WO2019017078A1 - Load sensor, article, and load detection method - Google Patents

Load sensor, article, and load detection method Download PDF

Info

Publication number
WO2019017078A1
WO2019017078A1 PCT/JP2018/020596 JP2018020596W WO2019017078A1 WO 2019017078 A1 WO2019017078 A1 WO 2019017078A1 JP 2018020596 W JP2018020596 W JP 2018020596W WO 2019017078 A1 WO2019017078 A1 WO 2019017078A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
sensor
load sensor
polymer element
deformation
Prior art date
Application number
PCT/JP2018/020596
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 文珠
佳樹 河畑
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018101618A external-priority patent/JP7025996B2/en
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2019017078A1 publication Critical patent/WO2019017078A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the present invention relates to a load sensor that detects an applied load, an article, and a load detection method.
  • a sensor for detecting an applied load there is a sensor using an elastic body such as a spring which expands and contracts according to the application of a load, a pressure sensor, a strain sensor and the like (see, for example, Patent Document 1).
  • An object of the present invention is to provide a load sensor, an article, and a load detection method capable of detecting the load applied to a measurement target portion while solving the problems described above and suppressing damage to the measurement target portion. It is in.
  • a load sensor concerning the present invention is a load sensor which detects applied load, and an electrode layer is provided in both sides of an ion conductive polymer layer, and according to application of the above-mentioned load It has a polymer element which is deformed and outputs a signal according to the deformation, and the polymer element is provided in a non-planar state in a state where the load is not applied.
  • the load sensor further includes a deformation member that deforms in response to the application of the load, and the polymer element deforms in response to the deformation of the deformation member.
  • the polymer element further includes a shock absorbing material attached to the deforming member and provided around the deforming member to which the polymer element is attached, via the shock absorbing material
  • the load is applied to the deformation member.
  • the polymer element is curved, and is deformed so as to decrease the curvature or increase the curvature according to the application of the load.
  • the polymer element is bent and deformed so as to decrease the bending angle or increase the bending angle according to the application of the load. .
  • the load sensor it is preferable to further include a cover film that covers the laminate of the ion conductive polymer layer and the electrode layer.
  • goods which concern on this invention are equipped with one of the load sensors mentioned above.
  • a load detection method is a load detection method for detecting an applied load, wherein an electrode layer is provided on both sides of the ion conductive polymer layer, and
  • the polymer element includes a polymer element that deforms in response to the application and outputs a signal according to the deformation, and the polymer element applies a load to a non-planar load sensor provided in the state where the load is not applied.
  • D detecting the applied load according to a signal output from the polymer element that deforms in response to the application of the load.
  • the load applied to the measurement target portion can be detected while suppressing damage to the measurement target portion.
  • FIG. 1 It is a figure showing an example of the important section composition of the load sensor concerning a 1st embodiment of the present invention. It is a figure which shows the state at the time of application of the load of a load sensor shown in FIG. It is a figure which shows an example of a principal part structure of the EAP sensor shown in FIG. It is a figure which shows another example of the principal part structure of the load sensor which concerns on the 1st Embodiment of this invention. It is a figure which shows the state at the time of application of the load of a load sensor shown in FIG. It is a figure which shows another example of the principal part structure of the EAP sensor shown in FIG.
  • FIG. 16 is a graph showing the generated potential with respect to the applied load in the load sensor according to Example 4.
  • FIG. 16 is a graph showing the generated potential with respect to the applied load in the load sensor according to Example 7.
  • FIG. 14 is a graph which shows the generation
  • FIG. 16 is a graph showing the generated potential with respect to an applied load in a load sensor according to Example 9.
  • FIG. 21 is a graph showing the generated potential with respect to the applied load in the load sensor according to Example 11.
  • FIG. 1 is a cross-sectional view showing an essential configuration of a load sensor 10 according to a first embodiment of the present invention.
  • the load sensor 10 according to the present embodiment is attached to a measurement target portion and detects a load applied to the measurement target portion.
  • a load sensor 10 shown in FIG. 1 includes a deformable member 11 and an EAP (Electroactive Polymers) sensor 12.
  • EAP Electroactive Polymers
  • the deformation member 11 is a cylindrical member, and is deformed by the application of a load as shown in FIG.
  • a material of the deformation member 11 polyvinyl chloride (PVC), nylon or the like can be used.
  • PVC polyvinyl chloride
  • nylon nylon
  • the material of the deformation member 11 is not limited to these, and any material can be used as long as the function of the load sensor 10 is not impaired if it is deformed according to the application of a load.
  • the size (diameter) of the deformation member 11 can also be appropriately set according to the size of the load to be detected.
  • the deformation member 11 does not necessarily have to be cylindrical, and can be formed into any shape as long as it is deformed according to the application of a load.
  • the EAP sensor 12 is disposed (fixed) along a part of the circumferential direction on the outer surface of the cylindrical deformation member 11 by, for example, an adhesive protective film. That is, the EAP sensor 12 is arranged non-planarly (curved in FIG. 1) in a state where no load is applied. As shown in FIG. 2, when a load is applied from the top of the deformable member 11 toward the measurement target portion, the deformable member 11 is deformed so as to be crushed in the vertical direction.
  • the EAP sensor 12 is disposed at a portion where the curvature increases when the deformation member 11 is deformed. The EAP sensor 12 deforms so that the curvature increases as the deformation member 11 deforms.
  • FIG. 1 shows an example in which the EAP sensor 12 abuts on the measurement target portion, the present invention is not limited to this, and the deformable member 11 may abut on the measurement target portion.
  • the EAP sensor 12 is deformed with the deformation of the deformation member 11, and outputs a signal (electrical signal) according to the deformation.
  • FIG. 3 is a diagram showing an example of the main configuration of the EAP sensor 12, and in particular, a schematic configuration example (Z-X cross-sectional configuration example) of the polymer element 121 that the EAP sensor 12 has.
  • the EAP sensor 12 has a polymer element 121 including a polymer layer 122 (ion conductive polymer layer) and electrode layers 123A and 123B.
  • the polymer layer 122 is made of an ion conductive polymer such as a fluorine-based resin (for example, Nafion (registered trademark) manufactured by DuPont Co., Ltd.) having a polar group such as a sulfonic acid group or a carboxylic acid group.
  • a fluorine-based resin for example, Nafion (registered trademark) manufactured by DuPont Co., Ltd.
  • a polar group such as a sulfonic acid group or a carboxylic acid group.
  • the material which comprises the polymer layer 122 is not restricted to this.
  • the polymer layer 122 is composed of an ion conductive polymer compound impregnated with an ionic substance.
  • ionic substance refers to all the ions capable of conducting in the polymer layer 122, and may be an organic substance or an inorganic substance.
  • the ionic substance hydrogen ion, metal ion alone, or those containing the cation and / or the anion and the polar solvent, or the cation and / or the anion which is itself liquid such as imidazolium salt Including, but not limited to.
  • the electrode layers 123A and 123B are provided on both sides of the polymer layer 122 in the Z direction so as to sandwich the polymer layer 122. That is, the polymer element 121 is a laminate in which the polymer layer 122 is laminated so as to sandwich the electrode layers 123A and 123B. Each of the electrode layers 123A and 123B is configured by blending carbon black into the polymer material constituting the polymer layer 122. Wirings for taking out electrical signals are connected to the electrode layers 123A and 123B, respectively, but the description thereof is omitted in FIG.
  • the polymer element 121 When the polymer element 121 (EAP sensor 12) receives an external force, for example, it deforms (curves) in the positive direction (electrode layer 123B side) of the Z axis in FIG. 3, the polymer layer 122 compresses the electrode layer 123B side, The electrode layer 123A extends. Then, the cations contained in the polymer layer 122 move to the electrode layer 123A having a low internal pressure, the cations become dense on the electrode layer 123A, and the cations become sparse on the electrode layer 123B. Therefore, a potential difference is generated between the electrode layer 123A and the electrode layer 123B, and the potential difference is output as an electrical signal from the wiring for extracting an electrical signal connected to the electrode layers 123A and 123B.
  • the EAP sensor 12 (polymer element 121) is formed in a substantially planar shape. Even when the EAP sensor 12 is disposed on a flat pedestal and a load is applied, the EAP sensor 12 is not deformed, and an electrical signal is not output from the EAP sensor 12.
  • the EAP sensor 12 (polymer element 121) is nonplanarly disposed on the outer surface of the deformable member 11 in a state where no load is applied, and the deformable member It deforms according to the deformation of 11. According to the deformation of the polymer element 121, a potential difference occurs between the electrode layer 123A and the electrode layer 123B, and this potential difference is output from the EAP sensor 12 as an electrical signal.
  • the deformable member 11 in which the EAP sensor 12 is disposed is disposed on the measurement target portion.
  • the EAP sensor 12 is provided non-planarly along the outer surface of the cylindrical deformation member 11. That is, the EAP sensor 12 (polymer element 121) is provided in a non-planar shape (curved shape in FIG. 1) in a state where no load is applied.
  • the deformation member 11 When a load is applied from the state shown in FIG. 1 to the direction to be measured via the deformation member 11 as shown in FIG. 2, the deformation member 11 has the curvature of the portion to which the EAP sensor 12 is attached. To become larger.
  • the polymer element 121 of the EAP sensor 12 is also deformed so as to increase the curvature.
  • a signal is output from the EAP sensor 12. By detecting this signal, the applied load can be detected.
  • the applied load can be detected by the EAP sensor 12 (the polymer element 121) being deformed according to the application of the load and a signal corresponding to the deformation being output.
  • the deformation member 11 and the EAP sensor 12 have a degree of flexibility that deforms in response to the application of a load. Therefore, even if it is pressed by the measurement object part, there is little possibility of causing damage to the measurement object part, for example, a scratch. Therefore, it is possible to detect the load applied to the measurement target portion while suppressing the damage to the measurement target portion.
  • the EAP sensor 12 is fixed to the cylindrical deformation member 11 to hold the EAP sensor 12 in a non-planar shape, but the present invention is not limited to this.
  • the deformation member 11 can have an arbitrary shape as long as it can hold the EAP sensor 12 in a nonplanar shape and can deform the EAP sensor 12 according to the deformation of the deformation member 11.
  • the deformation member 11 is not necessarily required.
  • the EAP sensor 12 (polymer element 121) demonstrated using the example deformed so that a curvature might become large according to the application of a load, it is not restricted to this.
  • the EAP sensor 12 (polymer element 121) may be deformed so as to have a smaller curvature in response to the application of a load.
  • the EAP sensor 12 (polymer element 121) has been described using an example in which it is curved (in an arc shape) in a state where no load is applied. It is not something that can be done.
  • the EAP sensor 12 (polymer element 121) may be bent (may be bent) as shown in FIG.
  • the deformation member 11 for example, as shown in FIG. 4, a trapezoidal member can be used.
  • the trapezoidal deformation member 11 is disposed such that the shorter side of the two parallel sides abuts on the bent EAP sensor 12. Then, when a load is applied, as shown in FIG. 5, the deformation member 11 is crushed (deformed) in such a manner as to expand the EAP sensor 12.
  • the EAP sensor 12 deforms so as to increase the bending angle in response to the application of the load, and outputs a signal corresponding to the deformation. Thus, even if the EAP sensor 12 is bent, the load can be detected.
  • the EAP sensor 12 may be deformed so as to reduce the bending angle in response to the application of the load.
  • the EAP sensor 12 is described using an example including a laminate (polymer element 121) in which both sides of the polymer layer 122 (ion conductive polymer layer) are sandwiched between the electrode layers 123A and 123B.
  • the EAP sensor 12 may further include a cover film 124 covering a laminate of the polymer layer 122 and the electrode layers 123A and 123B, as shown in FIG.
  • the cover film 124 is made of a material capable of suppressing the permeation of moisture, such as polyethylene terephthalate (PET), polyethylene (PE), ethylene-vinyl acetate copolymer resin (EVA), or the like.
  • a barrier film having an inorganic metal layer can be used as the cover film 124.
  • the cover film 124 covers the entire laminate so as to suppress the entry of moisture into the laminate of the polymer layer 122 and the electrode layers 123A and 123B.
  • the EAP sensor 12 can exhibit stable characteristics regardless of temperature and humidity.
  • the load sensor 10 is provided with the electrode layers 123A and 123B on both sides of the polymer layer 122 (ion conductive polymer layer), and deforms in response to the application of a load.
  • the polymer element 121 is provided in a non-planar manner in a state where no load is applied.
  • the polymer element 121 is deformed according to the application of the load, and a signal corresponding to the deformation is output, whereby the applied load can be detected.
  • the deformation member 11 and the polymer element 121 (EAP sensor 12) have flexibility to such an extent that they are deformed in response to the application of a load. Therefore, even if it is pressed by the measurement object part, there is little possibility of causing damage to the measurement object part, for example, a scratch. Therefore, it is possible to detect the load applied to the measurement target portion while suppressing the damage to the measurement target portion.
  • FIG. 7 is a cross-sectional view showing the main configuration of a load sensor 10A according to a second embodiment of the present invention.
  • Load sensor 10A shown in FIG. 7 differs from load sensor 10 shown in FIG. 1 in that cushioning material 13 is added.
  • the cushioning material 13 is provided to cover the periphery of the deformation member 11 to which the EAP sensor 12 is attached.
  • the cushioning material 13 has a cushioning function to cushion a load applied to the deformation member 11.
  • the buffer material 13 is made of, for example, ethylene-vinyl acetate copolymer resin, etc.
  • the present invention is not limited to this, as long as it has a buffer function, the function of the load sensor 10A is not impaired. It can be made of any material.
  • a load is applied to the deformable member 11 via the buffer material 13.
  • the load applied to the deformable member 11 itself is reduced, so that a larger load can be detected.
  • the load sensor 10, 10A according to the present invention described above can be applied to various articles provided with a function of detecting a load in an industrially applicable field represented by industry or agriculture.
  • Example 1 In this example, a 1 cm ⁇ 5 cm (width ⁇ length) rectangular polymer element was produced as follows.
  • a paint in which a conductive material powder and a conductive polymer were dispersed in a dispersion medium was applied to both sides of the ion conductive polymer film.
  • the dispersion medium was volatilized to form electrode layers on both sides of the ion conductive polymer film, and the ion conductive polymer film was impregnated with a cationic substance.
  • the ion conductive polymer membrane (ion conductive polymer layer) and the electrode layer were cut into a predetermined size (1 cm ⁇ 5 cm) to produce a polymer element.
  • the thickness of the ion conductive polymer membrane was 100 ⁇ m.
  • the thickness of the electrode layer formed on both sides of the ion conductive polymer film was 15 ⁇ m.
  • a wiring for drawing out an electric signal was attached to the produced polymer element, and then, it was placed at the center of a 2 cm ⁇ 6 cm (width ⁇ length) PET film (cover film). Then, a thermosetting resin material was applied to a width of 5 mm from the outer periphery of the PET film to a thickness of 50 ⁇ m, and a PET film of 2 cm ⁇ 6 cm was laminated thereon to produce an EAP sensor.
  • the thickness of the PET film on both sides of the polymer element was 12 ⁇ m. Also in the following examples, the method for producing the EAP sensor is the same.
  • the produced EAP sensor was attached to a polyvinyl chloride tube having a diameter of 15 mm so that the long side of the EAP sensor was along the axial direction of the polyvinyl chloride tube, to fabricate a load sensor.
  • Example 2 In this example, the produced EAP sensor was attached to a nylon tube having a diameter of 10 mm so that the long side was along the axial direction of the nylon tube.
  • Example 3 the produced EAP sensor was attached to a nylon tube having a diameter of 8 mm so that the long side of the EAP sensor was along the axial direction of the nylon tube, to fabricate a load sensor.
  • Example 4 a load sensor is covered with a sponge (buffer material) made of an ethylene-vinyl acetate copolymer resin and the periphery of a polyvinyl chloride tube on which an EAP sensor is attached in the same manner as in Example 1.
  • the size of the sponge was 50 mm ⁇ 70 mm ⁇ 30 mm (width ⁇ depth ⁇ height).
  • the polyvinyl chloride tube was arranged such that its axial direction coincided with the depth direction of the sponge. Also in the following examples, the arrangement direction of the tube to which the EAP sensor is attached is the same.
  • Example 5 In the present example, a nylon tube to which an EAP sensor was attached in the same manner as in Example 2 was covered with the same sponge (buffer material) as in Example 4.
  • Example 6 In the present example, in the same manner as in Example 3, the periphery of the nylon tube to which the EAP sensor was attached was covered with the same sponge (buffer material) as in Example 4 to produce a load sensor.
  • Example 7 a load sensor is covered with a sponge (buffer material) made of an ethylene-vinyl acetate copolymer resin and the periphery of a polyvinyl chloride tube on which an EAP sensor is attached in the same manner as in Example 1.
  • the size of the sponge was 50 mm ⁇ 84 mm ⁇ 30 mm (width ⁇ depth ⁇ height).
  • Example 8 In the present example, in the same manner as in Example 2, the periphery of the nylon tube to which the EAP sensor was attached was covered with the same sponge (buffer material) as in Example 7 to produce a load sensor.
  • Example 9 In the present example, in the same manner as in Example 3, the periphery of the nylon tube to which the EAP sensor was attached was covered with the same sponge (buffer material) as in Example 7 to produce a load sensor.
  • a load sensor is prepared by covering a nylon tube attached with an EAP sensor in the same manner as in Example 2 with a sponge (buffer material) made of ethylene-vinyl acetate copolymer resin. did.
  • the size of the sponge was 20 mm ⁇ 46 mm ⁇ 30 mm (width ⁇ depth ⁇ height).
  • Example 11 In the present example, in the same manner as in Example 3, the periphery of the nylon tube to which the EAP sensor was attached was covered with the same sponge (buffer material) as in Example 10 to produce a load sensor.
  • the generated potential linearly increased in the range of about 5 to 25 kgf.
  • the generated potential linearly increased in the range of about 25 to 50 kgf.
  • the generated potential linearly increased in the range of about 25 to 100 kgf.
  • Example 1 which is not provided with a shock absorbing material is compared with Examples 4 and 7 (FIG. 9D, 9 G) which is provided with a shock absorbing material, or Example 2 (not provided with a shock absorbing material).
  • 9B) and the embodiments 5, 8 and 10 (FIGS. 9E, 9H and 9J) provided with the shock absorbing material, the load where the generated potential increases linearly in the embodiment provided with the shock absorbing material. It was found that the range of L shifted to the high load side and the inclination decreased. Therefore, it was found that by providing a shock absorbing material, it is possible to detect a large load.
  • the range of the load at which the generated potential increases linearly differs according to the material and diameter of the tube used as the deformation member, and the size of the buffer material. Therefore, it was found that the range of the load to be detected can be adjusted by appropriately selecting the material and diameter of the tube used as the deformation member, and the size of the shock absorbing material.
  • Reference Signs List 10 10A load sensor 11 deformable member 12 EAP sensor 13 buffer material 121 polymer element 122 polymer layer 123A, 123B electrode layer 124 cover film

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Provided is a load sensor 10 having a polymer element 121 in which electrode layers 123A, 123B are provided on both surfaces of a polymer layer 122, and which deforms in response to the application of a load and outputs a signal corresponding to the deformation. The polymer element 121 is non-planar when a load is not applied.

Description

荷重センサ、物品および荷重検知方法Load sensor, article and load detection method
 本出願は、2017年7月18日に日本国に特許出願された特願2017-139076および2018年5月28に日本国に特許出願された特願2018-101618の優先権を主張するものであり、これら先の出願の開示全体をここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2017-139076 filed in Japan on July 18, 2017 and Japanese Patent Application No. 20180-11618 filed in Japan on May 28, 2018. The entire disclosure of these prior applications is incorporated herein by reference.
 本発明は、印加される荷重を検知する荷重センサ、物品および荷重検知方法に関する。 The present invention relates to a load sensor that detects an applied load, an article, and a load detection method.
 印加される荷重を検知するセンサとしては、荷重の印加に応じて伸縮するバネなどの弾性体、圧力センサ、歪みセンサなどを用いたものがある(例えば、特許文献1参照)。 As a sensor for detecting an applied load, there is a sensor using an elastic body such as a spring which expands and contracts according to the application of a load, a pressure sensor, a strain sensor and the like (see, for example, Patent Document 1).
特開2010-210469号公報Unexamined-Japanese-Patent No. 2010-210469
 上述した弾性体、圧力センサ、歪みセンサなどを用いたセンサにおいては、センサの土台などの一点(固定部)を、印加される荷重を測定する測定対象部に取り付ける必要がある。ここで、固定部が変形すると荷重を正確に検知することができないので、固定部には、強度の高い部材からなる強固な構造体が用いられる。しかしながら、このような強固な構造体を測定対象部に取り付けると、荷重の印加に応じて、測定対象部にダメージを与えてしまう(例えば、傷を生じさせてしまう)ことがある。 In the above-described sensor using an elastic body, a pressure sensor, a strain sensor, or the like, it is necessary to attach a single point (fixing portion) or the like of the sensor to a measurement target portion that measures an applied load. Here, since the load can not be accurately detected when the fixing portion is deformed, a strong structure made of a high strength member is used for the fixing portion. However, when such a strong structure is attached to the measurement target portion, the measurement target portion may be damaged (for example, a scratch may be generated) in response to the application of a load.
 本発明の目的は、上述した課題を解決し、測定対象部へのダメージを抑制しつつ、測定対象部に印加される荷重を検知することができる荷重センサ、物品および荷重検知方法を提供することにある。 An object of the present invention is to provide a load sensor, an article, and a load detection method capable of detecting the load applied to a measurement target portion while solving the problems described above and suppressing damage to the measurement target portion. It is in.
 上記課題を解決するため、本発明に係る荷重センサは、印加される荷重を検知する荷重センサであって、イオン導電性高分子層の両面に電極層が設けられ、前記荷重の印加に応じて変形し、該変形に応じた信号を出力するポリマー素子を有し、前記ポリマー素子は、前記荷重が印加されていない状態において非平面状に設けられている。 In order to solve the above-mentioned subject, a load sensor concerning the present invention is a load sensor which detects applied load, and an electrode layer is provided in both sides of an ion conductive polymer layer, and according to application of the above-mentioned load It has a polymer element which is deformed and outputs a signal according to the deformation, and the polymer element is provided in a non-planar state in a state where the load is not applied.
 また、本発明に係る荷重センサにおいて、前記荷重の印加に応じて変形する変形部材をさらに有し、前記ポリマー素子は、前記変形部材の変形に応じて変形することが好ましい。 In the load sensor according to the present invention, it is preferable that the load sensor further includes a deformation member that deforms in response to the application of the load, and the polymer element deforms in response to the deformation of the deformation member.
 また、本発明に係る荷重センサにおいて、前記ポリマー素子は、前記変形部材に取り付けられ、前記ポリマー素子が取り付けられた変形部材の周囲に設けられた緩衝材をさらに有し、前記緩衝材を介して、前記荷重が前記変形部材に印加されることが好ましい。 Further, in the load sensor according to the present invention, the polymer element further includes a shock absorbing material attached to the deforming member and provided around the deforming member to which the polymer element is attached, via the shock absorbing material Preferably, the load is applied to the deformation member.
 また、本発明に係る荷重センサにおいて、前記ポリマー素子は、湾曲しており、前記荷重の印加に応じて、曲率が小さくなるように、または、曲率が大きくなるように変形することが好ましい。 Further, in the load sensor according to the present invention, it is preferable that the polymer element is curved, and is deformed so as to decrease the curvature or increase the curvature according to the application of the load.
 また、本発明に係る荷重センサにおいて、前記ポリマー素子は、屈曲しており、前記荷重の印加に応じて、屈曲角が小さくなるように、または、屈曲角が大きくなるように変形することが好ましい。 In the load sensor according to the present invention, preferably, the polymer element is bent and deformed so as to decrease the bending angle or increase the bending angle according to the application of the load. .
 また、本発明に係る荷重センサにおいて、前記イオン導電性高分子層および前記電極層の積層体を覆うカバーフィルムをさらに備えることが好ましい。 Further, in the load sensor according to the present invention, it is preferable to further include a cover film that covers the laminate of the ion conductive polymer layer and the electrode layer.
 また、上記課題を解決するため、本発明に係る物品は、上述したいずれかの荷重センサを備える。 Moreover, in order to solve the said subject, the articles | goods which concern on this invention are equipped with one of the load sensors mentioned above.
 また、上記課題を解決するため、本発明に係る荷重検知方法は、印加される荷重を検知する荷重検知方法であって、イオン導電性高分子層の両面に電極層が設けられ、前記荷重の印加に応じて変形し、変形に応じた信号を出力するポリマー素子を有し、前記ポリマー素子は、前記荷重が印加されていない状態において非平面状に設けられている荷重センサに荷重を印加するステップと、前記荷重の印加に応じて変形する前記ポリマー素子から出力される信号に応じて前記印加された荷重を検知するステップと、を含む。 Further, in order to solve the above problems, a load detection method according to the present invention is a load detection method for detecting an applied load, wherein an electrode layer is provided on both sides of the ion conductive polymer layer, and The polymer element includes a polymer element that deforms in response to the application and outputs a signal according to the deformation, and the polymer element applies a load to a non-planar load sensor provided in the state where the load is not applied. And D. detecting the applied load according to a signal output from the polymer element that deforms in response to the application of the load.
 本発明に係る荷重センサ、物品および荷重検知方法によれば、測定対象部へのダメージを抑制しつつ、測定対象部に印加される荷重を検知することができる。 According to the load sensor, the article, and the load detection method according to the present invention, the load applied to the measurement target portion can be detected while suppressing damage to the measurement target portion.
本発明の第1の実施形態に係る荷重センサの要部構成の一例を示す図である。It is a figure showing an example of the important section composition of the load sensor concerning a 1st embodiment of the present invention. 図1に示す荷重センサの荷重の印加時の状態を示す図である。It is a figure which shows the state at the time of application of the load of a load sensor shown in FIG. 図1に示すEAPセンサの要部構成の一例を示す図である。It is a figure which shows an example of a principal part structure of the EAP sensor shown in FIG. 本発明の第1の実施形態に係る荷重センサの要部構成の他の一例を示す図である。It is a figure which shows another example of the principal part structure of the load sensor which concerns on the 1st Embodiment of this invention. 図4に示す荷重センサの荷重の印加時の状態を示す図である。It is a figure which shows the state at the time of application of the load of a load sensor shown in FIG. 図1に示すEAPセンサの要部構成の他の一例を示す図である。It is a figure which shows another example of the principal part structure of the EAP sensor shown in FIG. 本発明の第2の実施形態に係る荷重センサの要部構成の一例を示す図である。It is a figure which shows an example of the principal part structure of the load sensor which concerns on the 2nd Embodiment of this invention. 図7に示す荷重センサの荷重の印加時の状態を示す図である。It is a figure which shows the state at the time of application of the load of a load sensor shown in FIG. 実施例1に係る荷重センサにおける印加された荷重に対する発生電位を示すグラフである。It is a graph which shows the generation | occurrence | production electric potential with respect to the applied load in the load sensor which concerns on Example 1. FIG. 実施例2に係る荷重センサにおける印加された荷重に対する発生電位を示すグラフである。It is a graph which shows the generation | occurrence | production electric potential with respect to the applied load in the load sensor which concerns on Example 2. FIG. 実施例3に係る荷重センサにおける印加された荷重に対する発生電位を示すグラフである。It is a graph which shows the generation | occurrence | production electric potential with respect to the applied load in the load sensor which concerns on Example 3. FIG. 実施例4に係る荷重センサにおける印加された荷重に対する発生電位を示すグラフである。FIG. 16 is a graph showing the generated potential with respect to the applied load in the load sensor according to Example 4. FIG. 実施例5に係る荷重センサにおける印加された荷重に対する発生電位を示すグラフである。It is a graph which shows the generation | occurrence | production electric potential with respect to the applied load in the load sensor which concerns on Example 5. FIG. 実施例6に係る荷重センサにおける印加された荷重に対する発生電位を示すグラフである。It is a graph which shows the generation | occurrence | production electric potential with respect to the applied load in the load sensor which concerns on Example 6. FIG. 実施例7に係る荷重センサにおける印加された荷重に対する発生電位を示すグラフである。FIG. 16 is a graph showing the generated potential with respect to the applied load in the load sensor according to Example 7. FIG. 実施例8に係る荷重センサにおける印加された荷重に対する発生電位を示すグラフである。It is a graph which shows the generation | occurrence | production electric potential with respect to the applied load in the load sensor which concerns on Example 8. FIG. 実施例9に係る荷重センサにおける印加された荷重に対する発生電位を示すグラフである。FIG. 16 is a graph showing the generated potential with respect to an applied load in a load sensor according to Example 9. FIG. 実施例10に係る荷重センサにおける印加された荷重に対する発生電位を示すグラフである。It is a graph which shows the generation | occurrence | production electric potential with respect to the applied load in the load sensor which concerns on Example 10. FIG. 実施例11に係る荷重センサにおける印加された荷重に対する発生電位を示すグラフである。21 is a graph showing the generated potential with respect to the applied load in the load sensor according to Example 11. FIG.
 以下、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る荷重センサ10の要部構成を示す断面図である。本実施形態に係る荷重センサ10は、測定対象部に取り付けられ、測定対象部に印加される荷重を検出するものである。
First Embodiment
FIG. 1 is a cross-sectional view showing an essential configuration of a load sensor 10 according to a first embodiment of the present invention. The load sensor 10 according to the present embodiment is attached to a measurement target portion and detects a load applied to the measurement target portion.
 図1に示す荷重センサ10は、変形部材11と、EAP(Electroactive Polymers)センサ12とを備える。 A load sensor 10 shown in FIG. 1 includes a deformable member 11 and an EAP (Electroactive Polymers) sensor 12.
 変形部材11は、円筒状の部材であり、図2に示すように、荷重の印加により変形する。変形部材11の材質としては、ポリ塩化ビニル(Polyvinyl chloride:PVC)、ナイロンなどを用いることができる。ただし、変形部材11の材質は、これらに限られるものではなく、荷重の印加に応じて変形すれば、荷重センサ10の機能を損なわない範囲で、任意の材質を用いることができる。また、変形部材11のサイズ(直径)も、検知する荷重の大きさなどに応じて、適宜、設定することができる。また、変形部材11は、必ずしも円筒状である必要は無く、荷重の印加に応じて変形すれば、任意の形状とすることができる。 The deformation member 11 is a cylindrical member, and is deformed by the application of a load as shown in FIG. As a material of the deformation member 11, polyvinyl chloride (PVC), nylon or the like can be used. However, the material of the deformation member 11 is not limited to these, and any material can be used as long as the function of the load sensor 10 is not impaired if it is deformed according to the application of a load. Further, the size (diameter) of the deformation member 11 can also be appropriately set according to the size of the load to be detected. Further, the deformation member 11 does not necessarily have to be cylindrical, and can be formed into any shape as long as it is deformed according to the application of a load.
 EAPセンサ12は、例えば、粘着性を有する保護フィルムにより、円筒状の変形部材11の外表面に、周方向の一部に沿って配置(固定)される。すなわち、EAPセンサ12は、荷重が印加されていない状態において、非平面状に(図1では湾曲して)配置される。図2に示すように、変形部材11の上部から測定対象部に向かって荷重が印加されると、変形部材11は上下方向に潰れるように変形する。EAPセンサ12は、変形部材11が変形した場合に、曲率が大きくなる部分に配置されている。EAPセンサ12は、変形部材11の変形に伴って、曲率が大きくなるように変形する。なお、図1においては、EAPセンサ12が測定対象部に当接する例を示しているが、これに限られるものではなく、変形部材11が測定対象部に当接していてもよい。 The EAP sensor 12 is disposed (fixed) along a part of the circumferential direction on the outer surface of the cylindrical deformation member 11 by, for example, an adhesive protective film. That is, the EAP sensor 12 is arranged non-planarly (curved in FIG. 1) in a state where no load is applied. As shown in FIG. 2, when a load is applied from the top of the deformable member 11 toward the measurement target portion, the deformable member 11 is deformed so as to be crushed in the vertical direction. The EAP sensor 12 is disposed at a portion where the curvature increases when the deformation member 11 is deformed. The EAP sensor 12 deforms so that the curvature increases as the deformation member 11 deforms. Although FIG. 1 shows an example in which the EAP sensor 12 abuts on the measurement target portion, the present invention is not limited to this, and the deformable member 11 may abut on the measurement target portion.
 EAPセンサ12は、変形部材11の変形に伴って変形し、その変形に応じた信号(電気信号)を出力する。 The EAP sensor 12 is deformed with the deformation of the deformation member 11, and outputs a signal (electrical signal) according to the deformation.
 図3は、EAPセンサ12の要部構成の一例を示す図であり、特に、EAPセンサ12が有するポリマー素子121の概略構成例(Z-X断面構成例)を示す図である。 FIG. 3 is a diagram showing an example of the main configuration of the EAP sensor 12, and in particular, a schematic configuration example (Z-X cross-sectional configuration example) of the polymer element 121 that the EAP sensor 12 has.
 図3に示すように、EAPセンサ12は、高分子層122(イオン導電性高分子層)と、電極層123A,123Bとを備えるポリマー素子121を有する。 As shown in FIG. 3, the EAP sensor 12 has a polymer element 121 including a polymer layer 122 (ion conductive polymer layer) and electrode layers 123A and 123B.
 高分子層122は、スルホン酸基またはカルボン酸基といった極性基を有するフッ素系樹脂(例えば、デュポン株式会社製のナフィオン(登録商標))などのイオン導電性高分子により構成される。なお、高分子層122を構成する材料はこれに限られるものではない。高分子層122は、イオン物質が含浸されたイオン伝導性高分子化合物により構成される。「イオン物質」とは、高分子層122内を伝導することが可能なイオン全般を指しており、有機物質であっても無機物質であってもよい。例えば、イオン物質としては、水素イオン、金属イオン単体、またはそれら陽イオンおよび/または陰イオンと極性溶媒とを含むもの、あるいはイミダゾリウム塩などのそれ自体が液状である陽イオンおよび/または陰イオンを含むものなどを含むが、これらに限られるものではない。 The polymer layer 122 is made of an ion conductive polymer such as a fluorine-based resin (for example, Nafion (registered trademark) manufactured by DuPont Co., Ltd.) having a polar group such as a sulfonic acid group or a carboxylic acid group. In addition, the material which comprises the polymer layer 122 is not restricted to this. The polymer layer 122 is composed of an ion conductive polymer compound impregnated with an ionic substance. The term "ionic substance" refers to all the ions capable of conducting in the polymer layer 122, and may be an organic substance or an inorganic substance. For example, as the ionic substance, hydrogen ion, metal ion alone, or those containing the cation and / or the anion and the polar solvent, or the cation and / or the anion which is itself liquid such as imidazolium salt Including, but not limited to.
 電極層123A,123Bは、高分子層122のZ方向の両面に、高分子層122を挟むようにして設けられている。すなわち、ポリマー素子121は、高分子層122を電極層123A,123Bが挟むように積層された積層体である。電極層123A,123Bはそれぞれ、高分子層122を構成する高分子材料中にカーボンブラックを配合して構成される。電極層123A,123Bにはそれぞれ、電気信号の取り出し用の配線が接続されるが、図3においては記載を省略している。 The electrode layers 123A and 123B are provided on both sides of the polymer layer 122 in the Z direction so as to sandwich the polymer layer 122. That is, the polymer element 121 is a laminate in which the polymer layer 122 is laminated so as to sandwich the electrode layers 123A and 123B. Each of the electrode layers 123A and 123B is configured by blending carbon black into the polymer material constituting the polymer layer 122. Wirings for taking out electrical signals are connected to the electrode layers 123A and 123B, respectively, but the description thereof is omitted in FIG.
 ポリマー素子121(EAPセンサ12)が外力を受けて、例えば、図3のZ軸の正方向(電極層123B側)に変形(湾曲)すると、高分子層122では、電極層123B側が圧縮し、電極層123A側が伸張する。すると、高分子層122に含まれる陽イオンが内圧の低い電極層123A側に移動し、電極層123A側では陽イオンが密となり、電極層123B側では陽イオンが疎となる。そのため、電極層123Aと電極層123Bとに電位差が生じ、この電位差が電極層123A,123Bに接続された電気信号の引き出し用の配線から電気信号として出力される。 When the polymer element 121 (EAP sensor 12) receives an external force, for example, it deforms (curves) in the positive direction (electrode layer 123B side) of the Z axis in FIG. 3, the polymer layer 122 compresses the electrode layer 123B side, The electrode layer 123A extends. Then, the cations contained in the polymer layer 122 move to the electrode layer 123A having a low internal pressure, the cations become dense on the electrode layer 123A, and the cations become sparse on the electrode layer 123B. Therefore, a potential difference is generated between the electrode layer 123A and the electrode layer 123B, and the potential difference is output as an electrical signal from the wiring for extracting an electrical signal connected to the electrode layers 123A and 123B.
 なお、一般に、EAPセンサ12(ポリマー素子121)は、略平面状に形成される。このEAPセンサ12を平面状の台座の上に配置して荷重を印加しても、EAPセンサ12は変形せず、EAPセンサ12から電気信号は出力されない。一方、本実施形態においては、上述したように、EAPセンサ12(ポリマー素子121)は、荷重が印加されていない状態において、変形部材11の外表面に非平面状に配置されており、変形部材11の変形に応じて変形する。ポリマー素子121の変形に応じて、電極層123Aと電極層123Bとの間に電位差が生じ、この電位差が電気信号としてEAPセンサ12から出力される。 In general, the EAP sensor 12 (polymer element 121) is formed in a substantially planar shape. Even when the EAP sensor 12 is disposed on a flat pedestal and a load is applied, the EAP sensor 12 is not deformed, and an electrical signal is not output from the EAP sensor 12. On the other hand, in the present embodiment, as described above, the EAP sensor 12 (polymer element 121) is nonplanarly disposed on the outer surface of the deformable member 11 in a state where no load is applied, and the deformable member It deforms according to the deformation of 11. According to the deformation of the polymer element 121, a potential difference occurs between the electrode layer 123A and the electrode layer 123B, and this potential difference is output from the EAP sensor 12 as an electrical signal.
 次に、本実施形態に係る荷重センサ10を用いた荷重検知方法について、図1,2を参照して説明する。 Next, a load detection method using the load sensor 10 according to the present embodiment will be described with reference to FIGS.
 まず、EAPセンサ12が配置された変形部材11を、図1に示すように、測定対象部上に配置する。ここで、EAPセンサ12は、円筒状の変形部材11の外表面に沿って、非平面状に設けられている。すなわち、EAPセンサ12(ポリマー素子121)は、荷重が印加されていない状態において非平面状(図1においては、湾曲状)に設けられている。 First, as shown in FIG. 1, the deformable member 11 in which the EAP sensor 12 is disposed is disposed on the measurement target portion. Here, the EAP sensor 12 is provided non-planarly along the outer surface of the cylindrical deformation member 11. That is, the EAP sensor 12 (polymer element 121) is provided in a non-planar shape (curved shape in FIG. 1) in a state where no load is applied.
 図1に示す状態から、図2に示すように、変形部材11を介して測定対象部に向かう方向に荷重が印加されると、変形部材11は、EAPセンサ12が貼り付けられた部分の曲率が大きくなるように変形する。変形部材11の変形に応じて、EAPセンサ12のポリマー素子121も曲率が大きくなるように変形する。ポリマー素子121の変形に応じて、EAPセンサ12から信号が出力され、この信号を検出することで、印加された荷重を検出することができる。 When a load is applied from the state shown in FIG. 1 to the direction to be measured via the deformation member 11 as shown in FIG. 2, the deformation member 11 has the curvature of the portion to which the EAP sensor 12 is attached. To become larger. In response to the deformation of the deformable member 11, the polymer element 121 of the EAP sensor 12 is also deformed so as to increase the curvature. In response to the deformation of the polymer element 121, a signal is output from the EAP sensor 12. By detecting this signal, the applied load can be detected.
 荷重の印加に応じてEAPセンサ12(ポリマー素子121)が変形し、その変形に応じた信号が出力されることで、印加された荷重を検知することができる。また、変形部材11およびEAPセンサ12は、荷重の印加に応じて変形する程度の柔軟性を有する。そのため、測定対象部に押圧されても、測定対象部へのダメージ、例えば、傷を生じさせる可能性は少ない。したがって、測定対象部へのダメージを抑制しつつ、測定対象部に印加される荷重を検知することができる。 The applied load can be detected by the EAP sensor 12 (the polymer element 121) being deformed according to the application of the load and a signal corresponding to the deformation being output. In addition, the deformation member 11 and the EAP sensor 12 have a degree of flexibility that deforms in response to the application of a load. Therefore, even if it is pressed by the measurement object part, there is little possibility of causing damage to the measurement object part, for example, a scratch. Therefore, it is possible to detect the load applied to the measurement target portion while suppressing the damage to the measurement target portion.
 なお、本実施形態においては、円筒状の変形部材11にEAPセンサ12を固定して、EAPセンサ12を非平面状に保持する例を用いて説明したが、これに限られるものではない。変形部材11は、EAPセンサ12を非平面状に保持し、変形部材11の変形に応じてEAPセンサ12を変形させることが可能であれば、任意の形状とすることができる。また、荷重が印加されていない状態において、EAPセンサ12を非平面状に保持することができれば、必ずしも変形部材11を設ける必要は無い。 In the present embodiment, the EAP sensor 12 is fixed to the cylindrical deformation member 11 to hold the EAP sensor 12 in a non-planar shape, but the present invention is not limited to this. The deformation member 11 can have an arbitrary shape as long as it can hold the EAP sensor 12 in a nonplanar shape and can deform the EAP sensor 12 according to the deformation of the deformation member 11. In addition, if the EAP sensor 12 can be held in a non-planar state in a state where no load is applied, the deformation member 11 is not necessarily required.
 また、本実施形態においては、EAPセンサ12(ポリマー素子121)が、荷重の印加に応じて、曲率が大きくなるように変形する例を用いて説明したが、これに限られるものではない。EAPセンサ12(ポリマー素子121)は、荷重の印加に応じて、曲率が小さくなるように変形してもよい。 Moreover, in this embodiment, although the EAP sensor 12 (polymer element 121) demonstrated using the example deformed so that a curvature might become large according to the application of a load, it is not restricted to this. The EAP sensor 12 (polymer element 121) may be deformed so as to have a smaller curvature in response to the application of a load.
 また、本実施形態においては、EAPセンサ12(ポリマー素子121)が、荷重が印加されていない状態において、湾曲している(円弧状をしている)例を用いて説明したが、これに限られるものではない。例えば、EAPセンサ12(ポリマー素子121)が、図4に示すように、屈曲していてもよい(折れ曲がっていてもよい)。この場合、変形部材11としては、例えば、図4に示すように、台形の部材を用いることができる。台形の変形部材11は、平行な二辺のうち、短い方の辺が屈曲したEAPセンサ12に当接するように配置される。そして、荷重が印加されると、図5に示すように、EAPセンサ12を押し広げるようにして、変形部材11が潰れる(変形する)。すなわち、EAPセンサ12は、荷重の印加に応じて、屈曲角が大きくなるように変形し、その変形に応じた信号を出力する。このように、EAPセンサ12が屈曲していても、荷重を検知することができる。なお、EAPセンサ12は、荷重の印加に応じて、屈曲角が小さくなるように変形してもよい。 Further, in the present embodiment, the EAP sensor 12 (polymer element 121) has been described using an example in which it is curved (in an arc shape) in a state where no load is applied. It is not something that can be done. For example, the EAP sensor 12 (polymer element 121) may be bent (may be bent) as shown in FIG. In this case, as the deformation member 11, for example, as shown in FIG. 4, a trapezoidal member can be used. The trapezoidal deformation member 11 is disposed such that the shorter side of the two parallel sides abuts on the bent EAP sensor 12. Then, when a load is applied, as shown in FIG. 5, the deformation member 11 is crushed (deformed) in such a manner as to expand the EAP sensor 12. That is, the EAP sensor 12 deforms so as to increase the bending angle in response to the application of the load, and outputs a signal corresponding to the deformation. Thus, even if the EAP sensor 12 is bent, the load can be detected. The EAP sensor 12 may be deformed so as to reduce the bending angle in response to the application of the load.
 また、本実施形態においては、EAPセンサ12は、高分子層122(イオン導電性高分子層)の両側を電極層123A,123Bで挟んだ積層体(ポリマー素子121)を備える例を用いて説明したが、これに限られるものではない。EAPセンサ12は、図6に示すように、高分子層122および電極層123A,123Bの積層体を覆うカバーフィルム124をさらに備えていてもよい。カバーフィルム124は、水分の透過を抑制可能な材質、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、エチレン-酢酸ビニル共重合体樹脂(EVA)などで構成される。また、カバーフィルム124としては、無機金属層を有するバリアフィルムを用いることができる。カバーフィルム124は、高分子層122および電極層123A,123Bの積層体への水分の侵入を抑制するように、積層体全体を覆う。 Further, in the present embodiment, the EAP sensor 12 is described using an example including a laminate (polymer element 121) in which both sides of the polymer layer 122 (ion conductive polymer layer) are sandwiched between the electrode layers 123A and 123B. However, it is not limited to this. The EAP sensor 12 may further include a cover film 124 covering a laminate of the polymer layer 122 and the electrode layers 123A and 123B, as shown in FIG. The cover film 124 is made of a material capable of suppressing the permeation of moisture, such as polyethylene terephthalate (PET), polyethylene (PE), ethylene-vinyl acetate copolymer resin (EVA), or the like. Further, as the cover film 124, a barrier film having an inorganic metal layer can be used. The cover film 124 covers the entire laminate so as to suppress the entry of moisture into the laminate of the polymer layer 122 and the electrode layers 123A and 123B.
 高分子層122および電極層123A,123Bの積層体をカバーフィルム124で覆うことで、温度や湿度によらず、EAPセンサ12は安定した特性を発現することができる。 By covering the laminate of the polymer layer 122 and the electrode layers 123A and 123B with the cover film 124, the EAP sensor 12 can exhibit stable characteristics regardless of temperature and humidity.
 このように本実施形態においては、荷重センサ10は、高分子層122(イオン導電性高分子層)の両面に電極層123A,123Bが設けられ、荷重の印加に応じて変形し、変形に応じた信号を出力するポリマー素子121を有し、ポリマー素子121は、荷重が印加されていない状態において非平面状に設けられている。 As described above, in the present embodiment, the load sensor 10 is provided with the electrode layers 123A and 123B on both sides of the polymer layer 122 (ion conductive polymer layer), and deforms in response to the application of a load. The polymer element 121 is provided in a non-planar manner in a state where no load is applied.
 荷重の印加に応じてポリマー素子121が変形し、その変形に応じた信号が出力されることで、印加された荷重を検知することができる。また、変形部材11およびポリマー素子121(EAPセンサ12)は、荷重の印加に応じて変形する程度の柔軟性を有する。そのため、測定対象部に押圧されても、測定対象部へのダメージ、例えば、傷を生じさせる可能性は少ない。したがって、測定対象部へのダメージを抑制しつつ、測定対象部に印加される荷重を検知することができる。 The polymer element 121 is deformed according to the application of the load, and a signal corresponding to the deformation is output, whereby the applied load can be detected. In addition, the deformation member 11 and the polymer element 121 (EAP sensor 12) have flexibility to such an extent that they are deformed in response to the application of a load. Therefore, even if it is pressed by the measurement object part, there is little possibility of causing damage to the measurement object part, for example, a scratch. Therefore, it is possible to detect the load applied to the measurement target portion while suppressing the damage to the measurement target portion.
 (第2の実施形態)
 図7は、本発明の第2の実施形態に係る荷重センサ10Aの要部構成を示す断面図である。
Second Embodiment
FIG. 7 is a cross-sectional view showing the main configuration of a load sensor 10A according to a second embodiment of the present invention.
 図7に示す荷重センサ10Aは、図1に示す荷重センサ10と比較して、緩衝材13を追加した点が異なる。 Load sensor 10A shown in FIG. 7 differs from load sensor 10 shown in FIG. 1 in that cushioning material 13 is added.
 緩衝材13は、EAPセンサ12が取り付けられた変形部材11の周囲を覆うように設けられている。緩衝材13は、変形部材11に印加される荷重を緩衝する緩衝機能を有する。緩衝材13は、例えば、エチレン-酢酸ビニル共重合体樹脂などで構成されるが、これに限られるものではなく、緩衝機能を有していれば、荷重センサ10Aの機能を損なわない範囲で、任意に材質により構成することができる。 The cushioning material 13 is provided to cover the periphery of the deformation member 11 to which the EAP sensor 12 is attached. The cushioning material 13 has a cushioning function to cushion a load applied to the deformation member 11. The buffer material 13 is made of, for example, ethylene-vinyl acetate copolymer resin, etc. However, the present invention is not limited to this, as long as it has a buffer function, the function of the load sensor 10A is not impaired. It can be made of any material.
 変形部材11の変形の程度には限度がある。そのため、限度を超える変形を生じさせるような大きな荷重が印加された場合には、印加された荷重を正確に検知することができない。 There is a limit to the degree of deformation of the deformation member 11. Therefore, when a large load that causes deformation beyond the limit is applied, the applied load can not be accurately detected.
 本実施形態に係る荷重センサ10Aにおいては、図8に示すように、緩衝材13を介して変形部材11に荷重が印加される。緩衝材13を介して荷重が印加されることで、変形部材11自体に印加される荷重が減少するので、より大荷重の検知が可能となる。 In the load sensor 10A according to the present embodiment, as shown in FIG. 8, a load is applied to the deformable member 11 via the buffer material 13. By applying a load through the shock absorbing material 13, the load applied to the deformable member 11 itself is reduced, so that a larger load can be detected.
 上述した本発明に係る荷重センサ10,10Aは、工業や農業に代表される産業上利用可能な分野において、荷重を検出する機能を備える種々の物品に適用することが可能である。 The load sensor 10, 10A according to the present invention described above can be applied to various articles provided with a function of detecting a load in an industrially applicable field represented by industry or agriculture.
 次に、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に制限されるものではない。 EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto.
 (実施例1)
 本実施例では、1cm×5cm(幅×長さ)の長方形状のポリマー素子を以下のようにして作製した。
Example 1
In this example, a 1 cm × 5 cm (width × length) rectangular polymer element was produced as follows.
 まず、分散媒に導電性材料粉末と導電性高分子とを分散させた塗料をイオン導電性高分子膜の両面に塗布した。次に、分散媒を揮発させて、イオン導電性高分子膜の両面に電極層を形成するとともに、イオン導電性高分子膜に陽イオン物質を含浸させた。その後、イオン導電性高分子膜(イオン導電性高分子層)および電極層を所定の大きさ(1cm×5cm)に裁断して、ポリマー素子を作製した。イオン導電性高分子膜の厚さは100μmであった。また、イオン導電性高分子膜の両面に形成された電極層の厚さは15μmであった。 First, a paint in which a conductive material powder and a conductive polymer were dispersed in a dispersion medium was applied to both sides of the ion conductive polymer film. Next, the dispersion medium was volatilized to form electrode layers on both sides of the ion conductive polymer film, and the ion conductive polymer film was impregnated with a cationic substance. Thereafter, the ion conductive polymer membrane (ion conductive polymer layer) and the electrode layer were cut into a predetermined size (1 cm × 5 cm) to produce a polymer element. The thickness of the ion conductive polymer membrane was 100 μm. The thickness of the electrode layer formed on both sides of the ion conductive polymer film was 15 μm.
 次に、作製したポリマー素子に電気信号の引き出し用の配線を取り付けた上で、2cm×6cm(幅×長さ)のPETフィルム(カバーフィルム)の中央部に配置した。そして、PETフィルムの外周から5mmの幅の領域に熱硬化型樹脂材を50μmの厚さで塗布し、その上から2cm×6cmのPETフィルムを張り合わせて、EAPセンサを作製した。ポリマー素子の両面のPETフィルムの厚さは12μmであった。なお、以下の実施例においても、EAPセンサの作製方法は同じである。 Next, a wiring for drawing out an electric signal was attached to the produced polymer element, and then, it was placed at the center of a 2 cm × 6 cm (width × length) PET film (cover film). Then, a thermosetting resin material was applied to a width of 5 mm from the outer periphery of the PET film to a thickness of 50 μm, and a PET film of 2 cm × 6 cm was laminated thereon to produce an EAP sensor. The thickness of the PET film on both sides of the polymer element was 12 μm. Also in the following examples, the method for producing the EAP sensor is the same.
 次に、直径15mmのポリ塩化ビニル製のチューブに、作製したEAPセンサを長辺がポリ塩化ビニル製のチューブの軸方向の沿うようにして貼り付けて荷重センサを作製した。 Next, the produced EAP sensor was attached to a polyvinyl chloride tube having a diameter of 15 mm so that the long side of the EAP sensor was along the axial direction of the polyvinyl chloride tube, to fabricate a load sensor.
 (実施例2)
 本実施例では、直径10mmのナイロン製のチューブに、作製したEAPセンサを長辺がナイロン製のチューブの軸方向の沿うようにして貼り付けた。
(Example 2)
In this example, the produced EAP sensor was attached to a nylon tube having a diameter of 10 mm so that the long side was along the axial direction of the nylon tube.
 (実施例3)
 本実施例では、直径8mmのナイロン製のチューブに、作製したEAPセンサを長辺がナイロン製のチューブの軸方向の沿うようにして貼り付けて荷重センサを作製した。
(Example 3)
In this example, the produced EAP sensor was attached to a nylon tube having a diameter of 8 mm so that the long side of the EAP sensor was along the axial direction of the nylon tube, to fabricate a load sensor.
 (実施例4)
 本実施例では、実施例1と同様にしてEAPセンサを貼り付けたポリ塩化ビニル製のチューブの周囲を、エチレン-酢酸ビニル共重合体樹脂で構成されたスポンジ(緩衝材)で覆って荷重センサを作製した。スポンジのサイズは、50mm×70mm×30mm(幅×奥行き×高さ)であった。ポリ塩化ビニル製のチューブは、その軸方向がスポンジの奥行き方向と一致するように配置した。なお、以下の実施例においても、EAPセンサを貼り付けたチューブの配置方向は同じである。
(Example 4)
In this example, a load sensor is covered with a sponge (buffer material) made of an ethylene-vinyl acetate copolymer resin and the periphery of a polyvinyl chloride tube on which an EAP sensor is attached in the same manner as in Example 1. Was produced. The size of the sponge was 50 mm × 70 mm × 30 mm (width × depth × height). The polyvinyl chloride tube was arranged such that its axial direction coincided with the depth direction of the sponge. Also in the following examples, the arrangement direction of the tube to which the EAP sensor is attached is the same.
 (実施例5)
 本実施例では、実施例2と同様にしてEAPセンサを貼り付けたナイロン製のチューブの周囲を、実施例4と同様のスポンジ(緩衝材)で覆った。
(Example 5)
In the present example, a nylon tube to which an EAP sensor was attached in the same manner as in Example 2 was covered with the same sponge (buffer material) as in Example 4.
 (実施例6)
 本実施例では、実施例3と同様にしてEAPセンサを貼り付けたナイロン製のチューブの周囲を、実施例4と同様のスポンジ(緩衝材)で覆って荷重センサを作製した。
(Example 6)
In the present example, in the same manner as in Example 3, the periphery of the nylon tube to which the EAP sensor was attached was covered with the same sponge (buffer material) as in Example 4 to produce a load sensor.
 (実施例7)
 本実施例では、実施例1と同様にしてEAPセンサを貼り付けたポリ塩化ビニル製のチューブの周囲を、エチレン-酢酸ビニル共重合体樹脂で構成されたスポンジ(緩衝材)で覆って荷重センサを作製した。スポンジのサイズは、50mm×84mm×30mm(幅×奥行き×高さ)であった。
(Example 7)
In this example, a load sensor is covered with a sponge (buffer material) made of an ethylene-vinyl acetate copolymer resin and the periphery of a polyvinyl chloride tube on which an EAP sensor is attached in the same manner as in Example 1. Was produced. The size of the sponge was 50 mm × 84 mm × 30 mm (width × depth × height).
 (実施例8)
 本実施例では、実施例2と同様にしてEAPセンサを貼り付けたナイロン製のチューブの周囲を、実施例7と同様のスポンジ(緩衝材)で覆って荷重センサを作製した。
(Example 8)
In the present example, in the same manner as in Example 2, the periphery of the nylon tube to which the EAP sensor was attached was covered with the same sponge (buffer material) as in Example 7 to produce a load sensor.
 (実施例9)
 本実施例では、実施例3と同様にしてEAPセンサを貼り付けたナイロン製のチューブの周囲を、実施例7と同様のスポンジ(緩衝材)で覆って荷重センサを作製した。
(Example 9)
In the present example, in the same manner as in Example 3, the periphery of the nylon tube to which the EAP sensor was attached was covered with the same sponge (buffer material) as in Example 7 to produce a load sensor.
 (実施例10)
 本実施例では、実施例2と同様にしてEAPセンサを貼り付けたナイロン製のチューブの周囲を、エチレン-酢酸ビニル共重合体樹脂で構成されたスポンジ(緩衝材)で覆って荷重センサを作製した。スポンジのサイズは、20mm×46mm×30mm(幅×奥行き×高さ)であった。
(Example 10)
In this example, a load sensor is prepared by covering a nylon tube attached with an EAP sensor in the same manner as in Example 2 with a sponge (buffer material) made of ethylene-vinyl acetate copolymer resin. did. The size of the sponge was 20 mm × 46 mm × 30 mm (width × depth × height).
 (実施例11)
 本実施例では、実施例3と同様にしてEAPセンサを貼り付けたナイロン製のチューブの周囲を、実施例10と同様のスポンジ(緩衝材)で覆って荷重センサを作製した。
(Example 11)
In the present example, in the same manner as in Example 3, the periphery of the nylon tube to which the EAP sensor was attached was covered with the same sponge (buffer material) as in Example 10 to produce a load sensor.
 (EAPセンサの発生電位の測定)
 次に、実施例1~11に係る荷重センサに荷重を印加し、EAPセンサの発生電位を測定した。図9A~図9Kはそれぞれ、実施例1~11に係る荷重センサにおける印加された荷重に対する発生電位を示すグラフである。
(Measurement of generated potential of EAP sensor)
Next, a load was applied to the load sensors according to Examples 1 to 11, and the generated potential of the EAP sensor was measured. 9A to 9K are graphs showing generated potentials with respect to applied load in the load sensors according to Examples 1 to 11, respectively.
 図9Aに示すように、実施例1に係る荷重センサにおいては、荷重が約5~25kgfの範囲で発生電位が線形的に上昇した。 As shown in FIG. 9A, in the load sensor according to the first embodiment, the generated potential linearly increased in the range of about 5 to 25 kgf.
 図9Bに示すように、実施例2に係る荷重センサにおいては、荷重が約25~50kgfの範囲で発生電位が線形的に上昇した。 As shown in FIG. 9B, in the load sensor according to the second embodiment, the generated potential linearly increased in the range of about 25 to 50 kgf.
 図9C~図9Kに示すように、実施例3~11に係る荷重センサにおいては、荷重が約25~100kgfの範囲で発生電位が線形的に上昇した。 As shown in FIGS. 9C to 9K, in the load sensors according to Examples 3 to 11, the generated potential linearly increased in the range of about 25 to 100 kgf.
 このように、実施例1~11に係る荷重センサはいずれも、印加される荷重の増加に伴って線形的に発生電位が増加する範囲があり、この範囲では荷重の検知が可能であることが分かった。 Thus, in any of the load sensors according to Examples 1 to 11, there is a range in which the generated potential increases linearly with the increase of the applied load, and it is possible to detect the load in this range I understood.
 また、緩衝材を設けていない実施例1(図9A)と、緩衝材を設けた実施例4,7(図9D,9G)とを比較すると、あるいは、緩衝材を設けていない実施例2(図9B)と、緩衝材を設けた実施例5,8、10(図9E,9H,9J)とを比較すると、緩衝材を設けた実施例の方が、線形的に発生電位が増加する荷重の範囲が大荷重側にシフトし、また、傾きが小さくなることが分かった。したがって、緩衝材を設けることにより、大荷重の検知が可能となることが分かった Moreover, Example 1 (FIG. 9A) which is not provided with a shock absorbing material is compared with Examples 4 and 7 (FIG. 9D, 9 G) which is provided with a shock absorbing material, or Example 2 (not provided with a shock absorbing material). 9B) and the embodiments 5, 8 and 10 (FIGS. 9E, 9H and 9J) provided with the shock absorbing material, the load where the generated potential increases linearly in the embodiment provided with the shock absorbing material. It was found that the range of L shifted to the high load side and the inclination decreased. Therefore, it was found that by providing a shock absorbing material, it is possible to detect a large load.
 また、変形部材として用いたチューブの材質、直径、また、緩衝材のサイズなどに応じて、線形的に発生電位が増加する荷重の範囲が異なっていた。したがって、変形部材として用いたチューブの材質、直径、また、緩衝材のサイズなどを適宜、選択することで、検知する荷重の範囲を調整することができることが分かった。 In addition, the range of the load at which the generated potential increases linearly differs according to the material and diameter of the tube used as the deformation member, and the size of the buffer material. Therefore, it was found that the range of the load to be detected can be adjusted by appropriately selecting the material and diameter of the tube used as the deformation member, and the size of the shock absorbing material.
 本発明は、上述した各実施形態で特定された構成に限定されず、特許請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形が可能である。例えば、各構成部などに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部などを1つに組み合わせたり、或いは分割したりすることが可能である。 The present invention is not limited to the configurations specified in the above-described embodiments, and various modifications can be made without departing from the scope of the invention described in the claims. For example, functions included in each component can be rearranged so as not to be logically contradictory, and it is possible to combine or divide a plurality of components into one.
 10,10A  荷重センサ
 11  変形部材
 12  EAPセンサ
 13  緩衝材
 121  ポリマー素子
 122  高分子層
 123A,123B  電極層
 124  カバーフィルム
Reference Signs List 10, 10A load sensor 11 deformable member 12 EAP sensor 13 buffer material 121 polymer element 122 polymer layer 123A, 123B electrode layer 124 cover film

Claims (8)

  1.  印加される荷重を検知する荷重センサであって、
     イオン導電性高分子層の両面に電極層が設けられ、前記荷重の印加に応じて変形し、該変形に応じた信号を出力するポリマー素子を有し、
     前記ポリマー素子は、前記荷重が印加されていない状態において非平面状に設けられていることを特徴とする荷重センサ。
    A load sensor for detecting an applied load,
    An electrode layer is provided on both sides of the ion conductive polymer layer, and has a polymer element that deforms in response to the application of the load and outputs a signal according to the deformation.
    A load sensor characterized in that the polymer element is provided non-planarly in a state where the load is not applied.
  2.  請求項1に記載の荷重センサにおいて、
     前記荷重の印加に応じて変形する変形部材をさらに有し、
     前記ポリマー素子は、前記変形部材の変形に応じて変形することを特徴とする荷重センサ。
    In the load sensor according to claim 1,
    It further comprises a deformation member that deforms in response to the application of the load,
    A load sensor characterized in that the polymer element is deformed according to the deformation of the deformation member.
  3.  請求項2に記載の荷重センサにおいて、
     前記ポリマー素子は、前記変形部材に取り付けられ、
     前記ポリマー素子が取り付けられた変形部材の周囲に設けられた緩衝材をさらに有し、
     前記緩衝材を介して、前記荷重が前記変形部材に印加されることを特徴とする荷重センサ。
    In the load sensor according to claim 2,
    The polymer element is attached to the deformation member,
    It further comprises a buffer provided around the deformation member to which the polymer element is attached,
    A load sensor characterized in that the load is applied to the deformation member through the buffer material.
  4.  請求項1から3のいずれか一項に記載の荷重センサにおいて、
     前記ポリマー素子は、湾曲しており、前記荷重の印加に応じて、曲率が小さくなるように、または、曲率が大きくなるように変形することを特徴とする荷重センサ。
    The load sensor according to any one of claims 1 to 3
    A load sensor characterized in that the polymer element is curved and is deformed so as to have a small curvature or a large curvature in response to the application of the load.
  5.  請求項1から3のいずれか一項に記載の荷重センサにおいて、
     前記ポリマー素子は、屈曲しており、前記荷重の印加に応じて、屈曲角が小さくなるように、または、屈曲角が大きくなるように変形することを特徴とする荷重センサ。
    The load sensor according to any one of claims 1 to 3
    A load sensor characterized in that the polymer element is bent and is deformed so as to decrease a bending angle or increase a bending angle according to the application of the load.
  6.  請求項1から5のいずれか一項に記載の荷重センサにおいて、
     前記イオン導電性高分子層および前記電極層の積層体を覆うカバーフィルムをさらに備えることを特徴とする荷重センサ。
    In the load sensor according to any one of claims 1 to 5,
    A load sensor comprising: a cover film covering a laminate of the ion conductive polymer layer and the electrode layer.
  7.  請求項1から6のいずれか一項に記載の荷重センサを備える物品。 An article comprising the load sensor according to any one of claims 1 to 6.
  8.  印加される荷重を検知する荷重検知方法であって、
     イオン導電性高分子層の両面に電極層が設けられ、前記荷重の印加に応じて変形し、変形に応じた信号を出力するポリマー素子を有し、前記ポリマー素子は、前記荷重が印加されていない状態において非平面状に設けられている荷重センサに荷重を印加するステップと、
     前記荷重の印加に応じて変形する前記ポリマー素子から出力される信号に応じて前記印加された荷重を検知するステップと、を含む荷重検知方法。
    A load detection method for detecting an applied load, comprising:
    An electrode layer is provided on both sides of the ion conductive polymer layer, and the polymer element has a polymer element that is deformed according to the application of the load and outputs a signal according to the deformation, and the polymer element is applied with the load. Applying a load to a non-planar load sensor in the absence state;
    Detecting the applied load in accordance with a signal output from the polymer element that deforms in response to the application of the load.
PCT/JP2018/020596 2017-07-18 2018-05-29 Load sensor, article, and load detection method WO2019017078A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017139076 2017-07-18
JP2017-139076 2017-07-18
JP2018-101618 2018-05-28
JP2018101618A JP7025996B2 (en) 2017-07-18 2018-05-28 Load sensor, article and load detection method

Publications (1)

Publication Number Publication Date
WO2019017078A1 true WO2019017078A1 (en) 2019-01-24

Family

ID=65015158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020596 WO2019017078A1 (en) 2017-07-18 2018-05-29 Load sensor, article, and load detection method

Country Status (1)

Country Link
WO (1) WO2019017078A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813317Y2 (en) * 1975-10-24 1983-03-15 東レ株式会社 Miyakuhakukei
US6060811A (en) * 1997-07-25 2000-05-09 The United States Of America As Represented By The United States National Aeronautics And Space Administration Advanced layered composite polylaminate electroactive actuator and sensor
US20160036353A1 (en) * 2014-07-31 2016-02-04 Battelle Memorial Institute Increased Force Generation in Electroactive Polymers
JP5870705B2 (en) * 2012-01-19 2016-03-01 セイコーエプソン株式会社 Pressure sensor and robot hand
WO2016156175A1 (en) * 2015-03-31 2016-10-06 Koninklijke Philips N.V. Actuator or sensor device based on an electroactive polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813317Y2 (en) * 1975-10-24 1983-03-15 東レ株式会社 Miyakuhakukei
US6060811A (en) * 1997-07-25 2000-05-09 The United States Of America As Represented By The United States National Aeronautics And Space Administration Advanced layered composite polylaminate electroactive actuator and sensor
JP5870705B2 (en) * 2012-01-19 2016-03-01 セイコーエプソン株式会社 Pressure sensor and robot hand
US20160036353A1 (en) * 2014-07-31 2016-02-04 Battelle Memorial Institute Increased Force Generation in Electroactive Polymers
WO2016156175A1 (en) * 2015-03-31 2016-10-06 Koninklijke Philips N.V. Actuator or sensor device based on an electroactive polymer

Similar Documents

Publication Publication Date Title
JP5497222B2 (en) Capacitance type sensor sheet and method for manufacturing capacitance type sensor sheet
US9105844B2 (en) Piezoelectric device with piezoelectric polymer material
US8299686B2 (en) Actuator with sensor
US20130089765A1 (en) Electricity accumulation device
US9841339B2 (en) Double-acting pressure sensor
US8770045B2 (en) Sensor assembly and sensor module
JP2008122215A (en) Piezoelectric sensor and method of manufacturing the same
JP5111071B2 (en) Piezoelectric sensor
US20160349124A1 (en) Sensor capable of sensing shear force
CN106716838A (en) Capacitive sensor
WO2016027613A1 (en) Piezoelectric film laminate and bending detection sensor
EP0057982A2 (en) Device sensitive to pressure waves
US7719164B2 (en) Patterned dielectric elastomer actuator and method of fabricating the same
JP7128506B2 (en) pressure sensor
US11906373B2 (en) Pressure sensor and electronic equipment
CN105917202A (en) Piezoelectric sensor
JP2010093954A (en) Polymer transducer
WO2019017078A1 (en) Load sensor, article, and load detection method
KR101594432B1 (en) Electrostatic force based actuator including poly-imide organic dielectric layer
JP7025996B2 (en) Load sensor, article and load detection method
US9832572B2 (en) Electroactive sound transducer foil having a structured surface
US8479583B1 (en) Quasi-static bend sensor using electro-active materials
JP2005311171A (en) Organic semiconductor device
KR101578662B1 (en) Sensor for detecting deformation of structures using multiple electro active polymer assembly
JP2006153471A (en) Pressure sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18836219

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18836219

Country of ref document: EP

Kind code of ref document: A1