WO2019012685A1 - Workpiece-attitude-discernment mechanism for robot chuck - Google Patents

Workpiece-attitude-discernment mechanism for robot chuck Download PDF

Info

Publication number
WO2019012685A1
WO2019012685A1 PCT/JP2017/025683 JP2017025683W WO2019012685A1 WO 2019012685 A1 WO2019012685 A1 WO 2019012685A1 JP 2017025683 W JP2017025683 W JP 2017025683W WO 2019012685 A1 WO2019012685 A1 WO 2019012685A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusher
air
chuck
hole
work
Prior art date
Application number
PCT/JP2017/025683
Other languages
French (fr)
Japanese (ja)
Inventor
加藤正樹
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2019529416A priority Critical patent/JP6768159B2/en
Priority to PCT/JP2017/025683 priority patent/WO2019012685A1/en
Publication of WO2019012685A1 publication Critical patent/WO2019012685A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the present invention relates to a work posture determination mechanism of a robot chuck capable of detecting a gripping state regarding a posture of a work.
  • Patent Document 1 discloses a loader with a workpiece inclination detection function that detects the inclination of a workpiece held by a loader chuck. If an inclination occurs in the posture of the workpiece, machining defects occur. Therefore, the inclination of the workpiece can be detected before machining.
  • the pusher plate in contact with the seated work when the held workpiece is inclined, the pusher plate in contact with the seated work also has an inclination, and the inclination can be detected by the detector.
  • a detection structure for that purpose is provided with a plurality of pushers biased so that the tip contacts the pusher plate, and the inclination of the work end surface is detected by measuring the position of the plurality of pushers movable in the biasing direction. It can be done.
  • the detection signal of the displacement sensor is transmitted to a computer or the like through the signal cable, and the detection value comparison means detects the inclination of the pusher plate, that is, the inclination of the workpiece held by the loader chuck.
  • the loader chuck equipped with the work inclination detection function enters the processing room of the machine tool and delivers the work, but chips and coolant of the work are scattered in the processing room where the delivery is performed. It is an environment. Therefore, in the conventional loader chuck, since the displacement sensor is provided in the vicinity of the working unit for gripping the workpiece, chips and the like may be attached to the displacement sensor in the processing chamber. That is, in the conventional structure, it is conceivable that accurate detection by the displacement sensor is hindered. Further, the above-described loader chucks are provided in a gantry type drive mechanism installed above the machine tool, and two units are attached to the loader heads movable in the left-right direction, the front-rear direction and the up-down direction There is. The two loader chucks are each capable of rotating 180 °. That is, in the conventional tilt detection mechanism through the signal cable of the displacement sensor, the rotation of the loader chuck is limited by the signal cable.
  • this invention aims at providing the workpiece
  • the work posture determination mechanism for a robot chuck includes a plurality of assembly holes provided in a chuck portion of the robot chuck that holds a workpiece with a plurality of chuck claws, and air for supplying air to the plurality of assembly holes.
  • a plurality of pushers to be switched and an air pressure detector for detecting the pressure of the air in the air flow path are included.
  • air is fed to the assembly hole of the robot chuck into which the plurality of pushers are inserted, via the air flow path.
  • the work is gripped by the plurality of chuck claws of the robot chuck.
  • the pusher is pushed and displaced by the work, and the release of air sent into the assembly hole to the atmosphere and the shut off are switched.
  • the pressure of the air in the air flow path changes, and the air pressure detector detects it, whereby the posture of the workpiece held by the robot chuck can be determined.
  • FIG. 1 is a side view showing an articulated robot arm.
  • the workpiece posture determination mechanism of the robot chuck incorporated in the articulated robot arm will be described as an example. Therefore, first, the articulated robot arm will be briefly described.
  • the articulated robot arm 1 is provided in a processing machine line in which a plurality of machine tools are arranged, and constitutes an autoloader for automatically delivering and receiving a work with each machine tool. Therefore, the articulated robot arm 1 is mounted on the carriage 2 via the turning mechanism, and is configured to be movable in the direction through the drawing.
  • the upper arm member 12 is connected to the pivotable support 11 via the first joint mechanism 14, and the forearm member 13 further connects the second joint mechanism 15 to the upper arm member 12. It is linked through.
  • the articulated robot arm 1 overlaps the upper arm member 12 and the forearm member 13 in a standing state as illustrated.
  • the upper arm member 12 and the forearm member 13 are rotated by the first joint mechanism 14 and the second joint mechanism 15, and the right side of the drawing faces the front of the machine tool An extended operation is performed.
  • a robot chuck 3 capable of gripping a workpiece is attached to the end of the articulated robot arm 1, that is, the end of the forearm member 13.
  • the articulated robot arm 1 is provided with a reversing device 4 for changing the direction of the workpiece on the rear side, so that the workpiece can be delivered between the robot chuck 3 and the reversing device 4 .
  • the reversing device 4 the workpiece which has been reversed by 180 ° can be delivered to the robot chuck 3.
  • the robot chuck 3 is assembled to the forearm member 13 with a rotation axis in a direction passing through the drawing in order to deliver and receive a work between the spindle chuck of the machine tool and the reversing device 4.
  • FIG. 2 is an external perspective view showing the robot chuck 3.
  • the robot chuck 3 has a first clamp surface on the front side of the drawing and a second clamp surface on the back side of the robot main body 25 so that the workpiece can be gripped on both sides. That is, three chuck slides 21 arranged radially are provided on the clamp surfaces on both sides, and chuck claws 22 (see FIG. 3) are attached to the chuck slides 21.
  • the three chuck claws 22 are disposed at an interval of 120 °, and are configured to reciprocate linearly in synchronization in the radial direction. Accordingly, movement of the chuck jaws 22 toward the center enables clamping of the work, and movement of the chuck claws 22 outward causes amplification of the work.
  • the robot chuck 3 is integrally configured with a coaxial bearing member 26 so as to sandwich the robot body 25. It is rotatably assembled to the forearm member 13 of the articulated robot arm 1 via the bearing member 26.
  • a drive motor is attached to the articulated robot arm 1 side, and a belt is stretched between the rotary shaft and the pulley 27 on the robot chuck 3 side. Therefore, the drive control for the drive motor makes it possible to adjust the angle of the first clamp surface or the second clamp surface of the robot chuck 3 when transferring a work with a machine tool or the like.
  • the robot chuck 3 has a clamp mechanism configured to operate the chuck slide 21 in the robot body 25 in order to clamp and unclamp a workpiece.
  • this clamp mechanism is operated by hydraulic pressure, and is configured to supply and discharge hydraulic oil with a hydraulic pump and a tank installed outside the articulated robot arm 1. Therefore, in the robot chuck 3, a hydraulic circuit that controls the operation of the chuck slide 21 is configured inside the bearing member 26.
  • the robot chuck 3 is thus configured such that the hydraulic fluid, which is fluid, flows between the robot chuck 3 and the outside, but in addition, air for the work posture determination mechanism described below is also fed. .
  • FIG. 3 is a simplified view showing a work posture determination mechanism. Only the robot body 25 of the robot chuck 3 is shown in the drawing. An air flow path is formed in the robot body 25 so that air can be supplied through the bearing member 26 in the same manner as the hydraulic oil.
  • An air compressor 31 installed outside the articulated robot arm 1 is connected to the robot chuck 3 via an air pipe 32. The air compressor 31 supplies air at a predetermined pressure, and the air pipe 32 is provided with a pressure switch 33 for detecting the air pressure in the flow path.
  • the articulated robot arm 1 is provided with a control device 8 for performing drive control of each drive including the robot chuck 3.
  • the pressure switch 33 is connected to the controller 8 via the signal cable 35.
  • the robot chuck 3 is configured with a workpiece posture determination unit for determining the posture of the workpiece at the time of clamping by air.
  • the robot chuck 3 has chuck claws 22 at equal intervals as shown in FIG. 3, and three work posture determination units 36 are provided at equal intervals so as to be positioned therebetween.
  • the robot body 25 is formed with a single air supply passage 37 communicating with all three work posture determination units 36, and an air pipe 32 is connected thereto to form a series of air passages.
  • the work posture determination unit 36 is provided on both sides of the first clamp surface and the second clamp surface, and as shown in FIG. 2, a pusher 41 in contact with the work is protruded from the surface side.
  • a 1st clamp surface and a 2nd clamp surface are comprised similarly, below, it is demonstrated as the clamp surface 251, without distinguishing.
  • FIG. 4 is a cross-sectional perspective view of the robot main body 25, and FIG. 5 is a cross-sectional portion of the work posture determination unit 36.
  • the work posture determination unit 36 has three assembly holes 42 in a direction orthogonal to the clamp surface 251 with respect to the robot body 25, and one air supply flow path 37 is connected to all of the assembly holes 42.
  • Pushers 41 are inserted into the three assembly holes 42 respectively.
  • the pusher 41 has a flange portion 412 formed on the open end side of the bottomed cylindrical main body portion 411, and the closed tip end side protrudes from the robot main body 25 and the tip surface in contact with the workpiece W is spherical It has become.
  • the mounting hole 42 has a square shape as shown in FIG. 3, and a flange portion 412 which spreads in three directions is loosely fitted therein.
  • the flange portion 412 is for restraining the pusher 41 in the assembly hole 42 so that the cylindrical main body portion 411 is not displaced in the circumferential direction.
  • the flange portion 412 also plays a function to prevent the pusher 41 from falling off by being caught by the lid member 43.
  • a guide hole 431 is bored in the central portion of the lid member 43, and the pusher 41 penetrates the guide hole 431 in a slidable state. Therefore, the pusher 41 can move in the direction along the center line 40 while maintaining its posture without rotating in the circumferential direction.
  • a spring 45 is inserted into the space 46 in the assembly hole 42, in particular, in the pusher. Therefore, the pusher 41 is always biased by the spring 45 in the direction in which the end of the main body 411 protrudes from the assembly hole 42.
  • the air supply channel 37 shown in FIG. 3 is not shown in detail in FIGS. 4 and 5, the air fed into the air supply channel 37 is particularly a pusher in the assembly hole 42 as shown by the arrow. It will be blown into the inner space 46. Therefore, the pusher 41 is shown pressed into the assembly hole 42 by the work W in FIG. 5, and the tip of the main body 411 protrudes up to the position indicated by the alternate long and short dash line under normal conditions.
  • FIG. 6 is an external side view showing the pusher 41.
  • the pusher 41 has a lateral hole 415 formed on the side surface of the main body 411 for drawing out the air of the inner space 46 of the pusher.
  • An oblong leak recess 416 is formed on the side surface of the main body 411 of the pusher 41 so that the longitudinal direction thereof is along the center line 40 of the pusher 41.
  • the lateral hole 415 is formed to be located on the flange portion 412 side in the leakage recess 416. Therefore, as shown in FIG. 5, the portion of the recess for leakage 416 is lower than the other side portion, and the recess for leakage 416 forms a gap with the inner circumferential surface of the guide hole 431.
  • a leak hole 432 is bored in the lid member 43 in the direction orthogonal to the guide hole 431.
  • the pusher 41 is assembled such that the displacement in the circumferential direction is restrained by the shapes of the flange portion 412 and the assembling hole 42, and the leakage recess 416 is aligned with the position of the leakage hole 432. Therefore, when the pusher 41 moves in the assembly hole 42 along the center line 40, the leak recess 416 always passes through a position overlapping the leak hole 432.
  • the articulated robot arm 1 moves the robot chuck 3 at the tip to a predetermined position by the expansion and contraction operation of the upper arm member 12 and the forearm member 13 by driving the first joint mechanism 14 and the second joint mechanism 15. .
  • the robot chuck 3 adjusts the angle of the clamp surface 251 of the robot body 25 via the bearing member 26.
  • the chuck claws 22 are actuated by the supply and discharge of the hydraulic oil, and the work W is clamped or unclamped.
  • the robot chuck 3 for clamping the workpiece W moves with the clamping surface 251 side maintaining a predetermined angle, and the tip of the pusher 41 is pressed against the workpiece W as shown in FIG.
  • the pusher 41 pressed against the work W enters the assembly hole 42, the pusher 41 in the normal time is always subjected to the biasing force of the spring 45 and protrudes to the position shown by the dashed dotted line in FIG. ing.
  • the leakage concave portion 416 and the leakage hole 432 are in an overlapping positional relationship as indicated by a one-dot chain line in FIG.
  • the air is always fed into the work posture determination unit 36, but the air blown into the space 46 in the pusher normally leaks from the lateral hole 415 in the normal state where the leakage concave portion 416 and the leakage hole 432 overlap. It is released to the atmosphere.
  • the pressure of air being sent to the robot chuck 3 is detected by the pressure switch 33 of the air pipe 32.
  • the pressure switch 22 normally detects a value lower than a predetermined threshold.
  • the pusher 41 against which the work W is pressed is pushed into the operation hole 42 against the biasing force of the spring 45 and moves to the position shown in FIG. It becomes. That is, as shown in FIG. 5 and FIG. 6, the recess for leakage 416 deviates from the position of the leakage hole 432, and the space 46 inside the pusher is shut off from the atmosphere.
  • the clamp surface 251 of the robot chuck 3 is inclined with respect to the workpiece W, a state may occur in which any one of the pushers 41 is not pushed into the home position. Therefore, air is continuously released to the atmosphere in the corresponding work posture determination unit 36, and the pressure in the air piping 32 remains low. In such a case, even if the workpiece W can be clamped, the workpiece W can not be properly delivered to the mating chuck, and the workpiece W in the process of being transported may collide with the inside of the machine tool. It can occur. Therefore, in the present embodiment, when a detection signal is not received from the pressure switch 33 when the clamp state of the work W is detected, the control device 8 determines that a clamp error occurs, and the work W is removed from the processing line. It will be beaten.
  • the work posture determination mechanism of the present embodiment air is sent from the outside to the robot chuck 3 like the hydraulic oil, and the posture of the work W can be determined by detecting the air pressure. Therefore, the rotational movement of the robot main body 25 is not restricted without the signal cable being drawn around the robot chuck 3. Moreover, since the air pressure change accompanying the mechanical operation of the pusher 41 is detected outside and the posture determination is performed based on it, the work posture determination mechanism is used even for the robot chuck 3 used in the machine tool. Very unlikely to be affected by chips and coolant.
  • the work posture determination unit 36 since the work posture determination unit 36 has a compact configuration, it is suitable for a small-sized robot chuck 3 or the like used for the articulated robot 1. Furthermore, in the present embodiment, by sending air to one air supply flow path 37 communicating with the three work posture determination units 36, the posture of the work W is not even at one position if the push-in position of the pusher 41 is not appropriate. It can be confirmed that it is not correct. Therefore, the work posture determination mechanism can be configured simply to detect the internal pressure of the air pipe 32 by the pressure switch 33.
  • a recess for leakage 416 is formed so as to overlap the lateral hole 415. Accordingly, when the leakage recess 416 and the leakage hole 432 overlap, the air passes from the lateral hole 415 to the leakage hole 432 and is released to the atmosphere. Since the leak recess 416 is formed relatively large, as shown in FIG. 5, when the pusher 41 is pushed deep into the assembly hole 42, the release of air is blocked. That is, the robot chuck 3 holds the workpiece W deeply by the chuck claws 22.
  • FIG. 7 is an external perspective view showing the pusher 41
  • FIG. 8 is an external side view showing the pusher 41.
  • the pusher 41 is formed with the flange portion 412 which is expanded in three directions, and has a hexagonal shape in which the small side surface 412 a and the large side surface 412 b are alternately and uniformly arranged in the circumferential direction. And, according to the position of the one major side 412b, the horizontal hole 415 and the recess for leakage 416 are formed.
  • lateral holes 415 are also formed on the other two large side surfaces 412b, and different leak concave portions 417 and 418 are formed in each of them.
  • leak recessed parts 416 and 417 are shown in FIG. 7, both have an oval shape having different lengths in the direction along the center line 40.
  • the three lateral holes 415 formed in the pusher 41 have the same position in the direction of the center line 40 and are formed at equal intervals in the circumferential direction of the main body 411. Further, the leakage recesses 416, 417, 418 formed in the respective horizontal holes 415 are different in size as shown in FIG. In FIG.
  • the concave portions for leakage 417 and 418 are shown by being superimposed by dashed dotted lines at the position of the concave portion for leakage 416.
  • the difference in the size of the leakage recesses 416, 417, 418 is the difference in the distance to the leakage hole 432.
  • the pusher 41 can incorporate three patterns in which the direction of the flange 412 is changed in the square-shaped assembling hole 42. That is, any one of the leakage recesses 416, 417 and 418 can be matched with the leakage hole 432 of the lid member 43 as desired. Therefore, as shown in FIG. 8, the pusher 41 having the tip at the position indicated by the alternate long and short dash line in normal times is pushed and displaced in the direction indicated by the arrow when the robot chuck 3 grasps the work W. At this time, in the case of the smallest leak recess 418, the lateral hole 415 is shut off with the leak hole 432 with a slight displacement. Then, the lateral recess 415 is blocked between the leak recess 418 and the leak hole 432 with a larger displacement, and in the case of the leak recess 416, the pusher 41 is displaced the most before the cutoff.
  • the displacement amount of the pusher 41 that is, the gripping depth of the work W by the chuck claws 22. Since the depth at which the workpiece W is gripped is controlled in advance by the drive control of the articulated robot arm 1, teaching is performed in advance, but, for example, input of a numerical value obtained based on a detection signal of the pressure switch 33 is performed.
  • the present invention can be practiced with robot chucks having other structures.
  • the work posture determination unit 36 is provided at three locations of the robot main body 25. However, depending on the case, two locations or four locations may be used.
  • the pusher 41 of the embodiment has a circular cross section of the main body 411, it may be a square fitted to the shape of the assembly hole 42.

Abstract

A workpiece-attitude-discernment mechanism for a robot chuck, said mechanism discerning the attitude of a workpiece held by the robot chuck, and comprising: multiple assembly holes provided in a chuck part of a robot chuck that holds a workpiece via multiple chuck jaws; an airflow passage that supplies air to the assembly holes; multiple pushers that are respectively and independently inserted into the assembly holes such that the pushers are capable of moving in the pressing direction of the workpiece, and that are independently switched, according to the extent of the pressing by the workpiece, between a state in which the air is released to the atmosphere, and a state in which the air is isolated from the atmosphere; and an air-pressure-detection unit that detects the pressure of the air within the airflow passage.

Description

ロボットチャックのワーク姿勢判別機構Work posture determination mechanism of robot chuck
 本発明は、ワークの姿勢に関する把持状態を検出することが可能なロボットチャックのワーク姿勢判別機構に関する。 The present invention relates to a work posture determination mechanism of a robot chuck capable of detecting a gripping state regarding a posture of a work.
 例えば、複数の工作機械によりワークの加工を行う場合、工作機械との間でワークの受渡しを自動で行うため、ワーク搬送を行うオートローダが使用される。工作機械やオートローダにはチャックが設けられており、互いのチャックにおける掴み替えによってワークの受渡しが行われる。下記特許文献1には、ローダチャックで把持したワークの傾きを検出するワーク傾き検出機能付きローダが開示されている。ワークの姿勢に傾きが生じていると加工不良が生じてしまうため、加工前にワークの傾きを検出できるようにしたものである。 For example, when processing a work by a plurality of machine tools, an automatic loader for carrying the work is used in order to automatically transfer the work with the machine tool. A chuck is provided in a machine tool or an autoloader, and the work is delivered by gripping the other chucks. Patent Document 1 below discloses a loader with a workpiece inclination detection function that detects the inclination of a workpiece held by a loader chuck. If an inclination occurs in the posture of the workpiece, machining defects occur. Therefore, the inclination of the workpiece can be detected before machining.
 同文献に記載のローダは、把持したワークに傾きが生じている場合、着座したワークが接するプッシャプレートにも傾きが生じ、その傾きが検出器によって検出できるようになっている。そのための検出構造は、プッシャプレートに対して先端が接するように付勢された複数のプッシャが設けられ、その付勢方向に移動可能な当該複数のプッシャに関する位置測定により、ワーク端面の傾きが検出できるようになっている。具体的には、変位センサの検出信号が信号ケーブルを介してコンピュータ等へ送信され、その検出値比較手段によってプッシャプレートの傾き、すなわちローダチャックに把持されたワークの傾き検出が行われる。 In the loader described in the same document, when the held workpiece is inclined, the pusher plate in contact with the seated work also has an inclination, and the inclination can be detected by the detector. A detection structure for that purpose is provided with a plurality of pushers biased so that the tip contacts the pusher plate, and the inclination of the work end surface is detected by measuring the position of the plurality of pushers movable in the biasing direction. It can be done. Specifically, the detection signal of the displacement sensor is transmitted to a computer or the like through the signal cable, and the detection value comparison means detects the inclination of the pusher plate, that is, the inclination of the workpiece held by the loader chuck.
国際公開WO2013/031375号公報International Publication WO2013 / 031375
 ワークの傾き検出機能を備えたローダチャックは、工作機械の加工室に入ってワークの受渡しを行うことになるが、その受渡しが実行される加工室内はワークの切屑やクーラントが飛び散っているような環境である。そのため、従来のローダチャックは、ワークを把持する作業部付近に変位センサが設けられているので、加工室内において変位センサに切屑などが付着する可能性がある。つまり、従来の構造では、変位センサによる正確な検出が妨げられることが考えられる。また、前述したローダチャックは、工作機械の上方に設置されたガントリ式の駆動機構に設けられたものであり、左右方向、前後方向及び上下方向に移動可能なローダヘッドに対し2台取り付けられている。そして、2台のローダチャックが、それぞれ180°の回転が可能となっている。すなわち、変位センサの信号ケーブルを通した従来の傾き検出機構では、ローダチャックの回転が信号ケーブルによって制限されてしまう。 The loader chuck equipped with the work inclination detection function enters the processing room of the machine tool and delivers the work, but chips and coolant of the work are scattered in the processing room where the delivery is performed. It is an environment. Therefore, in the conventional loader chuck, since the displacement sensor is provided in the vicinity of the working unit for gripping the workpiece, chips and the like may be attached to the displacement sensor in the processing chamber. That is, in the conventional structure, it is conceivable that accurate detection by the displacement sensor is hindered. Further, the above-described loader chucks are provided in a gantry type drive mechanism installed above the machine tool, and two units are attached to the loader heads movable in the left-right direction, the front-rear direction and the up-down direction There is. The two loader chucks are each capable of rotating 180 °. That is, in the conventional tilt detection mechanism through the signal cable of the displacement sensor, the rotation of the loader chuck is limited by the signal cable.
 そこで、本発明は、かかる課題を解決すべく、ロボットチャックにより把持したワークの姿勢を判別するロボットチャックのワーク姿勢判別機構を提供することを目的とする。 Then, this invention aims at providing the workpiece | work attitude | position discrimination | determination mechanism of the robot chuck | zipper which discriminate | determines the attitude | position of the workpiece | work gripped by the robot chuck | zipper in order to solve this subject.
 本発明の一態様におけるロボットチャックのワーク姿勢判別機構は、複数のチャック爪によりワークを把持するロボットチャックのチャック部に設けられた複数の組み付け穴と、前記複数の組み付け穴にエアを供給するエア流路と、各々独立して、前記ワークによる押し当て方向に移動可能な状態で前記複数の組み付け穴に挿入され、前記ワークの押し当て量により、前記エアの大気への放出状態と遮断状態に切り替えられる複数のプッシャと、前記エア流路内の前記エアの圧力を検出するエア圧検出器とで構成されたものである。 The work posture determination mechanism for a robot chuck according to one aspect of the present invention includes a plurality of assembly holes provided in a chuck portion of the robot chuck that holds a workpiece with a plurality of chuck claws, and air for supplying air to the plurality of assembly holes. A flow path and each independently inserted in the plurality of assembly holes in a movable state in the pressing direction by the work, and depending on the pressing amount of the work, the air is released to the atmosphere and blocked. A plurality of pushers to be switched and an air pressure detector for detecting the pressure of the air in the air flow path are included.
 前記構成によれば、複数のプッシャが挿入されたロボットチャックの組み付け穴に、エア流路を介してエアが送り込まれる。そのような状態でワークがロボットチャックの複数のチャック爪によって把持されるが、その際、ワークによってプッシャが押されて変位し、組み付け穴内に送り込まれたエアの大気への放出と遮断とが切り換えられる。そのため、エア流路内のエアの圧力が変化し、それをエア圧検出器が検出することにより、ロボットチャックにより把持したワークの姿勢を判別することができる。 According to the above configuration, air is fed to the assembly hole of the robot chuck into which the plurality of pushers are inserted, via the air flow path. In such a state, the work is gripped by the plurality of chuck claws of the robot chuck. At this time, the pusher is pushed and displaced by the work, and the release of air sent into the assembly hole to the atmosphere and the shut off are switched. Be Therefore, the pressure of the air in the air flow path changes, and the air pressure detector detects it, whereby the posture of the workpiece held by the robot chuck can be determined.
多関節ロボットアームを示した側面図である。It is a side view showing an articulated robot arm. ロボットチャックを示した外観斜視図である。It is an external appearance perspective view showing a robot chuck. ワーク姿勢判別機構を示した簡略図である。It is the simplification figure which showed the work posture distinction mechanism. ロボット本体の断面斜視図である。It is a cross-sectional perspective view of a robot body. ワーク姿勢判別部の断面部である。It is a cross section of the work posture determination unit. プッシャを示した外観側面図である。It is an external appearance side view showing a pusher. プッシャを示した外観斜視図である。It is an appearance perspective view showing a pusher. プッシャを示した外観側面図である。It is an external appearance side view showing a pusher.
 次に、本発明に係るロボットチャックのワーク姿勢判別機構に関する一実施形態を、図面を参照しながら以下に説明する。図1は、多関節ロボットアームを示した側面図である。本実施形態では、この多関節ロボットアームに組み込まれたロボットチャックのワーク姿勢判別機構を例に挙げて説明する。そこで、先ず多関節ロボットアームについて簡単に説明する。この多関節ロボットアーム1は、複数の工作機械が並べられた加工機械ラインに設けられ、各工作機械との間でワークの受渡しを自動で行うためのオートローダを構成するものである。そのため、多関節ロボットアーム1は、走行台2の上に旋回機構を介して搭載され、図面を貫く方向に移動が可能な構成になっている。 Next, an embodiment of a work posture determination mechanism for a robot chuck according to the present invention will be described below with reference to the drawings. FIG. 1 is a side view showing an articulated robot arm. In the present embodiment, the workpiece posture determination mechanism of the robot chuck incorporated in the articulated robot arm will be described as an example. Therefore, first, the articulated robot arm will be briefly described. The articulated robot arm 1 is provided in a processing machine line in which a plurality of machine tools are arranged, and constitutes an autoloader for automatically delivering and receiving a work with each machine tool. Therefore, the articulated robot arm 1 is mounted on the carriage 2 via the turning mechanism, and is configured to be movable in the direction through the drawing.
 多関節ロボットアーム1は、旋回可能な支持台11に対し、上腕部材12が第1関節機構14を介して連結され、更に上腕部材12に対しては、前腕部材13が第2関節機構15を介して連結されている。多関節ロボットアーム1は、工作機械の間を移動する走行時には、上腕部材12と前腕部材13とが図示するように起立した状態で重なり合っている。一方、工作機械との間でワークの受渡しを行う作業時には、上腕部材12および前腕部材13が第1関節機構14や第2関節機構15によって回動し、図面右側を前にして工作機側へ伸びるようにした動作が行われる。 In the articulated robot arm 1, the upper arm member 12 is connected to the pivotable support 11 via the first joint mechanism 14, and the forearm member 13 further connects the second joint mechanism 15 to the upper arm member 12. It is linked through. When traveling between machine tools, the articulated robot arm 1 overlaps the upper arm member 12 and the forearm member 13 in a standing state as illustrated. On the other hand, when transferring work with the machine tool, the upper arm member 12 and the forearm member 13 are rotated by the first joint mechanism 14 and the second joint mechanism 15, and the right side of the drawing faces the front of the machine tool An extended operation is performed.
 多関節ロボットアーム1の先端部つまり前腕部材13の端部には、ワークを把持することが可能なロボットチャック3が組み付けられている。また、多関節ロボットアーム1には、後方側にワークの向きを変えるための反転装置4が設けられており、ロボットチャック3と反転装置4との間でワークの受渡しができるようになっている。その反転装置4では、180°反転させたワークをロボットチャック3に受渡しすることができる。ロボットチャック3は、工作機械の主軸チャックや反転装置4との間でワークの受渡しを行うため、前腕部材13に対し図面を貫く方向の回転軸をもって組み付けられている。 A robot chuck 3 capable of gripping a workpiece is attached to the end of the articulated robot arm 1, that is, the end of the forearm member 13. In addition, the articulated robot arm 1 is provided with a reversing device 4 for changing the direction of the workpiece on the rear side, so that the workpiece can be delivered between the robot chuck 3 and the reversing device 4 . In the reversing device 4, the workpiece which has been reversed by 180 ° can be delivered to the robot chuck 3. The robot chuck 3 is assembled to the forearm member 13 with a rotation axis in a direction passing through the drawing in order to deliver and receive a work between the spindle chuck of the machine tool and the reversing device 4.
 図2は、ロボットチャック3を示した外観斜視図である。ロボットチャック3は、そのロボット本体25に、図面表側の第1クランプ面とその裏側の第2クランプ面とを有し、両側の面でそれぞれワークを把持することが可能になっている。すなわち両側のクランプ面には放射状に配置された3つのチャックスライド21が設けられ、そのチャックスライド21にチャック爪22(図3参照)が取り付けられている。3本のチャック爪22は120°の間隔で配置され、径方向に同期して往復直線運動するよう構成されている。従って、チャック爪22が中心方向に移動することによりワークのクランプが可能になり、反対に外側へ移動することによりワークをアンプランプすることになる。 FIG. 2 is an external perspective view showing the robot chuck 3. The robot chuck 3 has a first clamp surface on the front side of the drawing and a second clamp surface on the back side of the robot main body 25 so that the workpiece can be gripped on both sides. That is, three chuck slides 21 arranged radially are provided on the clamp surfaces on both sides, and chuck claws 22 (see FIG. 3) are attached to the chuck slides 21. The three chuck claws 22 are disposed at an interval of 120 °, and are configured to reciprocate linearly in synchronization in the radial direction. Accordingly, movement of the chuck jaws 22 toward the center enables clamping of the work, and movement of the chuck claws 22 outward causes amplification of the work.
 ロボットチャック3は、ロボット本体25を挟むように同軸の軸受部材26が一体に構成されている。その軸受部材26を介して多関節ロボットアーム1の前腕部材13に対し回転可能に組み付けられている。多関節ロボットアーム1側には駆動モータが取り付けられており、その回転軸とロボットチャック3側のプーリ27との間にベルトが掛け渡される。従って、駆動モータに対する駆動制御により、工作機械などとのワークの受渡しに際して、ロボットチャック3の第1クランプ面または第2クランプ面の角度調整が可能になっている。 The robot chuck 3 is integrally configured with a coaxial bearing member 26 so as to sandwich the robot body 25. It is rotatably assembled to the forearm member 13 of the articulated robot arm 1 via the bearing member 26. A drive motor is attached to the articulated robot arm 1 side, and a belt is stretched between the rotary shaft and the pulley 27 on the robot chuck 3 side. Therefore, the drive control for the drive motor makes it possible to adjust the angle of the first clamp surface or the second clamp surface of the robot chuck 3 when transferring a work with a machine tool or the like.
 ロボットチャック3には、そのロボット本体25内に、ワークのクランプとアンクランプを実行するため、チャックスライド21を作動させるクランプ機構が構成されている。特に、このクランプ機構は油圧によって作動させるものであり、多関節ロボットアーム1の外部に設置された油圧ポンプやタンクとの間で作動油の供給や排出が行われるように構成されている。そこで、ロボットチャック3には、軸受部材26内部にチャックスライド21の作動をコントロールする油圧回路が構成されている。ロボットチャック3は、こうして流体である作動油が外部との間を流れているが、その他にも次に説明するワーク姿勢判別機構のためのエアも送り込まれるようにエア流路が構成されている。 The robot chuck 3 has a clamp mechanism configured to operate the chuck slide 21 in the robot body 25 in order to clamp and unclamp a workpiece. In particular, this clamp mechanism is operated by hydraulic pressure, and is configured to supply and discharge hydraulic oil with a hydraulic pump and a tank installed outside the articulated robot arm 1. Therefore, in the robot chuck 3, a hydraulic circuit that controls the operation of the chuck slide 21 is configured inside the bearing member 26. The robot chuck 3 is thus configured such that the hydraulic fluid, which is fluid, flows between the robot chuck 3 and the outside, but in addition, air for the work posture determination mechanism described below is also fed. .
 図3は、ワーク姿勢判別機構を示した簡略図である。図面には、ロボットチャック3のロボット本体25部分だけが示されている。このロボット本体25には、作動油と同様に軸受部材26を介してエアが供給できるようにエア流路が形成されている。ロボットチャック3には、エア配管32を介して多関節ロボットアーム1の外部に設置されたエアコンプレッサ31が接続されている。エアコンプレッサ31からは所定圧のエアが供給され、エア配管32には、流路内のエア圧を検出する圧力スイッチ33が設けられている。多関節ロボットアーム1には、ロボットチャック3を含む各駆動の駆動制御を行うための制御装置8が設けられている。圧力スイッチ33は、その制御装置8に対して信号ケーブル35を介して接続されている。 FIG. 3 is a simplified view showing a work posture determination mechanism. Only the robot body 25 of the robot chuck 3 is shown in the drawing. An air flow path is formed in the robot body 25 so that air can be supplied through the bearing member 26 in the same manner as the hydraulic oil. An air compressor 31 installed outside the articulated robot arm 1 is connected to the robot chuck 3 via an air pipe 32. The air compressor 31 supplies air at a predetermined pressure, and the air pipe 32 is provided with a pressure switch 33 for detecting the air pressure in the flow path. The articulated robot arm 1 is provided with a control device 8 for performing drive control of each drive including the robot chuck 3. The pressure switch 33 is connected to the controller 8 via the signal cable 35.
 ロボットチャック3は、エアによってクランプ時のワークの姿勢を判断するためのワーク姿勢判別部が構成されている。ロボットチャック3は、図3に示すように等間隔にチャック爪22があり、その間に位置するようにして3つのワーク姿勢判別部36が等間隔に設けられている。ロボット本体25には、3つのワーク姿勢判別部36の全てに連通する1本のエア供給流路37が形成され、そこにエア配管32が接続されて一連のエア流路が構成されている。ワーク姿勢判別部36は、第1クランプ面と第2クランプ面の両面に設けられ、図2に示すように表面側にワークに接するプッシャ41が突設されている。なお、第1クランプ面と第2クランプ面は同じように構成されているため、以下においては区別することなくクランプ面251として説明する。 The robot chuck 3 is configured with a workpiece posture determination unit for determining the posture of the workpiece at the time of clamping by air. The robot chuck 3 has chuck claws 22 at equal intervals as shown in FIG. 3, and three work posture determination units 36 are provided at equal intervals so as to be positioned therebetween. The robot body 25 is formed with a single air supply passage 37 communicating with all three work posture determination units 36, and an air pipe 32 is connected thereto to form a series of air passages. The work posture determination unit 36 is provided on both sides of the first clamp surface and the second clamp surface, and as shown in FIG. 2, a pusher 41 in contact with the work is protruded from the surface side. In addition, since a 1st clamp surface and a 2nd clamp surface are comprised similarly, below, it is demonstrated as the clamp surface 251, without distinguishing.
 ここで、図4は、ロボット本体25の断面斜視図であり、更に図5は、ワーク姿勢判別部36の断面部である。ワーク姿勢判別部36は、ロボット本体25に対してクランプ面251に直交する方向の組み付け穴42が3箇所に形成され、その全てに1本のエア供給流路37が繋がっている。3つの組み付け穴42には、各々にプッシャ41が挿入されている。そのプッシャ41は、有底円筒形状の本体部411に対し、開放端側にフランジ部412が形成されたものであり、閉じた先端部側がロボット本体25から突き出し、ワークWと接する先端面が球面になっている。 Here, FIG. 4 is a cross-sectional perspective view of the robot main body 25, and FIG. 5 is a cross-sectional portion of the work posture determination unit 36. The work posture determination unit 36 has three assembly holes 42 in a direction orthogonal to the clamp surface 251 with respect to the robot body 25, and one air supply flow path 37 is connected to all of the assembly holes 42. Pushers 41 are inserted into the three assembly holes 42 respectively. The pusher 41 has a flange portion 412 formed on the open end side of the bottomed cylindrical main body portion 411, and the closed tip end side protrudes from the robot main body 25 and the tip surface in contact with the workpiece W is spherical It has become.
 組み付け穴42は、図3に示すように四角い形状をしており、そこに3方に広がったフランジ部412が遊嵌されている。フランジ部412は、円筒形状の本体部411が円周方向に位置ずれしないように、組み付け穴42の中でプッシャ41を拘束するためのものである。また、組み付け穴42には蓋部材43が取り付けられているが、フランジ部412は、その蓋部材43に引っ掛かり、プッシャ41が抜け落ちないための機能も果たしている。蓋部材43には中央部にガイド孔431が穿設され、プッシャ41は、そのガイド孔431の中を摺動可能な状態で貫通している。従って、プッシャ41は、円周方向に回転することなく姿勢を保ったまま中心線40に沿った方向の移動が可能になっている。 The mounting hole 42 has a square shape as shown in FIG. 3, and a flange portion 412 which spreads in three directions is loosely fitted therein. The flange portion 412 is for restraining the pusher 41 in the assembly hole 42 so that the cylindrical main body portion 411 is not displaced in the circumferential direction. Further, although the lid member 43 is attached to the assembly hole 42, the flange portion 412 also plays a function to prevent the pusher 41 from falling off by being caught by the lid member 43. A guide hole 431 is bored in the central portion of the lid member 43, and the pusher 41 penetrates the guide hole 431 in a slidable state. Therefore, the pusher 41 can move in the direction along the center line 40 while maintaining its posture without rotating in the circumferential direction.
 ワーク姿勢判別部36では、組み付け穴42内の特にプッシャ内空間46にスプリング45が入れられている。そのため、プッシャ41は、組み付け穴42内から本体部411の先端部が突き出した方向に向けて常にスプリング45によって付勢されている。また、図4及び図5では、図3に示すエア供給流路37が詳しく示されていないが、エア供給流路37に送り込まれたエアは、矢印で示すように組み付け穴42内の特にプッシャ内空間46に吹き込まれることとなる。そのため、プッシャ41は、図5ではワークWに押え付けられて組み付け穴42内に入り込んだ状態が示されている、通常時には一点鎖線で示す位置まで本体部411の先端部が飛び出している。 In the work posture determination unit 36, a spring 45 is inserted into the space 46 in the assembly hole 42, in particular, in the pusher. Therefore, the pusher 41 is always biased by the spring 45 in the direction in which the end of the main body 411 protrudes from the assembly hole 42. Further, although the air supply channel 37 shown in FIG. 3 is not shown in detail in FIGS. 4 and 5, the air fed into the air supply channel 37 is particularly a pusher in the assembly hole 42 as shown by the arrow. It will be blown into the inner space 46. Therefore, the pusher 41 is shown pressed into the assembly hole 42 by the work W in FIG. 5, and the tip of the main body 411 protrudes up to the position indicated by the alternate long and short dash line under normal conditions.
 図6は、プッシャ41を示した外観側面図である。プッシャ41は、プッシャ内空間46のエアを外に出すための横孔415が本体部411の側面に形成されている。また、プッシャ41の本体部411側面には、長円形状のリーク用凹部416が、その長手方向をプッシャ41の中心線40に沿うようにして形成されている。横孔415は、リーク用凹部416内のフランジ部412側に位置するように形成されている。従って、図5に示すように、リーク用凹部416の部分が他の側面部分よりも低くなり、そのリーク用凹部416が、ガイド孔431の内周面との間に隙間をつくっている。 FIG. 6 is an external side view showing the pusher 41. As shown in FIG. The pusher 41 has a lateral hole 415 formed on the side surface of the main body 411 for drawing out the air of the inner space 46 of the pusher. An oblong leak recess 416 is formed on the side surface of the main body 411 of the pusher 41 so that the longitudinal direction thereof is along the center line 40 of the pusher 41. The lateral hole 415 is formed to be located on the flange portion 412 side in the leakage recess 416. Therefore, as shown in FIG. 5, the portion of the recess for leakage 416 is lower than the other side portion, and the recess for leakage 416 forms a gap with the inner circumferential surface of the guide hole 431.
 蓋部材43には、ガイド孔431に直交する方向にリーク孔432が穿設されている。プッシャ41は、円周方向のずれがフランジ部412と組み付け穴42との形状によって拘束され、リーク用凹部416がリーク孔432の位置と揃うようにして組み付けられている。従って、プッシャ41が中心線40に沿って組み付け穴42内を移動する場合には、リーク用凹部416がリーク孔432と重なる位置を必ず通るようになっている。 A leak hole 432 is bored in the lid member 43 in the direction orthogonal to the guide hole 431. The pusher 41 is assembled such that the displacement in the circumferential direction is restrained by the shapes of the flange portion 412 and the assembling hole 42, and the leakage recess 416 is aligned with the position of the leakage hole 432. Therefore, when the pusher 41 moves in the assembly hole 42 along the center line 40, the leak recess 416 always passes through a position overlapping the leak hole 432.
 続いて、ロボットチャック3のワーク姿勢判別機構について作用を説明する。まず、多関節ロボットアーム1は、第1関節機構14や第2関節機構15の駆動により、上腕部材12および前腕部材13の伸び縮み動作により先端部のロボットチャック3を所定の位置へと移動させる。そして、ロボットチャック3は、軸受部材26を介してロボット本体25のクランプ面251の角度調整が行われる。ワークWと対面したロボットチャック3は、作動油の給排によりチャック爪22が作動し、ワークWのクランプ或いはアンクランプが行われる。ワークWをクランプするロボットチャック3は、クランプ面251側が所定の角度を保って移動し、図5に示すようにワークWに対してプッシャ41の先端が押し当てられる。 Subsequently, the operation of the workpiece posture determination mechanism of the robot chuck 3 will be described. First, the articulated robot arm 1 moves the robot chuck 3 at the tip to a predetermined position by the expansion and contraction operation of the upper arm member 12 and the forearm member 13 by driving the first joint mechanism 14 and the second joint mechanism 15. . The robot chuck 3 adjusts the angle of the clamp surface 251 of the robot body 25 via the bearing member 26. In the robot chuck 3 facing the work W, the chuck claws 22 are actuated by the supply and discharge of the hydraulic oil, and the work W is clamped or unclamped. The robot chuck 3 for clamping the workpiece W moves with the clamping surface 251 side maintaining a predetermined angle, and the tip of the pusher 41 is pressed against the workpiece W as shown in FIG.
 従って、ワークWに押え付けられたプッシャ41は組み付け穴42内に入り込むが、そうではない通常時のプッシャ41は、常時スプリング45の付勢力を受け、図5の一点鎖線で示す位置にまで突き出している。その場合、リーク用凹部416とリーク孔432は、図6において一点鎖線で示すように、重なった位置関係にある。ワーク姿勢判別部36には常にエアが送り込まれているが、リーク用凹部416とリーク孔432とが重なっている通常時は、プッシャ内空間46に吹き込まれたエアが横孔415からリーク孔432へと抜けて大気へと放出される。 Therefore, although the pusher 41 pressed against the work W enters the assembly hole 42, the pusher 41 in the normal time is always subjected to the biasing force of the spring 45 and protrudes to the position shown by the dashed dotted line in FIG. ing. In that case, the leakage concave portion 416 and the leakage hole 432 are in an overlapping positional relationship as indicated by a one-dot chain line in FIG. The air is always fed into the work posture determination unit 36, but the air blown into the space 46 in the pusher normally leaks from the lateral hole 415 in the normal state where the leakage concave portion 416 and the leakage hole 432 overlap. It is released to the atmosphere.
 ロボットチャック3へ送られているエアの圧力は、エア配管32の圧力スイッチ33により検出されている。ロボットチャック3がアンクランプ状態の場合には、送られたエアが大気へ放出されているため、その通常時には圧力スイッチ22から所定の閾値よりも低い値が検出される。一方、ロボットチャック3によってワークWをクランプする時は、ワークWが押し当てられたプッシャ41がスプリング45の付勢力に抗して作動穴42内に押し込まれ、図5に示す位置まで移動することとなる。すなわち、図5や図6に示すように、リーク用凹部416がリーク孔432の位置から外れ、プッシャ内空間46が大気と遮断されることとなる。 The pressure of air being sent to the robot chuck 3 is detected by the pressure switch 33 of the air pipe 32. When the robot chuck 3 is in the unclamped state, the supplied air is discharged to the atmosphere, so the pressure switch 22 normally detects a value lower than a predetermined threshold. On the other hand, when clamping the work W by the robot chuck 3, the pusher 41 against which the work W is pressed is pushed into the operation hole 42 against the biasing force of the spring 45 and moves to the position shown in FIG. It becomes. That is, as shown in FIG. 5 and FIG. 6, the recess for leakage 416 deviates from the position of the leakage hole 432, and the space 46 inside the pusher is shut off from the atmosphere.
 このとき、クランプ面251にある3つのワーク姿勢判別部36に関して、全てのプッシャ内空間46がリーク孔432との間で遮断されたならば、コンプレッサ31からエア配管32に送り込まれたエアの流れがほぼ止められることとなる。従って、エア配管32内の圧力が所定の閾値を上回り、その状態を検出した圧力スイッチ33から制御装置8に検知信号が送信される。そして、検出信号を受信した制御装置8では、クランプ状態についても確認が行われ、適正な場合には次の駆動制御指示が行われる。しかし、3つのワーク姿勢判別部36のうち、1つでもプッシャ41が所定の位置まで押し込まれずにエアが大気へ放出されてしまえば、エア配管32内の圧力は所定の閾値よりも低い状態のままである。 At this time, with regard to the three work posture determination units 36 in the clamp surface 251, if all the pusher inner spaces 46 are shut off with the leak holes 432, the flow of air sent from the compressor 31 to the air piping 32. Will be almost stopped. Therefore, the pressure in the air piping 32 exceeds a predetermined threshold, and a detection signal is transmitted to the control device 8 from the pressure switch 33 which has detected the state. Then, in the control device 8 that has received the detection signal, the clamp state is also confirmed, and if appropriate, the next drive control instruction is issued. However, if at least one of the three work posture determination units 36 releases air to the atmosphere without the pusher 41 being pushed to a predetermined position, the pressure in the air pipe 32 is lower than a predetermined threshold value. It remains.
 例えば、ロボットチャック3のクランプ面251がワークWに対して傾いていれば、プッシャ41のいずれかが定位置まで押し込まれない状態が生じてしまう。そのため、該当するワーク姿勢判別部36においてエアが大気へ放出され続け、エア配管32内の圧力は低いままである。このような場合にワークWがクランプできたとしても、相手側チャックに対してワークWを正しく受渡しすることができず、また搬送途中のワークWを工作機械内部に衝突させてしまうなどの不具合が生じ得る。そのため、本実施形態では、ワークWのクランプ状態が検出された時点で、圧力スイッチ33から検知信号が受信されない場合には、制御装置8によってクランプエラーと判断され、当該ワークWが加工ラインから除かれることとなる。 For example, if the clamp surface 251 of the robot chuck 3 is inclined with respect to the workpiece W, a state may occur in which any one of the pushers 41 is not pushed into the home position. Therefore, air is continuously released to the atmosphere in the corresponding work posture determination unit 36, and the pressure in the air piping 32 remains low. In such a case, even if the workpiece W can be clamped, the workpiece W can not be properly delivered to the mating chuck, and the workpiece W in the process of being transported may collide with the inside of the machine tool. It can occur. Therefore, in the present embodiment, when a detection signal is not received from the pressure switch 33 when the clamp state of the work W is detected, the control device 8 determines that a clamp error occurs, and the work W is removed from the processing line. It will be beaten.
 よって、本実施形態のワーク姿勢判別機構では、ロボットチャック3に対して作動油と同様に外部からエアが送られ、そのエア圧を検出することによりワークWの姿勢を判別することができる。そのため、ロボットチャック3に対して信号ケーブルが引き回されることなく、ロボット本体25の回転動作が制限を受けることはない。また、プッシャ41の機械的動作に伴うエア圧変化を外部において検出し、それにより姿勢判断を行うものであるため、工作機械内で使用されるロボットチャック3であっても、ワーク姿勢判別機構が切屑やクーラントによる影響を受ける可能性は極めて低い。 Therefore, in the work posture determination mechanism of the present embodiment, air is sent from the outside to the robot chuck 3 like the hydraulic oil, and the posture of the work W can be determined by detecting the air pressure. Therefore, the rotational movement of the robot main body 25 is not restricted without the signal cable being drawn around the robot chuck 3. Moreover, since the air pressure change accompanying the mechanical operation of the pusher 41 is detected outside and the posture determination is performed based on it, the work posture determination mechanism is used even for the robot chuck 3 used in the machine tool. Very unlikely to be affected by chips and coolant.
 また、ワーク姿勢判別部36がコンパクトな構成であるため、多関節ロボット1に使用する小型のロボットチャック3などに適している。更に、本実施形態では、3つのワーク姿勢判別部36に連通する1本のエア供給流路37にエアを送ることにより、一箇所でもプッシャ41の押し込み位置が適切でなければワークWの姿勢が正しくないことが確認できる。よって、ワーク姿勢判別機構は、エア配管32の内圧を圧力スイッチ33で検出する簡単な構成にすることができる。 Further, since the work posture determination unit 36 has a compact configuration, it is suitable for a small-sized robot chuck 3 or the like used for the articulated robot 1. Furthermore, in the present embodiment, by sending air to one air supply flow path 37 communicating with the three work posture determination units 36, the posture of the work W is not even at one position if the push-in position of the pusher 41 is not appropriate. It can be confirmed that it is not correct. Therefore, the work posture determination mechanism can be configured simply to detect the internal pressure of the air pipe 32 by the pressure switch 33.
 ところで、プッシャ41には、横孔415に対してリーク用凹部416が重ねて形成されている。従って、リーク用凹部416とリーク孔432とが重なることにより、エアが横孔415からリーク孔432へと抜けて大気へと放出される。このリーク用凹部416は、比較的大きく形成されているため、図5に示すように、プッシャ41が組み付け穴42の深くにまで押し込まれることにより、エアの放出が遮断されることとなる。つまり、ロボットチャック3は、チャック爪22によってワークWを深く掴む掴み方となっている。 By the way, in the pusher 41, a recess for leakage 416 is formed so as to overlap the lateral hole 415. Accordingly, when the leakage recess 416 and the leakage hole 432 overlap, the air passes from the lateral hole 415 to the leakage hole 432 and is released to the atmosphere. Since the leak recess 416 is formed relatively large, as shown in FIG. 5, when the pusher 41 is pushed deep into the assembly hole 42, the release of air is blocked. That is, the robot chuck 3 holds the workpiece W deeply by the chuck claws 22.
 その一方で、ワークWをチャック爪22によって浅く掴む掴み方をする場合もある。ワーク姿勢判別部36では、プッシャ41の組み替えによりワークWの掴み方が調整できる構成となっている。ここで、図7は、プッシャ41を示した外観斜視図であり、図8は、プッシャ41を示した外観側面図である。プッシャ41は、前述したように3方に広がったフランジ部412が形成され、周方向に小側面412aと大側面412bとが交互にかつ均等に並んだ6角形をしている。そして、その一つの大側面412bの位置に合わせて横孔415とリーク用凹部416が形成されている。 On the other hand, the workpiece W may be gripped by the chuck claws 22 so as to be shallow. The work posture determination unit 36 is configured to be able to adjust how to grip the work W by replacing the pusher 41. Here, FIG. 7 is an external perspective view showing the pusher 41, and FIG. 8 is an external side view showing the pusher 41. As shown in FIG. As described above, the pusher 41 is formed with the flange portion 412 which is expanded in three directions, and has a hexagonal shape in which the small side surface 412 a and the large side surface 412 b are alternately and uniformly arranged in the circumferential direction. And, according to the position of the one major side 412b, the horizontal hole 415 and the recess for leakage 416 are formed.
 プッシャ41は、更に他の二箇所の大側面412bにも横穴415が形成され、それぞれに異なるリーク用凹部417,418が形成されている。図7には、リーク用凹部416,417が示されているが、両者は中心線40に沿った方向の長さが異なる長円形状である。プッシャ41に形成された3つの横穴415は、中心線40の方向の位置が全て同じであり、本体411の円周方向には等間隔に形成されている。そして、各々の横穴415に形成されたリーク用凹部416,417,418が、図8に示すように大きさが異なっている。図8では、リーク用凹部416の位置にリーク用凹部417,418を一点鎖線で重ねて示している。この図から分かるように、リーク用凹部416,417,418の大きさの違いはリーク孔432との距離の違いである。 In the pusher 41, lateral holes 415 are also formed on the other two large side surfaces 412b, and different leak concave portions 417 and 418 are formed in each of them. Although leak recessed parts 416 and 417 are shown in FIG. 7, both have an oval shape having different lengths in the direction along the center line 40. The three lateral holes 415 formed in the pusher 41 have the same position in the direction of the center line 40 and are formed at equal intervals in the circumferential direction of the main body 411. Further, the leakage recesses 416, 417, 418 formed in the respective horizontal holes 415 are different in size as shown in FIG. In FIG. 8, the concave portions for leakage 417 and 418 are shown by being superimposed by dashed dotted lines at the position of the concave portion for leakage 416. As can be seen from this figure, the difference in the size of the leakage recesses 416, 417, 418 is the difference in the distance to the leakage hole 432.
 プッシャ41は、四角い形状の組み付け穴42の中にフランジ412の向きを変えた3パターンの組み込みが可能である。すなわち、蓋部材43のリーク孔432に対して、リーク用凹部416,417,418の何れかを任意に合わせることができるようになっている。よって、図8に示すように、通常時には一点鎖線で示す位置に先端があるプッシャ41は、ロボットチャック3がワークWを掴む場合に矢印で示す方向に押されて変位する。このとき、最も小さいリーク用凹部418の場合には僅かな変位で横穴415がリーク孔432との間で遮断される。そして、次にリーク用凹部418がより大きな変位で横穴415がリーク孔432との間で遮断され、リーク用凹部416の場合が、遮断までに最も大きくプッシャ41が変位する。 The pusher 41 can incorporate three patterns in which the direction of the flange 412 is changed in the square-shaped assembling hole 42. That is, any one of the leakage recesses 416, 417 and 418 can be matched with the leakage hole 432 of the lid member 43 as desired. Therefore, as shown in FIG. 8, the pusher 41 having the tip at the position indicated by the alternate long and short dash line in normal times is pushed and displaced in the direction indicated by the arrow when the robot chuck 3 grasps the work W. At this time, in the case of the smallest leak recess 418, the lateral hole 415 is shut off with the leak hole 432 with a slight displacement. Then, the lateral recess 415 is blocked between the leak recess 418 and the leak hole 432 with a larger displacement, and in the case of the leak recess 416, the pusher 41 is displaced the most before the cutoff.
 従って、ワーク姿勢判別を検出するに当たって、プッシャ41の変位量つまりチャック爪22によるワークWの掴む深さを調節することができる。ワークWを掴む深さは多関節ロボットアーム1の駆動制御によるため予めティーチングが行われるが、例えば圧力スイッチ33の検出信号に基づいて求められる数値の入力が行われる。 Therefore, when detecting the work posture determination, it is possible to adjust the displacement amount of the pusher 41, that is, the gripping depth of the work W by the chuck claws 22. Since the depth at which the workpiece W is gripped is controlled in advance by the drive control of the articulated robot arm 1, teaching is performed in advance, but, for example, input of a numerical value obtained based on a detection signal of the pressure switch 33 is performed.
 以上、本発明の一実施形態について説明したが、本発明はこれらに限定されるものではなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 例えば、ロボットチャックは一例であるため、他の構造のロボットチャックに対しても本本発明の実施は可能である。
 また、例えば、前記実施形態ではワーク姿勢判別部36をロボット本体25の3箇所に設けたが、場合によっては2箇所でもよく、或いは4箇所であってもよい。
 また、例えば、前記実施形態のプッシャ41は、その本体部411の断面が円形であるが、組み付け穴42の形状に合わせた四角であってもよい。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to these, A various change is possible in the range which does not deviate from the meaning.
For example, since the robot chuck is an example, the present invention can be practiced with robot chucks having other structures.
Further, for example, in the embodiment, the work posture determination unit 36 is provided at three locations of the robot main body 25. However, depending on the case, two locations or four locations may be used.
Further, for example, although the pusher 41 of the embodiment has a circular cross section of the main body 411, it may be a square fitted to the shape of the assembly hole 42.
1…多関節ロボットアーム 3…ロボットチャック 8…制御装置 21…チャックスライド 22…チャック爪 25…ロボット本体 26…軸受部材 31…エアコンプレッサ 32…エア配管 33…圧力スイッチ 35…信号ケーブル 36…ワーク姿勢判別部 41…プッシャ 42…組み付け穴 43…蓋部材 45…スプリング 46…プッシャ内空間 415…横孔 416…リーク用凹部 431…ガイド孔 432…リーク孔
 
 
 
 
 

 
DESCRIPTION OF SYMBOLS 1 ... Articulated robot arm 3 ... Robot chuck 8 ... Control device 21 ... Chuck slide 22 ... Chuck nail 25 ... Robot main body 26 ... Bearing member 31 ... Air compressor 32 ... Air piping 33 ... Pressure switch 35 ... Signal cable 36 ... Work posture Discrimination unit 41 ... pusher 42 ... assembly hole 43 ... lid member 45 ... spring 46 ... space inside pusher 415 ... lateral hole 416 ... recess for leakage 431 ... guide hole 432 ... leakage hole





Claims (6)

  1.  複数のチャック爪によりワークを把持するロボットチャックのチャック部に設けられた複数の組み付け穴と、
     前記複数の組み付け穴にエアを供給するエア流路と、
     各々独立して、前記ワークによる押し当て方向に移動可能な状態で前記複数の組み付け穴に挿入され、前記ワークの押し当て量により、前記エアの大気への放出状態と遮断状態に切り替えられる複数のプッシャと、
     前記エア流路内の前記エアの圧力を検出するエア圧検出器と、で構成されたロボットチャックのワーク姿勢判別機構。
    A plurality of assembling holes provided in a chuck portion of a robot chuck that holds a work by a plurality of chuck claws;
    An air flow path for supplying air to the plurality of assembly holes;
    Each is independently inserted into the plurality of assembly holes in a movable state in the pressing direction by the work, and is switched between the release state of the air to the atmosphere and the blocking state according to the pressing amount of the work. A pusher,
    An air pressure detector configured to detect the pressure of the air in the air flow path;
  2.  前記プッシャが、有底筒形の側部に横孔が穿設され、その有底部側を突き出すようにして前記組み付け穴内に挿入された部材であり、
     前記組み付け穴には前記プッシャを突き出す方向に付勢する付勢部材が組み込まれ、
     前記組み付け穴に対する前記プッシャの位置によって、前記プッシャの内部に送り込まれた前記エアについて前記横孔を介した大気への放出と遮断とが切り換えられるようにした請求項1に記載するロボットチャックのワーク姿勢判別機構。
    The pusher is a member in which a lateral hole is formed in a side of a bottomed cylindrical shape, and the bottomed portion side is protruded so as to be inserted into the assembly hole.
    A biasing member is incorporated into the assembly hole to bias the pusher in a direction to project it;
    The work of the robot chuck according to claim 1, wherein the air sent into the inside of the pusher can be switched between release to the atmosphere through the lateral hole and blocking depending on the position of the pusher with respect to the assembling hole. Posture discrimination mechanism.
  3.  前記組み付け穴の開口部に前記プッシャの移動を案内するガイド孔を有する蓋部材が嵌め込まれ、前記蓋部材に、前記プッシャの横孔が重なって前記エアを大気へ放出するためのリーク孔が形成された請求項2に記載するロボットチャックのワーク姿勢判別機構。 A lid member having a guide hole for guiding the movement of the pusher is fitted into the opening of the assembly hole, and a lateral hole of the pusher overlaps the lid member to form a leak hole for discharging the air to the atmosphere. A work posture determination mechanism for a robot chuck according to claim 2.
  4.  前記プッシャは、側部周方向に複数の前記横孔が形成され、各々の前記横孔に対して当該横孔から有底部側に向けて大きさの異なるリーク用凹部が側部外周面に形成された請求項3に記載するロボットチャックのワーク姿勢判別機構。 The pusher has a plurality of lateral holes formed circumferentially in the side portion, and a recess for leakage which differs in size from the lateral hole to the bottom portion side with respect to each of the lateral holes is formed in the outer peripheral surface A work posture determination mechanism for a robot chuck according to claim 3.
  5.  前記プッシャは、複数の前記横孔のうち任意の前記横孔を、前記リーク孔に対して位置決めして前記組み付け穴に挿入するようにした請求項4に記載するロボットチャックのワーク姿勢判別機構。 5. The work posture determination mechanism for a robot chuck according to claim 4, wherein the pusher positions any one of the plurality of lateral holes with respect to the leak hole and inserts the lateral hole into the assembly hole.
  6.  前記ロボット本体部分における前記エア流路は、複数の前記組み付け穴の全てに繋げられた一つのエア流路流路が形成されたものである請求項1乃至請求項5のいずれかに記載するロボットチャックのワーク姿勢判別機構。
     
     
     
     
     
     
     
     
     

     
    The robot according to any one of claims 1 to 5, wherein the air flow passage in the robot body portion is formed with one air flow passage connected to all of the plurality of assembly holes. Chuck's work posture determination mechanism.










PCT/JP2017/025683 2017-07-14 2017-07-14 Workpiece-attitude-discernment mechanism for robot chuck WO2019012685A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019529416A JP6768159B2 (en) 2017-07-14 2017-07-14 Work posture discrimination mechanism of robot chuck
PCT/JP2017/025683 WO2019012685A1 (en) 2017-07-14 2017-07-14 Workpiece-attitude-discernment mechanism for robot chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/025683 WO2019012685A1 (en) 2017-07-14 2017-07-14 Workpiece-attitude-discernment mechanism for robot chuck

Publications (1)

Publication Number Publication Date
WO2019012685A1 true WO2019012685A1 (en) 2019-01-17

Family

ID=65002159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025683 WO2019012685A1 (en) 2017-07-14 2017-07-14 Workpiece-attitude-discernment mechanism for robot chuck

Country Status (2)

Country Link
JP (1) JP6768159B2 (en)
WO (1) WO2019012685A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049003A1 (en) * 2019-09-13 2021-03-18 株式会社Fuji Workpiece-conveying robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009768A (en) * 1999-06-23 2001-01-16 Daihatsu Motor Co Ltd Robot hand for vertical jig
WO2012008210A1 (en) * 2010-07-13 2012-01-19 パスカルエンジニアリング株式会社 Clamp device
JP2014042966A (en) * 2012-08-28 2014-03-13 Pascal Engineering Corp Clamping device
JP2014205219A (en) * 2013-04-15 2014-10-30 パスカルエンジニアリング株式会社 Positioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009768A (en) * 1999-06-23 2001-01-16 Daihatsu Motor Co Ltd Robot hand for vertical jig
WO2012008210A1 (en) * 2010-07-13 2012-01-19 パスカルエンジニアリング株式会社 Clamp device
JP2014042966A (en) * 2012-08-28 2014-03-13 Pascal Engineering Corp Clamping device
JP2014205219A (en) * 2013-04-15 2014-10-30 パスカルエンジニアリング株式会社 Positioning device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049003A1 (en) * 2019-09-13 2021-03-18 株式会社Fuji Workpiece-conveying robot
JPWO2021049003A1 (en) * 2019-09-13 2021-03-18
CN114364494A (en) * 2019-09-13 2022-04-15 株式会社富士 Workpiece transfer robot
JP7268174B2 (en) 2019-09-13 2023-05-02 株式会社Fuji Work transfer robot
CN114364494B (en) * 2019-09-13 2023-09-19 株式会社富士 Workpiece carrying robot

Also Published As

Publication number Publication date
JP6768159B2 (en) 2020-10-14
JPWO2019012685A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
EP2689890B1 (en) Tool holder for chip suction device and machine tool including the same
US11766754B2 (en) Conveyance apparatus
US9656329B2 (en) Machining jig for rotatably supporting workpiece with respect to tool of machine tool and machining system
US20190299350A1 (en) Robot machining system
US10130997B2 (en) Main shaft device and machine tool provided with same
WO2015052764A1 (en) Workpiece seating detection device and method for adjusting same
WO2020189613A1 (en) Workpiece support device
WO2019012685A1 (en) Workpiece-attitude-discernment mechanism for robot chuck
JP6499063B2 (en) Workpiece gripping device
TW201637769A (en) Clamp device
WO2023033024A1 (en) Turret, clamp state detection method, and clamp state detection program
JP2009279734A (en) Mass centering machining device
JP2009160672A (en) Manipulator
WO2015145577A1 (en) Hydraulic clamp apparatus having rotary function
JP2017042860A (en) Chuck device
JP2003251506A (en) Workpiece holding device
JP2009050948A (en) Machine tool system
US11478901B2 (en) Pneumatic fixture clamp
JP7058347B2 (en) Work grip judgment system
JP3456341B2 (en) Workpiece seating detector for spindle chuck
KR102177473B1 (en) Universal bed for machine tools
CN219787506U (en) Clamping device and machine tool
WO2023053436A1 (en) Workpiece seating detection device
JP4421865B2 (en) Workpiece seating confirmation device
JP7079142B2 (en) Position detection device and processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917774

Country of ref document: EP

Kind code of ref document: A1