WO2019035279A1 - Artificial intelligence algorithm - Google Patents

Artificial intelligence algorithm Download PDF

Info

Publication number
WO2019035279A1
WO2019035279A1 PCT/JP2018/023934 JP2018023934W WO2019035279A1 WO 2019035279 A1 WO2019035279 A1 WO 2019035279A1 JP 2018023934 W JP2018023934 W JP 2018023934W WO 2019035279 A1 WO2019035279 A1 WO 2019035279A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial intelligence
sensor node
sensor
kernel
input data
Prior art date
Application number
PCT/JP2018/023934
Other languages
French (fr)
Japanese (ja)
Inventor
義範 宮前
光治 谷内
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2019536436A priority Critical patent/JP7012086B2/en
Publication of WO2019035279A1 publication Critical patent/WO2019035279A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the invention disclosed herein relates to artificial intelligence algorithms.
  • a nonpatent literature 1 and a nonpatent literature 2 can be mentioned, for example.
  • abnormality detection of the monitoring target device is performed by collecting and analyzing measurement data of the sensor node by the server. Therefore, the amount of communication exchanged between the sensor node and the server is very large, which has been a factor that hinders the introduction of the system.
  • the invention disclosed herein has an easy-to-install machine health monitoring system, a sensor node used therefor, an artificial intelligence chip, And, it aims at providing an artificial intelligence algorithm.
  • the artificial intelligence algorithm disclosed in the present specification generates a feature vector by extracting feature quantities for each frequency band from input data using a plurality of band pass filters connected in parallel; Determining a value of a kernel function using the feature vector and the support vector (first configuration).
  • the artificial intelligence algorithm according to the first configuration may be configured (second configuration) to further include a step of detecting abnormality of the input data from the value of the kernel function.
  • the input data may be vibration data (third configuration).
  • the kernel function is a linear kernel, a Gaussian kernel, or a RBF [radial base function] kernel (fourth configuration) Good.
  • the artificial intelligence chip disclosed in the present specification generates a feature vector by extracting feature quantities for each frequency band from input data using a plurality of band pass filters connected in parallel.
  • a configuration includes a processing unit and a classifier for obtaining a value of a kernel function using the feature vector and the support vector.
  • the artificial intelligence chip having the fifth configuration further includes a post-processing unit (a sixth configuration) for detecting an abnormality of the input data from the value of the kernel function.
  • a post-processing unit for detecting an abnormality of the input data from the value of the kernel function.
  • the classifier may be a configuration (seventh configuration) that is an OCSVM [one class support vector machine] configured by hardware.
  • a sensor node disclosed in the present specification includes: a sensor; an artificial intelligence chip having any of the fifth to seventh configurations for receiving the input data from the sensor; the artificial intelligence chip and the server And a communication unit that performs wireless communication among the above (eighth configuration).
  • the sensor may be a vibration sensor (ninth configuration).
  • the sensor node having the eighth or ninth configuration includes an environmental power generation unit, a storage unit for storing power generated by the environmental power generation unit, and each unit of the sensor node using the generated power or stored power of the storage unit. And a power management unit for supplying power to the circuit (10th configuration).
  • the machine health monitoring system disclosed in the present specification includes a sensor node having the above-described tenth configuration attached to a monitoring target device, and a server that receives an abnormality flag from the sensor node (a 11)).
  • the server may be configured (12th configuration) to receive an abnormal flag from the sensor node and report an abnormal state.
  • a diagram showing an exemplary configuration of an artificial intelligence chip A diagram showing an example of the configuration of a kernel arithmetic processing unit
  • AI-SNP artificial intelligence-sensor node processor
  • FIG. 1 and FIG. 2 are diagrams each showing an example of a facility maintenance method in a factory.
  • TBM method repair or replacement is performed when the operation time of the device meets a predetermined standard.
  • CBM condition-based-maintenance
  • FIG. 3 is a view showing problems when adopting a Wi-SUN [wireless smart utility network] as a wireless module of the sensor node.
  • Wi-SUN wireless smart utility network
  • IIoT infrared thermometer
  • the transmission data amount is It becomes 60 kB / s in X axis, Y axis, Z axis). This is a considerably large value compared to the communication bandwidth of Wi-SUN (100 kbps ⁇ 12.5 kB / s).
  • Wi-SUN 100 kbps ⁇ 12.5 kB / s.
  • the power consumption of the wireless module must be dramatically reduced.
  • the AI-SNP disclosed herein it is possible to provide a very useful machine health monitoring system deployment method that does not require additional wiring and batteries, and thus, It will be possible to dramatically accelerate the new and old devices IIoT around the world.
  • AI-SNPs for machine health monitoring systems and artificial intelligence algorithms (hereinafter referred to as AI algorithms) implemented therein will be described.
  • AI algorithms artificial intelligence algorithms
  • the applicant continues to study AI algorithms for machine health monitoring systems using open data and real data from their own factories.
  • the applicant of the present application has obtained not only a knowledge of the AI algorithm but also a lot of knowledge of data collection know-how.
  • OCSVM one class support vector machine
  • spiking neural network or convolutional neural network
  • convolutional neural network As the AI algorithm, one class support vector machine (hereinafter referred to as OCSVM [one class support vector machine]), spiking neural network, or convolutional neural network are known, and the options are not limited at all. It is not a thing.
  • OCSVM one class support vector machine
  • spiking neural network or convolutional neural network
  • convolutional neural network convolutional neural network
  • the artificial intelligence chip 10 (hereinafter referred to as an AI chip 10) of this configuration example is a semiconductor chip capable of executing an AI algorithm based on input data (such as vibration data and temperature data) from a sensor. And a pre-processing unit 11, a classifier 12, and a post-processing unit 13.
  • the AI chip 10 is required to have low power consumption and a small area to the extent that it can be mounted on a sensor node.
  • the above-mentioned AI algorithm is designed to realize functions such as abnormality diagnosis, toolware evaluation, or life expectancy of a monitoring target device.
  • a preprocessing unit (pre-processor) 11 extracts feature quantities for each frequency band from input data (for example, raw vibration data obtained by a vibration sensor) using a plurality of band pass filters connected in parallel. By doing this, a feature vector is generated.
  • a feature vector is generated.
  • the above-mentioned feature quantity for example, after acquiring FFT [fast Fourier transform] amplitude of a frequency spectrum every 50 Hz from 1 Hz to 20 kHz (200 dim), respective root mean square (RMS [root mean square] ) Should be calculated.
  • a classifier 12 uses a feature vector input from the pre-processing unit 11 and a support vector stored in advance, and uses a kernel function (eg, linear kernel, Gaussian kernel, or RBF [radial base function] Find the kernel) value.
  • a kernel function eg, linear kernel, Gaussian kernel, or RBF [radial base function] Find the kernel
  • OCSVM configured by hardware.
  • the support vector for example, input data less than 33 hours after the monitoring target device starts operation may be used for learning, and a hyperplane for OK / NG determination may be created.
  • the AI algorithm described above is implemented using the preprocessing unit 11, the classifier 12, and the post-processing unit 13.
  • OCSVM used as the classifier 12 is a kind of support vector machine, and is a lightweight and practical AI algorithm by unsupervised learning. OCSVM detects one class problem on one piece of software and is not similar to the machine health monitoring system. The reason is that OCSVM itself is poor in affinity with complex and high-speed time-series data.
  • an AI chip 10 in which the application of OCSVM is possible by applying a simple pre-processing as compared to the conventional method.
  • raw input data is simply processed using only FFT calculation in order to obtain feature quantities (RMS of the frequency spectrum obtained from 1 Hz to 20 kHz every 50 Hz from 1 Hz to 20 kHz).
  • RMS feature quantities
  • the classifier 12 is a simple OCSVM using the kernel method.
  • the kernel function as described above, it is possible to select a linear kernel, a Gaussian kernel, an RBF kernel or the like. For example, if an RBF kernel can be selected, the AI algorithm by OCSVM becomes powerful. However, in order to do so, an additional function circuit (logarithmic calculation circuit) is required, so that point needs to be noted.
  • the classifier 12 (especially its kernel operation processing unit) is configured using an adder and a multiplier will be described.
  • many small-scale analog PEs are used to reduce AD / DA [analog-to-digital / digital-to-analog] and eliminate high-speed clock. It is desirable to arrange [processing engine] so that computing units and memories have an analog structure.
  • FIG. 5 is a diagram showing an example of the monitoring target device (here, a milling machine).
  • the milling machine 210 of this figure has a motor 211 and bearings 212 to 215.
  • An accelerometer 216 and a thermocouple 217 are attached to the bearings 212 to 215, respectively.
  • a sensor node mounted with the above-described AI chip 10 constantly measures vibration generated during operation of the milling machine 210 to determine whether or not an abnormality occurs in the bearing.
  • FIG. 6 is a diagram showing a contrast example of the anomaly detection operation by new and old AI algorithms (each represented as “light” algorithm and “heavy” algorithm in the figure).
  • waveforms one hour and 88 hours after
  • the new AI algorithm is depicted.
  • the vertical axis indicates the distance to the hyperplane
  • the horizontal axis indicates the operation time.
  • a time chart showing an abnormality detection operation by the old AI algorithm is depicted.
  • the waveforms of the vibration data obtained at the sensor node are almost identical in appearance both after one hour and after 88 hours.
  • an abnormality determination operation is performed on such vibration data by the new AI algorithm, an abnormality can be detected when the operating time of the milling machine 210 reaches 88 hours.
  • the above-mentioned abnormality determination operation is extremely useful in knowing the sign of failure.
  • an abnormality is first detected after 88 hours from the start of operation, and an abnormality is completely detected after 91 hours.
  • the adoption of the new AI algorithm reduces the operation load compared to the old AI algorithm, and at the same or higher accuracy than this, the abnormality of the monitoring target device It is possible to detect Therefore, it can be said that the new AI algorithm is suitable for implementation in a sensor node requiring low power consumption and area saving.
  • one class (u) -SVM (OCSVM) using a band pass filter (BPF) can be adopted as an AI algorithm for performing an abnormality detection operation.
  • OCSVM is known as an unsupervised anomaly detection method.
  • (u) is introduced to clarify the upper limit value of the margin error and the lower limit value of the ratio of the support vector to all the vectors.
  • the BPF is a means for simply obtaining frequency information without performing a high load FFT operation for the AI chip 10.
  • FIG. 7 is a view showing an example of the configuration of the AI chip 10 (a configuration without the post-processing unit 13).
  • the preprocessing unit 11 includes a plurality of band pass filters 11 a connected in parallel.
  • the classifier 12 includes a support vector storage unit 12 a and a kernel operation processing unit 12 b.
  • the band pass filter 11a is operated. These band pass filters 11a output feature values x 0 to x k , respectively.
  • the preprocessing unit 11 generates a feature vector X (x 0 , x 1 ,..., X k ) having the feature values x 0 to x k as elements, and outputs the feature vector to the classifier 12.
  • the vector X n is stored.
  • the above function value f (X) is checked to determine whether the abnormal state should be transmitted to the server.
  • FIG. 8 is a diagram showing an example of the configuration of the kernel arithmetic processing unit 12b.
  • the kernel arithmetic processing unit 12b of this configuration example includes a plurality of vector operators b10 and an adder b20.
  • the adder b20 generates a function value f (X) by adding together a plurality of function values ⁇ i K (X, X i ).
  • FIG. 9 is a diagram showing an exemplary configuration of the vector computing unit b10.
  • the vector computing unit b10 of this configuration example includes a kernel computing unit b11 and a multiplier b12.
  • the kernel computing unit b11 receives the input of the feature vector X and the support vector X i , and generates a function value K (X, X i ) using a predetermined kernel function K.
  • kernel function K such as linear kernel, Gaussian kernel, or RBF kernel.
  • the linear kernel is a simple multiplication of the feature vector X and the support vector Xi, and can be implemented on the AI chip 10 with a very simple hardware configuration.
  • the RBF kernel can freely define the boundary of the OK / NG determination.
  • the following equations (3a) to (3c) are arithmetic equations of linear kernel, Gaussian kernel, and RBF kernel, respectively.
  • the multiplier b12 generates a function value ⁇ i K (X, X i ) by multiplying the function value K (X, X i ) by the coefficient ⁇ i .
  • FIG. 10 is a view showing an example of the configuration of a sensor node on which the AI chip 10 is mounted.
  • the sensor node 1 of this configuration example functions as one component of the machine health monitoring system 300 together with the server 2, and in addition to the AI chip 10 described above, the sensor 20, the communication unit 30, An environmental power generation unit 40, a storage unit 50, and a power management unit 60 are included.
  • the sensor node 1 may be understood as a sensor itself attached to a monitored device (not shown) or may be understood as a gateway connected to the sensor. That is, the sensor 20 may be externally attached to the sensor node 1.
  • the AI chip 10 is a semiconductor device that receives power supply from the power management unit 60 and operates at the edge of the sensor 20, receives input data from the sensor 20, performs abnormality detection processing, and transmits the detection result via the communication unit 30. Report to server 2 at. Communication between the AI chip 10 and the communication unit 30 may be performed, for example, via a UART (universal asynchronous receiver / transmitter) interface.
  • UART universal asynchronous receiver / transmitter
  • the sensor 20 is a unit that receives power supply from the power management unit 60 and measures a predetermined measurement target (such as vibration or current).
  • a vibration sensor can be suitably used.
  • a vibration sensor In order to eliminate the high speed clock of the AI chip 10, it is desirable to use the sensor 20 as an analog output type.
  • the most advanced vibration sensors are those of logic output type with a logic interface. The reason is that the analog output type is susceptible to noise and fatal to a high precision sensor. Therefore, when using the analog output type sensor 20, it is important to dispose the AI chip 10 in the vicinity of the sensor 20 so as not to be affected by noise.
  • the communication unit 30 is a module for receiving power supply from the power management unit 60 and performing wireless communication with the server 2.
  • the AI chip 10 normally communicates with the server 2 only when error data is detected, but when sending learning data to the server 2, it is necessary to communicate with a larger capacity than normal. In view of this, it can be said that, for example, it is desirable to adopt a Wi-SUN module capable of high-speed wireless communication as the communication unit 30.
  • a piezoelectric element such as a piezoelectric element may be used as the power generation element.
  • sunlight or illumination light it is preferable to use a silicon-based, compound-based, or organic-based photoelectric element as the power generation element.
  • a thermoelectric element such as a Peltier element may be used as the power generation element.
  • the measurement target of the sensor 20 and the energy source of the environmental power generation unit 40 be common.
  • vibration is to be measured by the sensor 20 and the above vibration is used as an energy source by the environmental power generation unit 40.
  • the energy is generated by the environmental power generation unit 40 in response to the vibration, and therefore, the power to the sensor 20 can be more reliably than in the case where the energy source It becomes possible to supply.
  • a large capacity (about 1 F) supercapacitor is required as the storage unit 50.
  • the power management unit 60 supplies power to each unit (the AI chip 10, the sensor 20, and the communication unit 30) of the sensor node 1 using the generated power of the environmental power generation unit 40 or the stored power of the storage unit 50. It is an internal power supply circuit (for example, a DC / DC converter with a DC 3.3 V output).
  • the environmental power generation unit 40 can not stably supply the generated power. Therefore, in order to realize stable operation of the sensor node 1, the operation of the power management unit 60 is very important. That is, in the power management unit 60, not only the storage control of the storage unit 50, but also the appropriate impedance matching control needs to be performed so that the maximum power can be obtained from the environmental power generation unit 40.
  • the laying of the power supply wiring and the replacement of the battery become unnecessary. Further, since wireless communication is performed between the sensor node 1 and the server 2, signal wiring connecting the two is also unnecessary. Therefore, the sensor node 1 can be disposed at an arbitrary position.
  • the server 2 When the server 2 receives an abnormality flag from the sensor node 1, the server 2 notifies the staff in the head office of an abnormal state.
  • facility maintenance can be performed by the CBM method (FIG. 2).
  • the machine health monitoring system is described as an example, but the application target of the artificial intelligence algorithm (or the artificial intelligence chip mounted with the same) is not limited to this. It is possible to apply to a living body health monitoring system for managing physical condition of
  • the invention disclosed herein can be used, for example, in a machine health monitoring system for smart factories.
  • sensor node 10 artificial intelligence chip (AI chip) 11 pre-processing unit 11a band pass filter 12 classifier (OCSVM) 12a support vector storage unit 12b kernel operation processing unit b10 vector operation unit b11 kernel operation unit b12 multiplier b20 adder 13 post-processing unit 20 sensor 30 communication unit (Wi-SUN) 40 Environmental Power Generation Unit 50 Power Storage Unit (Super Capacitor) 60 Power Management Unit 100 Headquarters 200 Factory 210 Milling Machine 211 Motor 212-215 Bearing 216 Accelerometer 217 Thermocouple 300 Machine Health Monitoring System

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Provided is a machine health monitoring system that is easily introduced. An artificial intelligence chip 10, in which a new artificial intelligence algorithm is installed, includes: a preprocessing unit 11 which generates a feature vector by extracting a feature amount of each frequency band from input data by using a plurality of bandpass filters connected in parallel; a classifier 12 which obtains a value of a kernel function by using the feature vector and a support vector; and a post-processing unit 13 which detects an abnormality of the input data from the value of the kernel function. This artificial intelligence chip 10 functions as one element of the machine health monitoring system introduced to, for example, a smart factory by being mounted on a sensor node together with a sensor or a communication unit.

Description

人工知能アルゴリズムArtificial intelligence algorithm
 本明細書中に開示されている発明は、人工知能アルゴリズムに関する。 The invention disclosed herein relates to artificial intelligence algorithms.
 近年、センサノードを用いて監視対象装置の異常検出を行うマシンヘルスモニタリングシステムが提案されている。 In recent years, a machine health monitoring system has been proposed which detects an abnormality of a monitored device using a sensor node.
 なお、人工知能アルゴリズムに関連する従来技術の一例としては、例えば、非特許文献1や非特許文献2を挙げることができる。 In addition, as an example of the prior art relevant to an artificial intelligence algorithm, a nonpatent literature 1 and a nonpatent literature 2 can be mentioned, for example.
 しかしながら、従来のマシンヘルスモニタリングシステムでは、センサノードの測定データをサーバで収集分析することにより、監視対象装置の異常検出が行われていた。そのため、センサノードとサーバとの間でやり取りされる通信量が非常に大きく、システムの導入を阻害する要因となっていた。 However, in the conventional machine health monitoring system, abnormality detection of the monitoring target device is performed by collecting and analyzing measurement data of the sensor node by the server. Therefore, the amount of communication exchanged between the sensor node and the server is very large, which has been a factor that hinders the introduction of the system.
 本明細書中に開示されている発明は、本願の発明者らにより見出された上記の課題に鑑み、導入の容易なマシンヘルスモニタリングシステム、並びに、これに用いられるセンサノード、人工知能チップ、及び、人工知能アルゴリズムを提供することを目的とする。 In view of the above problems found by the inventors of the present invention, the invention disclosed herein has an easy-to-install machine health monitoring system, a sensor node used therefor, an artificial intelligence chip, And, it aims at providing an artificial intelligence algorithm.
 本明細書中に開示されている人工知能アルゴリズムは、並列に接続された複数のバンドパスフィルタを用いて入力データから周波数帯域毎の特徴量をそれぞれ抽出することにより特徴ベクトルを生成するステップと、前記特徴ベクトルとサポートベクトルを用いてカーネル関数の値を求めるステップと、を有する構成(第1の構成)とされている。 The artificial intelligence algorithm disclosed in the present specification generates a feature vector by extracting feature quantities for each frequency band from input data using a plurality of band pass filters connected in parallel; Determining a value of a kernel function using the feature vector and the support vector (first configuration).
 なお、上記第1の構成から成る人工知能アルゴリズムは、前記カーネル関数の値から前記入力データの異常検出を行うステップを更に有する構成(第2の構成)にするとよい。 The artificial intelligence algorithm according to the first configuration may be configured (second configuration) to further include a step of detecting abnormality of the input data from the value of the kernel function.
 また、上記第1または第2の構成から成る人工知能アルゴリズムにおいて、前記入力データは、振動データである構成(第3の構成)にするとよい。 Further, in the artificial intelligence algorithm having the first or second configuration, the input data may be vibration data (third configuration).
 また、上記第1~第3いずれかの構成から成る人工知能アルゴリズムにおいて、前記カーネル関数は、線形カーネル、ガウスカーネル、又は、RBF[radial base function]カーネルである構成(第4の構成)にするとよい。 Further, in the artificial intelligence algorithm having any one of the first to third configurations, it is assumed that the kernel function is a linear kernel, a Gaussian kernel, or a RBF [radial base function] kernel (fourth configuration) Good.
 また、本明細書中に開示されている人工知能チップは、並列に接続された複数のバンドパスフィルタを用いて入力データから周波数帯域毎の特徴量をそれぞれ抽出することにより特徴ベクトルを生成する前処理部と、前記特徴ベクトルとサポートベクトルを用いてカーネル関数の値を求める分類器と、を有する構成(第5の構成)とされている。 Also, the artificial intelligence chip disclosed in the present specification generates a feature vector by extracting feature quantities for each frequency band from input data using a plurality of band pass filters connected in parallel. A configuration (fifth configuration) includes a processing unit and a classifier for obtaining a value of a kernel function using the feature vector and the support vector.
 なお、上記第5の構成から成る人工知能チップは、前記カーネル関数の値から前記入力データの異常検出を行う後処理部をさらに有する構成(第6の構成)にするとよい。 Preferably, the artificial intelligence chip having the fifth configuration further includes a post-processing unit (a sixth configuration) for detecting an abnormality of the input data from the value of the kernel function.
 また、上記第5または第6の構成から成る人工知能チップにおいて、前記分類器は、ハードウェアにより構成されたOCSVM[one class support vector machine]である構成(第7の構成)にするとよい。 Further, in the artificial intelligence chip having the fifth or sixth configuration, the classifier may be a configuration (seventh configuration) that is an OCSVM [one class support vector machine] configured by hardware.
 また、本明細書中に開示されているセンサノードは、センサと、前記センサから前記入力データを受け付ける上記第5~第7いずれかの構成から成る人工知能チップと、前記人工知能チップとサーバとの間で無線通信を行う通信部と、を有する構成(第8の構成)とされている。 Further, a sensor node disclosed in the present specification includes: a sensor; an artificial intelligence chip having any of the fifth to seventh configurations for receiving the input data from the sensor; the artificial intelligence chip and the server And a communication unit that performs wireless communication among the above (eighth configuration).
 なお、上記第8の構成から成るセンサノードにおいて、前記センサは、振動センサである構成(第9の構成)にするとよい。 In the sensor node having the eighth configuration, the sensor may be a vibration sensor (ninth configuration).
 また、上記第8または第9の構成から成るセンサノードは、環境発電部と、前記環境発電部の発電電力を蓄える蓄電部と、前記発電電力または前記蓄電部の蓄電電力を用いてセンサノード各部への電力供給を行うパワーマネジメント部と、をさらに有する構成(第10の構成)にするとよい。 The sensor node having the eighth or ninth configuration includes an environmental power generation unit, a storage unit for storing power generated by the environmental power generation unit, and each unit of the sensor node using the generated power or stored power of the storage unit. And a power management unit for supplying power to the circuit (10th configuration).
 また、本明細書中に開示されているマシンヘルスモニタリングシステムは、監視対象装置に取り付けられる上記第10の構成から成るセンサノードと、前記センサノードから異常フラグを受け付けるサーバと、を有する構成(第11の構成)とされている。 In addition, the machine health monitoring system disclosed in the present specification includes a sensor node having the above-described tenth configuration attached to a monitoring target device, and a server that receives an abnormality flag from the sensor node (a 11)).
 なお、上記第11の構成から成るマシンヘルスモニタリングシステムにおいて、前記サーバは、前記センサノードから前記異常フラグを受け付けて異常状態報知を行う構成(第12の構成)にするとよい。 In the machine health monitoring system according to the eleventh configuration, the server may be configured (12th configuration) to receive an abnormal flag from the sensor node and report an abnormal state.
 本明細書中に開示されている発明によれば、導入の容易なマシンヘルスモニタリングシステム、並びに、これに用いられるセンサノード、人工知能チップ、及び、人工知能アルゴリズムを提供することが可能となる。 According to the invention disclosed herein, it is possible to provide an easy-to-install machine health monitoring system, and a sensor node, an artificial intelligence chip, and an artificial intelligence algorithm used therefor.
設備保全手法の第1例(TBM)を示す図Diagram showing the first example of equipment maintenance method (TBM) 設備保全手法の第2例(CBM)を示す図Diagram showing the second example (CBM) of equipment maintenance method Wi-SUN採用時の問題点を示す図Diagram showing problems when adopting Wi-SUN 人工知能チップの概要を示す図Figure showing an outline of an artificial intelligence chip 監視対象装置の一例を示す図Diagram showing an example of a monitored device 新旧の人工知能アルゴリズムによる異常検出動作の対比例を示す図Diagram showing a comparison example of anomaly detection operation by new and old artificial intelligence algorithms 人工知能チップの一構成例を示す図A diagram showing an exemplary configuration of an artificial intelligence chip カーネル演算処理部の一構成例を示す図A diagram showing an example of the configuration of a kernel arithmetic processing unit ベクトル演算器の一構成例を示す図A diagram showing an exemplary configuration of a vector computing unit マシンヘルスモニタリングシステムの一構成例を示す図Diagram showing a configuration example of a machine health monitoring system
<適用対象とシステム仕様>
 初めに、本明細書中に開示されている人工知能チップ(以下では、適宜、AI-SNP[artificial intelligence - sensor node processor]と呼ぶ)の背景について説明する。AI-SNPの開発動機は、インダストリー4.0で提唱されているようなスマートファクトリー戦略に由来する。このような次世代の工場では、一日中、その稼働を止めることなくリアルタイムで装置や設備をチェックし続けなければならない。しかしながら、その一方で、工場の高利益を維持するためには、コストの削減も検討する必要がある。
<Application target and system specifications>
First, the background of the artificial intelligence chip disclosed in the present specification (hereinafter referred to as AI-SNP [artificial intelligence-sensor node processor] as appropriate) will be described. The motivation for the development of AI-SNP is derived from the smart factory strategy as proposed in Industry 4.0. In such a next-generation factory, it is necessary to keep checking equipment and equipment in real time without stopping operation all day. However, on the other hand, in order to maintain the high profit of the factory, it is also necessary to consider cost reduction.
 図1及び図2は、それぞれ、工場における設備保全手法の一例を示す図である。なお、図1では、TBM[time-based-maintenance]手法の採用例(=旧工場に相当)が示されている。TBM手法では、装置の稼働時間が所定の基準を満たしたときにその修理または交換が行われる。一方、図2では、CBM[condition-based-maintenance]手法の採用例(=スマートファクトリーに相当)が示されている。CBM手法では、装置の状態が所定の基準を満たしたときにその修理または交換が行われる。 FIG. 1 and FIG. 2 are diagrams each showing an example of a facility maintenance method in a factory. Note that FIG. 1 shows an example of adopting the TBM [time-based-maintenance] method (= equivalent to the old factory). In the TBM method, repair or replacement is performed when the operation time of the device meets a predetermined standard. On the other hand, FIG. 2 shows an example of adoption of the CBM [condition-based-maintenance] method (= equivalent to a smart factory). In the CBM method, repair or replacement is performed when the state of the device meets a predetermined standard.
 図1のTBM手法では、工場200の装置を定期的にメンテナンスする必要がある上、それでも装置が故障してしまったときには、事後的に本部100から工場200にスタッフが派遣される。従って、装置の修理や交換が完了するまで稼働を停止することになる。一方、図2のCBM手法であれば、工場200の装置に故障の予兆が現れた段階で、工場200から本部100への異常状態通報が行われる。従って、スタッフは、装置が停止してしまう前に、その修理を行うことができる。 In the TBM method shown in FIG. 1, it is necessary to periodically maintain the equipment of the factory 200, and even when the equipment breaks down, staff members are dispatched from the headquarters 100 to the factory 200 after the fact. Therefore, the operation will be suspended until the repair or replacement of the device is completed. On the other hand, in the case of the CBM method of FIG. 2, when a sign of failure appears in the device of the factory 200, an abnormal state report from the factory 200 to the head office 100 is performed. Thus, the staff can make repairs before the device shuts down.
 このように、CBM手法(図2)は、TBM手法(図1)と比べて、上記のスマートファクトリー戦略に合致する最良の解決法の一つである。CBM手法を採用すれば、装置の定期的なメンテナンスが不要となり、装置の異常状態(=故障の予兆)が検出されたときにだけ、装置の状態をチェックすれば足りる。 Thus, the CBM method (FIG. 2) is one of the best solutions that matches the smart factory strategy described above, as compared to the TBM method (FIG. 1). If the CBM method is adopted, periodic maintenance of the device is not necessary, and it is sufficient to check the device state only when an abnormal state of the device (= sign of failure) is detected.
 なお、CBM手法を採用したマシンヘルスモニタリングシステムを既存の工場に導入するためには、装置毎にセンサノードを追加したり、高額な出費を伴って旧型の装置を新型の装置に置き換えたりしなければならない。今、世界中には稼働中の装置が多数存在している。従って、追加の配線や電源を要することなく、稼働中の装置にセンサノードを追加することができるのであれば、それが最善である。しかしながら、現存する無線モジュールは、センサノードで得られる測定データ(生データ)のサイズと比べて、必ずしも十分な通信帯域幅を持っていない。 In order to introduce a machine health monitoring system that adopts the CBM method into an existing factory, it is necessary to add a sensor node for each device, or replace the old device with a new device at a high cost. You must. There are many devices currently in operation around the world. Therefore, it is best if sensor nodes can be added to the running device without the need for additional wiring or power. However, the existing wireless modules do not necessarily have sufficient communication bandwidth as compared to the size of measurement data (raw data) obtained at the sensor node.
 図3はセンサノードの無線モジュールとして、Wi-SUN[wireless smart utility network]を採用する場合の問題点を示した図である。なお、Wi-SUNは、IIoT[industorial internet of things]を実現するための最良の解決法の一つであり、良好な省電力化と長距離通信を行うことが可能である。 FIG. 3 is a view showing problems when adopting a Wi-SUN [wireless smart utility network] as a wireless module of the sensor node. In addition, Wi-SUN is one of the best solutions for realizing IIoT [industorial internet of things], and can achieve good power saving and long distance communication.
 しかしながら、例えば、監視対象装置の振動をセンサノードで検出し、その振動データ(~10kHz,16bit)を生データのまま、工場200から本部100へ送信する場合、その送信データ量は、3軸(X軸、Y軸、Z軸)で60kB/sとなる。これは、Wi-SUNの通信帯域幅(100kbps→12.5kB/s)と比べてかなり大きい値である。このように、振動データを生データのまま送信しようとすると、送信データ量に対して通信速度が遅過ぎる結果となり、Wi-SUNの消費電力も大きくなる(180mW程度)。従って、データ圧縮(=送信データ量の削減)が必要となる。 However, for example, when the vibration of the monitoring target device is detected by the sensor node and the vibration data (.about.10 kHz, 16 bits) is transmitted as raw data from the factory 200 to the main unit 100, the transmission data amount is It becomes 60 kB / s in X axis, Y axis, Z axis). This is a considerably large value compared to the communication bandwidth of Wi-SUN (100 kbps → 12.5 kB / s). As described above, when it is intended to transmit vibration data as it is raw data, the communication speed becomes too slow relative to the amount of transmission data, and the power consumption of Wi-SUN also becomes large (about 180 mW). Therefore, data compression (= reduction of the amount of transmission data) is required.
 また、例えば、EN-OCEANのように、バッテリを用いずにセンサノードによるリアルタイムセンシングを行うためには、無線モジュールの消費電力を劇的に低減しなければならない。本明細書中に開示されているAI-SNPを用いれば、追加の配線やバッテリを要することのない、非常に有用なマシンヘルスモニタリングシステムの導入手法を提供することが可能となり、延いては、世界中で新旧装置のIIoTを劇的に加速することが可能となる。 Also, in order to perform real-time sensing by a sensor node without using a battery, such as EN-OCEAN, for example, the power consumption of the wireless module must be dramatically reduced. With the AI-SNP disclosed herein, it is possible to provide a very useful machine health monitoring system deployment method that does not require additional wiring and batteries, and thus, It will be possible to dramatically accelerate the new and old devices IIoT around the world.
<AI-SNP>
 以下では、マシンヘルスモニタリングシステム向けのAI-SNP、並びに、これに実装される人工知能アルゴリズム(以下ではAIアルゴリズムと呼ぶ)について説明する。本願出願人は、オープンデータや自社工場のリアルデータを用いてマシンヘルスモニタリングシステム向けのAIアルゴリズムについて研究を続けている。また、この研究を通して、本願出願人は、今や、AIアルゴリズムについての知見だけでなく、データ収集のノウハウについても数多くの知見を得ている。
<AI-SNP>
In the following, AI-SNPs for machine health monitoring systems and artificial intelligence algorithms (hereinafter referred to as AI algorithms) implemented therein will be described. The applicant continues to study AI algorithms for machine health monitoring systems using open data and real data from their own factories. In addition, through this research, the applicant of the present application has obtained not only a knowledge of the AI algorithm but also a lot of knowledge of data collection know-how.
 なお、AIアルゴリズムについては、1クラスサポートベクトルマシン(以下ではOCSVM[one class support vector machine]と呼ぶ)、スパイキングニューラルネットワーク、または、畳み込みニューラルネットワークなどが知られており、その選択肢は何ら限定されるものではない。以下では、本願出願人の長期に亘る研究の結果に基づき、AI-SNPへの実装に好適なAIアルゴリズムの一候補として、OCSVMを採用した例を挙げて説明する。なお、その詳細については後述することとし、ここではその概要だけを述べる。 As the AI algorithm, one class support vector machine (hereinafter referred to as OCSVM [one class support vector machine]), spiking neural network, or convolutional neural network are known, and the options are not limited at all. It is not a thing. In the following, based on the results of long-term research conducted by the applicant of the present application, an example in which OCSVM is adopted as an AI algorithm candidate suitable for implementation on AI-SNP will be described. The details will be described later, and only the outline will be described here.
 図4は、マシンヘルスモニタリングシステム向けのセンサノードに搭載される人工知能チップ(=先述のAI-SNPに相当)の概要を示す図である。本構成例の人工知能チップ10(以下では、AIチップ10と呼ぶ)は、センサからの入力データ(振動データや温度データなど)に基づいて、AIアルゴリズムを実行することが可能な半導体チップであって、前処理部11と、分類器12と、後処理部13と、を有する。なお、AIチップ10には、センサノードに搭載することが可能な程度に、低消費電力かつ省面積であることが求められる。また、上記のAIアルゴリズムは、監視対象装置の異常診断、ツールウェア評価、若しくは、寿命予想などの機能を実現するために設計されている。 FIG. 4 is a diagram showing an outline of an artificial intelligence chip (= corresponding to the above-described AI-SNP) mounted on a sensor node for a machine health monitoring system. The artificial intelligence chip 10 (hereinafter referred to as an AI chip 10) of this configuration example is a semiconductor chip capable of executing an AI algorithm based on input data (such as vibration data and temperature data) from a sensor. And a pre-processing unit 11, a classifier 12, and a post-processing unit 13. The AI chip 10 is required to have low power consumption and a small area to the extent that it can be mounted on a sensor node. In addition, the above-mentioned AI algorithm is designed to realize functions such as abnormality diagnosis, toolware evaluation, or life expectancy of a monitoring target device.
 前処理部(pre-processor)11は、並列に接続された複数のバンドパスフィルタを用いて、入力データ(例えば振動センサで得られた生の振動データ)から周波数帯域毎の特徴量をそれぞれ抽出することにより、特徴ベクトルを生成する。なお、上記の特徴量としては、例えば、1Hzから20kHz(200dim)まで、50Hz毎に周波数スペクトラムのFFT[fast Fourier transform]振幅を取得した上で、それぞれの二乗平均平方根(RMS[root mean square])を算出すればよい。 A preprocessing unit (pre-processor) 11 extracts feature quantities for each frequency band from input data (for example, raw vibration data obtained by a vibration sensor) using a plurality of band pass filters connected in parallel. By doing this, a feature vector is generated. In addition, as the above-mentioned feature quantity, for example, after acquiring FFT [fast Fourier transform] amplitude of a frequency spectrum every 50 Hz from 1 Hz to 20 kHz (200 dim), respective root mean square (RMS [root mean square] ) Should be calculated.
 分類器(classifier)12は、前処理部11から入力される特徴ベクトルと、予め格納されたサポートベクトルとを用いて、カーネル関数(例えば、線形カーネル、ガウスカーネル、または、RBF[radial base function]カーネル)の値を求める。分類器12としては、例えば、ハードウェアにより構成されたOCSVMを好適に用いることが望ましい。また、サポートベクトルとしては、例えば、監視対象装置が稼働を開始してから33時間未満の入力データを学習用に使用し、OK/NG判別用の超平面を作成すればよい。 A classifier 12 uses a feature vector input from the pre-processing unit 11 and a support vector stored in advance, and uses a kernel function (eg, linear kernel, Gaussian kernel, or RBF [radial base function] Find the kernel) value. As the classifier 12, for example, it is desirable to preferably use an OCSVM configured by hardware. Further, as the support vector, for example, input data less than 33 hours after the monitoring target device starts operation may be used for learning, and a hyperplane for OK / NG determination may be created.
 後処理部(post-processor)13は、分類器12で求められたカーネル関数の値から、入力データの異常検出処理(=監視対象装置が正常であるか異常であるかを示す異常フラグの演算処理)を行う。 A post-processor (post-processor) 13 performs abnormality detection processing of input data from the value of the kernel function obtained by the classifier 12 (= calculation of an abnormality flag indicating whether the monitored device is normal or abnormal) Process).
 このように、本構成例のAIチップ10では、前処理部11、分類器12、及び、後処理部13を用いて、先に説明したAIアルゴリズムが実装されている。 Thus, in the AI chip 10 of this configuration example, the AI algorithm described above is implemented using the preprocessing unit 11, the classifier 12, and the post-processing unit 13.
 分類器12として用いられるOCSVMは、サポートベクトルマシンの一種であり、教師なし学習による、軽量かつ実践的なAIアルゴリズムである。OCSVMは、一つのソフトウェア上で1クラス問題を検出するものであり、マシンヘルスモニタリングシステムとは、似て非なるものである。なぜなら、OCSVMそのものは、複雑で高速な時系列データとの親和性に乏しいからである。 OCSVM used as the classifier 12 is a kind of support vector machine, and is a lightweight and practical AI algorithm by unsupervised learning. OCSVM detects one class problem on one piece of software and is not similar to the machine health monitoring system. The reason is that OCSVM itself is poor in affinity with complex and high-speed time-series data.
 なお、近年では、時系列データに適切な前処理を施すことにより、OCSVMの適用を可能とする研究(例えば、非特許文献1及び2を参照)もなされている。しかしながら、いずれの研究でも時系列データから特徴量を抽出するために複雑な前処理を必要としており、低消費電力かつ省面積が求められるセンサノードへの実装には、さらなる改善の余地があった。 In recent years, studies have also been made to apply OCSVM by applying appropriate pre-processing to time-series data (see, for example, Non-Patent Documents 1 and 2). However, in any of the studies, complex preprocessing is required to extract feature quantities from time-series data, and there is room for further improvement in the implementation on sensor nodes where low power consumption and area saving are required. .
 そこで、本明細書中では、従来と比べて単純な前処理を施すことにより、OCSVMの適用を可能としたAIチップ10について提案する。前処理部11では、入力データの周波数に関する特徴量(=1Hzから20kHzまで50Hz毎に得られた周波数スペクトラムのRMS)を得るためにFFT演算のみを用いて生の入力データを単純に加工する。もちろん、AIチップ10にとって妥当な電力及びチップサイズでFFT演算を行うことは困難である。そこで、前処理部11では、単純なアナログバンドパスフィルタが使用されている(詳細は後述)。 Therefore, in the present specification, an AI chip 10 is proposed in which the application of OCSVM is possible by applying a simple pre-processing as compared to the conventional method. In the pre-processing unit 11, raw input data is simply processed using only FFT calculation in order to obtain feature quantities (RMS of the frequency spectrum obtained from 1 Hz to 20 kHz every 50 Hz from 1 Hz to 20 kHz). Of course, it is difficult to perform an FFT operation with power and chip size that are appropriate for the AI chip 10. Therefore, in the preprocessing unit 11, a simple analog band pass filter is used (details will be described later).
 また、分類器12に注目すると、それはカーネル法を用いた単純なOCSVMである。カーネル関数としては、先にも述べたように、線形カーネル、ガウスカーネル、或いは、RBFカーネルなどを選択することが可能である。例えば、RBFカーネルを選択することができれば、OCSVMによるAIアルゴリズムが強力なものとなる。ただし、そのためには、追加の関数回路(対数演算回路)を要するので、その点には留意が必要である。 Also, focusing on the classifier 12, it is a simple OCSVM using the kernel method. As the kernel function, as described above, it is possible to select a linear kernel, a Gaussian kernel, an RBF kernel or the like. For example, if an RBF kernel can be selected, the AI algorithm by OCSVM becomes powerful. However, in order to do so, an additional function circuit (logarithmic calculation circuit) is required, so that point needs to be noted.
 なお、異常状態の分析、無視、及び、学習だけに注目すれば、加算器、乗算器、及び、次の(1)式で示す単純なカーネル関数f(X)の実装のみに注目しさえすればよい。 If attention is focused only on analysis of the abnormal state, neglect, and learning, then only the implementation of the adder, the multiplier and the simple kernel function f (X) expressed by the following equation (1) Just do it.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 そこで、本明細書中では、加算器と乗算器を用いて分類器12(特にそのカーネル演算処理部)を構成する例を挙げて説明を行う。また、先のAIアルゴリズムをAIチップ10に実装する工夫としては、AD/DA[analog-to-digital/digital-to-analog]を減らして高速クロックを排除すべく、多数の小規模なアナログPE[processing engine]を配置して演算器やメモリをアナログ構造とすることが望ましい。 Therefore, in the present specification, an example in which the classifier 12 (especially its kernel operation processing unit) is configured using an adder and a multiplier will be described. Also, as a device for implementing the above AI algorithm on the AI chip 10, many small-scale analog PEs are used to reduce AD / DA [analog-to-digital / digital-to-analog] and eliminate high-speed clock. It is desirable to arrange [processing engine] so that computing units and memories have an analog structure.
 次に、本願出願人が提案するAIアルゴリズムによってミリングマシンのベアリングに生じる異常を検出するためにオープンデータを用いた例を挙げて説明する。 Next, an example using open data to detect an abnormality occurring in a bearing of a milling machine according to an AI algorithm proposed by the applicant will be described.
 図5は、監視対象装置の一例(ここではミリングマシン)を示す図である。本図のミリングマシン210は、モータ211と、ベアリング212~215と、を有する。なお、ベアリング212~215には、それぞれ、加速度計216と熱電対217が取り付けられている。また、先述のAIチップ10を搭載したセンサノード(不図示)は、ミリングマシン210の稼働中に生じる振動を常時測定することにより、ベアリングに異常が生じているか否かを判定する。 FIG. 5 is a diagram showing an example of the monitoring target device (here, a milling machine). The milling machine 210 of this figure has a motor 211 and bearings 212 to 215. An accelerometer 216 and a thermocouple 217 are attached to the bearings 212 to 215, respectively. In addition, a sensor node (not shown) mounted with the above-described AI chip 10 constantly measures vibration generated during operation of the milling machine 210 to determine whether or not an abnormality occurs in the bearing.
 図6は、新旧のAIアルゴリズム(図中ではそれぞれを「軽」アルゴリズム及び「重」アルゴリズムと表記)による異常検出動作の対比例を示す図である。本図の左側には、センサノードで得られる振動データの波形(1時間後及び88時間後)が描写されている。一方、本図の右側上段には、新AIアルゴリズムによる異常検出動作を示すタイムチャートが描写されている。その縦軸は超平面との距離を示しており、その横軸は稼働時間を示している。また、本図の右側下段には、旧AIアルゴリズムによる異常検出動作を示すタイムチャートが描写されている。その縦軸はクラス出力(0=正常、1=異常)を示しており、その横軸は稼働時間を示している。 FIG. 6 is a diagram showing a contrast example of the anomaly detection operation by new and old AI algorithms (each represented as “light” algorithm and “heavy” algorithm in the figure). On the left side of the figure, waveforms (one hour and 88 hours after) of vibration data obtained at the sensor node are depicted. On the other hand, in the upper right part of the figure, a time chart showing an abnormality detection operation by the new AI algorithm is depicted. The vertical axis indicates the distance to the hyperplane, and the horizontal axis indicates the operation time. Further, in the lower right side of the drawing, a time chart showing an abnormality detection operation by the old AI algorithm is depicted. The vertical axis indicates class output (0 = normal, 1 = abnormal), and the horizontal axis indicates operating time.
 なお、新AIアルゴリズムの各種パラメータは、次の通りである。
  ・NASA IMSデータ ch1(test2)
  ・OCSVM使用
  ・カーネル:ガウス
  ・ガンマ=0.1
  ・学習用データ:最初の200データ(33h分の良品データを学習に使用)
  ・サポートベクトル数:52
  ・ベクトル次元:99次元
  ・特徴量:0-10kHzまで50Hz毎に得られるFFT振幅のRMS
The various parameters of the new AI algorithm are as follows.
-NASA IMS data ch1 (test 2)
-Use of OCSVM-Kernel: Gauss-Gamma = 0.1
・ Data for learning: The first 200 data (33h worth of good product data is used for learning)
-Number of support vectors: 52
-Vector dimension: 99 dimensions-Feature quantity: RMS of FFT amplitude obtained every 50 Hz up to -10 kHz
 また、旧AIアルゴリズムの各種パラメータは、次の通りである。
  ・NASA IMSデータ
  ・AlexNet使用(11層CNN)
  ・学習データ
    正常=80データ(88hまでランダム選択)
    異常=80データ(88h以降ランダム選択)
  ・ミニバッチサイズ:50
  ・学習回数:1500
Moreover, various parameters of the old AI algorithm are as follows.
-NASA IMS data-Using AlexNet (11 layer CNN)
・ Learning data Normal = 80 data (randomly selected up to 88 h)
Abnormality = 80 data (randomly selected after 88h)
・ Mini batch size: 50
・ The number of learning times: 1500
 本図で示したように、センサノードで得られる振動データの波形は、1時間後でも88時間後でも、見た目はほぼ同一である。しかしながら、このような振動データについて、新AIアルゴリズムによる異常判定動作を行うと、ミリングマシン210の稼働時間が88時間に達した時点で異常を検出することができる。なお、ミリングマシン210の稼働時間が162時間に達した時点で実際に故障が生じたことを鑑みると、上記の異常判定動作は、故障の予兆を知る上で極めて有用であると言える。 As shown in the figure, the waveforms of the vibration data obtained at the sensor node are almost identical in appearance both after one hour and after 88 hours. However, if an abnormality determination operation is performed on such vibration data by the new AI algorithm, an abnormality can be detected when the operating time of the milling machine 210 reaches 88 hours. In view of the fact that the failure actually occurred when the operating time of the milling machine 210 reached 162 hours, it can be said that the above-mentioned abnormality determination operation is extremely useful in knowing the sign of failure.
 一方、旧AIアルゴリズムによる異常判定動作によっても、稼働開始から88時間経過後に初めて異常が検出されており、91時間経過後には完全に異常が検出されている。 On the other hand, even by the abnormality determination operation by the old AI algorithm, an abnormality is first detected after 88 hours from the start of operation, and an abnormality is completely detected after 91 hours.
 このように、両者を対比すれば明らかなように、新AIアルゴリズムを採用することにより、旧AIアルゴリズムよりも演算の負荷を減らしつつ、これと同様かそれ以上の精度で、監視対象装置の異常を検出することが可能である。従って、新AIアルゴリズムは、低消費電力かつ省面積が求められるセンサノードへの実装に好適であると言える。 As described above, as apparent from the comparison between the two, the adoption of the new AI algorithm reduces the operation load compared to the old AI algorithm, and at the same or higher accuracy than this, the abnormality of the monitoring target device It is possible to detect Therefore, it can be said that the new AI algorithm is suitable for implementation in a sensor node requiring low power consumption and area saving.
<バンドパスフィルタアルゴリズムを用いた1クラス(u)-SVM>
 マシンヘルスモニタリングシステム向けの異常検出動作を行う場合には、(a)ほぼ全てがOKデータであってNGデータは非常に稀であり、(b)振動データは監視対象装置の異常検出にとって有用な情報を示すという特徴について十分留意すべきである。以下では、上記の特徴に鑑み、教師なしの機械学習手法と単純な前処理手法について提案する。
<One class (u) -SVM using band pass filter algorithm>
When performing an anomaly detection operation for a machine health monitoring system, (a) almost all are OK data and NG data is very rare, and (b) vibration data is useful for anomaly detection of a monitored device It should be noted enough about the feature of showing information. In the following, in view of the above features, we propose an unsupervised machine learning method and a simple pre-processing method.
 バンドパスフィルタ(BPF)を用いた1クラス(u)-SVM(OCSVM)は、上記の特徴を鑑み、異常検出動作を行うためのAIアルゴリズムとして採用し得るものである。OCSVMは、教師なしの異常検出手法として知られている。なお、(u)は、マージンエラーの上限値と、全ベクトルに占めるサポートベクトルの比率の下限値をそれぞれ明確化するために導入されている。また、BPFは、AIチップ10にとって負荷の高いFFT演算を行うことなく、単純に周波数情報を得るための手段である。 In view of the above characteristics, one class (u) -SVM (OCSVM) using a band pass filter (BPF) can be adopted as an AI algorithm for performing an abnormality detection operation. OCSVM is known as an unsupervised anomaly detection method. Note that (u) is introduced to clarify the upper limit value of the margin error and the lower limit value of the ratio of the support vector to all the vectors. The BPF is a means for simply obtaining frequency information without performing a high load FFT operation for the AI chip 10.
 図7は、AIチップ10の一構成例(後処理部13を有しない構成)を示す図である。本図で示したように、本構成例のAIチップ10において、前処理部11は、並列に接続された複数のバンドパスフィルタ11aを含む。また、分類器12は、サポートベクトル格納部12aと、カーネル演算処理部12bを含む。 FIG. 7 is a view showing an example of the configuration of the AI chip 10 (a configuration without the post-processing unit 13). As shown in the figure, in the AI chip 10 of this configuration example, the preprocessing unit 11 includes a plurality of band pass filters 11 a connected in parallel. Further, the classifier 12 includes a support vector storage unit 12 a and a kernel operation processing unit 12 b.
 前処理部11は、入力データ(=生データ)の最低周波数fmin(=DC)から最高周波数fmax(=1kHz)まで、所定のバンド幅Δf(本図ではΔf=50Hz)毎に設けられた複数のバンドパスフィルタ11aを動作させる。これらのバンドパスフィルタ11aは、それぞれ、特徴値x~xを出力する。前処理部11は、特徴値x~xを要素とする特徴ベクトルX(x,x,…,x)を生成して分類器12に出力する。 A plurality of preprocessing units 11 are provided for every predetermined bandwidth Δf (Δf = 50 Hz in this figure) from the lowest frequency fmin (= DC) of input data (= raw data) to the highest frequency fmax (= 1 kHz) The band pass filter 11a is operated. These band pass filters 11a output feature values x 0 to x k , respectively. The preprocessing unit 11 generates a feature vector X (x 0 , x 1 ,..., X k ) having the feature values x 0 to x k as elements, and outputs the feature vector to the classifier 12.
 分類器12(OCSVM)において、サポートベクトル格納部12aは、特徴ベクトルXを評価するための超平面(=OK/NG判定境界)を構成するために、次の(2)式で表されるサポートベクトルXを格納している。 In the classifier 12 (OCSVM), the support vector storage unit 12 a supports the following equation (2) to construct a hyperplane (= OK / NG determination boundary) for evaluating the feature vector X. The vector X n is stored.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、上記のサポートベクトルXnは、監視対象装置が初めて起動されてから所定の期間内に得られる入力データ(=良品の生データ)に基づいて、AIチップ10よりも演算処理能力の高いサーバで算出することが望ましい。 Note that the above support vector Xn is a server that has an arithmetic processing capability higher than that of the AI chip 10 based on input data (= raw raw data of good product) obtained within a predetermined period after the monitoring target device is started for the first time. It is desirable to calculate.
 その場合、AIチップ10は、その通常動作(=入力データの異常判定動作)を開始する前に、サポートベクトル算出処理に必要な入力データ(=良品の生データ)をサーバに送り、サーバからサポートベクトルXを受け取らなければならない。 In that case, the AI chip 10 sends input data (= good raw data) necessary for support vector calculation processing to the server before starting its normal operation (= error determination operation of input data), and the server supports We have to receive the vector X n .
 また、カーネル演算処理部12bは、特徴ベクトルXとサポートベクトルXの入力を受け付けており、所定のカーネル関数Kを用いて関数値f(X)を求める(先出の(1)式を参照)。そして、当該演算後、AIチップ10は、入力データの評価結果として、上記の関数値f(X)(=0~1)を出力する。 Further, the kernel operation processing unit 12b receives the input of the feature vector X and the support vector X n , and obtains a function value f (X) using a predetermined kernel function K (see the above-mentioned equation (1)) ). Then, after the calculation, the AI chip 10 outputs the function value f (X) (= 0 to 1) as the evaluation result of the input data.
 なお、本図には示されていない後処理部13を有する場合には、上記の関数値f(X)がチェックされ、異常状態をサーバに伝えるべきか否かが判定される。 When the post-processing unit 13 not shown in the figure is included, the above function value f (X) is checked to determine whether the abnormal state should be transmitted to the server.
 図8は、カーネル演算処理部12bの一構成例を示す図である。本構成例のカーネル演算処理部12bは、複数のベクトル演算器b10と、加算器b20と、を含む。 FIG. 8 is a diagram showing an example of the configuration of the kernel arithmetic processing unit 12b. The kernel arithmetic processing unit 12b of this configuration example includes a plurality of vector operators b10 and an adder b20.
 ベクトル演算器b10は、それぞれ、特徴ベクトルX、サポートベクトルX、及び、係数αを用いて、関数値αK(X,X)を生成する(ただしi=0,1,…,k)。 The vector operator b10 generates a function value α i K (X, X i ) using the feature vector X, the support vector X i and the coefficient α i , respectively (where i = 0, 1,..., k).
 加算器b20は、複数の関数値αK(X,X)を足し合わせることにより、関数値f(X)を生成する。 The adder b20 generates a function value f (X) by adding together a plurality of function values α i K (X, X i ).
 図9は、ベクトル演算器b10の一構成例を示す図である。本構成例のベクトル演算器b10は、カーネル演算器b11と乗算器b12を含む。 FIG. 9 is a diagram showing an exemplary configuration of the vector computing unit b10. The vector computing unit b10 of this configuration example includes a kernel computing unit b11 and a multiplier b12.
 カーネル演算器b11は、特徴ベクトルXとサポートベクトルXの入力を受け付けており、所定のカーネル関数Kを用いて関数値K(X,X)を生成する。 The kernel computing unit b11 receives the input of the feature vector X and the support vector X i , and generates a function value K (X, X i ) using a predetermined kernel function K.
 なお、カーネル関数Kについては、リニアカーネル、ガウスカーネル、または、RBFカーネルなど、いくつかの選択肢がある。例えば、リニアカーネルは、特徴ベクトルXとサポートベクトルXiを単純に掛け合わせるものであり、極めて単純なハードウェア構成でAIチップ10に実装することができる。一方、RBFカーネルは、OK/NG判定の境界を自由に定めることができる。次の(3a)式~(3c)式は、それぞれ、リニアカーネル、ガウスカーネル、及び、RBFカーネルの演算式である。 There are several options for kernel function K, such as linear kernel, Gaussian kernel, or RBF kernel. For example, the linear kernel is a simple multiplication of the feature vector X and the support vector Xi, and can be implemented on the AI chip 10 with a very simple hardware configuration. On the other hand, the RBF kernel can freely define the boundary of the OK / NG determination. The following equations (3a) to (3c) are arithmetic equations of linear kernel, Gaussian kernel, and RBF kernel, respectively.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 乗算器b12は、関数値K(X,X)と係数αを掛け合わせることにより、関数値αK(X,X)を生成する。 The multiplier b12 generates a function value α i K (X, X i ) by multiplying the function value K (X, X i ) by the coefficient α i .
<センサノード>
 図10は、AIチップ10が搭載されるセンサノードの一構成例を示す図である。本構成例のセンサノード1は、サーバ2と共にマシンヘルスモニタリングシステム300の一構成要素として機能するものであり、これまでに説明してきたAIチップ10のほかに、センサ20と、通信部30と、環境発電部40と、蓄電部50と、パワーマネジメント部60と、を有する。
<Sensor node>
FIG. 10 is a view showing an example of the configuration of a sensor node on which the AI chip 10 is mounted. The sensor node 1 of this configuration example functions as one component of the machine health monitoring system 300 together with the server 2, and in addition to the AI chip 10 described above, the sensor 20, the communication unit 30, An environmental power generation unit 40, a storage unit 50, and a power management unit 60 are included.
 なお、センサノード1については、監視対象装置(不図示)に取り付けられるセンサそのものと理解してもよいし、同センサに接続されたゲートウェイと理解してもよい。すなわち、センサ20は、センサノード1に対して外付けされるものであっても構わない。 The sensor node 1 may be understood as a sensor itself attached to a monitored device (not shown) or may be understood as a gateway connected to the sensor. That is, the sensor 20 may be externally attached to the sensor node 1.
 AIチップ10は、パワーマネジメント部60から電力供給を受けて、センサ20のエッジで動作する半導体装置であり、センサ20から入力データを受け付けて異常検出処理を行い、その検出結果を通信部30経由でサーバ2に通報する。なお、AIチップ10と通信部30との通信については、例えば、UART[universal asynchronous receiver/transmitter]インタフェイスを介して行えばよい。AIチップ10の構成や動作については、既に述べた通りであるので、ここでの重複した説明は割愛する。 The AI chip 10 is a semiconductor device that receives power supply from the power management unit 60 and operates at the edge of the sensor 20, receives input data from the sensor 20, performs abnormality detection processing, and transmits the detection result via the communication unit 30. Report to server 2 at. Communication between the AI chip 10 and the communication unit 30 may be performed, for example, via a UART (universal asynchronous receiver / transmitter) interface. The configuration and operation of the AI chip 10 are as described above, and thus redundant description will be omitted.
 センサ20は、パワーマネジメント部60から電力供給を受けて、所定の計測対象(振動や電流等)を計測する手段であり、例えば、振動センサを好適に用いることができる。なお、AIチップ10の高速クロックを排除するためには、センサ20をアナログ出力型とすることが望ましい。最先端の振動センサは、ロジックインタフェイスを備えたロジック出力型のものが主流である。なぜなら、アナログ出力型では、ノイズの影響を受けやすく、高精度センサにとって致命的となるからである。従って、アナログ出力型のセンサ20を用いる場合には、ノイズの影響を受けにくいように、AIチップ10をセンサ20の近傍に配置することが重要となる。 The sensor 20 is a unit that receives power supply from the power management unit 60 and measures a predetermined measurement target (such as vibration or current). For example, a vibration sensor can be suitably used. In order to eliminate the high speed clock of the AI chip 10, it is desirable to use the sensor 20 as an analog output type. The most advanced vibration sensors are those of logic output type with a logic interface. The reason is that the analog output type is susceptible to noise and fatal to a high precision sensor. Therefore, when using the analog output type sensor 20, it is important to dispose the AI chip 10 in the vicinity of the sensor 20 so as not to be affected by noise.
 通信部30は、パワーマネジメント部60から電力供給を受けて、サーバ2との間で無線通信を行うためのモジュールである。AIチップ10は、通常、エラーデータの検出時にだけサーバ2と通信を行うが、サーバ2に学習用データを送るときには、通常よりも大容量の通信を行う必要がある。これを鑑みると、通信部30としては、例えば、高速無線通信が可能なWi-SUNモジュールを採用することが望ましいと言える。 The communication unit 30 is a module for receiving power supply from the power management unit 60 and performing wireless communication with the server 2. The AI chip 10 normally communicates with the server 2 only when error data is detected, but when sending learning data to the server 2, it is necessary to communicate with a larger capacity than normal. In view of this, it can be said that, for example, it is desirable to adopt a Wi-SUN module capable of high-speed wireless communication as the communication unit 30.
 環境発電部40は、センサノード1の置かれた環境下に存在するエネルギー(=振動、光、熱など)を受けて発電する手段(いわゆるエナジーハーベスタ)である。なお、振動をエネルギー源とする場合には、発電素子として、ピエゾ素子などの圧電素子を用いるとよい。また、太陽光や照明光をエネルギー源とする場合には、発電素子として、シリコン系、化合物系、または、有機系などの光電素子を用いるとよい。また、熱をエネルギー源とする場合には、発電素子として、ペルチェ素子などの熱電素子を用いるとよい。 The environmental power generation unit 40 is a means (so-called energy harvester) which receives power (= vibration, light, heat, etc.) existing in the environment where the sensor node 1 is placed to generate power. When vibration is used as an energy source, a piezoelectric element such as a piezoelectric element may be used as the power generation element. In the case where sunlight or illumination light is used as an energy source, it is preferable to use a silicon-based, compound-based, or organic-based photoelectric element as the power generation element. When heat is used as an energy source, a thermoelectric element such as a Peltier element may be used as the power generation element.
 なお、センサノード1では、センサ20の計測対象と環境発電部40のエネルギー源が共通であるとよい。一つの例として、センサ20で振動を計測対象とし、環境発電部40で上記の振動をエネルギー源としている場合が挙げられる。この場合、センサ20が振動を計測しようとするときには、その振動を受けて環境発電部40で発電が行われるので、振動以外をエネルギー源とする場合と比べて、より確実にセンサ20への電力供給を行うことが可能となる。 In the sensor node 1, it is preferable that the measurement target of the sensor 20 and the energy source of the environmental power generation unit 40 be common. As one example, there is a case where vibration is to be measured by the sensor 20 and the above vibration is used as an energy source by the environmental power generation unit 40. In this case, when the sensor 20 tries to measure the vibration, the energy is generated by the environmental power generation unit 40 in response to the vibration, and therefore, the power to the sensor 20 can be more reliably than in the case where the energy source It becomes possible to supply.
 蓄電部50は、環境発電部40の発電電力(100μW程度)を蓄える手段であり、例えば、スーパーキャパシタ(=電気二重層キャパシタの総称)を好適に用いることができる。特に、大電力を消費してサーバ2に多くのデータを送るためには、蓄電部50として大容量(1F程度)のスーパーキャパシタが必要となる。 Power storage unit 50 is a means for storing the generated power (about 100 μW) of environmental power generation unit 40, and, for example, a super capacitor (= generic name of electric double layer capacitor) can be suitably used. In particular, in order to consume a large amount of power and send a large amount of data to the server 2, a large capacity (about 1 F) supercapacitor is required as the storage unit 50.
 パワーマネジメント部60は、環境発電部40の発電電力、または、蓄電部50の蓄電電力を用いて、センサノード1各部(AIチップ10、センサ20、及び、通信部30)への電力供給を行う内部電源回路(例えばDC3.3V出力のDC/DCコンバータ)である。環境発電部40では、発電電力を安定に供給することができない。そのため、センサノード1の安定動作を実現するためには、パワーマネジメント部60の働きが非常に重要となる。すなわち、パワーマネジメント部60では、蓄電部50への蓄電制御だけでなく、環境発電部40から最大電力が得られるように適切なインピーダンスマッチング制御を行う必要がある。 The power management unit 60 supplies power to each unit (the AI chip 10, the sensor 20, and the communication unit 30) of the sensor node 1 using the generated power of the environmental power generation unit 40 or the stored power of the storage unit 50. It is an internal power supply circuit (for example, a DC / DC converter with a DC 3.3 V output). The environmental power generation unit 40 can not stably supply the generated power. Therefore, in order to realize stable operation of the sensor node 1, the operation of the power management unit 60 is very important. That is, in the power management unit 60, not only the storage control of the storage unit 50, but also the appropriate impedance matching control needs to be performed so that the maximum power can be obtained from the environmental power generation unit 40.
 本構成例のセンサノード1であれば、その消費電力が環境発電によって賄われているので、電源配線の敷設や電池の交換が不要となる。また、センサノード1とサーバ2との間では、無線による通信が行われるので、相互間を結ぶ信号配線も不要となる。従って、センサノード1を任意の箇所に配置することが可能となる。 In the case of the sensor node 1 of this configuration example, since the power consumption is covered by the environmental power generation, the laying of the power supply wiring and the replacement of the battery become unnecessary. Further, since wireless communication is performed between the sensor node 1 and the server 2, signal wiring connecting the two is also unnecessary. Therefore, the sensor node 1 can be disposed at an arbitrary position.
 サーバ2は、センサノード1から異常フラグを受け付けたときに、本部のスタッフに異常状態報知を行う。このようなマシンヘルスモニタリングシステム300を構築することにより、CBM手法(図2)による設備保全が可能となる。 When the server 2 receives an abnormality flag from the sensor node 1, the server 2 notifies the staff in the head office of an abnormal state. By constructing such a machine health monitoring system 300, facility maintenance can be performed by the CBM method (FIG. 2).
<その他の変形例>
 なお、上記の実施形態では、マシンヘルスモニタリングシステムを例に挙げたが、人工知能アルゴリズム(ないしこれを実装した人工知能チップ)の適用対象は、何らこれに限定されるものではなく、例えば、患者の体調管理を行うための生体ヘルスモニタリングシステムにも応用することが可能である。
<Other Modifications>
In the above embodiment, the machine health monitoring system is described as an example, but the application target of the artificial intelligence algorithm (or the artificial intelligence chip mounted with the same) is not limited to this. It is possible to apply to a living body health monitoring system for managing physical condition of
 このように、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態に限定されるものではなく、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。 Thus, various technical features disclosed in the present specification can be modified in various ways without departing from the spirit of the technical creation in addition to the above embodiment. That is, the above embodiment should be considered as illustrative in all points and not restrictive, and the technical scope of the present invention is not limited to the above embodiment, and the claims It should be understood that the scope and the meaning and meaning of the scope and all the modifications that fall within the scope are included.
 本明細書中に開示されている発明は、例えば、スマートファクトリー向けのマシンヘルスモニタリングシステムに利用することが可能である。 The invention disclosed herein can be used, for example, in a machine health monitoring system for smart factories.
   1  センサノード
   10  人工知能チップ(AIチップ)
   11  前処理部
   11a  バンドパスフィルタ
   12  分類器(OCSVM)
   12a  サポートベクトル格納部
   12b  カーネル演算処理部
   b10  ベクトル演算器
   b11  カーネル演算器
   b12  乗算器
   b20  加算器
   13  後処理部
   20  センサ
   30  通信部(Wi-SUN)
   40  環境発電部
   50  蓄電部(スーパーキャパシタ)
   60  パワーマネジメント部
   100  本部
   200  工場
   210  ミリングマシン
   211  モータ
   212~215  ベアリング
   216  加速度計
   217  熱電対
   300  マシンヘルスモニタリングシステム
1 sensor node 10 artificial intelligence chip (AI chip)
11 pre-processing unit 11a band pass filter 12 classifier (OCSVM)
12a support vector storage unit 12b kernel operation processing unit b10 vector operation unit b11 kernel operation unit b12 multiplier b20 adder 13 post-processing unit 20 sensor 30 communication unit (Wi-SUN)
40 Environmental Power Generation Unit 50 Power Storage Unit (Super Capacitor)
60 Power Management Unit 100 Headquarters 200 Factory 210 Milling Machine 211 Motor 212-215 Bearing 216 Accelerometer 217 Thermocouple 300 Machine Health Monitoring System

Claims (12)

  1.  並列に接続された複数のバンドパスフィルタを用いて入力データから周波数帯域毎の特徴量をそれぞれ抽出することにより特徴ベクトルを生成するステップと、
     前記特徴ベクトルとサポートベクトルを用いてカーネル関数の値を求めるステップと、
     を有することを特徴とする人工知能アルゴリズム。
    Generating a feature vector by extracting feature quantities for each frequency band from input data using a plurality of band pass filters connected in parallel;
    Determining a value of a kernel function using the feature vector and the support vector;
    Artificial intelligence algorithm characterized by having.
  2.  前記カーネル関数の値から前記入力データの異常検出を行うステップをさらに有することを特徴とする請求項1に記載の人工知能アルゴリズム。 The artificial intelligence algorithm according to claim 1, further comprising the step of detecting an abnormality of the input data from the value of the kernel function.
  3.  前記入力データは、振動データであることを特徴とする請求項1または請求項2に記載の人工知能アルゴリズム。 The artificial intelligence algorithm according to claim 1 or 2, wherein the input data is vibration data.
  4.  前記カーネル関数は、線形カーネル、ガウスカーネル、または、RBF[radial base function]カーネルであることを特徴とする請求項1~請求項3のいずれか一項に記載の人工知能アルゴリズム。 The artificial intelligence algorithm according to any one of claims 1 to 3, wherein the kernel function is a linear kernel, a Gaussian kernel, or an RBF [radial base function] kernel.
  5.  並列に接続された複数のバンドパスフィルタを用いて入力データから周波数帯域毎の特徴量をそれぞれ抽出することにより特徴ベクトルを生成する前処理部と、
     前記特徴ベクトルとサポートベクトルを用いてカーネル関数の値を求める分類器と、
     を有することを特徴とする人工知能チップ。
    A preprocessing unit that generates a feature vector by extracting feature quantities for each frequency band from input data using a plurality of band pass filters connected in parallel;
    A classifier for determining a value of a kernel function using the feature vector and the support vector;
    An artificial intelligence chip characterized by having.
  6.  前記カーネル関数の値から前記入力データの異常検出を行う後処理部をさらに有することを特徴とする請求項5に記載の人工知能チップ。 The artificial intelligence chip according to claim 5, further comprising a post-processing unit that performs abnormality detection of the input data from the value of the kernel function.
  7.  前記分類器は、ハードウェアにより構成されたOCSVM[one class support vector machine]であることを特徴とする請求項5または請求項6に記載の人工知能チップ。 The artificial intelligence chip according to claim 5 or 6, wherein the classifier is an OCSVM [one class support vector machine] configured by hardware.
  8.  センサと、
     前記センサから前記入力データを受け付ける請求項5~請求項7のいずれか一項に記載の人工知能チップと、
     前記人工知能チップとサーバとの間で無線通信を行う通信部と、
     を有することを特徴とするセンサノード。
    Sensor,
    The artificial intelligence chip according to any one of claims 5 to 7, which receives the input data from the sensor.
    A communication unit for performing wireless communication between the artificial intelligence chip and the server;
    The sensor node characterized by having.
  9.  前記センサは、振動センサであることを特徴とする請求項8に記載のセンサノード。 The sensor node according to claim 8, wherein the sensor is a vibration sensor.
  10.  環境発電部と、
     前記環境発電部の発電電力を蓄える蓄電部と、
     前記発電電力または前記蓄電部の蓄電電力を用いてセンサノード各部への電力供給を行うパワーマネジメント部と、
     をさらに有することを特徴とする請求項8または請求項9に記載のセンサノード。
    Environmental power generation department,
    A power storage unit for storing power generated by the environmental power generation unit;
    A power management unit that supplies power to each part of a sensor node using the generated power or stored power of the storage unit;
    The sensor node according to claim 8 or 9, further comprising:
  11.  監視対象装置に取り付けられる請求項10に記載のセンサノードと、
     前記センサノードから異常フラグを受け付けるサーバと、
     を有することを特徴とするマシンヘルスモニタリングシステム。
    11. The sensor node according to claim 10, which is attached to a monitored device.
    A server that receives an abnormality flag from the sensor node;
    A machine health monitoring system characterized by having:
  12.  前記サーバは、前記センサノードから前記異常フラグを受け付けて異常状態報知を行うことを特徴とする請求項11に記載のマシンヘルスモニタリングシステム。 The machine health monitoring system according to claim 11, wherein the server receives the abnormality flag from the sensor node and reports an abnormal state.
PCT/JP2018/023934 2017-08-18 2018-06-25 Artificial intelligence algorithm WO2019035279A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019536436A JP7012086B2 (en) 2017-08-18 2018-06-25 Artificial intelligence algorithm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017157852 2017-08-18
JP2017-157852 2017-08-18

Publications (1)

Publication Number Publication Date
WO2019035279A1 true WO2019035279A1 (en) 2019-02-21

Family

ID=65362832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023934 WO2019035279A1 (en) 2017-08-18 2018-06-25 Artificial intelligence algorithm

Country Status (2)

Country Link
JP (1) JP7012086B2 (en)
WO (1) WO2019035279A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021149614A1 (en) * 2020-01-24 2021-07-29
JP2022168313A (en) * 2021-04-25 2022-11-07 広海 大谷 Sql database-graph hamilton cycle junction model ai chip, automated accuracy compensation mechanism applied gyroscope, etc., ai chip, ram access restriction flag lock chip, serial registration ram access restriction flag lock chip, ai execution result analysis and storage custom chip, auto-analysis data alignment and arrangement chip, game engine chip, 4d engine chip, physical simulator chip, ai chip board, 4d engine chip board, physical simulator chip board, chained feedback point system chip and roll forward system chip, rollback system chip, and emergency control apparatus direct circuit and chip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105943A (en) * 2004-10-08 2006-04-20 Omron Corp Device for creating knowledge, parameter retrieving method, and program product
JP2014035279A (en) * 2012-08-09 2014-02-24 Bridgestone Corp Road surface state determination method and device
WO2015072023A1 (en) * 2013-11-15 2015-05-21 富士通株式会社 System, communication node, and switching method
US20160098037A1 (en) * 2014-10-06 2016-04-07 Fisher-Rosemount Systems, Inc. Data pipeline for process control system anaytics
WO2017126236A1 (en) * 2016-01-20 2017-07-27 三菱電機株式会社 Abnormality detection device and abnormality detection system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244996B2 (en) 2014-03-10 2017-12-13 富士通株式会社 Discriminant function specifying device, discriminant function specifying program, discriminant function specifying method, and biometric authentication device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105943A (en) * 2004-10-08 2006-04-20 Omron Corp Device for creating knowledge, parameter retrieving method, and program product
JP2014035279A (en) * 2012-08-09 2014-02-24 Bridgestone Corp Road surface state determination method and device
WO2015072023A1 (en) * 2013-11-15 2015-05-21 富士通株式会社 System, communication node, and switching method
US20160098037A1 (en) * 2014-10-06 2016-04-07 Fisher-Rosemount Systems, Inc. Data pipeline for process control system anaytics
WO2017126236A1 (en) * 2016-01-20 2017-07-27 三菱電機株式会社 Abnormality detection device and abnormality detection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021149614A1 (en) * 2020-01-24 2021-07-29
WO2021149614A1 (en) * 2020-01-24 2021-07-29 三菱電機株式会社 Wire rope flaw detection device
JP7275324B2 (en) 2020-01-24 2023-05-17 三菱電機株式会社 Wire rope flaw detector
JP2022168313A (en) * 2021-04-25 2022-11-07 広海 大谷 Sql database-graph hamilton cycle junction model ai chip, automated accuracy compensation mechanism applied gyroscope, etc., ai chip, ram access restriction flag lock chip, serial registration ram access restriction flag lock chip, ai execution result analysis and storage custom chip, auto-analysis data alignment and arrangement chip, game engine chip, 4d engine chip, physical simulator chip, ai chip board, 4d engine chip board, physical simulator chip board, chained feedback point system chip and roll forward system chip, rollback system chip, and emergency control apparatus direct circuit and chip

Also Published As

Publication number Publication date
JP7012086B2 (en) 2022-01-27
JPWO2019035279A1 (en) 2020-07-27

Similar Documents

Publication Publication Date Title
Jin et al. A data-driven approach for bearing fault prognostics
Xu et al. Data-driven fault diagnostics and prognostics for predictive maintenance: A brief overview
US10539932B2 (en) Machine diagnostics based on overall system energy state
Guo et al. Mechanical fault time series prediction by using EFMSAE-LSTM neural network
US10481195B2 (en) Distributed IoT based sensor analytics for power line diagnosis
Hu et al. Dynamic degradation observer for bearing fault by MTS–SOM system
CN102521604B (en) Device and method for estimating performance degradation of equipment based on inspection system
CA2875071A1 (en) Method and system for testing operational integrity of a drilling rig
JP2014142324A (en) Vibration analysis method of bearing device, vibration analysis device of bearing device and state monitoring device of rolling bearing
CN104571079A (en) Wireless long-distance fault diagnosis system based on multiple-sensor information fusion
JP7012086B2 (en) Artificial intelligence algorithm
Peco Chacón et al. State of the art of artificial intelligence applied for false alarms in wind turbines
Chen et al. An integrated framework for statistical change detection in running status of industrial machinery under transient conditions
Jaber et al. The state of the art in research into the condition monitoring of industrial machinery
Kannan et al. Nominal features-based class specific learning model for fault diagnosis in industrial applications
Durbhaka Convergence of artificial intelligence and internet of things in predictive maintenance systems–a review
Maurya et al. Intelligent fault diagnostic system for rotating machinery based on IoT with cloud computing and artificial intelligence techniques: a review
Selvaraj et al. Proactive maintenance of small wind turbines using IoT and machine learning models
Albano et al. Advanced sensor-based maintenance in real-world exemplary cases
Elforjani et al. Monitoring gearbox using a wireless temperature node powered by thermal energy harvesting module
Wang Key techniques in intelligent predictive maintenance (IPdM)–a framework of intelligent faults diagnosis and prognosis system (IFDaPS)
JP6192413B2 (en) Vibration analysis method for bearing device, vibration analysis device for bearing device, and state monitoring device for rolling bearing
Yi et al. On a Prediction Method for Remaining Useful Life of Rolling Bearings via VMD-Based Dispersion Entropy and GAN
Kirbaş et al. A new vibration-based hybrid anomaly detection model for preventing high-power generator failures in power plants
KR20230100999A (en) Method for determining dominant frequency of rotating machinery facilities, and computing system performing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019536436

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845560

Country of ref document: EP

Kind code of ref document: A1