WO2019013253A1 - Detection device - Google Patents

Detection device Download PDF

Info

Publication number
WO2019013253A1
WO2019013253A1 PCT/JP2018/026192 JP2018026192W WO2019013253A1 WO 2019013253 A1 WO2019013253 A1 WO 2019013253A1 JP 2018026192 W JP2018026192 W JP 2018026192W WO 2019013253 A1 WO2019013253 A1 WO 2019013253A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
brightness
luminance
vehicle
threshold
Prior art date
Application number
PCT/JP2018/026192
Other languages
French (fr)
Japanese (ja)
Inventor
章伸 酒井
謙二 岡野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019013253A1 publication Critical patent/WO2019013253A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present disclosure relates to a technique for recognizing a lane mark from an image.
  • Patent Document 1 when a plurality of line candidates serving as lane mark candidates are detected from an image captured by a camera mounted on a vehicle, the line candidate having the highest luminance among the plurality of line candidates is selected.
  • a technique has been proposed which recognizes as a lane mark.
  • the lane mark may include a line having lower luminance than the white line, such as a yellow line, for example.
  • the technique described in Patent Document 1 always detects only the white line if a plurality of line candidates having different luminances, such as a white line and a yellow line, are detected.
  • a problem was found that there is a possibility that the vehicle may be recognized as a lane mark. That is, with the technique described in Patent Document 1, it has been found that there is a possibility that lane marks can not be detected properly.
  • One aspect of the present disclosure provides a technique for appropriately detecting a lane mark that defines a traveling path on which a vehicle travels.
  • One aspect of the present disclosure is a detection device mounted on a vehicle.
  • the detection device includes an image acquisition unit, a candidate extraction unit, a luminance determination unit, a multiple determination unit, a recognition unit, and an output unit.
  • the image acquisition unit is configured to repeatedly acquire an image captured by at least one camera mounted on the vehicle and including a travel path which is a road on which the vehicle travels.
  • the candidate extraction unit determines at least one line candidate which is a candidate for a division line that divides the lane from the captured image based on the feature point at which the luminance changes by a predetermined change threshold or more between adjacent pixels in the captured image. It is configured to extract
  • the luminance determination unit is configured to acquire the luminance of the line candidate for each of the line candidates, and determine whether the luminance of the line candidate is equal to or more than a predetermined luminance threshold.
  • the multiple determination unit is configured to determine whether there is a plurality of section candidates that are line candidates and the luminance determination unit determines that the luminance of the line candidate is equal to or higher than the luminance threshold.
  • the recognition unit is a travel division line that is a division line that divides the lane where the vehicle travels, which is the division candidate closest to the vehicle among the plurality of division candidates when it is determined by the multiple determination unit that there are a plurality of division candidates. It is configured to recognize as.
  • the output unit is configured to output the recognition result by the recognition unit.
  • the section candidate closest to the vehicle is recognized as a traveling section line, so the traveling section line is appropriately selected regardless of the difference in the luminance of the section line. Can be detected.
  • FIG. 2 is a block diagram showing the configuration of a driving support system.
  • Explanatory drawing which shows an example of the arrangement position of a camera.
  • Explanatory drawing which shows the function of ECU. Schematic diagram of the bird's eye view image.
  • Explanatory drawing which shows the luminance of the dividing line in the area
  • 6 is a flowchart of detection processing. The flowchart of recognition processing. Explanatory drawing explaining a brightness
  • Explanatory drawing which shows the other example of the arrangement position of a camera.
  • the driving support system 1 shown in FIG. 1 is mounted on a vehicle 70.
  • the driving support system 1 recognizes lane markings of a road from an image obtained by photographing the surroundings of the vehicle 70, estimates traveling path parameters, and executes various driving assistances based on the estimated traveling path parameters.
  • a demarcation line is what is called a lane mark, and is a white line and a yellow line drawn on the road surface so that the lane of a traveling path may be divided.
  • the travel path is a road on which the vehicle travels.
  • the travel path parameters represent the state of the travel path for the vehicle 70 and the shape of the travel path.
  • the driving support system 1 includes an ECU 30.
  • the driving support system 1 may include a camera 10, a sensor group 20, and a vehicle control device 50.
  • the camera 10 includes a front camera 11, a left side camera 12, a right side camera 13, and a rear camera 14.
  • Each of the cameras 11 to 14 can be configured using a CCD image sensor, a CMOS image sensor, or the like.
  • the front camera 11 is installed, for example, on a bumper at the front end of the vehicle such that the road surface in front of the vehicle is a shooting range.
  • the left side camera 12 is installed, for example, on the left side mirror so that the road surface on the left side of the vehicle is in the shooting range.
  • the right side camera 13 is installed, for example, on the right side mirror such that the road surface on the right side of the vehicle is the shooting range.
  • the rear camera 14 is installed, for example, on a bumper at the rear end of the vehicle such that the road surface on the rear side of the vehicle is in the shooting range.
  • the sensor group 20 is a sensor that measures the behavior of the vehicle 70.
  • the sensor group 20 includes a vehicle speed sensor that measures the vehicle speed of the vehicle 70, a yaw rate sensor that measures the yaw rate of the vehicle 70, and the like.
  • the sensor group 20 is a GPS sensor that detects the position of the vehicle 70, a radar sensor that detects the distance and relative speed with a target present around the vehicle 70, and an illuminance sensor that detects the brightness around the vehicle 70 Etc. may be provided.
  • the sensor group 20 outputs detection results such as sensor values to the ECU 30.
  • the vehicle control device 50 includes a microcomputer having a semiconductor memory such as a CPU, a ROM, a RAM, and a flash memory.
  • the vehicle control device 50 controls steering of the vehicle 70, a brake, an engine, and the like so that the vehicle 70 travels in the lane based on the recognition result of the dividing line output from the ECU 30.
  • the recognition results of the lane markings may include roadway parameters.
  • the ECU 30 includes a microcomputer having a CPU 41 and a semiconductor memory (hereinafter, memory 42) such as a RAM, a ROM, and a flash memory.
  • memory 42 such as a RAM, a ROM, and a flash memory.
  • the various functions of the ECU 30 are realized by the CPU 41 executing a program stored in a non-transitional tangible storage medium.
  • the memory 42 corresponds to a non-transitional tangible storage medium storing a program. Also, by executing this program, a method corresponding to the program is executed.
  • the ECU 30 may include one microcomputer or may include a plurality of microcomputers.
  • the ECU 30 includes an input processing unit 31, a combining processing unit 32, a recognition processing unit 33, and an output processing unit 34 as a configuration of functions realized by the CPU 41 executing a program.
  • the recognition processing unit 33 also includes an output unit image acquisition unit, a candidate extraction unit, a luminance determination unit, a multiple determination unit, a recognition unit, an accumulation unit, an update unit, an environment determination unit, and an output unit.
  • the method for realizing these elements is not limited to software, and some or all of the elements may be realized using hardware combining logic circuits, analog circuits, and the like.
  • FIG. 4 is a schematic view of a bird's-eye view image generated by the combination processing unit 32.
  • An area indicated by a broken line at the center of the figure is a vehicle area in which the vehicle 70 is present.
  • the synthesis processing unit 32 synthesizes the camera images captured by the four cameras 11-14 and converts it into a bird's-eye view to generate a bird's-eye view image surrounding the vehicle area.
  • a solid yellow line and a solid white line, and a repair mark are present on the traveling path.
  • solid yellow lines and solid white lines are dividing lines.
  • the brightness of the white line is greater than the brightness of the yellow line. Therefore, if it is assumed that a division line with the highest luminance in the photographed image is always detected as a traveling division line, there is a possibility that a yellow line may not be detected as a traveling division line.
  • a traveling division line is a division line which divides the lane which a vehicle drive
  • a repair mark is a mark which repaired the crack of the road surface.
  • the repair marks may include, for example, a mark obtained by repairing a crack in the asphalt road surface with tar, a mark formed by repairing a crack in the concrete road surface with asphalt, and the like. Cracks on the road surface often occur along the dividing line due to tire pressure, particularly in snowy areas such as North America, and the repair marks often become linear along the dividing line.
  • the brightness of the repair marks is smaller than the brightness of the dividing lines such as white and yellow lines.
  • the luminance of the repair mark is smaller than the luminance of the road surface.
  • a straight line obtained by performing processing such as Hough transformation on a feature point extracted from a photographed image is recognized as a dividing line.
  • the feature points referred to here are edge points.
  • An edge point is a point at which the luminance changes by at least a change threshold which is a predetermined threshold between adjacent pixels in a captured image.
  • a plurality of repair marks extending substantially parallel to the dividing line are positioned across the road surface, and the intervals of the plurality of repair marks are substantially the same as the width of the dividing line.
  • a road surface sandwiched by a plurality of repair marks may be erroneously detected as a dividing line. If there is a portion whose luminance is lower than the road surface, such as a repair mark, the low luminance portion is erroneously recognized as the road surface, and the original road surface is erroneously recognized as the dividing line.
  • the low luminance regions referred to below are each of a plurality of linear regions located on the road surface so as to be parallel to the division lines, and are separated from each other by the same extent as the width of the division lines. Is a low area.
  • the low luminance region may include the above-described repair marks.
  • the low luminance region may include cracks of the road surface, tire marks, and the like.
  • parallel is not limited to being strictly parallel, and may not be strictly parallel as long as misrecognition may occur as described above.
  • the line referred to here is not limited to the line in the strict meaning, and may not be the line strictly as long as there is a possibility that the same may be misrecognized.
  • the same as the width of the dividing line mentioned here is not limited to the same width as the dividing line in a strict sense, and if there is a possibility of misrecognition as above, the dividing line strictly It does not have to be the same width as.
  • the non-section line area mentioned below is an area sandwiched between a plurality of low luminance areas on the road surface, and is an area substantially parallel to the section line which may be erroneously recognized as a section line. Such a characteristic is present in the photographed image of the traveling road. Therefore, in the present embodiment, the ECU 30 is configured to appropriately detect a traveling lane line regardless of the difference in the luminance of the lane line by executing a detection process described later. Further, the ECU 30 is configured to determine a non-section line area and a section line due to a repair mark or the like by executing detection processing.
  • the detection processing represents a processing procedure for recognizing and outputting a traveling lane line based on the feature in the photographed image of the traveling road described above. This detection process is repeatedly executed at shooting time intervals of the camera 11-14.
  • step (hereinafter, referred to as S) 10 the ECU 30 acquires a camera image captured by the camera 11-14, and converts the acquired camera image into a digital signal by sampling.
  • the ECU 30 converts the four camera images converted into digital signals into a bird's-eye view seen from a preset virtual viewpoint and combines them, and generates a bird's-eye view image of the surroundings of the vehicle 70.
  • the ECU 30 recognizes a traveling division line from the bird's-eye view image generated in step S20 by executing recognition processing. Details of the recognition process will be described later.
  • the ECU 30 estimates traveling path parameters of the traveling lane lines recognized in the recognition process. Then, the ECU 30 outputs traveling path parameters to the vehicle control device 50 via the in-vehicle network as a recognition result of the traveling lane lines.
  • the travel path parameters may include, for example, the curvature of the dividing line, the width of the lane, the angle between the traveling direction of the vehicle 70 and the tangential direction of the dividing line, and the like.
  • the ECU 30 ends the present recognition process as described above.
  • S10 corresponds to the processing by the input processing unit 31
  • S20 corresponds to the processing by the combining processing unit 32
  • S30 corresponds to the processing by the recognition processing unit 33
  • S40 by the output processing unit 34. It corresponds to processing.
  • the photographed image referred to here is an image photographed by at least one camera 10 mounted on the vehicle 70 and is an image including a traveling path.
  • the ECU 30 acquires the bird's-eye view image generated in S20 as a photographed image.
  • the ECU 30 extracts line candidates from the captured image based on the edge points in the captured image.
  • the line candidate is a candidate for a dividing line that divides the lane.
  • the change threshold when extracting an edge point is stored in advance in the memory 42.
  • the ECU 30 applies the sobel filter or the like to the bird's-eye view image acquired in S100 to detect an edge point. Then, the ECU 30 applies a Hough transform or the like to the detected edge point to detect a straight line, and extracts the detected straight line as a line candidate.
  • the ECU 30 extracts line candidates on each of the left side and the right side of the vehicle 70. As the extracted line candidate, a line candidate existing in a predetermined range may be extracted from the vehicle 70. Specifically, since line candidates existing outside the predetermined range from the vehicle 70 have a high probability of being adjacent lanes, the processing load can be reduced by excluding such line candidates. .
  • the ECU 30 acquires the luminance of the line candidate.
  • the luminance of the line candidate is the luminance value of the line candidate extracted in S110.
  • the ECU 30 calculates the average value of the luminance values for all the pixels included in the line candidate, and acquires the average value as the luminance of the line candidate.
  • the method of calculating the luminance of the line candidate is not limited to this.
  • the ECU 30 may be configured to calculate an average value of luminance values for any of a plurality of pixels included in the line candidate, and acquire the average value as the luminance of the line candidate.
  • the ECU 30 acquires the luminance of the line candidate for each of the plurality of line candidates.
  • the ECU 30 acquires a luminance threshold.
  • the luminance threshold is a predetermined value, and is a value used to discriminate between the dividing line and the non-dividing line area.
  • the luminance threshold is stored in the memory 42 as described later.
  • the ECU 30 determines whether the brightness of the traveling path around the vehicle 70 (hereinafter, the periphery of the vehicle) satisfies a predetermined condition.
  • the brightness of the traveling path around the vehicle may include the brightness around the vehicle 70 in addition to the brightness of the traveling path itself around the vehicle 70.
  • the brightness of the traveling path around the vehicle is simply referred to as the brightness of the traveling path.
  • the ECU 30 shifts the processing to S150 when the brightness of the travel path satisfies the predetermined condition, and shifts the processing to S160 when the brightness of the travel path does not satisfy the predetermined condition.
  • the present S140 is a process for determining whether or not S160-S180 and S240-S250 described later are not to be executed.
  • the processes of S160 to S180 are processes for excluding line candidates which are line candidates and whose luminance is less than the luminance threshold, from the section candidates, as described later.
  • the processes of S240 to S250 are processes for updating the luminance threshold as described later.
  • the brightness of the traveling road is such brightness that the difference between the brightness of the dividing line and the brightness of the road surface is less than a predetermined threshold (hereinafter referred to as bright threshold) (hereinafter referred to as bright condition). It is taken as a predetermined condition.
  • a predetermined threshold hereinafter referred to as bright threshold
  • the brightness of the road surface may have the same size as the brightness of the dividing line such as a white line or a yellow line. That is, the difference between the luminance of the road surface and the luminance of the dividing line such as a white line or a yellow line can be less than the bright threshold.
  • the bright threshold referred to here may be a value sufficiently smaller than, for example, the brightness of the road surface or the brightness of the dividing line, such as close to zero.
  • the brightness of the road is such that the difference between the brightness of the low brightness area and the brightness of the road surface is less than a predetermined threshold (hereinafter referred to as dark threshold) (hereinafter referred to as dark condition) ,)
  • a predetermined threshold hereinafter referred to as dark threshold
  • dark condition a predetermined threshold
  • a traveling path at night, a traveling path in a tunnel, etc. may be mentioned as an example where the brightness of the traveling path satisfies the dark condition.
  • the road surface may have the same brightness as the repair mark. That is, the difference between the brightness of the road surface and the brightness of a low brightness area such as a repair mark can be less than the dark threshold.
  • the dark threshold referred to here may be, for example, a value close to 0, which is sufficiently smaller than the brightness of the road surface and the brightness of a repair mark.
  • the bright threshold and the dark threshold may be the same value.
  • the light threshold and the dark threshold may be confirmed by experiment or the like.
  • the ECU 30 determines that the brightness of the traveling path does not satisfy the predetermined condition if the brightness threshold value acquired in S130 is a value within the predetermined range in this step.
  • the brightness threshold value acquired in S130 is a value within the predetermined range in this step.
  • the luminance threshold is a value proportional to a value based on the luminance of a travel lane line recognized in the past. That is, the brightness threshold is a large value when the brightness of the traveling path is sufficiently bright to satisfy the light condition. In addition, the brightness threshold is a small value when the brightness of the traveling path is sufficiently dark to satisfy the dark condition.
  • the ECU 30 determines whether the brightness of the traveling path satisfies the predetermined condition based on whether the luminance threshold is within the predetermined range. That is, when the luminance threshold is equal to or higher than the upper threshold, it is determined that the brightness of the travel path satisfies the bright condition. That is, it is determined that the brightness of the travel path satisfies the predetermined condition. When the brightness threshold is less than the lower limit threshold, it is determined that the brightness of the travel path satisfies the dark condition. That is, it is determined that the brightness of the travel path satisfies the predetermined condition.
  • the upper limit threshold and the lower limit threshold for representing the predetermined range here are predetermined by experiments or the like, and are stored in the memory 42.
  • the ECU 30 sets all line candidates detected at S110 as section candidates to be described later, as an exception to the processing at S160-S180. Then, the ECU 30 shifts the process to S190.
  • the ECU 30 obtains the luminance of the line candidate for each of the line candidates, and determines whether the luminance of the line candidate is equal to or greater than the luminance threshold.
  • the ECU 30 shifts the processing to S170 when the luminance of the line candidate is equal to or higher than the luminance threshold.
  • the ECU 30 sets a line candidate determined to be equal to or higher than the luminance threshold in S160 as a section candidate, and shifts the processing to S180.
  • the ECU 30 shifts the processing to S180.
  • the luminance threshold is a value proportional to a value based on the luminance of a travel lane line recognized in the past.
  • the brightness threshold value is a value close to the brightness of the travel lane lines recognized in the past, and is a value smaller than the brightness of the travel lane lines recognized in the past.
  • the process of S160 is a process for determining a non-partitioning line area from among a plurality of line candidates by comparing the brightness of the line candidate with the brightness threshold.
  • the ECU 30 repeats the processing of S160 to S180 until the determination of S160 is performed for each of all the line candidates detected in S110.
  • the ECU 30 shifts the processing to S190 when the determination of S160 is performed for all the line candidates detected in S110.
  • the ECU 30 determines in S150 or S170 whether a plurality of section candidates are set.
  • the ECU 30 shifts the processing to S200 when one segment candidate is set, and shifts the processing to S210 when a plurality of segment candidates are set.
  • the ECU 30 determines the section candidate as a traveling section line. Then, the ECU 30 shifts the process to S220.
  • the ECU 30 determines a section candidate closest to the vehicle 70 among the plurality of section candidates as a travel section line. Then, the ECU 30 shifts the process to S220.
  • the ECU 30 determines travel division lines on the right and left sides of the vehicle 70, respectively. That is, the ECU 30 determines a pair of travel division lines estimated to represent the left and right boundaries of the travel path of the vehicle 70.
  • the ECU 30 is not limited to this, and may be configured to determine the travel division line on at least one of the right side and the left side of the vehicle 70.
  • the ECU 30 stores the traveling division line luminance in the memory 42 at S220.
  • the traveling parting line luminance is the luminance of the traveling parting line determined in S200 or S210. Specifically, among the luminances of the line candidates acquired in S120, the luminances of the line candidates determined as the traveling division lines are used as the traveling division line luminances.
  • the ECU 30 determines whether the brightness of the travel path satisfies the predetermined condition, as in S140.
  • the ECU 30 ends the recognition process when the brightness of the travel path satisfies the predetermined condition, and shifts the process to S240 when the brightness of the travel path does not satisfy the predetermined condition.
  • the ECU 30 does not satisfy the predetermined condition when the brightness of the traveling path satisfies the predetermined condition when the traveling division line luminance stored in the memory 42 in S220 is within the predetermined value. to decide. Specifically, the ECU 30 determines that the brightness of the traveling path satisfies the predetermined condition when the traveling division line luminance is equal to or higher than a predetermined first threshold. Further, the ECU 30 determines that the brightness of the traveling path satisfies the predetermined condition when the traveling lane line luminance is less than a second threshold smaller than the first threshold.
  • the first threshold and the second threshold are predetermined by experiment or the like, and are stored in the memory 42.
  • the first threshold is a value corresponding to the upper limit threshold
  • the second threshold is a value corresponding to the lower limit threshold.
  • the ECU 30 calculates an average brightness at S240.
  • the average luminance is an average value of a plurality of past luminances.
  • the past luminance is the traveling part line luminance accumulated in the memory 42 in the past.
  • an average value of a plurality of past luminances accumulated in the memory 42 in the most recent predetermined past period is calculated as the average luminance.
  • the ECU 30 calculates a reference value in S250.
  • the reference value is a value obtained by multiplying the average luminance by a predetermined multiple ⁇ .
  • the multiple ⁇ is a value less than 1 and may be set to a value such as 0.7 to 0.8. However, the multiple ⁇ is not limited to this, and may be appropriately set based on an experiment or the like.
  • the ECU 30 re-stores the calculated reference value in the memory 42 as a new brightness threshold.
  • the ECU 30 ends the present recognition process as described above.
  • the ECU 30 repeatedly acquires the captured image, and in S110, extracts at least one line candidate from the captured image based on the edge point in the captured image.
  • the ECU 30 determines, for each of at least one line candidate, whether or not the brightness of the line candidate is equal to or greater than the brightness threshold, and sets one having the brightness of the line candidate equal to or greater than the brightness threshold as a section candidate.
  • the ECU 30 recognizes a section candidate closest to the vehicle 70 as a traveling section line when there are a plurality of section candidates.
  • the ECU 30 outputs a recognition result in S40.
  • the section candidate closest to the vehicle 70 is identified as a traveling section line, so that the traveling section line is properly detected regardless of the difference in the luminance of the section line. be able to.
  • the non-section line area and the section line can be discriminated. That is, it is suppressed that a non-section line area is mistakenly extracted as a section candidate. As a result, it is possible to appropriately detect a traveling division line from among the division candidates.
  • the ECU 30 stores the traveling division line luminance in the memory 42 in S220 each time the traveling division line is recognized in S210.
  • the ECU 30 calculates an average luminance, which is an average value of a plurality of past luminances, and calculates a reference value smaller than the average luminance every time the traveling lane line luminance is stored in the memory 42 at S250.
  • the value is stored back in the memory 42 as a new luminance threshold.
  • the ECU 30 acquires the luminance threshold value thus stored in the memory 42, and makes a determination using the luminance threshold value.
  • the luminance threshold is set based on the luminances of a plurality of travel markings recognized in the past, an appropriate luminance threshold is set that reflects the change in the brightness of the environment around the vehicle 70 which changes from moment to moment. Be done.
  • the luminance threshold is appropriately set, it is possible to suppress that a non-section line area due to a repair mark or the like is erroneously extracted as a section candidate. As a result, it is possible to properly detect the traveling lanes.
  • the ECU 30 is configured to determine whether the brightness of the travel path around the vehicle satisfies the predetermined condition. As a result, processing can be performed according to the brightness of the travel path around the vehicle.
  • the brightness threshold is not updated using the reference value.
  • the reference value is, as described above, a value based on the luminance of the travel lane lines recognized in the past.
  • the reference value is a large value when the brightness of the travel path is bright, and is a small value when the brightness of the travel path is dark.
  • the brightness threshold may be set to a value larger than the brightness of the normal yellow line.
  • the brightness threshold is set to a value smaller than the brightness of a low brightness area such as a repair mark There is a fear.
  • the yellow line may not be extracted as a section candidate.
  • the low luminance region may be extracted as a section candidate.
  • the brightness threshold is not updated using the reference value. As a result, it is possible to suppress that the yellow line is not extracted as a section candidate based on the luminance threshold. Further, based on the luminance threshold value, extraction of a low luminance area as a section candidate can be suppressed.
  • the ECU 30 when it is determined that the brightness of the traveling path satisfies the predetermined condition in S210, the ECU 30 is at least one line candidate extracted in S110 and among all the line candidates The line candidate closest to the vehicle 70 is recognized as a travel division line.
  • the division candidate extraction based on the luminance threshold is not performed, and the line candidate closest to the vehicle 70 among all the line candidates is traveled. Recognized as a dividing line.
  • the luminance threshold is not appropriately set, and therefore, there is a possibility that the section candidate may not be appropriately extracted. Therefore, in this embodiment, extraction of a section candidate is stopped in such a case. As a result, erroneous recognition of the travel lane lines based on the lane candidates is suppressed.
  • the ECU 30 determines in S140 or S230 that the predetermined condition is that the brightness of the traveling road is such that the difference between the brightness of the dividing line and the brightness of the road surface is less than a predetermined bright threshold. , Is configured to make a decision.
  • the ECU 30 determines that the brightness of the traveling path is such that the difference between the brightness of the low brightness area and the brightness of the road surface is less than a predetermined dark threshold. As, it is configured to make a decision.
  • the ECU 30 determines that the brightness of the traveling path satisfies the predetermined condition when the luminance threshold is equal to or higher than the predetermined upper limit threshold in S140. Further, in S140, the ECU 30 determines that the brightness of the traveling path satisfies the predetermined condition in S140 if the brightness threshold is less than the predetermined lower limit threshold smaller than the upper limit threshold. As a result, in order to detect the brightness of the traveling path, it is easily determined whether the brightness of the traveling path satisfies the predetermined condition without providing a new configuration such as an illuminance sensor or the like. Can.
  • the ECU 30 determines that the brightness of the traveling path satisfies the predetermined condition when the traveling lane line luminance is equal to or higher than a predetermined first threshold value in S230. Further, in step S230, the ECU 30 determines that the brightness of the traveling path satisfies the predetermined condition when the traveling division line luminance is less than a second threshold smaller than the first threshold. As a result, the same effect as the above (3h) can be obtained.
  • the ECU 30 corresponds to a detection device
  • the memory 42 corresponds to a storage unit.
  • S40 corresponds to the processing by the output unit
  • S100 corresponds to the processing by the image acquisition unit
  • S110 corresponds to the processing by the candidate extraction unit
  • S140 and S230 correspond to the processing by the environment judgment unit
  • S160 represents the luminance. It corresponds to the processing by the judgment unit.
  • S190 corresponds to the processing by the multiple judgment unit
  • S210 corresponds to the processing by the recognition unit
  • S220 corresponds to the processing by the storage unit
  • S250 corresponds to the processing by the updating unit.
  • a bird's-eye view image corresponds to a photographed image
  • an edge point corresponds to a feature point.
  • each of the bright condition and the dark condition corresponds to a predetermined condition.
  • an illuminance sensor that detects ambient brightness may be mounted as a sensor of the sensor group 20.
  • the ECU 30 may be configured to determine that the brightness of the traveling path satisfies the predetermined condition when the sensor value of the illuminance sensor is equal to or greater than the predetermined first illuminance threshold. Further, when the sensor value of the illuminance sensor is less than a second illuminance threshold which is a value smaller than the first illuminance threshold, the ECU 30 assumes that the brightness of the traveling path satisfies the predetermined condition. It may be configured to make a decision.
  • a GPS device may be mounted as a sensor of the sensor group 20, and a map database storing map data may be mounted.
  • the ECU 30 determines that the current position of the vehicle 70 is in the tunnel based on the detection result of the GPS device and the map data, it is assumed that the brightness of the traveling path satisfies the predetermined condition. It may be configured to make a decision.
  • the ECU 30 may be configured to stop the output of the recognition result when it is determined in S40 that the brightness of the traveling path satisfies the predetermined condition in S40. As a result, it is possible to suppress output of an erroneous recognition result. In addition, it is possible to suppress erroneous vehicle control from being performed based on an erroneous traveling path parameter.
  • the ECU 30 is configured to recognize the traveling division line from the bird's-eye view image using the bird's-eye view image generated based on the camera image by the camera 11-14 as the shot image.
  • the image is not limited to a bird's eye view image.
  • one camera 10 may be mounted on a vehicle so as to capture a road surface ahead of the vehicle 70.
  • the camera 10 is mounted on the center front side of the vehicle 70, and as shown in FIG. 9, it is configured to photograph an area extending in a predetermined angle range toward the front of the vehicle 70 It is also good.
  • ECU30 detects an edge point from the photography picture photoed with the camera 10 like the above-mentioned embodiment, and based on an edge point, it may be constituted so that a run division line may be recognized from the photography picture. good.
  • the plurality of functions of one component in the above embodiment may be realized by a plurality of components, or one function of one component may be realized by a plurality of components . Also, a plurality of functions possessed by a plurality of components may be realized by one component, or one function realized by a plurality of components may be realized by one component.
  • part of the configuration of the above embodiment may be omitted.
  • at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other above embodiment.
  • all the aspects contained in the technical thought specified from the wording described in the claim are an embodiment of this indication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Traffic Control Systems (AREA)

Abstract

This detection device (30) is mounted on a vehicle (70). The detection device is provided with an image acquisition unit (S100), a candidate extraction unit (S110), a brightness determination unit (S160), a plurality determination unit (S190), a recognition unit (S210) and an output unit (S40). If the plurality determination unit has determined that there is a plurality of demarcation candidates, the recognition unit (S210) recognizes the demarcation line candidate nearest to the vehicle as a lane marking, that is, a demarcation line that demarcates the lane in which the vehicle is traveling. The output unit (S40) outputs the result of recognition by the recognition unit.

Description

検出装置Detection device 関連出願の相互参照Cross-reference to related applications
 本国際出願は、2017年7月14日に日本国特許庁に出願された日本国特許出願第2017-137854号に基づく優先権を主張するものであり、日本国特許出願第2017-137854号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2017-137854 filed with the Japanese Patent Office on July 14, 2017, and the Japanese Patent Application No. 2017-137854 The entire contents are incorporated by reference into this international application.
 本開示は、画像からレーンマークを認識する技術に関する。 The present disclosure relates to a technique for recognizing a lane mark from an image.
 下記特許文献1には、車両に搭載されたカメラにより撮影された画像からレーンマークの候補となる複数の線候補が検出された場合には、複数の線候補のうち輝度が最も高い線候補をレーンマークとして認識する、という技術が提案されている。 In the following Patent Document 1, when a plurality of line candidates serving as lane mark candidates are detected from an image captured by a camera mounted on a vehicle, the line candidate having the highest luminance among the plurality of line candidates is selected. A technique has been proposed which recognizes as a lane mark.
特開2015-197829号公報JP, 2015-197829, A
 しかしながら、レーンマークには、例えば黄線等といった、白線よりも輝度の低い線が含まれ得る。発明者の詳細な検討の結果、特許文献1に記載の技術では、レーンマークを検出する際、例えば白線及び黄線等といった輝度の異なる複数の線候補が検出された場合には、常に白線のみがレーンマークとして認識されるおそれがある、という課題が見出された。つまり、特許文献1に記載の技術では、レーンマークを適切に検出できないおそれがある、という課題が見出された。 However, the lane mark may include a line having lower luminance than the white line, such as a yellow line, for example. As a result of the inventor's detailed examination, when the lane mark is detected, the technique described in Patent Document 1 always detects only the white line if a plurality of line candidates having different luminances, such as a white line and a yellow line, are detected. A problem was found that there is a possibility that the vehicle may be recognized as a lane mark. That is, with the technique described in Patent Document 1, it has been found that there is a possibility that lane marks can not be detected properly.
 本開示の1つの局面は、車両が走行する走行路を区画するレーンマークを適切に検出する技術を提供する。
 本開示の1つの局面は、車両に搭載された検出装置である。検出装置は、画像取得部と、候補抽出部と、輝度判断部と、複数判断部と、認識部と、出力部と、を備える。
One aspect of the present disclosure provides a technique for appropriately detecting a lane mark that defines a traveling path on which a vehicle travels.
One aspect of the present disclosure is a detection device mounted on a vehicle. The detection device includes an image acquisition unit, a candidate extraction unit, a luminance determination unit, a multiple determination unit, a recognition unit, and an output unit.
 画像取得部は、車両に搭載された少なくとも1つのカメラにより撮影された画像であって車両が走行する道路である走行路が含まれる撮影画像を繰り返し取得するように構成されている。候補抽出部は、撮影画像において隣接する画素の間で輝度が所定の変化閾値以上変化する点である特徴点に基づいて、撮影画像から車線を区画する区画線の候補である少なくとも1つの線候補を抽出するように構成されている。 The image acquisition unit is configured to repeatedly acquire an image captured by at least one camera mounted on the vehicle and including a travel path which is a road on which the vehicle travels. The candidate extraction unit determines at least one line candidate which is a candidate for a division line that divides the lane from the captured image based on the feature point at which the luminance changes by a predetermined change threshold or more between adjacent pixels in the captured image. It is configured to extract
 輝度判断部は、線候補のそれぞれについて、線候補の輝度を取得し、線候補の輝度が予め定められた輝度閾値以上であるか否かを判断するように構成されている。複数判断部は、線候補であって輝度判断部によって線候補の輝度が輝度閾値以上と判断された区画候補が複数あるか否かを判断するように構成されている。 The luminance determination unit is configured to acquire the luminance of the line candidate for each of the line candidates, and determine whether the luminance of the line candidate is equal to or more than a predetermined luminance threshold. The multiple determination unit is configured to determine whether there is a plurality of section candidates that are line candidates and the luminance determination unit determines that the luminance of the line candidate is equal to or higher than the luminance threshold.
 認識部は、複数判断部によって複数の区画候補があると判断された場合に、複数の区画候補のうち車両に最も近い区画候補を、車両が走行する車線を区画する区画線である走行区画線として認識するように構成されている。出力部は、認識部による認識結果を出力するように構成されている。 The recognition unit is a travel division line that is a division line that divides the lane where the vehicle travels, which is the division candidate closest to the vehicle among the plurality of division candidates when it is determined by the multiple determination unit that there are a plurality of division candidates. It is configured to recognize as. The output unit is configured to output the recognition result by the recognition unit.
 このような構成によれば、複数の区画候補が検出された場合には、車両に最も近い区画候補を走行区画線として認識するので、区画線の輝度の違いによらず、走行区画線を適切に検出することができる。 According to such a configuration, when a plurality of section candidates are detected, the section candidate closest to the vehicle is recognized as a traveling section line, so the traveling section line is appropriately selected regardless of the difference in the luminance of the section line. Can be detected.
 なお、請求の範囲に記載した括弧内の符号は、本開示の一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。 In addition, the reference numerals in parentheses described in the claims indicate the correspondence with specific means described in the embodiments described later as one aspect of the present disclosure, and the technical scope of the present disclosure is limited. It is not something to do.
運転支援システムの構成を示すブロック図。FIG. 2 is a block diagram showing the configuration of a driving support system. カメラの配置位置の一例を示す説明図。Explanatory drawing which shows an example of the arrangement position of a camera. ECUの機能を示す説明図。Explanatory drawing which shows the function of ECU. 鳥瞰図画像の模式図。Schematic diagram of the bird's eye view image. 図4の領域Aにおける区画線及び補修跡の輝度を示す説明図。Explanatory drawing which shows the luminance of the dividing line in the area | region A of FIG. 4, and a repair mark. 検出処理のフローチャート。6 is a flowchart of detection processing. 認識処理のフローチャート。The flowchart of recognition processing. 輝度閾値を説明する説明図。Explanatory drawing explaining a brightness | luminance threshold value. カメラの配置位置の他の例を示す説明図。Explanatory drawing which shows the other example of the arrangement position of a camera.
 以下、図面を参照しながら、本開示の実施形態を説明する。
 [1.構成]
 [1-1.全体構成]
 図1に示す運転支援システム1は、車両70に搭載される。運転支援システム1は、車両70の周囲を撮影した画像から道路の区画線を認識し、走行路パラメータを推定し、その推定された走行路パラメータに基づいて各種運転支援を実行する。なお、区画線は、所謂レーンマークのことであり、走行路の車線を区画するように路面に描かれた白線や黄線である。走行路は、車両が走行する道路である。走行路パラメータは、車両70に対する走行路の状態および走行路の形状を表すものである。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
[1. Constitution]
[1-1. overall structure]
The driving support system 1 shown in FIG. 1 is mounted on a vehicle 70. The driving support system 1 recognizes lane markings of a road from an image obtained by photographing the surroundings of the vehicle 70, estimates traveling path parameters, and executes various driving assistances based on the estimated traveling path parameters. In addition, a demarcation line is what is called a lane mark, and is a white line and a yellow line drawn on the road surface so that the lane of a traveling path may be divided. The travel path is a road on which the vehicle travels. The travel path parameters represent the state of the travel path for the vehicle 70 and the shape of the travel path.
 運転支援システム1は、ECU30を備える。運転支援システム1は、カメラ10と、センサ群20と、車両制御装置50と、を備えていてもよい。
 カメラ10は、フロントカメラ11、左サイドカメラ12、右サイドカメラ13、及びリアカメラ14を備える。各カメラ11~14は、CCDイメージセンサやCMOSイメージセンサ等を用いて構成され得る。
The driving support system 1 includes an ECU 30. The driving support system 1 may include a camera 10, a sensor group 20, and a vehicle control device 50.
The camera 10 includes a front camera 11, a left side camera 12, a right side camera 13, and a rear camera 14. Each of the cameras 11 to 14 can be configured using a CCD image sensor, a CMOS image sensor, or the like.
 図2に示すように、フロントカメラ11は、車両前方の路面が撮影範囲となるように、例えば、車両前端のバンパーに設置される。左サイドカメラ12は、車両左側方の路面が撮影範囲となるように、例えば、左側のサイドミラーに設置される。右サイドカメラ13は、車両右側方の路面が撮影範囲となるように、例えば、右側のサイドミラーに設置される。リアカメラ14は、車両後方の路面が撮影範囲となるように、例えば、車両後端のバンパーに設置される。 As shown in FIG. 2, the front camera 11 is installed, for example, on a bumper at the front end of the vehicle such that the road surface in front of the vehicle is a shooting range. The left side camera 12 is installed, for example, on the left side mirror so that the road surface on the left side of the vehicle is in the shooting range. The right side camera 13 is installed, for example, on the right side mirror such that the road surface on the right side of the vehicle is the shooting range. The rear camera 14 is installed, for example, on a bumper at the rear end of the vehicle such that the road surface on the rear side of the vehicle is in the shooting range.
 各カメラ11~14は、予め設定された時間間隔、例えば、数十msec間隔で繰り返し撮影し、カメラ画像をECU30へ出力する。
 センサ群20は、車両70の挙動を測定するセンサである。具体的には、センサ群20は、車両70の車速を測定する車速センサ、及び車両70のヨーレートを測定するヨーレートセンサ等を備える。なお、センサ群20は、車両70の位置を検出するGPSセンサ、車両70の周辺に存在する物標との距離や相対速度を検出するレーダセンサ、車両70の周囲の明るさを検出する照度センサ等を備えていても良い。センサ群20は、センサ値等といった検出結果をECU30へ出力する。
Each of the cameras 11 to 14 repeatedly captures images at preset time intervals, for example, intervals of several tens of msec, and outputs camera images to the ECU 30.
The sensor group 20 is a sensor that measures the behavior of the vehicle 70. Specifically, the sensor group 20 includes a vehicle speed sensor that measures the vehicle speed of the vehicle 70, a yaw rate sensor that measures the yaw rate of the vehicle 70, and the like. The sensor group 20 is a GPS sensor that detects the position of the vehicle 70, a radar sensor that detects the distance and relative speed with a target present around the vehicle 70, and an illuminance sensor that detects the brightness around the vehicle 70 Etc. may be provided. The sensor group 20 outputs detection results such as sensor values to the ECU 30.
 車両制御装置50は、CPU、ROM、RAM、及びフラッシュメモリ等の半導体メモリを有するマイクロコンピュータを備える。車両制御装置50は、ECU30から出力される区画線の認識結果に基づいて、車両70が車線内を走行するように、車両70の操舵や、ブレーキ、エンジン等を制御する。区画線の認識結果には、走行路パラメータが含まれ得る。 The vehicle control device 50 includes a microcomputer having a semiconductor memory such as a CPU, a ROM, a RAM, and a flash memory. The vehicle control device 50 controls steering of the vehicle 70, a brake, an engine, and the like so that the vehicle 70 travels in the lane based on the recognition result of the dividing line output from the ECU 30. The recognition results of the lane markings may include roadway parameters.
 ECU30は、CPU41と、RAM、ROM、フラッシュメモリ等の半導体メモリ(以下、メモリ42)と、を有するマイクロコンピュータを備える。ECU30の各種機能は、CPU41が非遷移的実体的記録媒体に格納されたプログラムを実行することにより実現される。この例では、メモリ42が、プログラムを格納した非遷移的実体的記録媒体に該当する。また、このプログラムが実行されることで、プログラムに対応する方法が実行される。なお、ECU30は、1つのマイクロコンピュータを備えていても良いし、複数のマイクロコンピュータを備えていても良い。 The ECU 30 includes a microcomputer having a CPU 41 and a semiconductor memory (hereinafter, memory 42) such as a RAM, a ROM, and a flash memory. The various functions of the ECU 30 are realized by the CPU 41 executing a program stored in a non-transitional tangible storage medium. In this example, the memory 42 corresponds to a non-transitional tangible storage medium storing a program. Also, by executing this program, a method corresponding to the program is executed. The ECU 30 may include one microcomputer or may include a plurality of microcomputers.
 ECU30は、図3に示すように、CPU41がプログラムを実行することで実現される機能の構成として、入力処理部31、合成処理部32、認識処理部33、及び出力処理部34を備える。また、認識処理部33は、出力部画像取得部、候補抽出部、輝度判断部、複数判断部、認識部、蓄積部、更新部、環境判断部及び出力部を備える。これらの要素を実現する手法はソフトウェアに限るものではなく、その一部又は全部の要素を、論理回路やアナログ回路等を組み合わせたハードウェアを用いて実現してもよい。 As shown in FIG. 3, the ECU 30 includes an input processing unit 31, a combining processing unit 32, a recognition processing unit 33, and an output processing unit 34 as a configuration of functions realized by the CPU 41 executing a program. The recognition processing unit 33 also includes an output unit image acquisition unit, a candidate extraction unit, a luminance determination unit, a multiple determination unit, a recognition unit, an accumulation unit, an update unit, an environment determination unit, and an output unit. The method for realizing these elements is not limited to software, and some or all of the elements may be realized using hardware combining logic circuits, analog circuits, and the like.
 [1-2.撮影画像における走行路の特徴]
 図4に、合成処理部32により生成された鳥瞰図画像の模式図を示す。図の中央に破線で示す領域は、車両70が存在する車両領域である。合成処理部32は、4つのカメラ11-14で撮影されたカメラ画像を合成して鳥瞰図に変換し、車両領域を取り囲む鳥瞰図画像を生成する。図4に示す鳥瞰図画像では、走行路において、実線の黄線、及び実線の白線と、補修跡と、が存在している。
[1-2. Characteristics of the Road in the Photographed Image]
FIG. 4 is a schematic view of a bird's-eye view image generated by the combination processing unit 32. As shown in FIG. An area indicated by a broken line at the center of the figure is a vehicle area in which the vehicle 70 is present. The synthesis processing unit 32 synthesizes the camera images captured by the four cameras 11-14 and converts it into a bird's-eye view to generate a bird's-eye view image surrounding the vehicle area. In the bird's-eye view image shown in FIG. 4, a solid yellow line and a solid white line, and a repair mark are present on the traveling path.
 ここで、実線の黄線及び実線の白線は、区画線である。通常、白線の輝度は、黄線の輝度よりも大きくなる。従って、仮に、撮影画像において最も輝度の大きい区画線が走行区画線として常に検出されるとすると、黄線が走行区画線として検出されないおそれがある。なお、走行区画線は、車両が走行する車線を区画する区画線である。 Here, solid yellow lines and solid white lines are dividing lines. Usually, the brightness of the white line is greater than the brightness of the yellow line. Therefore, if it is assumed that a division line with the highest luminance in the photographed image is always detected as a traveling division line, there is a possibility that a yellow line may not be detected as a traveling division line. In addition, a traveling division line is a division line which divides the lane which a vehicle drive | works.
 一方、補修跡は、路面の亀裂を補修した跡である。補修跡には、例えば、アスファルトの路面の亀裂をタールで補修した跡や、コンクリートの路面の亀裂をアスファルトで補修した跡等が含まれ得る。路面の亀裂は、特に北米等の雪の多い地域において、タイヤの圧迫を受けて区画線に沿って生じることが多く、補修跡は、区画線に沿った直線状になることが多い。 On the other hand, a repair mark is a mark which repaired the crack of the road surface. The repair marks may include, for example, a mark obtained by repairing a crack in the asphalt road surface with tar, a mark formed by repairing a crack in the concrete road surface with asphalt, and the like. Cracks on the road surface often occur along the dividing line due to tire pressure, particularly in snowy areas such as North America, and the repair marks often become linear along the dividing line.
 通常、補修跡の輝度は、白線及び黄線といった区画線の輝度よりも小さくなる。また、補修跡の輝度は、路面の輝度よりも小さくなる。また、一般に、撮影画像から抽出された特徴点にハフ変換等の処理を施して得られた直線が、区画線として認識される。ここでいう特徴点は、エッジ点のことである。エッジ点は、撮影画像において、隣接する画素の間で輝度が所定の閾値である変化閾値以上変化する点のことである。 Usually, the brightness of the repair marks is smaller than the brightness of the dividing lines such as white and yellow lines. In addition, the luminance of the repair mark is smaller than the luminance of the road surface. Also, in general, a straight line obtained by performing processing such as Hough transformation on a feature point extracted from a photographed image is recognized as a dividing line. The feature points referred to here are edge points. An edge point is a point at which the luminance changes by at least a change threshold which is a predetermined threshold between adjacent pixels in a captured image.
 従って、例えば図4及び図5示すように、区画線と略平行に延びる複数の補修跡が間に路面を挟んで位置しており、複数の補修跡の間隔が区画線の幅と略同様であるような場合、複数の補修跡に挟まれた路面が区画線として誤検出されるおそれがある。補修跡のように路面より輝度の低い部位が存在すると、この輝度の低い部分が路面として誤認識され、本来の路面が区画線として誤認識されるからである。 Therefore, for example, as shown in FIG. 4 and FIG. 5, a plurality of repair marks extending substantially parallel to the dividing line are positioned across the road surface, and the intervals of the plurality of repair marks are substantially the same as the width of the dividing line. In some cases, there is a risk that a road surface sandwiched by a plurality of repair marks may be erroneously detected as a dividing line. If there is a portion whose luminance is lower than the road surface, such as a repair mark, the low luminance portion is erroneously recognized as the road surface, and the original road surface is erroneously recognized as the dividing line.
 以下でいう低輝度領域は、区画線と平行となるように路面上に位置する複数の線状の領域のそれぞれであって、互いに区画線の幅と同程度に離れており、路面よりも輝度が低い領域である。低輝度領域には、上述の補修跡が含まれ得る。また、低輝度領域には、上記路面の亀裂や、他にタイヤ痕等が含まれ得る。 The low luminance regions referred to below are each of a plurality of linear regions located on the road surface so as to be parallel to the division lines, and are separated from each other by the same extent as the width of the division lines. Is a low area. The low luminance region may include the above-described repair marks. In addition, the low luminance region may include cracks of the road surface, tire marks, and the like.
 なお、ここでいう平行とは、厳密な意味での平行に限るものではなく、上記と同様に誤認識されるおそれがあるのであれば、厳密に平行でなくてもよい。また、ここでいう線とは、厳密な意味での線に限るものではなく、上記と同様に誤認識されるおそれがあるのであれば、厳密に線でなくてもよい。また、ここでいう区画線の幅と同程度とは、厳密な意味での区画線と同じ幅に限るものではなく、上記と同様に誤認識されるおそれがあるのであれば、厳密に区画線と同じ幅でなくてもよい。 The term "parallel" as used herein is not limited to being strictly parallel, and may not be strictly parallel as long as misrecognition may occur as described above. Further, the line referred to here is not limited to the line in the strict meaning, and may not be the line strictly as long as there is a possibility that the same may be misrecognized. Further, the same as the width of the dividing line mentioned here is not limited to the same width as the dividing line in a strict sense, and if there is a possibility of misrecognition as above, the dividing line strictly It does not have to be the same width as.
 以下でいう非区画線領域は、路面において複数の低輝度領域に挟まれた領域であって、区画線として誤認識されるおそれのある、区画線と略平行な領域である。
 走行路の撮影画像においては、このような特徴がある。そこで、本実施形態では、ECU30は、後述する検出処理を実行することによって、区画線の輝度の違いによらず、走行区画線を適切に検出するように構成されている。またECU30は、検出処理を実行することによって、補修跡等による非区画線領域と区画線とを判別するように構成されている。
The non-section line area mentioned below is an area sandwiched between a plurality of low luminance areas on the road surface, and is an area substantially parallel to the section line which may be erroneously recognized as a section line.
Such a characteristic is present in the photographed image of the traveling road. Therefore, in the present embodiment, the ECU 30 is configured to appropriately detect a traveling lane line regardless of the difference in the luminance of the lane line by executing a detection process described later. Further, the ECU 30 is configured to determine a non-section line area and a section line due to a repair mark or the like by executing detection processing.
 [2.処理]
 [2-1.検出処理]
 次に、ECU30が実行する検出処理について、図6のフローチャートを用いて説明する。検出処理は、上述した走行路の撮影画像における特徴に基づいて、走行区画線を認識して出力する処理手順を表す。本検出処理は、カメラ11-14の撮影時間間隔で、繰り返し実行される。
[2. processing]
[2-1. Detection process]
Next, the detection process executed by the ECU 30 will be described using the flowchart of FIG. The detection processing represents a processing procedure for recognizing and outputting a traveling lane line based on the feature in the photographed image of the traveling road described above. This detection process is repeatedly executed at shooting time intervals of the camera 11-14.
 まず、ECU30は、ステップ(以下、Sと記載)10では、カメラ11-14により撮影されたカメラ画像を取得し、取得したカメラ画像をサンプリングすることでデジタル信号に変換する。 First, in step (hereinafter, referred to as S) 10, the ECU 30 acquires a camera image captured by the camera 11-14, and converts the acquired camera image into a digital signal by sampling.
 ECU30は、S20では、デジタル信号化された4つのカメラ画像を、予め設定された仮想視点から見た鳥瞰図に変換して合成し、車両70の周囲を映した鳥瞰図画像を生成する。 In S20, the ECU 30 converts the four camera images converted into digital signals into a bird's-eye view seen from a preset virtual viewpoint and combines them, and generates a bird's-eye view image of the surroundings of the vehicle 70.
 ECU30は、S30では、認識処理を実行することによって、ステップS20で生成した鳥瞰図画像から走行区画線を認識する。認識処理の詳細については後述する。
 ECU30は、S40では、認識処理にて認識された走行区画線の走行路パラメータを推定する。そして、ECU30は、走行路パラメータを、走行区画線の認識結果として、車載ネットワークを介して車両制御装置50へ出力する。走行路パラメータには、例えば、区画線の曲率、車線幅、車両70の進行方向と区画線の接線方向とのなす角度等が含まれ得る。ECU30は、以上で本認識処理を終了する。
In S30, the ECU 30 recognizes a traveling division line from the bird's-eye view image generated in step S20 by executing recognition processing. Details of the recognition process will be described later.
In S40, the ECU 30 estimates traveling path parameters of the traveling lane lines recognized in the recognition process. Then, the ECU 30 outputs traveling path parameters to the vehicle control device 50 via the in-vehicle network as a recognition result of the traveling lane lines. The travel path parameters may include, for example, the curvature of the dividing line, the width of the lane, the angle between the traveling direction of the vehicle 70 and the tangential direction of the dividing line, and the like. The ECU 30 ends the present recognition process as described above.
 なお、上記実施形態において、S10が入力処理部31による処理に相当し、S20が合成処理部32による処理に相当し、S30が認識処理部33による処理に相当し、S40が出力処理部34による処理に相当する。 In the above embodiment, S10 corresponds to the processing by the input processing unit 31, S20 corresponds to the processing by the combining processing unit 32, S30 corresponds to the processing by the recognition processing unit 33, and S40 by the output processing unit 34. It corresponds to processing.
 [2-2.認識処理]
 次に、ECU30が検出処理のS30にて実行する認識処理の処理手順について、図7のフローチャートを用いて説明する。
[2-2. Recognition processing]
Next, the processing procedure of the recognition process executed by the ECU 30 in S30 of the detection process will be described using the flowchart of FIG. 7.
 まず、S100では、撮影画像を取得する。ここでいう撮影画像は、車両70に搭載された少なくとも1つのカメラ10により撮影された画像であって走行路が含まれる画像である。具体的には、ECU30は、S20にて生成された鳥瞰図画像を撮影画像として取得する。 First, in S100, a photographed image is acquired. The photographed image referred to here is an image photographed by at least one camera 10 mounted on the vehicle 70 and is an image including a traveling path. Specifically, the ECU 30 acquires the bird's-eye view image generated in S20 as a photographed image.
 ECU30は、S110では、撮影画像におけるエッジ点に基づいて、撮影画像から線候補を抽出する。線候補は、車線を区画する区画線の候補である。エッジ点を抽出する際の変化閾値は、メモリ42に予め記憶されている。 In S110, the ECU 30 extracts line candidates from the captured image based on the edge points in the captured image. The line candidate is a candidate for a dividing line that divides the lane. The change threshold when extracting an edge point is stored in advance in the memory 42.
 具体的には、ECU30は、S100にて取得された鳥瞰図画像にsobelフィルタ等を適用して、エッジ点を検出する。そして、ECU30は、検出されたエッジ点にハフ変換等を適用して直線を検出し、検出された直線を線候補として抽出する。なお、ECU30は、車両70の左側及び右側のそれぞれにおいて、線候補を抽出する。なお、抽出された線候補は、車両70から所定範囲に存在する線候補を抽出するようにしても良い。具体的には、車両70から所定範囲よりも外側に存在する線候補は、隣接する車線である蓋然性が高いため、そのような線候補については除外することで、処理負荷を低減することができる。 Specifically, the ECU 30 applies the sobel filter or the like to the bird's-eye view image acquired in S100 to detect an edge point. Then, the ECU 30 applies a Hough transform or the like to the detected edge point to detect a straight line, and extracts the detected straight line as a line candidate. The ECU 30 extracts line candidates on each of the left side and the right side of the vehicle 70. As the extracted line candidate, a line candidate existing in a predetermined range may be extracted from the vehicle 70. Specifically, since line candidates existing outside the predetermined range from the vehicle 70 have a high probability of being adjacent lanes, the processing load can be reduced by excluding such line candidates. .
 ECU30は、S120では、線候補の輝度を取得する。線候補の輝度は、S110にて抽出された線候補の輝度値である。具体的には、ECU30は、鳥瞰図画像において、線候補に含まれる全ての画素について輝度値の平均値を算出し、該平均値を線候補の輝度として取得する。但し、線候補の輝度の算出方法は、これに限定されるものではない。ECU30は、線候補に含まれる任意の複数の画素について輝度値の平均値を算出し、該平均値を線候補の輝度として取得するように構成され得る。なお、ECU30は、車両70の左側及び右側のそれぞれにおいて線候補が複数ある場合、複数の線候補のそれぞれについて、線候補の輝度を取得する。 In S120, the ECU 30 acquires the luminance of the line candidate. The luminance of the line candidate is the luminance value of the line candidate extracted in S110. Specifically, in the bird's-eye view image, the ECU 30 calculates the average value of the luminance values for all the pixels included in the line candidate, and acquires the average value as the luminance of the line candidate. However, the method of calculating the luminance of the line candidate is not limited to this. The ECU 30 may be configured to calculate an average value of luminance values for any of a plurality of pixels included in the line candidate, and acquire the average value as the luminance of the line candidate. When there are a plurality of line candidates on each of the left side and the right side of the vehicle 70, the ECU 30 acquires the luminance of the line candidate for each of the plurality of line candidates.
 ECU30は、S130では、輝度閾値を取得する。輝度閾値は、予め定められた値であって、区画線と非区画線領域とを判別するために用いられる値である。輝度閾値は、後述するようにメモリ42に記憶されている。 In S130, the ECU 30 acquires a luminance threshold. The luminance threshold is a predetermined value, and is a value used to discriminate between the dividing line and the non-dividing line area. The luminance threshold is stored in the memory 42 as described later.
 ECU30は、S140では、車両70の周辺(以下、車両周辺)の走行路の明るさが所定の条件を満たすか否かを判断する。なお、ここでいう車両周辺の走行路の明るさには、車両70の周辺の走行路そのものの明るさの他、車両70の周辺における明るさ、が含まれ得る。以下では、車両周辺の走行路の明るさを、単に、走行路の明るさという。ECU30は、走行路の明るさが所定の条件を満たす場合に処理をS150へ移行させ、走行路の明るさが所定の条件を満たさない場合に処理をS160へ移行させる。 In S140, the ECU 30 determines whether the brightness of the traveling path around the vehicle 70 (hereinafter, the periphery of the vehicle) satisfies a predetermined condition. Here, the brightness of the traveling path around the vehicle may include the brightness around the vehicle 70 in addition to the brightness of the traveling path itself around the vehicle 70. Below, the brightness of the traveling path around the vehicle is simply referred to as the brightness of the traveling path. The ECU 30 shifts the processing to S150 when the brightness of the travel path satisfies the predetermined condition, and shifts the processing to S160 when the brightness of the travel path does not satisfy the predetermined condition.
 本S140は、後述するS160-S180、及びS240-S250を実行しない処理とするか否かを判断するための処理である。S160-S180の処理は、後述するように、線候補であってその輝度が輝度閾値未満である線候補を区画候補から除外するための処理である。S240-S250の処理は、後述するように、輝度閾値を更新するための処理である。 The present S140 is a process for determining whether or not S160-S180 and S240-S250 described later are not to be executed. The processes of S160 to S180 are processes for excluding line candidates which are line candidates and whose luminance is less than the luminance threshold, from the section candidates, as described later. The processes of S240 to S250 are processes for updating the luminance threshold as described later.
 本実施形態では、走行路の明るさが、区画線の輝度と路面の輝度との差が所定の閾値(以下、明閾値)未満となる明るさであること(以下、明条件)、を上記所定の条件とする。例えば、快晴時におけるコンクリートの走行路が、走行路の明るさが明条件を満たす例として挙げられる。この場合、日光の影響により、路面の輝度が、白線や黄線といった区画線の輝度と同等の大きさを有するようになり得る。つまり、路面の輝度と、白線や黄線といった区画線の輝度との差が、明閾値未満となり得るのである。ここでいう明閾値は、例えば0に近いような、路面の輝度や区画線の輝度に比べて十分に小さい値であり得る。 In the present embodiment, the brightness of the traveling road is such brightness that the difference between the brightness of the dividing line and the brightness of the road surface is less than a predetermined threshold (hereinafter referred to as bright threshold) (hereinafter referred to as bright condition). It is taken as a predetermined condition. For example, a concrete running path at the time of clear weather may be mentioned as an example where the brightness of the running path satisfies the bright condition. In this case, due to the influence of sunlight, the brightness of the road surface may have the same size as the brightness of the dividing line such as a white line or a yellow line. That is, the difference between the luminance of the road surface and the luminance of the dividing line such as a white line or a yellow line can be less than the bright threshold. The bright threshold referred to here may be a value sufficiently smaller than, for example, the brightness of the road surface or the brightness of the dividing line, such as close to zero.
 更に、本実施形態では、走行路の明るさが、上記低輝度領域の輝度と路面の輝度との差が所定の閾値(以下、暗閾値)未満となる明るさであること(以下、暗条件)、を上記所定の条件とする。例えば、夜間における走行路や、トンネル内における走行路等が、走行路の明るさが暗条件を満たす例として挙げられる。この場合、路面が、補修跡と同等の輝度を有するようになり得る。つまり、路面の輝度と、補修跡等といった低輝度領域の輝度との差が、暗閾値未満となり得るのである。ここでいう暗閾値は、例えば0に近いような、路面の輝度や補修跡の輝度に比べて十分に小さい値であり得る。なお、上記明閾値及び上記暗閾値は、同じ値であっても良い。上記明閾値及び上記暗閾値は、実験等によって確認され得る。 Furthermore, in the present embodiment, the brightness of the road is such that the difference between the brightness of the low brightness area and the brightness of the road surface is less than a predetermined threshold (hereinafter referred to as dark threshold) (hereinafter referred to as dark condition) ,) As the above predetermined condition. For example, a traveling path at night, a traveling path in a tunnel, etc. may be mentioned as an example where the brightness of the traveling path satisfies the dark condition. In this case, the road surface may have the same brightness as the repair mark. That is, the difference between the brightness of the road surface and the brightness of a low brightness area such as a repair mark can be less than the dark threshold. The dark threshold referred to here may be, for example, a value close to 0, which is sufficiently smaller than the brightness of the road surface and the brightness of a repair mark. The bright threshold and the dark threshold may be the same value. The light threshold and the dark threshold may be confirmed by experiment or the like.
 具体的には、ECU30は、本ステップでは、S130にて取得した輝度閾値が所定の範囲内の値である場合に、走行路の明るさが所定の条件を満たしていないと判断する。換言すれば、図8に示すように、取得された輝度閾値が所定の上限閾値以上である場合、又は、取得された輝度閾値が上限閾値よりも小さい所定の下限閾値未満である場合に、上記走行路の明るさが上記所定の条件を満たしていると判断される。 Specifically, in this step, the ECU 30 determines that the brightness of the traveling path does not satisfy the predetermined condition if the brightness threshold value acquired in S130 is a value within the predetermined range in this step. In other words, as shown in FIG. 8, when the acquired luminance threshold is equal to or higher than the predetermined upper threshold or when the acquired luminance threshold is less than the predetermined lower threshold smaller than the upper threshold, It is determined that the brightness of the travel path satisfies the predetermined condition.
 後述するように、輝度閾値は、過去に認識された走行区画線の輝度に基づく値に比例する値である。つまり、輝度閾値は、走行路の明るさが明条件を満たす程度に十分明るい場合は、大きい値になる。また、輝度閾値は、走行路の明るさが暗条件を満たす程度に十分暗い場合は、小さい値になる。 As will be described later, the luminance threshold is a value proportional to a value based on the luminance of a travel lane line recognized in the past. That is, the brightness threshold is a large value when the brightness of the traveling path is sufficiently bright to satisfy the light condition. In addition, the brightness threshold is a small value when the brightness of the traveling path is sufficiently dark to satisfy the dark condition.
 そこで、本ステップでは、ECU30は、輝度閾値が所定の範囲内であるか否かに基づいて、上記走行路の明るさが上記所定の条件を満たしているか否かを判断しているのである。つまり、輝度閾値が上限閾値以上である場合は、上記走行路の明るさが上記明条件を満たしていると判断される。すなわち、上記走行路の明るさが上記所定の条件を満たしていると判断される。また、輝度閾値が下限閾値未満である場合は、上記走行路の明るさが暗条件を満たしていると判断される。すなわち、上記走行路の明るさが上記所定の条件を満たしていると判断される。ここでいう所定の範囲を表すための上限閾値及び下限閾値は、実験等によって予め定められており、メモリ42に記憶されている。 Therefore, in this step, the ECU 30 determines whether the brightness of the traveling path satisfies the predetermined condition based on whether the luminance threshold is within the predetermined range. That is, when the luminance threshold is equal to or higher than the upper threshold, it is determined that the brightness of the travel path satisfies the bright condition. That is, it is determined that the brightness of the travel path satisfies the predetermined condition. When the brightness threshold is less than the lower limit threshold, it is determined that the brightness of the travel path satisfies the dark condition. That is, it is determined that the brightness of the travel path satisfies the predetermined condition. The upper limit threshold and the lower limit threshold for representing the predetermined range here are predetermined by experiments or the like, and are stored in the memory 42.
 ECU30は、S150では、S160-S180の処理の例外として、S110にて検出された全ての線候補を後述する区画候補として設定する。そして、ECU30は、処理をS190へ移行させる。 At S150, the ECU 30 sets all line candidates detected at S110 as section candidates to be described later, as an exception to the processing at S160-S180. Then, the ECU 30 shifts the process to S190.
 ECU30は、S160では、線候補のそれぞれについて、線候補の輝度を取得し、線候補の輝度が輝度閾値以上であるか否かを判断する。ここで、ECU30は、線候補の輝度が輝度閾値以上である場合に処理をS170へ移行させる。そしてS170では、ECU30は、S160にて輝度閾値以上であると判断された線候補を区画候補として設定し、処理をS180へ移行させる。一方、ECU30は、線候補の輝度が輝度閾値未満である場合に処理をS180へ移行させる。 In S160, the ECU 30 obtains the luminance of the line candidate for each of the line candidates, and determines whether the luminance of the line candidate is equal to or greater than the luminance threshold. Here, the ECU 30 shifts the processing to S170 when the luminance of the line candidate is equal to or higher than the luminance threshold. Then, in S170, the ECU 30 sets a line candidate determined to be equal to or higher than the luminance threshold in S160 as a section candidate, and shifts the processing to S180. On the other hand, when the luminance of the line candidate is less than the luminance threshold, the ECU 30 shifts the processing to S180.
 後述するように、輝度閾値は、過去に認識された走行区画線の輝度に基づく値に比例する値である。且つ、輝度閾値は、過去に認識された走行区画線の輝度に近い値であって、該過去に認識された走行区画線の輝度よりも小さい値である。 As will be described later, the luminance threshold is a value proportional to a value based on the luminance of a travel lane line recognized in the past. In addition, the brightness threshold value is a value close to the brightness of the travel lane lines recognized in the past, and is a value smaller than the brightness of the travel lane lines recognized in the past.
 このため、図8に示すように、線候補の輝度が輝度閾値以上であるということは、より走行区画線らしい、ということである。つまり、区画候補は、より走行区画線らしいもの、である。換言すれば、線候補の輝度が輝度閾値以上であるということは、非区画線領域ではないということである。S160の処理は、線候補の輝度を輝度閾値と比較することによって、複数の線候補の中から非区画線領域を判別するための処理である。 For this reason, as shown in FIG. 8, that the luminance of the line candidate is equal to or higher than the luminance threshold means that it is more likely to be a traveling section line. That is, the section candidate is more likely to be a running section line. In other words, the fact that the luminance of the line candidate is equal to or greater than the luminance threshold means that it is not a non-section line area. The process of S160 is a process for determining a non-partitioning line area from among a plurality of line candidates by comparing the brightness of the line candidate with the brightness threshold.
 ECU30は、S180では、S110にて検出された全ての線候補のそれぞれについてS160の判断が実行されるまで、S160-S180の処理を繰り返す。ECU30は、S110にて検出された全ての線候補についてS160の判断が実行された場合に、処理をS190へ移行させる。 In S180, the ECU 30 repeats the processing of S160 to S180 until the determination of S160 is performed for each of all the line candidates detected in S110. The ECU 30 shifts the processing to S190 when the determination of S160 is performed for all the line candidates detected in S110.
 ECU30は、S190では、S150又はS170にて、複数の区画候補が設定されているか否かを判断する。ECU30は、1つの区画候補が設定されている場合に処理をS200へ移行させ、複数の区画候補が設定されている場合に処理をS210へ移行させる。 In S190, the ECU 30 determines in S150 or S170 whether a plurality of section candidates are set. The ECU 30 shifts the processing to S200 when one segment candidate is set, and shifts the processing to S210 when a plurality of segment candidates are set.
 ECU30は、S200では、1つの区画候補が設定されている場合に、該区画候補を走行区画線として確定する。そして、ECU30は、処理をS220へ移行させる。
 ECU30は、S210では、複数の区画候補が設定されている場合に、複数の区画候補のうち車両70に最も近い区画候補を走行区画線として確定する。そして、ECU30は、処理をS220へ移行させる。なお、ECU30は、車両70の右側及び左側のそれぞれにおいて、走行区画線を確定する。つまり、ECU30は、車両70の走行路の左右の境界を表していると推定される一対の走行区画線を確定する。但し、ECU30は、これに限定されること無く、車両70の右側及び左側の少なくとも一方において走行区画線を確定するように構成され得る。
In S200, when one section candidate is set, the ECU 30 determines the section candidate as a traveling section line. Then, the ECU 30 shifts the process to S220.
In S210, when a plurality of section candidates are set, the ECU 30 determines a section candidate closest to the vehicle 70 among the plurality of section candidates as a travel section line. Then, the ECU 30 shifts the process to S220. The ECU 30 determines travel division lines on the right and left sides of the vehicle 70, respectively. That is, the ECU 30 determines a pair of travel division lines estimated to represent the left and right boundaries of the travel path of the vehicle 70. However, the ECU 30 is not limited to this, and may be configured to determine the travel division line on at least one of the right side and the left side of the vehicle 70.
 ECU30は、S220では、走行区画線輝度をメモリ42に記憶させる。走行区画線輝度は、S200又はS210にて確定された走行区画線の輝度である。具体的には、S120にて取得された線候補の輝度のうち、走行区画線として確定された線候補の輝度を、走行区画線輝度として用いる。 The ECU 30 stores the traveling division line luminance in the memory 42 at S220. The traveling parting line luminance is the luminance of the traveling parting line determined in S200 or S210. Specifically, among the luminances of the line candidates acquired in S120, the luminances of the line candidates determined as the traveling division lines are used as the traveling division line luminances.
 ECU30は、S230では、S140と同様に、上記走行路の明るさが上記所定の条件を満たすか否かを判断する。ECU30は、上記走行路の明るさが上記所定の条件を満たす場合に、本認識処理を終了させ、上記走行路の明るさが上記所定の条件を満たさない場合に、処理をS240へ移行させる。 In S230, the ECU 30 determines whether the brightness of the travel path satisfies the predetermined condition, as in S140. The ECU 30 ends the recognition process when the brightness of the travel path satisfies the predetermined condition, and shifts the process to S240 when the brightness of the travel path does not satisfy the predetermined condition.
 但し、ECU30は、本ステップではS140と異なり、S220にてメモリ42に記憶させた走行区画線輝度が、所定値以内である場合に、上記走行路の明るさが上記所定の条件を満たさないと判断する。具体的には、ECU30は、上記走行区画線輝度が、所定の第1の閾値以上である場合に、上記走行路の明るさが上記所定の条件を満たしていると判断する。また、ECU30は、走行区画線輝度が第1の閾値よりも小さい第2の閾値未満である場合に、上記走行路の明るさが上記所定の条件を満たしていると判断する。 However, unlike the step S140 in this step, the ECU 30 does not satisfy the predetermined condition when the brightness of the traveling path satisfies the predetermined condition when the traveling division line luminance stored in the memory 42 in S220 is within the predetermined value. to decide. Specifically, the ECU 30 determines that the brightness of the traveling path satisfies the predetermined condition when the traveling division line luminance is equal to or higher than a predetermined first threshold. Further, the ECU 30 determines that the brightness of the traveling path satisfies the predetermined condition when the traveling lane line luminance is less than a second threshold smaller than the first threshold.
 第1の閾値及び第2の閾値は、実験等によって予め定められており、メモリ42に記憶されている。なお、第1の閾値は上記上限閾値に対応する値であり、第2の閾値は上記下限閾値に対応する値である。 The first threshold and the second threshold are predetermined by experiment or the like, and are stored in the memory 42. The first threshold is a value corresponding to the upper limit threshold, and the second threshold is a value corresponding to the lower limit threshold.
 ECU30は、S240では、平均輝度を算出する。平均輝度は、複数の過去輝度についての平均的な値である。過去輝度は、過去にメモリ42に蓄積されている走行区画線輝度である。ここでは、直近の過去の所定期間においてメモリ42に蓄積された複数の過去輝度の平均値を平均輝度として算出する。 The ECU 30 calculates an average brightness at S240. The average luminance is an average value of a plurality of past luminances. The past luminance is the traveling part line luminance accumulated in the memory 42 in the past. Here, an average value of a plurality of past luminances accumulated in the memory 42 in the most recent predetermined past period is calculated as the average luminance.
 ECU30は、S250では、参照値を算出する。参照値は、平均輝度に所定の倍数αを乗じた値である。倍数αは1未満の値であり、例えば、0.7~0.8といった値に設定され得る。但し、倍数αは、これに限定されるものではなく、実験等に基づいて適宜設定され得る。そして、ECU30は、算出した参照値を新たな上記輝度閾値としてメモリ42に記憶し直す。ECU30は、以上で本認識処理を終了する。 The ECU 30 calculates a reference value in S250. The reference value is a value obtained by multiplying the average luminance by a predetermined multiple α. The multiple α is a value less than 1 and may be set to a value such as 0.7 to 0.8. However, the multiple α is not limited to this, and may be appropriately set based on an experiment or the like. Then, the ECU 30 re-stores the calculated reference value in the memory 42 as a new brightness threshold. The ECU 30 ends the present recognition process as described above.
 [3.効果]
 以上詳述した第1実施形態によれば、以下の効果を奏する。
 (3a)ECU30は、撮影画像を繰り返し取得し、S110では、撮影画像におけるエッジ点に基づいて、撮影画像から少なくとも1つの線候補を抽出する。ECU30は、S160では、少なくとも1つの線候補のそれぞれについて、線候補の輝度が輝度閾値以上であるか否かを判断し、線候補の輝度が輝度閾値以上であるものを区画候補として設定する。ECU30は、S210では、区画候補が複数ある場合に、車両70に最も近い区画候補を走行区画線として認識する。ECU30は、S40では、認識結果を出力する。
[3. effect]
According to the first embodiment described above, the following effects can be obtained.
(3a) The ECU 30 repeatedly acquires the captured image, and in S110, extracts at least one line candidate from the captured image based on the edge point in the captured image. In S160, the ECU 30 determines, for each of at least one line candidate, whether or not the brightness of the line candidate is equal to or greater than the brightness threshold, and sets one having the brightness of the line candidate equal to or greater than the brightness threshold as a section candidate. In step S210, the ECU 30 recognizes a section candidate closest to the vehicle 70 as a traveling section line when there are a plurality of section candidates. The ECU 30 outputs a recognition result in S40.
 その結果、複数の区画候補が検出された場合には、車両70に最も近い区画候補が走行区画線として特定されるので、区画線の輝度の違いによらず、走行区画線を適切に検出することができる。 As a result, when a plurality of section candidates are detected, the section candidate closest to the vehicle 70 is identified as a traveling section line, so that the traveling section line is properly detected regardless of the difference in the luminance of the section line. be able to.
 また、線候補の輝度が輝度閾値未満であるものは区画候補として設定されないので、これにより、非区画線領域と区画線とを判別することができる。つまり、非区画線領域が区画候補として誤って抽出されることが抑制される。その結果、区画候補の中から走行区画線を適切に検出することができる。 In addition, since the line candidate whose luminance is less than the luminance threshold is not set as a section candidate, the non-section line area and the section line can be discriminated. That is, it is suppressed that a non-section line area is mistakenly extracted as a section candidate. As a result, it is possible to appropriately detect a traveling division line from among the division candidates.
 (3b)ECU30は、S220では、S210にて走行区画線が認識される毎に、走行区画線輝度をメモリ42に記憶させる。ECU30は、S250にて走行区画線輝度がメモリ42に記憶される毎に、複数の過去輝度についての平均的な値である平均輝度を算出し、平均輝度よりも小さい参照値を算出し、参照値を新たな輝度閾値としてメモリ42に記憶し直す。ECU30は、S160では、このようにしてメモリ42に記憶されている輝度閾値を取得し、該輝度閾値を用いて、判断を行う。 (3b) The ECU 30 stores the traveling division line luminance in the memory 42 in S220 each time the traveling division line is recognized in S210. The ECU 30 calculates an average luminance, which is an average value of a plurality of past luminances, and calculates a reference value smaller than the average luminance every time the traveling lane line luminance is stored in the memory 42 at S250. The value is stored back in the memory 42 as a new luminance threshold. In S160, the ECU 30 acquires the luminance threshold value thus stored in the memory 42, and makes a determination using the luminance threshold value.
 つまり、過去に認識された複数の走行区画線の輝度に基づいて輝度閾値が設定されるので、刻々と変化する車両70周囲の環境の明るさの変化が反映された、適切な輝度閾値が設定される。また、輝度閾値が適切に設定されるので、補修跡等による非区画線領域が誤って区画候補として抽出されることが抑制される。その結果、走行区画線を適切に検出することができる。 That is, since the luminance threshold is set based on the luminances of a plurality of travel markings recognized in the past, an appropriate luminance threshold is set that reflects the change in the brightness of the environment around the vehicle 70 which changes from moment to moment. Be done. In addition, since the luminance threshold is appropriately set, it is possible to suppress that a non-section line area due to a repair mark or the like is erroneously extracted as a section candidate. As a result, it is possible to properly detect the traveling lanes.
 (3c)ECU30は、S140又はS230では、車両周辺の走行路の明るさが所定の条件を満たすか否かを判断するように構成されている。その結果、車両周辺の走行路の明るさに応じた処理が可能となる。 (3c) In S140 or S230, the ECU 30 is configured to determine whether the brightness of the travel path around the vehicle satisfies the predetermined condition. As a result, processing can be performed according to the brightness of the travel path around the vehicle.
 (3d)ECU30は、S250では、S230によって上記走行路の明るさが上記所定の条件を満たすと判断された場合に、参照値を新たな輝度閾値としてメモリ42に記憶させることを中止する。 (3d) In S250, when it is determined in S250 that the brightness of the traveling path satisfies the predetermined condition in S250, the ECU 30 stops storing the reference value in the memory 42 as a new brightness threshold.
 つまり、例えば、明条件が満たされる場合であって太陽による照射光が強く走行路が非常に明るい場合や、暗条件が満たされる場合であってトンネル内や夜間において走行路が非常に暗い場合等には、参照値を用いて輝度閾値が更新されない。参照値は、上述のように、過去に認識された走行区画線の輝度に基づく値である。参照値は、上記走行路の明るさが明るいときには大きい値となり、上記走行路の明るさが暗いときには小さい値となる。 That is, for example, when the bright condition is satisfied and the irradiation light by the sun is strong and the travel route is very bright, or when the dark condition is satisfied and the travel route is very dark in the tunnel or at night, etc. , The brightness threshold is not updated using the reference value. The reference value is, as described above, a value based on the luminance of the travel lane lines recognized in the past. The reference value is a large value when the brightness of the travel path is bright, and is a small value when the brightness of the travel path is dark.
 ここで、明条件が満たされる程度に走行路が明るい場合に参照値を用いて輝度閾値が更新されると、輝度閾値が通常における黄線の輝度よりも大きい値に設定されるおそれが生じる。一方、暗条件が満たされる程度に走行路が暗い場合に参照値を用いて輝度閾値が更新されると、輝度閾値が通常における補修跡等の低輝度領域の輝度よりも小さい値に設定されるおそれが生じる。前者の場合は黄線が区画候補として抽出されないおそれがある。後者の場合、低輝度領域が区画候補として抽出されるおそれがある。 Here, if the brightness threshold is updated using the reference value when the travel path is bright enough to satisfy the bright condition, the brightness threshold may be set to a value larger than the brightness of the normal yellow line. On the other hand, when the brightness threshold is updated using the reference value when the travel path is dark to the extent that the dark condition is satisfied, the brightness threshold is set to a value smaller than the brightness of a low brightness area such as a repair mark There is a fear. In the former case, the yellow line may not be extracted as a section candidate. In the latter case, the low luminance region may be extracted as a section candidate.
 本実施形態では、上記走行路の明るさが上記所定の条件を満たすと判断された場合に、参照値を用いて輝度閾値が更新されない。その結果、輝度閾値に基づいて、黄線が区画候補として抽出されないことを抑制することができる。また、輝度閾値に基づいて、低輝度領域が区画候補として抽出されることを抑制することができる。 In the present embodiment, when it is determined that the brightness of the travel path satisfies the predetermined condition, the brightness threshold is not updated using the reference value. As a result, it is possible to suppress that the yellow line is not extracted as a section candidate based on the luminance threshold. Further, based on the luminance threshold value, extraction of a low luminance area as a section candidate can be suppressed.
 (3e)ECU30は、S210では、S140によって上記走行路の明るさが上記所定の条件を満たすと判断された場合に、S110によって抽出された少なくとも1つの線候補であって全ての線候補のうち、車両70に最も近い線候補、を走行区画線として認識する。 (3e) In S210, when it is determined that the brightness of the traveling path satisfies the predetermined condition in S210, the ECU 30 is at least one line candidate extracted in S110 and among all the line candidates The line candidate closest to the vehicle 70 is recognized as a travel division line.
 つまり、上記走行路の明るさが上記所定の条件を満たすと判断された場合には、輝度閾値に基づく区画候補の抽出を行わず、全ての線候補のうち車両70に最も近い線候補を走行区画線として認識する。上述のように、上記走行路の明るさが上記所定の条件を満たすと判断された場合には、輝度閾値が適切に設定されないので、区画候補が適切に抽出されないおそれがある。そこで、本実施形態では、このような場合に、区画候補を抽出することを中止する。その結果、区画候補に基づいて走行区画線が誤って認識されることが抑制される。 That is, when it is determined that the brightness of the traveling path satisfies the predetermined condition, the division candidate extraction based on the luminance threshold is not performed, and the line candidate closest to the vehicle 70 among all the line candidates is traveled. Recognized as a dividing line. As described above, when it is determined that the brightness of the traveling path satisfies the predetermined condition, the luminance threshold is not appropriately set, and therefore, there is a possibility that the section candidate may not be appropriately extracted. Therefore, in this embodiment, extraction of a section candidate is stopped in such a case. As a result, erroneous recognition of the travel lane lines based on the lane candidates is suppressed.
 (3f)ECU30は、S140又はS230では、上記走行路の明るさが、区画線の輝度と路面の輝度との差が所定の明閾値未満となる明るさであること、を上記所定の条件として、判断を行うように構成されている。 (3f) The ECU 30 determines in S140 or S230 that the predetermined condition is that the brightness of the traveling road is such that the difference between the brightness of the dividing line and the brightness of the road surface is less than a predetermined bright threshold. , Is configured to make a decision.
 つまり、区画線の輝度と路面の輝度との差が明閾値未満となる場合に、例えば、区画候補の抽出を中止したり、輝度閾値の更新を中止したり、といった処理が可能となる。また、区画線の輝度と路面の輝度との差が明閾値未満となる場合に、認識結果の出力を中止する処理が可能となる。その結果、走行区画線の誤認識を抑制すことができる。また、誤った認識結果が出力されることを抑制することができる。 That is, when the difference between the luminance of the dividing line and the luminance of the road surface is smaller than the bright threshold, for example, processing such as stopping extraction of a section candidate or stopping updating of the luminance threshold can be performed. In addition, when the difference between the luminance of the demarcation line and the luminance of the road surface is less than the bright threshold, it is possible to stop the output of the recognition result. As a result, it is possible to suppress misrecognition of the travel lane lines. In addition, it is possible to suppress the output of an erroneous recognition result.
 (3g)ECU30は、S140又はS230では、上記走行路の明るさが、低輝度領域の輝度と路面の輝度との差が所定の暗閾値未満となる明るさであること、を上記所定の条件として、判断を行うように構成されている。 (3g) In S140 or S230, the ECU 30 determines that the brightness of the traveling path is such that the difference between the brightness of the low brightness area and the brightness of the road surface is less than a predetermined dark threshold. As, it is configured to make a decision.
 つまり、低輝度領域の輝度と路面の輝度との差が暗閾値未満となる場合に、例えば、区画候補の抽出を中止したり、輝度閾値の更新を中止したり、といった処理が可能となる。また、低輝度領域の輝度と路面の輝度との差が暗閾値未満となる場合に、認識結果の出力を中止する処理が可能となる。その結果、走行区画線の誤認識を抑制すことができる。また、誤った認識結果が出力されることを抑制することができる。 That is, when the difference between the brightness of the low brightness area and the brightness of the road surface is less than the dark threshold, for example, processing such as stopping extraction of a section candidate or stopping updating of the brightness threshold can be performed. In addition, when the difference between the brightness of the low brightness area and the brightness of the road surface is less than the dark threshold, it is possible to stop the output of the recognition result. As a result, it is possible to suppress misrecognition of the travel lane lines. In addition, it is possible to suppress the output of an erroneous recognition result.
 (3h)ECU30は、S140では、輝度閾値が所定の上限閾値以上である場合に、上記走行路の明るさが上記所定の条件を満たしていると判断する。また、ECU30は、S140では、輝度閾値が上限閾値よりも小さい所定の下限閾値未満である場合に、上記走行路の明るさが上記所定の条件を満たしていると判断する。その結果、走行路の明るさを検出するために、照度センサ等の新たな構成を備えること無しに、上記走行路の明るさが上記所定の条件を満たしているか否かを簡易に判断することができる。 (3h) In S140, the ECU 30 determines that the brightness of the traveling path satisfies the predetermined condition when the luminance threshold is equal to or higher than the predetermined upper limit threshold in S140. Further, in S140, the ECU 30 determines that the brightness of the traveling path satisfies the predetermined condition in S140 if the brightness threshold is less than the predetermined lower limit threshold smaller than the upper limit threshold. As a result, in order to detect the brightness of the traveling path, it is easily determined whether the brightness of the traveling path satisfies the predetermined condition without providing a new configuration such as an illuminance sensor or the like. Can.
 (3i)ECU30は、S230では、走行区画線輝度が所定の第1の閾値以上である場合に、上記走行路の明るさが上記所定の条件を満たしていると判断する。また、ECU30は、S230では、走行区画線輝度が第1の閾値よりも小さい第2の閾値未満である場合に、上記走行路の明るさが上記所定の条件を満たしていると判断する。その結果、上記(3h)と同様の効果が得られる。 (3i) In S230, the ECU 30 determines that the brightness of the traveling path satisfies the predetermined condition when the traveling lane line luminance is equal to or higher than a predetermined first threshold value in S230. Further, in step S230, the ECU 30 determines that the brightness of the traveling path satisfies the predetermined condition when the traveling division line luminance is less than a second threshold smaller than the first threshold. As a result, the same effect as the above (3h) can be obtained.
 なお、上記実施形態では、ECU30が検出装置に相当し、メモリ42が記憶部に相当する。また、S40が出力部による処理に相当し、S100が画像取得部による処理に相当し、S110が候補抽出部による処理に相当し、S140及びS230が環境判断部による処理に相当し、S160が輝度判断部による処理に相当する。また、S190が複数判断部による処理に相当し、S210が認識部による処理に相当し、S220が蓄積部による処理に相当し、S250が更新部による処理に相当する。 In the above embodiment, the ECU 30 corresponds to a detection device, and the memory 42 corresponds to a storage unit. Also, S40 corresponds to the processing by the output unit, S100 corresponds to the processing by the image acquisition unit, S110 corresponds to the processing by the candidate extraction unit, S140 and S230 correspond to the processing by the environment judgment unit, and S160 represents the luminance. It corresponds to the processing by the judgment unit. Further, S190 corresponds to the processing by the multiple judgment unit, S210 corresponds to the processing by the recognition unit, S220 corresponds to the processing by the storage unit, and S250 corresponds to the processing by the updating unit.
 また、鳥瞰図画像が撮影画像に相当し、エッジ点が特徴点に相当する。また、明条件及び暗条件のそれぞれが所定の条件に相当する。
 [4.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
Further, a bird's-eye view image corresponds to a photographed image, and an edge point corresponds to a feature point. Further, each of the bright condition and the dark condition corresponds to a predetermined condition.
[4. Other embodiments]
As mentioned above, although embodiment of this indication was described, this indication can be variously deformed and implemented, without being limited to the above-mentioned embodiment.
 (4a)上記実施形態では、S140では輝度閾値が所定の範囲内であるか否かに基づいて、S230では走行区画線度が所定の範囲内であるか否かに基づいて、上記走行路の明るさが上記所定の条件を満たすか否かを判断していた。但し、本開示は、これに限定されるものではない。 (4a) In the above embodiment, based on whether or not the brightness threshold value is within the predetermined range in S140, based on whether or not the travel division line degree is within the predetermined range in S230, It has been determined whether the brightness satisfies the predetermined condition. However, the present disclosure is not limited to this.
 例えば、車両70では、センサ群20のセンサとして、周囲の明るさを検出する照度センサが搭載されていてもよい。ECU30は、照度センサのセンサ値が所定の第1の照度閾値以上である場合に、上記走行路の明るさが上記所定の条件を満たしていると判断するように構成されても良い。また、ECU30は、照度センサのセンサ値が、第1の照度閾値よりも小さい値である第2の照度閾値未満である場合に、上記走行路の明るさが上記所定の条件を満たしていると判断するように構成されても良い。 For example, in the vehicle 70, an illuminance sensor that detects ambient brightness may be mounted as a sensor of the sensor group 20. The ECU 30 may be configured to determine that the brightness of the traveling path satisfies the predetermined condition when the sensor value of the illuminance sensor is equal to or greater than the predetermined first illuminance threshold. Further, when the sensor value of the illuminance sensor is less than a second illuminance threshold which is a value smaller than the first illuminance threshold, the ECU 30 assumes that the brightness of the traveling path satisfies the predetermined condition. It may be configured to make a decision.
 また例えば、車両70では、センサ群20のセンサとして、GPS装置が搭載されていても良く、地図データを記憶する地図データベースが搭載されていても良い。そして、ECU30は、GPS装置の検出結果と地図データとに基づいて、車両70の現在位置がトンネル内であると判断した場合に、上記走行路の明るさが上記所定の条件を満たしていると判断するように構成されても良い。 For example, in the vehicle 70, a GPS device may be mounted as a sensor of the sensor group 20, and a map database storing map data may be mounted. When the ECU 30 determines that the current position of the vehicle 70 is in the tunnel based on the detection result of the GPS device and the map data, it is assumed that the brightness of the traveling path satisfies the predetermined condition. It may be configured to make a decision.
 (4b)上述のように、上記走行路の明るさが上記所定の条件を満たすと判断された場合には、輝度閾値が適切に設定されず、走行区画線が適切に確定されないおそれがある。そこで、ECU30は、S40では、S140又はS230によって上記走行路の明るさが上記所定の条件を満たすと判断された場合に、認識結果の出力を中止するように構成されていても良い。その結果、誤った認識結果が出力されることを抑制することができる。また、誤った走行路パラメータに基づいて誤った車両制御が行われることを抑制することができる。 (4b) As described above, when it is determined that the brightness of the travel path satisfies the predetermined condition, the brightness threshold is not appropriately set, and there is a possibility that the travel division line may not be properly determined. Therefore, the ECU 30 may be configured to stop the output of the recognition result when it is determined in S40 that the brightness of the traveling path satisfies the predetermined condition in S40. As a result, it is possible to suppress output of an erroneous recognition result. In addition, it is possible to suppress erroneous vehicle control from being performed based on an erroneous traveling path parameter.
 (4c)上記実施形態では、ECU30は、カメラ11-14によるカメラ画像に基づいて生成された鳥瞰図画像を撮影画像として、該鳥瞰図画像から走行区画線を認識するように構成されていたが、撮影画像は鳥瞰図画像に限定されるものではない。例えば、図9に示すように、1つのカメラ10が、車両70の前方の路面を撮影するように車両に搭載されていても良い。具体的には、カメラ10は、車両70の中央前方側に取り付けられており、図9に示すように、車両70の前方に向けて所定角度範囲で広がる領域を撮影するように構成されていてもよい。そして、ECU30は、上記実施形態と同様に、該カメラ10によって撮影された撮影画像からエッジ点を検出し、エッジ点に基づいて、該撮影画像から走行区画線を認識するように構成されても良い。 (4c) In the above embodiment, the ECU 30 is configured to recognize the traveling division line from the bird's-eye view image using the bird's-eye view image generated based on the camera image by the camera 11-14 as the shot image. The image is not limited to a bird's eye view image. For example, as shown in FIG. 9, one camera 10 may be mounted on a vehicle so as to capture a road surface ahead of the vehicle 70. Specifically, the camera 10 is mounted on the center front side of the vehicle 70, and as shown in FIG. 9, it is configured to photograph an area extending in a predetermined angle range toward the front of the vehicle 70 It is also good. And ECU30 detects an edge point from the photography picture photoed with the camera 10 like the above-mentioned embodiment, and based on an edge point, it may be constituted so that a run division line may be recognized from the photography picture. good.
 (4d)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、請求の範囲に記載した文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (4d) The plurality of functions of one component in the above embodiment may be realized by a plurality of components, or one function of one component may be realized by a plurality of components . Also, a plurality of functions possessed by a plurality of components may be realized by one component, or one function realized by a plurality of components may be realized by one component. In addition, part of the configuration of the above embodiment may be omitted. In addition, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other above embodiment. In addition, all the aspects contained in the technical thought specified from the wording described in the claim are an embodiment of this indication.
 (4e)上述したECU30、運転支援システム1の他、ECU30を機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実態的記録媒体、区画線検出方法など、種々の形態で本開示を実現することもできる。 (4e) In addition to the above-described ECU 30 and the driving support system 1, a program for causing the ECU 30 to function, a non-transient actual recording medium such as a semiconductor memory recording this program, a dividing line detection method, etc. Disclosure can also be realized.

Claims (7)

  1.  車両(70)に搭載された検出装置(30)であって、
     前記車両に搭載された少なくとも1つのカメラ(10)により撮影された画像であって前記車両が走行する道路である走行路が含まれる撮影画像を繰り返し取得するように構成された画像取得部(S100)と、
     前記撮影画像において隣接する画素の間で輝度が所定の変化閾値以上変化する点である特徴点に基づいて、前記撮影画像から車線を区画する区画線の候補である少なくとも1つの線候補を抽出するように構成された候補抽出部(S110)と、
     前記線候補のそれぞれについて、前記線候補の輝度を取得し、前記線候補の輝度が予め定められた輝度閾値以上であるか否かを判断するように構成された輝度判断部(S160)と、
     前記線候補であって前記輝度判断部によって前記線候補の輝度が前記輝度閾値以上と判断された区画候補が複数あるか否かを判断するように構成された複数判断部(S190)と、
     前記複数判断部によって複数の前記区画候補があると判断された場合に、前記複数の区画候補のうち前記車両に最も近い区画候補を、前記車両が走行する車線を区画する区画線である走行区画線として認識するように構成された認識部(S210)と、
     前記認識部による認識結果を出力するように構成された出力部(S40)と、
     を備える検出装置。
    A detection device (30) mounted on a vehicle (70),
    An image acquisition unit configured to repeatedly acquire an image captured by at least one camera (10) mounted on the vehicle, the captured image including a travel path being a road on which the vehicle travels (S100 )When,
    At least one line candidate which is a candidate of a dividing line for dividing a lane is extracted from the photographed image based on a feature point which is a point at which luminance changes by a predetermined change threshold or more between adjacent pixels in the photographed image. A candidate extraction unit (S110) configured as
    A luminance determination unit (S160) configured to acquire the luminance of the line candidate for each of the line candidates and determine whether the luminance of the line candidate is equal to or greater than a predetermined luminance threshold;
    A plurality of judgment units (S190) configured to judge whether there are a plurality of division candidates which are the line candidates and the luminance judgment unit judges that the luminance of the line candidate is equal to or higher than the luminance threshold;
    When it is determined by the plurality of determination units that there is a plurality of the section candidates, a running section that is a section line that divides a lane in which the vehicle travels is a section candidate closest to the vehicle among the plurality of section candidates A recognition unit (S210) configured to recognize as a line;
    An output unit (S40) configured to output a recognition result by the recognition unit;
    A detection device comprising:
  2.  請求項1に記載の検出装置であって、
     前記認識部によって認識された前記走行区画線の輝度である走行区画線輝度を記憶部(42)に記憶させるように構成された蓄積部(S220)と、
     過去に前記蓄積部に蓄積されている前記走行区画線輝度である複数の過去輝度についての平均的な値である平均輝度を取得し、前記平均輝度に基づいて前記平均輝度よりも小さい値である参照値を算出し、前記参照値を新たな前記輝度閾値として前記蓄積部に蓄積し直す更新部(S250)と、を更に備え
     前記輝度判断部は、前記蓄積部から前記輝度閾値を取得し、判断するように構成された
     検出装置。
    The detection device according to claim 1, wherein
    A storage unit (S220) configured to store, in the storage unit (42), the traveling division line luminance that is the luminance of the traveling division line recognized by the recognition unit;
    An average luminance which is an average value of a plurality of past luminances, which is the traveling division line luminance accumulated in the storage section in the past, is acquired, and a value smaller than the average luminance based on the average luminance The update unit (S250) further calculates a reference value and stores the reference value as a new brightness threshold in the storage unit (S250), and the brightness determination unit acquires the brightness threshold from the storage unit, Detection device configured to determine.
  3.  請求項2に記載の検出装置であって、
     前記車両周辺の走行路の明るさが所定の条件を満たすか否かを判断するように構成された環境判断部(S140、S230)、
     を更に備える検出装置。
    The detection device according to claim 2,
    An environment determining unit (S140, S230) configured to determine whether the brightness of a traveling path around the vehicle satisfies a predetermined condition;
    A detection device further comprising
  4.  請求項3に記載の検出装置であって、
     前記更新部は、前記環境判断部(S230)によって前記車両周辺の走行路の明るさが前記所定の条件を満たすと判断された場合に、前記参照値を前記新たな輝度閾値として前記記憶部に記憶させることを中止するように構成された
     検出装置。
    The detection device according to claim 3,
    The updating unit uses the reference value as the new brightness threshold in the storage unit when the environment determining unit (S230) determines that the brightness of the traveling path around the vehicle satisfies the predetermined condition. A detection device configured to stop storing.
  5.  請求項3または請求項4に記載の検出装置であって、
    前記認識部は、前記環境判断部(S140)によって前記車両周辺の走行路の明るさが前記所定の条件を満たすと判断された場合に、前記候補抽出部によって抽出された全ての前記少なくとも1つの線候補のうち前記車両に最も近い線候補を前記走行区画線として認識するように構成された
     検出装置。
    A detection device according to claim 3 or claim 4, wherein
    The recognition unit is configured to select all the at least one extracted by the candidate extraction unit when it is determined by the environment determination unit (S140) that the brightness of the traveling path around the vehicle satisfies the predetermined condition. A detection device configured to recognize a line candidate closest to the vehicle among line candidates as the travel division line.
  6.  請求項3から請求項5のいずれか一項に記載の検出装置であって、
     前記環境判断部は、前記車両周辺の走行路の明るさが、前記区画線の輝度と路面の輝度との差が所定の明閾値未満となる明るさであること、を前記所定の条件として、判断するように構成された
     検出装置。
    The detection device according to any one of claims 3 to 5, wherein
    The environment determining unit may set the predetermined condition that the brightness of the traveling path around the vehicle is such that the difference between the brightness of the dividing line and the brightness of the road surface is less than a predetermined bright threshold. Detection device configured to determine.
  7.  請求項3から請求項6のいずれか一項に記載の検出装置であって、
     前記環境判断部は、前記車両周辺の走行路の明るさが、低輝度領域の輝度と前記路面の輝度との差が所定の暗閾値未満となる明るさであること、を前記所定の条件として判断するように構成されており、
     前記低輝度領域は、前記区画線と平行となるように前記路面上に位置する複数の線状の領域のそれぞれであって、前記路面よりも輝度が低い領域であること、を特徴とする
     検出装置。
    A detection device according to any one of claims 3 to 6, wherein
    The environment determining unit may set the predetermined condition that the brightness of the traveling path around the vehicle is such that the difference between the brightness of the low brightness area and the brightness of the road surface is less than a predetermined dark threshold. Configured to make decisions,
    The low luminance region is each of a plurality of linear regions positioned on the road surface so as to be parallel to the division line, and is a region having lower luminance than the road surface. apparatus.
PCT/JP2018/026192 2017-07-14 2018-07-11 Detection device WO2019013253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-137854 2017-07-14
JP2017137854A JP2019020957A (en) 2017-07-14 2017-07-14 Detection device

Publications (1)

Publication Number Publication Date
WO2019013253A1 true WO2019013253A1 (en) 2019-01-17

Family

ID=65001319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026192 WO2019013253A1 (en) 2017-07-14 2018-07-11 Detection device

Country Status (2)

Country Link
JP (1) JP2019020957A (en)
WO (1) WO2019013253A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446830B2 (en) 2020-01-30 2024-03-11 フォルシアクラリオン・エレクトロニクス株式会社 Image processing device and image processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056322A (en) * 2003-08-07 2005-03-03 Toshiba Corp White line estimation device
WO2006101004A1 (en) * 2005-03-22 2006-09-28 Honda Motor Co., Ltd. Vehicle-use image processing system, vehicle-use image processing method, vehicle-use image processing program, vehicle, and method of formulating vehicle-use image processing system
JP2010224926A (en) * 2009-03-24 2010-10-07 Fuji Heavy Ind Ltd Stop line detection device
JP2010286995A (en) * 2009-06-10 2010-12-24 Honda Motor Co Ltd Image processing system for vehicle
JP2017010464A (en) * 2015-06-25 2017-01-12 富士通株式会社 Lane detection device and lane detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056322A (en) * 2003-08-07 2005-03-03 Toshiba Corp White line estimation device
WO2006101004A1 (en) * 2005-03-22 2006-09-28 Honda Motor Co., Ltd. Vehicle-use image processing system, vehicle-use image processing method, vehicle-use image processing program, vehicle, and method of formulating vehicle-use image processing system
JP2010224926A (en) * 2009-03-24 2010-10-07 Fuji Heavy Ind Ltd Stop line detection device
JP2010286995A (en) * 2009-06-10 2010-12-24 Honda Motor Co Ltd Image processing system for vehicle
JP2017010464A (en) * 2015-06-25 2017-01-12 富士通株式会社 Lane detection device and lane detection method

Also Published As

Publication number Publication date
JP2019020957A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6416293B2 (en) Method of tracking a target vehicle approaching a car by a car camera system, a camera system, and a car
US8477999B2 (en) Road division line detector
US8090152B2 (en) Road lane boundary detection system and road lane boundary detecting method
US9405980B2 (en) Arrow signal recognition device
JP6220327B2 (en) Traveling lane marking recognition device, traveling lane marking recognition program
US9965690B2 (en) On-vehicle control device
JP5480917B2 (en) Vehicle periphery monitoring device
US10635910B2 (en) Malfunction diagnosis apparatus
US8643723B2 (en) Lane-marker recognition system with improved recognition-performance
US20180005073A1 (en) Road recognition apparatus
JP2007220013A (en) Device for detecting white line for vehicle
KR101268282B1 (en) Lane departure warning system in navigation for vehicle and method thereof
JP6426512B2 (en) Driving lane recognition system
US9916672B2 (en) Branching and merging determination apparatus
KR20170055738A (en) Apparatus and method for recognize driving lane on image
JP5097681B2 (en) Feature position recognition device
JP5407920B2 (en) Lighting color identification device and program
KR101511586B1 (en) Apparatus and method for controlling vehicle by detection of tunnel
WO2019013253A1 (en) Detection device
US11749002B2 (en) Lane line recognition apparatus
WO2014050285A1 (en) Stereo camera device
JP2019109681A (en) Compartment line specification device
WO2017122688A1 (en) Device for detecting abnormality of lens of onboard camera
JP6453571B2 (en) 3D object recognition device
US20230386224A1 (en) Stop line recognition device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832877

Country of ref document: EP

Kind code of ref document: A1