WO2019009064A1 - Additive layer manufacturing method - Google Patents

Additive layer manufacturing method Download PDF

Info

Publication number
WO2019009064A1
WO2019009064A1 PCT/JP2018/023299 JP2018023299W WO2019009064A1 WO 2019009064 A1 WO2019009064 A1 WO 2019009064A1 JP 2018023299 W JP2018023299 W JP 2018023299W WO 2019009064 A1 WO2019009064 A1 WO 2019009064A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction value
correction
shape
convex portion
dimensional structure
Prior art date
Application number
PCT/JP2018/023299
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 栗原
橋本 将臣
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018092118A external-priority patent/JP2019014231A/en
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2019009064A1 publication Critical patent/WO2019009064A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing

Definitions

  • the present invention relates to an additive manufacturing method in which resin layers cured by light irradiation are stacked to produce a three-dimensional structure.
  • Photolithography which is one of the lamination molding methods conventionally known, irradiates light (for example, laser light) to a liquid photocurable resin in a container in a curing step, and the molding table is irradiated with light
  • the first layer of the photocurable resin is cured, and then the shaping table is moved to supply the second layer of photocurable resin on the first layer of the photocurable resin cured.
  • the second layer of liquid photocurable resin is irradiated with light, the second layer of photocurable resin exposed to light is cured, and such an operation is repeated until the N layer to obtain a desired optically shaped product ( It is designed to form a three-dimensional structure.
  • the photofabricated object formed by such a photofabrication method is one in which a large number of photocurable resin layers are laminated, and the first photocurable resin layer to which light is irradiated first and then
  • the photocurable resin layer of the Nth layer (final layer) irradiated with light is compared, the irradiation history of light is significantly different between the first photocurable resin layer and the Nth photocurable resin layer.
  • the light irradiation amount of the first photo-cured resin layer is larger than that of the N-th photo-cured resin layer.
  • the optically shaped object formed by the optical shaping method is deformed according to the irradiation history of light.
  • FIG. 8 is a view showing an optical three-dimensional object 100 formed by the optical forming method, and is a view of the optical three-dimensional object 100 in which deformation is exaggerated.
  • 8 (a) is a plan view of the optically shaped article 100
  • FIG. 8 (b) is a front view of the optically shaped article 100
  • FIG. 8 (c) is a side view of the optically shaped article 100.
  • the photofabricated object 100 formed by the photofabrication method is a light of the first layer first irradiated with light from the photocurable resin layer 101 an of the Nth layer finally irradiated with light.
  • the amount of contraction increases toward the curable resin layer 101a1, and the appearance shape is not only deformed, but the position of the convex portion 102 is the lower surface 103 (the lower surface 103 of the Nth photocurable resin layer 101an) And the upper surface 104 (the upper surface 104 of the first layer of the photocurable resin layer 101a1), and a shift from the Nth layer of the photocurable resin layer 101an to the first layer of the photocurable resin layer 101a1
  • the convex part 102 approaches the center (origin of xy plane) o of the optical modeling thing 100 as it goes to a direction.
  • the optical three-dimensional object 100 formed by the optical forming method is a convex designed as a perfect circle when the amount of contraction is different between the longitudinal direction (X direction in the xy plane) and the lateral direction (Y direction in the xy plane)
  • the part 102 is deformed into an elliptical shape.
  • the photofabricated object 100 formed by the photofabrication method has a defect that the shrinkage difference is caused by the irradiation history of the light of each of the photocurable resin layers 101a1 to 101an, and the shape accuracy is deteriorated due to the shrinkage difference. doing.
  • the stimulation force (intensity of illumination) with respect to each photocurable resin layer 101a1-101an and the prestimulation waiting time (n-th layer photocurable resin layer 101an) Parameters such as the time between formation and the time between formation of the n-1 th layer of the photocurable resin layer 101a (n-1) are selected for each of the photocurable resin layers 101a
  • a technique photofabrication method has been developed to minimize the difference in shrinkage between the photocurable resin layers 101a1 to 101an (see Patent Document 1).
  • parameters such as stimulation power and pre-stimulation waiting time are selected for each of the photocurable resin layers 101a1 to 101an, and the photocuring conditions are changed for each of the photocurable resin layers 101a1 to 101an.
  • the layered manufacturing apparatus for example, a 3D printer.
  • the present invention aims to provide a layered manufacturing method capable of facilitating operation control of the layered manufacturing apparatus and capable of easily creating a three-dimensional structure with high accuracy.
  • the present invention relates to an additive manufacturing method of manufacturing a three-dimensional structure 6 by stacking resin layers cured by light irradiation.
  • the first step of creating the correction value creation model 6A under the same conditions as the actual production conditions of the three-dimensional structure 6, and the correction value creation created in the first step Second step of calculating the actual rate of change of the resin material from the model 6A for the model, and the actual rate of change of the three-dimensional structure 6 so that the three-dimensional structure 6 has the shape as designed after contraction.
  • a third step of calculating a correction value, a fourth step of generating the correction 3D data 7A by the correction value, and a fifth step of operating the layered modeling apparatus 5 by the correction 3D data 7A Have.
  • the layered manufacturing method according to the present invention it is possible to create 3D data for correction with the correction value calculated from the model for generating the correction value, and to operate the layered manufacturing apparatus with the 3D data for correction. Operation control can be facilitated, and high-precision three-dimensional structures can be easily created.
  • FIG. 2 (a) is a top view of a three-dimensional structure
  • FIG.2 (b) is a third order
  • FIG. 2C is a side view of a three-dimensional structure.
  • FIG. 3A is a plan view of the three-dimensional structure
  • FIG. 3B is a three-dimensional view, comparing the design shape of the three-dimensional structure and the shape after photofabrication of the three-dimensional structure.
  • FIG. 3 (c) is a side view of a three-dimensional structure
  • FIG. 3 (d) is a back view of the three-dimensional structure. It is a figure for calculating
  • FIG. 1 is a view showing a curing process of the optical forming method according to the embodiment of the present invention.
  • a liquid photocurable resin 2 for example, an epoxy resin and an acrylate resin
  • the liquid photocurable resin layer 2 for one layer is positioned below the support 4 of the table 3 (FIG. 1 (a)).
  • the 3D printer (laminated modeling apparatus) 5 used for the stereolithography method is input when the 3D data 7 corresponding to the stereolithography object (three-dimensional structure) 6 is input to the controller 8.
  • the processed 3D data 7 is processed by operation control software in the controller 8, and a control signal is output from the controller 8 to the first stepping motor 10 for raising and lowering the modeling table 3, and the controller 8 emits light. 11.
  • a control signal is output to the second stepping motor 13 serving as a drive unit of the movement guide means 12 of 11, and control for controlling the irradiation of light 14 (for example, laser light) from the controller 8 to the light irradiation means 11.
  • a signal is output.
  • the liquid photocurable resin 2 located under the support 4 of the shaping table 3 is irradiated with the light 14 from the light irradiating means 11, and the light 14 strikes it.
  • the light curable resin layer 2a1 is cured by a minute (FIG. 1 (b)).
  • the shaping table 3 is raised, and the second layer of liquid photocurable resin 2 is supplied under the cured first layer of photocurable resin layer 2a1.
  • the second liquid photocurable resin 2 is irradiated with light 14 to cure the second photocurable resin layer 2a2 which the light 14 has hit (FIG. 1 (c)).
  • the photofabrication method according to the present embodiment repeatedly performs the above-described work, and supplies a new liquid photocurable resin layer 2 under the cured photocurable resin layer 2a (n-1).
  • the liquid photo-curable resin 2 is irradiated with light 14 to cure the liquid photo-curable resin 2 and a plurality of layers (N layers) of photo-curable resin layers 2 an are stacked to form a three-dimensional light
  • the figure 6 is to be formed (Fig. 1 (d)).
  • the irradiation range (the range to be photocured) of the light 14 to the liquid photocurable resin 2 is determined based on the correction 3D data 7A described later .
  • the modeling table 3 is lifted, and the photofabricated object 6 is taken out of the container. Next, the support 4 and the optical model 6 are removed from the modeling table 3. Then, the support 4 and the optical model 6 are separated.
  • FIG. 2 is a view showing an optical three-dimensional object (three-dimensional structure) 6 formed by the optical forming method according to the embodiment of the present invention.
  • 2 (a) is a plan view of the optically shaped article 6
  • FIG. 2 (b) is a front view of the optically shaped article 6
  • FIG. 2 (c) is a side view of the optically shaped article 6.
  • the optical three-dimensional object 6 formed by the optical forming method according to the embodiment of the present invention is a rectangular parallelepiped having a convex portion 20 in a plan view, and each surface of the front and back A plurality of convex portions 20 having the same shape are formed on the side.
  • this photofabricated object 6 there is no difference in shrinkage from the first photo-curable resin layer 2a1 to the N-th photo-curable resin layer 2an, and the back surface (lower surface) 21 and the four side surfaces 22a to 22d are perpendicular.
  • the surface (upper surface) 23 and the four side surfaces 22a to 22d are perpendicular to each other.
  • the shape of the photofabricated object 6 in plan view of the convex portion 20 is a perfect circle, and the position of the convex portion 20 in the first photocurable resin layer 2a1 and the position of the Nth photocurable resin layer 2an There is no difference in the position of the convex portion 20, and the central axis 20a of the convex portion 20 is formed to be orthogonal to the back surface (lower surface) 21 and the surface (upper surface) 23.
  • the irradiation history of light is different for each of the stacked photocurable resin layers 2a1 to 2an, and the amount of change (hereinafter referred to as shrinkage amount) for each of the photocurable resin layers 2a1 to 2an Is different). That is, the amount of shrinkage of the photofabricated product 6 decreases from the Nth photocurable resin layer 2an having a small light irradiation amount toward the first photocurable resin layer 2a1 having a large light irradiation amount. Gradually increase (see Figure 3). As a result, when 3D data (3D data using uncorrected design values) corresponding to the photofabricated object 6 shown in FIG. It becomes impossible to produce the optical modeling thing 6 shown in FIG. 2 correctly (refer FIG. 3).
  • FIG. 3 shows the design shape (the shape shown by a two-dot chain line, which is abbreviated as a light build object (before contraction)) of the photofabricated object 6 and the shape after photofabrication of the photofabricated object 6 (a shape shown by solid lines)
  • Fig. 6 is a view showing a photofabricated object (after contraction) in a comparison manner.
  • 3 (a) is a plan view of the optically shaped article 6
  • FIG. 3 (b) is a front view of the optically shaped article 6
  • FIG. 3 (c) is a side view of the optically shaped article 6.
  • FIG. 3D is a back view of the photofabricated object 6.
  • the shape of the photofabricated object (after contraction) 6 is described by exaggerating the amount of shrinkage in order to clarify the difference from the photofabricated object (before contraction) 6.
  • the three-dimensional object 6 is a rectangular parallelepiped rectangular hexahedron having a convex portion 20 in a plan view.
  • the dimension of the photofabricated object (before contraction) 6 is set to X0 in the longitudinal direction and to Y0 in the latitudinal direction.
  • the dimension in the longitudinal direction of the back surface (bottom surface) 21 of the Nth photocurable resin layer 2an is X1
  • the Nth photocurable resin layer 2an is The dimension in the short side direction of the back surface (lower surface) 21 is Y1.
  • the dimension of the longitudinal direction in the surface (upper surface) 23 of 1st-layer photocurable resin layer 2a1 is set to X2, and the photofabricated thing (after shrinkage) 6 is the 1st-layer photocurable resin layer 2a1.
  • the dimension in the short side direction of the surface (upper surface) 23 is Y2.
  • the plurality of convex portions 20 are formed at the same position on the front and back, and the center position (center position of the center (surface of the upper surface) 23 of the rectangular shape in plan view ) Is set as the origin (o) of the xy plane, and the center position (center position) of the back surface (lower surface) 21 of the rectangular shape in plan view is set as the origin (o) of the xy plane. Then, the photofabricated object (after contraction) 6 is positioned on the back surface (lower surface) 21 of the Nth light curable resin layer 2an according to the amount of contraction of the Nth light curable resin layer 2an. The center of the convex portion 20 is offset from the center of the convex portion 20 of the optical three-dimensional object (before contraction).
  • the shape of the convex portion 20 is the amount of shrinkage of the photocurable resin layer 2an of the Nth layer in the x direction and y It changes from a perfect circle of the design shape to an ellipse by the difference in the amount of contraction in the direction.
  • the photofabricated product (after contraction) 6 is positioned on the surface (upper surface) 23 of the first layer of photocurable resin layer 2a1 according to the amount of contraction of the first layer of photocurable resin layer 2a1.
  • the center of the convex portion 20 is offset from the center of the convex portion 20 of the photofabricated object (before shrinkage) 6, and the shift amount of the center of the convex portion 20 is the back surface of the Nth layer of the photocurable resin layer 2an
  • the displacement amount of the center of the convex portion 20 located on the lower surface 21 is larger than the displacement amount of the center.
  • the optically shaped article (after shrinkage) 6 has the shape of the convex portion 20 of the first layer of the photocurable resin layer 2a1 on the surface (upper surface) 23 of the first layer of the photocurable resin layer 2a1.
  • the difference between the amount of contraction in the direction and the amount of contraction in the y direction causes the optical molded object (before contraction) 6 to be deformed from a true circle to an ellipse, and the amount of deformation of the convex portion 20 of the Nth photocurable resin layer 2an
  • the deformation amount of the convex portion 20 on the back surface (lower surface) 21 is larger.
  • the shape of the convex portion 20 is expressed as a circle, unless the shape of the convex portion 20 is specifically identified as a true circle or an ellipse. Includes both true circles and ellipses.
  • the optical shaped object 6 after optical shaping is designed by creating the optical shaped object 6 using the correction 3D data 7A generated as follows. It was made to become a shape (it was made to be able to create the high-precision photofabricated object 6 shown in FIG. 2).
  • the 3D printer 5 is operated by the CAD data 7 based on the design values, and a correction value creation model (photofabricated object) 6A is created through the curing process by the photofabrication method (multilayer fabrication method) (hatching in FIG. Create a shaped object (after contraction) 6).
  • the actual change rate of the lower surface 21 of the correction value creation model 6A is calculated (second step). Measure the dimension X1 in the longitudinal direction and the dimension Y1 in the lateral direction of the lower surface 21 (back surface (lower surface) 21 of the Nth layer of the photocurable resin layer 2an) of the correction value creation model 6A, and measure these values (X1 , Y1) and the design values (X0, Y0), the actual change rates ( ⁇ 1, ⁇ 1) of the correction value creation model 6A are calculated by Equation 1.
  • the correction value of the center position of the convex portion 20 and the correction value of the shape of the convex portion 20 on the lower surface 21 of the correction value creation model 6A are calculated (third step).
  • the center position (center position) of the plane shape on the lower surface 21 of the correction value creation model 6A is set as the origin o of the xy plane of the orthogonal coordinate system, and the convex portion of the optically shaped object (after contraction) 6 after the curing step is completed.
  • Correction value of the center position of the convex part 20 (the corrected X coordinate value S, after correction) in which the shrinkage amount of the photofabricated object 6 after the curing process is finished so that the center position of 20 matches the design value
  • the Y coordinate value T) of is calculated by Equation 2 using the actual change rates (.alpha.1, .beta.1).
  • the x coordinate value on the design of the center of the convex portion 20 is s
  • the y coordinate value on the design of the center of the convex portion 20 is t.
  • FIG. 4 is a diagram for helping to understand Equation 3, and illustrates a convex portion 20 of the X coordinate value S after correction from the origin o and the Y coordinate value T after correction from the origin o.
  • x ′ is a straight line passing through the center of the convex portion 20 and a straight line parallel to the x-axis.
  • y ′ is a straight line passing through the center of the convex portion 20 and a straight line parallel to the y axis.
  • the correction value of the contour shape of the lower surface 21 of the correction value creation model 6A is calculated (third step).
  • the contour dimension (correction value of contour shape) is calculated by Equation 4.
  • FIG. 5 is a diagram for helping to understand Equation 4.
  • the design value of the corner portion 24a in the lower surface 21 of the light figure (designed before shrinkage) 6 of the design shape is (X0, Y0), and the correction value is
  • the correction value of the corner portion 24a in the lower surface 21 of the corrected modeling model 6B reflected is set to (X3, Y3).
  • the correction values of the four corner portions 24a to 24d in the lower surface 21 of the model for correction modeling 6B are the other 3 by obtaining the correction value of one corner portion 24a because the shape of the lower surface 21 is rectangular.
  • the correction values of the corner portions 24b to 24d of the portion can be easily obtained.
  • the actual change rate of the upper surface 23 of the correction value creation model 6A is calculated (second step). Measure the dimension X2 in the longitudinal direction and the dimension Y2 in the lateral direction of the upper surface 23 of the model 6A for creating a correction value, and use these actually measured values (X2, Y2) and design values (X0, Y0) to obtain a correction value.
  • the actual change rates ( ⁇ 2, ⁇ 2) of the production model 6 A are calculated by equation 5.
  • the correction value of the center position of the convex portion 20 and the correction value of the shape of the convex portion 20 on the upper surface 23 of the correction value creation model 6A are calculated (third step).
  • the center position (center position) of the plane shape on the upper surface 23 of the correction value creation model 6A is set as the origin o of the xy plane of the orthogonal coordinate system, and the convex portion of the optically modeled object (after contraction) 6 after the curing step is completed
  • Correction value of the center position of the convex part 20 (the corrected X coordinate value S, after correction) in which the shrinkage amount of the photofabricated object 6 after the curing process is finished so that the center position of 20 matches the design value
  • the Y coordinate value T) of is calculated by Equation 6 using the actual change rates (.alpha.2, .beta.2).
  • Equation 6 the x coordinate value on the design of the center of the convex portion 20 is s, and the y coordinate value on the design of the center of the convex portion 20 is t.
  • the shape of the convex portion 20 in consideration of the amount of contraction is obtained by Formula 7.
  • FIG. 4 is a diagram for helping to understand Equation 7, and illustrates a convex portion 20 of the X coordinate value S after correction from the origin o and the Y coordinate value T after correction from the origin o. Further, in FIG.
  • x ′ is a straight line passing through the center of the convex portion 20 and a straight line parallel to the x-axis.
  • y ′ is a straight line passing through the center of the convex portion 20 and a straight line parallel to the y axis.
  • a correction value of the contour shape of the upper surface 23 of the correction value creation model 6A is calculated (third step).
  • the outline dimension (correction value of the outline shape) is calculated by equation 8. Note that FIG.
  • the correction value of the corner portion 25a on the upper surface 23 of the light figure (designed before contraction) 6 of the design shape is (X0, Y0), and the correction value is
  • the correction value of the corner portion 25a on the upper surface 23 of the corrected modeling model 6B reflected is set to (X4, Y4).
  • the correction values of the four corner portions 25a to 25d on the upper surface 23 of the model for correction modeling 6B are the other 3 by obtaining the correction value of the corner portion 25a at one place because the shape of the upper surface 23 is rectangular.
  • the correction values of the corner portions 25b to 25d of the portion can be easily obtained.
  • the correction 3D data 7A for controlling the operation of the 3D printer 5 is created (fourth step).
  • the correction value obtained as described above is input to 3D CAD software (for example, ANSYS), the design value previously input in the 3D CAD software is replaced with the correction value, and the 3D CAD software generates 3D data 7A for hexahedron correction.
  • 3D CAD software for example, ANSYS
  • the design value previously input in the 3D CAD software is replaced with the correction value
  • the 3D CAD software generates 3D data 7A for hexahedron correction.
  • the hexahedron has a shape in which the contour (four sides) of the lower surface 21 reflecting the correction value and the contour (four sides) of the upper surface 23 reflecting the correction value are joined by planes 27a to 27d by a function of blending of 3D CAD software. It has become.
  • the 3D printer is operated with the correction 3D data 7A (fifth step).
  • the correction 3D data 7A is used as operation control data of the 3D printer 5.
  • the irradiation range of the light 14 for each of the photocurable resin layers 2a1 to 2an is determined.
  • the photofabricated object 6 that has been photofabricated (shrunk through the curing process) using such correction 3D data 7A has a shape with high accuracy as shown in FIG.
  • FIG. 7 is a process diagram for carrying out the optical forming method according to the present embodiment, and is a process diagram showing the first to fifth steps in time series.
  • the correction 3D data 7A is generated by the correction value calculated from the correction value generation model 6A, and the 3D printer 5 is operated by the correction 3D data 7A. Therefore, the operation control of the 3D printer 5 can be facilitated, and the high-precision photofabricated object 6 can be easily created.
  • the shape of the convex portion 20 is obtained from the correction value generation model 6A By correcting the calculated correction value and including the correction value of the shape of the convex portion 20 in the correction 3D data 7A, it is possible to easily create the photofabricated object 6 including the convex portion 20 with high accuracy.
  • the layered manufacturing method according to the present invention is not limited to the shape of the optical shaped article according to the above embodiment, and for example, a shape having a recess rather than a convex portion, a shape having a hole penetrating from the upper surface to the lower surface, and the hole It can apply also to the shape which has two or more.
  • the shape of the hole is not particularly limited, and may be a perfect circle, an ellipse, or a polygon such as a triangle or a square.
  • the lamination molding method according to the present invention is not limited to the optical molding method according to the above embodiment, and a plurality of resin layers are formed by sintering powdery resin layers with laser light of the lamination molding device and stacking them. It is applicable also to the powder sintering method which creates a three-dimensional structure.
  • 3D printer laminated molding apparatus
  • 6 photofabricated object (three-dimensional structure)
  • 6 A model for creating correction values
  • 7 A 3D data for correction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

[Problem] To provide an additive layer manufacturing method capable of simplifying operation control of an additive layer manufacturing apparatus and of easily creating high precision three-dimensional structures. [Solution] This method is provided with: a first step for creating a model for preparing correction values under the same conditions as the production conditions for the actual three dimensional structure; a second step for calculating the actual rate of change of the model for preparing correction values created in the first step; a third step for calculating the correction values for the three dimensional structure from the actual rate of change so that the three dimensional structure after shrinkage has a pre-designed shape; a fourth step for preparing 3D correction data using the correction values calculated in the third step; and a fifth step for operating the additive layer manufacturing apparatus using the 3D correction data.

Description

積層造形法Additive manufacturing method
 この発明は、光照射によって硬化した樹脂層を積み重ね、三次元構造物を製造する積層造形法に関するものである。 The present invention relates to an additive manufacturing method in which resin layers cured by light irradiation are stacked to produce a three-dimensional structure.
 従来から知られている積層造形法の一つである光造形法は、硬化工程において、容器内の液状の光硬化性樹脂に光(例えば、レーザー光)を照射し、光が当たった造形テーブル上の1層分の光硬化性樹脂を硬化させ、次に造形テーブルを移動させて硬化した1層目の光硬化性樹脂の上に2層目の液状の光硬化性樹脂を供給し、その2層目の液状の光硬化性樹脂に光を照射し、光が当たった2層目の光硬化性樹脂を硬化させ、このような作業をN層まで繰り返し行って、所望の光造形物(三次元構造物)を形作るようになっている。 Photolithography, which is one of the lamination molding methods conventionally known, irradiates light (for example, laser light) to a liquid photocurable resin in a container in a curing step, and the molding table is irradiated with light The first layer of the photocurable resin is cured, and then the shaping table is moved to supply the second layer of photocurable resin on the first layer of the photocurable resin cured. The second layer of liquid photocurable resin is irradiated with light, the second layer of photocurable resin exposed to light is cured, and such an operation is repeated until the N layer to obtain a desired optically shaped product ( It is designed to form a three-dimensional structure.
 しかしながら、このような光造形法によって形成される光造形物は、光硬化性樹脂層が多数積層されたものであり、最初に光が照射された1層目の光硬化性樹脂層とその後に光が照射されたN層目(最終層)の光硬化性樹脂層とを対比した場合、1層目の光硬化樹脂層とN層目の光硬化樹脂層とで光の照射履歴が大きく異なり、1層目の光硬化樹脂層の方がN層目の光硬化樹脂層よりも光照射量が多くなる。その結果、光造形法によって形成された光造形物は、光の照射履歴に応じた変形が生じる。 However, the photofabricated object formed by such a photofabrication method is one in which a large number of photocurable resin layers are laminated, and the first photocurable resin layer to which light is irradiated first and then When the photocurable resin layer of the Nth layer (final layer) irradiated with light is compared, the irradiation history of light is significantly different between the first photocurable resin layer and the Nth photocurable resin layer. The light irradiation amount of the first photo-cured resin layer is larger than that of the N-th photo-cured resin layer. As a result, the optically shaped object formed by the optical shaping method is deformed according to the irradiation history of light.
 図8は、光造形法によって形成された光造形物100を示す図であり、変形を誇張して示す光造形物100の図である。なお、図8(a)は光造形物100の平面図であり、図8(b)は光造形物100の正面図であり、図8(c)は光造形物100の側面図である。 FIG. 8 is a view showing an optical three-dimensional object 100 formed by the optical forming method, and is a view of the optical three-dimensional object 100 in which deformation is exaggerated. 8 (a) is a plan view of the optically shaped article 100, FIG. 8 (b) is a front view of the optically shaped article 100, and FIG. 8 (c) is a side view of the optically shaped article 100.
 この図8に示すように、光造形法によって形成された光造形物100は、最後に光が照射されたN層目の光硬化樹脂層101anから最初に光が照射された1層目の光硬化性樹脂層101a1に向かうにしたがって収縮量が大きくなっており、外観形状が変形するのみでなく、凸部102の位置が下面103(N層目の光硬化性樹脂層101anの下面103)側と上面104(1層目の光硬化性樹脂層101a1の上面104)側とでずれを生じると共に、N層目の光硬化性樹脂層101an側から1層目の光硬化性樹脂層101a1側へ向かうにしたがって凸部102が光造形物100の中心(xy平面の原点)oに近づいている。また、光造形法によって形成された光造形物100は、長手方向(xy平面におけるX方向)と短手方向(xy平面におけるY方向)とで収縮量が違う場合、真円として設計された凸部102が楕円形状に変形する。 As shown in FIG. 8, the photofabricated object 100 formed by the photofabrication method is a light of the first layer first irradiated with light from the photocurable resin layer 101 an of the Nth layer finally irradiated with light. The amount of contraction increases toward the curable resin layer 101a1, and the appearance shape is not only deformed, but the position of the convex portion 102 is the lower surface 103 (the lower surface 103 of the Nth photocurable resin layer 101an) And the upper surface 104 (the upper surface 104 of the first layer of the photocurable resin layer 101a1), and a shift from the Nth layer of the photocurable resin layer 101an to the first layer of the photocurable resin layer 101a1 The convex part 102 approaches the center (origin of xy plane) o of the optical modeling thing 100 as it goes to a direction. In addition, the optical three-dimensional object 100 formed by the optical forming method is a convex designed as a perfect circle when the amount of contraction is different between the longitudinal direction (X direction in the xy plane) and the lateral direction (Y direction in the xy plane) The part 102 is deformed into an elliptical shape.
 このように、光造形法によって形成された光造形物100は、各光硬化性樹脂層101a1~101anの光の照射履歴によって収縮差を生じ、その収縮差によって形状精度が悪化するという不具合を有している。そこで、このような光造形法の不具合を解消するため、各光硬化性樹脂層101a1~101anに対する刺激力(照明の強さ)及び前刺激待ち時間(n層目の光硬化性樹脂層101anを形成する時点とn-1層目の光硬化性樹脂層101a(n-1)を形成する時点との間の期間)などのパラメータを各光硬化性樹脂層101a1~101an毎に選択し、各光硬化性樹脂層101a1~101an毎の収縮差を最小化する技術(光造形法)が開発された(特許文献1参照)。 As described above, the photofabricated object 100 formed by the photofabrication method has a defect that the shrinkage difference is caused by the irradiation history of the light of each of the photocurable resin layers 101a1 to 101an, and the shape accuracy is deteriorated due to the shrinkage difference. doing. Then, in order to eliminate such a defect of the stereolithography method, the stimulation force (intensity of illumination) with respect to each photocurable resin layer 101a1-101an and the prestimulation waiting time (n-th layer photocurable resin layer 101an) Parameters such as the time between formation and the time between formation of the n-1 th layer of the photocurable resin layer 101a (n-1) are selected for each of the photocurable resin layers 101a A technique (photofabrication method) has been developed to minimize the difference in shrinkage between the photocurable resin layers 101a1 to 101an (see Patent Document 1).
特開2012-71602号公報JP 2012-71602 A
 しかしながら、従来の光造形法は、各光硬化性樹脂層101a1~101an毎に刺激力及び前刺激待ち時間などのパラメータを選択し、各光硬化性樹脂層101a1~101an毎に光硬化条件を変えるようになっているため、積層造形装置(例えば、3Dプリンター)の作動制御が難しいという問題を有している。 However, in the conventional photofabrication method, parameters such as stimulation power and pre-stimulation waiting time are selected for each of the photocurable resin layers 101a1 to 101an, and the photocuring conditions are changed for each of the photocurable resin layers 101a1 to 101an. As a result, it is difficult to control the operation of the layered manufacturing apparatus (for example, a 3D printer).
 そこで、本発明は、積層造形装置の作動制御を容易化することができ、高精度の三次元構造物を容易に作成できる積層造形法の提供を目的とする。 Therefore, the present invention aims to provide a layered manufacturing method capable of facilitating operation control of the layered manufacturing apparatus and capable of easily creating a three-dimensional structure with high accuracy.
 本発明は、光照射によって硬化した樹脂層を積み重ね、三次元構造物6を製造する積層造形法に関するものである。この発明に係る積層造形法は、実際の三次元構造物6の製造条件と同一条件で補正値作成用モデル6Aを作成する第1の工程と、前記第1の工程で作成した前記補正値作成用モデル6Aから樹脂材料の実際の変化率を算出する第2の工程と、前記三次元構造物6が収縮後に設計したとおりの形状になるように、実際の変化率から三次元構造物6の補正値を算出する第3の工程と、前記補正値で補正用3Dデータ7Aを作成する第4の工程と、前記補正用3Dデータ7Aで積層造形装置5を作動させる第5の工程と、を備えている。 The present invention relates to an additive manufacturing method of manufacturing a three-dimensional structure 6 by stacking resin layers cured by light irradiation. In the layered manufacturing method according to the present invention, the first step of creating the correction value creation model 6A under the same conditions as the actual production conditions of the three-dimensional structure 6, and the correction value creation created in the first step Second step of calculating the actual rate of change of the resin material from the model 6A for the model, and the actual rate of change of the three-dimensional structure 6 so that the three-dimensional structure 6 has the shape as designed after contraction. A third step of calculating a correction value, a fourth step of generating the correction 3D data 7A by the correction value, and a fifth step of operating the layered modeling apparatus 5 by the correction 3D data 7A Have.
 本発明に係る積層造形法によれば、補正値作成用モデルから算出した補正値で補正用3Dデータを作成し、その補正用3Dデータで積層造形装置を作動させることができるため、積層造形装置の作動制御を容易化することができ、高精度の三次元構造物を容易に作成できる。 According to the layered manufacturing method according to the present invention, it is possible to create 3D data for correction with the correction value calculated from the model for generating the correction value, and to operate the layered manufacturing apparatus with the 3D data for correction. Operation control can be facilitated, and high-precision three-dimensional structures can be easily created.
本発明の実施形態に係る光造形法(積層造形法)の硬化工程を説明するための図である。It is a figure for demonstrating the hardening process of the optical shaping method (lamination modeling method) which concerns on embodiment of this invention. 本発明の実施形態に係る光造形法(積層造形法)で形作られた三次元構造物を示す図であり、図2(a)は三次元構造物の平面図、図2(b)は三次元構造物の正面図、図2(c)は三次元構造物の側面図である。It is a figure which shows the three-dimensional structure formed by the stereolithography method (lamination molding method) which concerns on embodiment of this invention, FIG. 2 (a) is a top view of a three-dimensional structure, FIG.2 (b) is a third order FIG. 2C is a side view of a three-dimensional structure. 三次元構造物の設計形状と三次元構造物の光造形後の形状とを対比して示す図であり、図3(a)は三次元構造物の平面図、図3(b)は三次元構造物の正面図、図3(c)は三次元構造物の側面図、図3(d)は三次元構造物の裏面図である。FIG. 3A is a plan view of the three-dimensional structure, and FIG. 3B is a three-dimensional view, comparing the design shape of the three-dimensional structure and the shape after photofabrication of the three-dimensional structure. FIG. 3 (c) is a side view of a three-dimensional structure, and FIG. 3 (d) is a back view of the three-dimensional structure. 三次元構造物の凸部位置及び凸部形状の補正値を求めるための図である。It is a figure for calculating | requiring the correction value of the convex part position and convex part shape of a three-dimensional structure. 補正造形用モデルの下面におけるコーナー部の補正値を求めるための図である。It is a figure for calculating | requiring the correction value of the corner part in the lower surface of the model for correction modeling. 補正造形用モデルの上面におけるコーナー部の補正値を求めるための図である。It is a figure for calculating | requiring the correction value of the corner part in the upper surface of the model for correction modeling. 本発明の実施形態に係る光造形法を実行するための工程図であり、第1の工程から第5の工程までを時系列に並べて示す工程図である。It is a process drawing for performing the optical modeling method concerning the embodiment of the present invention, and is a process drawing which arranges and shows a 1st process to a 5th process in time series. 光造形法によって形成された光造形物の変形を誇張して示す図であり、図8(a)は光造形物の平面図であり、図8(b)は光造形物の正面図であり、図8(c)は光造形物の側面図である。It is a figure which exaggerates and shows modification of the optical modeling thing formed by the stereolithography method, FIG. 8 (a) is a top view of an optical modeling thing, FIG.8 (b) is a front view of an optical modeling thing, FIG. 8 (c) is a side view of the photofabricated object.
 以下、本発明の実施形態を図面に基づき詳述する。なお、本実施形態は、積層造形法のうちの光造形法について説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, the photo-forming method of the layer-by-layer forming method will be described.
  (硬化工程)
 図1は、本発明の実施形態に係る光造形法の硬化工程を示す図である。この図1に示すように、本実施形態に係る光造形法は、容器1内に液状の光硬化性樹脂2(例えば、エポキシ系樹脂、アクリレート系樹脂)を入れ、容器1内を昇降する造形テーブル3のサポート4の下に1層分の液状の光硬化性樹脂層2を位置させる(図1(a))。この図1において、光造形法に使用される3Dプリンター(積層造形装置)5は、光造形物(三次元構造物)6に対応する3Dデータ7が制御コントローラ8に入力されると、その入力された3Dデータ7が制御コントローラ8内の作動制御ソフトによって処理され、制御コントローラ8から造形テーブル3の昇降用の第1ステッピングモータ10に制御信号が出力されると共に、制御コントローラ8から光照射手段11の移動案内手段12の駆動部となる第2ステッピングモータ13に制御信号が出力され、また、制御コントローラ8から光照射手段11に光14(例えば、レーザー光)の照射をコントロールするための制御信号が出力される。
(Curing process)
FIG. 1 is a view showing a curing process of the optical forming method according to the embodiment of the present invention. As shown in FIG. 1, in the optical forming method according to the present embodiment, a liquid photocurable resin 2 (for example, an epoxy resin and an acrylate resin) is placed in a container 1 and the inside of the container 1 is moved up and down The liquid photocurable resin layer 2 for one layer is positioned below the support 4 of the table 3 (FIG. 1 (a)). In FIG. 1, the 3D printer (laminated modeling apparatus) 5 used for the stereolithography method is input when the 3D data 7 corresponding to the stereolithography object (three-dimensional structure) 6 is input to the controller 8. The processed 3D data 7 is processed by operation control software in the controller 8, and a control signal is output from the controller 8 to the first stepping motor 10 for raising and lowering the modeling table 3, and the controller 8 emits light. 11. A control signal is output to the second stepping motor 13 serving as a drive unit of the movement guide means 12 of 11, and control for controlling the irradiation of light 14 (for example, laser light) from the controller 8 to the light irradiation means 11. A signal is output.
 次に、本実施形態に係る光造形法は、造形テーブル3のサポート4の下に位置する液状の光硬化性樹脂2に光照射手段11から光14を照射し、光14が当たった1層分の光硬化性樹脂層2a1を硬化させる(図1(b))。 Next, in the optical shaping method according to the present embodiment, the liquid photocurable resin 2 located under the support 4 of the shaping table 3 is irradiated with the light 14 from the light irradiating means 11, and the light 14 strikes it. The light curable resin layer 2a1 is cured by a minute (FIG. 1 (b)).
 次に、本実施形態に係る光造形法は、造形テーブル3を上昇させ、硬化した1層目の光硬化性樹脂層2a1の下に2層目の液状の光硬化性樹脂2を供給し、その2層目の液状の光硬化性樹脂2に光14を照射し、光14が当たった2層目の光硬化性樹脂層2a2を硬化させる(図1(c))。 Next, in the optical shaping method according to the present embodiment, the shaping table 3 is raised, and the second layer of liquid photocurable resin 2 is supplied under the cured first layer of photocurable resin layer 2a1. The second liquid photocurable resin 2 is irradiated with light 14 to cure the second photocurable resin layer 2a2 which the light 14 has hit (FIG. 1 (c)).
 そして、本実施形態に係る光造形法は、上記のような作業を繰り返し行い、硬化した光硬化性樹脂層2a(n-1)の下に新たな液状の光硬化性樹脂層2を供給し、その液状の光硬化性樹脂2に光14を照射して、液状の光硬化性樹脂2を硬化させ、複数層(N層)の光硬化性樹脂層2anを積み重ねて、3次元形状の光造形物6を形作るようになっている(図1(d))。 Then, the photofabrication method according to the present embodiment repeatedly performs the above-described work, and supplies a new liquid photocurable resin layer 2 under the cured photocurable resin layer 2a (n-1). The liquid photo-curable resin 2 is irradiated with light 14 to cure the liquid photo-curable resin 2 and a plurality of layers (N layers) of photo-curable resin layers 2 an are stacked to form a three-dimensional light The figure 6 is to be formed (Fig. 1 (d)).
 以上のような本実施形態に係る光造形法の硬化工程において、液状の光硬化性樹脂2に対する光14の照射範囲(光硬化させる範囲)は、後述する補正用3Dデータ7Aに基づいて定められる。 In the curing step of the photofabrication method according to the present embodiment as described above, the irradiation range (the range to be photocured) of the light 14 to the liquid photocurable resin 2 is determined based on the correction 3D data 7A described later .
 上記硬化工程が終了した後、造形テーブル3が上昇し、容器内から光造形物6が取り出されるようになっている。次に、造形テーブル3からサポート4及び光造形物6が取り外されるようになっている。そして、サポート4と光造形物6とを切り離すようになっている。 After the curing step is completed, the modeling table 3 is lifted, and the photofabricated object 6 is taken out of the container. Next, the support 4 and the optical model 6 are removed from the modeling table 3. Then, the support 4 and the optical model 6 are separated.
  (三次元構造物)
 図2は、本発明の実施形態に係る光造形法によって形成された光造形物(三次元構造物)6を示す図である。なお、図2(a)は光造形物6の平面図であり、図2(b)は光造形物6の正面図であり、図2(c)は光造形物6の側面図である。
(Three-dimensional structure)
FIG. 2 is a view showing an optical three-dimensional object (three-dimensional structure) 6 formed by the optical forming method according to the embodiment of the present invention. 2 (a) is a plan view of the optically shaped article 6, FIG. 2 (b) is a front view of the optically shaped article 6, and FIG. 2 (c) is a side view of the optically shaped article 6.
 この図2に示すように、本発明の実施形態に係る光造形法によって形成された光造形物6は、平面視した形状が凸部20を有する矩形形状の直方体であり、表裏のそれぞれの面側に同一形状の凸部20が複数形成されている。この光造形物6は、1層目の光硬化性樹脂層2a1からN層目の光硬化性樹脂層2anまでの収縮差がなく、裏面(下面)21と4側面22a~22dとが直角であり、表面(上面)23と4側面22a~22dが直角になっている。また、光造形物6は、凸部20を平面視した形状が真円であり、1層目の光硬化性樹脂層2a1における凸部20の位置とN層目の光硬化性樹脂層2anにおける凸部20の位置に差がなく、凸部20の中心軸20aが裏面(下面)21及び表面(上面)23に直交するように形成されている。 As shown in FIG. 2, the optical three-dimensional object 6 formed by the optical forming method according to the embodiment of the present invention is a rectangular parallelepiped having a convex portion 20 in a plan view, and each surface of the front and back A plurality of convex portions 20 having the same shape are formed on the side. In this photofabricated object 6, there is no difference in shrinkage from the first photo-curable resin layer 2a1 to the N-th photo-curable resin layer 2an, and the back surface (lower surface) 21 and the four side surfaces 22a to 22d are perpendicular. The surface (upper surface) 23 and the four side surfaces 22a to 22d are perpendicular to each other. Further, the shape of the photofabricated object 6 in plan view of the convex portion 20 is a perfect circle, and the position of the convex portion 20 in the first photocurable resin layer 2a1 and the position of the Nth photocurable resin layer 2an There is no difference in the position of the convex portion 20, and the central axis 20a of the convex portion 20 is formed to be orthogonal to the back surface (lower surface) 21 and the surface (upper surface) 23.
  (補正用3Dデータの作成)
 光造形法によって作成される光造形物6は、積み重ねられる光硬化性樹脂層2a1~2an毎に光の照射履歴が異なり、光硬化性樹脂層2a1~2an毎に変化量(以下、収縮量ともいう)が異なる。すなわち、光造形物6は、光の照射量が少ない第N層目の光硬化性樹脂層2anから光の照射量が多い第1層目の光硬化性樹脂層2a1に向かうにしたがって収縮量が漸増する(図3参照)。その結果、図2に示す光造形物6に対応する3Dデータ(補正されていない設計値を使用した3Dデータ)をそのまま使用して光造形した場合には、収縮差による形状のズレを生じ、図2に示す光造形物6を正確に作成することができなくなる(図3参照)。
(Creating 3D data for correction)
In the photofabricated product 6 produced by the photofabrication method, the irradiation history of light is different for each of the stacked photocurable resin layers 2a1 to 2an, and the amount of change (hereinafter referred to as shrinkage amount) for each of the photocurable resin layers 2a1 to 2an Is different). That is, the amount of shrinkage of the photofabricated product 6 decreases from the Nth photocurable resin layer 2an having a small light irradiation amount toward the first photocurable resin layer 2a1 having a large light irradiation amount. Gradually increase (see Figure 3). As a result, when 3D data (3D data using uncorrected design values) corresponding to the photofabricated object 6 shown in FIG. It becomes impossible to produce the optical modeling thing 6 shown in FIG. 2 correctly (refer FIG. 3).
 図3は、光造形物6の設計形状(二点鎖線で示す形状であり、光造形物(収縮前)と略称する)と光造形物6の光造形後の形状(実線で示す形状であり、光造形物(収縮後)と略称する)とを対比して示す図である。なお、図3(a)は光造形物6の平面図であり、図3(b)は光造形物6の正面図であり、図3(c)は光造形物6の側面図であり、図3(d)は光造形物6の裏面図である。また、この図3において、光造形物(収縮後)6の形状は、光造形物(収縮前)6との違いを明確にするため、収縮量を誇張して記載してある。 FIG. 3 shows the design shape (the shape shown by a two-dot chain line, which is abbreviated as a light build object (before contraction)) of the photofabricated object 6 and the shape after photofabrication of the photofabricated object 6 (a shape shown by solid lines) Fig. 6 is a view showing a photofabricated object (after contraction) in a comparison manner. 3 (a) is a plan view of the optically shaped article 6, FIG. 3 (b) is a front view of the optically shaped article 6, and FIG. 3 (c) is a side view of the optically shaped article 6. FIG. 3D is a back view of the photofabricated object 6. Further, in FIG. 3, the shape of the photofabricated object (after contraction) 6 is described by exaggerating the amount of shrinkage in order to clarify the difference from the photofabricated object (before contraction) 6.
 図3に示すように、光造形物6は、平面視した形状が凸部20を有する矩形形状の直方体状の六面体である。この図3において、光造形物(収縮前)6は、長手方向の寸法をX0とし、短手方向の寸法をY0としている。また、光造形物(収縮後)6は、第N層目の光硬化性樹脂層2anの裏面(下面)21における長手方向の寸法をX1とし、第N層目の光硬化性樹脂層2anの裏面(下面)21における短手方向の寸法をY1としている。また、光造形物(収縮後)6は、第1層目の光硬化性樹脂層2a1の表面(上面)23における長手方向の寸法をX2とし、第1層目の光硬化性樹脂層2a1の表面(上面)23における短手方向の寸法をY2としている。また、この図3に示すように、光造形物6は、複数の凸部20が表裏の同じ位置に形成されており、平面視した矩形形状の表面(上面)23の中心位置(図心位置)をxy平面の原点(o)とすると共に、平面視した矩形形状の裏面(下面)21の中心位置(図心位置)をxy平面の原点(o)としている。そして、光造形物(収縮後)6は、第N層目の光硬化性樹脂層2anの収縮量に応じて、第N層目の光硬化性樹脂層2anの裏面(下面)21に位置する凸部20の中心が光造形物(収縮前)6の凸部20の中心からズレて位置する。また、光造形物(収縮前)6は、第N層目の光硬化性樹脂層2anにおいて、凸部20の形状が第N層目の光硬化性樹脂層2anのx方向の収縮量とy方向の収縮量の差によって設計形状の真円から楕円に変形する。また、光造形物(収縮後)6は、第1層目の光硬化性樹脂層2a1の収縮量に応じて、第1層目の光硬化性樹脂層2a1の表面(上面)23に位置する凸部20の中心が光造形物(収縮前)6の凸部20の中心からズレて位置し、その凸部20の中心のズレ量が第N層目の光硬化性樹脂層2anの裏面(下面)21に位置する凸部20の中心のズレ量よりも多くなる。また、光造形物(収縮後)6は、第1層目の光硬化性樹脂層2a1の表面(上面)23において、凸部20の形状が第1層目の光硬化性樹脂層2a1のx方向の収縮量とy方向の収縮量の差によって光造形物(収縮前)6の真円から楕円に変形し、その凸部20の変形量が第N層目の光硬化性樹脂層2anの裏面(下面)21における凸部20の変形量よりも大きくなる。なお、本実施形態に係る光造形法(積層造形法)の説明において、凸部20の形状を真円又は楕円と具体的に特定しない限り、凸部20の形状を円と表現し、その円に真円及び楕円の両方を含むものとする。 As shown in FIG. 3, the three-dimensional object 6 is a rectangular parallelepiped rectangular hexahedron having a convex portion 20 in a plan view. In FIG. 3, the dimension of the photofabricated object (before contraction) 6 is set to X0 in the longitudinal direction and to Y0 in the latitudinal direction. In the photofabricated product (after shrinkage) 6, the dimension in the longitudinal direction of the back surface (bottom surface) 21 of the Nth photocurable resin layer 2an is X1, and the Nth photocurable resin layer 2an is The dimension in the short side direction of the back surface (lower surface) 21 is Y1. Moreover, the dimension of the longitudinal direction in the surface (upper surface) 23 of 1st-layer photocurable resin layer 2a1 is set to X2, and the photofabricated thing (after shrinkage) 6 is the 1st-layer photocurable resin layer 2a1. The dimension in the short side direction of the surface (upper surface) 23 is Y2. In addition, as shown in FIG. 3, the plurality of convex portions 20 are formed at the same position on the front and back, and the center position (center position of the center (surface of the upper surface) 23 of the rectangular shape in plan view ) Is set as the origin (o) of the xy plane, and the center position (center position) of the back surface (lower surface) 21 of the rectangular shape in plan view is set as the origin (o) of the xy plane. Then, the photofabricated object (after contraction) 6 is positioned on the back surface (lower surface) 21 of the Nth light curable resin layer 2an according to the amount of contraction of the Nth light curable resin layer 2an. The center of the convex portion 20 is offset from the center of the convex portion 20 of the optical three-dimensional object (before contraction). In addition, in the photofabricated product 6 (before shrinkage), in the photocurable resin layer 2an of the Nth layer, the shape of the convex portion 20 is the amount of shrinkage of the photocurable resin layer 2an of the Nth layer in the x direction and y It changes from a perfect circle of the design shape to an ellipse by the difference in the amount of contraction in the direction. In addition, the photofabricated product (after contraction) 6 is positioned on the surface (upper surface) 23 of the first layer of photocurable resin layer 2a1 according to the amount of contraction of the first layer of photocurable resin layer 2a1. The center of the convex portion 20 is offset from the center of the convex portion 20 of the photofabricated object (before shrinkage) 6, and the shift amount of the center of the convex portion 20 is the back surface of the Nth layer of the photocurable resin layer 2an The displacement amount of the center of the convex portion 20 located on the lower surface 21 is larger than the displacement amount of the center. In addition, the optically shaped article (after shrinkage) 6 has the shape of the convex portion 20 of the first layer of the photocurable resin layer 2a1 on the surface (upper surface) 23 of the first layer of the photocurable resin layer 2a1. The difference between the amount of contraction in the direction and the amount of contraction in the y direction causes the optical molded object (before contraction) 6 to be deformed from a true circle to an ellipse, and the amount of deformation of the convex portion 20 of the Nth photocurable resin layer 2an The deformation amount of the convex portion 20 on the back surface (lower surface) 21 is larger. In the description of the optical forming method (laminate forming method) according to the present embodiment, the shape of the convex portion 20 is expressed as a circle, unless the shape of the convex portion 20 is specifically identified as a true circle or an ellipse. Includes both true circles and ellipses.
 以上の図3を使用した説明のように、光造形後の光造形物(収縮後)6は、光の照射履歴に応じて収縮するため、補正を施していない光造形物(収縮前)6に対し、形状のズレを生じる。そこで、本実施形態に係る光造形法は、以下のようにして作成した補正用3Dデータ7Aを使用して光造形物6を作成することにより、光造形後の収縮した光造形物6が設計形状になるようにした(図2に示した高精度の光造形物6を作成できるようにした)。 As described above with reference to FIG. 3, since the optical three-dimensional object after optical shaping (after contraction) contracts in accordance with the irradiation history of light, the optical three-dimensional object without correction (before contraction) 6 On the other hand, there is a displacement of the shape. Therefore, in the optical shaping method according to the present embodiment, the optical shaped object 6 after optical shaping is designed by creating the optical shaped object 6 using the correction 3D data 7A generated as follows. It was made to become a shape (it was made to be able to create the high-precision photofabricated object 6 shown in FIG. 2).
(1)補正値作成用モデル6Aを作成する(第1の工程)。
 設計値に基づいたCADデータ7によって3Dプリンター5を作動させ、光造形法(積層造形法)による硬化工程を経て補正値作成用モデル(光造形物)6Aを作成する(図3のハッチングを付した光造形物(収縮後)6を作成する)。
(1) Create a correction value creation model 6A (first step).
The 3D printer 5 is operated by the CAD data 7 based on the design values, and a correction value creation model (photofabricated object) 6A is created through the curing process by the photofabrication method (multilayer fabrication method) (hatching in FIG. Create a shaped object (after contraction) 6).
(2)補正値作成用モデル6Aの下面21の実際の変化率を算出する(第2の工程)。
 補正値作成用モデル6Aの下面21(第N層目の光硬化性樹脂層2anの裏面(下面)21)の長手方向の寸法X1及び短手方向の寸法Y1を実測し、これら実測値(X1,Y1)と設計値(X0,Y0)とを使用して、補正値作成用モデル6Aの実際の変化率(α1、β1)を数1で算出する。
Figure JPOXMLDOC01-appb-M000001
 
(2) The actual change rate of the lower surface 21 of the correction value creation model 6A is calculated (second step).
Measure the dimension X1 in the longitudinal direction and the dimension Y1 in the lateral direction of the lower surface 21 (back surface (lower surface) 21 of the Nth layer of the photocurable resin layer 2an) of the correction value creation model 6A, and measure these values (X1 , Y1) and the design values (X0, Y0), the actual change rates (α1, β1) of the correction value creation model 6A are calculated by Equation 1.
Figure JPOXMLDOC01-appb-M000001
(3)補正値作成用モデル6Aの下面21における凸部20の中心位置の補正値及び凸部20の形状の補正値を算出する(第3の工程)。
 補正値作成用モデル6Aの下面21における平面形状の中心位置(図心位置)を直交座標系のxy平面の原点oとし、硬化工程が終了した後における光造形物(収縮後)6の凸部20の中心位置が設計値に合致するように、硬化工程が終了した後における光造形物6の収縮量を見込んだ凸部20の中心位置の補正値(補正後のX座標値S、補正後のY座標値T)を、実際の変化率(α1、β1)を使用して数2で算出する。なお、数2において、凸部20の中心の設計上におけるx座標値をsとし、凸部20の中心の設計上におけるy座標値をtとする。
Figure JPOXMLDOC01-appb-M000002
 
 また、硬化工程が終了した後における光造形物(収縮後)6の凸部20の半径が設計値(r)になるように、硬化工程が終了した後における光造形物(収縮後)6の収縮量を見込んだ凸部20の開口縁の形状を数3で求める。なお、図4は、数3の理解を助けるための図であり、原点oから補正後のX座標値Sで且つ原点oから補正後のY座標値Tの凸部20を例示している。また、この図4において、x’は、凸部20の中心を通る直線であり、x軸と平行の直線である。また、この図4において、y’は、凸部20の中心を通る直線であり、y軸と平行の直線である。
Figure JPOXMLDOC01-appb-M000003
 
 このような凸部20の中心位置の補正値及び凸部20の形状の補正値の算出は、各凸部20毎に行う。
(3) The correction value of the center position of the convex portion 20 and the correction value of the shape of the convex portion 20 on the lower surface 21 of the correction value creation model 6A are calculated (third step).
The center position (center position) of the plane shape on the lower surface 21 of the correction value creation model 6A is set as the origin o of the xy plane of the orthogonal coordinate system, and the convex portion of the optically shaped object (after contraction) 6 after the curing step is completed. Correction value of the center position of the convex part 20 (the corrected X coordinate value S, after correction) in which the shrinkage amount of the photofabricated object 6 after the curing process is finished so that the center position of 20 matches the design value The Y coordinate value T) of is calculated by Equation 2 using the actual change rates (.alpha.1, .beta.1). In Equation 2, the x coordinate value on the design of the center of the convex portion 20 is s, and the y coordinate value on the design of the center of the convex portion 20 is t.
Figure JPOXMLDOC01-appb-M000002

Moreover, of the optically shaped article (after contraction) 6 after the completion of the curing process so that the radius of the convex portion 20 of the optically shaped article (after contraction) 6 after the completion of the curing process becomes the design value (r) The shape of the opening edge of the convex portion 20 in consideration of the amount of contraction is obtained by Expression 3. FIG. 4 is a diagram for helping to understand Equation 3, and illustrates a convex portion 20 of the X coordinate value S after correction from the origin o and the Y coordinate value T after correction from the origin o. Further, in FIG. 4, x ′ is a straight line passing through the center of the convex portion 20 and a straight line parallel to the x-axis. Further, in FIG. 4, y ′ is a straight line passing through the center of the convex portion 20 and a straight line parallel to the y axis.
Figure JPOXMLDOC01-appb-M000003

Such calculation of the correction value of the center position of the convex portion 20 and the correction value of the shape of the convex portion 20 is performed for each convex portion 20.
(4)補正値作成用モデル6Aの下面21の輪郭形状の補正値を算出する(第3の工程)。
 硬化工程が終了した後における光造形物(収縮後)6の輪郭が設計寸法に合致するように、硬化工程が終了した後における光造形物(収縮後)6の収縮量を見込んだ下面21の輪郭寸法(輪郭形状の補正値)を数4で算出する。なお、図5は、数4の理解を助けるための図であり、設計形状の光造形物(収縮前)6の下面21におけるコーナー部24aの設計値を(X0,Y0)とし、補正値を反映した補正造形用モデル6Bの下面21におけるコーナー部24aの補正値を(X3,Y3)としている。
Figure JPOXMLDOC01-appb-M000004
 
 なお、補正造形用モデル6Bの下面21における4コーナー部24a~24dの補正値は、下面21の形状が矩形形状であるため、1箇所のコーナー部24aの補正値を求めることにより、他の3箇所のコーナー部24b~24dの補正値を容易に求めることができる。
(4) The correction value of the contour shape of the lower surface 21 of the correction value creation model 6A is calculated (third step).
In the lower surface 21 of the lower surface 21 in which the amount of shrinkage of the optically shaped article (after contraction) after completion of the curing process is estimated so that the contour of the optically shaped article (after contraction) 6 after the completion of the curing step matches the design dimensions. The contour dimension (correction value of contour shape) is calculated by Equation 4. FIG. 5 is a diagram for helping to understand Equation 4. The design value of the corner portion 24a in the lower surface 21 of the light figure (designed before shrinkage) 6 of the design shape is (X0, Y0), and the correction value is The correction value of the corner portion 24a in the lower surface 21 of the corrected modeling model 6B reflected is set to (X3, Y3).
Figure JPOXMLDOC01-appb-M000004

The correction values of the four corner portions 24a to 24d in the lower surface 21 of the model for correction modeling 6B are the other 3 by obtaining the correction value of one corner portion 24a because the shape of the lower surface 21 is rectangular. The correction values of the corner portions 24b to 24d of the portion can be easily obtained.
(5)補正値作成用モデル6Aの上面23の実際の変化率を算出する(第2の工程)。
 補正値作成用モデル6Aの上面23の長手方向の寸法X2及び短手方向の寸法Y2を実測し、これら実測値(X2,Y2)と設計値(X0,Y0)とを使用して、補正値作成用モデル6Aの実際の変化率(α2、β2)を数5で算出する。
Figure JPOXMLDOC01-appb-M000005
 
(5) The actual change rate of the upper surface 23 of the correction value creation model 6A is calculated (second step).
Measure the dimension X2 in the longitudinal direction and the dimension Y2 in the lateral direction of the upper surface 23 of the model 6A for creating a correction value, and use these actually measured values (X2, Y2) and design values (X0, Y0) to obtain a correction value. The actual change rates (α 2, β 2) of the production model 6 A are calculated by equation 5.
Figure JPOXMLDOC01-appb-M000005
(6)補正値作成用モデル6Aの上面23における凸部20の中心位置の補正値及び凸部20の形状の補正値を算出する(第3の工程)。
 補正値作成用モデル6Aの上面23における平面形状の中心位置(図心位置)を直交座標系のxy平面の原点oとし、硬化工程が終了した後における光造形物(収縮後)6の凸部20の中心位置が設計値に合致するように、硬化工程が終了した後における光造形物6の収縮量を見込んだ凸部20の中心位置の補正値(補正後のX座標値S、補正後のY座標値T)を、実際の変化率(α2、β2)を使用して数6で算出する。なお、数6において、凸部20の中心の設計上におけるx座標値をsとし、凸部20の中心の設計上におけるy座標値をtとする。
Figure JPOXMLDOC01-appb-M000006
 
 また、硬化工程が終了した後における光造形物(収縮後)6の凸部20の半径が設計値(r)になるように、硬化工程が終了した後における光造形物(収縮後)6の収縮量を見込んだ凸部20の形状を数7で求める。なお、図4は、数7の理解を助けるための図であり、原点oから補正後のX座標値Sで且つ原点oから補正後のY座標値Tの凸部20を例示している。また、この図4において、x’は、凸部20の中心を通る直線であり、x軸と平行の直線である。また、この図4において、y’は、凸部20の中心を通る直線であり、y軸と平行の直線である。
Figure JPOXMLDOC01-appb-M000007
 
 このような凸部20の中心位置の補正値及び凸部20の形状の補正値の算出は、各凸部20毎に行う。
(6) The correction value of the center position of the convex portion 20 and the correction value of the shape of the convex portion 20 on the upper surface 23 of the correction value creation model 6A are calculated (third step).
The center position (center position) of the plane shape on the upper surface 23 of the correction value creation model 6A is set as the origin o of the xy plane of the orthogonal coordinate system, and the convex portion of the optically modeled object (after contraction) 6 after the curing step is completed Correction value of the center position of the convex part 20 (the corrected X coordinate value S, after correction) in which the shrinkage amount of the photofabricated object 6 after the curing process is finished so that the center position of 20 matches the design value The Y coordinate value T) of is calculated by Equation 6 using the actual change rates (.alpha.2, .beta.2). In Equation 6, the x coordinate value on the design of the center of the convex portion 20 is s, and the y coordinate value on the design of the center of the convex portion 20 is t.
Figure JPOXMLDOC01-appb-M000006

Moreover, of the optically shaped article (after contraction) 6 after the completion of the curing process so that the radius of the convex portion 20 of the optically shaped article (after contraction) 6 after the completion of the curing process becomes the design value (r) The shape of the convex portion 20 in consideration of the amount of contraction is obtained by Formula 7. FIG. 4 is a diagram for helping to understand Equation 7, and illustrates a convex portion 20 of the X coordinate value S after correction from the origin o and the Y coordinate value T after correction from the origin o. Further, in FIG. 4, x ′ is a straight line passing through the center of the convex portion 20 and a straight line parallel to the x-axis. Further, in FIG. 4, y ′ is a straight line passing through the center of the convex portion 20 and a straight line parallel to the y axis.
Figure JPOXMLDOC01-appb-M000007

Such calculation of the correction value of the center position of the convex portion 20 and the correction value of the shape of the convex portion 20 is performed for each convex portion 20.
(7)補正値作成用モデル6Aの上面23の輪郭形状の補正値を算出する(第3の工程)。
 硬化工程が終了した後における光造形物(収縮後)6の輪郭が設計寸法に合致するように、硬化工程が終了した後における光造形物(収縮後)6の収縮量を見込んだ上面23の輪郭寸法(輪郭形状の補正値)を数8で算出する。なお、図6は、数8の理解を助けるための図であり、設計形状の光造形物(収縮前)6の上面23におけるコーナー部25aの設計値を(X0,Y0)とし、補正値を反映した補正造形用モデル6Bの上面23におけるコーナー部25aの補正値を(X4,Y4)としている。
Figure JPOXMLDOC01-appb-M000008
 
 なお、補正造形用モデル6Bの上面23における4コーナー部25a~25dの補正値は、上面23の形状が矩形形状であるため、1箇所のコーナー部25aの補正値を求めることにより、他の3箇所のコーナー部25b~25dの補正値を容易に求めることができる。
(7) A correction value of the contour shape of the upper surface 23 of the correction value creation model 6A is calculated (third step).
In the upper surface 23 of the upper surface 23 in which the amount of contraction of the photofabricated object (after shrinkage) 6 after completion of the curing process is estimated so that the contour of the photofabricated object (after shrinkage) 6 after completion of the curing process matches the design dimensions. The outline dimension (correction value of the outline shape) is calculated by equation 8. Note that FIG. 6 is a diagram for helping understanding of the equation 8, and the design value of the corner portion 25a on the upper surface 23 of the light figure (designed before contraction) 6 of the design shape is (X0, Y0), and the correction value is The correction value of the corner portion 25a on the upper surface 23 of the corrected modeling model 6B reflected is set to (X4, Y4).
Figure JPOXMLDOC01-appb-M000008

The correction values of the four corner portions 25a to 25d on the upper surface 23 of the model for correction modeling 6B are the other 3 by obtaining the correction value of the corner portion 25a at one place because the shape of the upper surface 23 is rectangular. The correction values of the corner portions 25b to 25d of the portion can be easily obtained.
(8)3Dプリンター5を作動制御するための補正用3Dデータ7Aの作成を行う(第4の工程)。
 以上のようにして求めた補正値を3DCADソフト(例えば、ANSYS)に入力し、3DCADソフト内に予め入力されていた設計値を補正値に置き換え、3DCADソフトによって六面体の補正用3Dデータ7Aを作成する。すなわち、前記六面体は、補正値を反映した下面21の輪郭(四辺)と補正値を反映した上面23の輪郭(四辺)とを3DCADソフトのブレンドという機能によって平面27a~27dで繋ぎ合わせた形状になっている。
(8) The correction 3D data 7A for controlling the operation of the 3D printer 5 is created (fourth step).
The correction value obtained as described above is input to 3D CAD software (for example, ANSYS), the design value previously input in the 3D CAD software is replaced with the correction value, and the 3D CAD software generates 3D data 7A for hexahedron correction. Do. That is, the hexahedron has a shape in which the contour (four sides) of the lower surface 21 reflecting the correction value and the contour (four sides) of the upper surface 23 reflecting the correction value are joined by planes 27a to 27d by a function of blending of 3D CAD software. It has become.
(9)補正用3Dデータ7Aで3Dプリンターを作動させる(第5の工程)。
 補正用3Dデータ7Aは、3Dプリンター5の作動制御用データとして使用され、図1に示した硬化工程において、各光硬化性樹脂層2a1~2an毎の光14の照射範囲を決定する。そして、このような補正用3Dデータ7Aを使用して光造形された(硬化工程を経て収縮した)光造形物6は、図2に示すような高精度の形状になる。
(9) The 3D printer is operated with the correction 3D data 7A (fifth step).
The correction 3D data 7A is used as operation control data of the 3D printer 5. In the curing step shown in FIG. 1, the irradiation range of the light 14 for each of the photocurable resin layers 2a1 to 2an is determined. Then, the photofabricated object 6 that has been photofabricated (shrunk through the curing process) using such correction 3D data 7A has a shape with high accuracy as shown in FIG.
 図7は、本実施形態に係る光造形法を実行するための工程図であり、上記第1の工程から第5の工程までを時系列に並べて示す工程図である。 FIG. 7 is a process diagram for carrying out the optical forming method according to the present embodiment, and is a process diagram showing the first to fifth steps in time series.
 以上のように本実施形態に係る光造形法によれば、補正値作成用モデル6Aから算出した補正値で補正用3Dデータ7Aを作成し、その補正用3Dデータ7Aで3Dプリンター5を作動させることができるため、3Dプリンター5の作動制御を容易化することができ、高精度の光造形物6を容易に作成できる。 As described above, according to the optical forming method according to the present embodiment, the correction 3D data 7A is generated by the correction value calculated from the correction value generation model 6A, and the 3D printer 5 is operated by the correction 3D data 7A. Therefore, the operation control of the 3D printer 5 can be facilitated, and the high-precision photofabricated object 6 can be easily created.
 また、本実施形態に係る光造形法によれば、平面視した形状が円形の凸部20を光造形物6が有している場合、その凸部20の形状を補正値作成用モデル6Aから算出した補正値で補正し、その凸部20の形状の補正値を補正用3Dデータ7Aに含ませることにより、高精度の凸部20を備えた光造形物6を容易に作成できる。 Further, according to the optical forming method according to the present embodiment, when the optical formed object 6 has the convex portion 20 having a circular shape in plan view, the shape of the convex portion 20 is obtained from the correction value generation model 6A By correcting the calculated correction value and including the correction value of the shape of the convex portion 20 in the correction 3D data 7A, it is possible to easily create the photofabricated object 6 including the convex portion 20 with high accuracy.
 本発明に係る積層造形法は、上記の実施形態に係る光造形物の形状に限定されず、例えば、凸部ではなく凹部を有する形状、上面から下面を貫通する穴を有する形状、及び前記穴を複数有する形状にも適用できる。また、前記穴の形状は、特に限定されず、真円であってもよく、楕円であってもよく、三角形または四角形などの多角形であってもよい。 The layered manufacturing method according to the present invention is not limited to the shape of the optical shaped article according to the above embodiment, and for example, a shape having a recess rather than a convex portion, a shape having a hole penetrating from the upper surface to the lower surface, and the hole It can apply also to the shape which has two or more. Further, the shape of the hole is not particularly limited, and may be a perfect circle, an ellipse, or a polygon such as a triangle or a square.
 なお、本発明に係る積層造形法は、上記実施形態に係る光造形法に限定されず、粉末状の樹脂層を積層造形装置のレーザー光で焼結させて積み重ね、積み重ねた複数の樹脂層で三次元構造物を作成する粉末焼結法にも適用できる。 The lamination molding method according to the present invention is not limited to the optical molding method according to the above embodiment, and a plurality of resin layers are formed by sintering powdery resin layers with laser light of the lamination molding device and stacking them. It is applicable also to the powder sintering method which creates a three-dimensional structure.
 5……3Dプリンター(積層造形装置)、6……光造形物(三次元構造物)、6A……補正値作成用モデル、7A……補正用3Dデータ 5 ...... 3D printer (laminated molding apparatus), 6 ...... photofabricated object (three-dimensional structure), 6 A ...... model for creating correction values, 7 A ...... 3D data for correction

Claims (2)

  1.  光照射によって硬化した樹脂層を積み重ね、三次元構造物を製造する積層造形法において、
     実際の三次元構造物の製造条件と同一条件で補正値作成用モデルを作成する第1の工程と、
     前記第1の工程で作成した前記補正値作成用モデルの実際の変化率を算出する第2の工程と、
     前記三次元構造物が収縮後に設計したとおりの形状になるように、実際の変化率から三次元構造物の補正値を算出する第3の工程と、
     前記補正値で補正用3Dデータを作成する第4の工程と、
     前記補正用3Dデータで積層造形装置を作動させる第5の工程と、
     を備えたことを特徴とする積層造形法。
    In the additive manufacturing method of stacking resin layers cured by light irradiation to produce a three-dimensional structure,
    A first step of creating a correction value generation model under the same conditions as actual three-dimensional structure manufacturing conditions;
    A second step of calculating an actual change rate of the correction value creating model created in the first step;
    A third step of calculating a correction value of the three-dimensional structure from an actual change rate so that the three-dimensional structure has a shape as designed after contraction;
    A fourth step of creating correction 3D data using the correction value;
    A fifth step of operating the layered manufacturing apparatus with the correction 3D data;
    The additive manufacturing method characterized by having.
  2.  前記三次元構造物は、平面視した形状が円形の凸部を有し、
     前記円形の凸部は、前記三次元構造物が収縮後に設計したとおりの形状になるように、前記第2の工程で算出した前記変化率を使用して凸部形状の補正値を算出し、
     前記補正用3Dデータは、前記凸部形状の補正値を含む、
     ことを特徴とする積層造形法。
    The three-dimensional structure has a convex portion having a circular shape in plan view,
    The correction value of the convex portion shape is calculated using the change rate calculated in the second step so that the circular convex portion has a shape as designed after contraction of the three-dimensional structure.
    The correction 3D data includes a correction value of the convex shape.
    Additive manufacturing method characterized by
PCT/JP2018/023299 2017-07-06 2018-06-19 Additive layer manufacturing method WO2019009064A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017132913 2017-07-06
JP2017-132913 2017-07-06
JP2018-092118 2018-05-11
JP2018092118A JP2019014231A (en) 2017-07-06 2018-05-11 Layer manufacturing method

Publications (1)

Publication Number Publication Date
WO2019009064A1 true WO2019009064A1 (en) 2019-01-10

Family

ID=64950833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023299 WO2019009064A1 (en) 2017-07-06 2018-06-19 Additive layer manufacturing method

Country Status (1)

Country Link
WO (1) WO2019009064A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113245557A (en) * 2021-07-14 2021-08-13 西安赛隆金属材料有限责任公司 Powder laying control method of additive manufacturing device, powder laying device and additive manufacturing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042810A1 (en) * 2014-09-19 2016-03-24 株式会社東芝 Additive manufacturing device and additive manufacturing method
JP2016527099A (en) * 2013-06-07 2016-09-08 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティックEssilor International Compagnie Generale D’ Optique Method and machine for making spectacle lenses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016527099A (en) * 2013-06-07 2016-09-08 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティックEssilor International Compagnie Generale D’ Optique Method and machine for making spectacle lenses
WO2016042810A1 (en) * 2014-09-19 2016-03-24 株式会社東芝 Additive manufacturing device and additive manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113245557A (en) * 2021-07-14 2021-08-13 西安赛隆金属材料有限责任公司 Powder laying control method of additive manufacturing device, powder laying device and additive manufacturing device

Similar Documents

Publication Publication Date Title
JP6655345B2 (en) Three-dimensional article additive manufacturing support method, computer software, recording medium, and additive manufacturing system
JP2018001725A (en) Three-dimensional data-generating device, three-dimensional molding apparatus, production method of molded article, and program
KR20160135551A (en) High Speed 3D Printer
KR101722979B1 (en) An Manufacturing Method of 3 Dimensional Shape
EP3560712A1 (en) Three-dimensional printing system
KR101688083B1 (en) 3d modeling method for 3d printer
JP3515419B2 (en) Optical three-dimensional molding method and apparatus
WO2019009064A1 (en) Additive layer manufacturing method
KR102272888B1 (en) 3D printer with changing shape of printing plate and its operation method
JP2017114011A (en) Shaping apparatus and manufacturing method of three-dimensional article
JP4140891B2 (en) Optical three-dimensional modeling method and apparatus
KR101199496B1 (en) Processing method of large area structure in low cost type stereolithography system using small DMD and UV-LED
JP2019014231A (en) Layer manufacturing method
JP2010052318A (en) Light shaping method
JP5993224B2 (en) 3D modeling equipment
KR102264538B1 (en) Outputting method in 3D(three-dimensional) printer for improving accuracy of printout
JP2007021922A (en) Lamination shaping method and apparatus
JP2018049335A (en) Data creation device, molding device, molding method and program
KR102227175B1 (en) Printing method of 3d printer
JP6796572B2 (en) 3D object forming device and its method
TW201729022A (en) Three dimensional printing method
JP2011056697A (en) Laminate shaping apparatus
JP6840944B2 (en) 3D data generator, modeling device, manufacturing method and program of modeled object
JP2015150761A (en) Optical shaping method, optical shaping apparatus and production program
Tuteski et al. New product design development based on additive manufacturing & rapid prototyping methodology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828287

Country of ref document: EP

Kind code of ref document: A1