絶縁性材料を図示していない。 The electrostatic shield 80 may have at least the flat portion 81. FIG. 9 is a plan view showing the configuration of a magnetic sensor package provided in a current sensor according to a modification of Embodiment 5 of the present invention. FIG. 10 is a perspective view showing a configuration of a magnetic sensor package provided in a current sensor according to a modification of Embodiment 5 of the present invention. In FIG. 9 and FIG. 10, the insulating material which comprises a part of magnetic sensor package is not illustrated for convenience of explanation.
 本発明の実施形態5の変形例に係る電流センサは、静電シールドの形状のみ本発明の実施形態5に係る電流センサと異なるため、本発明の実施形態5に係る電流センサと同様である構成については、説明を繰り返さない。 The current sensor according to the modification of the fifth embodiment of the present invention is the same as the current sensor according to the fifth embodiment of the present invention because only the shape of the electrostatic shield is different from that of the current sensor according to the fifth embodiment. The description will not be repeated.
 図9および図10に示すように、本発明の実施形態5の変形例に係る電流センサは、磁気センサパッケージ520aを備える。本実施形態の変形例においては、磁気センサパッケージ520aは、静電シールド80aを含む。静電シールド80aは、金属板40に電気的に接続されており、絶縁性材料121で覆われている。 As shown in FIGS. 9 and 10, the current sensor according to the modification of the fifth embodiment of the present invention includes a magnetic sensor package 520a. In a modification of this embodiment, the magnetic sensor package 520a includes an electrostatic shield 80a. The electrostatic shield 80 a is electrically connected to the metal plate 40 and covered with the insulating material 121.
 本実施形態の変形例においては、静電シールド80aは、金属板40と対向する平面部81と、平面部81の角部から立設された脚部82aとから構成されている。 In the modification of the present embodiment, the electrostatic shield 80 a is configured of a flat portion 81 facing the metal plate 40 and a leg portion 82 a erected from a corner of the flat portion 81.
 静電シールド80aと金属板40とは、半田または導電性ペーストなどの導電性を有する接合材によって、金属板40と脚部82aとが互いに接合されることにより、一体に構成されている。なお、金属板40と脚部82aとが、圧入などによって互いに機械的に接合されていてもよい。 The electrostatic shield 80a and the metal plate 40 are integrally configured by bonding the metal plate 40 and the leg portion 82a to each other with a conductive bonding material such as solder or conductive paste. The metal plate 40 and the leg portion 82a may be mechanically joined to each other by press-fitting or the like.
 第1磁気センサ10、第2磁気センサ20および信号処理回路30は、金属板40と静電シールド80aとの間に挟まれた領域に位置している。これにより、第1磁気センサ10、第2磁気センサ20および信号処理回路30へのノイズによる電界の影響を低減することができる。 The first magnetic sensor 10, the second magnetic sensor 20, and the signal processing circuit 30 are located in an area sandwiched between the metal plate 40 and the electrostatic shield 80a. Thereby, the influence of the electric field due to the noise on the first magnetic sensor 10, the second magnetic sensor 20, and the signal processing circuit 30 can be reduced.
 本実施形態の変形例においては、ノイズによる電界の影響を低減するうえで重要な個所のみに静電シールド80aを配置し、静電シールド80に比較して静電シールド80aを小型化している。これにより、電流センサの低コスト化および軽量化を図ることができる。 In the modification of the present embodiment, the electrostatic shield 80a is disposed only at a place important for reducing the influence of the electric field due to noise, and the electrostatic shield 80a is miniaturized as compared with the electrostatic shield 80. Thus, the cost and weight of the current sensor can be reduced.
 (実施形態6)
 以下、本発明の実施形態6に係る電流センサについて説明する。なお、実施形態6に係る電流センサは、磁気センサパッケージが、複数の磁気センサを互いの間に位置させてバイアス磁界を印加する少なくとも1つのバイアス磁石を含む点が主に、実施形態5の変形例に係る電流センサと異なるため、実施形態5の変形例に係る電流センサと同様である構成については同じ参照符号を付してその説明を繰り返さない。
Embodiment 6
Hereinafter, the current sensor according to the sixth embodiment of the present invention will be described. The current sensor according to the sixth embodiment is mainly modified in that the magnetic sensor package includes at least one bias magnet for positioning a plurality of magnetic sensors between each other to apply a bias magnetic field. Since the configuration is the same as that of the current sensor according to the modification of the fifth embodiment, the same reference symbol is attached to the same configuration as that of the current sensor according to the embodiment, and the description thereof will not be repeated.
 図11は、本発明の実施形態6に係る電流センサが備える磁気センサパッケージの構成を示す平面図である。図12は、本発明の実施形態6に係る電流センサが備える磁気センサパッケージの構成を示す斜視図である。図11および図12においては、説明の便宜上、磁気センサパッケージの一部を構成する絶縁性材料を図示していない。 FIG. 11 is a plan view showing the configuration of the magnetic sensor package provided in the current sensor according to Embodiment 6 of the present invention. FIG. 12 is a perspective view showing the configuration of a magnetic sensor package provided in the current sensor according to Embodiment 6 of the present invention. In FIGS. 11 and 12, for convenience of explanation, the insulating material forming part of the magnetic sensor package is not shown.
 図11および図12に示すように、本発明の実施形態6に係る電流センサは、磁気センサパッケージ620を備える。本実施形態においては、磁気センサパッケージ620は、第1磁気センサ10および第2磁気センサ20を互いの間に位置させてバイアス磁界を印加する2つのバイアス磁石90を含む。2つのバイアス磁石90は、金属板40に搭載されており、絶縁性材料121で覆われている。 As shown in FIGS. 11 and 12, the current sensor according to Embodiment 6 of the present invention includes a magnetic sensor package 620. In the present embodiment, the magnetic sensor package 620 includes two bias magnets 90 that position the first magnetic sensor 10 and the second magnetic sensor 20 between each other to apply a bias magnetic field. The two bias magnets 90 are mounted on the metal plate 40 and covered with the insulating material 121.
 バイアス磁石90は、焼結磁石、ボンド磁石または薄膜で構成されていてもよい。バイアス磁石90の種類は、特に限定されず、フェライト磁石、サマリウムコバルト磁石、アルニコ磁石またはネオジム磁石などを用いることができる。 The bias magnet 90 may be composed of a sintered magnet, a bonded magnet or a thin film. The type of the bias magnet 90 is not particularly limited, and a ferrite magnet, a samarium cobalt magnet, an alnico magnet, a neodymium magnet, or the like can be used.
 本実施形態においては、長さ方向(X軸方向)において、磁気センサチップ3Cの両側にバイアス磁石90を配置している。2つのバイアス磁石90の各々と磁気センサチップ3Cとの間には、隙間が設けられている。 In the present embodiment, the bias magnets 90 are disposed on both sides of the magnetic sensor chip 3C in the length direction (X-axis direction). A gap is provided between each of the two bias magnets 90 and the magnetic sensor chip 3C.
 なお、配置されるバイアス磁石90の数は、2つに限られず、少なくとも1つでよい。また、磁気センサチップ3Cの両側にバイアス磁石90を接合した複合チップを、金属板40に搭載するようにしてもよい。 The number of bias magnets 90 disposed is not limited to two, and may be at least one. In addition, a composite chip in which the bias magnet 90 is bonded to both sides of the magnetic sensor chip 3C may be mounted on the metal plate 40.
 本実施形態においては、磁気センサパッケージ620の内部にバイアス磁石90を配置したことにより、磁気センサパッケージ620の外部にバイアス磁石を配置した場合に比較して、電流センサを小型化できる。 In the present embodiment, by arranging the bias magnet 90 inside the magnetic sensor package 620, the current sensor can be miniaturized as compared with the case where the bias magnet is arranged outside the magnetic sensor package 620.
 また、金属板40とバイアス磁石90とが接していることにより、金属板40の熱がバイアス磁石90に拡散し、磁気センサパッケージ620の内部の温度が均一化される。これにより、第1磁気センサ10の周囲の温度と第2磁気センサ20の周囲の温度との差を小さくすることができる。その結果、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による電流センサの測定誤差を低減することができる。 Further, since the metal plate 40 and the bias magnet 90 are in contact with each other, the heat of the metal plate 40 is diffused to the bias magnet 90, and the temperature inside the magnetic sensor package 620 is made uniform. Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
 さらに、金属板40とバイアス磁石90とが接していることにより、バイアス磁石90の内部温度およびバイアス磁石90の磁気特性が均一化される。これにより、第1磁気センサ10および第2磁気センサ20に印加されるバイアス磁界が安定し、第1磁気センサ10および第2磁気センサ20の各々の検出感度が安定する。その結果、電流センサの信頼性を向上することができる。 Furthermore, the contact between the metal plate 40 and the bias magnet 90 makes the internal temperature of the bias magnet 90 and the magnetic characteristics of the bias magnet 90 uniform. Thereby, the bias magnetic field applied to the first magnetic sensor 10 and the second magnetic sensor 20 is stabilized, and the detection sensitivity of each of the first magnetic sensor 10 and the second magnetic sensor 20 is stabilized. As a result, the reliability of the current sensor can be improved.
 (実施形態7)
 以下、本発明の実施形態7に係る電流センサについて説明する。なお、実施形態7に係る電流センサは、導体の形状が主に、実施形態1に係る電流センサ100と異なるため、実施形態1に係る電流センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
Seventh Embodiment
Hereinafter, a current sensor according to Embodiment 7 of the present invention will be described. Since the current sensor according to the seventh embodiment differs from the current sensor 100 according to the first embodiment mainly in the shape of the conductor, the same reference numerals are given to the configuration similar to the current sensor 100 according to the first embodiment. And I will not repeat the explanation.
 図13は、本発明の実施形態7に係る電流センサの構成を示す斜視図である。図13においては、絶縁性材料で構成される磁気センサパッケージの外形を2点鎖線で示し、絶縁性材料を透視して図示している。また、図13においては、見やすくするために、電極および配線を図示していない。 FIG. 13 is a perspective view showing a configuration of a current sensor according to Embodiment 7 of the present invention. In FIG. 13, the outer shape of the magnetic sensor package made of an insulating material is indicated by a two-dot chain line, and the insulating material is shown through it. Further, in FIG. 13, the electrodes and the wiring are not illustrated for the sake of easy viewing.
 図13に示すように、本発明の実施形態7に係る電流センサ700は、導体710と磁気センサパッケージ120とを備える。導体710は、長さ方向(X軸方向)における途中で、測定対象の電流が分流されて流れる一方の流路部711および他方の流路部715を含む。他方の流路部715は、幅方向(Y軸方向)において、一方の流路部711と並んで位置している。 As shown in FIG. 13, a current sensor 700 according to Embodiment 7 of the present invention includes a conductor 710 and a magnetic sensor package 120. The conductor 710 includes one flow passage portion 711 and the other flow passage portion 715 in which the current to be measured is divided and flows halfway along the length direction (X-axis direction). The other flow passage portion 715 is located in line with the one flow passage portion 711 in the width direction (Y-axis direction).
 一方の流路部711と他方の流路部715との間に、長さ方向(X軸方向)に延在する開口部119が設けられている。開口部119は、幅方向(Y軸方向)にて導体710の中央に位置している。なお、開口部119は、必ずしも幅方向(Y軸方向)にて導体710の中央に位置していなくてもよい。 An opening 119 extending in the length direction (X-axis direction) is provided between one flow passage portion 711 and the other flow passage portion 715. The opening 119 is located at the center of the conductor 710 in the width direction (Y-axis direction). The opening 119 may not necessarily be located at the center of the conductor 710 in the width direction (Y-axis direction).
 一方の流路部711は、幅方向(Y軸方向)から見て、導体710の表面側に膨出している。他方の流路部715は、幅方向(Y軸方向)から見て、導体710の裏面側に膨出している。 One channel portion 711 bulges to the surface side of the conductor 710 as viewed in the width direction (Y-axis direction). The other flow passage portion 715 bulges on the back surface side of the conductor 710 as viewed in the width direction (Y-axis direction).
 一方の流路部711は、互いに間隔を置いて、導体710の表面に直交するように突出する第1突出部712および第2突出部713と、長さ方向(X軸方向)に延在し、第1突出部712と第2突出部713とを繋ぐ延在部714とから構成されている。ただし、一方の流路部711の形状はこれに限られず、たとえば、幅方向(Y軸方向)から見て、C字状または半円状の形状を有していてもよい。 One flow path portion 711 extends in the length direction (X-axis direction), with a first projection 712 and a second projection 713 projecting orthogonally to the surface of the conductor 710 at intervals. And an extending portion 714 connecting the first protruding portion 712 and the second protruding portion 713. However, the shape of one flow passage portion 711 is not limited to this, and may have a C-shape or a semicircular shape as viewed from the width direction (Y-axis direction), for example.
 他方の流路部715は、互いに間隔を置いて、導体710の裏面に直交するように突出する第3突出部716および第4突出部717と、長さ方向(X軸方向)に延在し、第3突出部716と第4突出部717とを繋ぐ延在部718とから構成されている。ただし、他方の流路部715の形状はこれに限られず、たとえば、幅方向(Y軸方向)から見て、C字状または半円状の形状を有していてもよい。一方の流路部711と他方の流路部715とは、互いに点対称な形状を有する。なお、一方の流路部711と他方の流路部715とは、必ずしも互いに点対称な形状でなくてもよい。 The other flow path portions 715 extend in the length direction (X-axis direction), with the third projection 716 and the fourth projection 717 projecting orthogonally to the back surface of the conductor 710 at intervals. And an extending portion 718 connecting the third protrusion 716 and the fourth protrusion 717. However, the shape of the other flow passage portion 715 is not limited to this, and may have a C-shape or a semicircular shape as viewed from the width direction (Y-axis direction), for example. One flow passage portion 711 and the other flow passage portion 715 have shapes that are point-symmetrical to each other. The one flow passage portion 711 and the other flow passage portion 715 may not necessarily have a point-symmetrical shape.
 幅方向(Y軸方向)から見て、一方の流路部711と他方の流路部715とによって囲まれた領域710hが形成されている。 As viewed in the width direction (Y-axis direction), a region 710 h surrounded by one flow passage portion 711 and the other flow passage portion 715 is formed.
 一方の流路部711と他方の流路部715とによって形成される空間に、磁気センサパッケージ120が挿入されている。磁気センサパッケージ120は、接合材などによって、導体710に固定されている。これにより、第1磁気センサ10および第2磁気センサ20は、幅方向(Y軸方向)から見て、上記領域710hの内部に位置し、かつ、厚さ方向(Z軸方向)から見て、幅方向(Y軸方向)における一方の流路部711の一端から他方の流路部715の他端までの範囲内に位置している。 The magnetic sensor package 120 is inserted in a space formed by one flow passage portion 711 and the other flow passage portion 715. The magnetic sensor package 120 is fixed to the conductor 710 by a bonding material or the like. Thereby, the first magnetic sensor 10 and the second magnetic sensor 20 are located inside the area 710 h when viewed from the width direction (Y-axis direction), and viewed from the thickness direction (Z-axis direction), It is located in the range from one end of one flow passage portion 711 in the width direction (Y-axis direction) to the other end of the other flow passage portion 715.
 幅方向(Y軸方向)において、第1磁気センサ10と第2磁気センサ20との間の中間の位置と、開口部119の中央の位置とが、互いに一致するように、磁気センサパッケージ120が配置されている。これにより、電流センサ700は、外部磁界の影響を低減しつつ、測定対象の電流を高感度に測定することができる。 The magnetic sensor package 120 is arranged such that the middle position between the first magnetic sensor 10 and the second magnetic sensor 20 and the central position of the opening 119 coincide with each other in the width direction (Y-axis direction). It is arranged. Thus, the current sensor 700 can measure the current of the measurement target with high sensitivity while reducing the influence of the external magnetic field.
 本実施形態に係る電流センサ700においては、一方の流路部711と他方の流路部715とによって形成される空間内に、磁気センサパッケージ120が配置されていることにより、導体710が発熱した際の磁気センサパッケージ120の内部の温度が均一化される。これにより、第1磁気センサ10の周囲の温度と第2磁気センサ20の周囲の温度との差を小さくすることができる。その結果、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による電流センサ700の測定誤差を低減することができる。 In the current sensor 700 according to the present embodiment, the conductor 710 generates heat because the magnetic sensor package 120 is disposed in the space formed by the one flow passage portion 711 and the other flow passage portion 715. The temperature inside the magnetic sensor package 120 is made uniform. Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor 700 due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
 特に、本実施形態に係る電流センサ700においては、一方の流路部711の電気抵抗値と他方の流路部715の電気抵抗値とが略同一であるため、導体710を測定対象の電流が流れることによる一方の流路部711の発熱量と他方の流路部715の発熱量とを同等にすることができる。その結果、第1磁気センサ10の磁気抵抗素子の周囲の温度と、第2磁気センサ20の磁気抵抗素子の周囲の温度とを略同じにすることができるため、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による電流センサ700の測定誤差を効果的に低減することができる。 In particular, in the current sensor 700 according to the present embodiment, since the electric resistance value of one flow path portion 711 and the electric resistance value of the other flow path portion 715 are substantially the same, The calorific value of the one flow path portion 711 due to the flow can be made equal to the calorific value of the other flow path portion 715. As a result, since the temperature around the magnetoresistive element of the first magnetic sensor 10 and the temperature around the magnetoresistive element of the second magnetic sensor 20 can be made substantially the same, the first magnetic sensor 10 and the second magnetic sensor 10 can It is possible to effectively reduce the measurement error of the current sensor 700 due to the temperature characteristic of the magnetoresistive element that each of the magnetic sensors 20 has.
 なお、導体710の形状は、上記に限られず、適宜変更可能である。図14は、本発明の実施形態7の第1変形例に係る電流センサの構成を示す斜視図である。図15は、本発明の実施形態7の第2変形例に係る電流センサの構成を示す斜視図である。図16は、本発明の実施形態7の第3変形例に係る電流センサの構成を示す斜視図である。本発明の実施形態7の第1変形例~第3変形例に係る電流センサは、導体の形状のみ本発明の実施形態7に係る電流センサ700と異なるため、本発明の実施形態7に係る電流センサ700と同様である構成については、説明を繰り返さない。 The shape of the conductor 710 is not limited to the above, and can be changed as appropriate. FIG. 14 is a perspective view showing a configuration of a current sensor according to a first modified example of the seventh embodiment of the present invention. FIG. 15 is a perspective view showing a configuration of a current sensor according to a second modified embodiment of the seventh embodiment of the present invention. FIG. 16 is a perspective view showing a configuration of a current sensor according to a third modified embodiment of the seventh embodiment of the present invention. The current sensors according to the first to third modifications of the seventh embodiment of the present invention are different from the current sensor 700 according to the seventh embodiment of the present invention only in the shape of the conductor, so the current according to the seventh embodiment of the present invention The description of the same configuration as that of sensor 700 will not be repeated.
 図14に示すように、本発明の実施形態7の第1変形例に係る電流センサ700aは、導体710aと磁気センサパッケージ120とを備える。導体710aは、長さ方向(X軸方向)における途中で、測定対象の電流が分流されて流れる一方の流路部711および他方の流路部115を含む。他方の流路部115は、幅方向(Y軸方向)において、一方の流路部711と並んで位置している。 As shown in FIG. 14, the current sensor 700 a according to the first modification of the seventh embodiment of the present invention includes a conductor 710 a and a magnetic sensor package 120. The conductor 710 a includes one flow passage portion 711 and the other flow passage portion 115 in which the current to be measured is divided and flows halfway along the length direction (X-axis direction). The other flow passage portion 115 is positioned side by side with one flow passage portion 711 in the width direction (Y-axis direction).
 一方の流路部711と他方の流路部115との間に、長さ方向(X軸方向)に延在する開口部119が設けられている。開口部119は、幅方向(Y軸方向)にて導体710aの中央に位置している。なお、開口部119は、必ずしも幅方向(Y軸方向)にて導体710aの中央に位置していなくてもよい。幅方向(Y軸方向)から見て、一方の流路部711と他方の流路部115とによって囲まれた領域710ahが形成されている。 An opening 119 extending in the length direction (X-axis direction) is provided between one flow passage portion 711 and the other flow passage portion 115. The opening 119 is located at the center of the conductor 710 a in the width direction (Y-axis direction). The opening 119 may not necessarily be located at the center of the conductor 710 a in the width direction (Y-axis direction). As viewed in the width direction (Y-axis direction), a region 710ah surrounded by one flow passage portion 711 and the other flow passage portion 115 is formed.
 一方の流路部711と他方の流路部115とによって形成される空間に、磁気センサパッケージ120が挿入されている。これにより、第1磁気センサ10および第2磁気センサ20は、幅方向(Y軸方向)から見て、上記領域710ahの内部に位置し、かつ、厚さ方向(Z軸方向)から見て、幅方向(Y軸方向)における一方の流路部711の一端から他方の流路部115の他端までの範囲内に位置している。 The magnetic sensor package 120 is inserted in the space formed by the one flow passage portion 711 and the other flow passage portion 115. Thereby, the first magnetic sensor 10 and the second magnetic sensor 20 are located inside the region 710ah when viewed from the width direction (Y-axis direction), and viewed from the thickness direction (Z-axis direction), It is located in the range from one end of one flow passage portion 711 in the width direction (Y-axis direction) to the other end of the other flow passage portion 115.
 幅方向(Y軸方向)において、第1磁気センサ10と第2磁気センサ20との間の中間の位置と、開口部119の中央の位置とが、互いに一致するように、磁気センサパッケージ120が配置されている。これにより、電流センサ700aは、外部磁界の影響を低減しつつ、測定対象の電流を高感度に測定することができる。 The magnetic sensor package 120 is arranged such that the middle position between the first magnetic sensor 10 and the second magnetic sensor 20 and the central position of the opening 119 coincide with each other in the width direction (Y-axis direction). It is arranged. Thus, the current sensor 700a can measure the current of the measurement target with high sensitivity while reducing the influence of the external magnetic field.
 本実施形態の第1変形例に係る電流センサ700aにおいては、一方の流路部711と他方の流路部115とによって形成される空間内に、磁気センサパッケージ120が配置されていることにより、導体710が発熱した際の磁気センサパッケージ120の内部の温度が均一化される。これにより、第1磁気センサ10の周囲の温度と第2磁気センサ20の周囲の温度との差を小さくすることができる。その結果、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による電流センサ700aの測定誤差を低減することができる。 In the current sensor 700a according to the first modification of the present embodiment, the magnetic sensor package 120 is disposed in the space formed by the one flow passage portion 711 and the other flow passage portion 115, The temperature inside the magnetic sensor package 120 when the conductor 710 generates heat is made uniform. Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor 700a due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
 図15に示すように、本発明の実施形態7の第2変形例に係る電流センサ700bは、導体710bと磁気センサパッケージ120とを備える。導体710bは、長さ方向(X軸方向)における途中で、測定対象の電流が分流されて流れる一方の流路部711bおよび他方の流路部715bを含む。他方の流路部715bは、幅方向(Y軸方向)において、一方の流路部711bと並んで位置している。導体710bは、分流部を境にして、長さ方向(X軸方向)の一方部が他方部に比較して、導体710bの表面側に位置している。 As shown in FIG. 15, a current sensor 700b according to a second modification of the seventh embodiment of the present invention includes a conductor 710b and a magnetic sensor package 120. The conductor 710b includes one flow passage portion 711b and the other flow passage portion 715b in which the current to be measured is divided and flows halfway along the length direction (X-axis direction). The other flow passage portion 715 b is located in line with the one flow passage portion 711 b in the width direction (Y-axis direction). The conductor 710 b is located on the surface side of the conductor 710 b with one side in the length direction (X-axis direction) bordering the dividing portion as compared with the other side.
 一方の流路部711bと他方の流路部715bとの間に、長さ方向(X軸方向)に延在する開口部119が設けられている。開口部119は、幅方向(Y軸方向)にて導体710bの中央に位置している。なお、開口部119は、必ずしも幅方向(Y軸方向)にて導体710bの中央に位置していなくてもよい。 An opening 119 extending in the length direction (X-axis direction) is provided between one flow passage portion 711 b and the other flow passage portion 715 b. The opening 119 is located at the center of the conductor 710 b in the width direction (Y-axis direction). The opening 119 may not necessarily be located at the center of the conductor 710 b in the width direction (Y-axis direction).
 一方の流路部711bは、導体710bの長さ方向(X軸方向)の一方部から長さ方向(X軸方向)に延在する延在部714bと、導体710bの表面に直交するように曲折し、延在部714bと導体710bの長さ方向(X軸方向)の他方部とを繋ぐ曲折部713bとから構成されている。 One flow path portion 711b is orthogonal to an extending portion 714b extending in one length direction (X-axis direction) from one portion in the length direction (X-axis direction) of the conductor 710b, and orthogonal to the surface of the conductor 710b. It is bent, and it is comprised from the bent part 713b which connects the extension part 714b and the other part of the length direction (X-axis direction) of the conductor 710b.
 他方の流路部715bは、導体710bの長さ方向(X軸方向)の一方部から導体710bの裏面に直交するように曲折する曲折部716bと、曲折部716bから長さ方向(X軸方向)に延在し、曲折部716bと延在部714bと導体710bの長さ方向(X軸方向)の他方部とを繋ぐ延在部718bとから構成されている。 The other flow path portion 715b is a bent portion 716b which is bent so as to be orthogonal to the back surface of the conductor 710b from one portion in the length direction (X axis direction) of the conductor 710b, and a length direction from the bent portion 716b (X axis direction And an extending portion 718b connecting the bent portion 716b, the extending portion 714b, and the other portion in the length direction (the X-axis direction) of the conductor 710b.
 幅方向(Y軸方向)から見て、一方の流路部711bと他方の流路部715bとによって囲まれた領域710bhが形成されている。 As viewed in the width direction (Y-axis direction), a region 710bh surrounded by one flow passage portion 711b and the other flow passage portion 715b is formed.
 一方の流路部711bと他方の流路部715bとによって形成される空間に、磁気センサパッケージ120が挿入されている。これにより、第1磁気センサ10および第2磁気センサ20は、幅方向(Y軸方向)から見て、上記領域710bhの内部に位置し、かつ、厚さ方向(Z軸方向)から見て、幅方向(Y軸方向)における一方の流路部711bの一端から他方の流路部715bの他端までの範囲内に位置している。 The magnetic sensor package 120 is inserted in a space formed by one flow passage portion 711 b and the other flow passage portion 715 b. Thereby, the first magnetic sensor 10 and the second magnetic sensor 20 are located inside the region 710bh when viewed from the width direction (Y-axis direction), and viewed from the thickness direction (Z-axis direction), It is located in the range from one end of one flow passage portion 711b to the other end of the other flow passage portion 715b in the width direction (Y-axis direction).
 幅方向(Y軸方向)において、第1磁気センサ10と第2磁気センサ20との間の中間の位置と、開口部119の中央の位置とが、互いに一致するように、磁気センサパッケージ120が配置されている。これにより、電流センサ700bは、外部磁界の影響を低減しつつ、測定対象の電流を高感度に測定することができる。 The magnetic sensor package 120 is arranged such that the middle position between the first magnetic sensor 10 and the second magnetic sensor 20 and the central position of the opening 119 coincide with each other in the width direction (Y-axis direction). It is arranged. Thus, the current sensor 700b can measure the current of the measurement target with high sensitivity while reducing the influence of the external magnetic field.
 本実施形態の第2変形例に係る電流センサ700bにおいては、一方の流路部711bと他方の流路部715bとによって形成される空間内に、磁気センサパッケージ120が配置されていることにより、導体710bが発熱した際の磁気センサパッケージ120の内部の温度が均一化される。これにより、第1磁気センサ10の周囲の温度と第2磁気センサ20の周囲の温度との差を小さくすることができる。その結果、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による電流センサ700bの測定誤差を低減することができる。 In the current sensor 700b according to the second modification of the present embodiment, the magnetic sensor package 120 is disposed in the space formed by the one flow passage portion 711b and the other flow passage portion 715b, The temperature inside the magnetic sensor package 120 when the conductor 710 b generates heat is made uniform. Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor 700b due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
 図16に示すように、本発明の実施形態7の第3変形例に係る電流センサ700cは、導体710cと磁気センサパッケージ120とを備える。導体710cは、長さ方向(X軸方向)における途中で、測定対象の電流が分流されて流れる一方の流路部711bおよび他方の流路部715cを含む。他方の流路部715cは、幅方向(Y軸方向)において、一方の流路部711bと並んで位置している。導体710cは、分流部を境にして、長さ方向(X軸方向)の一方部が他方部に比較して、導体710cの表面側に位置している。 As shown in FIG. 16, a current sensor 700c according to a third modification of the seventh embodiment of the present invention includes a conductor 710c and a magnetic sensor package 120. The conductor 710c includes one flow path portion 711b and the other flow path portion 715c in which the current to be measured is divided and flows halfway along the length direction (X-axis direction). The other flow passage portion 715c is located in line with the one flow passage portion 711b in the width direction (Y-axis direction). The conductor 710 c is located on the surface side of the conductor 710 c with one side in the length direction (X-axis direction) bordering the dividing portion as compared with the other side.
 一方の流路部711bと他方の流路部715cとの間に、長さ方向(X軸方向)に延在する開口部119が設けられている。開口部119は、幅方向(Y軸方向)にて導体710cの中央に位置している。なお、開口部119は、必ずしも幅方向(Y軸方向)にて導体710cの中央に位置していなくてもよい。 An opening 119 extending in the length direction (X-axis direction) is provided between one flow passage portion 711 b and the other flow passage portion 715 c. The opening 119 is located at the center of the conductor 710 c in the width direction (Y-axis direction). The opening 119 may not necessarily be located at the center of the conductor 710 c in the width direction (Y-axis direction).
 他方の流路部715cは、互いに間隔を置いて、導体710cの裏面に直交するように突出する第3突出部716cおよび第4突出部717と、長さ方向(X軸方向)に延在し、第3突出部716cと第4突出部717とを繋ぐ延在部718とから構成されている。第3突出部716cは、導体710cの長さ方向(X軸方向)の一方部と延在部718とを繋いでいる。第4突出部717は、延在部718と導体710cの長さ方向(X軸方向)の他方部とを繋いでいる。 The other flow path portion 715c extends in the length direction (X-axis direction), with a third projection 716c and a fourth projection 717 projecting orthogonally to the back surface of the conductor 710c, spaced apart from each other. , And an extending portion 718 connecting the third protruding portion 716 c and the fourth protruding portion 717. The third protrusion 716 c connects one portion in the length direction (X-axis direction) of the conductor 710 c and the extension 718. The fourth projecting portion 717 connects the extending portion 718 and the other portion in the length direction (X-axis direction) of the conductor 710c.
 幅方向(Y軸方向)から見て、一方の流路部711bと他方の流路部715cとによって囲まれた領域710chが形成されている。 As viewed in the width direction (Y-axis direction), a region 710 ch surrounded by one flow passage portion 711 b and the other flow passage portion 715 c is formed.
 一方の流路部711bと他方の流路部715cとによって形成される空間に、磁気センサパッケージ120が挿入されている。これにより、第1磁気センサ10および第2磁気センサ20は、幅方向(Y軸方向)から見て、上記領域710chの内部に位置し、かつ、厚さ方向(Z軸方向)から見て、幅方向(Y軸方向)における一方の流路部711bの一端から他方の流路部715cの他端までの範囲内に位置している。 The magnetic sensor package 120 is inserted in a space formed by one flow passage portion 711 b and the other flow passage portion 715 c. Thereby, the first magnetic sensor 10 and the second magnetic sensor 20 are located inside the area 710ch when viewed from the width direction (Y-axis direction), and viewed from the thickness direction (Z-axis direction), It is located in the range from one end of one flow passage portion 711b in the width direction (Y-axis direction) to the other end of the other flow passage portion 715c.
 幅方向(Y軸方向)において、第1磁気センサ10と第2磁気センサ20との間の中間の位置と、開口部119の中央の位置とが、互いに一致するように、磁気センサパッケージ120が配置されている。これにより、電流センサ700cは、外部磁界の影響を低減しつつ、測定対象の電流を高感度に測定することができる。 The magnetic sensor package 120 is arranged such that the middle position between the first magnetic sensor 10 and the second magnetic sensor 20 and the central position of the opening 119 coincide with each other in the width direction (Y-axis direction). It is arranged. Thus, the current sensor 700c can measure the current of the measurement target with high sensitivity while reducing the influence of the external magnetic field.
 本実施形態の第3変形例に係る電流センサ700cにおいては、一方の流路部711bと他方の流路部715cとによって形成される空間内に、磁気センサパッケージ120が配置されていることにより、導体710cが発熱した際の磁気センサパッケージ120の内部の温度が均一化される。これにより、第1磁気センサ10の周囲の温度と第2磁気センサ20の周囲の温度との差を小さくすることができる。その結果、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による電流センサ700cの測定誤差を低減することができる。 In the current sensor 700c according to the third modification of the present embodiment, the magnetic sensor package 120 is disposed in the space formed by one flow passage portion 711b and the other flow passage portion 715c. The temperature inside the magnetic sensor package 120 when the conductor 710c generates heat is made uniform. Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor 700c due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
 (実施形態8)
 以下、本発明の実施形態8に係る電流センサについて説明する。なお、実施形態8に係る電流センサは、取付部材を含む点が主に、実施形態7に係る電流センサ700と異なるため、実施形態7に係る電流センサ700と同様である構成については同じ参照符号を付してその説明を繰り返さない。
(Embodiment 8)
Hereinafter, a current sensor according to Embodiment 8 of the present invention will be described. The current sensor according to the eighth embodiment differs from the current sensor 700 according to the seventh embodiment mainly in that the current sensor according to the eighth embodiment includes the attachment member. And do not repeat the description.
 図17は、本発明の実施形態8に係る電流センサの構成を示す斜視図である。図18は、本発明の実施形態8に係る電流センサの構成を示す分解斜視図である。図17および図18においては、磁気センサパッケージは外形のみ図示している。 FIG. 17 is a perspective view showing the configuration of a current sensor according to Embodiment 8 of the present invention. FIG. 18 is an exploded perspective view showing a configuration of a current sensor according to Embodiment 8 of the present invention. In FIG. 17 and FIG. 18, the magnetic sensor package is shown only in the outer shape.
 図17および図18に示すように、本発明の実施形態8に係る電流センサ800は、導体710と磁気センサパッケージ120と取付部材830とを備える。 As shown in FIGS. 17 and 18, the current sensor 800 according to the eighth embodiment of the present invention includes a conductor 710, a magnetic sensor package 120, and a mounting member 830.
 取付部材830は、基部831と、基部831の長さ方向(X軸方向)の両端から突出し、導体710の開口部119と係合する1対の係合部832とを含む。 The mounting member 830 includes a base 831 and a pair of engaging portions 832 that project from both ends in the lengthwise direction (X-axis direction) of the base 831 and engage with the openings 119 of the conductor 710.
 取付部材830は、絶縁性を有する、樹脂、エンジニアリングプラスチックまたはセラミックなどで形成されている。取付部材830は、たとえば、シリコーン樹脂、エポキシ樹脂、ポリフェニレンサルファイド、ポリブチレンテレフタレート樹脂、液晶ポリマー、ウレタンまたはナイロンなどで形成されている。 The mounting member 830 is formed of resin, engineering plastic, ceramic, or the like having insulation. The mounting member 830 is made of, for example, silicone resin, epoxy resin, polyphenylene sulfide, polybutylene terephthalate resin, liquid crystal polymer, urethane, nylon or the like.
 取付部材830は、導体710に固定されている。取付部材830は、開口部119の縁の少なくとも一部に接して導体710に固定されている。取付部材830と導体710とは、互いの接触部の近傍に塗布された接合材によって、互いに接合されている。 The mounting member 830 is fixed to the conductor 710. The mounting member 830 is fixed to the conductor 710 in contact with at least a part of the edge of the opening 119. The mounting member 830 and the conductor 710 are bonded to each other by a bonding material applied in the vicinity of the contact portion.
 本実施形態においては、取付部材830の1対の係合部832が、導体710の開口部119に挿入されて固定されている。取付部材830の1対の係合部832は、開口部119の長さ方向(X軸方向)の両方の縁と、1対1で対応して互いに接触している。これにより、取付部材830は、導体710に対して、長さ方向(X軸方向)において位置決めされている。 In the present embodiment, the pair of engaging portions 832 of the mounting member 830 is inserted into and fixed to the opening 119 of the conductor 710. The pair of engaging portions 832 of the mounting member 830 are in contact with both edges of the opening 119 in the longitudinal direction (X-axis direction) in a one-to-one correspondence. Thus, the mounting member 830 is positioned with respect to the conductor 710 in the longitudinal direction (X-axis direction).
 また、取付部材830の1対の係合部832は、一方の流路部711の開口部119側の側面および他方の流路部715の開口部119側の側面と、1対1で対応して互いに接触している。これにより、取付部材830は、導体710に対して、幅方向(Y軸方向)において位置決めされている。 In addition, the pair of engaging portions 832 of the mounting member 830 correspond one-to-one to the side surface on the opening 119 side of one flow passage portion 711 and the side surface on the opening 119 side of the other flow passage portion 715. Are in contact with each other. Thus, the mounting member 830 is positioned with respect to the conductor 710 in the width direction (Y-axis direction).
 取付部材830は、磁気センサパッケージ120と接続されている。取付部材830は、基部831および1対の係合部832の内側面にて、磁気センサパッケージ120と接触している。取付部材830と磁気センサパッケージ120とは、互いの接触部の近傍に塗布された接合材によって、互いに接合されている。これにより、磁気センサパッケージ120が、導体710に間接的に取り付けられている。 The mounting member 830 is connected to the magnetic sensor package 120. The mounting member 830 is in contact with the magnetic sensor package 120 on the inner surface of the base 831 and the pair of engaging portions 832. The mounting member 830 and the magnetic sensor package 120 are bonded to each other by a bonding material applied in the vicinity of the contact portion. Thus, the magnetic sensor package 120 is indirectly attached to the conductor 710.
 導体710の開口部119の長さ方向(X軸方向)の縁は、導体710に電流が流れた際の発熱によって導体710の分流部が変形した際に、最も変形量の小さい部分となる。 The edge in the longitudinal direction (X-axis direction) of the opening portion 119 of the conductor 710 is the portion with the smallest amount of deformation when the diverted portion of the conductor 710 is deformed by heat generation when current flows through the conductor 710.
 本実施形態に係る電流センサ800においては、取付部材830が、導体710の分流部が発熱した場合に最も変形量の小さい部分となる開口部119の長さ方向(X軸方向)の縁に接した状態で、導体710に固定されている。そのため、取付部材830は、導体710の発熱による変形の影響を受けにくく、位置変動が抑制されている。 In the current sensor 800 according to the present embodiment, the mounting member 830 is in contact with the edge in the length direction (X-axis direction) of the opening 119, which is the portion with the smallest amount of deformation when the branched portion of the conductor 710 generates heat. In a fixed state, it is fixed to the conductor 710. Therefore, the mounting member 830 is not easily affected by the deformation of the conductor 710 due to the heat generation, and the positional variation is suppressed.
 磁気センサパッケージ120は、取付部材830を介して導体710に間接的に取り付けられているため、磁気センサパッケージ120も導体710の発熱による変形の影響を受けにくく、位置変動が抑制されている。その結果、導体710の分流された一方の流路部711および他方の流路部715と、第1磁気センサ10および第2磁気センサ20との相対的な位置関係の変動が低減され、電流センサ800の信頼性を向上することができる。 Since the magnetic sensor package 120 is indirectly attached to the conductor 710 via the attachment member 830, the magnetic sensor package 120 is also less susceptible to the deformation due to the heat generation of the conductor 710, and the positional variation is suppressed. As a result, the fluctuation of the relative positional relationship between the first flow path portion 711 and the other flow path portion 715 divided from the conductor 710 and the first magnetic sensor 10 and the second magnetic sensor 20 is reduced, and the current sensor The reliability of 800 can be improved.
 なお、磁気センサパッケージ120と取付部材830との接合方法は、接合材を用いる場合に限られない。図19は、本発明の実施形態8の変形例に係る電流センサの構成を示す斜視図である。図20は、本発明の実施形態8の変形例に係る電流センサの構成を示す分解斜視図である。本発明の実施形態8の変形例に係る電流センサは、取付部材と磁気センサパッケージとが互いに溶着されている点が主に、本発明の実施形態8に係る電流センサ800と異なるため、本発明の実施形態8に係る電流センサ800と同様である構成については、説明を繰り返さない。 The method of bonding the magnetic sensor package 120 and the mounting member 830 is not limited to the case of using a bonding material. FIG. 19 is a perspective view showing a configuration of a current sensor according to a modification of Embodiment 8 of the present invention. FIG. 20 is an exploded perspective view showing a configuration of a current sensor according to a modification of Embodiment 8 of the present invention. The current sensor according to the modification of the eighth embodiment of the present invention is different from the current sensor 800 according to the eighth embodiment of the present invention mainly in that the mounting member and the magnetic sensor package are welded to each other. The description of the same configuration as that of the current sensor 800 according to the eighth embodiment will not be repeated.
 図19および図20に示すように、本発明の実施形態8の変形例に係る電流センサ800aは、導体710と磁気センサパッケージ820と取付部材830aとを備える。 As shown in FIGS. 19 and 20, a current sensor 800a according to a modification of Embodiment 8 of the present invention includes a conductor 710, a magnetic sensor package 820, and a mounting member 830a.
 磁気センサパッケージ820は、長さ方向(X軸方向)の両側から突出した1対の突出部821を有する。1対の突出部821の各々には、厚さ方向(Z軸方向)に貫通した貫通孔822が設けられている。 The magnetic sensor package 820 has a pair of protrusions 821 protruding from both sides in the longitudinal direction (X-axis direction). Each of the pair of protrusions 821 is provided with a through hole 822 penetrating in the thickness direction (Z-axis direction).
 取付部材830aは、係合部832から厚さ方向(Z軸方向)に突出し、貫通孔822と嵌合する円柱状の凸状部833を有する。なお、凸状部833の形状は、円柱状に限られず、角柱状または楕円柱状などでもよい。 The mounting member 830 a has a cylindrical convex portion 833 which protrudes from the engaging portion 832 in the thickness direction (Z-axis direction) and is fitted to the through hole 822. The shape of the convex portion 833 is not limited to a cylindrical shape, and may be a prismatic shape, an elliptical shape, or the like.
 本実施形態においては、取付部材830aは、熱可塑性樹脂で構成されている。磁気センサパッケージ820の一部を構成する絶縁性材料は、取付部材830aを構成する熱可塑性樹脂より融点の高い他の熱可塑性樹脂である。 In the present embodiment, the mounting member 830a is made of a thermoplastic resin. The insulating material forming a part of the magnetic sensor package 820 is another thermoplastic resin having a melting point higher than that of the thermoplastic resin forming the mounting member 830a.
 取付部材830aは、磁気センサパッケージ820と接続されている。取付部材830aと磁気センサパッケージ820とは、互いの接続部の溶着によって、互いに接合されている。これにより、磁気センサパッケージ820が、導体710に間接的に取り付けられている。 The mounting member 830 a is connected to the magnetic sensor package 820. The mounting member 830a and the magnetic sensor package 820 are joined to each other by welding of their connection parts. Thereby, the magnetic sensor package 820 is indirectly attached to the conductor 710.
 具体的には、一方の流路部711と他方の流路部715とによって形成される空間に、磁気センサパッケージ820が、一方の流路部711側から挿入された後、凸状部833が貫通孔822に挿入されるように、取付部材830aと磁気センサパッケージ820とを接続しつつ、係合部832が導体710の開口部119に挿入されて固定されるように、取付部材830aを導体710に固定する。 Specifically, after the magnetic sensor package 820 is inserted from the one flow path portion 711 side into the space formed by the one flow path portion 711 and the other flow path portion 715, the convex portion 833 is The attachment member 830a is inserted into the opening 119 of the conductor 710 and fixed while the attachment member 830a and the magnetic sensor package 820 are connected so as to be inserted into the through hole 822. Fix at 710.
 この状態の組立体を、取付部材830aを構成する熱可塑性樹脂の融点より高く、かつ、磁気センサパッケージ820を構成する他の熱可塑性樹脂の融点より低い温度で加熱することにより、凸状部833の表面を溶融させる。その後、組立体を冷却することにより、溶融した凸状部833の表面が貫通孔822の内表面と固着した状態となる。その結果、磁気センサパッケージ820と取付部材830aとが互いに接続される。 By heating the assembly in this state at a temperature higher than the melting point of the thermoplastic resin forming the mounting member 830 a and lower than the melting points of other thermoplastic resins forming the magnetic sensor package 820, the convex portion 833. Melt the surface of Thereafter, by cooling the assembly, the surface of the molten convex portion 833 is fixed to the inner surface of the through hole 822. As a result, the magnetic sensor package 820 and the mounting member 830a are connected to each other.
 なお、本実施形態においては、突出部821に貫通孔822を設けたが、貫通孔822の代わりに、凸状部833が挿入可能な凹部が設けられていてもよい。また、磁気センサパッケージ820の一部を構成する絶縁性材料が、他の熱可塑性樹脂の代わりに、熱硬化性樹脂であってもよい。さらに、取付部材830aにおいて、凸状部833を構成する部分のみが熱可塑性樹脂で構成され、他の部分は、他の熱可塑性樹脂または熱硬化性樹脂で構成されていてもよい。 In the present embodiment, the through hole 822 is provided in the projecting portion 821, but instead of the through hole 822, a concave portion into which the convex portion 833 can be inserted may be provided. Also, the insulating material that constitutes a part of the magnetic sensor package 820 may be a thermosetting resin instead of the other thermoplastic resin. Furthermore, in the mounting member 830a, only the portion that constitutes the convex portion 833 may be made of a thermoplastic resin, and the other portion may be made of another thermoplastic resin or thermosetting resin.
 (実施形態9)
 以下、本発明の実施形態9に係る電流センサについて説明する。なお、実施形態9に係る電流センサは、導体と磁気センサパッケージとが互いに溶接されている点が主に、実施形態7に係る電流センサ700と異なるため、実施形態7に係る電流センサ700と同様である構成については同じ参照符号を付してその説明を繰り返さない。
(Embodiment 9)
Hereinafter, the current sensor according to Embodiment 9 of the present invention will be described. The current sensor according to the ninth embodiment differs from the current sensor 700 according to the seventh embodiment mainly in that the conductor and the magnetic sensor package are welded to each other, and thus, the same as the current sensor 700 according to the seventh embodiment. The same reference symbols are attached to the configurations that are and the description thereof will not be repeated.
 図21は、本発明の実施形態9に係る電流センサの構成を示す斜視図である。図22は、本発明の実施形態9に係る電流センサの構成を示す分解斜視図である。 FIG. 21 is a perspective view showing the configuration of a current sensor according to Embodiment 9 of the present invention. FIG. 22 is an exploded perspective view showing the configuration of the current sensor according to Embodiment 9 of the present invention.
 図21および図22に示すように、本発明の実施形態9に係る電流センサ900は、導体710と磁気センサパッケージ920とを備える。磁気センサパッケージ920は、金属板40とは電気的に絶縁され、長さ方向(X軸方向)の両側から突出した金属製の1対の突出片921を有する。突出片921は、導体710と略同一の材料で構成されている。ただし、突出片921を構成する材料は、導体710と略同一の材料に限られず、導体710と溶接可能な材料であればよい。 As shown in FIGS. 21 and 22, a current sensor 900 according to Embodiment 9 of the present invention includes a conductor 710 and a magnetic sensor package 920. The magnetic sensor package 920 is electrically insulated from the metal plate 40 and has a pair of metal projecting pieces 921 projecting from both sides in the longitudinal direction (X-axis direction). The protruding piece 921 is made of substantially the same material as the conductor 710. However, the material forming the protruding piece 921 is not limited to the material substantially the same as the conductor 710, and may be a material that can be welded to the conductor 710.
 1対の突出片921は、開口部119の長さ方向(X軸方向)の少なくとも一方の縁に接して導体710に溶接されている。突出片921と導体710との溶接部922によって、磁気センサパッケージ920が導体710に固定されている。溶接部922は、突出片921と導体710との互いの接触部の近傍に設けられている。 The pair of projecting pieces 921 is welded to the conductor 710 in contact with at least one edge in the lengthwise direction (X-axis direction) of the opening 119. The magnetic sensor package 920 is fixed to the conductor 710 by the weld 922 between the projecting piece 921 and the conductor 710. Welded portion 922 is provided in the vicinity of the contact portion between projecting piece 921 and conductor 710.
 具体的には、1対の突出片921が、導体710の開口部119に挿入されて固定されている。1対の突出片921は、開口部119の長さ方向(X軸方向)の両方の縁と、1対1で対応して互いに接触している。これにより、磁気センサパッケージ920は、導体710に対して、長さ方向(X軸方向)において位置決めされている。 Specifically, a pair of projecting pieces 921 are inserted into and fixed to the opening 119 of the conductor 710. The pair of projecting pieces 921 are in contact with each other in a one-to-one correspondence with both edges in the longitudinal direction (X-axis direction) of the opening 119. Thus, the magnetic sensor package 920 is positioned with respect to the conductor 710 in the longitudinal direction (X-axis direction).
 また、1対の突出片921は、一方の流路部711の開口部119側の側面および他方の流路部715の開口部119側の側面と、1対1で対応して互いに接触している。これにより、磁気センサパッケージ920は、導体710に対して、幅方向(Y軸方向)において位置決めされている。 In addition, the pair of projecting pieces 921 are in contact with each other in a one-to-one correspondence with the side surface on the opening 119 side of one flow passage portion 711 and the side surface on the opening 119 side of the other flow passage portion 715. There is. Thereby, the magnetic sensor package 920 is positioned with respect to the conductor 710 in the width direction (Y-axis direction).
 このように、磁気センサパッケージ920は、開口部119の長さ方向(X軸方向)の少なくとも一方の縁に接して導体710に固定されている。本実施形態においては、磁気センサパッケージ920は、導体710に直接的に取り付けられている。 Thus, the magnetic sensor package 920 is fixed to the conductor 710 in contact with at least one edge in the length direction (X-axis direction) of the opening 119. In the present embodiment, the magnetic sensor package 920 is directly attached to the conductor 710.
 本実施形態に係る電流センサ900においては、突出片921が、導体710の分流部が発熱した場合に最も変形量の小さい部分となる開口部119の長さ方向(X軸方向)の縁に接した状態で、導体710に固定されている。そのため、磁気センサパッケージ920は、導体710の発熱による変形の影響を受けにくく、位置変動が抑制されている。その結果、導体710の分流された一方の流路部711および他方の流路部715と、第1磁気センサ10および第2磁気センサ20との相対的な位置関係の変動が低減され、電流センサ900の信頼性を向上することができる。 In the current sensor 900 according to the present embodiment, the protruding piece 921 is in contact with the edge in the length direction (X-axis direction) of the opening 119 which is the portion with the smallest amount of deformation when the divided portion of the conductor 710 generates heat. In a fixed state, it is fixed to the conductor 710. Therefore, the magnetic sensor package 920 is unlikely to be affected by the deformation of the conductor 710 due to the heat generation, and the positional variation is suppressed. As a result, the fluctuation of the relative positional relationship between the first flow path portion 711 and the other flow path portion 715 divided from the conductor 710 and the first magnetic sensor 10 and the second magnetic sensor 20 is reduced, and the current sensor The reliability of 900 can be improved.
 また、導体710と突出片921とが略同一の材料で構成されていることにより、種々の溶接法によって溶接部922を形成可能である。溶接部922によって、磁気センサパッケージ920と導体710とが接合されていることにより、電流センサ900の導体710への取付信頼性を向上することができる。なお、突出片921に、高さ方向(Z軸方向)に曲がった曲部が設けられていてもよい。この場合、突出片921の曲部によって、導体710から第1磁気センサ10および第2磁気センサ20に伝達される応力を緩和することができる。また、突出片921の曲部の導体710に対する位置を測定することにより、第1磁気センサ10および第2磁気センサ20の各々の中心位置を把握することができる。 In addition, since the conductor 710 and the protruding piece 921 are made of substantially the same material, the welded portion 922 can be formed by various welding methods. The welding of the magnetic sensor package 920 and the conductor 710 by the welding portion 922 can improve the attachment reliability of the current sensor 900 to the conductor 710. Note that the projecting piece 921 may be provided with a curved portion bent in the height direction (Z-axis direction). In this case, the stress transmitted from the conductor 710 to the first magnetic sensor 10 and the second magnetic sensor 20 can be relieved by the bent portion of the protruding piece 921. In addition, by measuring the position of the bent portion of the protruding piece 921 with respect to the conductor 710, the central position of each of the first magnetic sensor 10 and the second magnetic sensor 20 can be grasped.
 (実施形態10)
 以下、本発明の実施形態10に係る電流センサについて説明する。なお、実施形態10に係る電流センサは、導体と磁気センサパッケージとがインサートモールドされている点が主に、実施形態7に係る電流センサ700と異なるため、実施形態7に係る電流センサ700と同様である構成については同じ参照符号を付してその説明を繰り返さない。
(Embodiment 10)
Hereinafter, the current sensor according to Embodiment 10 of the present invention will be described. The current sensor according to the tenth embodiment differs from the current sensor 700 according to the seventh embodiment mainly in that the conductor and the magnetic sensor package are insert-molded, and thus the same as the current sensor 700 according to the seventh embodiment. The same reference symbols are attached to the configurations that are and the description thereof will not be repeated.
 図23は、本発明の実施形態10に係る電流センサの構成を示す斜視図である。図24は、図23の電流センサをXXIV-XXIV線矢印方向から見た断面図である。 FIG. 23 is a perspective view showing the configuration of a current sensor according to Embodiment 10 of the present invention. FIG. 24 is a cross-sectional view of the current sensor of FIG. 23 as viewed in the arrow direction of arrows XXIV-XXIV.
 図23および図24に示すように、本発明の実施形態10に係る電流センサ1000は、導体710と磁気センサパッケージ120とを備える。導体710と磁気センサパッケージ120とは、インサートモールドされることにより、モールド樹脂1010によって一体化されている。 As shown in FIGS. 23 and 24, the current sensor 1000 according to the tenth embodiment of the present invention includes a conductor 710 and a magnetic sensor package 120. The conductor 710 and the magnetic sensor package 120 are integrated by the mold resin 1010 by being insert-molded.
 モールド樹脂1010は、導体710の分流部の全体を覆っている。具体的には、一方の流路部711、他方の流路部715、開口部119、および、一方の流路部711と他方の流路部715とによって形成される空間に挿入されている部分の磁気センサパッケージ120が、モールド樹脂1010によって覆われている。モールド樹脂1010としては、エポキシ樹脂などの熱硬化性樹脂またはポリフェニレンサルファイド樹脂などの熱可塑性樹脂を用いることができる。熱硬化性樹脂には、シリカフィラーなどの添加材が添加されていてもよい。 The mold resin 1010 covers the entire diverted portion of the conductor 710. Specifically, a portion inserted in a space formed by one flow passage portion 711, the other flow passage portion 715, the opening portion 119, and one flow passage portion 711 and the other flow passage portion 715. The magnetic sensor package 120 is covered by a mold resin 1010. As the mold resin 1010, thermosetting resin such as epoxy resin or thermoplastic resin such as polyphenylene sulfide resin can be used. An additive such as a silica filler may be added to the thermosetting resin.
 本実施形態に係る電流センサ1000においては、一方の流路部711と他方の流路部715とによって形成される空間内に配置されている磁気センサパッケージ120がモールド樹脂1010の覆われていることにより、導体710が発熱した際の磁気センサパッケージ120の内部の温度が均一化される。これにより、第1磁気センサ10の周囲の温度と第2磁気センサ20の周囲の温度との差を小さくすることができる。その結果、第1磁気センサ10および第2磁気センサ20の各々が有する磁気抵抗素子の温度特性による電流センサ1000の測定誤差を低減することができる。 In the current sensor 1000 according to the present embodiment, the magnetic sensor package 120 disposed in the space formed by one flow passage portion 711 and the other flow passage portion 715 is covered with the mold resin 1010. Thus, the temperature inside the magnetic sensor package 120 when the conductor 710 generates heat is made uniform. Thereby, the difference between the temperature around the first magnetic sensor 10 and the temperature around the second magnetic sensor 20 can be reduced. As a result, it is possible to reduce the measurement error of the current sensor 1000 due to the temperature characteristic of the magnetoresistive element that each of the first magnetic sensor 10 and the second magnetic sensor 20 has.
 なお、モールド樹脂1010は、導体710の分流部の全体を覆っていなくてもよい。図25は、本発明の実施形態10の変形例に係る電流センサの構成を示す斜視図である。本発明の実施形態10の変形例に係る電流センサは、モールド樹脂の配置のみ本発明の実施形態10に係る電流センサ1000と異なるため、本発明の実施形態10に係る電流センサ1000と同様である構成については、説明を繰り返さない。 The mold resin 1010 may not cover the entire part of the diverted portion of the conductor 710. FIG. 25 is a perspective view showing the configuration of a current sensor according to a modification of Embodiment 10 of the present invention. The current sensor according to the modification of the tenth embodiment of the present invention is the same as the current sensor 1000 according to the tenth embodiment of the present invention because it is different from the current sensor 1000 according to the tenth embodiment of the present invention. Description of the configuration will not be repeated.
 図25は、本発明の実施形態10の変形例に係る電流センサの構成を示す斜視図である。図25に示すように、本発明の実施形態10の変形例に係る電流センサ1000aは、導体710と磁気センサパッケージ120とを備える。導体710と磁気センサパッケージ120とは、インサートモールドされることにより、モールド樹脂1010aによって一体化されている。 FIG. 25 is a perspective view showing the configuration of a current sensor according to a modification of Embodiment 10 of the present invention. As shown in FIG. 25, a current sensor 1000 a according to a modification of Embodiment 10 of the present invention includes a conductor 710 and a magnetic sensor package 120. The conductor 710 and the magnetic sensor package 120 are integrated by the mold resin 1010 a by being insert-molded.
 モールド樹脂1010aは、開口部119の長さ方向(X軸方向)の少なくとも一方の縁に接して導体710と一体に成形されている。モールド樹脂1010aは、一方の流路部711の延在部714および他方の流路部715の延在部718とは接触していない。モールド樹脂1010aは、磁気センサパッケージ120と一体に成形されている。これにより、磁気センサパッケージ120が、モールド樹脂1010aを介して導体710に間接的に取り付けられている。 The mold resin 1010 a is formed integrally with the conductor 710 in contact with at least one edge in the lengthwise direction (X-axis direction) of the opening 119. The mold resin 1010 a is not in contact with the extension portion 714 of one flow passage portion 711 and the extension portion 718 of the other flow passage portion 715. The mold resin 1010 a is integrally molded with the magnetic sensor package 120. Thereby, the magnetic sensor package 120 is indirectly attached to the conductor 710 via the mold resin 1010a.
 本実施形態に係る電流センサ1000においては、モールド樹脂1010aが、導体710の分流部が発熱した場合に最も変形量の小さい部分となる開口部119の長さ方向(X軸方向)の縁と、磁気センサパッケージ120とを接合しているため、磁気センサパッケージ120は導体710の発熱による変形の影響を受けにくく、位置変動が抑制されている。その結果、導体710の分流された一方の流路部711および他方の流路部715と、第1磁気センサ10および第2磁気センサ20との相対的な位置関係の変動が低減され、電流センサ1000aの信頼性を向上することができる。 In the current sensor 1000 according to the present embodiment, the mold resin 1010a has an edge in the length direction (X-axis direction) of the opening 119 which is the portion with the smallest amount of deformation when the divided portion of the conductor 710 generates heat. Since the magnetic sensor package 120 is joined to the magnetic sensor package 120, the magnetic sensor package 120 is less susceptible to the deformation due to the heat generation of the conductor 710, and the positional variation is suppressed. As a result, the fluctuation of the relative positional relationship between the first flow path portion 711 and the other flow path portion 715 divided from the conductor 710 and the first magnetic sensor 10 and the second magnetic sensor 20 is reduced, and the current sensor The reliability of 1000a can be improved.
 (実施形態11)
 以下、本発明の実施形態11に係る電流センサについて説明する。なお、実施形態11に係る電流センサは、磁気センサパッケージが接着剤によって導体の開口部に固定されている点が主に、実施形態7に係る電流センサ700と異なるため、実施形態7に係る電流センサ700と同様である構成については同じ参照符号を付してその説明を繰り返さない。
(Embodiment 11)
Hereinafter, a current sensor according to Embodiment 11 of the present invention will be described. The current sensor according to the eleventh embodiment differs from the current sensor 700 according to the seventh embodiment mainly in that the magnetic sensor package is fixed to the opening of the conductor by the adhesive, and the current according to the seventh embodiment. The same components as those of sensor 700 are denoted by the same reference numerals, and the description thereof will not be repeated.
 図26は、本発明の実施形態11に係る電流センサの構成を示す斜視図である。図26に示すように、本発明の実施形態11に係る電流センサ1100は、導体710と磁気センサパッケージ120とを備える。導体710と磁気センサパッケージ120とは、接着剤1110によって一体にされている。 FIG. 26 is a perspective view showing a configuration of a current sensor according to Embodiment 11 of the present invention. As shown in FIG. 26, the current sensor 1100 according to Embodiment 11 of the present invention includes a conductor 710 and a magnetic sensor package 120. The conductor 710 and the magnetic sensor package 120 are integrated by an adhesive 1110.
 接着剤1110は、開口部119の長さ方向(X軸方向)の少なくとも一方の縁に接するように、導体110の開口部119内に塗布されている。接着剤1110としては、エポキシ系などの熱硬化型接着剤を用いることができる。 The adhesive 1110 is applied in the opening 119 of the conductor 110 so as to be in contact with at least one edge in the longitudinal direction (X-axis direction) of the opening 119. As the adhesive 1110, a thermosetting adhesive such as epoxy can be used.
 本実施形態に係る電流センサ1100においては、接着剤1110が、導体710の分流部が発熱した場合に最も変形量の小さい部分となる開口部119の長さ方向(X軸方向)の縁と、磁気センサパッケージ120とを接合しているため、磁気センサパッケージ120は導体710の発熱による変形の影響を受けにくく、位置変動が抑制されている。その結果、導体710の分流された一方の流路部711および他方の流路部715と、第1磁気センサ10および第2磁気センサ20との相対的な位置関係の変動が低減され、電流センサ1100の信頼性を向上することができる。 In the current sensor 1100 according to the present embodiment, the adhesive 1110 has an edge in the length direction (X-axis direction) of the opening 119 which is the portion with the smallest amount of deformation when the branched portion of the conductor 710 generates heat. Since the magnetic sensor package 120 is joined to the magnetic sensor package 120, the magnetic sensor package 120 is less susceptible to the deformation due to the heat generation of the conductor 710, and the positional variation is suppressed. As a result, the fluctuation of the relative positional relationship between the first flow path portion 711 and the other flow path portion 715 divided from the conductor 710 and the first magnetic sensor 10 and the second magnetic sensor 20 is reduced, and the current sensor The reliability of 1100 can be improved.
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。 In the description of the above-described embodiments, the combinations of combinations may be combined with each other.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
 1C 第1磁気センサチップ、1L,2L,3L,4L,5L 配線、1T 第1電極、2C 第2磁気センサチップ、2T 第2電極、3C 磁気センサチップ、10 第1磁気センサ、20 第2磁気センサ、30 信号処理回路、30T 第3電極、40 金属板、50 外部出力端子、51 第1外部出力端子、52 第2外部出力端子、53 第3外部出力端子、54 第4外部出力端子、60 温度センサ、70 受動回路、80,80a 静電シールド、81 平面部、82 周面部、82a 脚部、90 バイアス磁石、100,100a,700,700a,700b,700c,800,800a,900,1000,1000a,1100 電流センサ、110,110a,710,710a,710b,710c 導体、111,111a,115,115a,711,711b,715,715b,715c 流路部、119 開口部、120,220,320,420,520,520a,620,820,920 磁気センサパッケージ、121 絶縁性材料、710ah,710bh,710ch,710h 領域、712 第1突出部、713 第2突出部、713b,716b 曲折部、714,714b,718,718b,718c 延在部、716,716c 第3突出部、717 第4突出部、821 突出部、822 貫通孔、830,830a 取付部材、831 基部、832 係合部、833 凸状部、921 突出片、922 溶接部、1010,1010a モールド樹脂、1110 接着剤。 1C first magnetic sensor chip, 1L, 2L, 3L, 4L, 5L wiring, 1T first electrode, 2C second magnetic sensor chip, 2T second electrode, 3C magnetic sensor chip, 10 first magnetic sensor, 20 second magnetic Sensor, 30 signal processing circuit, 30T third electrode, 40 metal plate, 50 external output terminal, 51 first external output terminal, 52 second external output terminal, 53 third external output terminal, 54 fourth external output terminal, 60 Temperature sensor, 70 passive circuit, 80, 80a electrostatic shield, 81 flat surface, 82 circumferential surface, 82a leg, 90 bias magnet, 100, 100a, 700, 700a, 700b, 700c, 800, 800a, 900, 1000, 1000a, 1100 current sensors, 110, 110a, 710, 710a, 710b, 710c Conductor, 111, 111a, 115, 115a, 711, 711b, 715, 715b, 715c, flow path, 119 opening, 120, 220, 320, 420, 520, 520, 520a, 620, 820, 920 Magnetic sensor package, 121 insulation Material, 710 ah, 710 bh, 710 ch, 710 h area, 712 first protrusion, 713 second protrusion, 713 b, 716 b bent, 714, 714 b, 718, 718 b, 718 c extension, 716, 716 c third protrusion , 717 fourth projecting portion, 821 projecting portion, 822 through hole, 830, 830a mounting member, 831 base, 832 engaging portion, 833 projecting portion, 921 projecting piece, 922 welded portion, 1010, 1010a molded resin, 1110 bonding Agent.

Claims (12)

  1.  測定対象の電流が流れる導体と、
     前記電流により発生する磁界の強さを検出する複数の磁気センサ、前記複数の磁気センサから出力された信号を処理する信号処理回路、および、金属板を含む、磁気センサパッケージとを備え、
     前記複数の磁気センサ、前記信号処理回路および前記金属板は、絶縁性材料で覆われており、
     前記複数の磁気センサおよび前記信号処理回路は、前記金属板に搭載されている、電流センサ。
    A conductor through which the current to be measured flows,
    A plurality of magnetic sensors for detecting the strength of a magnetic field generated by the current, a signal processing circuit for processing signals output from the plurality of magnetic sensors, and a magnetic sensor package including a metal plate,
    The plurality of magnetic sensors, the signal processing circuit, and the metal plate are covered with an insulating material,
    The current sensor, wherein the plurality of magnetic sensors and the signal processing circuit are mounted on the metal plate.
  2.  前記複数の磁気センサは、1つの磁気センサチップに形成されている、請求項1に記載の電流センサ。 The current sensor according to claim 1, wherein the plurality of magnetic sensors are formed in one magnetic sensor chip.
  3.  前記信号処理回路には、前記磁気センサパッケージの内部の温度を測定する温度センサが組み込まれており、
     前記信号処理回路は、前記複数の磁気センサから出力された信号を、前記温度センサの測定結果に基づいて補正して処理する、請求項1または請求項2に記載の電流センサ。
    The signal processing circuit incorporates a temperature sensor for measuring the temperature inside the magnetic sensor package,
    The current sensor according to claim 1, wherein the signal processing circuit corrects and processes signals output from the plurality of magnetic sensors based on measurement results of the temperature sensor.
  4.  前記磁気センサパッケージは、前記信号処理回路と電気的に接続された複数の外部出力端子をさらに含み、
     前記金属板の一部は、前記複数の外部出力端子のうちの少なくとも1つの外部出力端子を構成する、請求項1から請求項3のいずれか1項に記載の電流センサ。
    The magnetic sensor package further includes a plurality of external output terminals electrically connected to the signal processing circuit,
    The current sensor according to any one of claims 1 to 3, wherein a part of the metal plate constitutes at least one external output terminal of the plurality of external output terminals.
  5.  前記磁気センサパッケージは、前記信号処理回路と電気的に接続された受動回路をさらに含み、
     前記複数の外部出力端子は、前記受動回路を通じて前記信号処理回路と電気的に接続されており、
     前記受動回路は、前記金属板に搭載されており、前記絶縁性材料で覆われている、請求項4に記載の電流センサ。
    The magnetic sensor package further includes a passive circuit electrically connected to the signal processing circuit,
    The plurality of external output terminals are electrically connected to the signal processing circuit through the passive circuit,
    The current sensor according to claim 4, wherein the passive circuit is mounted on the metal plate and covered with the insulating material.
  6.  前記磁気センサパッケージは、静電シールドをさらに含み、
     前記静電シールドは、前記金属板に電気的に接続されており、前記絶縁性材料で覆われており、
     前記複数の磁気センサおよび前記信号処理回路は、前記金属板と前記静電シールドとの間に挟まれた領域に位置している、請求項1から請求項5のいずれか1項に記載の電流センサ。
    The magnetic sensor package further includes an electrostatic shield,
    The electrostatic shield is electrically connected to the metal plate and covered with the insulating material,
    The current according to any one of claims 1 to 5, wherein the plurality of magnetic sensors and the signal processing circuit are located in a region sandwiched between the metal plate and the electrostatic shield. Sensor.
  7.  前記磁気センサパッケージは、前記複数の磁気センサを互いの間に位置させてバイアス磁界を印加する少なくとも1つのバイアス磁石をさらに含み、
     前記少なくとも1つのバイアス磁石は、前記金属板に搭載されており、前記絶縁性材料で覆われている、請求項1から請求項6のいずれか1項に記載の電流センサ。
    The magnetic sensor package further includes at least one bias magnet for positioning the plurality of magnetic sensors between each other to apply a bias magnetic field,
    The current sensor according to any one of claims 1 to 6, wherein the at least one bias magnet is mounted on the metal plate and covered with the insulating material.
  8.  前記導体は、表面および裏面を含み、長さ方向、該長さ方向と直交する幅方向、および、前記長さ方向と前記幅方向とに直交する厚さ方向を有する板状の形状を有し、かつ、前記長さ方向における途中で、前記電流が分流されて流れる一方の流路部および他方の流路部を含み、
     前記他方の流路部は、前記幅方向において、前記一方の流路部と並んで位置し、
     前記幅方向から見て、前記一方の流路部と前記他方の流路部とによって囲まれた領域が形成されており、
     前記複数の磁気センサは、前記幅方向から見て、前記領域の内部に位置し、かつ、前記厚さ方向から見て、前記幅方向における前記一方の流路部の一端から前記他方の流路部の他端までの範囲内に位置している、請求項1から請求項7のいずれか1項に記載の電流センサ。
    The conductor includes a front surface and a rear surface, and has a plate shape having a length direction, a width direction orthogonal to the length direction, and a thickness direction orthogonal to the length direction and the width direction. And, on the way along the length direction, it includes one flow passage portion and the other flow passage portion where the current is divided and flows.
    The other flow passage portion is located in line with the one flow passage portion in the width direction,
    When viewed in the width direction, a region surrounded by the one flow passage portion and the other flow passage portion is formed,
    The plurality of magnetic sensors are located inside the region when viewed in the width direction, and viewed from the thickness direction, from one end of the one flow path portion in the width direction to the other flow path The current sensor according to any one of claims 1 to 7, which is located in the range to the other end of the part.
  9.  前記導体は、前記一方の流路部と前記他方の流路部との間に、前記長さ方向に延在する開口部が設けられており、
     前記磁気センサパッケージは、前記開口部の縁の少なくとも一部に接して前記導体に固定されている、請求項8に記載の電流センサ。
    The conductor is provided with an opening extending in the longitudinal direction between the one flow passage and the other flow passage,
    The current sensor according to claim 8, wherein the magnetic sensor package is fixed to the conductor in contact with at least a part of an edge of the opening.
  10.  前記磁気センサパッケージは、前記金属板とは電気的に絶縁された金属製の突出片をさらに含み、
     前記突出片は、前記開口部の前記長さ方向の少なくとも一方の縁に接して前記導体に溶接されており、
     前記突出片と前記導体との溶接部によって、前記磁気センサパッケージが前記導体に固定されている、請求項9に記載の電流センサ。
    The magnetic sensor package further includes a metal projection piece electrically insulated from the metal plate,
    The projecting piece is welded to the conductor in contact with at least one edge of the opening in the lengthwise direction,
    The current sensor according to claim 9, wherein the magnetic sensor package is fixed to the conductor by a weld between the projecting piece and the conductor.
  11.  前記導体に固定され、前記磁気センサパッケージと接続された取付部材をさらに備え、
     前記取付部材は、前記開口部の前記長さ方向の少なくとも一方の縁に接して前記導体に固定されている、請求項9項に記載の電流センサ。
    And a mounting member fixed to the conductor and connected to the magnetic sensor package,
    The current sensor according to claim 9, wherein the attachment member is fixed to the conductor in contact with at least one edge in the longitudinal direction of the opening.
  12.  前記取付部材と前記磁気センサパッケージとは、互いに溶着されている、請求項11に記載の電流センサ。 The current sensor according to claim 11, wherein the mounting member and the magnetic sensor package are welded to each other.
PCT/JP2018/009178 2017-08-21 2018-03-09 Current sensor WO2019038964A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880053907.0A CN111033276B (en) 2017-08-21 2018-03-09 Current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-158664 2017-08-21
JP2017158664 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019038964A1 true WO2019038964A1 (en) 2019-02-28

Family

ID=65438661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009178 WO2019038964A1 (en) 2017-08-21 2018-03-09 Current sensor

Country Status (2)

Country Link
CN (1) CN111033276B (en)
WO (1) WO2019038964A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047883B2 (en) 2018-12-12 2021-06-29 Melexis Technologies Sa Current sensor
EP3974846A1 (en) * 2020-09-25 2022-03-30 Melexis Technologies SA Current sensor device
EP3992653A1 (en) * 2020-10-31 2022-05-04 Melexis Technologies SA Current sensing system
EP4063872A1 (en) * 2021-03-22 2022-09-28 Allegro MicroSystems, LLC Differential current sensor package

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264860A (en) * 2021-12-21 2022-04-01 江苏多维科技有限公司 Step type copper bar current detection device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853165U (en) * 1981-10-05 1983-04-11 株式会社田村電機製作所 Electrostatic breakdown prevention structure of Hall IC
JPH02139980A (en) * 1988-11-19 1990-05-29 Midori Sokki:Kk Magnetoresistance device with built-in static shield
US5041780A (en) * 1988-09-13 1991-08-20 California Institute Of Technology Integrable current sensors
JPH05273321A (en) * 1992-03-30 1993-10-22 Fujitsu Ltd Current sensor
JP2003004771A (en) * 2001-06-15 2003-01-08 Sanken Electric Co Ltd Current detecting device having hall element
JP2008039734A (en) * 2006-08-10 2008-02-21 Koshin Denki Kk Current sensor
JP2013242301A (en) * 2012-04-23 2013-12-05 Denso Corp Current sensor
US20160033557A1 (en) * 2014-08-04 2016-02-04 Hyundai Mobis Co., Ltd. Assembly of current sensor and power conductor
WO2017010210A1 (en) * 2015-07-15 2017-01-19 株式会社村田製作所 Electric current sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798191B2 (en) * 2008-09-02 2011-10-19 株式会社村田製作所 Magnetic sensor device
WO2011111648A1 (en) * 2010-03-12 2011-09-15 アルプス電気株式会社 Magnetism sensor and magnetic-balance current sensor using same
WO2012029438A1 (en) * 2010-08-31 2012-03-08 アルプス・グリーンデバイス株式会社 Current sensor
CN104054252B (en) * 2012-03-22 2016-08-24 富士电机株式会社 Power conversion device
EP2995962A4 (en) * 2013-05-10 2017-01-18 Murata Manufacturing Co., Ltd. Magnetic current sensor and current measurement method
WO2015033541A1 (en) * 2013-09-05 2015-03-12 旭化成エレクトロニクス株式会社 Current sensor
JP6011552B2 (en) * 2014-01-08 2016-10-19 三菱マテリアル株式会社 Power module substrate with heat sink and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853165U (en) * 1981-10-05 1983-04-11 株式会社田村電機製作所 Electrostatic breakdown prevention structure of Hall IC
US5041780A (en) * 1988-09-13 1991-08-20 California Institute Of Technology Integrable current sensors
JPH02139980A (en) * 1988-11-19 1990-05-29 Midori Sokki:Kk Magnetoresistance device with built-in static shield
JPH05273321A (en) * 1992-03-30 1993-10-22 Fujitsu Ltd Current sensor
JP2003004771A (en) * 2001-06-15 2003-01-08 Sanken Electric Co Ltd Current detecting device having hall element
JP2008039734A (en) * 2006-08-10 2008-02-21 Koshin Denki Kk Current sensor
JP2013242301A (en) * 2012-04-23 2013-12-05 Denso Corp Current sensor
US20160033557A1 (en) * 2014-08-04 2016-02-04 Hyundai Mobis Co., Ltd. Assembly of current sensor and power conductor
WO2017010210A1 (en) * 2015-07-15 2017-01-19 株式会社村田製作所 Electric current sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047883B2 (en) 2018-12-12 2021-06-29 Melexis Technologies Sa Current sensor
US11422163B2 (en) 2018-12-12 2022-08-23 Melexis Technologies Sa Current sensor
EP3974846A1 (en) * 2020-09-25 2022-03-30 Melexis Technologies SA Current sensor device
US11531046B2 (en) 2020-09-25 2022-12-20 Melexis Technologies Sa Current sensor device
US11927606B2 (en) 2020-09-25 2024-03-12 Melexis Technologies Sa Current sensor device
EP3992653A1 (en) * 2020-10-31 2022-05-04 Melexis Technologies SA Current sensing system
US11796572B2 (en) 2020-10-31 2023-10-24 Melexis Technologies Sa Current sensing system
EP4063872A1 (en) * 2021-03-22 2022-09-28 Allegro MicroSystems, LLC Differential current sensor package

Also Published As

Publication number Publication date
CN111033276B (en) 2022-02-22
CN111033276A (en) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2019038964A1 (en) Current sensor
CN107533089B (en) Current sensor
CN107250813B (en) Current sensor
JP3896590B2 (en) Current detector
US9714959B2 (en) Current sensor and electronic device incorporating the same
JP6555387B2 (en) Current sensor
JP6335159B2 (en) Integrated circuit package with split leadframe
WO2007102465A1 (en) Magnetic sensor device, magnetic encoder device, and magnetic scale manufacturing method
US9170283B2 (en) Current detector
JP6504260B2 (en) Current sensor and power converter including the same
US10267825B2 (en) Current sensor including a housing surrounded by bent portions of primary conductors
JP2013242301A (en) Current sensor
WO2018092337A1 (en) Current sensor
WO2017010210A1 (en) Electric current sensor
JP5704352B2 (en) Current sensor
JP2013024674A (en) Magnetic sensor
WO2022030177A1 (en) Electric current sensor
JP2013015358A (en) Current sensor
WO2013114943A1 (en) Current detection device and magnetic core
WO2019035230A1 (en) Current sensor
JP2013008846A (en) Sensor
JP2014106065A (en) Current sensor and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP