WO2019008898A1 - Resin film forming film and resin film forming composite sheet - Google Patents

Resin film forming film and resin film forming composite sheet Download PDF

Info

Publication number
WO2019008898A1
WO2019008898A1 PCT/JP2018/018248 JP2018018248W WO2019008898A1 WO 2019008898 A1 WO2019008898 A1 WO 2019008898A1 JP 2018018248 W JP2018018248 W JP 2018018248W WO 2019008898 A1 WO2019008898 A1 WO 2019008898A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
film
resin
forming
meth
Prior art date
Application number
PCT/JP2018/018248
Other languages
French (fr)
Japanese (ja)
Inventor
啓示 布施
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to MYPI2019007673A priority Critical patent/MY194458A/en
Priority to SG11201913224TA priority patent/SG11201913224TA/en
Priority to CN201880042700.3A priority patent/CN110831766B/en
Priority to KR1020197038836A priority patent/KR102507152B1/en
Priority to JP2019528382A priority patent/JP7044780B2/en
Publication of WO2019008898A1 publication Critical patent/WO2019008898A1/en
Priority to PH12020500005A priority patent/PH12020500005A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive

Definitions

  • the present invention relates to a resin film-forming film and a resin film-forming composite sheet.
  • Priority is claimed on Japanese Patent Application No. 2017-132980, filed July 6, 2017, the content of which is incorporated herein by reference.
  • Semiconductor chips that do not have bumps on the circuit surface are the most widely used, and on the back surface, usually, as a film for forming a resin film, the semiconductor chip is die-bonded to the circuit formation surface of the substrate.
  • the film adhesive used is provided. That is, the film for resin film formation in this case is a film-like adhesive.
  • a semiconductor chip having bumps on the circuit surface is flip-chip connected to the circuit formation surface of the substrate by the bumps.
  • a protective film is usually provided on the back surface as the resin film. That is, the resin film in this case is a protective film, and the film for resin film formation is a film for protective film formation.
  • the semiconductor chip with a resin film and the semiconductor chip with a film for resin film formation are manufactured using, for example, a composite sheet for resin film formation comprising a support sheet and comprising a resin film formation film on the support sheet. Be done. More specifically, it is as follows. That is, first, the composite sheet for resin film formation is attached to the back surface of the semiconductor wafer by the film for resin film formation in this sheet. Next, if necessary, the resin film-forming film is cured, and then the semiconductor wafer is diced together with the resin film-forming film or the cured product thereof into pieces into semiconductor chips. Next, the semiconductor chip is separated from the support sheet and picked up in a state where the back surface is provided with the resin film-forming film or the cured product after cutting.
  • the semiconductor chip with a film for resin film formation or the semiconductor chip with a resin film is obtained.
  • the most widely used method is a method using a dicing blade (blade dicing).
  • blade dicing When performing blade dicing, the support sheet functions as a dicing sheet.
  • thermosetting resin film formation which contains an inorganic filler in a specific range amount relative to the organic resin component, has a melt viscosity before thermal curing within the specific range, and is excellent in adhesion to an adherend
  • thermosetting type die bond film a thermosetting type die bond film
  • a composite sheet for forming a resin film dicing die bond film
  • the present invention is a resin film-forming film for forming a resin film-forming composite sheet together with a support sheet and for forming a resin film on the back surface of a semiconductor chip, wherein the resin film-forming film is used as a blade.
  • the resin film-forming film is used as a blade.
  • the present invention is a film for forming a resin film, wherein a first laminate having a size of 50 mm ⁇ 50 mm and a thickness of 200 ⁇ m, which is obtained by laminating a plurality of films for forming a resin film, is produced.
  • the film for film formation is energy ray curable
  • the first cured product obtained by energy ray curing of the first laminate is used as a first test piece
  • the film for resin film formation is non-energy ray curable.
  • the water absorption of the first test piece is 0.55% or less
  • the film for resin film formation sticks the 2nd laminated body which is stuck on a silicon mirror wafer, and the film for resin film formation is energy beam hardening property
  • the above-mentioned in the 2nd above-mentioned layered product Enel film for resin film formation
  • the cured second laminate after Gie ray curing to form a second cured product is used as a second test piece, and the second test piece is allowed to stand for 30 minutes under an environment of a temperature of 23 ° C. and a relative humidity of 50%.
  • the adhesion after the aging of the second cured product and the silicon mirror wafer when measured with time is measured, and the second test piece after aging is immersed in pure water for 2 hours, 2
  • the change in adhesion of the second test piece calculated from the adhesion after aging and the adhesion after immersion is 60% or less
  • the film for forming a resin film is non-energy ray curable
  • the second laminate is used as a second test piece, and the second test piece has a temperature of 23.degree. C. and a relative humidity of 50%.
  • the resin film-forming film and the resin film when left to stand for 30 minutes under the environment of The adhesion after the aging with the silicon mirror wafer is measured, and when the second test piece after aging is immersed in pure water for 2 hours, it is between the resin film-forming film and the silicon mirror wafer.
  • the film for resin film formation whose adhesive force change rate of the said 2nd test piece calculated from the adhesive force after immersion and adhesive force after immersion when measuring adhesive force after immersion is provided.
  • the third cured product obtained by energy beam curing the third laminate is used as a third test piece, and when the resin film-forming film is non-energy beam curable, the third laminate is As a test piece, when the third test piece is immersed in pure water for 2 hours, it is a tensile test based on JIS K 7127, and the test speed is measured as 200 mm / min.
  • the Young's modulus may be 15 MPa or more.
  • the film for resin film formation of the present invention contains a filler, and in the film for resin film formation, the ratio of the content of the filler to the total mass of the film for resin film formation is 25 to 75% by mass. It may be
  • the present invention comprises a support sheet, and on the support sheet, a resin film-forming film, wherein the resin film-forming film is the resin film-forming film of the present invention described above. Provide a composite sheet.
  • the film for resin film formation of the present invention can constitute a composite sheet for resin film formation together with a support sheet, and can form a resin film on the back surface of a semiconductor chip.
  • blade dicing is performed to obtain a semiconductor chip with a film for forming a resin film or a semiconductor chip with a resin film having a small size, and these are picked up from the support sheet to the support sheet. It is possible to suppress the remaining of the resin film-forming film or the resin film.
  • the film for forming a resin film of the present invention has a water absorption coefficient of 0.55% or less of the following first test piece produced from the film, and the following second test piece produced from the film
  • the adhesive force change rate is 60% or less.
  • the first test piece is formed by laminating a plurality of the resin film-forming films and has a size of 50 mm ⁇ 50 mm and a thickness of 200 ⁇ m. It is 1 laminated body.
  • the first test piece is a first cured product obtained by energy ray curing the first laminate.
  • the second test piece When the film for resin film formation is non-energy ray curable, the second test piece is a second laminate formed by sticking the film for resin film formation on a silicon mirror wafer, and the film for resin film formation When it is energy ray curable, the second test piece is a cured second laminate after energy ray curing of the resin film-forming film in the second laminate to form a second cured product .
  • the water absorption rate (%) of the first test piece is calculated by the formula “(W B ⁇ W A ) / W A ⁇ 100”.
  • W A is the mass of the first test piece before immersion in pure water
  • W B is the first test piece after immersing the first test piece for which W A was measured in pure water for 2 hours
  • the adhesive strength change rate (%) of the second test piece is calculated by the formula “(
  • PA 2 is a film for forming a resin film and silicon in the second test piece when the second test piece is allowed to stand for 30 minutes under an environment of a temperature of 23 ° C. and a relative humidity of 50% for a lapse of time. Adhesive force with mirror wafer (adhesive force after aging).
  • PB2 is the time when the second test piece after this aging is immersed in pure water for 2 hours, between the resin film forming film and the silicon mirror wafer in the second test specimen after this immersion Adhesive force (adhesive force after immersion).
  • the adhesive force change rate (%) of the second test piece is calculated by the formula "(
  • P A1 is the second cured product in the second test piece and the silicon mirror when the second test piece is allowed to stand for 30 minutes under an environment of a temperature of 23 ° C. and a relative humidity of 50% for a while.
  • Adhesive force with the wafer Adhesive force after aging.
  • P B1 Adhesive force after aging.
  • P B1 Adhesive force after aging.
  • P B1 Adhesion between the second cured product in the second test piece after this immersion and the silicon mirror wafer when the second test piece after this aging is immersed in pure water for 2 hours.
  • Force adheresion after immersion. The above-mentioned water absorption rate and adhesive force change rate will be described in more detail later.
  • the film for resin film formation of the present invention can be used to form a resin film on the surface of the semiconductor chip opposite to the circuit surface (sometimes referred to as "back surface” in this specification). .
  • the film for resin film formation of the present invention may be either curable or non-curable as described later.
  • the resin film-forming film is curable, the cured product of the resin film-forming film is regarded as a resin film, and the resin film-forming film is not. If the resin film is curable, it is considered that the resin film is formed at the stage where the resin film-forming film is attached to the target location.
  • examples of the resin film-forming film or resin film include a film-like adhesive used for die-bonding the semiconductor chip to the circuit-forming surface of the substrate.
  • the semiconductor chip has bumps on the circuit surface, such semiconductor chips are flip chip connected to the circuit formation surface of the substrate by bumps, and the back surface of the semiconductor chip is peeled off as it is. It becomes.
  • the film for forming a resin film when used for such a semiconductor chip includes a film for forming a protective film, and the resin film includes a protective film for protecting the back surface. That is, the film for resin film formation of this invention can be used for formation of the said film adhesive or protective film.
  • the film for resin film formation of the present invention When the film for resin film formation of the present invention is attached to the surface of the semiconductor wafer opposite to the circuit surface (this specification may be referred to as “rear surface” as in the case of the semiconductor chip), It can be used in the state which comprised the composite sheet for resin film formation with a support sheet.
  • the resin film-forming film of the present invention satisfies the conditions of the water absorption rate and the adhesive strength change rate.
  • the resin film to the support sheet Remaining of the film for formation or the resin film can be suppressed.
  • the film for resin film formation and the resin film have a projection-like shape or the like from the surface opposite to the side in contact with the semiconductor chip at the time of pickup
  • the force is applied by a pushing means having the shape of
  • the portion to which a force is applied and the vicinity thereof are hard to be peeled off from the semiconductor chip because the force pressed against the semiconductor chip is strong.
  • the resin film-forming film and the resin film since the force pressed against the semiconductor chip is weak at the place away from the place where the force is applied, the place where the force is applied and the vicinity thereof Also, it is easy to peel off the semiconductor chip.
  • the vicinity of the center and the vicinity of the resin film-forming film or resin film peel off from the semiconductor chip
  • the peripheral edge far from the center and the vicinity thereof are more easily peeled from the semiconductor chip than the vicinity of the center and the vicinity thereof.
  • the portion to which a force is applied and the vicinity thereof are relatively difficult to be peeled off from the semiconductor chip as described above, but depending on the conditions, they may be peeled off. .
  • cooling water in the contact points between the semiconductor wafer and the resin film-forming film or resin film
  • Dicing while pouring also called cutting water
  • the dicing time becomes longer due to the large number of dicing points, and the time for which the resin film-forming film and the resin film are exposed to cooling water becomes long. I will. In this case, the resin film-forming film and the resin film become softer than before water absorption due to water absorption, and may be torn by the force applied at the time of pickup.
  • the cooling water (cutting water) used at dicing may be between the resin film-forming film or resin film and the semiconductor chip. Break into Therefore, after that, the film for resin film formation or the resin film does not adhere closely to the semiconductor chip at such a place, while the film or resin film for resin film formation easily maintains the state of adhesion to the support sheet .
  • thermosetting resin which shows a moisture absorption in a specific range after thermosetting.
  • a film for film formation a thermosetting type die-bonding film
  • the moisture absorption rate before the thermosetting is not disclosed.
  • these films for thermosetting resin film formation are intended to prevent the generation of cracks in the semiconductor package in the reflow process. That is, the subject of the invention currently disclosed by these patent documents differs from the subject of this invention.
  • the moisture absorption rate of the film for thermosetting resin film formation disclosed in these patent documents is completely unrelated to the water absorption rate in the film for resin film formation of the present invention, and the water absorption rate in the present invention It does not recall anything.
  • a semiconductor chip with a film for resin film formation means “a semiconductor chip with a film for resin film formation on the back surface", and “a semiconductor chip with a resin film”. , “Having a resin film on the back surface of the semiconductor chip”.
  • the resin film in the semiconductor chip with a resin film may be a cured product in which the resin film-forming film is completely cured, or a cured product which is not completely cured (in other words, a curing in which the curing degree is further increased) Object).
  • the term "energy beam” means an electromagnetic wave or charged particle beam having energy quantum, and examples thereof include ultraviolet light, radiation, electron beam and the like.
  • the ultraviolet light can be irradiated, for example, by using a high pressure mercury lamp, a fusion lamp, a xenon lamp, a black light or an LED lamp as an ultraviolet light source.
  • the electron beam can irradiate what was generated by the electron beam accelerator or the like.
  • energy ray curing property means a property to be cured by irradiation with energy rays
  • non energy ray curing property is a property to be not cured even by irradiating energy rays Means
  • the resin film-forming film of the present invention may be curable or non-curable.
  • the curable resin film-forming film may be either thermosetting or energy ray curable, and may have both thermosetting and energy ray curable properties.
  • the film for resin film formation can be formed using the composition for resin film formation containing the constituent material.
  • non-hardenable means the property which is not hardened
  • the film for forming a resin film of the present invention has a hardenability which does not depend on the presence or absence of curability, and in the case where the film has curability, the filler described later regardless of which one of thermosetting and energy ray curable. Those containing fillers such as D) are preferred. By using the filler, it is possible to more easily manufacture a resin film-forming film which satisfies the conditions of the water absorption rate and the adhesive force change rate.
  • the ratio of the content of the filler to the total mass of the film for resin film formation is preferably 25 to 75% by mass, and more preferably 28 to 72% by mass. Since the filler is significantly less likely to absorb water than the other components, it is easier to set the water absorption to 0.55% or less when the ratio of the content of the filler is the lower limit value or more.
  • the first test piece When the resin film-forming film is non-energy ray curable, the first test piece is 50 mm ⁇ 50 mm in size, in which a plurality of resin film-forming films are laminated in their thickness direction. It is a first laminate having a thickness of 200 ⁇ m.
  • the first test piece When the resin film-forming film is energy ray curable, the first test piece is a first cured product obtained by irradiating the first laminate with energy rays to cure the first laminate with energy rays. .
  • the film for resin film formation is a thermosetting, regardless of whether the film for resin film formation is energy ray curing or non-energy ray curing, the first laminate and the first cured product are It is preferable that none of them is thermally cured.
  • the plurality of resin film-forming films used for producing the first laminate all have the same composition.
  • the thicknesses of the plurality of resin film-forming films may be all the same, all may be different, or only some may be the same, but preferably all are the same.
  • the first laminate for example, a plurality of resin film-forming films of any size larger than 50 mm ⁇ 50 mm are laminated and bonded so that the total thickness is 200 ⁇ m, and the size of 50 mm ⁇ 50 mm It can be produced by punching out (cutting).
  • a plurality of resin film-forming films with a size of 50 mm ⁇ 50 mm are laminated with their peripheral edge portions aligned so that the total thickness is 200 ⁇ m. It can also be produced by pasting together.
  • the produced 1st laminated body is used as a 1st test piece as it is.
  • the prepared first laminate is further irradiated with energy rays to cure all resin film forming films in the first laminate.
  • the obtained first cured product is used as a first test piece.
  • the irradiation conditions of the energy beam to the first laminate (film for forming a fat film) when producing the first cured product are not particularly limited as long as the first laminate is sufficiently energy beam cured.
  • the illuminance of energy rays during curing of the first laminate is preferably 120 to 280 mW / cm 2
  • the light amount of energy rays is preferably 100 to 1000 mJ / cm 2 .
  • the mass W A of the first test piece before being immersed in pure water is measured. At this time, it is preferable to measure the mass W A of the first test piece in a state where the first test piece after preparation does not show a clear mass change due to moisture absorption or the like. By doing this, the water absorption rate described later can be determined with higher accuracy.
  • the first test piece whose mass W A has been measured is immersed in pure water for 2 hours. At this time, the first test piece is not exposed in the pure water so as to be exposed (in other words, so that the whole first test piece is completely immersed in the pure water) 1 Sink the test piece.
  • the temperature of pure water during immersion of the first test piece is preferably 18 to 28 ° C. By doing this, the water absorption rate described later can be determined with higher accuracy.
  • the first test piece After immersing in pure water for 2 hours, the first test piece is promptly taken out of the pure water, and if necessary, excess water droplets adhering to the surface of the first test piece are drained (removed), for example. Then, the mass W B of the first test piece after this immersion is measured. Then, using the values of these W A and W B , the water absorption (%) of the first test piece is calculated by the formula “(W B ⁇ W A ) / W A ⁇ 100”.
  • the water absorption rate of the first test piece is 0.55% or less, preferably 0.53% or less, and may be, for example, 0.4% or less.
  • the semiconductor chip with a film for resin film formation with a small size or the semiconductor chip with a resin film having a small size is picked up from the support sheet by the water absorption of the first test piece being equal to or less than the upper limit, the resin film is formed on the support sheet The effect of suppressing the remaining film or resin film is further enhanced.
  • the lower limit value of the water absorption rate of the first test piece is not particularly limited, and may be, for example, 0%. It can be said that the physical properties of the first test piece (in other words, the film for forming a resin film or a resin film) are less likely to change in physical properties as the water absorption rate of the first test piece is lower.
  • the water absorption rate of the first test piece is preferably 0.01% or more, and more preferably 0.05% or more from the viewpoint of facilitating the production of the resin film-forming film.
  • the water absorption rate of the first test piece can be appropriately adjusted to be a numerical value range determined by arbitrarily combining any of the lower limit values described above and any upper limit value.
  • the water absorption rate of the first test piece is preferably 0 to 0.55%, more preferably 0 to 0.53%, and may be 0 to 0.4% or the like.
  • Adhesive force change rate of second test piece >> In the resin film-forming film, the water absorption rate of the first test piece satisfies the above-described condition, and the adhesive strength change rate of the second test piece is 60% or less. Below, the adhesive force change rate of a 2nd test piece is demonstrated in detail. The rate of change in adhesion indicates the degree of change in adhesion before and after the second test piece is immersed in pure water under specific conditions.
  • the second test piece is a second laminate in which the film for resin film formation is attached to a silicon mirror wafer.
  • the second test piece irradiates the film for resin film formation in the second laminate with an energy ray to cure the film for resin film energy ray curing It is a cured 2nd laminated body (namely, hardened
  • the resin film-forming film is a thermosetting resin
  • the second laminate can be produced by sticking one surface of a resin film-forming film to the mirror surface of a silicon mirror wafer.
  • the size of the silicon mirror wafer used for producing the second laminate may be equal to or larger than the size of the resin film-forming film, and can be appropriately adjusted so that the adhesive force described later can be measured accurately.
  • the thickness of the silicon mirror wafer is preferably 350 to 760 ⁇ m. By doing this, it is possible to measure the adhesive force described later with higher accuracy.
  • the size of the resin film-forming film used for producing the second laminate is not particularly limited. However, it is preferable that the width of the film for resin film formation which is a measuring object of the adhesive force with a silicon mirror wafer (in other words, it peels from a silicon mirror wafer) is 25 mm.
  • the length of the resin film-forming film to be measured is not particularly limited as long as the adhesive strength can be measured with high accuracy, but it is preferably 150 to 250 mm.
  • the size of the film for resin film formation, which is a measurement target of the adhesion after the aging (adhesion before immersion described later), and the size of the film for formation of a resin film, which is measurement of adhesion after the immersion, are the same. .
  • the resin film-forming film At the time of production of the second laminate, it is preferable to heat the resin film-forming film at, for example, 35 to 45 ° C. and attach it to a silicon mirror wafer. By doing so, a more stable second laminate can be obtained.
  • the produced second laminate is used as it is as a second test piece.
  • the resin film-forming film in the produced second laminate is further subjected to energy from the side opposite to the side provided with the silicon mirror wafer of this film.
  • the cured second laminate i.e., the cured product of the resin film-forming film
  • the provided silicon mirror wafer is used as a second test piece.
  • the irradiation conditions of the energy ray to the film for oil film formation when producing the second cured product (the cured second laminate) are particularly limited as long as the oil film-forming film is sufficiently energy ray cured. I will not.
  • the illuminance and the light amount of the energy ray at the time of preparation of the second cured product can be the same as the illuminance and the light amount of the energy ray at the time of curing of the first laminate described above.
  • the second test piece When the film for resin film formation is energy ray curable, in order to obtain the adhesive force change rate of the second test piece, first, the second test The pieces are allowed to stand for 30 minutes in an environment of temperature 23 ° C. and relative humidity 50% for aging. Then, in the second test piece after this aging, the adhesion after aging between the second cured product and the silicon mirror wafer under an environment of 23 ° C. (herein referred to as “adhesion before immersion”) There is also a measure) PA1 . At this time, the second test piece after fabricated, while not shown a clear characteristic change, it is preferable to measure the time after adhesion P A1. By doing this, it is possible to obtain the rate of change in adhesive force described later with higher accuracy.
  • the second test piece after aging of the measuring object is immersed in pure water for 2 hours. At this time, in order to prevent the second test piece from being exposed out of the pure water (in other words, so that the entire second test piece is completely immersed in pure water), 2 Sink the test piece.
  • the temperature of pure water during immersion of the second test piece may be the same as the temperature of pure water during immersion of the first test piece described above. By doing this, it is possible to obtain the rate of change in adhesive force described later with higher accuracy.
  • the second test piece After immersing in pure water for 2 hours, the second test piece is promptly taken out of the pure water, and if necessary, for example, excess water droplets adhering to the surface of the second test piece are drained (removed) and, in the second specimen after the immersion, in an environment of 23 ° C., to measure the dip after adhesion P B1 between the second cured silicon mirror wafer.
  • the second test piece after immersion in a state do not show a definite change in characteristics, it is preferable to measure the dip after adhesion P B1. By doing this, it is possible to obtain the rate of change in adhesive force described later with higher accuracy.
  • any time after adhesive strength P A1 and after immersion adhesion P B1 is a peel force measured when performing the operation for peeling off the second cured silicon mirror wafer.
  • interfacial failure may have occurred between the second cured product and the silicon mirror wafer, agglomeration in a second cured product Destruction may have occurred.
  • the second cured product may be peeled off using a strong adhesive tape. That is, when measured with time after adhesion P A1, the measurement object, the second cured before immersion in pure water, keep sticking a strong adhesive tape. Then, by setting the object to which the peeling force is directly applied as the strong adhesive tape, the peeling speed is 300 mm / min so that the angle formed by the peeling surface is 180 °, at a stage before immersion in pure water In the second test piece, the 180 ° peel is performed to peel off the laminate of the second cured product and the strong adhesive tape. The peel strength at this time is (mN / 25 mm) was measured, it is also possible to this value with time after adhesion P A1.
  • the strong adhesive tape When the strong adhesive tape is used, the strong adhesive tape is attached to the resin film-forming film before curing the resin film-forming film, and then the resin film-forming film is cured to obtain a second cured product. Alternatively, without attaching the strong adhesive tape to the resin film-forming film, the resin film-forming film is cured to form a second cured product, and the strong adhesive tape is attached to the second cured product. May be
  • After immersion adhesive strength P B1 can also be measured in the case of time after adhesion P A1 and the same method. That is, when measuring after immersion adhesive strength P B1, after immersion for 2 hours in pure water a second test piece after the above aging, two surfaces occurs when the second cured product was peeled off in the second test piece The second cured product is peeled at a peeling speed of 300 mm / min, so-called 180 ° peeling is performed so that the angle formed by the peeling surface is 180 °. And the peeling force (mN / 25 mm) at this time can be measured, and this value can be made into post-immersion adhesive power PB1 .
  • the "angle formed peeling two face" is similar to the case of the measurement of time after the adhesive strength P A1 above.
  • the second test piece to which the strong adhesive tape is attached is immersed in pure water for 2 hours, and then the object to which the peeling force is directly applied is the strong adhesive tape, and the angle of the peeling surface is 180 °
  • the 180 ° peeling is performed to peel off the laminate of the second cured product and the strong pressure-sensitive adhesive tape at a peeling speed of 300 mm / min.
  • the peeling force (mN / 25 mm) at this time can be measured, and this value can be made into post-immersion adhesive power PB1 .
  • the film for resin film formation may be cured to be a second cured product by sticking to a film, and then the film for resin film formation may be cured without sticking the strong adhesive tape to the film for resin film formation.
  • the second adhesive may be a second cured product, and the strong adhesive tape may be attached to the second cured product.
  • the film for resin film formation along the outer periphery of the said strong adhesive tape cut after forming it is preferred to measure the time after adhesion P A1 and after immersion adhesion P B1.
  • the adhesive power PA1 can be more easily measured after the passage of time.
  • after immersion adhesive strength P B1 not only after immersion adhesive strength P B1 it can be more easily measured, can more accurately reflect the effect of immersion in pure water of the second cured product, after dipping adhesion P B1 can be measured with higher accuracy.
  • the second laminate is used as it is as a second test piece (in other words, a silicon mirror).
  • the adhesive force change rate (%) of the second test piece can be obtained. More specifically, it is as follows.
  • the second test piece is subjected to an environment at a temperature of 23.degree. C. and a relative humidity of 50%. Let stand for 30 minutes and let it age. Then, in a second test piece after the aging under 23 ° C. environment after aging adhesion between the resin film for forming a film and the silicon mirror wafer (before immersion adhesive strength) is measured P A2. At this time, the second test piece after fabricated, while not shown a clear characteristic change, it is preferable to measure the time after adhesion P A2. By doing this, it is possible to obtain the rate of change in adhesive force described later with higher accuracy.
  • the second test piece after aging of the measuring object is immersed in pure water for 2 hours.
  • the immersion of the second test piece in the pure water at this time can be performed in the same manner as in the case where the above-mentioned oil film-forming film is energy ray curable.
  • the second test piece After immersing in pure water for 2 hours, the second test piece is promptly taken out of the pure water, and if necessary, for example, excess water droplets adhering to the surface of the second test piece are drained (removed) and, in the second specimen after the immersion, under 23 ° C. environment to measure the dip after adhesion P B2 between the resin film for forming a film and the silicon mirror wafer.
  • the second test piece after immersion in a state do not show a definite change in characteristics, it is preferable to measure the dip after adhesion P B2. By doing this, it is possible to obtain the rate of change in adhesive force described later with higher accuracy.
  • adhesive force (before immersion adhesive strength) P A2 and after immersion adhesion P B2 is the same second specimen plurality prepared, may be measured separately in these second test pieces, one The same second test piece may be measured sequentially. In one and the same second specimen, if sequential measuring the time after adhesion P A2 and after immersion adhesion P B2, for example, in one and the same second specimen, at different locations, After aging, the adhesive power PA2 and the post-immersion adhesive power PB2 may be separately measured.
  • any time after adhesive strength P A2 and after immersion adhesion P B2 is the peel force is measured when performing the operation of peeling from the silicon mirror wafer pulling a resin film for forming a film.
  • interfacial failure may also be caused between the resin film for forming a film and the silicon mirror wafer, a resin film for forming a film of Cohesive failure may occur.
  • the resin film-forming film may be peeled off using a strong adhesive tape. That is, when measured with time after adhesion P A2, the measurement object, the resin film for forming a film before immersion in pure water, keep sticking a strong adhesive tape. Then, by setting the object to which the peeling force is directly applied as the strong adhesive tape, the peeling speed is 300 mm / min so that the angle formed by the peeling surface is 180 °, at a stage before immersion in pure water In the second test piece, the laminate of the film for resin film formation and the strong pressure-sensitive adhesive tape is peeled off at 180 °. The peel strength at this time is (mN / 25 mm) was measured, it is also possible to this value with time after adhesion P A2.
  • the post-dipping adhesive power PB2 can also be measured after aging in the same manner as in the case of the adhesive power PA2 . That is, when measuring after immersion adhesive strength P B2 is generated when the second test piece after the above aging was immersed for 2 hours in pure water, the peel the resin film for forming a film in the second test piece 2 The film for resin film formation is peeled off at a peeling speed of 300 mm / min so that the angle formed by the peeling surface of the surface is 180 °, so-called 180 ° peeling is performed. And the peeling force (mN / 25 mm) at this time can be measured, and this value can be made into post-dipping adhesive power PB2 .
  • the "angle formed peeling two face" is similar to the case of the measurement of time after the adhesive strength P A2 above.
  • the second test piece to which the strong adhesive tape is attached is immersed in pure water for 2 hours, and then the object to which the peeling force is directly applied is the strong adhesive tape, whereby the angle formed by the peeling surface is 180 °.
  • the laminate of the film for resin film formation and the strong pressure-sensitive adhesive tape is peeled off at 180 ° at a peeling speed of 300 mm / min. The peel strength at this time is (mN / 25 mm) was measured, it is also possible to this value after immersion adhesive strength P B2.
  • the size of the strong adhesive tape is measured with time after adhesion P A2 and after immersion adhesive strength P B2 (in other words, is peeled from the silicon mirror wafer) and the size of the resin film for forming a film are the same Is preferred.
  • the adhesive power PA2 can be more easily measured after the passage of time.
  • after immersion adhesive strength P B2 is not only more easily measured after immersion adhesive strength P B2, it can more accurately reflect the effect of immersion in pure water of the resin film for forming a film, after dipping adhesive The force P B2 can be measured with higher accuracy.
  • the adhesive strength change rate of the second test piece is 60% or less, preferably 50% or less, more preferably 45% or less, and particularly preferably 40% or less.
  • the resin to the support sheet The effect of suppressing the remaining of the film for film formation or the resin film is further enhanced.
  • the lower limit value of the adhesive strength change rate of the second test piece is not particularly limited, and may be, for example, 0%. It can be said that, as the rate of change in adhesive strength of the second test piece is lower, the adhesive strength of the second test piece (in other words, the resin film-forming film or resin film) is less susceptible to change in adhesive power even if it is exposed to water for a long time.
  • the adhesive force change ratio of the second test piece is preferably 3% or more, and more preferably 5% or more, from the viewpoint of facilitating the production of the resin film-forming film.
  • the adhesive force change rate of the second test piece can be appropriately adjusted so as to be a numerical range determined by arbitrarily combining any of the lower limit values described above and any upper limit value.
  • the adhesive strength change rate of the second test piece is preferably 0 to 60%, more preferably 0 to 50%, still more preferably 0 to 45%, and 0 to 40%. Being particularly preferred.
  • the film for resin film formation is a tensile test based on JIS K 7127 when the third test piece is immersed in pure water for 2 hours, and the third film after immersion is measured at a test speed of 200 mm / min. That whose Young's modulus of a test piece becomes 15 or more MPa is preferred.
  • the third test piece is a laminate of a plurality of resin film-forming films in the thickness direction, and the size is 15 mm ⁇ 150 mm, It is a third laminate with a thickness of 200 ⁇ m.
  • the third test piece is a third cured product obtained by irradiating the third laminate with an energy beam and energy ray curing the third laminate.
  • the resin film-forming film is a thermosetting resin
  • the third laminate and the third cured product are the same regardless of whether the resin film-forming film is energy ray curable or non-energy ray curable. It is preferable that none of them is thermally cured.
  • the plurality of resin film-forming films used for producing the third laminate all have the same composition.
  • the thicknesses of the plurality of resin film-forming films may be all the same, all may be different, or only some may be the same, but preferably all are the same.
  • the third laminate for example, a plurality of resin film-forming films of any size larger than 15 mm ⁇ 150 mm are laminated and bonded such that the total thickness is 200 ⁇ m, and the size of 15 mm ⁇ 150 mm It can be produced by punching out (cutting).
  • a plurality of resin film-forming films each having a size of 15 mm ⁇ 150 mm are laminated with their peripheral edge portions aligned so that the total thickness is 200 ⁇ m. It can also be produced by pasting together.
  • the produced 3rd laminated body is used as a 3rd test piece as it is. If the resin film-forming film is energy ray curable, the prepared third laminate is further irradiated with energy rays to cure all resin film-forming films in the third laminate. The resulting third cured product is used as a third test piece.
  • the irradiation conditions of the energy beam to the third laminate (film for forming a fat film) when producing the third cured product are not particularly limited as long as the third laminate is sufficiently energy beam cured.
  • the illuminance and the light amount of the energy ray at the time of preparation of the third cured product may be the same as the illuminance and the light amount of the energy ray at the time of curing of the first laminate.
  • the Young's modulus of the third test piece after immersion is more preferably 17 MPa or more, and particularly preferably 19 MPa or more.
  • the upper limit value of the Young's modulus of the third test piece after immersion is not particularly limited.
  • the Young's modulus is preferably 350 MPa or less, more preferably 300 MPa or less, and particularly preferably 250 MPa or less.
  • the film for resin film formation in which the Young's modulus is equal to or less than the upper limit is easier to manufacture.
  • the Young's modulus of the third test piece after immersion is appropriately selected so that it is determined by arbitrarily combining any of the lower limit values described above and any upper limit value. It can be adjusted.
  • the Young's modulus is preferably 15 to 350 MPa, more preferably 17 to 300 MPa, and particularly preferably 19 to 250 MPa. However, these are examples of the Young's modulus.
  • the Young's modulus of the third test piece before immersion in pure water measured at a test speed of 200 mm / min in a tensile test in accordance with JIS K 7127 is 20 to 200 MPa.
  • the pressure is preferably 30 to 190 MPa, more preferably 40 to 180 MPa.
  • the film for resin film formation is a tensile test based on JIS K 7127 when the third test piece is immersed in pure water for 2 hours, and the third film after immersion is measured at a test speed of 200 mm / min.
  • the elongation at break of the test piece is preferably 15 to 410%, and more preferably 20 to 390%.
  • the breaking elongation of the third test piece is determined from the elongation of the third test piece when the third test piece breaks when measuring the Young's modulus of the third test piece described above. This is the same both before and after immersing the third test piece in pure water.
  • the elongation at break is X%
  • X is a positive number
  • the test piece has its original length in the tensile direction (in other words, it is pulled Test when extended by X% of the length when not being taken, that is, when the overall length in the tensile direction of the test piece becomes [1 + X / 100] times the length before pulling It means that the piece breaks.
  • the breaking elongation of the third test piece before immersion in pure water measured at a test speed of 200 mm / min in a tensile test based on JIS K 7127, is 20 to 550%. Is preferable, and 25 to 500% is more preferable.
  • the film for resin film formation is a tensile test based on JIS K 7127 when the third test piece is immersed in pure water for 2 hours, and the third film after immersion is measured at a test speed of 200 mm / min.
  • the breaking stress of the test piece is preferably 0.8 to 7 MPa, and more preferably 0.8 to 5.5 MPa.
  • the breaking stress of the third test piece after immersion falls within such a range, when picking up a semiconductor chip with a film for forming a resin film or a semiconductor chip with a resin film having a small size from the support sheet, The effect of suppressing the remaining of the resin film-forming film or the resin film is further enhanced.
  • the breaking stress of the third test piece is determined from the force applied to the third test piece when the third test piece breaks when measuring the Young's modulus of the third test piece described above. This is the same both before and after immersing the third test piece in pure water.
  • the breaking stress of the third test piece before immersion in pure water measured at a test speed of 200 mm / min in a tensile test based on JIS K 7127 is 1.1 to 8 MPa. Is preferable, and 1.1 to 6.5 MPa is more preferable.
  • the breaking stress of the third test piece before immersion is within such a range, when picking up a semiconductor chip with a film for forming a resin film or a semiconductor chip with a resin film having a small size from the support sheet, The effect of suppressing the remaining of the resin film-forming film or the resin film is further enhanced.
  • thermosetting resin film formation As a film for thermosetting resin film formation, a thing containing a polymer component (A) and a thermosetting component (B) is mentioned, for example, A polymer component (A) is mentioned. And the thermosetting component (B) and the filler (D) are more preferable.
  • the polymer component (A) is a component that can be considered to be formed by the polymerization reaction of the polymerizable compound.
  • the thermosetting component (B) is a component that can undergo curing (polymerization) reaction using heat as a reaction trigger. In the present invention, the polymerization reaction also includes a polycondensation reaction.
  • the film for thermosetting resin film formation may consist of one layer (single layer), or may consist of two or more layers. When the film for thermosetting resin film formation consists of multiple layers, these multiple layers may mutually be same or different.
  • the thickness of the thermosetting resin film-forming film is preferably 1 to 100 ⁇ m, more preferably 3 to 75 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • the thickness of the film for thermosetting resin film formation being more than the said lower limit, the uniformity of thickness becomes higher.
  • the thickness of the film for thermosetting resin film formation is below the said upper limit, the generation amount of the cuttings of the film for resin film formation or resin film which generate
  • the thickness of the film for thermosetting resin film formation means the thickness of the whole film for thermosetting resin film formation, for example, the film for thermosetting resin film formation which consists of multiple layers. The thickness means the total thickness of all the layers constituting the thermosetting resin film-forming film.
  • the curing conditions for heat curing are not particularly limited as long as the cured product has a degree of cure sufficient to exhibit its function. It may be appropriately selected according to the type of the curable resin film-forming film.
  • the heating temperature at the time of thermosetting of the film for thermosetting resin film formation is preferably 100 to 200 ° C., more preferably 110 to 180 ° C., and particularly preferably 120 to 170 ° C. .
  • the heating time at the time of curing is preferably 0.5 to 5 hours, more preferably 0.5 to 3 hours, and particularly preferably 1 to 2 hours.
  • thermosetting resin film formation can be formed using the composition for thermosetting resin film formation containing the constituent material.
  • the composition for thermosetting resin film formation is applied to the formation target surface of the film for thermosetting resin film formation, and it is made to dry at the target site by making it dry if needed. It can form a film.
  • Coating of the composition for thermosetting resin film formation may be performed by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, Examples include methods using various coaters such as a knife coater, a screen coater, a Mayer bar coater, and a kiss coater.
  • the drying conditions of the composition for thermosetting resin film formation are not specifically limited, When the composition for thermosetting resin film formation contains the solvent mentioned later, it is preferable to heat-dry. Then, the composition for forming a thermosetting resin film containing a solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes. However, in the present invention, it is preferable to dry the composition for thermosetting resin film formation so that the film for thermosetting resin film formation to be formed is not thermally cured.
  • composition (III-1) a composition for thermosetting resin film formation containing a polymer component (A), a thermosetting component (B) and a filler (D) (III- 1) (In the present specification, it may simply be abbreviated as “composition (III-1)”) and the like.
  • a polymer component (A) is a component for providing film forming property, flexibility, etc. to the film for thermosetting resin film formation.
  • the polymer component (A) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof And the ratio can be selected arbitrarily.
  • polymer component (A) examples include acrylic resins, polyesters, urethane resins, acrylic urethane resins, silicone resins, rubber resins, phenoxy resins, thermosetting polyimides and the like, with acrylic resins being preferred.
  • the acrylic resin in the polymer component (A) examples include known acrylic polymers.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1,500,000.
  • the shape stability (the temporal stability during storage) of the film for forming a thermosetting resin film is improved.
  • the weight average molecular weight of the acrylic resin is not more than the upper limit value, the film for thermosetting resin film formation easily follows the uneven surface of the adherend, and the adherend and the thermosetting resin film are formed. The generation of voids and the like between the film and the film is further suppressed.
  • a weight average molecular weight is a polystyrene conversion value measured by the gel permeation chromatography (GPC) method unless there is particular notice.
  • the glass transition temperature (Tg) of the acrylic resin is preferably ⁇ 60 to 70 ° C., and more preferably ⁇ 30 to 50 ° C.
  • Tg of the acrylic resin is not less than the lower limit value, for example, the adhesion between the cured product of the resin film-forming film and the support sheet is suppressed, and the releasability of the support sheet is appropriately improved.
  • cured material improves because Tg of acrylic resin is below the said upper limit.
  • the acrylic resin is selected, for example, from one or more polymers of (meth) acrylic acid esters; (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylol acrylamide, etc.
  • the copolymer etc. of 2 or more types of monomers are mentioned.
  • (meth) acrylic acid is a concept including both “acrylic acid” and “methacrylic acid”.
  • (meth) acryloyl group is a concept including both “acryloyl group” and “methacryloyl group”
  • (meth) acrylate” is a concept including both” acrylate "and” methacrylate ".
  • Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, ) N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic Heptyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate , (Meth) acrylic acid undecyl
  • the acrylic resin is, for example, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylol acrylamide, etc. in addition to the (meth) acrylic acid ester. May be copolymerized.
  • the monomer constituting the acrylic resin may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group and an isocyanate group.
  • the functional group of the acrylic resin may be bonded to another compound through a crosslinking agent (F) described later, or may be directly bonded to another compound without the crosslinking agent (F) .
  • F crosslinking agent
  • thermoplastic resin other than an acrylic resin
  • thermoplastic resin may be used alone without using an acrylic resin. It may be used in combination with an acrylic resin.
  • thermoplastic resin By using the thermoplastic resin, the removability of the resin film from the support sheet can be improved, or the film for thermosetting resin film formation can easily follow the uneven surface of the adherend, and the adherend and the thermosetting resin The occurrence of voids and the like may be further suppressed between the resin film-forming film.
  • the weight average molecular weight of the thermoplastic resin is preferably 1,000 to 100,000, and more preferably 3,000 to 80,000.
  • the glass transition temperature (Tg) of the thermoplastic resin is preferably ⁇ 30 to 150 ° C., and more preferably ⁇ 20 to 120 ° C.
  • thermoplastic resin examples include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, polystyrene and the like.
  • thermoplastic resin contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination and ratio thereof. Is optional.
  • the ratio of the content of the polymer component (A) to the total content of all the components other than the solvent that is, the formation of a thermosetting resin film in a film for thermosetting resin film formation
  • the proportion of the content of the polymer component (A) with respect to the total mass of the film for use is preferably 3 to 85% by mass, regardless of the type of the polymer component (A), and 3 to 80% by mass It is more preferable that, for example, it is 3 to 65% by mass, 3 to 50% by mass, 3 to 35% by mass, 3 to 20% by mass or the like.
  • the polymer component (A) may also correspond to the thermosetting component (B).
  • the composition (III-1) contains components corresponding to both the polymer component (A) and the thermosetting component (B), the composition (III-1) And polymer component (A) and thermosetting component (B).
  • thermosetting component (B) is a component for hardening the film for thermosetting resin film formation.
  • the thermosetting component (B) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, Combinations and ratios can be selected arbitrarily.
  • thermosetting component (B) an epoxy-type thermosetting resin, a thermosetting polyimide, polyurethane, unsaturated polyester, a silicone resin etc. are mentioned, for example, An epoxy-type thermosetting resin is preferable.
  • the epoxy-based thermosetting resin comprises an epoxy resin (B1) and a thermosetting agent (B2).
  • the epoxy-based thermosetting resin contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof. And the ratio can be selected arbitrarily.
  • Epoxy resin (B1) As an epoxy resin (B1), a well-known thing is mentioned, for example, a polyfunctional epoxy resin, a biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated substance, an ortho cresol novolak epoxy resin, a dicyclopentadiene type epoxy resin, The bifunctional or more epoxy compound such as biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenylene skeleton type epoxy resin, etc. may be mentioned.
  • an epoxy resin having an unsaturated hydrocarbon group may be used as the epoxy resin (B1).
  • An epoxy resin having an unsaturated hydrocarbon group has higher compatibility with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the semiconductor chip with a resin film obtained using the composite sheet for resin film formation improves by using the epoxy resin which has an unsaturated hydrocarbon group.
  • an epoxy resin which has an unsaturated hydrocarbon group the compound formed by converting a part of epoxy group of polyfunctional epoxy resin into the group which has an unsaturated hydrocarbon group is mentioned, for example.
  • a compound can be obtained, for example, by addition reaction of (meth) acrylic acid or a derivative thereof to an epoxy group.
  • an epoxy resin which has an unsaturated hydrocarbon group the compound etc. which the group which has an unsaturated hydrocarbon group directly couple
  • the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include ethenyl group (vinyl group), 2-propenyl group (allyl group), (meth) acryloyl group, (meth) An acrylamide group etc. are mentioned and an acryloyl group is preferable.
  • the number average molecular weight of the epoxy resin (B1) is not particularly limited, but is 300 to 30000 from the viewpoint of the curability of the film for thermosetting resin film formation and the strength and heat resistance of the resin film after curing. Preferably, it is 300 to 10,000, and more preferably 300 to 3,000.
  • the epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g / eq, and more preferably 150 to 950 g / eq.
  • An epoxy resin (B1) may be used individually by 1 type, and 2 or more types may be used together, and when using 2 or more types together, the combination and ratio of those can be selected arbitrarily.
  • thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
  • a thermosetting agent (B2) the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is mentioned, for example.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, and a group in which an acid group is anhydrated, and the phenolic hydroxyl group, an amino group, or an acid group is anhydrated. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
  • thermosetting agents (B2) examples of amine-based curing agents having an amino group include dicyandiamide.
  • the thermosetting agent (B2) may have an unsaturated hydrocarbon group.
  • the thermosetting agent (B2) having an unsaturated hydrocarbon group for example, a compound obtained by substituting a part of hydroxyl groups of a phenol resin with a group having an unsaturated hydrocarbon group, an aromatic ring of a phenol resin, The compound etc. which a group which has a saturated hydrocarbon group directly couple
  • bonds are mentioned.
  • the said unsaturated hydrocarbon group in a thermosetting agent (B2) is a thing similar to the unsaturated hydrocarbon group in the epoxy resin which has the above-mentioned unsaturated hydrocarbon group.
  • the heat-curing agent (B2) When a phenol-based curing agent is used as the heat-curing agent (B2), it is preferable that the heat-curing agent (B2) has a high softening point or glass transition temperature from the viewpoint that the removability of the resin film from the support sheet is improved. .
  • thermosetting agents (B2) for example, the number average molecular weight of resin components such as polyfunctional phenol resin, novolak type phenol resin, dicyclopentadiene type phenol resin, and aralkyl type phenol resin is preferably 300 to 30,000. And 400 to 10000 are more preferable, and 500 to 3000 are particularly preferable.
  • the molecular weight of non-resin components such as biphenol and dicyandiamide is not particularly limited, but is preferably 60 to 500, for example.
  • thermosetting agent (B2) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and a ratio can be selected arbitrarily.
  • the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the epoxy resin (B1). Part is preferable, and 1 to 200 parts by mass is more preferable, for example, 1 to 100 parts by mass, 1 to 50 parts by mass, 1 to 25 parts by mass, and 1 to 10 parts by mass etc. It may be.
  • the content of the thermosetting agent (B2) is equal to or more than the lower limit value, curing of the film for thermosetting resin film formation is more easily progressed.
  • the moisture absorption of the film for thermosetting resin film formation was reduced by the said content of a thermosetting agent (B2) being below the said upper limit, and it was obtained using the composite sheet for resin film formation. Package reliability is further improved.
  • the content of the thermosetting component (B) (for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)) is The content is preferably 5 to 600 parts by mass, for example 50 to 600 parts by mass, 100 to 600 parts by mass, 200 to 600 parts by mass, 300 to 600, based on 100 parts by mass of the polymer component (A). It may be any one of parts by mass, 400 to 600 parts by mass, 500 to 600 parts by mass, and the like.
  • the content of the thermosetting component (B) is in such a range, for example, the adhesive force between the cured product of the resin film-forming film and the support sheet is suppressed, and the releasability of the support sheet is improved. Do.
  • the film for thermosetting resin film formation can be more easily adjusted to the target range of the water absorption coefficient and the adhesive force change ratio.
  • cured material (resin film) contain a filler (D), and adjustment of a thermal expansion coefficient becomes easier. Then, the thermal expansion coefficient is optimized with respect to a thermosetting resin film-forming film or an object to be formed with a resin film, whereby a semiconductor chip with a resin film obtained using the resin film-forming composite sheet Reliability is further improved.
  • the film for thermosetting resin film formation can also reduce the moisture absorption rate of a resin film, or can improve heat dissipation by containing a filler (D).
  • the filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
  • Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, bengala, silicon carbide, boron nitride, etc .; spherical beads of these inorganic fillers; surface modification of these inorganic fillers Articles: single crystal fibers of these inorganic fillers; glass fibers and the like.
  • the inorganic filler is preferably silica or alumina, and more preferably silica.
  • the filler (D) contained in the composition (III-1) and the film for thermosetting resin film formation may be only one type, or two or more types, and in the case of two or more types, a combination thereof and The ratio can be selected arbitrarily.
  • the ratio of the content of the filler (D) to the total content of all the components other than the solvent that is, for forming a thermosetting resin film in a film for forming a thermosetting resin film
  • the ratio of the content of the filler (D) to the total mass of the film) is preferably 25 to 75% by mass, and more preferably 28 to 72% by mass. Since the filler (D) hardly absorbs water significantly more than the other components, when the ratio is at least the lower limit value, it is easier to make the water absorption coefficient 0.55% or less. And when picking up a semiconductor chip with a resin film with a small size from a support sheet, the effect which controls residual of a resin film on a support sheet becomes high. Moreover, the intensity
  • the composition (III-1) and the thermosetting resin film-forming film may contain a curing accelerator (C).
  • the curing accelerator (C) is a component for adjusting the curing rate of the composition (III-1).
  • Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (one or more hydrogen atoms are not hydrogen atoms Imidazoles substituted with the following groups: organic phosphines such as tributyl phosphine, diphenyl phosphine, triphenyl phosphine (phosphin
  • the curing accelerator (C) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof. And the ratio can be selected arbitrarily.
  • the content of the curing accelerator (C) in the composition (III-1) and the film for thermosetting resin film formation is the content of the thermosetting component (B) 100
  • the amount is preferably 0.01 to 10 parts by mass, and more preferably 0.1 to 7 parts by mass with respect to the mass parts.
  • the effect by using a hardening accelerator (C) is acquired more notably by the said content of a hardening accelerator (C) being more than the said lower limit.
  • the high-polarity curing accelerator (C) is contained in the film for thermosetting resin film formation under high temperature and high humidity conditions. In the above, the effect of suppressing migration and segregation to the adhesive interface side with the adherend becomes high. As a result, the reliability of the resin film-coated semiconductor chip obtained using the resin film-forming composite sheet is further improved.
  • the composition (III-1) and the thermosetting resin film-forming film may contain a coupling agent (E).
  • a coupling agent (E) By using a compound having a functional group capable of reacting with an inorganic compound or an organic compound as the coupling agent (E), it is possible to improve the adhesiveness and adhesion of the film for thermosetting resin film formation to an adherend it can. Moreover, water resistance improves the hardened
  • the coupling agent (E) is preferably a compound having a functional group capable of reacting with a functional group possessed by the polymer component (A), the thermosetting component (B) or the like, and is preferably a silane coupling agent. More preferable.
  • silane coupling agent examples include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3,4-Epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino) Ethylamino) propylmethyldiethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyl Trimethoxysi
  • the coupling agent (E) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof And the ratio can be selected arbitrarily.
  • the content of the coupling agent (E) in the composition (III-1) and the film for thermosetting resin film formation is the polymer component (A) and the thermosetting component
  • the amount is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and 0.1 to 5 parts by mass with respect to 100 parts by mass of the total content of (B). Is particularly preferred.
  • the content of the coupling agent (E) is at least the lower limit value, the dispersibility of the filler (D) in the resin is improved, and the adhesion of the film for thermosetting resin film formation to the adherend
  • the effect by using a coupling agent (E), such as the improvement of the property, is more significantly obtained. Moreover, generation
  • Crosslinking agent (F) As the polymer component (A), those having a functional group such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group or an isocyanate group capable of binding to other compounds such as the above-mentioned acrylic resin
  • the composition (III-1) and the thermosetting resin film-forming film may contain a crosslinking agent (F).
  • a crosslinking agent (F) is a component for making the said functional group in a polymer component (A) couple
  • crosslinking agent (F) for example, organic polyvalent isocyanate compounds, organic polyvalent imine compounds, metal chelate type crosslinking agents (crosslinking agents having a metal chelate structure), aziridine type crosslinking agents (crosslinking agents having an aziridinyl group), etc. Can be mentioned.
  • organic polyvalent isocyanate compound for example, an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as “aromatic polyvalent isocyanate compound etc.” Abbreviated in some cases); trimers such as the above-mentioned aromatic polyvalent isocyanate compounds, isocyanurates and adducts; terminal isocyanate urethane prepolymers obtained by reacting the above-mentioned aromatic polyvalent isocyanate compounds and the like with a polyol compound Etc.
  • aromatic polyvalent isocyanate compound etc Abbreviated in some cases
  • trimers such as the above-mentioned aromatic polyvalent isocyanate compounds, isocyanurates and adducts
  • terminal isocyanate urethane prepolymers obtained by reacting the above-mentioned aromatic polyvalent isocyanate compounds and the like with a polyol compound Et
  • the “adduct” includes the above-mentioned aromatic polyvalent isocyanate compound, aliphatic polyvalent isocyanate compound or alicyclic polyvalent isocyanate compound, and low contents such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil It means a reaction product with a molecule active hydrogen-containing compound.
  • the adduct include xylylene diisocyanate adduct of trimethylolpropane as described later, and the like.
  • the "terminal isocyanate urethane prepolymer" is as described above.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 Diphenylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Any one of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate in the hydroxyl groups of all or part of a polyol such as propane Or two or more compounds are added; lysine diisocyanate.
  • a polyol such as propane Or two or
  • organic polyhydric imine compound examples include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinyl propionate, and tetramethylolmethane.
  • a crosslinking agent (F) When using an organic polyhydric isocyanate compound as a crosslinking agent (F), it is preferable to use a hydroxyl-containing polymer as a polymer component (A).
  • a crosslinking agent (F) has an isocyanate group and the polymer component (A) has a hydroxyl group, a film for thermosetting resin film formation can be obtained by the reaction of the crosslinking agent (F) with the polymer component (A). A crosslinked structure can be introduced easily.
  • the crosslinking agent (F) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof and The ratio can be selected arbitrarily.
  • the content of the crosslinking agent (F) in the composition (III-1) is 0.01 to 20 parts by mass with respect to 100 parts by mass of the polymer component (A). It is preferably part, more preferably 0.1 to 10 parts by mass, particularly preferably 0.5 to 5 parts by mass.
  • the effect by using a crosslinking agent (F) is acquired more notably by the said content of a crosslinking agent (F) being more than the said lower limit.
  • the excess use of a crosslinking agent (F) is suppressed because the said content of a crosslinking agent (F) is below the said upper limit.
  • the composition (III-1) and the thermosetting resin film-forming film may contain an energy ray curable resin (G).
  • the film for thermosetting resin film formation can change a characteristic by irradiation of an energy ray by containing energy-beam curable resin (G).
  • the energy ray-curable resin (G) is obtained by polymerizing (curing) an energy ray-curable compound.
  • the energy ray curable compound include a compound having at least one polymerizable double bond in the molecule, and an acrylate compound having a (meth) acryloyl group is preferable.
  • acrylate compound examples include trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol monohydroxy penta
  • Linear aliphatic skeleton-containing (meth) acrylates such as meta) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate; Cycloaliphatic skeleton-containing (meth) acrylates such as cyclopentanyl di (meth) acrylate; polyalkylene glycol (meth) acrylates such as polyethylene glycol di (meth) acrylate Oligoester (meth)
  • the weight average molecular weight of the energy ray curable compound is preferably 100 to 30,000, and more preferably 300 to 10,000.
  • the energy ray-curable compound used for the polymerization may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the energy beam curable resin (G) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, those types The combination and ratio of can be selected arbitrarily.
  • the ratio of the content of the energy ray-curable resin (G) to the total mass of the composition (III-1) is 1 to
  • the content is preferably 95% by mass, more preferably 1 to 90% by mass, particularly preferably 1 to 85% by mass, and for example, 1 to 70% by mass, 1 to 55% by mass, 1 to 40 It may be any of mass%, 1 to 25 mass%, 1 to 10 mass%, and the like.
  • the photopolymerization initiator (H) in the composition (III-1) for example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal Benzoin compounds such as acetophenone; acetophenone compounds such as acetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethan-1-one; bis (2,2, Acyl phosphine oxide compounds such as 4,6-trimethyl benzoyl) phenyl phosphine oxide, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide; benzyl phenyl sulfide, tetramethyl thiuram Sulfide compounds such as nosulfide; ⁇ -ketol compounds such
  • the photopolymerization initiator (H) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, Combinations and ratios can be selected arbitrarily.
  • the content of the photopolymerization initiator (H) in the composition (III-1) is 100 parts by mass of the content of the energy ray-curable resin (G),
  • the amount is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 2 to 5 parts by mass.
  • the composition (III-1) and the thermosetting resin film-forming film may contain a colorant (I).
  • a colorant (I) include known pigments such as inorganic pigments, organic pigments, and organic dyes.
  • organic pigments and organic dyes examples include aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squalium dyes, azulenium dyes, polymethine dyes, naphthoquinone dyes, pyrilium dyes, and phthalocyanines.
  • the inorganic pigment examples include carbon black, cobalt dyes, iron dyes, chromium dyes, titanium dyes, vanadium dyes, zirconium dyes, molybdenum dyes, ruthenium dyes, platinum dyes, ITO ( Indium tin oxide) dyes, ATO (antimony tin oxide) dyes and the like can be mentioned.
  • the colorant (I) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof and The ratio can be selected arbitrarily.
  • the content of the coloring agent (I) in the film for thermosetting resin film formation may be appropriately adjusted depending on the purpose. For example, print visibility in the case of performing laser printing on a resin film by adjusting the content of the colorant (I) of the film for thermosetting resin film formation and adjusting the light transmittance of the resin film Can be adjusted. Further, by adjusting the content of the colorant (I) of the film for thermosetting resin film formation, it is possible to improve the design of the resin film or to make it difficult to see grinding marks on the back surface of the semiconductor wafer.
  • the ratio of the content of the colorant (I) to the total mass of the thermosetting resin film-forming film is preferably 0.1 to 10 mass%, and 0.1 to 7.5 mass%. Is more preferably 0.1 to 5% by mass.
  • the effect by using coloring agent (I) is acquired more notably by the ratio of the above-mentioned content of coloring agent (I) being more than the above-mentioned lower limit. Moreover, the excessive fall of the light transmittance of the film for thermosetting resin film formation is suppressed because the ratio of the said content of coloring agent (I) is below the said upper limit.
  • the composition (III-1) and the thermosetting resin film-forming film may contain a general-purpose additive (J) within the range not impairing the effects of the present invention.
  • the general-purpose additive (J) may be a known one, can be optionally selected according to the purpose, and is not particularly limited. Preferred examples thereof include a plasticizer, an antistatic agent, an antioxidant, a gettering agent, etc. Can be mentioned.
  • the general-purpose additive (J) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof And the ratio can be selected arbitrarily.
  • the content of the general-purpose additive (J) in the composition (III-1) and the thermosetting resin film-forming film is not particularly limited, and may be appropriately selected depending on the purpose.
  • the composition (III-1) preferably further contains a solvent.
  • the composition (III-1) containing a solvent has good handleability.
  • the solvent is not particularly limited, but preferred examples thereof include hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol), 1-butanol and the like Esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; and amides (compounds having an amide bond) such as dimethylformamide and N-methyl pyrrolidone.
  • the solvent contained in the composition (III-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the solvent contained in the composition (III-1) is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the composition (III-1) can be mixed more uniformly.
  • the content of the solvent in the composition (III-1) is not particularly limited, and may be appropriately selected, for example, according to the types of components other than the solvent.
  • composition (III-1) include, for example, a polymer component (A), a thermosetting component (B) and a filler (D), and the content of each of these components is not particularly limited. Those included in any of the preferred numerical ranges described in the above are included.
  • the content of the polymer component (A) relative to the total content of all components other than the solvent The proportion is 3 to 85% by mass, and the content of the thermosetting component (B) is 5 to 600 parts by mass with respect to 100 parts by mass of the content of the polymer component (A), And the ratio of the content of the filler (D) to the total content of all the components other than the solvent is 25 to 75% by mass.
  • the content of the polymer component (A) with respect to the total content of all the components other than the solvent is 3 to 35% by mass
  • the content of the thermosetting component (B) is 300 to 600 parts by mass with respect to 100 parts by mass of the content of the polymer component (A)
  • the ratio of the content of the filler (D) to the total content of all the components other than the solvent is 28 to 72% by mass.
  • composition (III-1) include polymer component (A), thermosetting component (B), curing accelerator (C), filler (D), coupling agent (E) , Crosslinker (F), energy ray curable resin (G) and photopolymerization initiator (H), and the contents of these components are all included in any of the preferable numerical ranges described above The thing is mentioned.
  • composition (III-1) for example, in the composition (III-1), the content of the polymer component (A) relative to the total content of all the components other than the solvent
  • the content of the thermosetting component (B) is 300 to 600 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
  • the ratio of the content of the filler (D) to the total content of all the components other than the solvent is 28 to 72% by mass
  • the content of the curing accelerator (C) is a thermosetting component
  • the content is 0.01 to 10 parts by mass with respect to 100 parts by mass of (B)
  • the content of the coupling agent (E) is the polymer component (A) and the thermosetting component (B) 0.03 to 20 parts by mass with respect to 100 parts by mass of the total content of Is 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the polymer component (A)
  • the content of the photopolymerization initiator (H) is an energy ray-curable resin
  • the content of the energy ray-curable resin (G) is 2 to 5 parts by mass with respect to 100 parts by mass of (G), and the total mass of the composition (III-1) is What is 1-10 mass% is mentioned.
  • composition for forming a thermosetting resin film such as the composition (III-1) can be obtained by blending the components for constituting the composition. There is no particular limitation on the order of addition of each component at the time of blending, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by previously diluting any compounding component other than the solvent A solvent may be used by mixing with these compounding ingredients without storage.
  • the method of mixing each component at the time of compounding is not particularly limited, and a method of mixing by rotating a stirrer or a stirring blade, etc .; a method of mixing using a mixer; a method of adding ultrasonic waves and mixing, etc. It may be selected as appropriate.
  • the temperature and time of addition and mixing of the respective components are not particularly limited as long as the respective blended components do not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • the film for forming energy beam curable resin film includes those containing energy beam curable component (a), and energy beam curable component (a) and filler What contains is preferable.
  • the energy beam curable component (a) is preferably uncured, preferably has tackiness, and is more preferably uncured and tacky.
  • energy ray and “energy ray curability” are as described above.
  • the film for energy beam curable resin film formation may be only one layer (single layer), or two or more layers, and in the case of multiple layers, these multiple layers may be the same or different from one another.
  • the combination of these multiple layers is not particularly limited.
  • the thickness of the film for forming an energy ray-curable resin film is preferably 1 to 100 ⁇ m, more preferably 3 to 75 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • the uniformity of thickness becomes higher by the thickness of the film for energy-beam curable resin film formation being more than the said lower limit.
  • the thickness of the energy ray-curable resin film-forming film is equal to or less than the upper limit value, the amount of generation of cuttings of the oil film-forming film or resin film generated during blade dicing of the semiconductor wafer is suppressed. .
  • the thickness of the film for forming an energy ray curable resin film means the thickness of the whole film for forming an energy ray curable resin film, and for example, an energy ray ray curable resin film formed of a plurality of layers is formed
  • the thickness of the film means the total thickness of all the layers constituting the energy ray-curable resin film-forming film.
  • the curing conditions for curing are not particularly limited as long as the cured product has a curing degree sufficient to exhibit its function It may be appropriately selected according to the type of the film for forming a linear curable resin film.
  • the illuminance of the energy ray is preferably 120 to 280 mW / cm 2 at the time of curing of the film for forming an energy ray curable resin film.
  • the light quantity of the energy ray at the time of curing is preferably 100 to 1000 mJ / cm 2 .
  • composition for forming energy ray curable resin film can be formed using the composition for energy beam curable resin film formation containing the constituent material.
  • the composition for forming an energy ray-curable resin film is coated on the surface to be formed of the film for forming an energy ray-curable resin film, and dried as needed to form an energy ray-curable resin at a target site.
  • a film for film formation can be formed.
  • the application of the composition for forming an energy ray-curable resin film can be performed, for example, by the same method as the application of the composition for forming a thermosetting resin film described above.
  • the drying conditions of the composition for forming an energy ray-curable resin film are not particularly limited, but when the composition for forming an energy ray-curable resin film contains a solvent to be described later, it is preferable to heat and dry. Then, the composition for forming an energy ray-curable resin film containing a solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes. However, in the present invention, it is preferable to dry the composition for forming an energy ray-curable resin film so that the film for forming an energy ray-curable resin film is not cured.
  • composition for forming an energy ray-curable resin film (IV-1) Preferred examples of the composition for forming an energy ray-curable resin film include, for example, a composition for forming an energy ray-curable resin film (IV-1) containing the energy ray-curable component (a) and a filler. And the like, which may be simply referred to as “composition (IV-1)”.
  • the energy ray curable component (a) is a component that cures upon irradiation with energy rays, and imparts film forming ability, flexibility, etc. to the energy ray curable resin film-forming film, and also a hard resin after curing. It is also a component for forming a film.
  • the energy ray curable component (a) includes, for example, an energy ray curable group, a polymer (a1) having a weight average molecular weight of 80000 to 2,000,000, and an energy ray curable group having a molecular weight of 100 to 80,000. Compound (a2) is mentioned.
  • the polymer (a1) may be at least partially crosslinked by a crosslinking agent, or may be non-crosslinked.
  • the polymer (a1) having an energy ray curable group and having a weight average molecular weight of 80,000 to 2,000,000 include an acrylic polymer (a11) having a functional group capable of reacting with a group possessed by another compound, Acrylic resin (a1-1) formed by reaction of an energy ray curable compound (a12) having a group reactive with a functional group and an energy ray curable group such as an energy ray curable double bond .
  • Examples of the functional group capable of reacting with a group possessed by another compound include, for example, a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (one or two hydrogen atoms of the amino group are substituted with a group other than a hydrogen atom Groups), epoxy groups and the like.
  • the functional group is preferably a group other than a carboxy group.
  • the functional group is preferably a hydroxyl group.
  • Acrylic polymers having functional groups (a11) examples include those obtained by copolymerizing an acrylic monomer having the functional group and an acrylic monomer having no functional group. In addition to the monomers, monomers (non-acrylic monomers) other than acrylic monomers may be copolymerized. Moreover, a random copolymer may be sufficient as the said acryl-type polymer (a11), a block copolymer may be sufficient, and it can employ
  • a hydroxyl-containing monomer a carboxy-group containing monomer, an amino-group containing monomer, a substituted amino-group containing monomer, an epoxy-group containing monomer etc. are mentioned, for example.
  • hydroxyl group-containing monomer examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (meth) Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; non (meth) acrylics such as vinyl alcohol and allyl alcohol A saturated alcohol (unsaturated alcohol which does not have a (meth) acryloyl frame) etc. are mentioned.
  • carboxy group-containing monomer examples include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citraconic Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the above-mentioned ethylenically unsaturated dicarboxylic acids; (meth) acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate and the like Be
  • monocarboxylic acids having an ethylenically unsaturated bond such as (meth) acrylic acid and crotonic acid
  • fumaric acid, itaconic acid, maleic acid, citraconic Ethylenically unsaturated dicarboxylic acids such as acids (dicar
  • the acrylic monomer having a functional group is preferably a hydroxyl group-containing monomer.
  • the acrylic monomer having the functional group constituting the acrylic polymer (a11) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are optionally It can be selected.
  • acrylic monomer having no functional group examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate and n (meth) acrylate -Butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate ( 2-ethylhexyl acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, (meth) Undecyl acrylate, dodec
  • acrylic monomer having no functional group for example, alkoxymethyl such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, ethoxyethyl (meth) acrylate and the like
  • (Meth) acrylic acid esters having an aromatic group including alkyl group-containing (meth) acrylic acid esters; (meth) acrylic acid aryl esters such as phenyl (meth) acrylate etc .; non-crosslinkable (meth) acrylamides and Derivatives thereof; (meth) acrylic acid esters having a non-crosslinkable tertiary amino group such as N, N-dimethylaminoethyl (meth) acrylate and N, N-dimethylaminopropyl (meth) acrylate .
  • the acrylic monomer having no functional group constituting the acrylic polymer (a11) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • non-acrylic monomers examples include olefins such as ethylene and norbornene; vinyl acetate; styrene and the like.
  • the non-acrylic monomer constituting the acrylic polymer (a11) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the ratio (content) of the amount of the structural unit derived from the acrylic monomer having the functional group to the total amount of the structural units constituting the same is 0.1 to 50 mass % Is preferable, 1 to 40% by mass is more preferable, and 3 to 30% by mass is particularly preferable.
  • the ratio is in such a range, in the acrylic resin (a1-1) obtained by the copolymerization of the acrylic polymer (a11) and the energy ray curable compound (a12), energy The content of the linear curable group can be easily adjusted to the preferable range of the degree of curing of the resin film.
  • the acrylic polymer (a11) constituting the acrylic resin (a1-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are optionally It can be selected.
  • the ratio of the content of the acrylic resin (a1-1) to the total content of the components other than the solvent is preferably 1 to 70% by mass, more preferably 5 to 60% by mass, and 10 to 50% by mass. Is particularly preferred.
  • the energy ray curable compound (a12) is one or two selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group possessed by the acrylic polymer (a11) What has the above is preferable, and what has an isocyanate group as said group is more preferable.
  • the energy beam curable compound (a12) has, for example, an isocyanate group as the group, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
  • the energy ray curable compound (a12) preferably has 1 to 5, and more preferably 1 to 3 of the energy ray curable groups in one molecule.
  • Examples of the energy ray curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- (bisacryloyloxymethyl) Ethyl isocyanate; Acryloyl monoisocyanate compounds obtained by the reaction of diisocyanate compounds or polyisocyanate compounds with hydroxyethyl (meth) acrylate; The acryloyl monoisocyanate compound etc.
  • the energy ray curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
  • the energy beam curable compound (a12) constituting the acrylic resin (a1-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • the content of the energy ray curable group derived from the energy ray curable compound (a12) relative to the content of the functional group derived from the acrylic polymer (a11) The proportion of is preferably 20 to 120 mol%, more preferably 35 to 100 mol%, and particularly preferably 50 to 100 mol%.
  • the adhesive force of the resin film after hardening becomes larger by the ratio of the said content being such a range.
  • the upper limit of the content ratio is 100 mol%
  • the energy ray-curable compound (a12) is a polyfunctional compound (having two or more of the groups in one molecule)
  • the upper limit of the content ratio may exceed 100 mol%.
  • the weight average molecular weight (Mw) of the polymer (a1) is preferably 100,000 to 2,000,000, and more preferably 300,000 to 1,500,000.
  • the "weight average molecular weight” is as described above.
  • the polymer (a1) is at least a part of which is crosslinked by a crosslinking agent
  • the monomer which does not correspond to any of the monomers and which has a group reactive with the crosslinking agent may be polymerized to be crosslinked in the group reactive with the crosslinking agent, or the energy ray curable compound ( The group derived from a12), which is reactive with the functional group, may be crosslinked.
  • the polymer (a1) contained in the composition (IV-1) and the energy beam curable resin film-forming film may be only one type, or two or more types, and in the case of two or more types, Combinations and ratios can be selected arbitrarily.
  • Compound (a2) having a molecular weight of 100 to 80,000, having an energy ray-curable group examples include a group containing an energy ray-curable double bond, and preferred examples thereof Acryloyl group, a vinyl group etc. are mentioned.
  • the compound (a2) is not particularly limited as long as it satisfies the above conditions, but a low molecular weight compound having an energy ray curable group, an epoxy resin having an energy ray curable group, and an energy ray curable group A phenol resin etc. are mentioned.
  • a low molecular weight compound which has an energy ray curable group among the said compounds (a2) a polyfunctional monomer, an oligomer, etc. are mentioned, for example,
  • the acrylate type compound which has a (meth) acryloyl group is preferable.
  • the acrylate compound examples include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4 -((Meth) acryloxypolyethoxy) phenyl] propane, ethoxylated bisphenol A di (meth) acrylate, 2,2-bis [4-((meth) acryloxydiethoxy) phenyl] propane, 9,9-bis [4- (2- (Meth) acryloyloxyethoxy) phenyl] fluorene, 2,2-bis [4-((meth) acryloxypolypropoxy) phenyl] propane, tricyclodecanedimethanol di (meth) acrylate, 1 , 10-decanediol di (meth) acrylic 1,6-hexanediol di (meth) acrylate, 1,9-n
  • an epoxy resin having an energy ray-curable group and a phenol resin having an energy ray-curable group are described, for example, in paragraph 0043 of "JP-A-2013-194102" and the like. The thing can be used.
  • Such a resin also corresponds to a resin constituting a thermosetting component described later, but in the present invention, it is treated as the compound (a2).
  • the weight average molecular weight of the compound (a2) is preferably 100 to 30,000, and more preferably 300 to 10,000.
  • composition (IV-1) and the compound (a2) contained in the film for energy beam curable resin film formation may be only one type, or two or more types, and in the case of two or more types, a combination thereof And the ratio can be selected arbitrarily.
  • composition (IV-1) and the energy beam curable resin film-forming film contain the compound (a2) as the energy beam curable component (a), a polymer further having no energy beam curable group It is preferable to also contain (b).
  • the polymer (b) may be at least partially crosslinked by a crosslinking agent, or may be non-crosslinked.
  • polymer (b) having no energy ray curable group examples include acrylic polymers, phenoxy resins, urethane resins, polyesters, rubber resins, acrylic urethane resins, and the like.
  • the polymer (b) is preferably an acrylic polymer (hereinafter sometimes abbreviated as “acrylic polymer (b-1)”).
  • the acrylic polymer (b-1) may be a known one, for example, may be a homopolymer of one acrylic monomer, or a copolymer of two or more acrylic monomers, It may also be a copolymer of one or more acrylic monomers and a monomer (non-acrylic monomer) other than one or more acrylic monomers.
  • acrylic monomer constituting the acrylic polymer (b-1) examples include (meth) acrylic acid alkyl ester, (meth) acrylic acid ester having a cyclic skeleton, glycidyl group-containing (meth) acrylic acid ester, Examples thereof include hydroxyl group-containing (meth) acrylic acid esters and substituted amino group-containing (meth) acrylic acid esters.
  • substituted amino group is as described above.
  • Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n- (meth) acrylate Butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, (meth) acrylate ) 2-ethylhexyl acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, (meth
  • Examples of the (meth) acrylic acid ester having a cyclic skeleton include (meth) acrylic acid cycloalkyl esters such as (meth) acrylic acid isobornyl and (meth) acrylic acid dicyclopentanyl; (Meth) acrylic acid aralkyl esters such as benzyl (meth) acrylate; (Meth) acrylic acid cycloalkenyl esters such as (meth) acrylic acid dicyclopentenyl ester; Examples include (meth) acrylic acid cycloalkenyloxyalkyl esters such as (meth) acrylic acid dicyclopentenyl oxyethyl ester and the like.
  • glycidyl group containing (meth) acrylic acid ester glycidyl (meth) acrylate etc.
  • hydroxyl group-containing (meth) acrylic acid ester examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxy (meth) acrylate Propyl, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like can be mentioned.
  • substituted amino group-containing (meth) acrylic acid ester examples include N-methylaminoethyl (meth) acrylate and the like.
  • non-acrylic monomer constituting the acrylic polymer (b-1) examples include olefins such as ethylene and norbornene; vinyl acetate; styrene and the like.
  • the polymer (b) having no energy ray-curable group at least partially crosslinked by a crosslinking agent for example, one having a reactive functional group in the polymer (b) reacted with the crosslinking agent
  • the reactive functional group may be appropriately selected depending on the type of the crosslinking agent and the like, and is not particularly limited.
  • the crosslinking agent is a polyisocyanate compound
  • examples of the reactive functional group include a hydroxyl group, a carboxy group and an amino group. Among these, a hydroxyl group having high reactivity with the isocyanate group is preferable.
  • the reactive functional group include a carboxy group, an amino group, an amide group and the like, and among these, a carboxy group having high reactivity with an epoxy group is preferable.
  • the reactive functional group is a group other than a carboxy group in terms of preventing corrosion of the circuit of the semiconductor wafer or the semiconductor chip.
  • a polymer (b) which does not have an energy ray curable group which has the said reactive functional group the thing obtained by polymerizing the monomer which has at least the said reactive functional group is mentioned, for example.
  • the acrylic polymer (b-1) those having the reactive functional group as one or both of the acrylic monomer and the non-acrylic monomer mentioned as the monomer constituting the polymer It may be used.
  • said polymer (b) which has a hydroxyl group as a reactive functional group what was obtained by polymerizing a hydroxyl-containing (meth) acrylic acid ester is mentioned, for example, In addition to this, the said acrylics mentioned above What is obtained by polymerizing a monomer in which one or more hydrogen atoms are substituted by the reactive functional group among the system monomer or the non-acrylic monomer is mentioned.
  • the ratio (content) of the amount of the structural unit derived from the monomer having the reactive functional group to the total amount of the constituent units constituting the polymer is 1 to 20 It is preferably mass%, more preferably 2 to 10 mass%.
  • the ratio is in such a range, in the polymer (b), the degree of crosslinking becomes a more preferable range.
  • the weight average molecular weight (Mw) of the polymer (b) having no energy ray-curable group is preferably 10,000 to 2,000,000 from the viewpoint that the film forming property of the composition (IV-1) is further improved. More preferably, it is 100000 to 1.500000.
  • the "weight average molecular weight" is as described above.
  • the polymer (b) having no energy ray curable group contained in the composition (IV-1) and the film for forming an energy ray curable resin film may be only one type, or two or more types, and 2 When it is species or more, their combination and ratio can be arbitrarily selected.
  • composition (IV-1) those containing one or both of the polymer (a1) and the compound (a2) can be mentioned. And when it contains the said compound (a2), it is preferable that a composition (IV-1) also contains the polymer (b) which does not have an energy ray curable group, and, in this case, it further contains the said (a1) It is also preferable to contain
  • the composition (IV-1) may contain neither the compound (a2) but the polymer (a1) and the polymer (b) having no energy ray curable group. .
  • the composition (IV-1) contains the polymer (a1), the compound (a2) and the polymer (b) having no energy ray curable group
  • the composition (IV-1) contains the polymer
  • the content of the compound (a2) is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray curable group. And 30 to 350 parts by mass are more preferable.
  • the ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total content of components other than the solvent ie, A ratio of the total content of the energy ray curable component (a) and the polymer (b) having no energy ray curable group to the total mass of the film in the energy ray curable resin film-forming film And 5 to 90% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass.
  • the ratio of the content of the energy ray curable component is such a range, the energy ray curability of the film for forming an energy ray curable resin film becomes better.
  • the film for energy beam curable resin film formation containing a filler exhibits the same effect as the film for thermosetting resin film formation containing a filler (D).
  • the filler (D) contained in the composition (III-1) and the film for thermosetting resin film formation As the filler contained in the composition (IV-1) and the film for energy beam curable resin film formation, the filler (D) contained in the composition (III-1) and the film for thermosetting resin film formation and The same thing is mentioned.
  • the filler contained in the composition (IV-1) and the film for forming an energy ray curable resin film may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are It can be selected arbitrarily.
  • the ratio of the content of the filler to the total content of all the components other than the solvent (that is, the filler relative to the total mass of the film in the energy beam curable resin film-forming film)
  • the ratio of the content of (H) is preferably 25 to 75% by mass, and more preferably 28 to 72% by mass. Since the filler is significantly less likely to absorb water than the other components, it is easier to make the water absorption rate 0.55% or less when the ratio is at least the lower limit value. And when picking up a semiconductor chip with a resin film with a small size from a support sheet, the effect which controls residual of a resin film on a support sheet becomes high. Moreover, the intensity
  • Composition (IV-1) contains, according to the purpose, a thermosetting component, a coupling agent, a crosslinking agent, a photopolymerization initiator, a colorant and a general-purpose additive, in addition to the energy ray-curable component and the filler. It may contain one or more selected from the group consisting of
  • thermosetting component As the thermosetting component, the coupling agent, the crosslinking agent, the photopolymerization initiator, the colorant and the general-purpose additive in the composition (IV-1), the thermosetting component in the composition (III-1) ( B) The same as the coupling agent (E), the crosslinking agent (F), the photopolymerization initiator (H), the colorant (I) and the general purpose additive (J).
  • the film for forming an energy ray curable resin film formed by using the composition (IV-1) containing the energy ray curable component and the thermosetting component has an adhesive force to an adherend by heating.
  • the strength of the resin film formed from the energy beam curable resin film-forming film is also improved.
  • the film for forming an energy ray curable resin film formed by using the composition (IV-1) containing the energy ray curable component and the colorant has the thermosetting resin film formed as described above. The same effect as in the case where the film for coloring contains the colorant (I) is exhibited.
  • thermosetting component one of each of the thermosetting component, the coupling agent, the crosslinking agent, the photopolymerization initiator, the colorant and the general-purpose additive may be used alone, or two of them may be used.
  • the above may be used in combination, and when using 2 or more types together, the combination and ratio of those can be selected arbitrarily.
  • thermosetting component the coupling agent, the crosslinking agent, the photopolymerization initiator, the colorant and the general-purpose additive in the composition (IV-1) may be appropriately adjusted according to the purpose and is not particularly limited. .
  • the composition (IV-1) preferably further contains a solvent because the handling thereof is improved by dilution.
  • the solvent contained in the composition (IV-1) include the same as the solvents in the composition (III-1).
  • the solvent contained in the composition (IV-1) may be only one, or two or more.
  • the composition for forming an energy ray-curable resin film such as the composition (IV-1) can be obtained by blending the components for constituting the composition. There is no particular limitation on the order of addition of each component at the time of blending, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by previously diluting any compounding component other than the solvent A solvent may be used by mixing with these compounding ingredients without storage.
  • the method of mixing each component at the time of compounding is not particularly limited, and a method of mixing by rotating a stirrer or a stirring blade, etc .; a method of mixing using a mixer; a method of adding ultrasonic waves and mixing, etc. It may be selected as appropriate.
  • the temperature and time of addition and mixing of the respective components are not particularly limited as long as the respective blended components do not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • the film for forming non-hardening resin film does not show a change in properties due to hardening, but in the present invention, the film is stuck to a target location such as the back surface of a semiconductor wafer. It is considered that a resin film has been formed at a stage.
  • non-curable resin film-forming film examples include those containing a thermoplastic resin, and those containing a thermoplastic resin and a filler are preferred.
  • the film for forming the non-curable resin film may be only one layer (single layer), or two or more layers, and in the case of multiple layers, these multiple layers may be the same or different from one another.
  • the combination of multiple layers is not particularly limited.
  • the thickness of the film for forming a non-curable resin film is preferably 1 to 100 ⁇ m, more preferably 3 to 75 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • the uniformity of thickness becomes higher by the thickness of the film for non-hardening resin film formation being more than the above-mentioned lower limit.
  • the thickness of the non-hardening resin film-forming film is equal to or less than the upper limit value, the generation amount of cuttings of the oil film-forming film or resin film generated at the time of blade dicing of the semiconductor wafer is suppressed.
  • the thickness of the film for forming a non-curable resin film means the thickness of the entire film for forming a non-curable resin film, and for example, the film for forming a non-curable resin film formed of a plurality of layers The thickness means the total thickness of all the layers constituting the non-curable resin film-forming film.
  • composition for forming non-curable resin film can be formed using the composition for non-hardening resin film formation containing the constituent material.
  • a composition for forming a non-curable resin film is coated on the surface to be formed of a film for forming a non-curable resin film, and dried as needed to form a non-curable resin film on a target site It can form a film.
  • the application of the composition for forming a non-curable resin film can be performed, for example, by the same method as the application of the composition for forming a thermosetting resin film described above.
  • drying conditions of the composition for non-hardening resin film formation are not specifically limited, When the composition for non-hardening resin film formation contains the solvent mentioned later, it is preferable to heat-dry.
  • the composition for forming a non-curable resin film containing a solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes.
  • composition for forming a non-curable resin film (V-1) As a preferred composition for forming a non-curable resin film, for example, a composition for forming a non-curable resin film (V-1) containing the thermoplastic resin and the filler (in the present specification, simply “the composition (V-1) "and the like.
  • thermoplastic resin is not particularly limited. More specifically, as the thermoplastic resin, for example, the curing properties of acrylic resins, polyesters, polyurethanes, phenoxy resins, polybutenes, polybutadienes, polystyrenes, etc. listed as components of the above-mentioned composition (III-1) And the same resins as those mentioned above.
  • thermoplastic resin contained in the composition (V-1) and the film for forming a non-curable resin film may be only one type, or two or more types, and in the case of two or more types, a combination and ratio thereof Is optional.
  • the ratio of the content of the thermoplastic resin to the total content of components other than the solvent that is, the heat relative to the total mass of the film in the film for forming a non-curable resin film
  • the proportion of the content of the plastic resin is preferably 25 to 75% by mass, and more preferably 28 to 72% by mass.
  • the film for non-curable resin film formation containing a filler has the same effect as the film for thermosetting resin film formation containing a filler (D).
  • the filler contained in the composition (V-1) and the film for forming a non-curable resin film is the same as the filler (D) contained in the composition (III-1) and a film for forming a thermosetting resin film The thing is mentioned.
  • the filler contained in the composition (V-1) and the film for forming a non-curable resin film may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrary Can be selected.
  • the ratio of the content of the filler to the total content of all components other than the solvent (that is, the filler relative to the total mass of the film in the film for forming a non-curable resin film)
  • the content ratio is preferably 25 to 75% by mass, and more preferably 28 to 72% by mass. Since the filler is significantly less likely to absorb water than the other components, it is easier to make the water absorption rate 0.55% or less when the ratio is at least the lower limit value. And when picking up a semiconductor chip with a resin film with a small size from a support sheet, the effect which controls residual of a resin film on a support sheet becomes high. Moreover, the intensity
  • the composition (V-1) may contain other components in addition to the thermoplastic resin and the filler, depending on the purpose.
  • the other components are not particularly limited, and can be arbitrarily selected according to the purpose.
  • the film for forming a non-curable resin film formed by using the composition (V-1) containing the thermoplastic resin and the colorant is the film for forming a thermosetting resin film described above. The same effect as in the case of containing the colorant (I) is exhibited.
  • one type of the other components may be used alone, or two or more types may be used in combination.
  • the combination and ratio thereof are It can be selected arbitrarily.
  • the content of the other components in the composition (V-1) may be appropriately adjusted depending on the purpose, and is not particularly limited.
  • the composition (V-1) preferably further contains a solvent because the handling thereof is improved by dilution.
  • the solvent contained in the composition (V-1) include the same as the solvents in the above-mentioned composition (III-1).
  • the solvent contained in the composition (V-1) may be only one type, or two or more types.
  • the composition for forming a non-curable resin film such as the composition (V-1) can be obtained by blending the components for constituting the composition. There is no particular limitation on the order of addition of each component at the time of blending, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by previously diluting any compounding component other than the solvent
  • a solvent may be used by mixing with these compounding ingredients without storage.
  • the method of mixing each component at the time of compounding is not particularly limited, and a method of mixing by rotating a stirrer or a stirring blade, etc .; a method of mixing using a mixer; a method of adding ultrasonic waves and mixing, etc. It may be selected as appropriate.
  • the temperature and time of addition and mixing of the respective components are not particularly limited as long as the respective blended components do not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • the composite sheet for resin film formation of the present invention comprises a support sheet, and comprises a film for resin film formation on the support sheet, and the film for resin film formation is the above-mentioned present It is a film for forming a resin film of the invention.
  • the composite sheet for resin film formation of the present invention is suitable for use by being attached to the back surface of a semiconductor wafer when the semiconductor wafer is singulated (divided) into small semiconductor chips by blade dicing.
  • the film for resin film formation in the composite sheet for resin film formation can be used to form a resin film on the back surface of the semiconductor wafer or the semiconductor chip, and the support sheet can be used as a dicing sheet.
  • the semiconductor chip with a film for resin film formation with a small size or the semiconductor chip with a resin film obtained by blade dicing is excellent in the pickup aptitude from the support sheet, and at the time of pickup, the film or resin film for resin film formation on the support sheet. Survival is suppressed.
  • the structure other than the film for resin film formation of the composite sheet for resin film formation of this invention is demonstrated in detail.
  • the support sheet may be formed of one layer (single layer) or may be formed of two or more layers.
  • a support sheet consists of multiple layers, the constituent material and thickness of these multiple layers may mutually be same or different, and the combination of these multiple layers is not specifically limited unless the effect of this invention is impaired.
  • a plurality of layers may be the same as or different from each other” means that “all layers may be the same or all layers are different.
  • Means that only some of the layers may be the same, and the phrase "plural layers are different from each other” means that "at least one of the constituent material and thickness of each layer is different from each other".
  • a substrate is provided, and an adhesive layer is laminated on the substrate; a substrate is provided, an intermediate layer is laminated on the substrate, and adhesion is performed on the intermediate layer. Those obtained by laminating the agent layer; and those formed only of the base material.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of a composite sheet for resin film formation of the present invention.
  • the composite sheet 101 for resin film formation shown here is provided with the adhesive layer 12 on the base material 11, and is provided with the film 13 for resin film formation on the adhesive layer 12.
  • the support sheet 1 is a laminate of the base material 11 and the pressure-sensitive adhesive layer 12. In other words, the resin film formation film 13 is laminated on one surface 1 a of the support sheet 1. Have the following configuration.
  • the resin film-forming composite sheet 101 further includes a peeling film 15 on the resin film-forming film 13.
  • the adhesive layer 12 is laminated on one surface 11 a of the substrate 11, and the resin film formation film 13 is laminated on the entire surface of one surface 12 a of the adhesive layer 12.
  • the adhesive layer 16 for jigs is laminated on a part of one surface 13 a of the film 13 for film formation, that is, the region in the vicinity of the peripheral portion, and the adhesive for jigs of the surface 13 a of the resin film forming film 13
  • a release film 15 is laminated on the surface on which the layer 16 is not laminated and the surface 16 a (upper surface and side surface) of the jig adhesive layer 16.
  • the resin film-forming film 13 satisfies the above-described conditions of the water absorption rate and the adhesive force change rate.
  • the jig adhesive layer 16 may have, for example, a single layer structure containing an adhesive component, or a plurality of layers in which layers containing the adhesive component are laminated on both sides of a sheet to be a core material. It may be of a structure.
  • the composite sheet 101 for resin film formation shown in FIG. 1 has the back surface of a semiconductor wafer (not shown) attached to the front surface 13a of the resin film formation film 13 in a state where the peeling film 15 is removed.
  • a jig such as a ring frame is attached to the upper surface of the surface 16 a of the adhesive layer 16 and used.
  • the boundary of the upper surface and the side may not be distinguished clearly.
  • FIG. 2 is a cross-sectional view schematically showing another embodiment of the composite sheet for resin film formation of the present invention.
  • the same components as those shown in the already described drawings are denoted by the same reference numerals as in the already explained drawings, and the detailed description thereof will be omitted.
  • the composite sheet for resin film formation 102 shown here is the same as the composite sheet for resin film formation 101 shown in FIG. 1 except that the jig adhesive layer 16 is not provided. That is, in the composite sheet 102 for resin film formation, the adhesive layer 12 is laminated on one surface 11 a of the substrate 11, and the resin film formation film 13 is laminated on the entire one surface 12 a of the adhesive layer 12. The release film 15 is laminated on the entire surface of one surface 13 a of the resin film-forming film 13.
  • the composite sheet 102 for resin film formation shown in FIG. 2 is a semiconductor wafer (not shown) in a partial region on the center side of the surface 13 a of the resin film formation film 13 with the release film 15 removed.
  • the back surface is attached, and further, a jig such as a ring frame is attached to a region in the vicinity of the peripheral portion of the resin film forming film 13 and used.
  • FIG. 3 is sectional drawing which shows typically other embodiment of the composite sheet for resin film formation of this invention.
  • the composite sheet for resin film formation 103 shown here is the same as the composite sheet for resin film formation 101 shown in FIG. 1 except that the adhesive layer 12 is not provided. That is, in the composite sheet 103 for resin film formation, the support sheet 1 is made of only the base material 11.
  • film 13 for resin film formation is laminated on one surface 11a of base material 11 (in other words, one surface 1a of support sheet 1), and a part of surface 13a of film 13 for resin film formation, ie, a periphery
  • the jig adhesive layer 16 is laminated in the area near the portion, and the surface of the resin film forming film 13 on which the jig adhesive layer 16 is not laminated, and the jig adhesive layer 16.
  • the peeling film 15 is laminated
  • the composite sheet 103 for resin film formation shown in FIG. 3 is a semiconductor wafer on the surface 13 a of the film 13 for resin film formation with the release film 15 removed, as in the composite sheet 101 for resin film formation shown in FIG.
  • the back surface (not shown) is attached, and a jig such as a ring frame is attached to the upper surface of the front surface 16a of the jig adhesive layer 16 for use.
  • FIG. 4 is sectional drawing which shows typically other embodiment of the composite sheet for resin film formation of this invention.
  • the composite sheet for resin film formation 104 shown here is the same as the composite sheet for resin film formation 103 shown in FIG. 3 except that the jig adhesive layer 16 is not provided. That is, in the resin film-forming composite sheet 104, the resin film-forming film 13 is laminated on one surface 11a of the substrate 11, and the release film 15 is laminated on the entire surface 13a of the resin film-forming film 13. It is done.
  • the composite sheet 104 for resin film formation shown in FIG. 4 is the same as the composite sheet 102 for resin film formation shown in FIG. 2, with the release film 15 removed, in the surface 13 a of the film 13 for resin film formation
  • the back surface of the semiconductor wafer (not shown) is attached to a partial area on the center side, and a jig such as a ring frame is attached to the area in the vicinity of the peripheral portion of the resin film forming film 13 .
  • FIG. 5 is a cross-sectional view schematically showing still another embodiment of the composite sheet for resin film formation of the present invention.
  • the composite sheet for resin film formation 105 shown here is the same as the composite sheet for resin film formation 102 shown in FIG. 2 except that the shape of the film for resin film formation is different. That is, the composite sheet 105 for resin film formation is provided with the pressure-sensitive adhesive layer 12 on the base material 11 and the film 23 for resin film formation on the pressure-sensitive adhesive layer 12.
  • the support sheet 1 is a laminate of the base material 11 and the pressure-sensitive adhesive layer 12. In other words, the resin film formation film 23 is laminated on one surface 1 a of the support sheet 1. Have the following configuration.
  • the resin film-forming composite sheet 105 further includes a peeling film 15 on the resin film-forming film 23.
  • the pressure-sensitive adhesive layer 12 is laminated on one surface 11 a of the substrate 11, and a part of the one surface 12 a of the pressure-sensitive adhesive layer 12, that is, the width direction of the support sheet 1
  • the film 23 for resin film formation is laminated
  • the resin film-forming film 23 When the resin film-forming composite sheet 105 is viewed from above from above and viewed in plan, the resin film-forming film 23 has a surface area smaller than that of the pressure-sensitive adhesive layer 12 and has, for example, a circular shape.
  • the resin film-forming film 23 satisfies the above-described conditions of the water absorption rate and the adhesive force change rate.
  • the back surface of a semiconductor wafer (not shown) is attached to the front surface 23a of the resin film formation film 23 with the release film 15 removed.
  • a jig such as a ring frame is attached to the surface 12 a of the surface 12 a on which the resin film-forming film 23 is not laminated.
  • the surface 12 a of the pressure-sensitive adhesive layer 12 is the same as that shown in FIGS. 1 and 3 on the surface on which the resin film formation film 23 is not laminated.
  • a jig adhesive layer may be laminated on the substrate (not shown).
  • the composite sheet 105 for resin film formation provided with such an adhesive layer for jigs is a ring frame on the surface of the adhesive layer for jigs in the same manner as the composite sheet for resin film formation shown in FIGS. 1 and 3. Jig etc. are stuck and used.
  • the composite sheet for resin film formation of the present invention may be provided with an adhesive layer for jig regardless of the form of the support sheet and the film for resin film formation.
  • the composite sheet for resin film formation of the present invention is not limited to those shown in FIG. 1 to FIG. 5, and the configuration of a part of those shown in FIG. It may be one that has been deleted or another configuration added to those described above.
  • an intermediate layer may be provided between the substrate 11 and the film 13 for resin film formation.
  • the intermediate layer can be selected arbitrarily according to the purpose.
  • middle layer may be provided between the base material 11 and the adhesive layer 12.
  • the support sheet may be formed by laminating the base material, the intermediate layer and the pressure-sensitive adhesive layer in this order.
  • the intermediate layer is the same as the intermediate layer which may be provided in the composite sheet for resin film formation shown in FIGS. 3 and 4.
  • the layer other than the intermediate layer may be provided at an arbitrary position.
  • a partial gap may be generated between the release film and the layer in direct contact with the release film.
  • size and shape of each layer can be arbitrarily adjusted according to the objective.
  • the base material is in the form of a sheet or a film, and examples of the constituent material thereof include various resins.
  • the resin include polyethylenes such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE); polyethylene other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene and norbornene resin Polyolefins; Ethylene copolymers such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer (ethylene as monomer Copolymers obtained by using a vinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer (resin obtained by using vinyl chloride as a monomer), polystyrene, polycycloolefin, polyethylene terephthalate, polyethylene Nafta
  • the polymer alloy of the polyester and the other resin is preferably one in which the amount of the resin other than the polyester is relatively small.
  • the resin for example, a crosslinked resin obtained by crosslinking one or more of the above-described resins exemplified so far; modification of an ionomer using one or more of the above-described resins exemplified so far Resin is also mentioned.
  • the resin constituting the substrate may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the base material may consist of one layer (a single layer), or may consist of a plurality of layers of two or more layers, and in the case of a plurality of layers, these plural layers may be the same or different from each other, and these plural
  • the combination of layers is not particularly limited.
  • the thickness of the substrate is preferably 50 to 300 ⁇ m, and more preferably 60 to 140 ⁇ m.
  • the thickness of the base material is in such a range, the flexibility of the composite sheet for resin film formation and the adhesion to a semiconductor wafer or a semiconductor chip are further improved.
  • the thickness of the substrate means the thickness of the entire substrate, for example, the thickness of the substrate comprising a plurality of layers means the total thickness of all the layers constituting the substrate means.
  • the substrate is preferably a substrate having high thickness accuracy, that is, a substrate in which the thickness variation is suppressed regardless of the part.
  • a substrate having high thickness accuracy for example, polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, ethylene-vinyl acetate copolymer, etc. Can be mentioned.
  • the base contains, in addition to the main constituent materials such as the resin, known additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softener (plasticizer). May be
  • the substrate may be transparent or opaque, or may be colored according to the purpose, or other layers may be deposited.
  • the substrate preferably transmits energy rays.
  • the base material is roughened by sand blasting, solvent treatment, etc. in order to improve the adhesion to a layer (for example, a pressure-sensitive adhesive layer, an intermediate layer or a film for forming a resin film) provided thereon; corona discharge treatment
  • a layer for example, a pressure-sensitive adhesive layer, an intermediate layer or a film for forming a resin film
  • the surface may be subjected to oxidation treatment such as electron beam irradiation treatment, plasma treatment, ozone / ultraviolet irradiation treatment, flame treatment, chromic acid treatment, hot air treatment, and the like.
  • the substrate may be one whose surface is primed.
  • the substrate can be produced by a known method.
  • the base material containing resin can be manufactured by shape
  • the pressure-sensitive adhesive layer is in the form of a sheet or a film, and contains a pressure-sensitive adhesive.
  • the pressure-sensitive adhesive include pressure-sensitive resins such as acrylic resins, urethane resins, rubber resins, silicone resins, epoxy resins, polyvinyl ethers, polycarbonates, and ester resins. Acrylic resins are preferable. .
  • the term "adhesive resin” is a concept including both an adhesive resin and an adhesive resin, and for example, the resin itself is not limited to one having adhesiveness. It also includes a resin that exhibits tackiness when used in combination with other components such as additives, and a resin that exhibits adhesion due to the presence of a trigger such as heat or water.
  • the pressure-sensitive adhesive layer may be formed of one layer (single layer) or may be formed of two or more layers, and in the case of two or more layers, these layers may be the same or different from one another.
  • the combination of multiple layers is not particularly limited.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 to 100 ⁇ m, more preferably 1 to 60 ⁇ m, and particularly preferably 1 to 30 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer means the thickness of the entire pressure-sensitive adhesive layer, and for example, the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers means the total of all layers constituting the pressure-sensitive adhesive layer. Means the thickness of.
  • the pressure-sensitive adhesive layer may be transparent or opaque, or may be colored according to the purpose.
  • the pressure-sensitive adhesive layer preferably transmits energy rays.
  • the pressure-sensitive adhesive layer may be formed using an energy ray-curable pressure-sensitive adhesive, or may be formed using a non-energy ray-curable pressure-sensitive adhesive. That is, the pressure-sensitive adhesive layer may be either energy ray curable or non-energy ray curable.
  • the energy ray-curable pressure-sensitive adhesive layer can easily adjust physical properties before and after curing.
  • the pressure-sensitive adhesive layer can be formed using a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer can be formed on a target site by coating the pressure-sensitive adhesive composition on the surface to be formed of the pressure-sensitive adhesive layer and drying it as necessary. The more specific formation method of an adhesive layer is demonstrated in detail later with the formation method of another layer.
  • the application of the pressure-sensitive adhesive composition can be performed, for example, by the same method as the application of the composition for forming a thermosetting resin film described above.
  • the pressure-sensitive adhesive composition may be coated on the substrate and dried as necessary to laminate the pressure-sensitive adhesive layer on the substrate.
  • the pressure-sensitive adhesive layer is provided on the substrate, for example, the pressure-sensitive adhesive composition is applied on the release film, and dried as needed to form the pressure-sensitive adhesive layer on the release film.
  • the pressure-sensitive adhesive layer may be laminated on the substrate by bonding the exposed surface of the pressure-sensitive adhesive layer to one surface of the substrate. The release film in this case may be removed at any time during the manufacturing process of the composite sheet for resin film formation.
  • the drying conditions of the pressure-sensitive adhesive composition are not particularly limited, but when the pressure-sensitive adhesive composition contains a solvent described later, it is preferable to heat and dry.
  • the solvent-containing pressure-sensitive adhesive composition is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes.
  • a pressure-sensitive adhesive composition containing an energy ray-curable pressure-sensitive adhesive that is, an energy ray-curable pressure-sensitive adhesive composition
  • an energy ray-curable pressure-sensitive adhesive composition for example, non-energy ray-curable tackiness
  • Pressure-sensitive adhesive composition (I-1) containing resin (I-1a) hereinafter sometimes abbreviated as “adhesive resin (I-1a)” and an energy ray-curable compound
  • non-energy Energy ray curable adhesive resin (I-2a) hereinafter referred to as “adhesive resin (I-2a)
  • pressure-sensitive adhesive composition (I-3) containing the adhesive resin (I-2a) and an energy ray-curable compound, etc.
  • the pressure-sensitive adhesive composition (I-1) contains a non-energy ray-curable adhesive resin (I-1a) and an energy ray-curable compound.
  • the adhesive resin (I-1a) is preferably an acrylic resin.
  • the acrylic resin the acrylic polymer which has a structural unit derived from the (meth) acrylic-acid alkylester at least is mentioned, for example.
  • the structural unit which the said acrylic resin has may be only 1 type, may be 2 or more types, and when it is 2 or more types, those combination and ratio can be selected arbitrarily.
  • Examples of the (meth) acrylic acid alkyl ester include ones in which the alkyl group constituting the alkyl ester has 1 to 20 carbon atoms, and the alkyl group is linear or branched. Is preferred. More specifically, as (meth) acrylic acid alkyl ester, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth) acrylic acid n-Butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octy
  • the said acryl-type polymer has a structural unit derived from the (meth) acrylic-acid alkylester whose carbon number of the said alkyl group is 4 or more from the point which the adhesive force of an adhesive layer improves.
  • the carbon number of the alkyl group is preferably 4 to 12, and more preferably 4 to 8, in order to further improve the adhesion of the pressure-sensitive adhesive layer.
  • the (meth) acrylic acid alkyl ester in which the number of carbon atoms of the alkyl group is 4 or more is preferably an acrylic acid alkyl ester.
  • the acrylic polymer preferably further has a structural unit derived from a functional group-containing monomer, in addition to the structural unit derived from the (meth) acrylic acid alkyl ester.
  • a functional group-containing monomer for example, reaction of the functional group with a crosslinking agent described later becomes a crosslinking origin, or the functional group reacts with an unsaturated group in an unsaturated group-containing compound described later And those which make it possible to introduce an unsaturated group into the side chain of the acrylic polymer.
  • a hydroxyl group, a carboxy group, an amino group, an epoxy group etc. are mentioned, for example. That is, as a functional group containing monomer, a hydroxyl group containing monomer, a carboxy group containing monomer, an amino group containing monomer, an epoxy group containing monomer etc. are mentioned, for example.
  • hydroxyl group-containing monomer examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (meth) Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; non (meth) acrylics such as vinyl alcohol and allyl alcohol A saturated alcohol (unsaturated alcohol which does not have a (meth) acryloyl frame) etc. are mentioned.
  • carboxy group-containing monomer examples include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citraconic Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the above-mentioned ethylenically unsaturated dicarboxylic acids; (meth) acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate and the like Be
  • monocarboxylic acids having an ethylenically unsaturated bond such as (meth) acrylic acid and crotonic acid
  • fumaric acid, itaconic acid, maleic acid, citraconic Ethylenically unsaturated dicarboxylic acids such as acids (dicar
  • the functional group-containing monomer is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, and more preferably a hydroxyl group-containing monomer.
  • the functional group-containing monomer constituting the acrylic polymer may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the structural unit derived from the functional group-containing monomer is preferably 1 to 35% by mass, and more preferably 2 to 32% by mass, with respect to the total amount of the structural units. And 3 to 30% by mass is particularly preferable.
  • the acrylic polymer may further have a structural unit derived from another monomer in addition to the structural unit derived from the (meth) acrylic acid alkyl ester and the structural unit derived from the functional group-containing monomer.
  • the other monomer is not particularly limited as long as it is copolymerizable with (meth) acrylic acid alkyl ester and the like.
  • Examples of the other monomers include styrene, ⁇ -methylstyrene, vinyl toluene, vinyl formate, vinyl acetate, acrylonitrile, acrylamide and the like.
  • the other monomer constituting the acrylic polymer may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the acrylic polymer can be used as the above-mentioned non-energy ray curable tackifying resin (I-1a).
  • the unsaturated group-containing compound having an energy ray polymerizable unsaturated group (energy ray polymerizable group) is reacted with the functional group in the acrylic polymer have the above-mentioned energy ray curable tackiness It can be used as a resin (I-2a).
  • the adhesive resin (I-1a) contained in the adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are optionally It can be selected.
  • the ratio of the content of the adhesive resin (I-1a) to the total mass of the pressure-sensitive adhesive composition (I-1) is preferably 5 to 99% by mass 10 to 95% by mass is more preferable, and 15 to 90% by mass is particularly preferable.
  • Examples of the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1) include monomers or oligomers which have an energy ray-polymerizable unsaturated group and can be cured by irradiation of energy rays.
  • the energy ray-curable compounds as a monomer, for example, trimethylolpropane tri (meth) acrylate, pentaerythritol (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4 -Multivalent (meth) acrylates such as -butylene glycol di (meth) acrylate and 1,6-hexanediol (meth) acrylate; urethane (meth) acrylate; polyester (meth) acrylate; polyether (meth) acrylate; epoxy ( Meta) acrylate etc. are mentioned.
  • examples of the oligomers include oligomers formed by polymerization of the monomers exemplified above.
  • the energy ray-curable compound is preferably a urethane (meth) acrylate or a urethane (meth) acrylate oligomer in that the molecular weight is relatively large and the storage elastic modulus of the pressure-sensitive adhesive layer is hardly reduced.
  • the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the ratio of the content of the energy ray-curable compound to the total mass of the pressure-sensitive adhesive composition (I-1) is preferably 1 to 95% by mass.
  • the content is more preferably 5 to 90% by mass, and particularly preferably 10 to 85% by mass.
  • crosslinking agent reacts with the functional group to crosslink the adhesive resin (I-1a).
  • Crosslinking agents include, for example, tolylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, isocyanate-based crosslinking agents such as adducts of these diisocyanates (crosslinking agents having an isocyanate group); epoxy-based crosslinking agents such as ethylene glycol glycidyl ether ( Crosslinking agent having glycidyl group); Aziridine type crosslinking agent such as hexa [1- (2-methyl) -aziridinyl] trifosphatriazine (crosslinking agent having aziridinyl group); Metal chelate type crosslinking agent such as aluminum chelate (metal Crosslinkers having a chelate structure); isocyanurate crosslinkers (crosslinkers having an isocyanuric acid skeleton) and the like.
  • the cross-linking agent is
  • the crosslinking agent contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be optionally selected.
  • the content of the crosslinking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-1a), The amount is more preferably 0.1 to 20 parts by mass, and particularly preferably 0.3 to 15 parts by mass.
  • the pressure-sensitive adhesive composition (I-1) may further contain a photopolymerization initiator.
  • the pressure-sensitive adhesive composition (I-1) containing a photopolymerization initiator sufficiently proceeds curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate and benzoin dimethyl ketal; acetophenone, 2-hydroxy Acetophenone compounds such as -2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4,6-trimethylbenzoyl) phenyl phosphine Oxides, acyl phosphine oxide compounds such as 2,4,6-trimethyl benzoyl diphenyl phosphine oxide; sulfides such as benzyl phenyl sulfide and tetramethylthiuram monosulfide Substances; ⁇ -ketol compounds such as 1-hydroxycyclohexyl phenyl
  • the photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the energy ray-curable compound, and 0
  • the content is more preferably in the range of 03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (I-1) may contain other additives which do not correspond to any of the components described above, as long as the effects of the present invention are not impaired.
  • the other additives include antistatic agent, antioxidant, softener (plasticizer), filler (filler), rust inhibitor, coloring agent (pigment, dye), sensitizer, tackifier
  • Well-known additives, such as a reaction retarder, a crosslinking accelerator (catalyst), etc. are mentioned.
  • the reaction retarder means, for example, an unintended cross-linking reaction in the adhesive composition (I-1) during storage by the action of a catalyst mixed in the adhesive composition (I-1). It is to control progress.
  • the other additives contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the other additives in the pressure-sensitive adhesive composition (I-1) is not particularly limited, and may be appropriately selected according to the type.
  • the pressure-sensitive adhesive composition (I-1) may contain a solvent.
  • the pressure-sensitive adhesive composition (I-1) contains a solvent, whereby the coating suitability to the surface to be coated is improved.
  • the solvent is preferably an organic solvent
  • examples of the organic solvent include ketones such as methyl ethyl ketone and acetone; esters such as ethyl acetate (carboxylic acid esters); ethers such as tetrahydrofuran and dioxane; cyclohexane, n-hexane, etc.
  • ketones such as methyl ethyl ketone and acetone
  • esters such as ethyl acetate (carboxylic acid esters)
  • ethers such as tetrahydrofuran and dioxane
  • Aliphatic hydrocarbons aromatic hydrocarbons such as toluene and xylene
  • alcohols such as 1-propanol and 2-propanol.
  • the solvent for example, one used in the production of the adhesive resin (I-1a) may be used as it is in the adhesive composition (I-1) without removing it from the adhesive resin (I-1a)
  • the same or a different type of solvent as that used in the production of the adhesive resin (I-1a) may be separately added in the production of the pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent in the pressure-sensitive adhesive composition (I-1) is not particularly limited, and may be appropriately adjusted.
  • the pressure-sensitive adhesive composition (I-2) is, as described above, an energy ray-curable adhesive resin in which an unsaturated group is introduced into the side chain of the non-energy ray-curable adhesive resin (I-1a). (I-2a) is contained.
  • the adhesive resin (I-2a) can be obtained, for example, by reacting a functional group in the adhesive resin (I-1a) with an unsaturated group-containing compound having an energy beam polymerizable unsaturated group.
  • the unsaturated group-containing compound can be bonded to the adhesive resin (I-1a) by further reacting with the functional group in the adhesive resin (I-1a) in addition to the energy beam polymerizable unsaturated group It is a compound having a group.
  • the energy ray polymerizable unsaturated group include (meth) acryloyl group, vinyl group (ethenyl group), allyl group (2-propenyl group) and the like, and (meth) acryloyl group is preferable.
  • Examples of the group capable of binding to a functional group in the adhesive resin (I-1a) include, for example, an isocyanate group and a glycidyl group capable of binding to a hydroxyl group or an amino group, and a hydroxy group and amino group capable of binding to a carboxy group or an epoxy group. Etc.
  • Examples of the unsaturated group-containing compound include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, glycidyl (meth) acrylate and the like.
  • the adhesive resin (I-2a) contained in the adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are optionally It can be selected.
  • the ratio of the content of the adhesive resin (I-2a) to the total mass of the pressure-sensitive adhesive composition (I-2) is preferably 5 to 99% by mass It is more preferably 10 to 95% by mass, and particularly preferably 10 to 90% by mass.
  • Examples of the crosslinking agent in the pressure-sensitive adhesive composition (I-2) include the same as the crosslinking agent in the pressure-sensitive adhesive composition (I-1).
  • the crosslinking agent contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be optionally selected.
  • the content of the crosslinking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-2a), The amount is more preferably 0.1 to 20 parts by mass, and particularly preferably 0.3 to 15 parts by mass.
  • the pressure-sensitive adhesive composition (I-2) may further contain a photopolymerization initiator.
  • the pressure-sensitive adhesive composition (I-2) containing a photopolymerization initiator sufficiently proceeds a curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
  • the photopolymerization initiator in the pressure-sensitive adhesive composition (I-2) may be the same as the photopolymerization initiator in the pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-2a)
  • the amount is more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (I-2) may contain other additives which do not correspond to any of the components described above, as long as the effects of the present invention are not impaired.
  • Examples of the other additives in the pressure-sensitive adhesive composition (I-2) include the same as the other additives in the pressure-sensitive adhesive composition (I-1).
  • the other additives contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be optionally selected.
  • the content of the other additives in the pressure-sensitive adhesive composition (I-2) is not particularly limited, and may be appropriately selected according to the type.
  • the pressure-sensitive adhesive composition (I-2) may contain a solvent for the same purpose as the pressure-sensitive adhesive composition (I-1).
  • the solvent in the pressure-sensitive adhesive composition (I-2) may be the same as the solvent in the pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent in the pressure-sensitive adhesive composition (I-2) is not particularly limited, and may be appropriately adjusted.
  • the pressure-sensitive adhesive composition (I-3) contains, as described above, the pressure-sensitive adhesive resin (I-2a) and an energy ray-curable compound.
  • the ratio of the content of the adhesive resin (I-2a) to the total mass of the pressure-sensitive adhesive composition (I-3) is preferably 5 to 99% by mass 10 to 95% by mass is more preferable, and 15 to 90% by mass is particularly preferable.
  • Examples of the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-3) include monomers and oligomers which have an energy ray-polymerizable unsaturated group and can be cured by irradiation of energy rays, and the pressure-sensitive adhesive composition The same as the energy ray-curable compound contained in the compound (I-1) can be mentioned.
  • the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the energy ray-curable compound is 0.01 to 300 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-2a) Is more preferably 0.03 to 200 parts by mass, and particularly preferably 0.05 to 100 parts by mass.
  • the pressure-sensitive adhesive composition (I-3) may further contain a photopolymerization initiator.
  • the pressure-sensitive adhesive composition (I-3) containing a photopolymerization initiator sufficiently proceeds curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
  • the photopolymerization initiator in the pressure-sensitive adhesive composition (I-3) may be the same as the photopolymerization initiator in the pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the photopolymerization initiator is 0.01 to 100 parts by mass relative to the total content of the adhesive resin (I-2a) and the energy ray-curable compound.
  • the amount is preferably 20 parts by mass, more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (I-3) may contain other additives which do not correspond to any of the components described above, as long as the effects of the present invention are not impaired.
  • Examples of the other additives include the same as the other additives in the pressure-sensitive adhesive composition (I-1).
  • the other additives contained in the pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be optionally selected.
  • the content of the other additives in the pressure-sensitive adhesive composition (I-3) is not particularly limited, and may be appropriately selected according to the type.
  • the pressure-sensitive adhesive composition (I-3) may contain a solvent for the same purpose as the pressure-sensitive adhesive composition (I-1).
  • the solvent in the pressure-sensitive adhesive composition (I-3) may be the same as the solvent in the pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent in the pressure-sensitive adhesive composition (I-3) is not particularly limited, and may be appropriately adjusted.
  • Adhesive Composition Other than Adhesive Composition (I-1) to (I-3)>
  • the pressure-sensitive adhesive composition (I-1), the pressure-sensitive adhesive composition (I-2) and the pressure-sensitive adhesive composition (I-3) have been mainly described, but those described as the components thereof are General pressure-sensitive adhesive compositions other than these three pressure-sensitive adhesive compositions (herein referred to as "pressure-sensitive adhesive compositions other than pressure-sensitive adhesive compositions (I-1) to (I-3)") But it can be used as well.
  • non-energy ray-curable pressure-sensitive adhesive compositions in addition to the energy ray-curable pressure-sensitive adhesive composition, non-energy ray-curable pressure-sensitive adhesive compositions can also be mentioned.
  • a non-energy ray curable pressure-sensitive adhesive composition for example, non-energy ray curing such as acrylic resin, urethane resin, rubber resin, silicone resin, epoxy resin, polyvinyl ether, polycarbonate, ester resin, etc.
  • the pressure-sensitive adhesive composition (I-4) containing the adhesive resin (I-1a), and those containing an acrylic resin are preferable.
  • the pressure-sensitive adhesive composition other than the pressure-sensitive adhesive compositions (I-1) to (I-3) preferably contains one or more crosslinking agents, and the content thereof is the pressure-sensitive adhesive composition described above The same can be applied to the case of (I-1) and the like.
  • Preferred examples of the pressure-sensitive adhesive composition (I-4) include those containing the above-mentioned adhesive resin (I-1a) and a crosslinking agent.
  • Adhesive resin (I-1a) examples of the adhesive resin (I-1a) in the adhesive composition (I-4) include the same ones as the adhesive resin (I-1a) in the adhesive composition (I-1).
  • the adhesive resin (I-1a) contained in the adhesive composition (I-4) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are optionally It can be selected.
  • the ratio of the content of the adhesive resin (I-1a) to the total mass of the pressure-sensitive adhesive composition (I-4) is preferably 5 to 99% by mass 10 to 95% by mass is more preferable, and 15 to 90% by mass is particularly preferable.
  • crosslinking agent in the pressure-sensitive adhesive composition (I-4) examples include the same as the crosslinking agents in the pressure-sensitive adhesive composition (I-1).
  • the crosslinking agent contained in the pressure-sensitive adhesive composition (I-4) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be optionally selected.
  • the content of the crosslinking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-1a), The amount is more preferably 0.1 to 47 parts by mass, and particularly preferably 0.3 to 44 parts by mass.
  • the pressure-sensitive adhesive composition (I-4) may contain other additives which do not correspond to any of the components described above, as long as the effects of the present invention are not impaired.
  • Examples of the other additives include the same as the other additives in the pressure-sensitive adhesive composition (I-1).
  • the other additives contained in the pressure-sensitive adhesive composition (I-4) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be optionally selected.
  • the content of the other additives in the pressure-sensitive adhesive composition (I-4) is not particularly limited, and may be appropriately selected according to the type.
  • the pressure-sensitive adhesive composition (I-4) may contain a solvent for the same purpose as the pressure-sensitive adhesive composition (I-1).
  • the solvent in the pressure-sensitive adhesive composition (I-4) may be the same as the solvent in the pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the pressure-sensitive adhesive composition (I-4) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent in the pressure-sensitive adhesive composition (I-4) is not particularly limited, and may be appropriately adjusted.
  • the pressure-sensitive adhesive layer is preferably non-energy ray curable. This is because when the pressure-sensitive adhesive layer is energy beam curable, when the resin film-forming film is cured by irradiation with energy rays, it may not be possible to suppress the pressure-sensitive adhesive layer from being cured simultaneously. When the pressure-sensitive adhesive layer is cured simultaneously with the resin film-forming film, the cured product of the resin film-forming film and the pressure-sensitive adhesive layer may stick to such an extent that they can not be peeled off at these interfaces.
  • the resin film-forming film that is, the semiconductor chip having the resin film on the back surface (that is, the semiconductor chip with a resin film) from the support sheet provided with the cured product of the pressure sensitive adhesive layer.
  • the resin film-coated semiconductor chip can not be properly picked up.
  • Pressure-sensitive adhesive compositions other than pressure-sensitive adhesive compositions (I-1) to (I-3) and pressure-sensitive adhesive compositions (I-1) to (I-3) such as pressure-sensitive adhesive composition (I-4) It is obtained by blending the pressure-sensitive adhesive and, if necessary, each component for constituting the pressure-sensitive adhesive composition, such as components other than the pressure-sensitive adhesive. There is no particular limitation on the order of addition of each component at the time of blending, and two or more components may be added simultaneously.
  • a solvent When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by previously diluting any compounding component other than the solvent A solvent may be used by mixing with these compounding ingredients without storage.
  • the method of mixing each component at the time of compounding is not particularly limited, and a method of mixing by rotating a stirrer or a stirring blade, etc .; a method of mixing using a mixer; a method of adding ultrasonic waves and mixing, etc. It may be selected as appropriate.
  • the temperature and time of addition and mixing of the respective components are not particularly limited as long as the respective blended components do not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • the composite sheet for forming a resin film of the present invention can be produced by sequentially laminating the above-described layers so as to have a corresponding positional relationship.
  • the method of forming each layer is as described above.
  • the above-mentioned pressure-sensitive adhesive composition may be coated on the substrate and dried as necessary.
  • the composition for resin film formation is coated on the pressure-sensitive adhesive layer, and the resin film is formed. It is possible to form the forming film directly.
  • a layer other than the film for resin film formation can also laminate this layer on an adhesive layer by the same method using the composition for forming this layer.
  • the composition is further coated on the layer formed of the composition to form a new layer.
  • the layer to be laminated later is formed in advance using the composition on another release film, and the side of the formed layer in contact with the release film is It is preferable to form a continuous two-layered laminated structure by bonding the opposite exposed surface to the exposed surface of the remaining layer that has already been formed.
  • the composition is preferably applied to the release-treated surface of the release film.
  • the release film may be removed as necessary after the formation of the laminated structure.
  • a composite sheet for resin film formation in which an adhesive layer is laminated on a substrate and a film for resin film formation is laminated on the adhesive layer (in other words, a support sheet is a laminate of a substrate and an adhesive layer)
  • the pressure-sensitive adhesive composition is coated on a substrate, and dried as needed, thereby laminating the pressure-sensitive adhesive layer on the substrate Every time, separately, the composition for resin film formation is coated on the release film, and dried as needed, thereby forming the film for resin film formation on the release film. Then, the exposed surface of the resin film-forming film is attached to the exposed surface of the pressure-sensitive adhesive layer laminated on the substrate, and the resin film-forming film is laminated on the pressure-sensitive adhesive layer to form a resin film.
  • Composite sheet is obtained.
  • the release film may be removed at any timing after formation of the intended laminated structure.
  • the composite sheet for forming a resin film of the present invention can be used, for example, by the following method. That is, first, the composite sheet for resin film formation is attached to the back surface of the semiconductor wafer by the film for resin film formation.
  • the resin film-forming film is energy ray curable
  • the resin film forming film is energy ray cured by irradiation of energy rays to form a resin film or as it is without energy ray curing.
  • the resin film-forming film is non-energy ray curable
  • the resin film-forming film is left as it is.
  • the semiconductor wafer is divided together with the resin film formation film or the resin film by blade dicing to obtain a semiconductor chip.
  • the size of the semiconductor chip is preferably 4 mm or less, and may be, for example, 3.5 mm or less, 3 mm or less, or 2.5 mm or less.
  • the semiconductor chip is separated from the support sheet with the resin film-forming film or the resin film attached to the back surface (that is, as a resin film-forming film-attached semiconductor chip or resin film-attached semiconductor chip) and picked up Do.
  • the film for resin film formation of the present invention even when the semiconductor chip with a film for resin film formation or the resin film with a resin film having a small size is picked up from the support sheet, It is possible to suppress the remaining of the resin film-forming film or the resin film on the support sheet.
  • thermosetting when the film for resin film formation is thermosetting (For example, when the film for resin film formation is not energy ray curable but thermosetting, or the characteristic of both energy ray curing and thermosetting)
  • the thermosetting resin film-forming film of the present invention be thermally cured after picking up the semiconductor chip.
  • blade dicing is performed without energy ray curing the film for energy ray curable resin film formation, resin film formation stuck on the back surface of the semiconductor chip at any stage after blade dicing.
  • the film for energy may be energy ray cured to be a resin film or may not be energy ray cured.
  • the target semiconductor device may be manufactured according to the application of the resin film by the same method as the conventional method.
  • the semiconductor chip is die-bonded to the circuit surface of the substrate with a film-like adhesive, and if necessary, the semiconductor chip is further semiconductor chip After laminating one or more pieces and performing wire bonding, the whole is sealed with a resin to obtain a semiconductor package. Then, using this semiconductor package, a target semiconductor device is manufactured.
  • a target semiconductor device is manufactured.
  • a film for resin film formation as a film for protective film formation in other words, a resin film as a protective film
  • a semiconductor chip with a protective film is flip chip connected to the circuit surface of the substrate, Do.
  • a target semiconductor device may be manufactured using this semiconductor package.
  • the formation of the resin film (protective film) by curing of the film for resin film formation can be performed at any timing before and after blade dicing.
  • BPA 328 epoxy equivalent 235 g / eq
  • B1 -2 dicyclopentadiene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd. "XD-1000-L”, epoxy equivalent 248 g / eq)
  • B1 -3 Dicyclopentadiene type epoxy resin ("Epiclon HP-7200HH” manufactured by DIC, epoxy equivalent: 255 to 260 g / eq) ⁇
  • Heat curing agent (B2) B2) -1: Dicyandiamide (Thermally active latent epoxy resin curing agent, "ADEKA HARDNER EH-3636 AS” manufactured by ADEKA, active hydrogen content 21 g / eq) [Hardening accelerator (C)]
  • C) -1 2-phenyl-4,5-dihydroxymethylimidazole ("Cuazole 2PHZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.) [Filler (D)]
  • thermosetting resin film (III-1) ⁇ Manufacture of composite sheet for resin film formation>
  • polymer component (A) -1 (9.56 parts by mass), epoxy resin (B1) -1 (12.75 parts by mass), epoxy resin (B1) -2 (12.75 parts by mass) Parts), epoxy resin (B1) -3 (25.50 parts by mass), thermosetting agent (B2) -1 (1.08 parts by mass), curing accelerator (C) -1 (1.08 parts by mass), Filler (D) -1 (30.00 parts by mass), coupling agent (E) -1 (0.38 parts by mass), crosslinking agent (F) -1 (0.32 parts by mass), energy ray curable Resin (G) -1 (6.37 parts by mass) and photopolymerization initiator (H) -1 (0.20 parts by mass) are mixed, and the concentration of solids in methyl ethyl ketone is 55% by mass.
  • the composition was diluted to obtain a thermosetting resin film-forming composition (
  • the composition obtained in the above (III) was applied to the release-treated side of a release film (“SP-PET 381031” manufactured by Lintec, thickness 38 ⁇ m) in which one side of a polyethylene terephthalate (PET) film was release-treated by silicone treatment
  • the resin composition for forming a resin film having a thickness of 20 ⁇ m was formed by coating the above No. 1) and drying at 100 ° C. for 1 minute.
  • the release is carried out by silicone treatment of one side of the polyethylene terephthalate (PET) film.
  • the release-treated surface of a film (“SP-PET 502150” manufactured by Lintec Corp., thickness 50 ⁇ m) was laminated to prepare a laminated film in which the release film was laminated on both sides of the resin film-forming film.
  • a two-layer film (total thickness of 90 ⁇ m of two layers) comprising a film (thickness 40 ⁇ m) made of ethylene-methacrylic acid copolymer (EMAA) and a film (thickness 50 ⁇ m) made of polypropylene (PP)
  • the substrate (support sheet) and the resin film-forming film are laminated by bonding the newly exposed surface of the above-mentioned resin film-forming film to the surface on the polypropylene film side, which is used as the substrate.
  • a composite sheet for resin film formation was obtained.
  • the first laminate was UV-cured to produce a first cured product which was not thermally cured.
  • This first cured product was used as a first test piece, and its mass W A was measured immediately.
  • the first test piece is immersed in pure water at 23 ° C. for 2 hours, taken out of the pure water, and after removing excess water droplets adhering to the surface, the mass of the first test piece after this immersion W B was measured. Subsequently, the water absorption (%) of the first test piece was calculated by the formula “(W B ⁇ W A ) / W A ⁇ 100”.
  • a sufficient amount of pure water was used so that the entire first test piece was completely immersed in pure water. The results are shown in Table 1.
  • the resin film-forming film obtained above was attached by heating to 40 ° C. on the entire surface of a 6-inch silicon mirror wafer (thickness 350 ⁇ m). Then, the resin film-forming film protruding from the silicon mirror wafer was cut and removed. Furthermore, a 25-mm-wide, 200-mm-long, 70- ⁇ m-thick strong adhesive tape is attached to multiple locations on the exposed surface of the resin film-forming film (in other words, the surface opposite to the silicon mirror wafer side). Then, cuts were formed in the resin film-forming film along the outer periphery of the strong adhesive tape. By the above, the 2nd laminated body was produced.
  • UV light is applied to the resin film-forming film in the second laminate under the conditions of illuminance 220 mW / cm 2 and light quantity 120 mJ / cm 2
  • the film for resin film formation was ultraviolet-cured by irradiating the resin film to obtain a second cured product which was not thermally cured.
  • a second laminate (cured second laminate) including the second cured product is used as a second test piece, and the second test piece is immediately treated for 30 minutes in an environment of a temperature of 23 ° C. and a relative humidity of 50%. Let stand and let it age.
  • the adhesion (immersion (immersion) between the second cured product and the silicon mirror wafer in an environment of 23.degree. Pre-adhesiveness) PA1 was measured.
  • the second test piece after this aging was immersed in pure water at 23 ° C. for 2 hours.
  • the second test piece is taken out of pure water, excess water droplets adhering to the surface are removed, and immediately after the immersion, the other one of the second test pieces is stuck with another strong adhesive tape. in places, under 23 ° C. environment was measured after immersion adhesive strength P B1 between the second cured silicon mirror wafer.
  • the adhesive force change rate (%) of the second test piece was calculated by the formula “(
  • the pre-immersion adhesion and the post-immersion adhesion were measured continuously at different points in the same second test piece.
  • a sufficient amount of pure water was used so that the entire second test piece was completely immersed in pure water.
  • the plurality of resin film-forming films obtained above were laminated to prepare a laminate having a total thickness of 200 ⁇ m.
  • the laminate was punched (cut) to a size of 15 mm ⁇ 150 mm to produce a third laminate having a size of 15 mm ⁇ 150 mm and a thickness of 200 ⁇ m.
  • the third laminate is irradiated with ultraviolet light using an ultraviolet irradiation apparatus ("RAD-2000 m / 12" manufactured by Lintec Corporation) under the conditions of an illuminance of 220 mW / cm 2 and a light quantity of 120 mJ / cm 2 .
  • the third laminate was subjected to ultraviolet curing to prepare a third cured product which was not thermally cured.
  • the third test piece is subjected to a tensile test at a test speed of 200 mm / min in an environment of 23 ° C. in accordance with JIS K 7127 to obtain a Young's modulus ( Young's modulus before immersion (MPa) was measured.
  • the same third test piece was immersed in pure water at 23 ° C. for 2 hours.
  • the composite sheet for resin film formation obtained above is heated to 40 ° C. on the ground surface of the silicon mirror wafer after this standing and the resin film It stuck by the film for formations at the sticking speed of 20 mm / sec.
  • the water absorption rate of the first test piece was 0.24 to 0.50%
  • the adhesive strength change rate of the second test piece was 16.5 to 38.4%.
  • the second cured product and the silicon mirror wafer and the measurement of immersion before adhesion (after aging adhesive force) P A1, when measuring after immersion adhesive strength P B1, the peeling off of the second specimen visually
  • cohesive failure occurred in the second cured product of the second test piece before and after immersion. That is, the energy ray cured product of the film for forming a resin film of Examples 1 to 3 has a low water absorption rate, and the change in adhesive strength before and after immersion (water absorption) is suppressed, and the pickup aptitude is improved even after immersion. It was excellent.
  • the Young's modulus after immersion of the third test piece is 20.7 to 104.5 MPa, and the energy ray cured product of the film for forming a resin film of Examples 1 to 3 is intended for pickup Cleavage at the outside location was less likely to occur and had more desirable properties.
  • the breaking elongation after immersion of the third test piece was 25 to 384%, and the breaking stress after immersion of the third test piece was 0.9 to 4.6 MPa.
  • Comparative Example 1 the number of defects in the pick-up aptitude of the silicon chip with a resin film was 56, and the pick-up aptitude was clearly inferior.
  • Comparative Example 1 the water absorption of the first test piece was 0.96%, which was a high level.
  • P A1 when measuring after immersion adhesive strength P B1
  • the peeling off of the second specimen visually According to the observation, interface failure occurred between the second cured product and the silicon mirror wafer after immersion, but interface failure occurred between the second cured product and the strong adhesive tape before immersion.
  • the second cured product and the silicon mirror wafer remained in close contact with each other.
  • the peeling force before immersion did not represent the adhesion between the second cured product and the silicon mirror wafer, and the measured value of the peeling force was 23584 (mN / 25 mm). From the above, it is confirmed that the adhesion between the second cured product and the silicon mirror wafer is larger than 23584 (mN / 25 mm), and the change in adhesion of the second test piece is larger than 66.0%. The However, it was confirmed that the change rate of the adhesive strength was high.
  • the energy ray cured product of the film for forming a resin film of Comparative Example 1 has a high water absorption coefficient, and the change in adhesive strength before and after immersion (water absorption) is not suppressed, and the pickup aptitude after immersion In terms of point, it did not have favorable characteristics.
  • Comparative Example 1 the Young's modulus after immersion of the third test piece is 1.0 MPa, and the energy ray-cured product of the film for resin film formation of Comparative Example 1 is cut at an unintended location during pickup. It was easy and did not have favorable characteristics in this respect either.
  • Comparative Example 2 the water absorption rate of the first test piece was 0.62%, which was a high level.
  • Comparative Example 2 also in Comparative Example 2, as in the case of Comparative Example 1, interface breakage occurred between the second cured product and the silicon mirror wafer after immersion, but before immersion, the second cured product An interfacial failure occurred between the second adhesive and the strong adhesive tape, and the second cured product and the silicon mirror wafer remained in close contact with each other. That is, even in Comparative Example 2, the peeling force before immersion did not represent the adhesion between the second cured product and the silicon mirror wafer, and the measured value of the peeling force was 25877 (mN / 25 mm).
  • the adhesion between the second cured product and the silicon mirror wafer is larger than 25877 (mN / 25 mm), and the change in adhesion of the second test piece is larger than 69.0%.
  • the change rate of the adhesive strength was high. That is, the energy ray cured product of the film for resin film formation of Comparative Example 2 also has a high water absorption coefficient, and the change in the adhesive strength before and after immersion (water absorption) is not suppressed, and the pickup suitability after immersion In terms of point, it did not have favorable characteristics.
  • Comparative Example 2 the Young's modulus after immersion of the third test piece is 5.1 MPa, and the energy beam cured product of the film for resin film formation of Comparative Example 2 is also cut at an unintended location during pickup. It was easy and did not have favorable characteristics in this respect either.
  • the present invention is applicable to the manufacture of semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Dicing (AREA)

Abstract

This resin film forming film satisfies the following conditions (i) and (ii): (i) when a first test specimen manufactured using a first laminated body which comprises a plurality of the resin film forming films laminated together and has a size of 50 mm × 50 mm and a thickness of 200 μm is immersed in pure water for two hours, the first test specimen has a water absorption of 0.55% or less; and (ii) when a second test specimen manufactured using a second laminated body in which the resin film forming film is attached to a silicon mirror wafer has been left in an environment of 23°C and 50% RH for 30 minutes, and when the second test specimen after the elapse of the time has been immersed in pure water for two hours, an adhesive force between the resin film forming films or a cured product thereof and the silicon mirror wafer measured before and after the immersion exhibits an adhesive force change rate of 60% or less.

Description

樹脂膜形成用フィルム及び樹脂膜形成用複合シートResin film-forming film and resin film-forming composite sheet
 本発明は、樹脂膜形成用フィルム及び樹脂膜形成用複合シートに関する。
 本願は、2017年7月6日に、日本に出願された特願2017-132980号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a resin film-forming film and a resin film-forming composite sheet.
Priority is claimed on Japanese Patent Application No. 2017-132980, filed July 6, 2017, the content of which is incorporated herein by reference.
 半導体装置の製造過程においては、半導体チップの回路面とは反対側の面(裏面)に、有機材料を含有する樹脂膜を備えたもの(樹脂膜付き半導体チップ)や、この樹脂膜を形成するための樹脂膜形成用フィルムを備えたもの(樹脂膜形成用フィルム付き半導体チップ)が取り扱われる。前記樹脂膜としては、例えば、前記樹脂膜形成用フィルムの硬化物等が挙げられる。この場合、半導体ウエハの回路面とは反対側の面(裏面)に樹脂膜形成用フィルムを貼付した後、半導体ウエハの半導体チップへの個片化と、樹脂膜形成用フィルムの硬化と、を行うことで、樹脂膜付き半導体チップを作製する。
 これに対して、樹脂膜形成用フィルムの使用対象となる半導体チップとしては、回路面に電極であるバンプを備えたものと、備えていないものが挙げられる。
In the process of manufacturing a semiconductor device, one having a resin film containing an organic material (semiconductor chip with a resin film) or this resin film is formed on the surface (rear surface) opposite to the circuit surface of the semiconductor chip A film (a semiconductor chip with a film for forming a resin film) provided with a film for forming a resin film for processing is handled. As said resin film, the hardened | cured material of the said film for resin film formation, etc. are mentioned, for example. In this case, after a film for resin film formation is attached to the surface (rear surface) opposite to the circuit surface of the semiconductor wafer, singulation of the semiconductor wafer into semiconductor chips and curing of the film for resin film formation are performed. By carrying out, a semiconductor chip with a resin film is produced.
On the other hand, as a semiconductor chip which becomes a use object of a film for resin film formation, what equipped with a bump which is an electrode on a circuit side, and a thing which is not equipped are mentioned.
 回路面にバンプを備えていない半導体チップは、最も汎用されているものであり、その裏面には、通常、前記樹脂膜形成用フィルムとして、半導体チップを基板の回路形成面にダイボンディングするために用いるフィルム状接着剤を備える。すなわち、この場合の樹脂膜形成用フィルムは、フィルム状接着剤である。
 一方、回路面にバンプを備えた半導体チップは、バンプによって、基板の回路形成面にフリップチップ接続される。しかし、この場合の半導体チップは、そのままでは、その裏面が剥き出しとなるため、この裏面には、通常、前記樹脂膜として保護膜を備える。すなわち、この場合の樹脂膜は保護膜であり、樹脂膜形成用フィルムは保護膜形成用フィルムである。
Semiconductor chips that do not have bumps on the circuit surface are the most widely used, and on the back surface, usually, as a film for forming a resin film, the semiconductor chip is die-bonded to the circuit formation surface of the substrate. The film adhesive used is provided. That is, the film for resin film formation in this case is a film-like adhesive.
On the other hand, a semiconductor chip having bumps on the circuit surface is flip-chip connected to the circuit formation surface of the substrate by the bumps. However, since the back surface of the semiconductor chip in this case is exposed as it is, a protective film is usually provided on the back surface as the resin film. That is, the resin film in this case is a protective film, and the film for resin film formation is a film for protective film formation.
 樹脂膜付き半導体チップ及び樹脂膜形成用フィルム付き半導体チップは、例えば、支持シートを備え、前記支持シート上に、樹脂膜形成用フィルムを備えてなる、樹脂膜形成用複合シートを用いて、製造される。より具体的には、以下のとおりである。すなわち、まず、樹脂膜形成用複合シートを、このシート中の樹脂膜形成用フィルムによって、半導体ウエハの裏面に貼付する。次いで、必要に応じて、樹脂膜形成用フィルムを硬化させてから、半導体ウエハを、樹脂膜形成用フィルム又はその硬化物ごとダイシングして、半導体チップへと個片化する。次いで、半導体チップを、その裏面に切断後の樹脂膜形成用フィルム又は前記硬化物を備えた状態で、支持シートから引き離してピックアップする。以上により、樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップが得られる。ダイシングにはいくつかの方法があるが、最も汎用されているのは、ダイシングブレードを用いる方法(ブレードダイシング)である。ブレードダイシングを行うときには、前記支持シートはダイシングシートとして機能する。 The semiconductor chip with a resin film and the semiconductor chip with a film for resin film formation are manufactured using, for example, a composite sheet for resin film formation comprising a support sheet and comprising a resin film formation film on the support sheet. Be done. More specifically, it is as follows. That is, first, the composite sheet for resin film formation is attached to the back surface of the semiconductor wafer by the film for resin film formation in this sheet. Next, if necessary, the resin film-forming film is cured, and then the semiconductor wafer is diced together with the resin film-forming film or the cured product thereof into pieces into semiconductor chips. Next, the semiconductor chip is separated from the support sheet and picked up in a state where the back surface is provided with the resin film-forming film or the cured product after cutting. By the above, the semiconductor chip with a film for resin film formation or the semiconductor chip with a resin film is obtained. Although there are several methods for dicing, the most widely used method is a method using a dicing blade (blade dicing). When performing blade dicing, the support sheet functions as a dicing sheet.
 樹脂膜形成用複合シートとしては、これまでに種々のものが開示されている。例えば、有機樹脂成分に対して特定範囲量の無機充填材を含有し、熱硬化前の溶融粘度が特定範囲内にあり、被着体との密着性に優れる熱硬化性樹脂膜形成用フィルム(熱硬化型ダイボンドフィルム)と、このフィルムを備えた樹脂膜形成用複合シート(ダイシング・ダイボンドフィルム)が開示されている(特許文献1及び2参照)。 Various types of composite sheets for resin film formation have been disclosed so far. For example, a film for thermosetting resin film formation which contains an inorganic filler in a specific range amount relative to the organic resin component, has a melt viscosity before thermal curing within the specific range, and is excellent in adhesion to an adherend There are disclosed a thermosetting type die bond film) and a composite sheet for forming a resin film (dicing die bond film) provided with this film (see Patent Documents 1 and 2).
 一方で従来は、ブレードダイシングを行った後、樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを支持シートから引き離してピックアップするときに、半導体チップとともにピックアップされるべき樹脂膜形成用フィルム若しくは樹脂膜の、一部又は全部が、支持シート上に残存してしまうという問題点、すなわち、樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップが正常に得られず、ピックアップ不良が生じ易い、という問題点があった。このような問題点は、半導体チップの1辺の長さが4mm以下等である、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップの場合に顕著であった。 On the other hand, conventionally, after carrying out blade dicing, when a semiconductor chip with a film for resin film formation or a semiconductor chip with a resin film is pulled apart from the support sheet and picked up, a film for resin film formation or a resin film to be picked up with the semiconductor chip The problem that part or all of the resin film remains on the support sheet, that is, a film-coated semiconductor chip with a film or a resin film-coated semiconductor chip can not be obtained normally, and pickup defects easily occur There was a problem of. Such a problem is remarkable in the case of a semiconductor chip with a film for forming a resin film having a small size or a semiconductor chip with a resin film in which the length of one side of the semiconductor chip is 4 mm or less.
 これに対して、特許文献1及び2で開示されている熱硬化性樹脂膜形成用フィルムと、このフィルムを備えた樹脂膜形成用複合シートは、このような問題点を解決できるものであるか、定かではない。 On the other hand, are the film for thermosetting resin film formation disclosed by patent documents 1 and 2 and the composite sheet for resin film formation provided with this film can solve such a problem? Not sure.
日本国特許第4732472号公報Japanese Patent No. 4732472 日本国特許第5390209号公報Japanese Patent No. 5390209
 本発明は、支持シートとともに樹脂膜形成用複合シートを構成し、かつ半導体チップの裏面に樹脂膜を形成するための樹脂膜形成用フィルムであって、前記樹脂膜形成用フィルムを用いて、ブレードダイシング後に得られた、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを、支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制できる、樹脂膜形成用フィルムと、このフィルムを備えた樹脂膜形成用複合シートを提供することを目的とする。 The present invention is a resin film-forming film for forming a resin film-forming composite sheet together with a support sheet and for forming a resin film on the back surface of a semiconductor chip, wherein the resin film-forming film is used as a blade. When picking up a semiconductor chip with a film for resin film formation with a small size or a semiconductor chip with a resin film obtained after dicing, it is possible to suppress the remaining of the film or resin film for resin film formation on a support sheet. It is an object of the present invention to provide a resin film-forming film and a resin film-forming composite sheet provided with the film.
 本発明は、樹脂膜形成用フィルムであって、複数枚の前記樹脂膜形成用フィルムが積層されてなる、大きさが50mm×50mm、厚さが200μmの第1積層体を作製し、前記樹脂膜形成用フィルムがエネルギー線硬化性である場合には、前記第1積層体をエネルギー線硬化させた第1硬化物を第1試験片とし、前記樹脂膜形成用フィルムが非エネルギー線硬化性である場合には、前記第1積層体を第1試験片として、前記第1試験片を純水中に2時間浸漬したとき、前記第1試験片の吸水率が0.55%以下であり、かつ、前記樹脂膜形成用フィルムがシリコンミラーウエハに貼付されてなる第2積層体を作製し、前記樹脂膜形成用フィルムがエネルギー線硬化性である場合には、前記第2積層体中の前記樹脂膜形成用フィルムをエネルギー線硬化させて第2硬化物とした後の硬化済み第2積層体を第2試験片とし、前記第2試験片を温度23℃、相対湿度50%の環境下で30分静置して経時させたときの、前記第2硬化物と前記シリコンミラーウエハとの間の経時後粘着力を測定し、経時後の前記第2試験片を純水中に2時間浸漬したときの、前記第2硬化物と前記シリコンミラーウエハとの間の浸漬後粘着力を測定したとき、前記経時後粘着力及び浸漬後粘着力から算出される前記第2試験片の粘着力変化率が、60%以下であるか、又は、前記樹脂膜形成用フィルムが非エネルギー線硬化性である場合には、前記第2積層体を第2試験片とし、前記第2試験片を温度23℃、相対湿度50%の環境下で30分静置して経時させたときの、前記樹脂膜形成用フィルムと前記シリコンミラーウエハとの間の経時後粘着力を測定し、経時後の前記第2試験片を純水中に2時間浸漬したときの、前記樹脂膜形成用フィルムと前記シリコンミラーウエハとの間の浸漬後粘着力を測定したとき、前記経時後粘着力及び浸漬後粘着力から算出される前記第2試験片の粘着力変化率が、60%以下である、樹脂膜形成用フィルムを提供する。 The present invention is a film for forming a resin film, wherein a first laminate having a size of 50 mm × 50 mm and a thickness of 200 μm, which is obtained by laminating a plurality of films for forming a resin film, is produced. When the film for film formation is energy ray curable, the first cured product obtained by energy ray curing of the first laminate is used as a first test piece, and the film for resin film formation is non-energy ray curable. In some cases, when the first test piece is immersed in pure water for 2 hours using the first laminate as a first test piece, the water absorption of the first test piece is 0.55% or less, And when the film for resin film formation sticks the 2nd laminated body which is stuck on a silicon mirror wafer, and the film for resin film formation is energy beam hardening property, the above-mentioned in the 2nd above-mentioned layered product Enel film for resin film formation The cured second laminate after Gie ray curing to form a second cured product is used as a second test piece, and the second test piece is allowed to stand for 30 minutes under an environment of a temperature of 23 ° C. and a relative humidity of 50%. The adhesion after the aging of the second cured product and the silicon mirror wafer when measured with time is measured, and the second test piece after aging is immersed in pure water for 2 hours, 2 When the adhesion after immersion between the cured product and the silicon mirror wafer is measured, the change in adhesion of the second test piece calculated from the adhesion after aging and the adhesion after immersion is 60% or less If the film for forming a resin film is non-energy ray curable, the second laminate is used as a second test piece, and the second test piece has a temperature of 23.degree. C. and a relative humidity of 50%. The resin film-forming film and the resin film when left to stand for 30 minutes under the environment of The adhesion after the aging with the silicon mirror wafer is measured, and when the second test piece after aging is immersed in pure water for 2 hours, it is between the resin film-forming film and the silicon mirror wafer. The film for resin film formation whose adhesive force change rate of the said 2nd test piece calculated from the adhesive force after immersion and adhesive force after immersion when measuring adhesive force after immersion is provided.
 複数枚の前記樹脂膜形成用フィルムが積層されてなる、大きさが15mm×150mm、厚さが200μmの第3積層体を作製し、前記樹脂膜形成用フィルムがエネルギー線硬化性である場合には、前記第3積層体をエネルギー線硬化させた第3硬化物を第3試験片とし、前記樹脂膜形成用フィルムが非エネルギー線硬化性である場合には、前記第3積層体を第3試験片として、前記第3試験片を純水中に2時間浸漬したとき、JIS K 7127に準拠した引張試験で、試験速度を200mm/minとして測定された、浸漬後の前記第3試験片のヤング率は、15MPa以上であってもよい。
 本発明の樹脂膜形成用フィルムは、充填材を含有し、前記樹脂膜形成用フィルムにおいて、前記樹脂膜形成用フィルムの総質量に対する、前記充填材の含有量の割合が、25~75質量%であってもよい。
 本発明は、支持シートを備え、前記支持シート上に、樹脂膜形成用フィルムを備えてなり、前記樹脂膜形成用フィルムが、上述の本発明の樹脂膜形成用フィルムである、樹脂膜形成用複合シートを提供する。
A third laminate having a size of 15 mm × 150 mm and a thickness of 200 μm, in which a plurality of the resin film-forming films are laminated, is prepared, and the resin film-forming film is energy beam curable. The third cured product obtained by energy beam curing the third laminate is used as a third test piece, and when the resin film-forming film is non-energy beam curable, the third laminate is As a test piece, when the third test piece is immersed in pure water for 2 hours, it is a tensile test based on JIS K 7127, and the test speed is measured as 200 mm / min. The Young's modulus may be 15 MPa or more.
The film for resin film formation of the present invention contains a filler, and in the film for resin film formation, the ratio of the content of the filler to the total mass of the film for resin film formation is 25 to 75% by mass. It may be
The present invention comprises a support sheet, and on the support sheet, a resin film-forming film, wherein the resin film-forming film is the resin film-forming film of the present invention described above. Provide a composite sheet.
 本発明の樹脂膜形成用フィルムは、支持シートとともに樹脂膜形成用複合シートを構成し、かつ半導体チップの裏面に樹脂膜を形成することが可能である。前記樹脂膜形成用フィルムを用いることにより、ブレードダイシングを行い、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを得て、これらを支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制できる。 The film for resin film formation of the present invention can constitute a composite sheet for resin film formation together with a support sheet, and can form a resin film on the back surface of a semiconductor chip. By using the film for forming a resin film, blade dicing is performed to obtain a semiconductor chip with a film for forming a resin film or a semiconductor chip with a resin film having a small size, and these are picked up from the support sheet to the support sheet. It is possible to suppress the remaining of the resin film-forming film or the resin film.
本発明の樹脂膜形成用複合シートの一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the composite sheet for resin film formation of this invention. 本発明の樹脂膜形成用複合シートの他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the composite sheet for resin film formation of this invention. 本発明の樹脂膜形成用複合シートのさらに他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the composite sheet for resin film formation of this invention. 本発明の樹脂膜形成用複合シートのさらに他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the composite sheet for resin film formation of this invention. 本発明の樹脂膜形成用複合シートのさらに他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the composite sheet for resin film formation of this invention.
◇樹脂膜形成用フィルム
 本発明の樹脂膜形成用フィルムは、前記フィルムから作製した下記第1試験片の吸水率が0.55%以下となり、かつ、前記フィルムから作製した下記第2試験片の粘着力変化率が60%以下となるものである。
 前記樹脂膜形成用フィルムが非エネルギー線硬化性である場合、第1試験片は、複数枚の前記樹脂膜形成用フィルムが積層されてなり、大きさが50mm×50mm、厚さが200μmの第1積層体である。前記樹脂膜形成用フィルムがエネルギー線硬化性である場合、第1試験片は、前記第1積層体をエネルギー線硬化させた第1硬化物である。
 前記樹脂膜形成用フィルムが非エネルギー線硬化性である場合、第2試験片は、前記樹脂膜形成用フィルムがシリコンミラーウエハに貼付されてなる第2積層体であり、前記樹脂膜形成用フィルムがエネルギー線硬化性である場合、第2試験片は、前記第2積層体中の前記樹脂膜形成用フィルムをエネルギー線硬化させて第2硬化物とした後の硬化済み第2積層体である。
 第1試験片の吸水率(%)は、式「(W-W)/W×100」により算出する。ここで、Wは純水中へ浸漬する前の第1試験片の質量であり、WはWを測定した第1試験片を純水中に2時間浸漬した後の第1試験片の質量である。
 樹脂膜形成用フィルムが非エネルギー線硬化性である場合、第2試験片の粘着力変化率(%)は、式「(|PB2-PA2|)/PA2×100」により算出する。ここで、PA2は、第2試験片を、温度23℃、相対湿度50%の環境下で30分静置して経時させたときの、第2試験片中の樹脂膜形成用フィルムとシリコンミラーウエハとの間の粘着力(経時後粘着力)である。また、PB2は、この経時後の第2試験片を、純水中に2時間浸漬したときの、この浸漬後の第2試験片中の樹脂膜形成用フィルムとシリコンミラーウエハとの間の粘着力(浸漬後粘着力)である。
 一方、樹脂膜形成用フィルムがエネルギー線硬化性である場合、第2試験片の粘着力変化率(%)は、式「(|PB1-PA1|)/PA1×100」により算出する。ここで、PA1は、第2試験片を、温度23℃、相対湿度50%の環境下で30分静置して経時させたときの、第2試験片中の第2硬化物とシリコンミラーウエハとの間の粘着力(経時後粘着力)である。また、PB1は、この経時後の第2試験片を、純水中に2時間浸漬したときの、この浸漬後の第2試験片中の第2硬化物とシリコンミラーウエハとの間の粘着力(浸漬後粘着力)である。
 上述の吸水率及び粘着力変化率については、後ほど、より詳しく説明する。
フ ィ ル ム Film for forming a resin film The film for forming a resin film of the present invention has a water absorption coefficient of 0.55% or less of the following first test piece produced from the film, and the following second test piece produced from the film The adhesive force change rate is 60% or less.
When the resin film-forming film is non-energy ray curable, the first test piece is formed by laminating a plurality of the resin film-forming films and has a size of 50 mm × 50 mm and a thickness of 200 μm. It is 1 laminated body. When the film for resin film formation is energy ray curable, the first test piece is a first cured product obtained by energy ray curing the first laminate.
When the film for resin film formation is non-energy ray curable, the second test piece is a second laminate formed by sticking the film for resin film formation on a silicon mirror wafer, and the film for resin film formation When it is energy ray curable, the second test piece is a cured second laminate after energy ray curing of the resin film-forming film in the second laminate to form a second cured product .
The water absorption rate (%) of the first test piece is calculated by the formula “(W B −W A ) / W A × 100”. Here, W A is the mass of the first test piece before immersion in pure water, and W B is the first test piece after immersing the first test piece for which W A was measured in pure water for 2 hours Mass of
When the film for resin film formation is non-energy ray curable, the adhesive strength change rate (%) of the second test piece is calculated by the formula “(| P B2 −P A2 |) / P A2 × 100”. Here, PA 2 is a film for forming a resin film and silicon in the second test piece when the second test piece is allowed to stand for 30 minutes under an environment of a temperature of 23 ° C. and a relative humidity of 50% for a lapse of time. Adhesive force with mirror wafer (adhesive force after aging). In addition, PB2 is the time when the second test piece after this aging is immersed in pure water for 2 hours, between the resin film forming film and the silicon mirror wafer in the second test specimen after this immersion Adhesive force (adhesive force after immersion).
On the other hand, when the film for resin film formation is energy ray curable, the adhesive force change rate (%) of the second test piece is calculated by the formula "(| P B1 -P A1 |) / P A1 × 100". . Here, P A1 is the second cured product in the second test piece and the silicon mirror when the second test piece is allowed to stand for 30 minutes under an environment of a temperature of 23 ° C. and a relative humidity of 50% for a while. Adhesive force with the wafer (adhesive force after aging). In addition, P B1 is an adhesion between the second cured product in the second test piece after this immersion and the silicon mirror wafer when the second test piece after this aging is immersed in pure water for 2 hours. Force (adhesion after immersion).
The above-mentioned water absorption rate and adhesive force change rate will be described in more detail later.
 本発明の樹脂膜形成用フィルムは、半導体チップの回路面とは反対側の面(本明細書においては、「裏面」と称することがある)に、樹脂膜を形成するために用いることができる。また、本発明の樹脂膜形成用フィルムは、後述するように、硬化性及び非硬化性のいずれであってもよい。本明細書においては、特に断りのない限り、前記樹脂膜形成用フィルムが硬化性である場合には、前記樹脂膜形成用フィルムの硬化物を樹脂膜とみなし、前記樹脂膜形成用フィルムが非硬化性である場合には、前記樹脂膜形成用フィルムが目的とする箇所に貼付された段階で、樹脂膜を形成したとみなす。 The film for resin film formation of the present invention can be used to form a resin film on the surface of the semiconductor chip opposite to the circuit surface (sometimes referred to as "back surface" in this specification). . In addition, the film for resin film formation of the present invention may be either curable or non-curable as described later. In the present specification, unless otherwise specified, when the resin film-forming film is curable, the cured product of the resin film-forming film is regarded as a resin film, and the resin film-forming film is not. If the resin film is curable, it is considered that the resin film is formed at the stage where the resin film-forming film is attached to the target location.
 半導体チップが回路面にバンプを備えていない場合であれば、前記樹脂膜形成用フィルム又は樹脂膜としては、半導体チップを基板の回路形成面にダイボンディングするために用いるフィルム状接着剤が挙げられる。
 一方、半導体チップが回路面にバンプを備えている場合であれば、このような半導体チップは、バンプによって基板の回路形成面にフリップチップ接続されるのであり、半導体チップの裏面は、そのままでは剥き出しとなる。このような半導体チップに対して用いる場合の前記樹脂膜形成用フィルムとしては保護膜形成用フィルムが挙げられ、前記樹脂膜としては、前記裏面を保護するための保護膜が挙げられる。
 すなわち、本発明の樹脂膜形成用フィルムは、前記フィルム状接着剤又は保護膜の形成用として、用いることができる。
If the semiconductor chip does not have bumps on the circuit surface, examples of the resin film-forming film or resin film include a film-like adhesive used for die-bonding the semiconductor chip to the circuit-forming surface of the substrate. .
On the other hand, if the semiconductor chip has bumps on the circuit surface, such semiconductor chips are flip chip connected to the circuit formation surface of the substrate by bumps, and the back surface of the semiconductor chip is peeled off as it is. It becomes. The film for forming a resin film when used for such a semiconductor chip includes a film for forming a protective film, and the resin film includes a protective film for protecting the back surface.
That is, the film for resin film formation of this invention can be used for formation of the said film adhesive or protective film.
 本発明の樹脂膜形成用フィルムは、半導体ウエハの回路面とは反対側の面(本明細書においては、半導体チップの場合と同様に「裏面」と称することがある)に貼付するときに、支持シートとともに樹脂膜形成用複合シートを構成した状態で用いることができる。
 本発明の樹脂膜形成用フィルムは、上述のとおり、前記吸水率及び粘着力変化率の条件をともに満たしている。このような樹脂膜形成用フィルムを用いることにより、ブレードダイシング後に、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを、支持シートからピックアップするときにおいて、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制できる。本発明の樹脂膜形成用フィルムが、このような優れたピックアップ適性を示す理由は定かではないが、以下のように推測される。
When the film for resin film formation of the present invention is attached to the surface of the semiconductor wafer opposite to the circuit surface (this specification may be referred to as “rear surface” as in the case of the semiconductor chip), It can be used in the state which comprised the composite sheet for resin film formation with a support sheet.
As described above, the resin film-forming film of the present invention satisfies the conditions of the water absorption rate and the adhesive strength change rate. By using such a film for resin film formation, when picking up a semiconductor chip with a film for resin film formation or a semiconductor chip with a resin film having a small size after blade dicing, the resin film to the support sheet Remaining of the film for formation or the resin film can be suppressed. Although the reason why the resin film-forming film of the present invention exhibits such excellent pickup aptitude is not clear, it is presumed as follows.
 樹脂膜形成用フィルム及び樹脂膜(樹脂膜形成用フィルムの硬化物)は、ピックアップ時においては、半導体チップと接触している側とは反対側の面から、支持シートを介して、突起状等の形状を有する突き上げ手段によって力を加えられる。このとき、樹脂膜形成用フィルム及び樹脂膜のうち、力を加えられている箇所とその近傍は、半導体チップに押し付けられる力が強いため、半導体チップから剥がれ難い。これに対して、樹脂膜形成用フィルム及び樹脂膜のうち、力を加えられている箇所から離れた箇所は、半導体チップに押し付けられる力が弱いため、力を加えられている箇所とその近傍よりも、半導体チップから剥がれ易い。例えば、樹脂膜形成用フィルム又は樹脂膜の前記反対側の面の中央付近に力が加えられている場合、樹脂膜形成用フィルム又は樹脂膜のうち、中央付近とその近傍は、半導体チップから剥がれ難いが、中央付近から離れた周縁部とその近傍は、中央付近とその近傍よりも半導体チップから剥がれ易い。なお、樹脂膜形成用フィルム及び樹脂膜のうち、力を加えられている箇所とその近傍は、上記のように、相対的に半導体チップから剥がれ難いが、条件によっては、剥がれてしまうこともある。 The film for resin film formation and the resin film (the cured product of the film for resin film formation) have a projection-like shape or the like from the surface opposite to the side in contact with the semiconductor chip at the time of pickup The force is applied by a pushing means having the shape of At this time, in the resin film-forming film and the resin film, the portion to which a force is applied and the vicinity thereof are hard to be peeled off from the semiconductor chip because the force pressed against the semiconductor chip is strong. On the other hand, in the resin film-forming film and the resin film, since the force pressed against the semiconductor chip is weak at the place away from the place where the force is applied, the place where the force is applied and the vicinity thereof Also, it is easy to peel off the semiconductor chip. For example, when a force is applied near the center of the opposite surface of the resin film-forming film or resin film, the vicinity of the center and the vicinity of the resin film-forming film or resin film peel off from the semiconductor chip Although it is difficult, the peripheral edge far from the center and the vicinity thereof are more easily peeled from the semiconductor chip than the vicinity of the center and the vicinity thereof. As described above, among the resin film-forming film and the resin film, the portion to which a force is applied and the vicinity thereof are relatively difficult to be peeled off from the semiconductor chip as described above, but depending on the conditions, they may be peeled off. .
 一方、ブレードダイシングを行う場合には、半導体ウエハと、樹脂膜形成用フィルム又は樹脂膜と、のうち、ダイシングブレードとの接触箇所における温度上昇を抑制するために、これら接触箇所に冷却水(「切削水」ともいう)をかけながらダイシングを行う。しかし、サイズが小さい半導体チップを得る場合には、ダイシング箇所が多いことに伴って、ダイシング時間が長くなってしまい、樹脂膜形成用フィルム及び樹脂膜の、冷却水に晒される時間が長くなってしまう。この場合、樹脂膜形成用フィルム及び樹脂膜は、吸水によって、吸水前よりも柔らかくなり、ピックアップ時に加えられる力によってちぎれることがある。ちぎれた場合、樹脂膜形成用フィルム及び樹脂膜は、そのちぎれた箇所を境にして、少なくとも力を加えられている箇所から離れた箇所は、上述のように半導体チップから剥がれ易いこともあり、支持シート上に残存してしまうと推測される。また、樹脂膜形成用フィルム又は樹脂膜の半導体チップから剥がれてしまった箇所においては、ダイシング時に用いた冷却水(切削水)が、樹脂膜形成用フィルム又は樹脂膜と、半導体チップと、の間に侵入してしまう。そのため、以降、このような箇所では、樹脂膜形成用フィルム又は樹脂膜は半導体チップと密着することはなく、一方で、樹脂膜形成用フィルム又は樹脂膜は支持シートに密着した状態が維持され易い。このような作用が、ちぎれた後の樹脂膜形成用フィルム又は樹脂膜を、支持シート上へ残存させ易くしていると推測される。
 このような問題点は、樹脂膜形成用フィルムで顕著であるが、樹脂膜であっても、完全に硬化していないものなど、硬化度の低いものでも顕著である。例えば、後述するような、エネルギー線硬化性及び熱硬化性をともに有する樹脂膜形成用フィルムのエネルギー線照射による硬化物(エネルギー線硬化物)では、上述の問題点が認められる。
On the other hand, in the case of performing blade dicing, cooling water ("" in the contact points between the semiconductor wafer and the resin film-forming film or resin film) in order to suppress the temperature rise at the contact points with the dicing blade. Dicing while pouring (also called cutting water). However, in the case of obtaining a semiconductor chip having a small size, the dicing time becomes longer due to the large number of dicing points, and the time for which the resin film-forming film and the resin film are exposed to cooling water becomes long. I will. In this case, the resin film-forming film and the resin film become softer than before water absorption due to water absorption, and may be torn by the force applied at the time of pickup. In the case where the film for resin film formation and the resin film are separated, at least the place away from the place where the force is applied may be likely to be separated from the semiconductor chip as described above. It is presumed that it will remain on the support sheet. In addition, at the location where the resin film-forming film or resin film has been peeled off from the semiconductor chip, the cooling water (cutting water) used at dicing may be between the resin film-forming film or resin film and the semiconductor chip. Break into Therefore, after that, the film for resin film formation or the resin film does not adhere closely to the semiconductor chip at such a place, while the film or resin film for resin film formation easily maintains the state of adhesion to the support sheet . It is inferred that such an action makes the resin film-forming film or resin film after being torn be easily left on the support sheet.
Such a problem is remarkable in the film for resin film formation, but it is remarkable even in the case of a resin film, even a resin film having a low degree of curing, such as one not completely cured. For example, the above-mentioned problems are recognized in a cured product (energy beam cured product) by energy beam irradiation of a film for forming a resin film having both energy beam curing properties and thermosetting properties as described later.
 これに対して、本発明の樹脂膜形成用フィルムを用いた場合に、前記吸水率及び粘着力変化率がともに特定範囲内であることにより、上述のような問題点を解決でき、優れたピックアップ適性が得られると推測される。 On the other hand, when the resin film-forming film of the present invention is used, the above-mentioned problems can be solved by both the water absorption coefficient and the adhesive power change ratio being within the specific range, and an excellent pickup It is presumed that aptitude can be obtained.
 上述の「日本国特許第4732472号明細書」(特許文献1)及び「日本国特許第5390209号明細書」(特許文献2)には、熱硬化後に特定範囲の吸湿率を示す熱硬化性樹脂膜形成用フィルム(熱硬化型ダイボンドフィルム)が開示されているが、熱硬化前の吸湿率については開示されていない。これは、これら熱硬化性樹脂膜形成用フィルムが、リフロー工程において、半導体パッケージにクラックが発生するのを防止することを目的としているためである。すなわち、これら特許文献で開示されている発明の課題は、本発明の課題とは異なっている。さらに、これら特許文献で開示されている熱硬化性樹脂膜形成用フィルムの吸湿率は、本発明の樹脂膜形成用フィルムにおける前記吸水率とは、一切無関係であって、本発明における前記吸水率を何ら想起させるものではない。 In the above-mentioned "Japanese Patent No. 4732472" (Patent Document 1) and "Japanese Patent No. 5390209 Specification" (Patent Document 2), a thermosetting resin which shows a moisture absorption in a specific range after thermosetting. Although a film for film formation (a thermosetting type die-bonding film) is disclosed, the moisture absorption rate before the thermosetting is not disclosed. This is because these films for thermosetting resin film formation are intended to prevent the generation of cracks in the semiconductor package in the reflow process. That is, the subject of the invention currently disclosed by these patent documents differs from the subject of this invention. Furthermore, the moisture absorption rate of the film for thermosetting resin film formation disclosed in these patent documents is completely unrelated to the water absorption rate in the film for resin film formation of the present invention, and the water absorption rate in the present invention It does not recall anything.
 なお、本明細書においては、「樹脂膜形成用フィルム付き半導体チップ」とは、「半導体チップの裏面に樹脂膜形成用フィルムを備えたもの」を意味し、「樹脂膜付き半導体チップ」とは、「半導体チップの裏面に樹脂膜を備えたもの」を意味する。樹脂膜付き半導体チップ中の樹脂膜は、樹脂膜形成用フィルムが完全に硬化した硬化物であってもよいし、完全には硬化していない硬化物(換言すると、硬化度がさらに高くなる硬化物)であってもよい。 In the present specification, "a semiconductor chip with a film for resin film formation" means "a semiconductor chip with a film for resin film formation on the back surface", and "a semiconductor chip with a resin film". , “Having a resin film on the back surface of the semiconductor chip”. The resin film in the semiconductor chip with a resin film may be a cured product in which the resin film-forming film is completely cured, or a cured product which is not completely cured (in other words, a curing in which the curing degree is further increased) Object).
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、放射線、電子線等が挙げられる。紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 また、本明細書において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
In the present specification, the term "energy beam" means an electromagnetic wave or charged particle beam having energy quantum, and examples thereof include ultraviolet light, radiation, electron beam and the like. The ultraviolet light can be irradiated, for example, by using a high pressure mercury lamp, a fusion lamp, a xenon lamp, a black light or an LED lamp as an ultraviolet light source. The electron beam can irradiate what was generated by the electron beam accelerator or the like.
Furthermore, in the present specification, "energy ray curing property" means a property to be cured by irradiation with energy rays, and "non energy ray curing property" is a property to be not cured even by irradiating energy rays Means
 本発明の樹脂膜形成用フィルムは、硬化性であってもよいし、非硬化性であってもよい。
 硬化性の樹脂膜形成用フィルムは、熱硬化性及びエネルギー線硬化性のいずれであってもよく、熱硬化性及びエネルギー線硬化性の両方の特性を有していてもよい。
 前記樹脂膜形成用フィルムは、その構成材料を含有する樹脂膜形成用組成物を用いて形成できる。
 なお、本明細書において、「非硬化性」とは、加熱やエネルギー線の照射等、如何なる手段によっても、硬化しない性質を意味する。
The resin film-forming film of the present invention may be curable or non-curable.
The curable resin film-forming film may be either thermosetting or energy ray curable, and may have both thermosetting and energy ray curable properties.
The film for resin film formation can be formed using the composition for resin film formation containing the constituent material.
In addition, in this specification, "non-hardenable" means the property which is not hardened | cured by any means, such as heating and irradiation of an energy ray.
 本発明の樹脂膜形成用フィルムは、硬化性の有無によらず、また、硬化性を有する場合には、熱硬化性及びエネルギー線硬化性のいずれであるかによらず、後述する充填材(D)等の充填材を含有するものが好ましい。充填材を用いることにより、前記吸水率及び粘着力変化率の条件をともに満たす樹脂膜形成用フィルムを、より容易に製造できる。 The film for forming a resin film of the present invention has a hardenability which does not depend on the presence or absence of curability, and in the case where the film has curability, the filler described later regardless of which one of thermosetting and energy ray curable. Those containing fillers such as D) are preferred. By using the filler, it is possible to more easily manufacture a resin film-forming film which satisfies the conditions of the water absorption rate and the adhesive force change rate.
 本発明の樹脂膜形成用フィルムが充填材を含有する場合、前記樹脂膜形成用フィルムにおいて、前記樹脂膜形成用フィルムの総質量に対する、充填材の含有量の割合(換言すると、前記樹脂膜形成用組成物における、溶媒以外の成分の総含有量に対する、充填材の含有量の割合)が、25~75質量%であることが好ましく、28~72質量%であることがより好ましい。充填材が他の成分よりも顕著に吸水し難いため、充填材の含有量の割合が前記下限値以上であることで、前記吸水率を0.55%以下とすることがより容易となる。そして、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制する効果がより高くなる。また、充填材の含有量の割合が前記上限値以下であることで、樹脂膜形成用フィルム及び樹脂膜の強度が、より向上する。充填材については、後ほど詳しく説明する。 When the film for resin film formation of the present invention contains a filler, in the film for resin film formation, the ratio of the content of the filler to the total mass of the film for resin film formation (in other words, the resin film formation) The ratio of the content of the filler to the total content of components other than the solvent in the composition for use is preferably 25 to 75% by mass, and more preferably 28 to 72% by mass. Since the filler is significantly less likely to absorb water than the other components, it is easier to set the water absorption to 0.55% or less when the ratio of the content of the filler is the lower limit value or more. And when picking up a semiconductor chip with a film for resin film formation with a small size or a semiconductor chip with a resin film from a support sheet, the effect which controls residual of a film for resin film formation or a resin film to a support sheet becomes higher. . Moreover, the intensity | strength of the film for resin film formation and the resin film improves more because the ratio of content of a filler is below the said upper limit. The filler will be described in detail later.
<<第1試験片の吸水率>>
 前記樹脂膜形成用フィルムは、第1試験片を純水中に2時間浸漬したとき、前記第1試験片の吸水率が0.55%以下となる。なお、本明細書において、吸水率の単位「%」は、すべて「質量%」を意味する。以下に、第1試験片の吸水率について、詳しく説明する。
<< Water absorption of first test piece >>
In the resin film-forming film, when the first test piece is immersed in pure water for 2 hours, the water absorption of the first test piece is 0.55% or less. In addition, in this specification, all unit "%" of a moisture absorption means "mass%". Below, the water absorption of a 1st test piece is demonstrated in detail.
 樹脂膜形成用フィルムが非エネルギー線硬化性である場合、第1試験片とは、複数枚の樹脂膜形成用フィルムが、これらの厚さ方向において積層されてなる、大きさが50mm×50mm、厚さが200μmの第1積層体である。
 樹脂膜形成用フィルムがエネルギー線硬化性である場合、第1試験片とは、前記第1積層体にエネルギー線を照射して、第1積層体をエネルギー線硬化させた第1硬化物である。
 樹脂膜形成用フィルムが熱硬化性である場合、この樹脂膜形成用フィルムがエネルギー線硬化性及び非エネルギー線硬化性のいずれであるかによらず、前記第1積層体及び第1硬化物は、いずれも熱硬化していないことが好ましい。
When the resin film-forming film is non-energy ray curable, the first test piece is 50 mm × 50 mm in size, in which a plurality of resin film-forming films are laminated in their thickness direction. It is a first laminate having a thickness of 200 μm.
When the resin film-forming film is energy ray curable, the first test piece is a first cured product obtained by irradiating the first laminate with energy rays to cure the first laminate with energy rays. .
When the film for resin film formation is a thermosetting, regardless of whether the film for resin film formation is energy ray curing or non-energy ray curing, the first laminate and the first cured product are It is preferable that none of them is thermally cured.
 前記第1積層体の作製に用いる複数枚の樹脂膜形成用フィルムは、すべて組成が同じものである。
 複数枚の前記樹脂膜形成用フィルムの厚さは、すべて同じであってもよいし、すべて異なっていてもよいし、一部のみ同じであってもよいが、すべて同じであることが好ましい。
The plurality of resin film-forming films used for producing the first laminate all have the same composition.
The thicknesses of the plurality of resin film-forming films may be all the same, all may be different, or only some may be the same, but preferably all are the same.
 第1積層体は、例えば、50mm×50mmより大きい任意の大きさの複数枚の樹脂膜形成用フィルムを、合計の厚さが200μmとなるように積層して貼り合わせ、50mm×50mmの大きさに打ち抜く(切断する)ことで、作製できる。また、第1積層体は、例えば、大きさが50mm×50mmの複数枚の樹脂膜形成用フィルムを、合計の厚さが200μmとなるように、すべて周縁部の位置を一致させて、積層して貼り合わせることでも作製できる。 In the first laminate, for example, a plurality of resin film-forming films of any size larger than 50 mm × 50 mm are laminated and bonded so that the total thickness is 200 μm, and the size of 50 mm × 50 mm It can be produced by punching out (cutting). In the first laminate, for example, a plurality of resin film-forming films with a size of 50 mm × 50 mm are laminated with their peripheral edge portions aligned so that the total thickness is 200 μm. It can also be produced by pasting together.
 樹脂膜形成用フィルムが非エネルギー線硬化性である場合には、作製した第1積層体をそのまま第1試験片として用いる。
 脂膜形成用フィルムがエネルギー線硬化性である場合には、作製した第1積層体に、さらにエネルギー線を照射して、第1積層体中のすべての樹脂膜形成用フィルムをエネルギー線硬化させて、得られた第1硬化物を第1試験片として用いる。
When the film for resin film formation is non-energy ray curable, the produced 1st laminated body is used as a 1st test piece as it is.
When the oil film-forming film is energy ray curable, the prepared first laminate is further irradiated with energy rays to cure all resin film forming films in the first laminate. The obtained first cured product is used as a first test piece.
 前記第1硬化物を作製するときの、第1積層体(脂膜形成用フィルム)へのエネルギー線の照射条件は、第1積層体が十分にエネルギー線硬化する限り、特に限定されない。
 通常、第1積層体の硬化時における、エネルギー線の照度は、120~280mW/cmであることが好ましく、エネルギー線の光量は、100~1000mJ/cmであることが好ましい。
The irradiation conditions of the energy beam to the first laminate (film for forming a fat film) when producing the first cured product are not particularly limited as long as the first laminate is sufficiently energy beam cured.
In general, the illuminance of energy rays during curing of the first laminate is preferably 120 to 280 mW / cm 2 , and the light amount of energy rays is preferably 100 to 1000 mJ / cm 2 .
 第1試験片の吸水率を求めるためには、まず、純水中へ浸漬する前の第1試験片の質量Wを測定する。このとき、作製後の第1試験片が吸湿等による明確な質量変化を示していない状態で、第1試験片の質量Wを測定することが好ましい。このようにすることで、後述する吸水率をより高精度に求められる。 In order to determine the water absorption rate of the first test piece, first, the mass W A of the first test piece before being immersed in pure water is measured. At this time, it is preferable to measure the mass W A of the first test piece in a state where the first test piece after preparation does not show a clear mass change due to moisture absorption or the like. By doing this, the water absorption rate described later can be determined with higher accuracy.
 質量Wを測定した第1試験片は、純水中に2時間浸漬する。このとき、第1試験片が純水中から突出して露出することがないように(換言すると、第1試験片全体が純水に完全に浸るように)、十分な量の純水中に第1試験片を沈める。 The first test piece whose mass W A has been measured is immersed in pure water for 2 hours. At this time, the first test piece is not exposed in the pure water so as to be exposed (in other words, so that the whole first test piece is completely immersed in the pure water) 1 Sink the test piece.
 第1試験片を浸漬中の純水の温度は、18~28℃であることが好ましい。このようにすることで、後述する吸水率をより高精度に求められる。 The temperature of pure water during immersion of the first test piece is preferably 18 to 28 ° C. By doing this, the water absorption rate described later can be determined with higher accuracy.
 純水中に2時間浸漬した後は、第1試験片を速やかに純水中から取り出し、必要に応じて、例えば、第1試験片の表面に付着している余分の水滴を水切り(除去)して、この浸漬後の第1試験片の質量Wを測定する。
 そして、これらW及びWの値を用いて、式「(W-W)/W×100」により、第1試験片の吸水率(%)を算出する。
After immersing in pure water for 2 hours, the first test piece is promptly taken out of the pure water, and if necessary, excess water droplets adhering to the surface of the first test piece are drained (removed), for example. Then, the mass W B of the first test piece after this immersion is measured.
Then, using the values of these W A and W B , the water absorption (%) of the first test piece is calculated by the formula “(W B −W A ) / W A × 100”.
 本発明において、第1試験片の吸水率は0.55%以下であり、0.53%以下であることが好ましく、例えば、0.4%以下等であってもよい。第1試験片の吸水率が前記上限値以下であることで、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制する効果がより高くなる。 In the present invention, the water absorption rate of the first test piece is 0.55% or less, preferably 0.53% or less, and may be, for example, 0.4% or less. When the semiconductor chip with a film for resin film formation with a small size or the semiconductor chip with a resin film having a small size is picked up from the support sheet by the water absorption of the first test piece being equal to or less than the upper limit, the resin film is formed on the support sheet The effect of suppressing the remaining film or resin film is further enhanced.
 本発明において、第1試験片の吸水率の下限値は、特に限定されず、例えば、0%であってもよい。第1試験片の吸水率が低いほど、第1試験片(換言すると樹脂膜形成用フィルム又は樹脂膜)は、水に晒される時間が長くても、物性が変化し難いといえる。樹脂膜形成用フィルムの製造がより容易となる点では、第1試験片の吸水率は、0.01%以上であることが好ましく、0.05%以上であることがより好ましい。 In the present invention, the lower limit value of the water absorption rate of the first test piece is not particularly limited, and may be, for example, 0%. It can be said that the physical properties of the first test piece (in other words, the film for forming a resin film or a resin film) are less likely to change in physical properties as the water absorption rate of the first test piece is lower. The water absorption rate of the first test piece is preferably 0.01% or more, and more preferably 0.05% or more from the viewpoint of facilitating the production of the resin film-forming film.
 本発明においては、第1試験片の吸水率は、上述のいずれかの下限値と、いずれかの上限値と、を任意に組み合わせて決定される数値範囲となるように、適宜調節できる。例えば、第1試験片の吸水率は、0~0.55%であることが好ましく、0~0.53%であることがより好ましく、0~0.4%等であってもよい。ただし、これらは第1試験片の吸水率の一例である。 In the present invention, the water absorption rate of the first test piece can be appropriately adjusted to be a numerical value range determined by arbitrarily combining any of the lower limit values described above and any upper limit value. For example, the water absorption rate of the first test piece is preferably 0 to 0.55%, more preferably 0 to 0.53%, and may be 0 to 0.4% or the like. However, these are examples of the water absorption of a 1st test piece.
<<第2試験片の粘着力変化率>>
 前記樹脂膜形成用フィルムは、第1試験片の吸水率が上述の条件を満たすとともに、さらに、第2試験片の粘着力変化率が60%以下となるものである。以下に、第2試験片の粘着力変化率について、詳しく説明する。この粘着力変化率は、第2試験片を特定条件下で純水中に浸漬した前後での、粘着力の変化の度合いを示す。
<< Adhesive force change rate of second test piece >>
In the resin film-forming film, the water absorption rate of the first test piece satisfies the above-described condition, and the adhesive strength change rate of the second test piece is 60% or less. Below, the adhesive force change rate of a 2nd test piece is demonstrated in detail. The rate of change in adhesion indicates the degree of change in adhesion before and after the second test piece is immersed in pure water under specific conditions.
 樹脂膜形成用フィルムが非エネルギー線硬化性である場合、第2試験片とは、樹脂膜形成用フィルムがシリコンミラーウエハに貼付されてなる第2積層体である。
 樹脂膜形成用フィルムがエネルギー線硬化性である場合、第2試験片とは、前記第2積層体中の樹脂膜形成用フィルムにエネルギー線を照射して、樹脂膜形成用フィルムをエネルギー線硬化させて第2硬化物とした後の、硬化済み第2積層体(すなわち、第2積層体の硬化物)である。
 樹脂膜形成用フィルムが熱硬化性である場合、この樹脂膜形成用フィルムがエネルギー線硬化性及び非エネルギー線硬化性のいずれであるかによらず、前記第2積層体及び第2硬化物は、いずれも熱硬化していないことが好ましい。
When the film for resin film formation is non-energy ray curable, the second test piece is a second laminate in which the film for resin film formation is attached to a silicon mirror wafer.
When the film for resin film formation is energy ray curable, the second test piece irradiates the film for resin film formation in the second laminate with an energy ray to cure the film for resin film energy ray curing It is a cured 2nd laminated body (namely, hardened | cured material of 2nd laminated body) after making it be 2nd hardened | cured material.
When the resin film-forming film is a thermosetting resin, the second laminate and the second cured product are the same regardless of whether the resin film-forming film is energy ray curable or non-energy ray curable. It is preferable that none of them is thermally cured.
 前記第2積層体は、シリコンミラーウエハのミラー面に、樹脂膜形成用フィルムの一方の表面を貼付することで、作製できる。 The second laminate can be produced by sticking one surface of a resin film-forming film to the mirror surface of a silicon mirror wafer.
 前記第2積層体の作製に用いるシリコンミラーウエハの大きさは、樹脂膜形成用フィルムの大きさに対して同等以上であればよく、後述する粘着力を精度よく測定できるように、適宜調節できる。
 シリコンミラーウエハの厚さは、350~760μmであることが好ましい。このようにすることで、後述する粘着力をより高精度に測定できる。
The size of the silicon mirror wafer used for producing the second laminate may be equal to or larger than the size of the resin film-forming film, and can be appropriately adjusted so that the adhesive force described later can be measured accurately. .
The thickness of the silicon mirror wafer is preferably 350 to 760 μm. By doing this, it is possible to measure the adhesive force described later with higher accuracy.
 前記第2積層体の作製に用いる樹脂膜形成用フィルムの大きさは、特に限定されない。
 ただし、シリコンミラーウエハとの間の粘着力の測定対象である(換言すると、シリコンミラーウエハから剥離させる)樹脂膜形成用フィルムの幅は、25mmであることが好ましい。前記測定対象である樹脂膜形成用フィルムの長さは、粘着力を高精度に測定できる限り特に限定されないが、150~250mmであることが好ましい。前記経時後粘着力(後述する浸漬前粘着力)の測定対象である樹脂膜形成用フィルムの大きさと、前記浸漬後粘着力の測定対象である樹脂膜形成用フィルムの大きさは、同じとする。
The size of the resin film-forming film used for producing the second laminate is not particularly limited.
However, it is preferable that the width of the film for resin film formation which is a measuring object of the adhesive force with a silicon mirror wafer (in other words, it peels from a silicon mirror wafer) is 25 mm. The length of the resin film-forming film to be measured is not particularly limited as long as the adhesive strength can be measured with high accuracy, but it is preferably 150 to 250 mm. The size of the film for resin film formation, which is a measurement target of the adhesion after the aging (adhesion before immersion described later), and the size of the film for formation of a resin film, which is measurement of adhesion after the immersion, are the same. .
 前記第2積層体の作製時には、樹脂膜形成用フィルムを、例えば、35~45℃に加熱してシリコンミラーウエハに貼付することが好ましい。このようにすることで、より安定した第2積層体が得られる。 At the time of production of the second laminate, it is preferable to heat the resin film-forming film at, for example, 35 to 45 ° C. and attach it to a silicon mirror wafer. By doing so, a more stable second laminate can be obtained.
 樹脂膜形成用フィルムが非エネルギー線硬化性である場合には、作製した第2積層体をそのまま第2試験片として用いる。
 脂膜形成用フィルムがエネルギー線硬化性である場合には、作製した第2積層体中の樹脂膜形成用フィルムに、このフィルムのシリコンミラーウエハを備えている側とは反対側から、さらにエネルギー線を照射して、第2積層体中の樹脂膜形成用フィルムをエネルギー線硬化させて、第2硬化物とした後の硬化済み第2積層体(すなわち、樹脂膜形成用フィルムの硬化物を備えたシリコンミラーウエハ)を、第2試験片として用いる。
When the film for resin film formation is non-energy ray curable, the produced second laminate is used as it is as a second test piece.
When the oil film-forming film is energy ray curable, the resin film-forming film in the produced second laminate is further subjected to energy from the side opposite to the side provided with the silicon mirror wafer of this film. The cured second laminate (i.e., the cured product of the resin film-forming film) after irradiation of the wire and energy beam curing of the resin film-forming film in the second laminate to obtain a second cured product The provided silicon mirror wafer is used as a second test piece.
 前記第2硬化物(前記硬化済み第2積層体)を作製するときの、脂膜形成用フィルムへのエネルギー線の照射条件は、脂膜形成用フィルムが十分にエネルギー線硬化する限り、特に限定されない。
 通常、前記第2硬化物の作製時における、エネルギー線の照度及び光量は、いずれも、上述の第1積層体の硬化時における、エネルギー線の照度及び光量と同じとすることができる。
The irradiation conditions of the energy ray to the film for oil film formation when producing the second cured product (the cured second laminate) are particularly limited as long as the oil film-forming film is sufficiently energy ray cured. I will not.
In general, the illuminance and the light amount of the energy ray at the time of preparation of the second cured product can be the same as the illuminance and the light amount of the energy ray at the time of curing of the first laminate described above.
・樹脂膜形成用フィルムがエネルギー線硬化性である場合
 脂膜形成用フィルムがエネルギー線硬化性である場合には、第2試験片の粘着力変化率を求めるためには、まず、第2試験片を、温度23℃、相対湿度50%の環境下で30分静置して経時させる。次いで、この経時後の第2試験片において、23℃の環境下で、第2硬化物とシリコンミラーウエハとの間の経時後粘着力(本明細書においては「浸漬前粘着力」と称することもある)PA1を測定する。このとき、作製後の第2試験片が、明確な特性変化を示していない状態で、経時後粘着力PA1を測定することが好ましい。このようにすることで、後述する粘着力変化率をより高精度に求められる。
・ When the film for resin film formation is energy ray curable When the film for oil film formation is energy ray curable, in order to obtain the adhesive force change rate of the second test piece, first, the second test The pieces are allowed to stand for 30 minutes in an environment of temperature 23 ° C. and relative humidity 50% for aging. Then, in the second test piece after this aging, the adhesion after aging between the second cured product and the silicon mirror wafer under an environment of 23 ° C. (herein referred to as “adhesion before immersion”) There is also a measure) PA1 . At this time, the second test piece after fabricated, while not shown a clear characteristic change, it is preferable to measure the time after adhesion P A1. By doing this, it is possible to obtain the rate of change in adhesive force described later with higher accuracy.
 一方、浸漬後粘着力を測定するときには、測定対象の経時後の第2試験片を、純水中に2時間浸漬する。このとき、第2試験片が純水中から突出して露出することがないように(換言すると、第2試験片全体が純水に完全に浸るように)、十分な量の純水中に第2試験片を沈める。 On the other hand, when measuring the adhesion after immersion, the second test piece after aging of the measuring object is immersed in pure water for 2 hours. At this time, in order to prevent the second test piece from being exposed out of the pure water (in other words, so that the entire second test piece is completely immersed in pure water), 2 Sink the test piece.
 第2試験片を浸漬中の純水の温度は、上述の第1試験片を浸漬中の純水の温度と同じとすることができる。このようにすることで、後述する粘着力変化率をより高精度に求められる。 The temperature of pure water during immersion of the second test piece may be the same as the temperature of pure water during immersion of the first test piece described above. By doing this, it is possible to obtain the rate of change in adhesive force described later with higher accuracy.
 純水中に2時間浸漬した後は、第2試験片を速やかに純水中から取り出し、必要に応じて、例えば、第2試験片の表面に付着している余分の水滴を水切り(除去)して、この浸漬後の第2試験片において、23℃の環境下で、第2硬化物とシリコンミラーウエハとの間の浸漬後粘着力PB1を測定する。このとき、浸漬後の第2試験片が、明確な特性変化を示していない状態で、浸漬後粘着力PB1を測定することが好ましい。このようにすることで、後述する粘着力変化率をより高精度に求められる。 After immersing in pure water for 2 hours, the second test piece is promptly taken out of the pure water, and if necessary, for example, excess water droplets adhering to the surface of the second test piece are drained (removed) and, in the second specimen after the immersion, in an environment of 23 ° C., to measure the dip after adhesion P B1 between the second cured silicon mirror wafer. At this time, the second test piece after immersion in a state do not show a definite change in characteristics, it is preferable to measure the dip after adhesion P B1. By doing this, it is possible to obtain the rate of change in adhesive force described later with higher accuracy.
 そして、これらPA1及びPB1の値を用いて、式「(|PB1-PA1|)/PA1×100」により、第2試験片の粘着力変化率(%)を算出する。 Then, using the values of these P A1 and P B1, the formula by "(| | P B1 -P A1) / P A1 × 100 ", is calculated adhesion rate of change of the second specimen (%).
 経時後粘着力(浸漬前粘着力)PA1及び浸漬後粘着力PB1は、同じ第2試験片を複数個作製して、これら第2試験片において別々に測定してもよいし、1個の同一の第2試験片において順次測定してもよい。
 1個の同一の第2試験片において、経時後粘着力PA1及び浸漬後粘着力PB1を順次測定する場合には、例えば、1個の同一の第2試験片における、互いに異なる箇所で、経時後粘着力PA1及び浸漬後粘着力PB1を別々に測定すればよい。
After aging adhesive force (before immersion adhesive strength) P A1 and after immersion adhesion P B1 is the same second specimen plurality prepared, may be measured separately in these second test pieces, one The same second test piece may be measured sequentially.
In one second specimen of the same, when successively measured with time after adhesion P A1 and after immersion adhesion P B1, for example, in one and the same second specimen, at different locations, with time after adhesion P A1 and after immersion adhesion P B1 may be measured separately.
 本発明において、経時後粘着力PA1及び浸漬後粘着力PB1はいずれも、シリコンミラーウエハから第2硬化物を引き剥がす操作を行ったときに測定される剥離力である。経時後粘着力PA1及び浸漬後粘着力PB1の測定時においては、例えば、第2硬化物とシリコンミラーウエハとの間で界面破壊が生じていてもよいし、第2硬化物中で凝集破壊が生じていてもよい。 In the present invention, any time after adhesive strength P A1 and after immersion adhesion P B1 is a peel force measured when performing the operation for peeling off the second cured silicon mirror wafer. During the measurement of time after the adhesive strength P A1 and after immersion adhesion P B1, for example, interfacial failure may have occurred between the second cured product and the silicon mirror wafer, agglomeration in a second cured product Destruction may have occurred.
 経時後粘着力PA1の測定時には、第2試験片において第2硬化物を引き剥がしたときに生じる2面の剥離面の為す角度が180°となるように、剥離速度300mm/minで、純水への浸漬前の段階で第2硬化物を引き剥がす、いわゆる180°剥離を行う。そして、このときの剥離力(mN/25mm)を測定して、この値を経時後粘着力PA1とすることができる。
 例えば、第2硬化物とシリコンミラーウエハとの間で界面破壊が生じている場合であれば、上述の「2面の剥離面の為す角度」とは、「第2硬化物のシリコンミラーウエハへの貼付面と、シリコンミラーウエハの第2硬化物への貼付面と、の為す角度」である。第2硬化物中で凝集破壊が生じている場合であれば、上述の「2面の剥離面の為す角度」とは、「第2硬化物における凝集破壊面2面の為す角度」である。
When measured with time after adhesion P A1, such that dihedral angle formed with the release surface of the produced when peeled off second cured product in the second specimen becomes 180 °, at a peel rate of 300 mm / min, pure At a stage before immersion in water, the second cured product is peeled off, so-called 180 ° peeling is performed. The peel strength at this time is (mN / 25 mm) was measured, this value may be a time after the adhesive strength P A1.
For example, in the case where interface fracture occurs between the second cured product and the silicon mirror wafer, the above-mentioned "angle formed by the peeling surface of the two surfaces" means "to the silicon mirror wafer of the second cured product". And the attached surface of the silicon mirror wafer to the second cured product. If cohesive failure occurs in the second cured product, the above-mentioned "angle formed by the peeling surface of the two surfaces" is "angle formed by the cohesive failure surface of the second cured product".
 このとき、第2硬化物は、強粘着テープを用いて引き剥がしてもよい。すなわち、経時後粘着力PA1の測定時には、その測定対象となる、純水への浸漬前の第2硬化物に対して、強粘着テープを貼付しておく。そして、引き剥がす力を直接加える対象を前記強粘着テープとすることにより、前記剥離面の為す角度が180°となるように、剥離速度300mm/minで、純水への浸漬前の段階で、第2試験片において第2硬化物及び前記強粘着テープの積層物を引き剥がす180°剥離を行う。そして、このときの剥離力(mN/25mm)を測定して、この値を経時後粘着力PA1とすることもできる。 At this time, the second cured product may be peeled off using a strong adhesive tape. That is, when measured with time after adhesion P A1, the measurement object, the second cured before immersion in pure water, keep sticking a strong adhesive tape. Then, by setting the object to which the peeling force is directly applied as the strong adhesive tape, the peeling speed is 300 mm / min so that the angle formed by the peeling surface is 180 °, at a stage before immersion in pure water In the second test piece, the 180 ° peel is performed to peel off the laminate of the second cured product and the strong adhesive tape. The peel strength at this time is (mN / 25 mm) was measured, it is also possible to this value with time after adhesion P A1.
 前記強粘着テープを用いる場合には、樹脂膜形成用フィルムの硬化前に、前記強粘着テープをこの樹脂膜形成用フィルムに貼付して、次いで樹脂膜形成用フィルムを硬化させて第2硬化物としてもよいし、前記強粘着テープを樹脂膜形成用フィルムには貼付せずに、樹脂膜形成用フィルムを硬化させて第2硬化物とし、前記強粘着テープをこの第2硬化物に貼付してもよい。 When the strong adhesive tape is used, the strong adhesive tape is attached to the resin film-forming film before curing the resin film-forming film, and then the resin film-forming film is cured to obtain a second cured product. Alternatively, without attaching the strong adhesive tape to the resin film-forming film, the resin film-forming film is cured to form a second cured product, and the strong adhesive tape is attached to the second cured product. May be
 浸漬後粘着力PB1も、経時後粘着力PA1の場合と同様の方法で測定できる。
 すなわち、浸漬後粘着力PB1の測定時には、上述の経時後の第2試験片を純水中に2時間浸漬した後、第2試験片において第2硬化物を引き剥がしたときに生じる2面の剥離面の為す角度が180°となるように、剥離速度300mm/minで第2硬化物を引き剥がす、いわゆる180°剥離を行う。そして、このときの剥離力(mN/25mm)を測定して、この値を浸漬後粘着力PB1とすることができる。
 ここで、「2面の剥離面の為す角度」とは、上述の経時後粘着力PA1の測定時の場合と同様である。
After immersion adhesive strength P B1 can also be measured in the case of time after adhesion P A1 and the same method.
That is, when measuring after immersion adhesive strength P B1, after immersion for 2 hours in pure water a second test piece after the above aging, two surfaces occurs when the second cured product was peeled off in the second test piece The second cured product is peeled at a peeling speed of 300 mm / min, so-called 180 ° peeling is performed so that the angle formed by the peeling surface is 180 °. And the peeling force (mN / 25 mm) at this time can be measured, and this value can be made into post-immersion adhesive power PB1 .
Here, the "angle formed peeling two face" is similar to the case of the measurement of time after the adhesive strength P A1 above.
 また、浸漬後粘着力PB1の測定時には、強粘着テープを用いてもよい。すなわち、浸漬後粘着力PB1の測定対象となる、純水への浸漬前の第2硬化物に対して、強粘着テープを貼付しておく。そして、この強粘着テープを貼付した第2試験片を純水中に2時間浸漬した後、引き剥がす力を直接加える対象を前記強粘着テープとすることにより、前記剥離面の為す角度が180°となるように、剥離速度300mm/minで、第2試験片において第2硬化物及び前記強粘着テープの積層物を引き剥がす180°剥離を行う。そして、このときの剥離力(mN/25mm)を測定して、この値を浸漬後粘着力PB1とすることができる。 Further, when measuring after immersion adhesive strength P B1 may use a strong adhesive tape. That is, the measurement target after immersion adhesive strength P B1, the second cured before immersion in pure water, keep sticking a strong adhesive tape. Then, the second test piece to which the strong adhesive tape is attached is immersed in pure water for 2 hours, and then the object to which the peeling force is directly applied is the strong adhesive tape, and the angle of the peeling surface is 180 ° In the second test piece, the 180 ° peeling is performed to peel off the laminate of the second cured product and the strong pressure-sensitive adhesive tape at a peeling speed of 300 mm / min. And the peeling force (mN / 25 mm) at this time can be measured, and this value can be made into post-immersion adhesive power PB1 .
 浸漬後粘着力PB1の測定時にも、経時後粘着力(浸漬前粘着力)PA1の測定時と同様に、樹脂膜形成用フィルムの硬化前に、前記強粘着テープをこの樹脂膜形成用フィルムに貼付して、次いで樹脂膜形成用フィルムを硬化させて第2硬化物としてもよいし、前記強粘着テープを樹脂膜形成用フィルムには貼付せずに、樹脂膜形成用フィルムを硬化させて第2硬化物とし、前記強粘着テープをこの第2硬化物に貼付してもよい。 Even when measuring after immersion adhesive strength P B1, after aging adhesive strength in the same manner as in the measurement of (before immersion adhesive strength) P A1, prior to curing of the resin film for forming a film, for the resin film forming the strong adhesive tape The film for resin film formation may be cured to be a second cured product by sticking to a film, and then the film for resin film formation may be cured without sticking the strong adhesive tape to the film for resin film formation. The second adhesive may be a second cured product, and the strong adhesive tape may be attached to the second cured product.
 前記強粘着テープの大きさは、経時後粘着力PA1及び浸漬後粘着力PB1の測定対象である(換言すると、シリコンミラーウエハから剥離させる)第2硬化物の大きさと、同じであることが好ましい。 That the size of the strong adhesive tape is measured with time after adhesion P A1 and after immersion adhesive strength P B1 (in other words, is peeled from the silicon mirror wafer) and the magnitude of the second cured product are the same Is preferred.
 第2積層体の作製に用いた樹脂膜形成用フィルムの大きさよりも小さい前記強粘着テープを用いる場合には、第2積層体において、前記強粘着テープの外周に沿って、樹脂膜形成用フィルムに切り込みを形成してから、経時後粘着力PA1及び浸漬後粘着力PB1を測定することが好ましい。このようにすることで、経時後粘着力PA1をより容易に測定できる。また、浸漬後粘着力PB1の測定時には、浸漬後粘着力PB1をより容易に測定できるだけでなく、第2硬化物の純水への浸漬の影響をより正確に反映でき、浸漬後粘着力PB1をより高精度に測定できる。 When using the said strong adhesive tape smaller than the size of the film for resin film formation used for preparation of the 2nd laminated body, in the 2nd laminated body, the film for resin film formation along the outer periphery of the said strong adhesive tape cut after forming, it is preferred to measure the time after adhesion P A1 and after immersion adhesion P B1. By doing so, the adhesive power PA1 can be more easily measured after the passage of time. Further, when measuring after immersion adhesive strength P B1, not only after immersion adhesive strength P B1 it can be more easily measured, can more accurately reflect the effect of immersion in pure water of the second cured product, after dipping adhesion P B1 can be measured with higher accuracy.
・樹脂膜形成用フィルムが非エネルギー線硬化性である場合
 樹脂膜形成用フィルムが非エネルギー線硬化性である場合には、第2積層体をそのまま第2試験片として用いる(換言すると、シリコンミラーウエハとの間の粘着力の測定対象が、第2硬化物ではなく、樹脂膜形成用フィルムである)点以外は、上述の樹脂膜形成用フィルムがエネルギー線硬化性である場合と同様の方法で、第2試験片の粘着力変化率(%)を求められる。
 より具体的には、以下のとおりである。
· When the film for resin film formation is non-energy ray curable If the film for resin film formation is non-energy ray curable, the second laminate is used as it is as a second test piece (in other words, a silicon mirror The same method as in the case where the above-mentioned resin film-forming film is energy ray curable except that the target of measurement of the adhesive force with the wafer is not the second cured product but the film for resin film formation). Then, the adhesive force change rate (%) of the second test piece can be obtained.
More specifically, it is as follows.
 脂膜形成用フィルムが非エネルギー線硬化性である場合には、第2試験片の粘着力変化率を求めるためには、まず、第2試験片を、温度23℃、相対湿度50%の環境下で30分静置して経時させる。次いで、この経時後の第2試験片において、23℃の環境下で、樹脂膜形成用フィルムとシリコンミラーウエハとの間の経時後粘着力(浸漬前粘着力)PA2を測定する。このとき、作製後の第2試験片が、明確な特性変化を示していない状態で、経時後粘着力PA2を測定することが好ましい。このようにすることで、後述する粘着力変化率をより高精度に求められる。 When the film for forming an oil film is non-energy ray curable, in order to obtain the adhesive strength change rate of the second test piece, first, the second test piece is subjected to an environment at a temperature of 23.degree. C. and a relative humidity of 50%. Let stand for 30 minutes and let it age. Then, in a second test piece after the aging under 23 ° C. environment after aging adhesion between the resin film for forming a film and the silicon mirror wafer (before immersion adhesive strength) is measured P A2. At this time, the second test piece after fabricated, while not shown a clear characteristic change, it is preferable to measure the time after adhesion P A2. By doing this, it is possible to obtain the rate of change in adhesive force described later with higher accuracy.
 一方、浸漬後粘着力を測定するときには、測定対象の経時後の第2試験片を、純水中に2時間浸漬する。このときの、第2試験片の純水中への浸漬は、上述の脂膜形成用フィルムがエネルギー線硬化性である場合と同様に行うことができる。 On the other hand, when measuring the adhesion after immersion, the second test piece after aging of the measuring object is immersed in pure water for 2 hours. The immersion of the second test piece in the pure water at this time can be performed in the same manner as in the case where the above-mentioned oil film-forming film is energy ray curable.
 純水中に2時間浸漬した後は、第2試験片を速やかに純水中から取り出し、必要に応じて、例えば、第2試験片の表面に付着している余分の水滴を水切り(除去)して、この浸漬後の第2試験片において、23℃の環境下で、樹脂膜形成用フィルムとシリコンミラーウエハとの間の浸漬後粘着力PB2を測定する。このとき、浸漬後の第2試験片が、明確な特性変化を示していない状態で、浸漬後粘着力PB2を測定することが好ましい。このようにすることで、後述する粘着力変化率をより高精度に求められる。 After immersing in pure water for 2 hours, the second test piece is promptly taken out of the pure water, and if necessary, for example, excess water droplets adhering to the surface of the second test piece are drained (removed) and, in the second specimen after the immersion, under 23 ° C. environment to measure the dip after adhesion P B2 between the resin film for forming a film and the silicon mirror wafer. At this time, the second test piece after immersion in a state do not show a definite change in characteristics, it is preferable to measure the dip after adhesion P B2. By doing this, it is possible to obtain the rate of change in adhesive force described later with higher accuracy.
 そして、これらPA2及びPB2の値を用いて、式「(|PB2-PA2|)/PA2×100」により、第2試験片の粘着力変化率(%)を算出する。 Then, using the values of these P A2 and P B2, wherein the "(| | P B2 -P A2) / P A2 × 100 ", is calculated adhesion rate of change of the second specimen (%).
 経時後粘着力(浸漬前粘着力)PA2及び浸漬後粘着力PB2は、同じ第2試験片を複数個作製して、これら第2試験片において別々に測定してもよいし、1個の同一の第2試験片において順次測定してもよい。
 1個の同一の第2試験片において、経時後粘着力PA2及び浸漬後粘着力PB2を順次測定する場合には、例えば、1個の同一の第2試験片における、互いに異なる箇所で、経時後粘着力PA2及び浸漬後粘着力PB2を別々に測定すればよい。
After aging adhesive force (before immersion adhesive strength) P A2 and after immersion adhesion P B2 is the same second specimen plurality prepared, may be measured separately in these second test pieces, one The same second test piece may be measured sequentially.
In one and the same second specimen, if sequential measuring the time after adhesion P A2 and after immersion adhesion P B2, for example, in one and the same second specimen, at different locations, After aging, the adhesive power PA2 and the post-immersion adhesive power PB2 may be separately measured.
 本発明において、経時後粘着力PA2及び浸漬後粘着力PB2はいずれも、シリコンミラーウエハから樹脂膜形成用フィルムを引き剥がす操作を行ったときに測定される剥離力である。経時後粘着力PA2及び浸漬後粘着力PB2の測定時においては、例えば、樹脂膜形成用フィルムとシリコンミラーウエハとの間で界面破壊が生じていてもよいし、樹脂膜形成用フィルム中で凝集破壊が生じていてもよい。 In the present invention, any time after adhesive strength P A2 and after immersion adhesion P B2 is the peel force is measured when performing the operation of peeling from the silicon mirror wafer pulling a resin film for forming a film. During the measurement of time after the adhesive strength P A2 and after immersion adhesion P B2, for example, interfacial failure may also be caused between the resin film for forming a film and the silicon mirror wafer, a resin film for forming a film of Cohesive failure may occur.
 経時後粘着力PA2の測定時には、第2試験片において樹脂膜形成用フィルムを引き剥がしたときに生じる2面の剥離面の為す角度が180°となるように、剥離速度300mm/minで、純水への浸漬前の段階で樹脂膜形成用フィルムを引き剥がす、いわゆる180°剥離を行う。そして、このときの剥離力(mN/25mm)を測定して、この値を経時後粘着力PA2とすることができる。
 例えば、樹脂膜形成用フィルムとシリコンミラーウエハとの間で界面破壊が生じている場合であれば、上述の「2面の剥離面の為す角度」とは、「樹脂膜形成用フィルムのシリコンミラーウエハへの貼付面と、シリコンミラーウエハの樹脂膜形成用フィルムへの貼付面と、の為す角度」である。樹脂膜形成用フィルム中で凝集破壊が生じている場合であれば、上述の「2面の剥離面の為す角度」とは、「樹脂膜形成用フィルムにおける凝集破壊面2面の為す角度」である。
After the measurement of adhesive strength P A2 over time, so that angle formed the release surface of the two surfaces occurs when peeled resin film forming film in the second test piece is 180 °, at a peel rate of 300 mm / min, At a stage before immersion in pure water, the film for resin film formation is peeled off, so-called 180 ° peeling is performed. The peel strength at this time is (mN / 25 mm) was measured, this value may be a time after the adhesive strength P A2.
For example, in the case where interfacial failure occurs between the resin film-forming film and the silicon mirror wafer, the above-mentioned "angle between two peeling surfaces" means "silicon mirror of resin film-forming film". This is the angle between the bonding surface to the wafer and the bonding surface of the silicon mirror wafer to the resin film-forming film. If cohesive failure occurs in the film for resin film formation, the above-mentioned "angle between two peeling surfaces" means "angle between two cohesive failure surfaces of the film for resin film". is there.
 このとき、樹脂膜形成用フィルムは、強粘着テープを用いて引き剥がしてもよい。すなわち、経時後粘着力PA2の測定時には、その測定対象となる、純水への浸漬前の樹脂膜形成用フィルムに対して、強粘着テープを貼付しておく。そして、引き剥がす力を直接加える対象を前記強粘着テープとすることにより、前記剥離面の為す角度が180°となるように、剥離速度300mm/minで、純水への浸漬前の段階で、第2試験片において樹脂膜形成用フィルム及び前記強粘着テープの積層物を引き剥がす180°剥離を行う。そして、このときの剥離力(mN/25mm)を測定して、この値を経時後粘着力PA2とすることもできる。 At this time, the resin film-forming film may be peeled off using a strong adhesive tape. That is, when measured with time after adhesion P A2, the measurement object, the resin film for forming a film before immersion in pure water, keep sticking a strong adhesive tape. Then, by setting the object to which the peeling force is directly applied as the strong adhesive tape, the peeling speed is 300 mm / min so that the angle formed by the peeling surface is 180 °, at a stage before immersion in pure water In the second test piece, the laminate of the film for resin film formation and the strong pressure-sensitive adhesive tape is peeled off at 180 °. The peel strength at this time is (mN / 25 mm) was measured, it is also possible to this value with time after adhesion P A2.
 浸漬後粘着力PB2も、経時後粘着力PA2の場合と同様の方法で測定できる。
 すなわち、浸漬後粘着力PB2の測定時には、上述の経時後の第2試験片を純水中に2時間浸漬した後、第2試験片において樹脂膜形成用フィルムを引き剥がしたときに生じる2面の剥離面の為す角度が180°となるように、剥離速度300mm/minで樹脂膜形成用フィルムを引き剥がす、いわゆる180°剥離を行う。そして、このときの剥離力(mN/25mm)を測定して、この値を浸漬後粘着力PB2とすることができる。
 ここで、「2面の剥離面の為す角度」とは、上述の経時後粘着力PA2の測定時の場合と同様である。
The post-dipping adhesive power PB2 can also be measured after aging in the same manner as in the case of the adhesive power PA2 .
That is, when measuring after immersion adhesive strength P B2 is generated when the second test piece after the above aging was immersed for 2 hours in pure water, the peel the resin film for forming a film in the second test piece 2 The film for resin film formation is peeled off at a peeling speed of 300 mm / min so that the angle formed by the peeling surface of the surface is 180 °, so-called 180 ° peeling is performed. And the peeling force (mN / 25 mm) at this time can be measured, and this value can be made into post-dipping adhesive power PB2 .
Here, the "angle formed peeling two face" is similar to the case of the measurement of time after the adhesive strength P A2 above.
 また、浸漬後粘着力PB2の測定時には、強粘着テープを用いてもよい。すなわち、浸漬後粘着力PB2の測定対象となる、純水への浸漬前の樹脂膜形成用フィルムに対して、強粘着テープを貼付しておく。そして、この強粘着テープを貼付した第2試験片を純水中に2時間浸漬した後、引き剥がす力を直接加える対象を前記強粘着テープとすることにより、前記剥離面の為す角度が180°となるように、剥離速度300mm/minで、第2試験片において樹脂膜形成用フィルム及び前記強粘着テープの積層物を引き剥がす180°剥離を行う。そして、このときの剥離力(mN/25mm)を測定して、この値を浸漬後粘着力PB2とすることもできる。 Further, when measuring after immersion adhesive strength P B2 may use a strong adhesive tape. That is, the measurement target after immersion adhesive strength P B2, before immersion in pure water with respect to the resin film for forming a film in advance by attaching a strong adhesive tape. Then, the second test piece to which the strong adhesive tape is attached is immersed in pure water for 2 hours, and then the object to which the peeling force is directly applied is the strong adhesive tape, whereby the angle formed by the peeling surface is 180 °. In the second test piece, the laminate of the film for resin film formation and the strong pressure-sensitive adhesive tape is peeled off at 180 ° at a peeling speed of 300 mm / min. The peel strength at this time is (mN / 25 mm) was measured, it is also possible to this value after immersion adhesive strength P B2.
 前記強粘着テープの大きさは、経時後粘着力PA2及び浸漬後粘着力PB2の測定対象である(換言すると、シリコンミラーウエハから剥離させる)樹脂膜形成用フィルムの大きさと、同じであることが好ましい。 The size of the strong adhesive tape is measured with time after adhesion P A2 and after immersion adhesive strength P B2 (in other words, is peeled from the silicon mirror wafer) and the size of the resin film for forming a film are the same Is preferred.
 第2積層体の作製に用いた樹脂膜形成用フィルムの大きさよりも小さい前記強粘着テープを用いる場合には、第2積層体(第2試験片)において、前記強粘着テープの外周に沿って、樹脂膜形成用フィルムに切り込みを形成してから、経時後粘着力PA2及び浸漬後粘着力PB2を測定することが好ましい。このようにすることで、経時後粘着力PA2をより容易に測定できる。また、浸漬後粘着力PB2の測定時には、浸漬後粘着力PB2をより容易に測定できるだけでなく、樹脂膜形成用フィルムの純水への浸漬の影響をより正確に反映でき、浸漬後粘着力PB2をより高精度に測定できる。 When using the said strong adhesive tape smaller than the size of the film for resin film formation used for preparation of the 2nd laminated body, in the 2nd laminated body (2nd test piece), along the outer periphery of the said strong adhesive tape , after forming a notch for the resin film forming a film, it is preferable to measure the time after adhesion P A2 and after immersion adhesion P B2. By doing so, the adhesive power PA2 can be more easily measured after the passage of time. Further, when measuring after immersion adhesive strength P B2 is not only more easily measured after immersion adhesive strength P B2, it can more accurately reflect the effect of immersion in pure water of the resin film for forming a film, after dipping adhesive The force P B2 can be measured with higher accuracy.
 本発明において、第2試験片の粘着力変化率は60%以下であり、50%以下であることが好ましく、45%以下であることがより好ましく、40%以下であることが特に好ましい。第2試験片の粘着力変化率が前記上限値以下であることで、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制する効果がより高くなる。 In the present invention, the adhesive strength change rate of the second test piece is 60% or less, preferably 50% or less, more preferably 45% or less, and particularly preferably 40% or less. When picking up a semiconductor chip with a film for forming a resin film or a semiconductor chip with a resin film having a small size from the support sheet by the adhesive force change rate of the second test piece being equal to or less than the upper limit value, the resin to the support sheet The effect of suppressing the remaining of the film for film formation or the resin film is further enhanced.
 本発明において、第2試験片の粘着力変化率の下限値は、特に限定されず、例えば、0%であってもよい。第2試験片の粘着力変化率が低いほど、第2試験片(換言すると樹脂膜形成用フィルム又は樹脂膜)は、水に晒される時間が長くても、粘着力が変化し難いといえる。樹脂膜形成用フィルムの製造がより容易となる点では、第2試験片の粘着力変化率は、3%以上であることが好ましく、5%以上であることがより好ましい。 In the present invention, the lower limit value of the adhesive strength change rate of the second test piece is not particularly limited, and may be, for example, 0%. It can be said that, as the rate of change in adhesive strength of the second test piece is lower, the adhesive strength of the second test piece (in other words, the resin film-forming film or resin film) is less susceptible to change in adhesive power even if it is exposed to water for a long time. The adhesive force change ratio of the second test piece is preferably 3% or more, and more preferably 5% or more, from the viewpoint of facilitating the production of the resin film-forming film.
 本発明においては、第2試験片の粘着力変化率は、上述のいずれかの下限値と、いずれかの上限値と、を任意に組み合わせて決定される数値範囲となるように、適宜調節できる。例えば、第2試験片の粘着力変化率は、0~60%であることが好ましく、0~50%であることがより好ましく、0~45%であることがさらに好ましく、0~40%であることが特に好ましい。ただし、これらは第2試験片の粘着力変化率の一例である。 In the present invention, the adhesive force change rate of the second test piece can be appropriately adjusted so as to be a numerical range determined by arbitrarily combining any of the lower limit values described above and any upper limit value. . For example, the adhesive strength change rate of the second test piece is preferably 0 to 60%, more preferably 0 to 50%, still more preferably 0 to 45%, and 0 to 40%. Being particularly preferred. However, these are examples of the adhesive force change rate of a 2nd test piece.
<<浸漬後の第3試験片のヤング率>>
 前記樹脂膜形成用フィルムは、第3試験片を純水中に2時間浸漬したとき、JIS K 7127に準拠した引張試験で、試験速度を200mm/minとして測定された、浸漬後の前記第3試験片のヤング率が、15MPa以上となるものが好ましい。
<<Young's modulus of the third test piece after immersion >>
The film for resin film formation is a tensile test based on JIS K 7127 when the third test piece is immersed in pure water for 2 hours, and the third film after immersion is measured at a test speed of 200 mm / min. That whose Young's modulus of a test piece becomes 15 or more MPa is preferred.
 樹脂膜形成用フィルムが非エネルギー線硬化性である場合、第3試験片とは、複数枚の樹脂膜形成用フィルムが、これらの厚さ方向において積層されてなる、大きさが15mm×150mm、厚さが200μmの第3積層体である。
 樹脂膜形成用フィルムがエネルギー線硬化性である場合、第3試験片とは、前記第3積層体にエネルギー線を照射して、第3積層体をエネルギー線硬化させた第3硬化物である。
 樹脂膜形成用フィルムが熱硬化性である場合、この樹脂膜形成用フィルムがエネルギー線硬化性及び非エネルギー線硬化性のいずれであるかによらず、前記第3積層体及び第3硬化物は、いずれも熱硬化していないことが好ましい。
When the resin film-forming film is non-energy ray curable, the third test piece is a laminate of a plurality of resin film-forming films in the thickness direction, and the size is 15 mm × 150 mm, It is a third laminate with a thickness of 200 μm.
When the resin film-forming film is energy ray curable, the third test piece is a third cured product obtained by irradiating the third laminate with an energy beam and energy ray curing the third laminate. .
When the resin film-forming film is a thermosetting resin, the third laminate and the third cured product are the same regardless of whether the resin film-forming film is energy ray curable or non-energy ray curable. It is preferable that none of them is thermally cured.
 浸漬後の第3試験片の前記ヤング率が前記下限値以上であることで、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制する効果がより高くなる。 When the semiconductor chip with a film for forming a resin film or the semiconductor chip with a resin film having a small size is picked up from a support sheet by setting the Young's modulus of the third test piece after immersion to the above lower limit value or more, The effect of suppressing the remaining of the resin film-forming film or the resin film is further enhanced.
 前記第3積層体の作製に用いる複数枚の樹脂膜形成用フィルムは、すべて組成が同じものである。
 複数枚の前記樹脂膜形成用フィルムの厚さは、すべて同じであってもよいし、すべて異なっていてもよいし、一部のみ同じであってもよいが、すべて同じであることが好ましい。
The plurality of resin film-forming films used for producing the third laminate all have the same composition.
The thicknesses of the plurality of resin film-forming films may be all the same, all may be different, or only some may be the same, but preferably all are the same.
 第3積層体は、例えば、15mm×150mmより大きい任意の大きさの複数枚の樹脂膜形成用フィルムを、合計の厚さが200μmとなるように積層して貼り合わせ、15mm×150mmの大きさに打ち抜く(切断する)ことで、作製できる。また、第3積層体は、例えば、大きさが15mm×150mmの複数枚の樹脂膜形成用フィルムを、合計の厚さが200μmとなるように、すべて周縁部の位置を一致させて、積層して貼り合わせることでも作製できる。 In the third laminate, for example, a plurality of resin film-forming films of any size larger than 15 mm × 150 mm are laminated and bonded such that the total thickness is 200 μm, and the size of 15 mm × 150 mm It can be produced by punching out (cutting). In the third laminate, for example, a plurality of resin film-forming films each having a size of 15 mm × 150 mm are laminated with their peripheral edge portions aligned so that the total thickness is 200 μm. It can also be produced by pasting together.
 樹脂膜形成用フィルムが非エネルギー線硬化性である場合には、作製した第3積層体をそのまま第3試験片として用いる。
 樹脂膜形成用フィルムがエネルギー線硬化性である場合には、作製した第3積層体に、さらにエネルギー線を照射して、第3積層体中のすべての樹脂膜形成用フィルムをエネルギー線硬化させて、得られた第3硬化物を第3試験片として用いる。
When the film for resin film formation is non-energy ray curable, the produced 3rd laminated body is used as a 3rd test piece as it is.
If the resin film-forming film is energy ray curable, the prepared third laminate is further irradiated with energy rays to cure all resin film-forming films in the third laminate. The resulting third cured product is used as a third test piece.
 前記第3硬化物を作製するときの、第3積層体(脂膜形成用フィルム)へのエネルギー線の照射条件は、第3積層体が十分にエネルギー線硬化する限り、特に限定されない。
 通常、前記第3硬化物の作製時における、エネルギー線の照度及び光量は、いずれも、上述の第1積層体の硬化時における、エネルギー線の照度及び光量と同様とすることができる。
The irradiation conditions of the energy beam to the third laminate (film for forming a fat film) when producing the third cured product are not particularly limited as long as the third laminate is sufficiently energy beam cured.
In general, the illuminance and the light amount of the energy ray at the time of preparation of the third cured product may be the same as the illuminance and the light amount of the energy ray at the time of curing of the first laminate.
 サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制する効果がより高くなる点から、浸漬後の第3試験片の前記ヤング率は、17MPa以上であることがより好ましく、19MPa以上であることが特に好ましい。 When picking up a small semiconductor chip with a film for resin film formation or a semiconductor chip with a resin film from the support sheet, the effect of suppressing the film or resin film for resin film formation on the support sheet is enhanced. The Young's modulus of the third test piece after immersion is more preferably 17 MPa or more, and particularly preferably 19 MPa or more.
 本発明において、浸漬後の第3試験片の前記ヤング率の上限値は、特に限定されない。通常、前記ヤング率は、350MPa以下であることが好ましく、300MPa以下であることがより好ましく、250MPa以下であることが特に好ましい。前記ヤング率が前記上限値以下となる樹脂膜形成用フィルムは、製造がより容易である。 In the present invention, the upper limit value of the Young's modulus of the third test piece after immersion is not particularly limited. Usually, the Young's modulus is preferably 350 MPa or less, more preferably 300 MPa or less, and particularly preferably 250 MPa or less. The film for resin film formation in which the Young's modulus is equal to or less than the upper limit is easier to manufacture.
 本発明においては、浸漬後の第3試験片の前記ヤング率は、上述のいずれかの下限値と、いずれかの上限値と、を任意に組み合わせて決定される数値範囲となるように、適宜調節できる。例えば、前記ヤング率は、15~350MPaであることが好ましく、17~300MPaであることがより好ましく、19~250MPaであることが特に好ましい。ただし、これらは前記ヤング率の一例である。 In the present invention, the Young's modulus of the third test piece after immersion is appropriately selected so that it is determined by arbitrarily combining any of the lower limit values described above and any upper limit value. It can be adjusted. For example, the Young's modulus is preferably 15 to 350 MPa, more preferably 17 to 300 MPa, and particularly preferably 19 to 250 MPa. However, these are examples of the Young's modulus.
<<浸漬前の第3試験片のヤング率>>
 本発明においては、JIS K 7127に準拠した引張試験で、試験速度を200mm/minとして測定された、純水中に浸漬する前の第3試験片のヤング率は、20~200MPaであることが好ましく、30~190MPaであることがより好ましく、40~180MPaであることが特に好ましい。浸漬前の第3試験片の前記ヤング率がこのような範囲であることで、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制する効果がより高くなる。
<<Young's modulus of the third test piece before immersion >>
In the present invention, the Young's modulus of the third test piece before immersion in pure water measured at a test speed of 200 mm / min in a tensile test in accordance with JIS K 7127 is 20 to 200 MPa. The pressure is preferably 30 to 190 MPa, more preferably 40 to 180 MPa. When the Young's modulus of the third test piece before immersion is in such a range, when the semiconductor chip with a film for forming a resin film or the semiconductor chip with a resin film having a small size is picked up from the support sheet, The effect of suppressing the remaining of the resin film-forming film or the resin film is further enhanced.
<<浸漬後の第3試験片の破断伸度>>
 前記樹脂膜形成用フィルムは、第3試験片を純水中に2時間浸漬したとき、JIS K 7127に準拠した引張試験で、試験速度を200mm/minとして測定された、浸漬後の前記第3試験片の破断伸度が、15~410%となるものが好ましく、20~390%となるものがより好ましい。浸漬後の第3試験片の破断伸度がこのような範囲であることで、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制する効果がより高くなる。
 第3試験片の破断伸度は、上述の第3試験片のヤング率の測定時に、第3試験片が破断したときの第3試験片の伸びから求められる。これは、第3試験片を純水中に浸漬する前及び浸漬した後のいずれにおいても同様である。
<< Elongation at break of third test piece after immersion >>
The film for resin film formation is a tensile test based on JIS K 7127 when the third test piece is immersed in pure water for 2 hours, and the third film after immersion is measured at a test speed of 200 mm / min. The elongation at break of the test piece is preferably 15 to 410%, and more preferably 20 to 390%. When the breaking elongation of the third test piece after immersion is in such a range, when the semiconductor chip with a film for forming a resin film or the semiconductor chip with a resin film having a small size is picked up from the support sheet, The effect of suppressing the remaining of the resin film-forming film or the resin film is further enhanced.
The breaking elongation of the third test piece is determined from the elongation of the third test piece when the third test piece breaks when measuring the Young's modulus of the third test piece described above. This is the same both before and after immersing the third test piece in pure water.
 なお、本明細書において、「破断伸度がX%である」(Xは正の数である)とは、試験片を引っ張り、試験片がその引張方向において元の長さ(換言すると、引っ張っていないときの長さ)のX%の長さだけ伸びたとき、すなわち、試験片の引張方向における全体の長さが引っ張る前の長さの[1+X/100]倍となったときに、試験片が破断することを意味する。 In this specification, “the elongation at break is X%” (X is a positive number) means that the test piece is pulled, and the test piece has its original length in the tensile direction (in other words, it is pulled Test when extended by X% of the length when not being taken, that is, when the overall length in the tensile direction of the test piece becomes [1 + X / 100] times the length before pulling It means that the piece breaks.
<<浸漬前の第3試験片の破断伸度>>
 本発明においては、JIS K 7127に準拠した引張試験で、試験速度を200mm/minとして測定された、純水中に浸漬する前の第3試験片の破断伸度は、20~550%であることが好ましく、25~500%であることがより好ましい。浸漬前の第3試験片の破断伸度がこのような範囲であることで、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制する効果がより高くなる。
<< Elongation at break of third test piece before immersion >>
In the present invention, the breaking elongation of the third test piece before immersion in pure water, measured at a test speed of 200 mm / min in a tensile test based on JIS K 7127, is 20 to 550%. Is preferable, and 25 to 500% is more preferable. By setting the breaking elongation of the third test piece before immersion to such a range, when picking up a semiconductor chip with a film for forming a resin film or a semiconductor chip with a resin film having a small size from the support sheet, The effect of suppressing the remaining of the resin film-forming film or the resin film is further enhanced.
<<浸漬後の第3試験片の破断応力>>
 前記樹脂膜形成用フィルムは、第3試験片を純水中に2時間浸漬したとき、JIS K 7127に準拠した引張試験で、試験速度を200mm/minとして測定された、浸漬後の前記第3試験片の破断応力が、0.8~7MPaとなるものが好ましく、0.8~5.5MPaとなるものがより好ましい。浸漬後の第3試験片の破断応力がこのような範囲であることで、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制する効果がより高くなる。
 第3試験片の破断応力は、上述の第3試験片のヤング率の測定時に、第3試験片が破断したときに第3試験片に加えられていた力から求められる。これは、第3試験片を純水中に浸漬する前及び浸漬した後のいずれにおいても同様である。
<< Stress at break of the third test piece after immersion >>
The film for resin film formation is a tensile test based on JIS K 7127 when the third test piece is immersed in pure water for 2 hours, and the third film after immersion is measured at a test speed of 200 mm / min. The breaking stress of the test piece is preferably 0.8 to 7 MPa, and more preferably 0.8 to 5.5 MPa. When the breaking stress of the third test piece after immersion falls within such a range, when picking up a semiconductor chip with a film for forming a resin film or a semiconductor chip with a resin film having a small size from the support sheet, The effect of suppressing the remaining of the resin film-forming film or the resin film is further enhanced.
The breaking stress of the third test piece is determined from the force applied to the third test piece when the third test piece breaks when measuring the Young's modulus of the third test piece described above. This is the same both before and after immersing the third test piece in pure water.
<<浸漬前の第3試験片の破断応力>>
 本発明においては、JIS K 7127に準拠した引張試験で、試験速度を200mm/minとして測定された、純水中に浸漬する前の第3試験片の破断応力は、1.1~8MPaであることが好ましく、1.1~6.5MPaであることがより好ましい。浸漬前の第3試験片の破断応力がこのような範囲であることで、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制する効果がより高くなる。
<< Stress at break of the third specimen before immersion >>
In the present invention, the breaking stress of the third test piece before immersion in pure water measured at a test speed of 200 mm / min in a tensile test based on JIS K 7127 is 1.1 to 8 MPa. Is preferable, and 1.1 to 6.5 MPa is more preferable. When the breaking stress of the third test piece before immersion is within such a range, when picking up a semiconductor chip with a film for forming a resin film or a semiconductor chip with a resin film having a small size from the support sheet, The effect of suppressing the remaining of the resin film-forming film or the resin film is further enhanced.
○熱硬化性樹脂膜形成用フィルム
 好ましい熱硬化性樹脂膜形成用フィルムとしては、例えば、重合体成分(A)及び熱硬化性成分(B)を含有するものが挙げられ、重合体成分(A)、熱硬化性成分(B)及び充填材(D)を含有するものがより好ましい。重合体成分(A)は、重合性化合物が重合反応して形成されたとみなせる成分である。また、熱硬化性成分(B)は、熱を反応のトリガーとして、硬化(重合)反応し得る成分である。なお、本発明において重合反応には、重縮合反応も含まれる。
○ Film for thermosetting resin film formation As a film for thermosetting resin film formation, a thing containing a polymer component (A) and a thermosetting component (B) is mentioned, for example, A polymer component (A) is mentioned. And the thermosetting component (B) and the filler (D) are more preferable. The polymer component (A) is a component that can be considered to be formed by the polymerization reaction of the polymerizable compound. The thermosetting component (B) is a component that can undergo curing (polymerization) reaction using heat as a reaction trigger. In the present invention, the polymerization reaction also includes a polycondensation reaction.
 熱硬化性樹脂膜形成用フィルムは、1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよい。熱硬化性樹脂膜形成用フィルムが複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよい。 The film for thermosetting resin film formation may consist of one layer (single layer), or may consist of two or more layers. When the film for thermosetting resin film formation consists of multiple layers, these multiple layers may mutually be same or different.
 熱硬化性樹脂膜形成用フィルムの厚さは、1~100μmであることが好ましく、3~75μmであることがより好ましく、5~50μmであることが特に好ましい。熱硬化性樹脂膜形成用フィルムの厚さが前記下限値以上であることで、厚さの均一性がより高くなる。また、熱硬化性樹脂膜形成用フィルムの厚さが前記上限値以下であることで、半導体ウエハのブレードダイシング時に発生する脂膜形成用フィルム又は樹脂膜の切削屑の発生量が抑制される。
 ここで、「熱硬化性樹脂膜形成用フィルムの厚さ」とは、熱硬化性樹脂膜形成用フィルム全体の厚さを意味し、例えば、複数層からなる熱硬化性樹脂膜形成用フィルムの厚さとは、熱硬化性樹脂膜形成用フィルムを構成するすべての層の合計の厚さを意味する。
The thickness of the thermosetting resin film-forming film is preferably 1 to 100 μm, more preferably 3 to 75 μm, and particularly preferably 5 to 50 μm. By the thickness of the film for thermosetting resin film formation being more than the said lower limit, the uniformity of thickness becomes higher. Moreover, when the thickness of the film for thermosetting resin film formation is below the said upper limit, the generation amount of the cuttings of the film for resin film formation or resin film which generate | occur | produces at the time of blade dicing of a semiconductor wafer is suppressed.
Here, "the thickness of the film for thermosetting resin film formation" means the thickness of the whole film for thermosetting resin film formation, for example, the film for thermosetting resin film formation which consists of multiple layers. The thickness means the total thickness of all the layers constituting the thermosetting resin film-forming film.
 熱硬化性樹脂膜形成用フィルムを半導体ウエハの裏面に貼付した後に、熱硬化させるときの硬化条件は、硬化物が十分にその機能を発揮する程度の硬化度となる限り特に限定されず、熱硬化性樹脂膜形成用フィルムの種類に応じて、適宜選択すればよい。
 例えば、熱硬化性樹脂膜形成用フィルムの熱硬化時の加熱温度は、100~200℃であることが好ましく、110~180℃であることがより好ましく、120~170℃であることが特に好ましい。そして、前記硬化時の加熱時間は、0.5~5時間であることが好ましく、0.5~3時間であることがより好ましく、1~2時間であることが特に好ましい。
After the thermosetting resin film-forming film is attached to the back surface of the semiconductor wafer, the curing conditions for heat curing are not particularly limited as long as the cured product has a degree of cure sufficient to exhibit its function. It may be appropriately selected according to the type of the curable resin film-forming film.
For example, the heating temperature at the time of thermosetting of the film for thermosetting resin film formation is preferably 100 to 200 ° C., more preferably 110 to 180 ° C., and particularly preferably 120 to 170 ° C. . The heating time at the time of curing is preferably 0.5 to 5 hours, more preferably 0.5 to 3 hours, and particularly preferably 1 to 2 hours.
<<熱硬化性樹脂膜形成用組成物>>
 熱硬化性樹脂膜形成用フィルムは、その構成材料を含有する熱硬化性樹脂膜形成用組成物を用いて形成できる。例えば、熱硬化性樹脂膜形成用フィルムの形成対象面に熱硬化性樹脂膜形成用組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に熱硬化性樹脂膜形成用フィルムを形成できる。
<< Composition for forming thermosetting resin film >>
The film for thermosetting resin film formation can be formed using the composition for thermosetting resin film formation containing the constituent material. For example, the composition for thermosetting resin film formation is applied to the formation target surface of the film for thermosetting resin film formation, and it is made to dry at the target site by making it dry if needed. It can form a film.
 熱硬化性樹脂膜形成用組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。 Coating of the composition for thermosetting resin film formation may be performed by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, Examples include methods using various coaters such as a knife coater, a screen coater, a Mayer bar coater, and a kiss coater.
 熱硬化性樹脂膜形成用組成物の乾燥条件は、特に限定されないが、熱硬化性樹脂膜形成用組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。そして、溶媒を含有する熱硬化性樹脂膜形成用組成物は、例えば、70~130℃で10秒~5分の条件で乾燥させることが好ましい。ただし、本発明においては、形成される熱硬化性樹脂膜形成用フィルムが熱硬化しないように、熱硬化性樹脂膜形成用組成物を乾燥させることが好ましい。 Although the drying conditions of the composition for thermosetting resin film formation are not specifically limited, When the composition for thermosetting resin film formation contains the solvent mentioned later, it is preferable to heat-dry. Then, the composition for forming a thermosetting resin film containing a solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes. However, in the present invention, it is preferable to dry the composition for thermosetting resin film formation so that the film for thermosetting resin film formation to be formed is not thermally cured.
<熱硬化性樹脂膜形成用組成物(III-1)>
 好ましい熱硬化性樹脂膜形成用組成物としては、例えば、重合体成分(A)、熱硬化性成分(B)及び充填材(D)を含有する熱硬化性樹脂膜形成用組成物(III-1)(本明細書においては、単に「組成物(III-1)」と略記することがある)等が挙げられる。
<Composition for forming a thermosetting resin film (III-1)>
As a preferable composition for thermosetting resin film formation, for example, a composition for thermosetting resin film formation containing a polymer component (A), a thermosetting component (B) and a filler (D) (III- 1) (In the present specification, it may simply be abbreviated as “composition (III-1)”) and the like.
[重合体成分(A)]
 重合体成分(A)は、熱硬化性樹脂膜形成用フィルムに造膜性や可撓性等を付与するための成分である。
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有する重合体成分(A)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[Polymer component (A)]
A polymer component (A) is a component for providing film forming property, flexibility, etc. to the film for thermosetting resin film formation.
The polymer component (A) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof And the ratio can be selected arbitrarily.
 重合体成分(A)としては、例えば、アクリル系樹脂、ポリエステル、ウレタン系樹脂、アクリルウレタン樹脂、シリコーン系樹脂、ゴム系樹脂、フェノキシ樹脂、熱硬化性ポリイミド等が挙げられ、アクリル系樹脂が好ましい。 Examples of the polymer component (A) include acrylic resins, polyesters, urethane resins, acrylic urethane resins, silicone resins, rubber resins, phenoxy resins, thermosetting polyimides and the like, with acrylic resins being preferred. .
 重合体成分(A)における前記アクリル系樹脂としては、公知のアクリル重合体が挙げられる。
 アクリル系樹脂の重量平均分子量(Mw)は、10000~2000000であることが好ましく、100000~1500000であることがより好ましい。アクリル系樹脂の重量平均分子量が前記下限値以上であることで、熱硬化性樹脂膜形成用フィルムの形状安定性(保管時の経時安定性)が向上する。また、アクリル系樹脂の重量平均分子量が前記上限値以下であることで、被着体の凹凸面へ熱硬化性樹脂膜形成用フィルムが追従し易くなり、被着体と熱硬化性樹脂膜形成用フィルムとの間でボイド等の発生がより抑制される。
 なお、本明細書において、重量平均分子量とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。
Examples of the acrylic resin in the polymer component (A) include known acrylic polymers.
The weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1,500,000. When the weight average molecular weight of the acrylic resin is equal to or more than the lower limit value, the shape stability (the temporal stability during storage) of the film for forming a thermosetting resin film is improved. In addition, when the weight average molecular weight of the acrylic resin is not more than the upper limit value, the film for thermosetting resin film formation easily follows the uneven surface of the adherend, and the adherend and the thermosetting resin film are formed. The generation of voids and the like between the film and the film is further suppressed.
In addition, in this specification, a weight average molecular weight is a polystyrene conversion value measured by the gel permeation chromatography (GPC) method unless there is particular notice.
 アクリル系樹脂のガラス転移温度(Tg)は、-60~70℃であることが好ましく、-30~50℃であることがより好ましい。アクリル系樹脂のTgが前記下限値以上であることで、例えば、樹脂膜形成用フィルムの硬化物と支持シートとの接着力が抑制されて、支持シートの剥離性が適度に向上する。また、アクリル系樹脂のTgが前記上限値以下であることで、熱硬化性樹脂膜形成用フィルム及びその硬化物の被着体との接着力が向上する。 The glass transition temperature (Tg) of the acrylic resin is preferably −60 to 70 ° C., and more preferably −30 to 50 ° C. When the Tg of the acrylic resin is not less than the lower limit value, for example, the adhesion between the cured product of the resin film-forming film and the support sheet is suppressed, and the releasability of the support sheet is appropriately improved. Moreover, the adhesive force with the to-be-adhered body of the film for thermosetting resin film formation and its hardened | cured material improves because Tg of acrylic resin is below the said upper limit.
 アクリル系樹脂としては、例えば、1種又は2種以上の(メタ)アクリル酸エステルの重合体;(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される2種以上のモノマーの共重合体等が挙げられる。 The acrylic resin is selected, for example, from one or more polymers of (meth) acrylic acid esters; (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylol acrylamide, etc. The copolymer etc. of 2 or more types of monomers are mentioned.
 なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念とする。(メタ)アクリル酸と類似の用語についても同様であり、例えば、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」の両方を包含する概念であり、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する概念である。 In the present specification, “(meth) acrylic acid” is a concept including both “acrylic acid” and “methacrylic acid”. The same applies to terms similar to (meth) acrylic acid, for example, “(meth) acryloyl group” is a concept including both “acryloyl group” and “methacryloyl group”, “(meth) acrylate” "Is a concept including both" acrylate "and" methacrylate ".
 アクリル系樹脂を構成する前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル;
 (メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
 (メタ)アクリル酸イミド;
 (メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基を意味する。
Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, ) N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic Heptyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate , (Meth) acrylic acid undecyl, (meth) acrylic acid dodecyl ((meth) acrylic acid Uryl), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecyl (meth) acrylate, hexadecyl (meth) acrylate (palmityl (meth) acrylate), (meth) (Meth) acrylic acid alkyl esters in which the alkyl group constituting the alkyl ester such as heptadecyl acrylate or octadecyl (meth) acrylate (stearyl (meth) acrylate) has a chain structure of 1 to 18 carbon atoms;
(Meth) acrylic acid cycloalkyl esters such as (meth) acrylic acid isobornyl, (meth) acrylic acid dicyclopentanyl;
(Meth) acrylic acid aralkyl esters such as benzyl (meth) acrylate;
(Meth) acrylic acid cycloalkenyl esters such as (meth) acrylic acid dicyclopentenyl ester;
(Meth) acrylic acid cycloalkenyloxy alkyl esters such as (meth) acrylic acid dicyclopentenyl oxyethyl ester;
(Meth) acrylic imides;
Glycidyl group-containing (meth) acrylic acid esters such as glycidyl (meth) acrylate;
Hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meth ) Hydroxyl-containing (meth) acrylic acid esters such as 3-hydroxybutyl acrylate, 4-hydroxybutyl (meth) acrylate;
Examples thereof include substituted amino group-containing (meth) acrylic acid esters such as N-methylaminoethyl (meth) acrylic acid. Here, "substituted amino group" means a group obtained by substituting one or two hydrogen atoms of an amino group with a group other than a hydrogen atom.
 アクリル系樹脂は、例えば、前記(メタ)アクリル酸エステル以外に、(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される1種又は2種以上のモノマーが共重合してなるものでもよい。 The acrylic resin is, for example, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylol acrylamide, etc. in addition to the (meth) acrylic acid ester. May be copolymerized.
 アクリル系樹脂を構成するモノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The monomer constituting the acrylic resin may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 アクリル系樹脂は、ビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の他の化合物と結合可能な官能基を有していてもよい。アクリル系樹脂の前記官能基は、後述する架橋剤(F)を介して他の化合物と結合してもよいし、架橋剤(F)を介さずに他の化合物と直接結合していてもよい。アクリル系樹脂が前記官能基により他の化合物と結合することで、樹脂膜形成用複合シートを用いて得られたパッケージの信頼性が向上する傾向がある。 The acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group and an isocyanate group. The functional group of the acrylic resin may be bonded to another compound through a crosslinking agent (F) described later, or may be directly bonded to another compound without the crosslinking agent (F) . There is a tendency for the reliability of the package obtained using the composite sheet for resin film formation to improve because acrylic resin couple | bonds with the other compound by the said functional group.
 本発明においては、重合体成分(A)として、アクリル系樹脂以外の熱可塑性樹脂(以下、単に「熱可塑性樹脂」と略記することがある)を、アクリル系樹脂を用いずに単独で用いてもよいし、アクリル系樹脂と併用してもよい。前記熱可塑性樹脂を用いることで、樹脂膜の支持シートからの剥離性が向上したり、被着体の凹凸面へ熱硬化性樹脂膜形成用フィルムが追従し易くなり、被着体と熱硬化性樹脂膜形成用フィルムとの間でボイド等の発生がより抑制されることがある。 In the present invention, as the polymer component (A), a thermoplastic resin other than an acrylic resin (hereinafter sometimes simply referred to as “thermoplastic resin”) may be used alone without using an acrylic resin. It may be used in combination with an acrylic resin. By using the thermoplastic resin, the removability of the resin film from the support sheet can be improved, or the film for thermosetting resin film formation can easily follow the uneven surface of the adherend, and the adherend and the thermosetting resin The occurrence of voids and the like may be further suppressed between the resin film-forming film.
 前記熱可塑性樹脂の重量平均分子量は1000~100000であることが好ましく、3000~80000であることがより好ましい。 The weight average molecular weight of the thermoplastic resin is preferably 1,000 to 100,000, and more preferably 3,000 to 80,000.
 前記熱可塑性樹脂のガラス転移温度(Tg)は、-30~150℃であることが好ましく、-20~120℃であることがより好ましい。 The glass transition temperature (Tg) of the thermoplastic resin is preferably −30 to 150 ° C., and more preferably −20 to 120 ° C.
 前記熱可塑性樹脂としては、例えば、ポリエステル、ポリウレタン、フェノキシ樹脂、ポリブテン、ポリブタジエン、ポリスチレン等が挙げられる。 Examples of the thermoplastic resin include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, polystyrene and the like.
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有する前記熱可塑性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The thermoplastic resin contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination and ratio thereof. Is optional.
 組成物(III-1)において、溶媒以外の全ての成分の総含有量に対する重合体成分(A)の含有量の割合(すなわち、熱硬化性樹脂膜形成用フィルムにおける、熱硬化性樹脂膜形成用フィルムの総質量に対する、重合体成分(A)の含有量の割合)は、重合体成分(A)の種類によらず、3~85質量%であることが好ましく、3~80質量%であることがより好ましく、例えば、3~65質量%、3~50質量%、3~35質量%、及び3~20質量%等のいずれかであってもよい。 In the composition (III-1), the ratio of the content of the polymer component (A) to the total content of all the components other than the solvent (that is, the formation of a thermosetting resin film in a film for thermosetting resin film formation) The proportion of the content of the polymer component (A) with respect to the total mass of the film for use is preferably 3 to 85% by mass, regardless of the type of the polymer component (A), and 3 to 80% by mass It is more preferable that, for example, it is 3 to 65% by mass, 3 to 50% by mass, 3 to 35% by mass, 3 to 20% by mass or the like.
 重合体成分(A)は、熱硬化性成分(B)にも該当する場合がある。本発明においては、組成物(III-1)が、このような重合体成分(A)及び熱硬化性成分(B)の両方に該当する成分を含有する場合、組成物(III-1)は、重合体成分(A)及び熱硬化性成分(B)を含有するとみなす。 The polymer component (A) may also correspond to the thermosetting component (B). In the present invention, when the composition (III-1) contains components corresponding to both the polymer component (A) and the thermosetting component (B), the composition (III-1) And polymer component (A) and thermosetting component (B).
[熱硬化性成分(B)]
 熱硬化性成分(B)は、熱硬化性樹脂膜形成用フィルムを硬化させるための成分である。
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有する熱硬化性成分(B)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[Thermosetting component (B)]
A thermosetting component (B) is a component for hardening the film for thermosetting resin film formation.
The thermosetting component (B) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, Combinations and ratios can be selected arbitrarily.
 熱硬化性成分(B)としては、例えば、エポキシ系熱硬化性樹脂、熱硬化性ポリイミド、ポリウレタン、不飽和ポリエステル、シリコーン樹脂等が挙げられ、エポキシ系熱硬化性樹脂が好ましい。 As a thermosetting component (B), an epoxy-type thermosetting resin, a thermosetting polyimide, polyurethane, unsaturated polyester, a silicone resin etc. are mentioned, for example, An epoxy-type thermosetting resin is preferable.
(エポキシ系熱硬化性樹脂)
 エポキシ系熱硬化性樹脂は、エポキシ樹脂(B1)及び熱硬化剤(B2)からなる。
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有するエポキシ系熱硬化性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(Epoxy-based thermosetting resin)
The epoxy-based thermosetting resin comprises an epoxy resin (B1) and a thermosetting agent (B2).
The epoxy-based thermosetting resin contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof. And the ratio can be selected arbitrarily.
・エポキシ樹脂(B1)
 エポキシ樹脂(B1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、2官能以上のエポキシ化合物が挙げられる。
・ Epoxy resin (B1)
As an epoxy resin (B1), a well-known thing is mentioned, For example, a polyfunctional epoxy resin, a biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated substance, an ortho cresol novolak epoxy resin, a dicyclopentadiene type epoxy resin, The bifunctional or more epoxy compound such as biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenylene skeleton type epoxy resin, etc. may be mentioned.
 エポキシ樹脂(B1)としては、不飽和炭化水素基を有するエポキシ樹脂を用いてもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル系樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂を用いることで、樹脂膜形成用複合シートを用いて得られた樹脂膜付き半導体チップの信頼性が向上する。 As the epoxy resin (B1), an epoxy resin having an unsaturated hydrocarbon group may be used. An epoxy resin having an unsaturated hydrocarbon group has higher compatibility with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the semiconductor chip with a resin film obtained using the composite sheet for resin film formation improves by using the epoxy resin which has an unsaturated hydrocarbon group.
 不飽和炭化水素基を有するエポキシ樹脂としては、例えば、多官能系エポキシ樹脂のエポキシ基の一部が不飽和炭化水素基を有する基に変換されてなる化合物が挙げられる。このような化合物は、例えば、エポキシ基へ(メタ)アクリル酸又はその誘導体を付加反応させることにより得られる。
 また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
 不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)、(メタ)アクリロイル基、(メタ)アクリルアミド基等が挙げられ、アクリロイル基が好ましい。
As an epoxy resin which has an unsaturated hydrocarbon group, the compound formed by converting a part of epoxy group of polyfunctional epoxy resin into the group which has an unsaturated hydrocarbon group is mentioned, for example. Such a compound can be obtained, for example, by addition reaction of (meth) acrylic acid or a derivative thereof to an epoxy group.
Moreover, as an epoxy resin which has an unsaturated hydrocarbon group, the compound etc. which the group which has an unsaturated hydrocarbon group directly couple | bonded with the aromatic ring which comprises an epoxy resin, etc. are mentioned, for example.
The unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include ethenyl group (vinyl group), 2-propenyl group (allyl group), (meth) acryloyl group, (meth) An acrylamide group etc. are mentioned and an acryloyl group is preferable.
 エポキシ樹脂(B1)の数平均分子量は、特に限定されないが、熱硬化性樹脂膜形成用フィルムの硬化性、並びに硬化後の樹脂膜の強度及び耐熱性の点から、300~30000であることが好ましく、300~10000であることがより好ましく、300~3000であることが特に好ましい。
 エポキシ樹脂(B1)のエポキシ当量は、100~1000g/eqであることが好ましく、150~950g/eqであることがより好ましい。
The number average molecular weight of the epoxy resin (B1) is not particularly limited, but is 300 to 30000 from the viewpoint of the curability of the film for thermosetting resin film formation and the strength and heat resistance of the resin film after curing. Preferably, it is 300 to 10,000, and more preferably 300 to 3,000.
The epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g / eq, and more preferably 150 to 950 g / eq.
 エポキシ樹脂(B1)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 An epoxy resin (B1) may be used individually by 1 type, and 2 or more types may be used together, and when using 2 or more types together, the combination and ratio of those can be selected arbitrarily.
・熱硬化剤(B2)
 熱硬化剤(B2)は、エポキシ樹脂(B1)に対する硬化剤として機能する。
 熱硬化剤(B2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。
・ Heat curing agent (B2)
The thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
As a thermosetting agent (B2), the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is mentioned, for example. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, and a group in which an acid group is anhydrated, and the phenolic hydroxyl group, an amino group, or an acid group is anhydrated. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
 熱硬化剤(B2)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等が挙げられる。
 熱硬化剤(B2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド等が挙げられる。
Among the heat curing agents (B2), as a phenol type curing agent having a phenolic hydroxyl group, for example, polyfunctional phenol resin, biphenol, novolak type phenol resin, dicyclopentadiene type phenol resin, aralkyl type phenol resin and the like can be mentioned. .
Among the thermosetting agents (B2), examples of amine-based curing agents having an amino group include dicyandiamide.
 熱硬化剤(B2)は、不飽和炭化水素基を有するものでもよい。
 不飽和炭化水素基を有する熱硬化剤(B2)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。
 熱硬化剤(B2)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様のものである。
The thermosetting agent (B2) may have an unsaturated hydrocarbon group.
As the thermosetting agent (B2) having an unsaturated hydrocarbon group, for example, a compound obtained by substituting a part of hydroxyl groups of a phenol resin with a group having an unsaturated hydrocarbon group, an aromatic ring of a phenol resin, The compound etc. which a group which has a saturated hydrocarbon group directly couple | bonds are mentioned.
The said unsaturated hydrocarbon group in a thermosetting agent (B2) is a thing similar to the unsaturated hydrocarbon group in the epoxy resin which has the above-mentioned unsaturated hydrocarbon group.
 熱硬化剤(B2)としてフェノール系硬化剤を用いる場合には、樹脂膜の支持シートからの剥離性が向上する点から、熱硬化剤(B2)は軟化点又はガラス転移温度が高いものが好ましい。 When a phenol-based curing agent is used as the heat-curing agent (B2), it is preferable that the heat-curing agent (B2) has a high softening point or glass transition temperature from the viewpoint that the removability of the resin film from the support sheet is improved. .
 熱硬化剤(B2)のうち、例えば、多官能フェノール樹脂、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等の樹脂成分の数平均分子量は、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。
 熱硬化剤(B2)のうち、例えば、ビフェノール、ジシアンジアミド等の非樹脂成分の分子量は、特に限定されないが、例えば、60~500であることが好ましい。
Among thermosetting agents (B2), for example, the number average molecular weight of resin components such as polyfunctional phenol resin, novolak type phenol resin, dicyclopentadiene type phenol resin, and aralkyl type phenol resin is preferably 300 to 30,000. And 400 to 10000 are more preferable, and 500 to 3000 are particularly preferable.
Among the thermosetting agents (B2), for example, the molecular weight of non-resin components such as biphenol and dicyandiamide is not particularly limited, but is preferably 60 to 500, for example.
 熱硬化剤(B2)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 A thermosetting agent (B2) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and a ratio can be selected arbitrarily.
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムにおいて、熱硬化剤(B2)の含有量は、エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましく、例えば、1~100質量部、1~50質量部、1~25質量部、及び1~10質量部等のいずれかであってもよい。熱硬化剤(B2)の前記含有量が前記下限値以上であることで、熱硬化性樹脂膜形成用フィルムの硬化がより進行し易くなる。また、熱硬化剤(B2)の前記含有量が前記上限値以下であることで、熱硬化性樹脂膜形成用フィルムの吸湿率が低減されて、樹脂膜形成用複合シートを用いて得られたパッケージの信頼性がより向上する。 In the composition (III-1) and the thermosetting resin film-forming film, the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the epoxy resin (B1). Part is preferable, and 1 to 200 parts by mass is more preferable, for example, 1 to 100 parts by mass, 1 to 50 parts by mass, 1 to 25 parts by mass, and 1 to 10 parts by mass etc. It may be. When the content of the thermosetting agent (B2) is equal to or more than the lower limit value, curing of the film for thermosetting resin film formation is more easily progressed. Moreover, the moisture absorption of the film for thermosetting resin film formation was reduced by the said content of a thermosetting agent (B2) being below the said upper limit, and it was obtained using the composite sheet for resin film formation. Package reliability is further improved.
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムにおいて、熱硬化性成分(B)の含有量(例えば、エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量)は、重合体成分(A)の含有量100質量部に対して、5~600質量部であることが好ましく、例えば、50~600質量部、100~600質量部、200~600質量部、300~600質量部、400~600質量部、及び500~600質量部等のいずれかであってもよい。熱硬化性成分(B)の前記含有量がこのような範囲であることで、例えば、樹脂膜形成用フィルムの硬化物と支持シートとの接着力が抑制されて、支持シートの剥離性が向上する。 In the composition (III-1) and the film for thermosetting resin film formation, the content of the thermosetting component (B) (for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)) is The content is preferably 5 to 600 parts by mass, for example 50 to 600 parts by mass, 100 to 600 parts by mass, 200 to 600 parts by mass, 300 to 600, based on 100 parts by mass of the polymer component (A). It may be any one of parts by mass, 400 to 600 parts by mass, 500 to 600 parts by mass, and the like. When the content of the thermosetting component (B) is in such a range, for example, the adhesive force between the cured product of the resin film-forming film and the support sheet is suppressed, and the releasability of the support sheet is improved. Do.
[充填材(D)]
 熱硬化性樹脂膜形成用フィルムは、充填材(D)を含有することにより、前記吸水率及び粘着力変化率を目的とする範囲内に調節することが、より容易となる。また、熱硬化性樹脂膜形成用フィルム及びその硬化物(樹脂膜)は、充填材(D)を含有することにより、熱膨張係数の調節がより容易となる。そして、この熱膨張係数を、熱硬化性樹脂膜形成用フィルム又は樹脂膜の形成対象物に対して最適化することで、樹脂膜形成用複合シートを用いて得られた樹脂膜付き半導体チップの信頼性がより向上する。また、熱硬化性樹脂膜形成用フィルムは、充填材(D)を含有することにより、樹脂膜の吸湿率を低減したり、放熱性を向上させたりすることもできる。
[Filler (D)]
By containing the filler (D), the film for thermosetting resin film formation can be more easily adjusted to the target range of the water absorption coefficient and the adhesive force change ratio. Moreover, the film for thermosetting resin film formation and its hardened | cured material (resin film) contain a filler (D), and adjustment of a thermal expansion coefficient becomes easier. Then, the thermal expansion coefficient is optimized with respect to a thermosetting resin film-forming film or an object to be formed with a resin film, whereby a semiconductor chip with a resin film obtained using the resin film-forming composite sheet Reliability is further improved. Moreover, the film for thermosetting resin film formation can also reduce the moisture absorption rate of a resin film, or can improve heat dissipation by containing a filler (D).
 充填材(D)は、有機充填材及び無機充填材のいずれでもよいが、無機充填材であることが好ましい。
 好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
 これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましく、シリカであることがより好ましい。
The filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, bengala, silicon carbide, boron nitride, etc .; spherical beads of these inorganic fillers; surface modification of these inorganic fillers Articles: single crystal fibers of these inorganic fillers; glass fibers and the like.
Among these, the inorganic filler is preferably silica or alumina, and more preferably silica.
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有する充填材(D)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The filler (D) contained in the composition (III-1) and the film for thermosetting resin film formation may be only one type, or two or more types, and in the case of two or more types, a combination thereof and The ratio can be selected arbitrarily.
 組成物(III-1)において、溶媒以外の全ての成分の総含有量に対する充填材(D)の含有量の割合(すなわち、熱硬化性樹脂膜形成用フィルムにおける、熱硬化性樹脂膜形成用フィルムの総質量に対する、充填材(D)の含有量の割合)は、25~75質量%であることが好ましく、28~72質量%であることがより好ましい。充填材(D)が他の成分よりも顕著に吸水し難いため、前記割合が前記下限値以上であることで、前記吸水率を0.55%以下とすることがより容易となる。そして、サイズが小さい樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜の残存を抑制する効果がより高くなる。また、前記割合が前記上限値以下であることで、樹脂膜形成用フィルム及びその硬化物である樹脂膜の強度が、より向上する。 In the composition (III-1), the ratio of the content of the filler (D) to the total content of all the components other than the solvent (that is, for forming a thermosetting resin film in a film for forming a thermosetting resin film) The ratio of the content of the filler (D) to the total mass of the film) is preferably 25 to 75% by mass, and more preferably 28 to 72% by mass. Since the filler (D) hardly absorbs water significantly more than the other components, when the ratio is at least the lower limit value, it is easier to make the water absorption coefficient 0.55% or less. And when picking up a semiconductor chip with a resin film with a small size from a support sheet, the effect which controls residual of a resin film on a support sheet becomes high. Moreover, the intensity | strength of the film for resin film formation and the resin film which is its hardened | cured material improves more because the said ratio is below the said upper limit.
[硬化促進剤(C)]
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムは、硬化促進剤(C)を含有していてもよい。硬化促進剤(C)は、組成物(III-1)の硬化速度を調整するための成分である。
 好ましい硬化促進剤(C)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(1個以上の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(1個以上の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
[Hardening accelerator (C)]
The composition (III-1) and the thermosetting resin film-forming film may contain a curing accelerator (C). The curing accelerator (C) is a component for adjusting the curing rate of the composition (III-1).
Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (one or more hydrogen atoms are not hydrogen atoms Imidazoles substituted with the following groups: organic phosphines such as tributyl phosphine, diphenyl phosphine, triphenyl phosphine (phosphines in which one or more hydrogen atoms are substituted with an organic group); tetraphenyl phosphonium tetraphenyl borate Tetraphenyl boron salts such as triphenyl phosphine tetraphenyl borate and the like.
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有する硬化促進剤(C)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The curing accelerator (C) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof. And the ratio can be selected arbitrarily.
 硬化促進剤(C)を用いる場合、組成物(III-1)及び熱硬化性樹脂膜形成用フィルムにおいて、硬化促進剤(C)の含有量は、熱硬化性成分(B)の含有量100質量部に対して、0.01~10質量部であることが好ましく、0.1~7質量部であることがより好ましい。硬化促進剤(C)の前記含有量が前記下限値以上であることで、硬化促進剤(C)を用いたことによる効果がより顕著に得られる。また、硬化促進剤(C)の含有量が前記上限値以下であることで、例えば、高極性の硬化促進剤(C)が、高温・高湿度条件下で熱硬化性樹脂膜形成用フィルム中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなる。その結果、樹脂膜形成用複合シートを用いて得られた樹脂膜付き半導体チップの信頼性がより向上する。 When the curing accelerator (C) is used, the content of the curing accelerator (C) in the composition (III-1) and the film for thermosetting resin film formation is the content of the thermosetting component (B) 100 The amount is preferably 0.01 to 10 parts by mass, and more preferably 0.1 to 7 parts by mass with respect to the mass parts. The effect by using a hardening accelerator (C) is acquired more notably by the said content of a hardening accelerator (C) being more than the said lower limit. In addition, when the content of the curing accelerator (C) is equal to or less than the upper limit value, for example, the high-polarity curing accelerator (C) is contained in the film for thermosetting resin film formation under high temperature and high humidity conditions. In the above, the effect of suppressing migration and segregation to the adhesive interface side with the adherend becomes high. As a result, the reliability of the resin film-coated semiconductor chip obtained using the resin film-forming composite sheet is further improved.
[カップリング剤(E)]
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムは、カップリング剤(E)を含有していてもよい。カップリング剤(E)として、無機化合物又は有機化合物と反応可能な官能基を有するものを用いることにより、熱硬化性樹脂膜形成用フィルムの被着体に対する接着性及び密着性を向上させることができる。また、カップリング剤(E)を用いることで、熱硬化性樹脂膜形成用フィルムの硬化物(樹脂膜)は、耐熱性を損なうことなく、耐水性が向上する。
[Coupling agent (E)]
The composition (III-1) and the thermosetting resin film-forming film may contain a coupling agent (E). By using a compound having a functional group capable of reacting with an inorganic compound or an organic compound as the coupling agent (E), it is possible to improve the adhesiveness and adhesion of the film for thermosetting resin film formation to an adherend it can. Moreover, water resistance improves the hardened | cured material (resin film) of the film for thermosetting resin film formation by using a coupling agent (E), without impairing heat resistance.
 カップリング剤(E)は、重合体成分(A)、熱硬化性成分(B)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。
 好ましい前記シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。
The coupling agent (E) is preferably a compound having a functional group capable of reacting with a functional group possessed by the polymer component (A), the thermosetting component (B) or the like, and is preferably a silane coupling agent. More preferable.
Preferred examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3,4-Epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino) Ethylamino) propylmethyldiethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyl Trimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, imidazolesilane, etc. Be
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有するカップリング剤(E)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The coupling agent (E) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof And the ratio can be selected arbitrarily.
 カップリング剤(E)を用いる場合、組成物(III-1)及び熱硬化性樹脂膜形成用フィルムにおいて、カップリング剤(E)の含有量は、重合体成分(A)及び熱硬化性成分(B)の総含有量100質量部に対して、0.03~20質量部であることが好ましく、0.05~10質量部であることがより好ましく、0.1~5質量部であることが特に好ましい。カップリング剤(E)の前記含有量が前記下限値以上であることで、充填材(D)の樹脂への分散性の向上や、熱硬化性樹脂膜形成用フィルムの被着体との接着性の向上など、カップリング剤(E)を用いたことによる効果がより顕著に得られる。また、カップリング剤(E)の前記含有量が前記上限値以下であることで、アウトガスの発生がより抑制される。 When the coupling agent (E) is used, the content of the coupling agent (E) in the composition (III-1) and the film for thermosetting resin film formation is the polymer component (A) and the thermosetting component The amount is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and 0.1 to 5 parts by mass with respect to 100 parts by mass of the total content of (B). Is particularly preferred. When the content of the coupling agent (E) is at least the lower limit value, the dispersibility of the filler (D) in the resin is improved, and the adhesion of the film for thermosetting resin film formation to the adherend The effect by using a coupling agent (E), such as the improvement of the property, is more significantly obtained. Moreover, generation | occurrence | production of an outgas is suppressed more because the said content of a coupling agent (E) is below the said upper limit.
[架橋剤(F)]
 重合体成分(A)として、上述のアクリル系樹脂等の、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の官能基を有するものを用いる場合、組成物(III-1)及び熱硬化性樹脂膜形成用フィルムは、架橋剤(F)を含有していてもよい。架橋剤(F)は、重合体成分(A)中の前記官能基を他の化合物と結合させて架橋するための成分であり、このように架橋することにより、熱硬化性樹脂膜形成用フィルムの初期接着力及び凝集力を調節できる。
[Crosslinking agent (F)]
As the polymer component (A), those having a functional group such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group or an isocyanate group capable of binding to other compounds such as the above-mentioned acrylic resin When used, the composition (III-1) and the thermosetting resin film-forming film may contain a crosslinking agent (F). A crosslinking agent (F) is a component for making the said functional group in a polymer component (A) couple | bond with another compound, and bridge | crosslinking it, The film for thermosetting resin film formation is made by bridge | crosslinking in this way The initial adhesion and cohesion of can be adjusted.
 架橋剤(F)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(金属キレート構造を有する架橋剤)、アジリジン系架橋剤(アジリジニル基を有する架橋剤)等が挙げられる。 As the crosslinking agent (F), for example, organic polyvalent isocyanate compounds, organic polyvalent imine compounds, metal chelate type crosslinking agents (crosslinking agents having a metal chelate structure), aziridine type crosslinking agents (crosslinking agents having an aziridinyl group), etc. Can be mentioned.
 前記有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);前記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;前記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。前記「アダクト体」は、前記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物と、の反応物を意味する。前記アダクト体の例としては、後述するようなトリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。また、「末端イソシアネートウレタンプレポリマー」とは、先に説明したとおりである。 As the organic polyvalent isocyanate compound, for example, an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as “aromatic polyvalent isocyanate compound etc.” Abbreviated in some cases); trimers such as the above-mentioned aromatic polyvalent isocyanate compounds, isocyanurates and adducts; terminal isocyanate urethane prepolymers obtained by reacting the above-mentioned aromatic polyvalent isocyanate compounds and the like with a polyol compound Etc. The “adduct” includes the above-mentioned aromatic polyvalent isocyanate compound, aliphatic polyvalent isocyanate compound or alicyclic polyvalent isocyanate compound, and low contents such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil It means a reaction product with a molecule active hydrogen-containing compound. Examples of the adduct include xylylene diisocyanate adduct of trimethylolpropane as described later, and the like. In addition, the "terminal isocyanate urethane prepolymer" is as described above.
 前記有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。 More specifically, as the organic polyvalent isocyanate compound, for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 Diphenylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Any one of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate in the hydroxyl groups of all or part of a polyol such as propane Or two or more compounds are added; lysine diisocyanate.
 前記有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。 Examples of the organic polyhydric imine compound include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri-β-aziridinyl propionate, and tetramethylolmethane. -Tri-β-aziridinyl propionate, N, N'-toluene-2,4-bis (1-aziridine carboxamide) triethylene melamine and the like.
 架橋剤(F)として有機多価イソシアネート化合物を用いる場合、重合体成分(A)としては、水酸基含有重合体を用いることが好ましい。架橋剤(F)がイソシアネート基を有し、重合体成分(A)が水酸基を有する場合、架橋剤(F)と重合体成分(A)との反応によって、熱硬化性樹脂膜形成用フィルムに架橋構造を簡便に導入できる。 When using an organic polyhydric isocyanate compound as a crosslinking agent (F), it is preferable to use a hydroxyl-containing polymer as a polymer component (A). When the crosslinking agent (F) has an isocyanate group and the polymer component (A) has a hydroxyl group, a film for thermosetting resin film formation can be obtained by the reaction of the crosslinking agent (F) with the polymer component (A). A crosslinked structure can be introduced easily.
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有する架橋剤(F)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The crosslinking agent (F) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof and The ratio can be selected arbitrarily.
 架橋剤(F)を用いる場合、組成物(III-1)において、架橋剤(F)の含有量は、重合体成分(A)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.1~10質量部であることがより好ましく、0.5~5質量部であることが特に好ましい。架橋剤(F)の前記含有量が前記下限値以上であることで、架橋剤(F)を用いたことによる効果がより顕著に得られる。また、架橋剤(F)の前記含有量が前記上限値以下であることで、架橋剤(F)の過剰使用が抑制される。 When the crosslinking agent (F) is used, the content of the crosslinking agent (F) in the composition (III-1) is 0.01 to 20 parts by mass with respect to 100 parts by mass of the polymer component (A). It is preferably part, more preferably 0.1 to 10 parts by mass, particularly preferably 0.5 to 5 parts by mass. The effect by using a crosslinking agent (F) is acquired more notably by the said content of a crosslinking agent (F) being more than the said lower limit. Moreover, the excess use of a crosslinking agent (F) is suppressed because the said content of a crosslinking agent (F) is below the said upper limit.
[エネルギー線硬化性樹脂(G)]
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムは、エネルギー線硬化性樹脂(G)を含有していてもよい。熱硬化性樹脂膜形成用フィルムは、エネルギー線硬化性樹脂(G)を含有していることにより、エネルギー線の照射によって特性を変化させることができる。
[Energy ray curable resin (G)]
The composition (III-1) and the thermosetting resin film-forming film may contain an energy ray curable resin (G). The film for thermosetting resin film formation can change a characteristic by irradiation of an energy ray by containing energy-beam curable resin (G).
 エネルギー線硬化性樹脂(G)は、エネルギー線硬化性化合物を重合(硬化)して得られたものである。
 前記エネルギー線硬化性化合物としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
The energy ray-curable resin (G) is obtained by polymerizing (curing) an energy ray-curable compound.
Examples of the energy ray curable compound include a compound having at least one polymerizable double bond in the molecule, and an acrylate compound having a (meth) acryloyl group is preferable.
 前記アクリレート系化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等の鎖状脂肪族骨格含有(メタ)アクリレート;ジシクロペンタニルジ(メタ)アクリレート等の環状脂肪族骨格含有(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;オリゴエステル(メタ)アクリレート;ウレタン(メタ)アクリレートオリゴマー;エポキシ変性(メタ)アクリレート;前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート;イタコン酸オリゴマー等が挙げられる。 Examples of the acrylate compound include trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol monohydroxy penta ( Linear aliphatic skeleton-containing (meth) acrylates such as meta) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate; Cycloaliphatic skeleton-containing (meth) acrylates such as cyclopentanyl di (meth) acrylate; polyalkylene glycol (meth) acrylates such as polyethylene glycol di (meth) acrylate Oligoester (meth) acrylate; urethane (meth) acrylate oligomer, epoxy-modified (meth) acrylate; the polyalkylene glycol (meth) Polyether (meth) acrylates other than the acrylates; itaconic acid oligomer, and the like.
 前記エネルギー線硬化性化合物の重量平均分子量は、100~30000であることが好ましく、300~10000であることがより好ましい。 The weight average molecular weight of the energy ray curable compound is preferably 100 to 30,000, and more preferably 300 to 10,000.
 重合に用いる前記エネルギー線硬化性化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The energy ray-curable compound used for the polymerization may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有するエネルギー線硬化性樹脂(G)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The energy beam curable resin (G) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, those types The combination and ratio of can be selected arbitrarily.
 エネルギー線硬化性樹脂(G)を用いる場合、組成物(III-1)において、組成物(III-1)の総質量に対する、エネルギー線硬化性樹脂(G)の含有量の割合は、1~95質量%であることが好ましく、1~90質量%であることがより好ましく、1~85質量%であることが特に好ましく、例えば、1~70質量%、1~55質量%、1~40質量%、1~25質量%、及び1~10質量%等のいずれかであってもよい。 When an energy ray-curable resin (G) is used, in the composition (III-1), the ratio of the content of the energy ray-curable resin (G) to the total mass of the composition (III-1) is 1 to The content is preferably 95% by mass, more preferably 1 to 90% by mass, particularly preferably 1 to 85% by mass, and for example, 1 to 70% by mass, 1 to 55% by mass, 1 to 40 It may be any of mass%, 1 to 25 mass%, 1 to 10 mass%, and the like.
[光重合開始剤(H)]
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムは、エネルギー線硬化性樹脂(G)を含有する場合、エネルギー線硬化性樹脂(G)の重合反応を効率よく進めるために、光重合開始剤(H)を含有していてもよい。
[Photoinitiator (H)]
When the composition (III-1) and the thermosetting resin film-forming film contain an energy ray-curable resin (G), light is efficiently transferred to efficiently promote the polymerization reaction of the energy ray-curable resin (G). You may contain the polymerization initiator (H).
 組成物(III-1)における光重合開始剤(H)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール等のベンゾイン化合物;アセトフェノン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のアセトフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;ベンジルフェニルスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド化合物;1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール化合物;アゾビスイソブチロニトリル等のアゾ化合物;チタノセン等のチタノセン化合物;チオキサントン等のチオキサントン化合物;パーオキサイド化合物;ジアセチル等のジケトン化合物;ベンジル;ジベンジル;ベンゾフェノン;2,4-ジエチルチオキサントン;1,2-ジフェニルメタン;2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン;2-クロロアントラキノン等が挙げられる。
 また、前記光重合開始剤としては、例えば、1-クロロアントラキノン等のキノン化合物;アミン等の光増感剤等も挙げられる。
As the photopolymerization initiator (H) in the composition (III-1), for example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal Benzoin compounds such as acetophenone; acetophenone compounds such as acetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethan-1-one; bis (2,2, Acyl phosphine oxide compounds such as 4,6-trimethyl benzoyl) phenyl phosphine oxide, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide; benzyl phenyl sulfide, tetramethyl thiuram Sulfide compounds such as nosulfide; α-ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; azo compounds such as azobisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; Diketone compound; benzyl; dibenzyl; benzophenone; 2,4-diethylthioxanthone; 1,2-diphenylmethane; 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone; 2-chloroanthraquinone etc. Can be mentioned.
Further, examples of the photopolymerization initiator include quinone compounds such as 1-chloroanthraquinone; and photosensitizers such as amines.
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有する光重合開始剤(H)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The photopolymerization initiator (H) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, Combinations and ratios can be selected arbitrarily.
 光重合開始剤(H)を用いる場合、組成物(III-1)において、光重合開始剤(H)の含有量は、エネルギー線硬化性樹脂(G)の含有量100質量部に対して、0.1~20質量部であることが好ましく、1~10質量部であることがより好ましく、2~5質量部であることが特に好ましい。 When a photopolymerization initiator (H) is used, the content of the photopolymerization initiator (H) in the composition (III-1) is 100 parts by mass of the content of the energy ray-curable resin (G), The amount is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 2 to 5 parts by mass.
[着色剤(I)]
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムは、着色剤(I)を含有していてもよい。
 着色剤(I)としては、例えば、無機系顔料、有機系顔料、有機系染料等、公知のものが挙げられる。
[Colorant (I)]
The composition (III-1) and the thermosetting resin film-forming film may contain a colorant (I).
Examples of the colorant (I) include known pigments such as inorganic pigments, organic pigments, and organic dyes.
 前記有機系顔料及び有機系染料としては、例えば、アミニウム系色素、シアニン系色素、メロシアニン系色素、クロコニウム系色素、スクアリウム系色素、アズレニウム系色素、ポリメチン系色素、ナフトキノン系色素、ピリリウム系色素、フタロシアニン系色素、ナフタロシアニン系色素、ナフトラクタム系色素、アゾ系色素、縮合アゾ系色素、インジゴ系色素、ペリノン系色素、ペリレン系色素、ジオキサジン系色素、キナクリドン系色素、イソインドリノン系色素、キノフタロン系色素、ピロール系色素、チオインジゴ系色素、金属錯体系色素(金属錯塩染料)、ジチオール金属錯体系色素、インドールフェノール系色素、トリアリルメタン系色素、アントラキノン系色素、ジオキサジン系色素、ナフトール系色素、アゾメチン系色素、ベンズイミダゾロン系色素、ピランスロン系色素及びスレン系色素等が挙げられる。 Examples of the organic pigments and organic dyes include aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squalium dyes, azulenium dyes, polymethine dyes, naphthoquinone dyes, pyrilium dyes, and phthalocyanines. Dyes, naphthalocyanine dyes, naphtholactam dyes, azo dyes, condensed azo dyes, indigo dyes, perinone dyes, perylene dyes, dioxazine dyes, quinacridone dyes, isoindolinone dyes, quinophthalone dyes , Pyrrole dyes, thioindigo dyes, metal complex dyes (metal complex dyes), dithiol metal complex dyes, indolephenol dyes, triallylmethane dyes, anthraquinone dyes, dioxazine dyes, naphthol dyes, azomethine dyes color , Benzimidazolone pigments, pyranthrone pigments and threne pigments, and the like.
 前記無機系顔料としては、例えば、カーボンブラック、コバルト系色素、鉄系色素、クロム系色素、チタン系色素、バナジウム系色素、ジルコニウム系色素、モリブデン系色素、ルテニウム系色素、白金系色素、ITO(インジウムスズオキサイド)系色素、ATO(アンチモンスズオキサイド)系色素等が挙げられる。 Examples of the inorganic pigment include carbon black, cobalt dyes, iron dyes, chromium dyes, titanium dyes, vanadium dyes, zirconium dyes, molybdenum dyes, ruthenium dyes, platinum dyes, ITO ( Indium tin oxide) dyes, ATO (antimony tin oxide) dyes and the like can be mentioned.
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有する着色剤(I)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The colorant (I) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof and The ratio can be selected arbitrarily.
 着色剤(I)を用いる場合、熱硬化性樹脂膜形成用フィルムの着色剤(I)の含有量は、目的に応じて適宜調節すればよい。例えば、熱硬化性樹脂膜形成用フィルムの着色剤(I)の含有量を調節し、樹脂膜の光透過性を調節することにより、樹脂膜に対してレーザー印字を行った場合の印字視認性を調節できる。また、熱硬化性樹脂膜形成用フィルムの着色剤(I)の含有量を調節することで、樹脂膜の意匠性を向上させたり、半導体ウエハの裏面の研削痕を見え難くすることもできる。これの点を考慮すると、組成物(III-1)において、溶媒以外の全ての成分の総含有量に対する着色剤(I)の含有量の割合(すなわち、熱硬化性樹脂膜形成用フィルムにおける、熱硬化性樹脂膜形成用フィルムの総質量に対する、着色剤(I)の含有量の割合)は、0.1~10質量%であることが好ましく、0.1~7.5質量%であることがより好ましく、0.1~5質量%であることが特に好ましい。着色剤(I)の前記含有量の割合が前記下限値以上であることで、着色剤(I)を用いたことによる効果がより顕著に得られる。また、着色剤(I)の前記含有量の割合が前記上限値以下であることで、熱硬化性樹脂膜形成用フィルムの光透過性の過度な低下が抑制される。 When the coloring agent (I) is used, the content of the coloring agent (I) in the film for thermosetting resin film formation may be appropriately adjusted depending on the purpose. For example, print visibility in the case of performing laser printing on a resin film by adjusting the content of the colorant (I) of the film for thermosetting resin film formation and adjusting the light transmittance of the resin film Can be adjusted. Further, by adjusting the content of the colorant (I) of the film for thermosetting resin film formation, it is possible to improve the design of the resin film or to make it difficult to see grinding marks on the back surface of the semiconductor wafer. Taking this point into consideration, in the composition (III-1), the ratio of the content of the colorant (I) to the total content of all the components other than the solvent (that is, in the film for thermosetting resin film formation) The ratio of the content of the colorant (I) to the total mass of the thermosetting resin film-forming film is preferably 0.1 to 10 mass%, and 0.1 to 7.5 mass%. Is more preferably 0.1 to 5% by mass. The effect by using coloring agent (I) is acquired more notably by the ratio of the above-mentioned content of coloring agent (I) being more than the above-mentioned lower limit. Moreover, the excessive fall of the light transmittance of the film for thermosetting resin film formation is suppressed because the ratio of the said content of coloring agent (I) is below the said upper limit.
[汎用添加剤(J)]
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムは、本発明の効果を損なわない範囲内において、汎用添加剤(J)を含有していてもよい。
 汎用添加剤(J)は、公知のものでよく、目的に応じて任意に選択でき、特に限定されないが、好ましいものとしては、例えば、可塑剤、帯電防止剤、酸化防止剤、ゲッタリング剤等が挙げられる。
[General purpose additive (J)]
The composition (III-1) and the thermosetting resin film-forming film may contain a general-purpose additive (J) within the range not impairing the effects of the present invention.
The general-purpose additive (J) may be a known one, can be optionally selected according to the purpose, and is not particularly limited. Preferred examples thereof include a plasticizer, an antistatic agent, an antioxidant, a gettering agent, etc. Can be mentioned.
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有する汎用添加剤(J)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 組成物(III-1)及び熱硬化性樹脂膜形成用フィルムの汎用添加剤(J)の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
The general-purpose additive (J) contained in the composition (III-1) and the thermosetting resin film-forming film may be only one type, or two or more types, and in the case of two or more types, a combination thereof And the ratio can be selected arbitrarily.
The content of the general-purpose additive (J) in the composition (III-1) and the thermosetting resin film-forming film is not particularly limited, and may be appropriately selected depending on the purpose.
[溶媒]
 組成物(III-1)は、さらに溶媒を含有することが好ましい。溶媒を含有する組成物(III-1)は、取り扱い性が良好となる。
 前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オール)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。
 組成物(III-1)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[solvent]
The composition (III-1) preferably further contains a solvent. The composition (III-1) containing a solvent has good handleability.
The solvent is not particularly limited, but preferred examples thereof include hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol), 1-butanol and the like Esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; and amides (compounds having an amide bond) such as dimethylformamide and N-methyl pyrrolidone.
The solvent contained in the composition (III-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 組成物(III-1)が含有する溶媒は、組成物(III-1)中の含有成分をより均一に混合できる点から、メチルエチルケトン等であることが好ましい。 The solvent contained in the composition (III-1) is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the composition (III-1) can be mixed more uniformly.
 組成物(III-1)の溶媒の含有量は、特に限定されず、例えば、溶媒以外の成分の種類に応じて適宜選択すればよい。 The content of the solvent in the composition (III-1) is not particularly limited, and may be appropriately selected, for example, according to the types of components other than the solvent.
 組成物(III-1)で好ましいものとしては、例えば、重合体成分(A)、熱硬化性成分(B)及び充填材(D)を含有し、これら成分の含有量が、いずれも、先に説明した好ましい数値範囲のいずれかに含まれるものが挙げられる。
 このような好ましい組成物(III-1)の一実施形態としては、例えば、組成物(III-1)において、溶媒以外の全ての成分の総含有量に対する重合体成分(A)の含有量の割合が、3~85質量%であり、かつ、熱硬化性成分(B)の含有量が、重合体成分(A)の含有量100質量部に対して、5~600質量部であり、かつ、溶媒以外の全ての成分の総含有量に対する充填材(D)の含有量の割合が、25~75質量%であるものが挙げられる。
 また、このような好ましい組成物(III-1)の一実施形態としては、例えば、組成物(III-1)において、溶媒以外の全ての成分の総含有量に対する重合体成分(A)の含有量の割合が、3~35質量%であり、かつ、熱硬化性成分(B)の含有量が、重合体成分(A)の含有量100質量部に対して、300~600質量部であり、かつ、溶媒以外の全ての成分の総含有量に対する充填材(D)の含有量の割合が、28~72質量%であるものが挙げられる。
Preferred examples of the composition (III-1) include, for example, a polymer component (A), a thermosetting component (B) and a filler (D), and the content of each of these components is not particularly limited. Those included in any of the preferred numerical ranges described in the above are included.
As one embodiment of such a preferred composition (III-1), for example, in the composition (III-1), the content of the polymer component (A) relative to the total content of all components other than the solvent The proportion is 3 to 85% by mass, and the content of the thermosetting component (B) is 5 to 600 parts by mass with respect to 100 parts by mass of the content of the polymer component (A), And the ratio of the content of the filler (D) to the total content of all the components other than the solvent is 25 to 75% by mass.
Moreover, as one embodiment of such a preferred composition (III-1), for example, in the composition (III-1), the content of the polymer component (A) with respect to the total content of all the components other than the solvent The proportion of the amount is 3 to 35% by mass, and the content of the thermosetting component (B) is 300 to 600 parts by mass with respect to 100 parts by mass of the content of the polymer component (A) And, the ratio of the content of the filler (D) to the total content of all the components other than the solvent is 28 to 72% by mass.
 組成物(III-1)でより好ましいものとしては、例えば、重合体成分(A)、熱硬化性成分(B)、硬化促進剤(C)、充填材(D)、カップリング剤(E)、架橋剤(F)、エネルギー線硬化性樹脂(G)及び光重合開始剤(H)を含有し、これら成分の含有量が、いずれも、先に説明した好ましい数値範囲のいずれかに含まれるものが挙げられる。
 このようなより好ましい組成物(III-1)の一実施形態としては、例えば、組成物(III-1)において、溶媒以外の全ての成分の総含有量に対する重合体成分(A)の含有量の割合が、3~35質量%であり、かつ、熱硬化性成分(B)の含有量が、重合体成分(A)の含有量100質量部に対して、300~600質量部であり、かつ、溶媒以外の全ての成分の総含有量に対する充填材(D)の含有量の割合が、28~72質量%であり、かつ、硬化促進剤(C)の含有量が、熱硬化性成分(B)の含有量100質量部に対して、0.01~10質量部であり、かつ、カップリング剤(E)の含有量が、重合体成分(A)及び熱硬化性成分(B)の総含有量100質量部に対して、0.03~20質量部であり、かつ、架橋剤(F)の含有量が、重合体成分(A)の含有量100質量部に対して、0.01~20質量部であり、かつ、光重合開始剤(H)の含有量が、エネルギー線硬化性樹脂(G)の含有量100質量部に対して、2~5質量部であり、かつ、組成物(III-1)の総質量に対する、エネルギー線硬化性樹脂(G)の含有量の割合が、1~10質量%であるものが挙げられる。
More preferable examples of composition (III-1) include polymer component (A), thermosetting component (B), curing accelerator (C), filler (D), coupling agent (E) , Crosslinker (F), energy ray curable resin (G) and photopolymerization initiator (H), and the contents of these components are all included in any of the preferable numerical ranges described above The thing is mentioned.
As one embodiment of such a more preferable composition (III-1), for example, in the composition (III-1), the content of the polymer component (A) relative to the total content of all the components other than the solvent The content of the thermosetting component (B) is 300 to 600 parts by mass with respect to 100 parts by mass of the content of the polymer component (A). And, the ratio of the content of the filler (D) to the total content of all the components other than the solvent is 28 to 72% by mass, and the content of the curing accelerator (C) is a thermosetting component The content is 0.01 to 10 parts by mass with respect to 100 parts by mass of (B), and the content of the coupling agent (E) is the polymer component (A) and the thermosetting component (B) 0.03 to 20 parts by mass with respect to 100 parts by mass of the total content of Is 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the polymer component (A), and the content of the photopolymerization initiator (H) is an energy ray-curable resin The content of the energy ray-curable resin (G) is 2 to 5 parts by mass with respect to 100 parts by mass of (G), and the total mass of the composition (III-1) is What is 1-10 mass% is mentioned.
<<熱硬化性樹脂膜形成用組成物の製造方法>>
 組成物(III-1)等の熱硬化性樹脂膜形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
<< Method of producing composition for thermosetting resin film formation >>
The composition for forming a thermosetting resin film such as the composition (III-1) can be obtained by blending the components for constituting the composition.
There is no particular limitation on the order of addition of each component at the time of blending, and two or more components may be added simultaneously.
When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by previously diluting any compounding component other than the solvent A solvent may be used by mixing with these compounding ingredients without storage.
The method of mixing each component at the time of compounding is not particularly limited, and a method of mixing by rotating a stirrer or a stirring blade, etc .; a method of mixing using a mixer; a method of adding ultrasonic waves and mixing, etc. It may be selected as appropriate.
The temperature and time of addition and mixing of the respective components are not particularly limited as long as the respective blended components do not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
○エネルギー線硬化性樹脂膜形成用フィルム
 エネルギー線硬化性樹脂膜形成用フィルムとしては、エネルギー線硬化性成分(a)を含有するものが挙げられ、エネルギー線硬化性成分(a)及び充填材を含有するものが好ましい。
 エネルギー線硬化性樹脂膜形成用フィルムにおいて、エネルギー線硬化性成分(a)は、未硬化であることが好ましく、粘着性を有することが好ましく、未硬化でかつ粘着性を有することがより好ましい。ここで、「エネルギー線」及び「エネルギー線硬化性」とは、先に説明したとおりである。
○ Film for forming energy beam curable resin film The film for forming energy beam curable resin film includes those containing energy beam curable component (a), and energy beam curable component (a) and filler What contains is preferable.
In the film for energy beam curable resin film formation, the energy beam curable component (a) is preferably uncured, preferably has tackiness, and is more preferably uncured and tacky. Here, "energy ray" and "energy ray curability" are as described above.
 エネルギー線硬化性樹脂膜形成用フィルムは1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The film for energy beam curable resin film formation may be only one layer (single layer), or two or more layers, and in the case of multiple layers, these multiple layers may be the same or different from one another. The combination of these multiple layers is not particularly limited.
 エネルギー線硬化性樹脂膜形成用フィルムの厚さは、1~100μmであることが好ましく、3~75μmであることがより好ましく、5~50μmであることが特に好ましい。エネルギー線硬化性樹脂膜形成用フィルムの厚さが前記下限値以上であることで、厚さの均一性がより高くなる。また、エネルギー線硬化性樹脂膜形成用フィルムの厚さが前記上限値以下であることで、半導体ウエハのブレードダイシング時に発生する脂膜形成用フィルム又は樹脂膜の切削屑の発生量が抑制される。
 ここで、「エネルギー線硬化性樹脂膜形成用フィルムの厚さ」とは、エネルギー線硬化性樹脂膜形成用フィルム全体の厚さを意味し、例えば、複数層からなるエネルギー線硬化性樹脂膜形成用フィルムの厚さとは、エネルギー線硬化性樹脂膜形成用フィルムを構成するすべての層の合計の厚さを意味する。
The thickness of the film for forming an energy ray-curable resin film is preferably 1 to 100 μm, more preferably 3 to 75 μm, and particularly preferably 5 to 50 μm. The uniformity of thickness becomes higher by the thickness of the film for energy-beam curable resin film formation being more than the said lower limit. In addition, when the thickness of the energy ray-curable resin film-forming film is equal to or less than the upper limit value, the amount of generation of cuttings of the oil film-forming film or resin film generated during blade dicing of the semiconductor wafer is suppressed. .
Here, "the thickness of the film for forming an energy ray curable resin film" means the thickness of the whole film for forming an energy ray curable resin film, and for example, an energy ray ray curable resin film formed of a plurality of layers is formed The thickness of the film means the total thickness of all the layers constituting the energy ray-curable resin film-forming film.
 エネルギー線硬化性樹脂膜形成用フィルムを半導体ウエハの裏面に貼付した後に、硬化させるときの硬化条件は、硬化物が十分にその機能を発揮する程度の硬化度となる限り特に限定されず、エネルギー線硬化性樹脂膜形成用フィルムの種類に応じて、適宜選択すればよい。
 例えば、エネルギー線硬化性樹脂膜形成用フィルムの硬化時における、エネルギー線の照度は、120~280mW/cmであることが好ましい。そして、前記硬化時における、エネルギー線の光量は、100~1000mJ/cmであることが好ましい。
After the film for energy beam curable resin film formation is applied to the back surface of the semiconductor wafer, the curing conditions for curing are not particularly limited as long as the cured product has a curing degree sufficient to exhibit its function It may be appropriately selected according to the type of the film for forming a linear curable resin film.
For example, the illuminance of the energy ray is preferably 120 to 280 mW / cm 2 at the time of curing of the film for forming an energy ray curable resin film. The light quantity of the energy ray at the time of curing is preferably 100 to 1000 mJ / cm 2 .
<<エネルギー線硬化性樹脂膜形成用組成物>>
 エネルギー線硬化性樹脂膜形成用フィルムは、その構成材料を含有するエネルギー線硬化性樹脂膜形成用組成物を用いて形成できる。例えば、エネルギー線硬化性樹脂膜形成用フィルムの形成対象面にエネルギー線硬化性樹脂膜形成用組成物を塗工し、必要に応じて乾燥させることで、目的とする部位にエネルギー線硬化性樹脂膜形成用フィルムを形成できる。
<< Composition for forming energy ray curable resin film >>
The film for energy beam curable resin film formation can be formed using the composition for energy beam curable resin film formation containing the constituent material. For example, the composition for forming an energy ray-curable resin film is coated on the surface to be formed of the film for forming an energy ray-curable resin film, and dried as needed to form an energy ray-curable resin at a target site. A film for film formation can be formed.
 エネルギー線硬化性樹脂膜形成用組成物の塗工は、例えば、上述の熱硬化性樹脂膜形成用組成物の塗工の場合と同じ方法で行うことができる。 The application of the composition for forming an energy ray-curable resin film can be performed, for example, by the same method as the application of the composition for forming a thermosetting resin film described above.
 エネルギー線硬化性樹脂膜形成用組成物の乾燥条件は、特に限定されないが、エネルギー線硬化性樹脂膜形成用組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。そして、溶媒を含有するエネルギー線硬化性樹脂膜形成用組成物は、例えば、70~130℃で10秒~5分の条件で乾燥させることが好ましい。ただし、本発明においては、形成されるエネルギー線硬化性樹脂膜形成用フィルムが熱硬化しないように、エネルギー線硬化性樹脂膜形成用組成物を乾燥させることが好ましい。 The drying conditions of the composition for forming an energy ray-curable resin film are not particularly limited, but when the composition for forming an energy ray-curable resin film contains a solvent to be described later, it is preferable to heat and dry. Then, the composition for forming an energy ray-curable resin film containing a solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes. However, in the present invention, it is preferable to dry the composition for forming an energy ray-curable resin film so that the film for forming an energy ray-curable resin film is not cured.
<エネルギー線硬化性樹脂膜形成用組成物(IV-1)>
 好ましいエネルギー線硬化性樹脂膜形成用組成物としては、例えば、前記エネルギー線硬化性成分(a)及び充填材を含有するエネルギー線硬化性樹脂膜形成用組成物(IV-1)(本明細書においては、単に「組成物(IV-1)」と略記することがある)等が挙げられる。
<Composition for forming an energy ray-curable resin film (IV-1)>
Preferred examples of the composition for forming an energy ray-curable resin film include, for example, a composition for forming an energy ray-curable resin film (IV-1) containing the energy ray-curable component (a) and a filler. And the like, which may be simply referred to as “composition (IV-1)”.
[エネルギー線硬化性成分(a)]
 エネルギー線硬化性成分(a)は、エネルギー線の照射によって硬化する成分であり、エネルギー線硬化性樹脂膜形成用フィルムに造膜性や、可撓性等を付与するとともに、硬化後に硬質の樹脂膜を形成するための成分でもある。
 エネルギー線硬化性成分(a)としては、例えば、エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1)、及びエネルギー線硬化性基を有する、分子量が100~80000の化合物(a2)が挙げられる。前記重合体(a1)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。
[Energy ray curable component (a)]
The energy ray curable component (a) is a component that cures upon irradiation with energy rays, and imparts film forming ability, flexibility, etc. to the energy ray curable resin film-forming film, and also a hard resin after curing. It is also a component for forming a film.
The energy ray curable component (a) includes, for example, an energy ray curable group, a polymer (a1) having a weight average molecular weight of 80000 to 2,000,000, and an energy ray curable group having a molecular weight of 100 to 80,000. Compound (a2) is mentioned. The polymer (a1) may be at least partially crosslinked by a crosslinking agent, or may be non-crosslinked.
(エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1))
 エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1)としては、例えば、他の化合物が有する基と反応可能な官能基を有するアクリル系重合体(a11)と、前記官能基と反応する基、及びエネルギー線硬化性二重結合等のエネルギー線硬化性基を有するエネルギー線硬化性化合物(a12)と、が反応してなるアクリル系樹脂(a1-1)が挙げられる。
(A polymer (a1) having an energy ray curable group and having a weight average molecular weight of 80,000 to 2,000,000)
Examples of the polymer (a1) having an energy ray curable group and having a weight average molecular weight of 80,000 to 2,000,000 include an acrylic polymer (a11) having a functional group capable of reacting with a group possessed by another compound, Acrylic resin (a1-1) formed by reaction of an energy ray curable compound (a12) having a group reactive with a functional group and an energy ray curable group such as an energy ray curable double bond .
 他の化合物が有する基と反応可能な前記官能基としては、例えば、水酸基、カルボキシ基、アミノ基、置換アミノ基(アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基)、エポキシ基等が挙げられる。ただし、半導体ウエハや半導体チップ等の回路の腐食を防止するという点では、前記官能基はカルボキシ基以外の基であることが好ましい。
 これらの中でも、前記官能基は、水酸基であることが好ましい。
Examples of the functional group capable of reacting with a group possessed by another compound include, for example, a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (one or two hydrogen atoms of the amino group are substituted with a group other than a hydrogen atom Groups), epoxy groups and the like. However, in terms of preventing corrosion of circuits such as semiconductor wafers and semiconductor chips, the functional group is preferably a group other than a carboxy group.
Among these, the functional group is preferably a hydroxyl group.
・官能基を有するアクリル系重合体(a11)
 前記官能基を有するアクリル系重合体(a11)としては、例えば、前記官能基を有するアクリル系モノマーと、前記官能基を有しないアクリル系モノマーと、が共重合してなるものが挙げられ、これらモノマー以外に、さらにアクリル系モノマー以外のモノマー(非アクリル系モノマー)が共重合したものであってもよい。
 また、前記アクリル系重合体(a11)は、ランダム共重合体であってもよいし、ブロック共重合体であってもよく、重合方法についても公知の方法を採用できる。
. Acrylic polymers having functional groups (a11)
Examples of the acrylic polymer (a11) having a functional group include those obtained by copolymerizing an acrylic monomer having the functional group and an acrylic monomer having no functional group. In addition to the monomers, monomers (non-acrylic monomers) other than acrylic monomers may be copolymerized.
Moreover, a random copolymer may be sufficient as the said acryl-type polymer (a11), a block copolymer may be sufficient, and it can employ | adopt a well-known method also about the superposition | polymerization method.
 前記官能基を有するアクリル系モノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、置換アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。 As an acryl-type monomer which has the said functional group, a hydroxyl-containing monomer, a carboxy-group containing monomer, an amino-group containing monomer, a substituted amino-group containing monomer, an epoxy-group containing monomer etc. are mentioned, for example.
 前記水酸基含有モノマーとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;ビニルアルコール、アリルアルコール等の非(メタ)アクリル系不飽和アルコール((メタ)アクリロイル骨格を有しない不飽和アルコール)等が挙げられる。 Examples of the hydroxyl group-containing monomer include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (meth) Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; non (meth) acrylics such as vinyl alcohol and allyl alcohol A saturated alcohol (unsaturated alcohol which does not have a (meth) acryloyl frame) etc. are mentioned.
 前記カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸(エチレン性不飽和結合を有するモノカルボン酸);フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸(エチレン性不飽和結合を有するジカルボン酸);前記エチレン性不飽和ジカルボン酸の無水物;2-カルボキシエチルメタクリレート等の(メタ)アクリル酸カルボキシアルキルエステル等が挙げられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citraconic Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the above-mentioned ethylenically unsaturated dicarboxylic acids; (meth) acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate and the like Be
 前記官能基を有するアクリル系モノマーは、水酸基含有モノマーが好ましい。 The acrylic monomer having a functional group is preferably a hydroxyl group-containing monomer.
 前記アクリル系重合体(a11)を構成する、前記官能基を有するアクリル系モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The acrylic monomer having the functional group constituting the acrylic polymer (a11) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are optionally It can be selected.
 前記官能基を有しないアクリル系モノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル等が挙げられる。 Examples of the acrylic monomer having no functional group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate and n (meth) acrylate -Butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate ( 2-ethylhexyl acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, (meth) Undecyl acrylate, dodecyl (meth) acrylate (lauryl (meth) acrylate), ( Ta) tridecyl acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecyl (meth) acrylate, hexadecyl (meth) acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, Examples include alkyl (meth) acrylates in which the alkyl group constituting the alkyl ester such as octadecyl (meth) acrylate (stearyl (meth) acrylate) is a chain structure having 1 to 18 carbon atoms.
 また、前記官能基を有しないアクリル系モノマーとしては、例えば、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル等のアルコキシアルキル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸フェニル等の(メタ)アクリル酸アリールエステル等を含む、芳香族基を有する(メタ)アクリル酸エステル;非架橋性の(メタ)アクリルアミド及びその誘導体;(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸N,N-ジメチルアミノプロピル等の非架橋性の3級アミノ基を有する(メタ)アクリル酸エステル等も挙げられる。 Further, as the acrylic monomer having no functional group, for example, alkoxymethyl such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, ethoxyethyl (meth) acrylate and the like (Meth) acrylic acid esters having an aromatic group, including alkyl group-containing (meth) acrylic acid esters; (meth) acrylic acid aryl esters such as phenyl (meth) acrylate etc .; non-crosslinkable (meth) acrylamides and Derivatives thereof; (meth) acrylic acid esters having a non-crosslinkable tertiary amino group such as N, N-dimethylaminoethyl (meth) acrylate and N, N-dimethylaminopropyl (meth) acrylate .
 前記アクリル系重合体(a11)を構成する、前記官能基を有しないアクリル系モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The acrylic monomer having no functional group constituting the acrylic polymer (a11) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrary. Can be selected.
 前記非アクリル系モノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。
 前記アクリル系重合体(a11)を構成する前記非アクリル系モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
Examples of the non-acrylic monomers include olefins such as ethylene and norbornene; vinyl acetate; styrene and the like.
The non-acrylic monomer constituting the acrylic polymer (a11) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 前記アクリル系重合体(a11)において、これを構成する構成単位の全量に対する、前記官能基を有するアクリル系モノマーから誘導された構成単位の量の割合(含有量)は、0.1~50質量%であることが好ましく、1~40質量%であることがより好ましく、3~30質量%であることが特に好ましい。前記割合がこのような範囲であることで、前記アクリル系重合体(a11)と前記エネルギー線硬化性化合物(a12)との共重合によって得られた前記アクリル系樹脂(a1-1)において、エネルギー線硬化性基の含有量は、樹脂膜の硬化の程度を好ましい範囲に容易に調節可能となる。 In the acrylic polymer (a11), the ratio (content) of the amount of the structural unit derived from the acrylic monomer having the functional group to the total amount of the structural units constituting the same is 0.1 to 50 mass % Is preferable, 1 to 40% by mass is more preferable, and 3 to 30% by mass is particularly preferable. When the ratio is in such a range, in the acrylic resin (a1-1) obtained by the copolymerization of the acrylic polymer (a11) and the energy ray curable compound (a12), energy The content of the linear curable group can be easily adjusted to the preferable range of the degree of curing of the resin film.
 前記アクリル系樹脂(a1-1)を構成する前記アクリル系重合体(a11)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The acrylic polymer (a11) constituting the acrylic resin (a1-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are optionally It can be selected.
 組成物(IV-1)において、溶媒以外の成分の総含有量に対する、アクリル系樹脂(a1-1)の含有量の割合(すなわち、エネルギー線硬化性樹脂膜形成用フィルムにおける、前記フィルムの総質量に対する、アクリル系樹脂(a1-1)の含有量の割合)は、1~70質量%であることが好ましく、5~60質量%であることがより好ましく、10~50質量%であることが特に好ましい。 In the composition (IV-1), the ratio of the content of the acrylic resin (a1-1) to the total content of the components other than the solvent (that is, the total of the films in the energy beam curable resin film-forming film) The ratio of the content of the acrylic resin (a1-1) to the mass) is preferably 1 to 70% by mass, more preferably 5 to 60% by mass, and 10 to 50% by mass. Is particularly preferred.
・エネルギー線硬化性化合物(a12)
 前記エネルギー線硬化性化合物(a12)は、前記アクリル系重合体(a11)が有する官能基と反応可能な基として、イソシアネート基、エポキシ基及びカルボキシ基からなる群より選択される1種又は2種以上を有するものが好ましく、前記基としてイソシアネート基を有するものがより好ましい。前記エネルギー線硬化性化合物(a12)は、例えば、前記基としてイソシアネート基を有する場合、このイソシアネート基が、前記官能基として水酸基を有するアクリル系重合体(a11)のこの水酸基と容易に反応する。
・ Energy ray curable compound (a12)
The energy ray curable compound (a12) is one or two selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group possessed by the acrylic polymer (a11) What has the above is preferable, and what has an isocyanate group as said group is more preferable. When the energy beam curable compound (a12) has, for example, an isocyanate group as the group, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
 前記エネルギー線硬化性化合物(a12)は、1分子中に前記エネルギー線硬化性基を1~5個有することが好ましく、1~3個有することがより好ましい。 The energy ray curable compound (a12) preferably has 1 to 5, and more preferably 1 to 3 of the energy ray curable groups in one molecule.
 前記エネルギー線硬化性化合物(a12)としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;
 ジイソシアネート化合物又はポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;
 ジイソシアネート化合物又はポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物等が挙げられる。
 これらの中でも、前記エネルギー線硬化性化合物(a12)は、2-メタクリロイルオキシエチルイソシアネートであることが好ましい。
Examples of the energy ray curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- (bisacryloyloxymethyl) Ethyl isocyanate;
Acryloyl monoisocyanate compounds obtained by the reaction of diisocyanate compounds or polyisocyanate compounds with hydroxyethyl (meth) acrylate;
The acryloyl monoisocyanate compound etc. which are obtained by reaction of a diisocyanate compound or polyisocyanate compound, a polyol compound, and hydroxyethyl (meth) acrylate are mentioned.
Among these, the energy ray curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
 前記アクリル系樹脂(a1-1)を構成する前記エネルギー線硬化性化合物(a12)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The energy beam curable compound (a12) constituting the acrylic resin (a1-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrary. Can be selected.
 前記アクリル系樹脂(a1-1)において、前記アクリル系重合体(a11)に由来する前記官能基の含有量に対する、前記エネルギー線硬化性化合物(a12)に由来するエネルギー線硬化性基の含有量の割合は、20~120モル%であることが好ましく、35~100モル%であることがより好ましく、50~100モル%であることが特に好ましい。前記含有量の割合がこのような範囲であることで、硬化後の樹脂膜の接着力がより大きくなる。なお、前記エネルギー線硬化性化合物(a12)が一官能(前記基を1分子中に1個有する)化合物である場合には、前記含有量の割合の上限値は100モル%となるが、前記エネルギー線硬化性化合物(a12)が多官能(前記基を1分子中に2個以上有する)化合物である場合には、前記含有量の割合の上限値は100モル%を超えることがある。 In the acrylic resin (a1-1), the content of the energy ray curable group derived from the energy ray curable compound (a12) relative to the content of the functional group derived from the acrylic polymer (a11) The proportion of is preferably 20 to 120 mol%, more preferably 35 to 100 mol%, and particularly preferably 50 to 100 mol%. The adhesive force of the resin film after hardening becomes larger by the ratio of the said content being such a range. When the energy ray-curable compound (a12) is a monofunctional compound (having one of the above groups in one molecule), the upper limit of the content ratio is 100 mol%, When the energy ray-curable compound (a12) is a polyfunctional compound (having two or more of the groups in one molecule), the upper limit of the content ratio may exceed 100 mol%.
 前記重合体(a1)の重量平均分子量(Mw)は、100000~2000000であることが好ましく、300000~1500000であることがより好ましい。
 ここで、「重量平均分子量」とは、先に説明したとおりである。
The weight average molecular weight (Mw) of the polymer (a1) is preferably 100,000 to 2,000,000, and more preferably 300,000 to 1,500,000.
Here, the "weight average molecular weight" is as described above.
 前記重合体(a1)が、その少なくとも一部が架橋剤によって架橋されたものである場合、前記重合体(a1)は、前記アクリル系重合体(a11)を構成するものとして説明した、上述のモノマーのいずれにも該当せず、かつ架橋剤と反応する基を有するモノマーが重合して、前記架橋剤と反応する基において架橋されたものであってもよいし、前記エネルギー線硬化性化合物(a12)に由来する、前記官能基と反応する基において、架橋されたものであってもよい。 In the case where the polymer (a1) is at least a part of which is crosslinked by a crosslinking agent, the polymer (a1) described above as constituting the acrylic polymer (a11) The monomer which does not correspond to any of the monomers and which has a group reactive with the crosslinking agent may be polymerized to be crosslinked in the group reactive with the crosslinking agent, or the energy ray curable compound ( The group derived from a12), which is reactive with the functional group, may be crosslinked.
 組成物(IV-1)及びエネルギー線硬化性樹脂膜形成用フィルムが含有する前記重合体(a1)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The polymer (a1) contained in the composition (IV-1) and the energy beam curable resin film-forming film may be only one type, or two or more types, and in the case of two or more types, Combinations and ratios can be selected arbitrarily.
(エネルギー線硬化性基を有する、分子量が100~80000の化合物(a2))
 エネルギー線硬化性基を有する、分子量が100~80000の化合物(a2)中の前記エネルギー線硬化性基としては、エネルギー線硬化性二重結合を含む基が挙げられ、好ましいものとしては、(メタ)アクリロイル基、ビニル基等が挙げられる。
(Compound (a2) having a molecular weight of 100 to 80,000, having an energy ray-curable group)
Examples of the energy ray-curable group in the compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000 include a group containing an energy ray-curable double bond, and preferred examples thereof Acryloyl group, a vinyl group etc. are mentioned.
 前記化合物(a2)は、上記の条件を満たすものであれば、特に限定されないが、エネルギー線硬化性基を有する低分子量化合物、エネルギー線硬化性基を有するエポキシ樹脂、エネルギー線硬化性基を有するフェノール樹脂等が挙げられる。 The compound (a2) is not particularly limited as long as it satisfies the above conditions, but a low molecular weight compound having an energy ray curable group, an epoxy resin having an energy ray curable group, and an energy ray curable group A phenol resin etc. are mentioned.
 前記化合物(a2)のうち、エネルギー線硬化性基を有する低分子量化合物としては、例えば、多官能のモノマー又はオリゴマー等が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
 前記アクリレート系化合物としては、例えば、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピルメタクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシジエトキシ)フェニル]プロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、2,2-ビス[4-((メタ)アクリロキシポリプロポキシ)フェニル]プロパン、トリシクロデカンジメタノールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシエトキシ)フェニル]プロパン、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン等の2官能(メタ)アクリレート;
 トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート;
 ウレタン(メタ)アクリレートオリゴマー等の多官能(メタ)アクリレートオリゴマー等が挙げられる。
As a low molecular weight compound which has an energy ray curable group among the said compounds (a2), a polyfunctional monomer, an oligomer, etc. are mentioned, for example, The acrylate type compound which has a (meth) acryloyl group is preferable.
Examples of the acrylate compound include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4 -((Meth) acryloxypolyethoxy) phenyl] propane, ethoxylated bisphenol A di (meth) acrylate, 2,2-bis [4-((meth) acryloxydiethoxy) phenyl] propane, 9,9-bis [4- (2- (Meth) acryloyloxyethoxy) phenyl] fluorene, 2,2-bis [4-((meth) acryloxypolypropoxy) phenyl] propane, tricyclodecanedimethanol di (meth) acrylate, 1 , 10-decanediol di (meth) acrylic 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate ) Acrylate, polytetramethylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 2,2-bis [4-((meth) acrylate Dioxyfunctionals such as (oxyethoxy) phenyl] propane, neopentyl glycol di (meth) acrylate, ethoxylated polypropylene glycol di (meth) acrylate, 2-hydroxy-1,3-di (meth) acryloxypropane and the like Meth) acrylate;
Tris (2- (meth) acryloxyethyl) isocyanurate, ε-caprolactone modified tris- (2- (meth) acryloxyethyl) isocyanurate, ethoxylated glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol poly (meth) acrylate, dipentaerythritol hexa ( Multifunctional (meth) acrylates such as meta) acrylates;
Polyfunctional (meth) acrylate oligomers, such as a urethane (meth) acrylate oligomer, etc. are mentioned.
 前記化合物(a2)のうち、エネルギー線硬化性基を有するエポキシ樹脂、エネルギー線硬化性基を有するフェノール樹脂としては、例えば、「特開2013-194102号公報」の段落0043等に記載されているものを用いることができる。このような樹脂は、後述する熱硬化性成分を構成する樹脂にも該当するが、本発明においては前記化合物(a2)として取り扱う。 Among the compounds (a2), an epoxy resin having an energy ray-curable group and a phenol resin having an energy ray-curable group are described, for example, in paragraph 0043 of "JP-A-2013-194102" and the like. The thing can be used. Such a resin also corresponds to a resin constituting a thermosetting component described later, but in the present invention, it is treated as the compound (a2).
 前記化合物(a2)の重量平均分子量は、100~30000であることが好ましく、300~10000であることがより好ましい。 The weight average molecular weight of the compound (a2) is preferably 100 to 30,000, and more preferably 300 to 10,000.
 組成物(IV-1)及びエネルギー線硬化性樹脂膜形成用フィルムが含有する前記化合物(a2)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The composition (IV-1) and the compound (a2) contained in the film for energy beam curable resin film formation may be only one type, or two or more types, and in the case of two or more types, a combination thereof And the ratio can be selected arbitrarily.
[エネルギー線硬化性基を有しない重合体(b)]
 組成物(IV-1)及びエネルギー線硬化性樹脂膜形成用フィルムは、前記エネルギー線硬化性成分(a)として前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましい。
 前記重合体(b)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。
[Polymer having no energy ray curable group (b)]
When the composition (IV-1) and the energy beam curable resin film-forming film contain the compound (a2) as the energy beam curable component (a), a polymer further having no energy beam curable group It is preferable to also contain (b).
The polymer (b) may be at least partially crosslinked by a crosslinking agent, or may be non-crosslinked.
 エネルギー線硬化性基を有しない重合体(b)としては、例えば、アクリル系重合体、フェノキシ樹脂、ウレタン樹脂、ポリエステル、ゴム系樹脂、アクリルウレタン樹脂等が挙げられる。
 これらの中でも、前記重合体(b)は、アクリル系重合体(以下、「アクリル系重合体(b-1)」と略記することがある)であることが好ましい。
Examples of the polymer (b) having no energy ray curable group include acrylic polymers, phenoxy resins, urethane resins, polyesters, rubber resins, acrylic urethane resins, and the like.
Among these, the polymer (b) is preferably an acrylic polymer (hereinafter sometimes abbreviated as “acrylic polymer (b-1)”).
 アクリル系重合体(b-1)は、公知のものでよく、例えば、1種のアクリル系モノマーの単独重合体であってもよいし、2種以上のアクリル系モノマーの共重合体であってもよいし、1種又は2種以上のアクリル系モノマーと、1種又は2種以上のアクリル系モノマー以外のモノマー(非アクリル系モノマー)と、の共重合体であってもよい。 The acrylic polymer (b-1) may be a known one, for example, may be a homopolymer of one acrylic monomer, or a copolymer of two or more acrylic monomers, It may also be a copolymer of one or more acrylic monomers and a monomer (non-acrylic monomer) other than one or more acrylic monomers.
 アクリル系重合体(b-1)を構成する前記アクリル系モノマーとしては、例えば、(メタ)アクリル酸アルキルエステル、環状骨格を有する(メタ)アクリル酸エステル、グリシジル基含有(メタ)アクリル酸エステル、水酸基含有(メタ)アクリル酸エステル、置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、先に説明したとおりである。 Examples of the acrylic monomer constituting the acrylic polymer (b-1) include (meth) acrylic acid alkyl ester, (meth) acrylic acid ester having a cyclic skeleton, glycidyl group-containing (meth) acrylic acid ester, Examples thereof include hydroxyl group-containing (meth) acrylic acid esters and substituted amino group-containing (meth) acrylic acid esters. Here, the "substituted amino group" is as described above.
 前記(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル等が挙げられる。 Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n- (meth) acrylate Butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, (meth) acrylate ) 2-ethylhexyl acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, (meth) acrylic Undecyl acid, dodecyl (meth) acrylate (lauryl (meth) acrylate), ( Ta) tridecyl acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecyl (meth) acrylate, hexadecyl (meth) acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, Examples include alkyl (meth) acrylates in which the alkyl group constituting the alkyl ester such as octadecyl (meth) acrylate (stearyl (meth) acrylate) is a chain structure having 1 to 18 carbon atoms.
 前記環状骨格を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル等が挙げられる。
Examples of the (meth) acrylic acid ester having a cyclic skeleton include (meth) acrylic acid cycloalkyl esters such as (meth) acrylic acid isobornyl and (meth) acrylic acid dicyclopentanyl;
(Meth) acrylic acid aralkyl esters such as benzyl (meth) acrylate;
(Meth) acrylic acid cycloalkenyl esters such as (meth) acrylic acid dicyclopentenyl ester;
Examples include (meth) acrylic acid cycloalkenyloxyalkyl esters such as (meth) acrylic acid dicyclopentenyl oxyethyl ester and the like.
 前記グリシジル基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸グリシジル等が挙げられる。
 前記水酸基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。
 前記置換アミノ基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸N-メチルアミノエチル等が挙げられる。
As said glycidyl group containing (meth) acrylic acid ester, glycidyl (meth) acrylate etc. are mentioned, for example.
Examples of the hydroxyl group-containing (meth) acrylic acid ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxy (meth) acrylate Propyl, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like can be mentioned.
Examples of the substituted amino group-containing (meth) acrylic acid ester include N-methylaminoethyl (meth) acrylate and the like.
 アクリル系重合体(b-1)を構成する前記非アクリル系モノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。 Examples of the non-acrylic monomer constituting the acrylic polymer (b-1) include olefins such as ethylene and norbornene; vinyl acetate; styrene and the like.
 少なくとも一部が架橋剤によって架橋された、前記エネルギー線硬化性基を有しない重合体(b)としては、例えば、前記重合体(b)中の反応性官能基が架橋剤と反応したものが挙げられる。
 前記反応性官能基は、架橋剤の種類等に応じて適宜選択すればよく、特に限定されない。例えば、架橋剤がポリイソシアネート化合物である場合には、前記反応性官能基としては、水酸基、カルボキシ基、アミノ基等が挙げられ、これらの中でも、イソシアネート基との反応性が高い水酸基が好ましい。また、架橋剤がエポキシ系化合物である場合には、前記反応性官能基としては、カルボキシ基、アミノ基、アミド基等が挙げられ、これらの中でもエポキシ基との反応性が高いカルボキシ基が好ましい。ただし、半導体ウエハや半導体チップの回路の腐食を防止するという点では、前記反応性官能基はカルボキシ基以外の基であることが好ましい。
As the polymer (b) having no energy ray-curable group at least partially crosslinked by a crosslinking agent, for example, one having a reactive functional group in the polymer (b) reacted with the crosslinking agent It can be mentioned.
The reactive functional group may be appropriately selected depending on the type of the crosslinking agent and the like, and is not particularly limited. For example, when the crosslinking agent is a polyisocyanate compound, examples of the reactive functional group include a hydroxyl group, a carboxy group and an amino group. Among these, a hydroxyl group having high reactivity with the isocyanate group is preferable. When the crosslinking agent is an epoxy compound, examples of the reactive functional group include a carboxy group, an amino group, an amide group and the like, and among these, a carboxy group having high reactivity with an epoxy group is preferable. . However, it is preferable that the reactive functional group is a group other than a carboxy group in terms of preventing corrosion of the circuit of the semiconductor wafer or the semiconductor chip.
 前記反応性官能基を有する、エネルギー線硬化性基を有しない重合体(b)としては、例えば、少なくとも前記反応性官能基を有するモノマーを重合させて得られたものが挙げられる。アクリル系重合体(b-1)の場合であれば、これを構成するモノマーとして挙げた、前記アクリル系モノマー及び非アクリル系モノマーのいずれか一方又は両方として、前記反応性官能基を有するものを用いればよい。反応性官能基として水酸基を有する前記重合体(b)としては、例えば、水酸基含有(メタ)アクリル酸エステルを重合して得られたものが挙げられ、これ以外にも、先に挙げた前記アクリル系モノマー又は非アクリル系モノマーにおいて、1個又は2個以上の水素原子が前記反応性官能基で置換されてなるモノマーを重合して得られたものが挙げられる。 As a polymer (b) which does not have an energy ray curable group which has the said reactive functional group, the thing obtained by polymerizing the monomer which has at least the said reactive functional group is mentioned, for example. In the case of the acrylic polymer (b-1), those having the reactive functional group as one or both of the acrylic monomer and the non-acrylic monomer mentioned as the monomer constituting the polymer It may be used. As said polymer (b) which has a hydroxyl group as a reactive functional group, what was obtained by polymerizing a hydroxyl-containing (meth) acrylic acid ester is mentioned, for example, In addition to this, the said acrylics mentioned above What is obtained by polymerizing a monomer in which one or more hydrogen atoms are substituted by the reactive functional group among the system monomer or the non-acrylic monomer is mentioned.
 反応性官能基を有する前記重合体(b)において、これを構成する構成単位の全量に対する、反応性官能基を有するモノマーから誘導された構成単位の量の割合(含有量)は、1~20質量%であることが好ましく、2~10質量%であることがより好ましい。前記割合がこのような範囲であることで、前記重合体(b)において、架橋の程度がより好ましい範囲となる。 In the polymer (b) having a reactive functional group, the ratio (content) of the amount of the structural unit derived from the monomer having the reactive functional group to the total amount of the constituent units constituting the polymer is 1 to 20 It is preferably mass%, more preferably 2 to 10 mass%. When the ratio is in such a range, in the polymer (b), the degree of crosslinking becomes a more preferable range.
 エネルギー線硬化性基を有しない重合体(b)の重量平均分子量(Mw)は、組成物(IV-1)の造膜性がより良好となる点から、10000~2000000であることが好ましく、100000~1500000であることがより好ましい。ここで、「重量平均分子量」とは、先に説明したとおりである。 The weight average molecular weight (Mw) of the polymer (b) having no energy ray-curable group is preferably 10,000 to 2,000,000 from the viewpoint that the film forming property of the composition (IV-1) is further improved. More preferably, it is 100000 to 1.500000. Here, the "weight average molecular weight" is as described above.
 組成物(IV-1)及びエネルギー線硬化性樹脂膜形成用フィルムが含有する、エネルギー線硬化性基を有しない重合体(b)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The polymer (b) having no energy ray curable group contained in the composition (IV-1) and the film for forming an energy ray curable resin film may be only one type, or two or more types, and 2 When it is species or more, their combination and ratio can be arbitrarily selected.
 組成物(IV-1)としては、前記重合体(a1)及び前記化合物(a2)のいずれか一方又は両方を含有するものが挙げられる。そして、組成物(IV-1)は、前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましく、この場合、さらに前記(a1)を含有することも好ましい。また、組成物(IV-1)は、前記化合物(a2)を含有せず、前記重合体(a1)、及びエネルギー線硬化性基を有しない重合体(b)をともに含有していてもよい。 As the composition (IV-1), those containing one or both of the polymer (a1) and the compound (a2) can be mentioned. And when it contains the said compound (a2), it is preferable that a composition (IV-1) also contains the polymer (b) which does not have an energy ray curable group, and, in this case, it further contains the said (a1) It is also preferable to contain The composition (IV-1) may contain neither the compound (a2) but the polymer (a1) and the polymer (b) having no energy ray curable group. .
 組成物(IV-1)が、前記重合体(a1)、前記化合物(a2)及びエネルギー線硬化性基を有しない重合体(b)を含有する場合、組成物(IV-1)において、前記化合物(a2)の含有量は、前記重合体(a1)及びエネルギー線硬化性基を有しない重合体(b)の総含有量100質量部に対して、10~400質量部であることが好ましく、30~350質量部であることがより好ましい。 When the composition (IV-1) contains the polymer (a1), the compound (a2) and the polymer (b) having no energy ray curable group, the composition (IV-1) contains the polymer The content of the compound (a2) is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray curable group. And 30 to 350 parts by mass are more preferable.
 組成物(IV-1)において、溶媒以外の成分の総含有量に対する、前記エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量の割合(すなわち、エネルギー線硬化性樹脂膜形成用フィルムにおける、前記フィルムの総質量に対する、前記エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量の割合)は、5~90質量%であることが好ましく、10~80質量%であることがより好ましく、20~70質量%であることが特に好ましい。エネルギー線硬化性成分の含有量の前記割合がこのような範囲であることで、エネルギー線硬化性樹脂膜形成用フィルムのエネルギー線硬化性がより良好となる。 In the composition (IV-1), the ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total content of components other than the solvent (ie, A ratio of the total content of the energy ray curable component (a) and the polymer (b) having no energy ray curable group to the total mass of the film in the energy ray curable resin film-forming film And 5 to 90% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass. When the ratio of the content of the energy ray curable component is such a range, the energy ray curability of the film for forming an energy ray curable resin film becomes better.
[充填材]
 充填材を含有するエネルギー線硬化性樹脂膜形成用フィルムは、充填材(D)を含有する熱硬化性樹脂膜形成用フィルムと同様の効果を奏する。
[Filling material]
The film for energy beam curable resin film formation containing a filler exhibits the same effect as the film for thermosetting resin film formation containing a filler (D).
 組成物(IV-1)及びエネルギー線硬化性樹脂膜形成用フィルムが含有する充填材としては、組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有する充填材(D)と同じものが挙げられる。 As the filler contained in the composition (IV-1) and the film for energy beam curable resin film formation, the filler (D) contained in the composition (III-1) and the film for thermosetting resin film formation and The same thing is mentioned.
 組成物(IV-1)及びエネルギー線硬化性樹脂膜形成用フィルムが含有する充填材は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The filler contained in the composition (IV-1) and the film for forming an energy ray curable resin film may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are It can be selected arbitrarily.
 組成物(IV-1)において、溶媒以外の全ての成分の総含有量に対する充填材の含有量の割合(すなわち、エネルギー線硬化性樹脂膜形成用フィルムにおける、前記フィルムの総質量に対する、充填材の含有量の割合)は、25~75質量%であることが好ましく、28~72質量%であることがより好ましい。充填材が他の成分よりも顕著に吸水し難いため、前記割合が前記下限値以上であることで、前記吸水率を0.55%以下とすることがより容易となる。そして、サイズが小さい樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜の残存を抑制する効果がより高くなる。また、前記割合が前記上限値以下であることで、樹脂膜形成用フィルム及びその硬化物である樹脂膜の強度が、より向上する。 In the composition (IV-1), the ratio of the content of the filler to the total content of all the components other than the solvent (that is, the filler relative to the total mass of the film in the energy beam curable resin film-forming film) The ratio of the content of (H) is preferably 25 to 75% by mass, and more preferably 28 to 72% by mass. Since the filler is significantly less likely to absorb water than the other components, it is easier to make the water absorption rate 0.55% or less when the ratio is at least the lower limit value. And when picking up a semiconductor chip with a resin film with a small size from a support sheet, the effect which controls residual of a resin film on a support sheet becomes high. Moreover, the intensity | strength of the film for resin film formation and the resin film which is its hardened | cured material improves more because the said ratio is below the said upper limit.
 組成物(IV-1)は、前記エネルギー線硬化性成分及び充填材以外に、目的に応じて、熱硬化性成分、カップリング剤、架橋剤、光重合開始剤、着色剤及び汎用添加剤からなる群より選択される1種又は2種以上を含有していてもよい。 Composition (IV-1) contains, according to the purpose, a thermosetting component, a coupling agent, a crosslinking agent, a photopolymerization initiator, a colorant and a general-purpose additive, in addition to the energy ray-curable component and the filler. It may contain one or more selected from the group consisting of
 組成物(IV-1)における前記熱硬化性成分、カップリング剤、架橋剤、光重合開始剤、着色剤及び汎用添加剤としては、それぞれ、組成物(III-1)における熱硬化性成分(B)、カップリング剤(E)、架橋剤(F)、光重合開始剤(H)、着色剤(I)及び汎用添加剤(J)と同じものが挙げられる。 As the thermosetting component, the coupling agent, the crosslinking agent, the photopolymerization initiator, the colorant and the general-purpose additive in the composition (IV-1), the thermosetting component in the composition (III-1) ( B) The same as the coupling agent (E), the crosslinking agent (F), the photopolymerization initiator (H), the colorant (I) and the general purpose additive (J).
 例えば、前記エネルギー線硬化性成分及び熱硬化性成分を含有する組成物(IV-1)を用いることにより、形成されるエネルギー線硬化性樹脂膜形成用フィルムは、加熱によって被着体に対する接着力が向上し、このエネルギー線硬化性樹脂膜形成用フィルムから形成された樹脂膜の強度も向上する。
 また、前記エネルギー線硬化性成分及び着色剤を含有する組成物(IV-1)を用いることにより、形成されるエネルギー線硬化性樹脂膜形成用フィルムは、先に説明した熱硬化性樹脂膜形成用フィルムが着色剤(I)を含有する場合と同様の効果を発現する。
For example, the film for forming an energy ray curable resin film formed by using the composition (IV-1) containing the energy ray curable component and the thermosetting component has an adhesive force to an adherend by heating. The strength of the resin film formed from the energy beam curable resin film-forming film is also improved.
Further, the film for forming an energy ray curable resin film formed by using the composition (IV-1) containing the energy ray curable component and the colorant has the thermosetting resin film formed as described above. The same effect as in the case where the film for coloring contains the colorant (I) is exhibited.
 組成物(IV-1)において、前記熱硬化性成分、カップリング剤、架橋剤、光重合開始剤、着色剤及び汎用添加剤は、それぞれ、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 In the composition (IV-1), one of each of the thermosetting component, the coupling agent, the crosslinking agent, the photopolymerization initiator, the colorant and the general-purpose additive may be used alone, or two of them may be used. The above may be used in combination, and when using 2 or more types together, the combination and ratio of those can be selected arbitrarily.
 組成物(IV-1)における前記熱硬化性成分、カップリング剤、架橋剤、光重合開始剤、着色剤及び汎用添加剤の含有量は、目的に応じて適宜調節すればよく、特に限定されない。 The content of the thermosetting component, the coupling agent, the crosslinking agent, the photopolymerization initiator, the colorant and the general-purpose additive in the composition (IV-1) may be appropriately adjusted according to the purpose and is not particularly limited. .
 組成物(IV-1)は、希釈によってその取り扱い性が向上することから、さらに溶媒を含有するものが好ましい。
 組成物(IV-1)が含有する溶媒としては、例えば、組成物(III-1)における溶媒と同じものが挙げられる。
 組成物(IV-1)が含有する溶媒は、1種のみでもよいし、2種以上でもよい。
The composition (IV-1) preferably further contains a solvent because the handling thereof is improved by dilution.
Examples of the solvent contained in the composition (IV-1) include the same as the solvents in the composition (III-1).
The solvent contained in the composition (IV-1) may be only one, or two or more.
<<エネルギー線硬化性樹脂膜形成用組成物の製造方法>>
 組成物(IV-1)等のエネルギー線硬化性樹脂膜形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
<< Method for producing a composition for forming an energy ray curable resin film >>
The composition for forming an energy ray-curable resin film such as the composition (IV-1) can be obtained by blending the components for constituting the composition.
There is no particular limitation on the order of addition of each component at the time of blending, and two or more components may be added simultaneously.
When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by previously diluting any compounding component other than the solvent A solvent may be used by mixing with these compounding ingredients without storage.
The method of mixing each component at the time of compounding is not particularly limited, and a method of mixing by rotating a stirrer or a stirring blade, etc .; a method of mixing using a mixer; a method of adding ultrasonic waves and mixing, etc. It may be selected as appropriate.
The temperature and time of addition and mixing of the respective components are not particularly limited as long as the respective blended components do not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
○非硬化性樹脂膜形成用フィルム
 前記非硬化性樹脂膜形成用フィルムは、硬化による特性の変化を示さないが、本発明においては、半導体ウエハの前記裏面等、目的とする箇所に貼付された段階で、樹脂膜を形成したとみなす。
○ Film for forming non-hardening resin film The film for forming non-hardening resin film does not show a change in properties due to hardening, but in the present invention, the film is stuck to a target location such as the back surface of a semiconductor wafer. It is considered that a resin film has been formed at a stage.
 非硬化性樹脂膜形成用フィルムとしては、例えば、熱可塑性樹脂を含有するものが挙げられ、熱可塑性樹脂及び充填材を含有するものが好ましい。 Examples of the non-curable resin film-forming film include those containing a thermoplastic resin, and those containing a thermoplastic resin and a filler are preferred.
 非硬化性樹脂膜形成用フィルムは1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The film for forming the non-curable resin film may be only one layer (single layer), or two or more layers, and in the case of multiple layers, these multiple layers may be the same or different from one another. The combination of multiple layers is not particularly limited.
 非硬化性樹脂膜形成用フィルムの厚さは、1~100μmであることが好ましく、3~75μmであることがより好ましく、5~50μmであることが特に好ましい。非硬化性樹脂膜形成用フィルムの厚さが前記下限値以上であることで、厚さの均一性がより高くなる。また、非硬化性樹脂膜形成用フィルムの厚さが前記上限値以下であることで、半導体ウエハのブレードダイシング時に発生する脂膜形成用フィルム又は樹脂膜の切削屑の発生量が抑制される。
 ここで、「非硬化性樹脂膜形成用フィルムの厚さ」とは、非硬化性樹脂膜形成用フィルム全体の厚さを意味し、例えば、複数層からなる非硬化性樹脂膜形成用フィルムの厚さとは、非硬化性樹脂膜形成用フィルムを構成するすべての層の合計の厚さを意味する。
The thickness of the film for forming a non-curable resin film is preferably 1 to 100 μm, more preferably 3 to 75 μm, and particularly preferably 5 to 50 μm. The uniformity of thickness becomes higher by the thickness of the film for non-hardening resin film formation being more than the above-mentioned lower limit. In addition, when the thickness of the non-hardening resin film-forming film is equal to or less than the upper limit value, the generation amount of cuttings of the oil film-forming film or resin film generated at the time of blade dicing of the semiconductor wafer is suppressed.
Here, "the thickness of the film for forming a non-curable resin film" means the thickness of the entire film for forming a non-curable resin film, and for example, the film for forming a non-curable resin film formed of a plurality of layers The thickness means the total thickness of all the layers constituting the non-curable resin film-forming film.
<<非硬化性樹脂膜形成用組成物>>
 非硬化性樹脂膜形成用フィルムは、その構成材料を含有する非硬化性樹脂膜形成用組成物を用いて形成できる。例えば、非硬化性樹脂膜形成用フィルムの形成対象面に非硬化性樹脂膜形成用組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に非硬化性樹脂膜形成用フィルムを形成できる。
<< Composition for forming non-curable resin film >>
The film for non-hardening resin film formation can be formed using the composition for non-hardening resin film formation containing the constituent material. For example, a composition for forming a non-curable resin film is coated on the surface to be formed of a film for forming a non-curable resin film, and dried as needed to form a non-curable resin film on a target site It can form a film.
 非硬化性樹脂膜形成用組成物の塗工は、例えば、上述の熱硬化性樹脂膜形成用組成物の塗工の場合と同じ方法で行うことができる。 The application of the composition for forming a non-curable resin film can be performed, for example, by the same method as the application of the composition for forming a thermosetting resin film described above.
 非硬化性樹脂膜形成用組成物の乾燥条件は、特に限定されないが、非硬化性樹脂膜形成用組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。そして、溶媒を含有する非硬化性樹脂膜形成用組成物は、例えば、70~130℃で10秒~5分の条件で乾燥させることが好ましい。 Although the drying conditions of the composition for non-hardening resin film formation are not specifically limited, When the composition for non-hardening resin film formation contains the solvent mentioned later, it is preferable to heat-dry. The composition for forming a non-curable resin film containing a solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes.
<非硬化性樹脂膜形成用組成物(V-1)>
 好ましい非硬化性樹脂膜形成用組成物としては、例えば、前記熱可塑性樹脂及び充填材を含有する非硬化性樹脂膜形成用組成物(V-1)(本明細書においては、単に「組成物(V-1)」と略記することがある)等が挙げられる。
<Composition for forming a non-curable resin film (V-1)>
As a preferred composition for forming a non-curable resin film, for example, a composition for forming a non-curable resin film (V-1) containing the thermoplastic resin and the filler (in the present specification, simply “the composition (V-1) "and the like.
[熱可塑性樹脂]
 前記熱可塑性樹脂は、特に限定されない。
 前記熱可塑性樹脂として、より具体的には、例えば、上述の組成物(III-1)の含有成分として挙げた、アクリル系樹脂、ポリエステル、ポリウレタン、フェノキシ樹脂、ポリブテン、ポリブタジエン、ポリスチレン等の硬化性ではない樹脂と同様のものが挙げられる。
[Thermoplastic resin]
The thermoplastic resin is not particularly limited.
More specifically, as the thermoplastic resin, for example, the curing properties of acrylic resins, polyesters, polyurethanes, phenoxy resins, polybutenes, polybutadienes, polystyrenes, etc. listed as components of the above-mentioned composition (III-1) And the same resins as those mentioned above.
 組成物(V-1)及び非硬化性樹脂膜形成用フィルムが含有する前記熱可塑性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The thermoplastic resin contained in the composition (V-1) and the film for forming a non-curable resin film may be only one type, or two or more types, and in the case of two or more types, a combination and ratio thereof Is optional.
 組成物(V-1)において、溶媒以外の成分の総含有量に対する、前記熱可塑性樹脂の含有量の割合(すなわち、非硬化性樹脂膜形成用フィルムにおける、前記フィルムの総質量に対する、前記熱可塑性樹脂の含有量の割合)は、25~75質量%であることが好ましく、28~72質量%であることがより好ましい。 In the composition (V-1), the ratio of the content of the thermoplastic resin to the total content of components other than the solvent (that is, the heat relative to the total mass of the film in the film for forming a non-curable resin film) The proportion of the content of the plastic resin is preferably 25 to 75% by mass, and more preferably 28 to 72% by mass.
[充填材]
 充填材を含有する非硬化性樹脂膜形成用フィルムは、充填材(D)を含有する熱硬化性樹脂膜形成用フィルムと、同様の効果を奏する。
[Filling material]
The film for non-curable resin film formation containing a filler has the same effect as the film for thermosetting resin film formation containing a filler (D).
 組成物(V-1)及び非硬化性樹脂膜形成用フィルムが含有する充填材としては、組成物(III-1)及び熱硬化性樹脂膜形成用フィルムが含有する充填材(D)と同じものが挙げられる。 The filler contained in the composition (V-1) and the film for forming a non-curable resin film is the same as the filler (D) contained in the composition (III-1) and a film for forming a thermosetting resin film The thing is mentioned.
 組成物(V-1)及び非硬化性樹脂膜形成用フィルムが含有する充填材は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The filler contained in the composition (V-1) and the film for forming a non-curable resin film may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrary Can be selected.
 組成物(V-1)において、溶媒以外の全ての成分の総含有量に対する充填材の含有量の割合(すなわち、非硬化性樹脂膜形成用フィルムにおける、前記フィルムの総質量に対する、充填材の含有量の割合)は、25~75質量%であることが好ましく、28~72質量%であることがより好ましい。充填材が他の成分よりも顕著に吸水し難いため、前記割合が前記下限値以上であることで、前記吸水率を0.55%以下とすることがより容易となる。そして、サイズが小さい樹脂膜付き半導体チップを支持シートからピックアップするときに、支持シートへの樹脂膜の残存を抑制する効果がより高くなる。また、前記割合が前記上限値以下であることで、樹脂膜形成用フィルム(樹脂膜)の強度が、より向上する。 In the composition (V-1), the ratio of the content of the filler to the total content of all components other than the solvent (that is, the filler relative to the total mass of the film in the film for forming a non-curable resin film) The content ratio) is preferably 25 to 75% by mass, and more preferably 28 to 72% by mass. Since the filler is significantly less likely to absorb water than the other components, it is easier to make the water absorption rate 0.55% or less when the ratio is at least the lower limit value. And when picking up a semiconductor chip with a resin film with a small size from a support sheet, the effect which controls residual of a resin film on a support sheet becomes high. Moreover, the intensity | strength of the film (resin film) for resin film formation improves more because the said ratio is below the said upper limit.
 組成物(V-1)は、前記熱可塑性樹脂及び充填材以外に、目的に応じて、他の成分を含有していてもよい。
 前記他の成分は、特に限定されず、目的に応じて任意に選択できる。
 例えば、前記熱可塑性樹脂及び着色剤を含有する組成物(V-1)を用いることにより、形成される非硬化性樹脂膜形成用フィルムは、先に説明した熱硬化性樹脂膜形成用フィルムが着色剤(I)を含有する場合と同様の効果を発現する。
The composition (V-1) may contain other components in addition to the thermoplastic resin and the filler, depending on the purpose.
The other components are not particularly limited, and can be arbitrarily selected according to the purpose.
For example, the film for forming a non-curable resin film formed by using the composition (V-1) containing the thermoplastic resin and the colorant is the film for forming a thermosetting resin film described above. The same effect as in the case of containing the colorant (I) is exhibited.
 組成物(V-1)において、前記他の成分は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 In the composition (V-1), one type of the other components may be used alone, or two or more types may be used in combination. When two or more types are used in combination, the combination and ratio thereof are It can be selected arbitrarily.
 組成物(V-1)における前記他の成分の含有量は、目的に応じて適宜調節すればよく、特に限定されない。 The content of the other components in the composition (V-1) may be appropriately adjusted depending on the purpose, and is not particularly limited.
 組成物(V-1)は、希釈によってその取り扱い性が向上することから、さらに溶媒を含有するものが好ましい。
 組成物(V-1)が含有する溶媒としては、例えば、上述の組成物(III-1)における溶媒と同じものが挙げられる。
 組成物(V-1)が含有する溶媒は、1種のみでもよいし、2種以上でもよい。
The composition (V-1) preferably further contains a solvent because the handling thereof is improved by dilution.
Examples of the solvent contained in the composition (V-1) include the same as the solvents in the above-mentioned composition (III-1).
The solvent contained in the composition (V-1) may be only one type, or two or more types.
<<非硬化性樹脂膜形成用組成物の製造方法>>
 組成物(V-1)等の非硬化性樹脂膜形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
<< Method for Producing Composition for Forming Non-Curable Resin Film >>
The composition for forming a non-curable resin film such as the composition (V-1) can be obtained by blending the components for constituting the composition.
There is no particular limitation on the order of addition of each component at the time of blending, and two or more components may be added simultaneously.
When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by previously diluting any compounding component other than the solvent A solvent may be used by mixing with these compounding ingredients without storage.
The method of mixing each component at the time of compounding is not particularly limited, and a method of mixing by rotating a stirrer or a stirring blade, etc .; a method of mixing using a mixer; a method of adding ultrasonic waves and mixing, etc. It may be selected as appropriate.
The temperature and time of addition and mixing of the respective components are not particularly limited as long as the respective blended components do not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
◇樹脂膜形成用複合シート
 本発明の樹脂膜形成用複合シートは、支持シートを備え、前記支持シート上に、樹脂膜形成用フィルムを備えてなり、前記樹脂膜形成用フィルムが、上述の本発明の樹脂膜形成用フィルムとなっているものである。
複合 Composite sheet for resin film formation The composite sheet for resin film formation of the present invention comprises a support sheet, and comprises a film for resin film formation on the support sheet, and the film for resin film formation is the above-mentioned present It is a film for forming a resin film of the invention.
 本発明の樹脂膜形成用複合シートは、ブレードダイシングによって、半導体ウエハをサイズが小さい半導体チップへ個片化(分割)するときに、半導体ウエハの裏面に貼付して使用するのに好適である。樹脂膜形成用複合シート中の樹脂膜形成用フィルムは、半導体ウエハ又は半導体チップの裏面に樹脂膜を形成するのに使用でき、支持シートはダイシングシートとして使用できる。ブレードダイシングによって得られた、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップは、支持シートからのピックアップ適性に優れ、ピックアップ時に、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存が抑制される。
 以下、本発明の樹脂膜形成用複合シートの、樹脂膜形成用フィルム以外の構成について、詳細に説明する。
The composite sheet for resin film formation of the present invention is suitable for use by being attached to the back surface of a semiconductor wafer when the semiconductor wafer is singulated (divided) into small semiconductor chips by blade dicing. The film for resin film formation in the composite sheet for resin film formation can be used to form a resin film on the back surface of the semiconductor wafer or the semiconductor chip, and the support sheet can be used as a dicing sheet. The semiconductor chip with a film for resin film formation with a small size or the semiconductor chip with a resin film obtained by blade dicing is excellent in the pickup aptitude from the support sheet, and at the time of pickup, the film or resin film for resin film formation on the support sheet. Survival is suppressed.
Hereinafter, the structure other than the film for resin film formation of the composite sheet for resin film formation of this invention is demonstrated in detail.
◎支持シート
 前記支持シートは、1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよい。支持シートが複数層からなる場合、これら複数層の構成材料及び厚さは、互いに同一でも異なっていてもよく、これら複数層の組み合わせは、本発明の効果を損なわない限り、特に限定されない。
 なお、本明細書においては、支持シートの場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。
Support Sheet The support sheet may be formed of one layer (single layer) or may be formed of two or more layers. When a support sheet consists of multiple layers, the constituent material and thickness of these multiple layers may mutually be same or different, and the combination of these multiple layers is not specifically limited unless the effect of this invention is impaired.
In the present specification, not only in the case of a support sheet, but “a plurality of layers may be the same as or different from each other” means that “all layers may be the same or all layers are different. Means that only some of the layers may be the same, and the phrase "plural layers are different from each other" means that "at least one of the constituent material and thickness of each layer is different from each other". Means
 好ましい支持シートとしては、例えば、基材を備え、前記基材上に粘着剤層が積層されてなるもの;基材を備え、前記基材上に中間層が積層され、前記中間層上に粘着剤層が積層されてなるもの;基材のみからなるもの等が挙げられる。 As a preferable support sheet, for example, a substrate is provided, and an adhesive layer is laminated on the substrate; a substrate is provided, an intermediate layer is laminated on the substrate, and adhesion is performed on the intermediate layer. Those obtained by laminating the agent layer; and those formed only of the base material.
 本発明の樹脂膜形成用複合シートの例を、このような支持シートの種類ごとに、以下、図面を参照しながら説明する。なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。 Hereinafter, examples of the composite sheet for resin film formation of the present invention will be described with reference to the drawings for each type of such a support sheet. Note that the drawings used in the following description may be enlarged for convenience, in order to make the features of the present invention intelligible. Not necessarily.
 図1は、本発明の樹脂膜形成用複合シートの一実施形態を模式的に示す断面図である。
 ここに示す樹脂膜形成用複合シート101は、基材11上に粘着剤層12を備え、粘着剤層12上に樹脂膜形成用フィルム13を備えている。支持シート1は、基材11及び粘着剤層12の積層体であり、樹脂膜形成用複合シート101は、換言すると、支持シート1の一方の表面1a上に樹脂膜形成用フィルム13が積層された構成を有する。また、樹脂膜形成用複合シート101は、さらに樹脂膜形成用フィルム13上に剥離フィルム15を備えている。
FIG. 1 is a cross-sectional view schematically showing an embodiment of a composite sheet for resin film formation of the present invention.
The composite sheet 101 for resin film formation shown here is provided with the adhesive layer 12 on the base material 11, and is provided with the film 13 for resin film formation on the adhesive layer 12. The support sheet 1 is a laminate of the base material 11 and the pressure-sensitive adhesive layer 12. In other words, the resin film formation film 13 is laminated on one surface 1 a of the support sheet 1. Have the following configuration. The resin film-forming composite sheet 101 further includes a peeling film 15 on the resin film-forming film 13.
 樹脂膜形成用複合シート101においては、基材11の一方の表面11aに粘着剤層12が積層され、粘着剤層12の一方の表面12aの全面に樹脂膜形成用フィルム13が積層され、樹脂膜形成用フィルム13の一方の表面13aの一部、すなわち、周縁部近傍の領域に治具用接着剤層16が積層され、樹脂膜形成用フィルム13の表面13aのうち、治具用接着剤層16が積層されていない面と、治具用接着剤層16の表面16a(上面及び側面)に、剥離フィルム15が積層されている。 In the composite sheet 101 for resin film formation, the adhesive layer 12 is laminated on one surface 11 a of the substrate 11, and the resin film formation film 13 is laminated on the entire surface of one surface 12 a of the adhesive layer 12. The adhesive layer 16 for jigs is laminated on a part of one surface 13 a of the film 13 for film formation, that is, the region in the vicinity of the peripheral portion, and the adhesive for jigs of the surface 13 a of the resin film forming film 13 A release film 15 is laminated on the surface on which the layer 16 is not laminated and the surface 16 a (upper surface and side surface) of the jig adhesive layer 16.
 樹脂膜形成用複合シート101において、樹脂膜形成用フィルム13は、上述の吸水率及び粘着力変化率の条件をともに満たす。 In the resin film-forming composite sheet 101, the resin film-forming film 13 satisfies the above-described conditions of the water absorption rate and the adhesive force change rate.
 治具用接着剤層16は、例えば、接着剤成分を含有する単層構造のものであってもよいし、芯材となるシートの両面に接着剤成分を含有する層が積層された複数層構造のものであってもよい。 The jig adhesive layer 16 may have, for example, a single layer structure containing an adhesive component, or a plurality of layers in which layers containing the adhesive component are laminated on both sides of a sheet to be a core material. It may be of a structure.
 図1に示す樹脂膜形成用複合シート101は、剥離フィルム15が取り除かれた状態で、樹脂膜形成用フィルム13の表面13aに半導体ウエハ(図示略)の裏面が貼付され、さらに、治具用接着剤層16の表面16aのうち上面に、リングフレーム等の治具が貼付されて、使用される。
 なお、治具用接着剤層16においては、その上面及び側面の境界が明確に区別できない場合もある。
The composite sheet 101 for resin film formation shown in FIG. 1 has the back surface of a semiconductor wafer (not shown) attached to the front surface 13a of the resin film formation film 13 in a state where the peeling film 15 is removed. A jig such as a ring frame is attached to the upper surface of the surface 16 a of the adhesive layer 16 and used.
In addition, in the adhesive layer 16 for jigs, the boundary of the upper surface and the side may not be distinguished clearly.
 図2は、本発明の樹脂膜形成用複合シートの他の実施形態を模式的に示す断面図である。なお、図2以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。 FIG. 2 is a cross-sectional view schematically showing another embodiment of the composite sheet for resin film formation of the present invention. In the drawings after FIG. 2, the same components as those shown in the already described drawings are denoted by the same reference numerals as in the already explained drawings, and the detailed description thereof will be omitted.
 ここに示す樹脂膜形成用複合シート102は、治具用接着剤層16を備えていない点以外は、図1に示す樹脂膜形成用複合シート101と同じものである。すなわち、樹脂膜形成用複合シート102においては、基材11の一方の表面11aに粘着剤層12が積層され、粘着剤層12の一方の表面12aの全面に樹脂膜形成用フィルム13が積層され、樹脂膜形成用フィルム13の一方の表面13aの全面に剥離フィルム15が積層されている。 The composite sheet for resin film formation 102 shown here is the same as the composite sheet for resin film formation 101 shown in FIG. 1 except that the jig adhesive layer 16 is not provided. That is, in the composite sheet 102 for resin film formation, the adhesive layer 12 is laminated on one surface 11 a of the substrate 11, and the resin film formation film 13 is laminated on the entire one surface 12 a of the adhesive layer 12. The release film 15 is laminated on the entire surface of one surface 13 a of the resin film-forming film 13.
 図2に示す樹脂膜形成用複合シート102は、剥離フィルム15が取り除かれた状態で、樹脂膜形成用フィルム13の表面13aのうち、中央側の一部の領域に半導体ウエハ(図示略)の裏面が貼付され、さらに、樹脂膜形成用フィルム13の周縁部近傍の領域に、リングフレーム等の治具が貼付されて、使用される。 The composite sheet 102 for resin film formation shown in FIG. 2 is a semiconductor wafer (not shown) in a partial region on the center side of the surface 13 a of the resin film formation film 13 with the release film 15 removed. The back surface is attached, and further, a jig such as a ring frame is attached to a region in the vicinity of the peripheral portion of the resin film forming film 13 and used.
 図3は、本発明の樹脂膜形成用複合シートのさらに他の実施形態を模式的に示す断面図である。
 ここに示す樹脂膜形成用複合シート103は、粘着剤層12を備えていない点以外は、図1に示す樹脂膜形成用複合シート101と同じものである。すなわち、樹脂膜形成用複合シート103においては、支持シート1が基材11のみからなる。そして、基材11の一方の表面11a(換言すると、支持シート1の一方の表面1a)に樹脂膜形成用フィルム13が積層され、樹脂膜形成用フィルム13の表面13aの一部、すなわち、周縁部近傍の領域に治具用接着剤層16が積層され、樹脂膜形成用フィルム13の表面13aのうち、治具用接着剤層16が積層されていない面と、治具用接着剤層16の表面16a(上面及び側面)に、剥離フィルム15が積層されている。
FIG. 3: is sectional drawing which shows typically other embodiment of the composite sheet for resin film formation of this invention.
The composite sheet for resin film formation 103 shown here is the same as the composite sheet for resin film formation 101 shown in FIG. 1 except that the adhesive layer 12 is not provided. That is, in the composite sheet 103 for resin film formation, the support sheet 1 is made of only the base material 11. And film 13 for resin film formation is laminated on one surface 11a of base material 11 (in other words, one surface 1a of support sheet 1), and a part of surface 13a of film 13 for resin film formation, ie, a periphery The jig adhesive layer 16 is laminated in the area near the portion, and the surface of the resin film forming film 13 on which the jig adhesive layer 16 is not laminated, and the jig adhesive layer 16. The peeling film 15 is laminated | stacked on the surface 16a (upper surface and side surface) of this.
 図3に示す樹脂膜形成用複合シート103は、図1に示す樹脂膜形成用複合シート101と同様に、剥離フィルム15が取り除かれた状態で、樹脂膜形成用フィルム13の表面13aに半導体ウエハ(図示略)の裏面が貼付され、さらに、治具用接着剤層16の表面16aのうち上面に、リングフレーム等の治具が貼付されて、使用される。 The composite sheet 103 for resin film formation shown in FIG. 3 is a semiconductor wafer on the surface 13 a of the film 13 for resin film formation with the release film 15 removed, as in the composite sheet 101 for resin film formation shown in FIG. The back surface (not shown) is attached, and a jig such as a ring frame is attached to the upper surface of the front surface 16a of the jig adhesive layer 16 for use.
 図4は、本発明の樹脂膜形成用複合シートのさらに他の実施形態を模式的に示す断面図である。
 ここに示す樹脂膜形成用複合シート104は、治具用接着剤層16を備えていない点以外は、図3に示す樹脂膜形成用複合シート103と同じものである。すなわち、樹脂膜形成用複合シート104においては、基材11の一方の表面11aに樹脂膜形成用フィルム13が積層され、樹脂膜形成用フィルム13の一方の表面13aの全面に剥離フィルム15が積層されている。
FIG. 4: is sectional drawing which shows typically other embodiment of the composite sheet for resin film formation of this invention.
The composite sheet for resin film formation 104 shown here is the same as the composite sheet for resin film formation 103 shown in FIG. 3 except that the jig adhesive layer 16 is not provided. That is, in the resin film-forming composite sheet 104, the resin film-forming film 13 is laminated on one surface 11a of the substrate 11, and the release film 15 is laminated on the entire surface 13a of the resin film-forming film 13. It is done.
 図4に示す樹脂膜形成用複合シート104は、図2に示す樹脂膜形成用複合シート102と同様に、剥離フィルム15が取り除かれた状態で、樹脂膜形成用フィルム13の表面13aのうち、中央側の一部の領域に半導体ウエハ(図示略)の裏面が貼付され、さらに、樹脂膜形成用フィルム13の周縁部近傍の領域に、リングフレーム等の治具が貼付されて、使用される。 The composite sheet 104 for resin film formation shown in FIG. 4 is the same as the composite sheet 102 for resin film formation shown in FIG. 2, with the release film 15 removed, in the surface 13 a of the film 13 for resin film formation The back surface of the semiconductor wafer (not shown) is attached to a partial area on the center side, and a jig such as a ring frame is attached to the area in the vicinity of the peripheral portion of the resin film forming film 13 .
 図5は、本発明の樹脂膜形成用複合シートのさらに他の実施形態を模式的に示す断面図である。
 ここに示す樹脂膜形成用複合シート105は、樹脂膜形成用フィルムの形状が異なる点以外は、図2に示す樹脂膜形成用複合シート102と同じものである。すなわち、樹脂膜形成用複合シート105は、基材11上に粘着剤層12を備え、粘着剤層12上に樹脂膜形成用フィルム23を備えている。支持シート1は、基材11及び粘着剤層12の積層体であり、樹脂膜形成用複合シート105は、換言すると、支持シート1の一方の表面1a上に樹脂膜形成用フィルム23が積層された構成を有する。また、樹脂膜形成用複合シート105は、さらに樹脂膜形成用フィルム23上に剥離フィルム15を備えている。
FIG. 5 is a cross-sectional view schematically showing still another embodiment of the composite sheet for resin film formation of the present invention.
The composite sheet for resin film formation 105 shown here is the same as the composite sheet for resin film formation 102 shown in FIG. 2 except that the shape of the film for resin film formation is different. That is, the composite sheet 105 for resin film formation is provided with the pressure-sensitive adhesive layer 12 on the base material 11 and the film 23 for resin film formation on the pressure-sensitive adhesive layer 12. The support sheet 1 is a laminate of the base material 11 and the pressure-sensitive adhesive layer 12. In other words, the resin film formation film 23 is laminated on one surface 1 a of the support sheet 1. Have the following configuration. The resin film-forming composite sheet 105 further includes a peeling film 15 on the resin film-forming film 23.
 樹脂膜形成用複合シート105においては、基材11の一方の表面11aに粘着剤層12が積層され、粘着剤層12の一方の表面12aの一部、すなわち、支持シート1の幅方向(図5における左右方向)における中央側の領域に、樹脂膜形成用フィルム23が積層されている。そして、粘着剤層12の表面12aのうち、樹脂膜形成用フィルム23が積層されていない面と、樹脂膜形成用フィルム23の一方の表面23a(上面及び側面)の上に、剥離フィルム15が積層されている。 In the composite sheet 105 for resin film formation, the pressure-sensitive adhesive layer 12 is laminated on one surface 11 a of the substrate 11, and a part of the one surface 12 a of the pressure-sensitive adhesive layer 12, that is, the width direction of the support sheet 1 The film 23 for resin film formation is laminated | stacked on the area | region of the center side in the left-right direction in 5. Then, on the surface 12 a of the pressure-sensitive adhesive layer 12 on which the resin film-forming film 23 is not laminated and the one surface 23 a (upper surface and side surface) of the resin film-forming film 23, the peeling film 15 is It is stacked.
 樹脂膜形成用複合シート105を上方から見下ろして平面視したときに、樹脂膜形成用フィルム23は粘着剤層12よりも表面積が小さく、例えば、円形状等の形状を有する。 When the resin film-forming composite sheet 105 is viewed from above from above and viewed in plan, the resin film-forming film 23 has a surface area smaller than that of the pressure-sensitive adhesive layer 12 and has, for example, a circular shape.
 樹脂膜形成用複合シート105において、樹脂膜形成用フィルム23は、上述の吸水率及び粘着力変化率の条件をともに満たす。 In the resin film-forming composite sheet 105, the resin film-forming film 23 satisfies the above-described conditions of the water absorption rate and the adhesive force change rate.
 図5に示す樹脂膜形成用複合シート105は、剥離フィルム15が取り除かれた状態で、樹脂膜形成用フィルム23の表面23aに半導体ウエハ(図示略)の裏面が貼付され、さらに、粘着剤層12の表面12aのうち、樹脂膜形成用フィルム23が積層されていない面に、リングフレーム等の治具が貼付されて、使用される。 In the composite sheet 105 for resin film formation shown in FIG. 5, the back surface of a semiconductor wafer (not shown) is attached to the front surface 23a of the resin film formation film 23 with the release film 15 removed. A jig such as a ring frame is attached to the surface 12 a of the surface 12 a on which the resin film-forming film 23 is not laminated.
 なお、図5に示す樹脂膜形成用複合シート105においては、粘着剤層12の表面12aのうち、樹脂膜形成用フィルム23が積層されていない面に、図1及び図3に示すものと同様に治具用接着剤層が積層されていてもよい(図示略)。このような治具用接着剤層を備えた樹脂膜形成用複合シート105は、図1及び図3に示す樹脂膜形成用複合シートと同様に、治具用接着剤層の表面に、リングフレーム等の治具が貼付されて、使用される。 In the composite sheet 105 for resin film formation shown in FIG. 5, the surface 12 a of the pressure-sensitive adhesive layer 12 is the same as that shown in FIGS. 1 and 3 on the surface on which the resin film formation film 23 is not laminated. A jig adhesive layer may be laminated on the substrate (not shown). The composite sheet 105 for resin film formation provided with such an adhesive layer for jigs is a ring frame on the surface of the adhesive layer for jigs in the same manner as the composite sheet for resin film formation shown in FIGS. 1 and 3. Jig etc. are stuck and used.
 本発明の樹脂膜形成用複合シートは、支持シート及び樹脂膜形成用フィルムがどのような形態であっても、治具用接着剤層を備えたものであってもよい。 The composite sheet for resin film formation of the present invention may be provided with an adhesive layer for jig regardless of the form of the support sheet and the film for resin film formation.
 本発明の樹脂膜形成用複合シートは、図1~図5に示すものに限定されず、本発明の効果を損なわない範囲内において、図1~図5に示すものの一部の構成が変更又は削除されたものや、これまでに説明したものにさらに他の構成が追加されたものであってもよい。 The composite sheet for resin film formation of the present invention is not limited to those shown in FIG. 1 to FIG. 5, and the configuration of a part of those shown in FIG. It may be one that has been deleted or another configuration added to those described above.
 例えば、図3及び図4に示す樹脂膜形成用複合シートにおいては、基材11と樹脂膜形成用フィルム13との間に、中間層が設けられていてもよい。中間層としては、目的に応じて任意のものを選択できる。
 また、図1、図2及び図5に示す樹脂膜形成用複合シートにおいては、基材11と粘着剤層12との間に中間層が設けられていてもよい。すなわち、本発明の樹脂膜形成用複合シートにおいて、支持シートは、基材、中間層及び粘着剤層がこの順に積層されてなるものであってもよい。ここで中間層とは、図3及び図4に示す樹脂膜形成用複合シートにおいて設けられていてもよい中間層と同じものである。
 また、図1~図5に示す樹脂膜形成用複合シートは、前記中間層以外の層が、任意の箇所に設けられていてもよい。
 また、本発明の樹脂膜形成用複合シートにおいては、剥離フィルムと、この剥離フィルムと直接接触している層との間に、一部隙間が生じていてもよい。
 また、本発明の樹脂膜形成用複合シートにおいては、各層の大きさや形状は、目的に応じて任意に調節できる。
For example, in the composite sheet for resin film formation shown in FIGS. 3 and 4, an intermediate layer may be provided between the substrate 11 and the film 13 for resin film formation. The intermediate layer can be selected arbitrarily according to the purpose.
Moreover, in the composite sheet for resin film formation shown in FIG.1, FIG2 and FIG.5, the intermediate | middle layer may be provided between the base material 11 and the adhesive layer 12. As shown in FIG. That is, in the composite sheet for resin film formation of the present invention, the support sheet may be formed by laminating the base material, the intermediate layer and the pressure-sensitive adhesive layer in this order. Here, the intermediate layer is the same as the intermediate layer which may be provided in the composite sheet for resin film formation shown in FIGS. 3 and 4.
In the composite sheet for resin film formation shown in FIGS. 1 to 5, the layer other than the intermediate layer may be provided at an arbitrary position.
Further, in the composite sheet for resin film formation of the present invention, a partial gap may be generated between the release film and the layer in direct contact with the release film.
Moreover, in the composite sheet for resin film formation of this invention, the magnitude | size and shape of each layer can be arbitrarily adjusted according to the objective.
○基材
 前記基材は、シート状又はフィルム状であり、その構成材料としては、例えば、各種樹脂が挙げられる。
 前記樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
 また、前記樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
 また、前記樹脂としては、例えば、ここまでに例示した前記樹脂の1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂の1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。
○ Base Material The base material is in the form of a sheet or a film, and examples of the constituent material thereof include various resins.
Examples of the resin include polyethylenes such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE); polyethylene other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene and norbornene resin Polyolefins; Ethylene copolymers such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer (ethylene as monomer Copolymers obtained by using a vinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer (resin obtained by using vinyl chloride as a monomer), polystyrene, polycycloolefin, polyethylene terephthalate, polyethylene Nafta Polyesters such as polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, wholly aromatic polyesters in which all constituent units have an aromatic cyclic group; Polymers; poly (meth) acrylic acid esters; polyurethanes; polyurethane acrylates; polyimides; polyamides; polycarbonates; fluorocarbons; polyacetals; modified polyphenylene oxides; polyphenylene sulfides; polysulfones;
Moreover, as said resin, polymer alloys, such as a mixture of the said polyester and other resin, are also mentioned, for example. The polymer alloy of the polyester and the other resin is preferably one in which the amount of the resin other than the polyester is relatively small.
Further, as the resin, for example, a crosslinked resin obtained by crosslinking one or more of the above-described resins exemplified so far; modification of an ionomer using one or more of the above-described resins exemplified so far Resin is also mentioned.
 基材を構成する樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The resin constituting the substrate may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 基材は1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The base material may consist of one layer (a single layer), or may consist of a plurality of layers of two or more layers, and in the case of a plurality of layers, these plural layers may be the same or different from each other, and these plural The combination of layers is not particularly limited.
 基材の厚さは、50~300μmであることが好ましく、60~140μmであることがより好ましい。基材の厚さがこのような範囲であることで、前記樹脂膜形成用複合シートの可撓性と、半導体ウエハ又は半導体チップへの貼付性がより向上する。
 ここで、「基材の厚さ」とは、基材全体の厚さを意味し、例えば、複数層からなる基材の厚さとは、基材を構成するすべての層の合計の厚さを意味する。
The thickness of the substrate is preferably 50 to 300 μm, and more preferably 60 to 140 μm. When the thickness of the base material is in such a range, the flexibility of the composite sheet for resin film formation and the adhesion to a semiconductor wafer or a semiconductor chip are further improved.
Here, "the thickness of the substrate" means the thickness of the entire substrate, for example, the thickness of the substrate comprising a plurality of layers means the total thickness of all the layers constituting the substrate means.
 基材は、厚さの精度が高いもの、すなわち、部位によらず厚さのばらつきが抑制されたものが好ましい。上述の構成材料のうち、このような厚さの精度が高い基材を構成するのに使用可能な材料としては、例えば、ポリエチレン、ポリエチレン以外のポリオレフィン、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体等が挙げられる。 The substrate is preferably a substrate having high thickness accuracy, that is, a substrate in which the thickness variation is suppressed regardless of the part. Among the above-mentioned constituent materials, as materials which can be used to construct a substrate having such a high thickness accuracy, for example, polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, ethylene-vinyl acetate copolymer, etc. Can be mentioned.
 基材は、前記樹脂等の主たる構成材料以外に、充填材、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒、軟化剤(可塑剤)等の公知の各種添加剤を含有していてもよい。 The base contains, in addition to the main constituent materials such as the resin, known additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softener (plasticizer). May be
 基材は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよいし、他の層が蒸着されていてもよい。
 樹脂膜形成用フィルムがエネルギー線硬化性である場合、基材はエネルギー線を透過させるものが好ましい。
The substrate may be transparent or opaque, or may be colored according to the purpose, or other layers may be deposited.
When the resin film-forming film is energy ray curable, the substrate preferably transmits energy rays.
 基材は、その上に設けられる層(例えば、粘着剤層、中間層又は樹脂膜形成用フィルム)との接着性を向上させるために、サンドブラスト処理、溶剤処理等による凹凸化処理;コロナ放電処理、電子線照射処理、プラズマ処理、オゾン・紫外線照射処理、火炎処理、クロム酸処理、熱風処理等の酸化処理等が表面に施されたものであってもよい。また、基材は、表面がプライマー処理されたものであってもよい。 The base material is roughened by sand blasting, solvent treatment, etc. in order to improve the adhesion to a layer (for example, a pressure-sensitive adhesive layer, an intermediate layer or a film for forming a resin film) provided thereon; corona discharge treatment The surface may be subjected to oxidation treatment such as electron beam irradiation treatment, plasma treatment, ozone / ultraviolet irradiation treatment, flame treatment, chromic acid treatment, hot air treatment, and the like. In addition, the substrate may be one whose surface is primed.
 基材は、公知の方法で製造できる。例えば、樹脂を含有する基材は、前記樹脂を含有する樹脂組成物を成形することで製造できる。 The substrate can be produced by a known method. For example, the base material containing resin can be manufactured by shape | molding the resin composition containing the said resin.
○粘着剤層
 前記粘着剤層は、シート状又はフィルム状であり、粘着剤を含有する。
 前記粘着剤としては、例えば、アクリル系樹脂、ウレタン系樹脂、ゴム系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリビニルエーテル、ポリカーボネート、エステル系樹脂等の粘着性樹脂が挙げられ、アクリル系樹脂が好ましい。
○ Pressure-sensitive adhesive layer The pressure-sensitive adhesive layer is in the form of a sheet or a film, and contains a pressure-sensitive adhesive.
Examples of the pressure-sensitive adhesive include pressure-sensitive resins such as acrylic resins, urethane resins, rubber resins, silicone resins, epoxy resins, polyvinyl ethers, polycarbonates, and ester resins. Acrylic resins are preferable. .
 なお、本発明において、「粘着性樹脂」とは、粘着性を有する樹脂と、接着性を有する樹脂と、の両方を含む概念であり、例えば、樹脂自体が粘着性を有するものだけでなく、添加剤等の他の成分との併用により粘着性を示す樹脂や、熱又は水等のトリガーの存在によって接着性を示す樹脂等も含む。 In the present invention, the term "adhesive resin" is a concept including both an adhesive resin and an adhesive resin, and for example, the resin itself is not limited to one having adhesiveness. It also includes a resin that exhibits tackiness when used in combination with other components such as additives, and a resin that exhibits adhesion due to the presence of a trigger such as heat or water.
 粘着剤層は1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The pressure-sensitive adhesive layer may be formed of one layer (single layer) or may be formed of two or more layers, and in the case of two or more layers, these layers may be the same or different from one another. The combination of multiple layers is not particularly limited.
 粘着剤層の厚さは1~100μmであることが好ましく、1~60μmであることがより好ましく、1~30μmであることが特に好ましい。
 ここで、「粘着剤層の厚さ」とは、粘着剤層全体の厚さを意味し、例えば、複数層からなる粘着剤層の厚さとは、粘着剤層を構成するすべての層の合計の厚さを意味する。
The thickness of the pressure-sensitive adhesive layer is preferably 1 to 100 μm, more preferably 1 to 60 μm, and particularly preferably 1 to 30 μm.
Here, "the thickness of the pressure-sensitive adhesive layer" means the thickness of the entire pressure-sensitive adhesive layer, and for example, the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers means the total of all layers constituting the pressure-sensitive adhesive layer. Means the thickness of.
 粘着剤層は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよい。
 樹脂膜形成用フィルムがエネルギー線硬化性である場合、粘着剤層はエネルギー線を透過させるものが好ましい。
The pressure-sensitive adhesive layer may be transparent or opaque, or may be colored according to the purpose.
When the resin film-forming film is energy ray curable, the pressure-sensitive adhesive layer preferably transmits energy rays.
 粘着剤層は、エネルギー線硬化性粘着剤を用いて形成されたものであってもよいし、非エネルギー線硬化性粘着剤を用いて形成されたものであってもよい。すなわち、粘着剤層は、エネルギー線硬化性及び非エネルギー線硬化性のいずれであってもよい。エネルギー線硬化性の粘着剤層は、硬化前及び硬化後での物性を容易に調節できる。 The pressure-sensitive adhesive layer may be formed using an energy ray-curable pressure-sensitive adhesive, or may be formed using a non-energy ray-curable pressure-sensitive adhesive. That is, the pressure-sensitive adhesive layer may be either energy ray curable or non-energy ray curable. The energy ray-curable pressure-sensitive adhesive layer can easily adjust physical properties before and after curing.
<<粘着剤組成物>>
 粘着剤層は、粘着剤を含有する粘着剤組成物を用いて形成できる。例えば、粘着剤層の形成対象面に粘着剤組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に粘着剤層を形成できる。粘着剤層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。
<< Adhesive composition >>
The pressure-sensitive adhesive layer can be formed using a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive. For example, the pressure-sensitive adhesive layer can be formed on a target site by coating the pressure-sensitive adhesive composition on the surface to be formed of the pressure-sensitive adhesive layer and drying it as necessary. The more specific formation method of an adhesive layer is demonstrated in detail later with the formation method of another layer.
 粘着剤組成物の塗工は、例えば、上述の熱硬化性樹脂膜形成用組成物の塗工の場合と同じ方法で行うことができる。 The application of the pressure-sensitive adhesive composition can be performed, for example, by the same method as the application of the composition for forming a thermosetting resin film described above.
 基材上に粘着剤層を設ける場合には、例えば、基材上に粘着剤組成物を塗工し、必要に応じて乾燥させることで、基材上に粘着剤層を積層すればよい。また、基材上に粘着剤層を設ける場合には、例えば、剥離フィルム上に粘着剤組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に粘着剤層を形成しておき、この粘着剤層の露出面を、基材の一方の表面と貼り合わせることで、基材上に粘着剤層を積層してもよい。この場合の剥離フィルムは、樹脂膜形成用複合シートの製造過程のいずれかのタイミングで、取り除けばよい。 In the case of providing the pressure-sensitive adhesive layer on the substrate, for example, the pressure-sensitive adhesive composition may be coated on the substrate and dried as necessary to laminate the pressure-sensitive adhesive layer on the substrate. When the pressure-sensitive adhesive layer is provided on the substrate, for example, the pressure-sensitive adhesive composition is applied on the release film, and dried as needed to form the pressure-sensitive adhesive layer on the release film. Alternatively, the pressure-sensitive adhesive layer may be laminated on the substrate by bonding the exposed surface of the pressure-sensitive adhesive layer to one surface of the substrate. The release film in this case may be removed at any time during the manufacturing process of the composite sheet for resin film formation.
 粘着剤組成物の乾燥条件は、特に限定されないが、粘着剤組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。そして、溶媒を含有する粘着剤組成物は、例えば、70~130℃で10秒~5分の条件で乾燥させることが好ましい。 The drying conditions of the pressure-sensitive adhesive composition are not particularly limited, but when the pressure-sensitive adhesive composition contains a solvent described later, it is preferable to heat and dry. The solvent-containing pressure-sensitive adhesive composition is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes.
 粘着剤層がエネルギー線硬化性である場合、エネルギー線硬化性粘着剤を含有する粘着剤組成物、すなわち、エネルギー線硬化性の粘着剤組成物としては、例えば、非エネルギー線硬化性の粘着性樹脂(I-1a)(以下、「粘着性樹脂(I-1a)」と略記することがある)と、エネルギー線硬化性化合物と、を含有する粘着剤組成物(I-1);非エネルギー線硬化性の粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(I-2a)(以下、「粘着性樹脂(I-2a)」と略記することがある)を含有する粘着剤組成物(I-2);前記粘着性樹脂(I-2a)と、エネルギー線硬化性化合物と、を含有する粘着剤組成物(I-3)等が挙げられる。 When the pressure-sensitive adhesive layer is energy ray-curable, a pressure-sensitive adhesive composition containing an energy ray-curable pressure-sensitive adhesive, that is, an energy ray-curable pressure-sensitive adhesive composition, for example, non-energy ray-curable tackiness Pressure-sensitive adhesive composition (I-1) containing resin (I-1a) (hereinafter sometimes abbreviated as “adhesive resin (I-1a)”) and an energy ray-curable compound; non-energy Energy ray curable adhesive resin (I-2a) (hereinafter referred to as “adhesive resin (I-2a)”) wherein an unsaturated group is introduced into the side chain of the linear curable adhesive resin (I-1a) Pressure-sensitive adhesive composition (I-2) containing the abbreviation); pressure-sensitive adhesive composition (I-3) containing the adhesive resin (I-2a) and an energy ray-curable compound, etc. Can be mentioned.
<粘着剤組成物(I-1)>
 前記粘着剤組成物(I-1)は、上述の様に、非エネルギー線硬化性の粘着性樹脂(I-1a)と、エネルギー線硬化性化合物と、を含有する。
<Pressure-sensitive adhesive composition (I-1)>
As described above, the pressure-sensitive adhesive composition (I-1) contains a non-energy ray-curable adhesive resin (I-1a) and an energy ray-curable compound.
[粘着性樹脂(I-1a)]
 前記粘着性樹脂(I-1a)は、アクリル系樹脂であることが好ましい。
 前記アクリル系樹脂としては、例えば、少なくとも(メタ)アクリル酸アルキルエステル由来の構成単位を有するアクリル系重合体が挙げられる。
 前記アクリル系樹脂が有する構成単位は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[Adhesive resin (I-1a)]
The adhesive resin (I-1a) is preferably an acrylic resin.
As said acrylic resin, the acrylic polymer which has a structural unit derived from the (meth) acrylic-acid alkylester at least is mentioned, for example.
The structural unit which the said acrylic resin has may be only 1 type, may be 2 or more types, and when it is 2 or more types, those combination and ratio can be selected arbitrarily.
 前記(メタ)アクリル酸アルキルエステルとしては、例えば、アルキルエステルを構成するアルキル基の炭素数が1~20であるのものが挙げられ、前記アルキル基は、直鎖状又は分岐鎖状であることが好ましい。
 (メタ)アクリル酸アルキルエステルとして、より具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸イコシル等が挙げられる。
Examples of the (meth) acrylic acid alkyl ester include ones in which the alkyl group constituting the alkyl ester has 1 to 20 carbon atoms, and the alkyl group is linear or branched. Is preferred.
More specifically, as (meth) acrylic acid alkyl ester, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth) acrylic acid n-Butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, (meth) acrylate ) Undecyl acrylate, dodecyl (meth) acrylate (lauryl (meth) acrylate), ( Ta) tridecyl acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecyl (meth) acrylate, hexadecyl (meth) acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, Examples include octadecyl (meth) acrylate (stearyl (meth) acrylate), nonadecyl (meth) acrylate, and icosyl (meth) acrylate.
 粘着剤層の粘着力が向上する点から、前記アクリル系重合体は、前記アルキル基の炭素数が4以上である(メタ)アクリル酸アルキルエステル由来の構成単位を有することが好ましい。そして、粘着剤層の粘着力がより向上する点から、前記アルキル基の炭素数は、4~12であることが好ましく、4~8であることがより好ましい。また、前記アルキル基の炭素数が4以上である(メタ)アクリル酸アルキルエステルは、アクリル酸アルキルエステルであることが好ましい。 It is preferable that the said acryl-type polymer has a structural unit derived from the (meth) acrylic-acid alkylester whose carbon number of the said alkyl group is 4 or more from the point which the adhesive force of an adhesive layer improves. The carbon number of the alkyl group is preferably 4 to 12, and more preferably 4 to 8, in order to further improve the adhesion of the pressure-sensitive adhesive layer. The (meth) acrylic acid alkyl ester in which the number of carbon atoms of the alkyl group is 4 or more is preferably an acrylic acid alkyl ester.
 前記アクリル系重合体は、(メタ)アクリル酸アルキルエステル由来の構成単位以外に、さらに、官能基含有モノマー由来の構成単位を有することが好ましい。
 前記官能基含有モノマーとしては、例えば、前記官能基が後述する架橋剤と反応することで架橋の起点となったり、前記官能基が後述する不飽和基含有化合物中の不飽和基と反応することで、アクリル系重合体の側鎖に不飽和基の導入を可能とするものが挙げられる。
The acrylic polymer preferably further has a structural unit derived from a functional group-containing monomer, in addition to the structural unit derived from the (meth) acrylic acid alkyl ester.
As the functional group-containing monomer, for example, reaction of the functional group with a crosslinking agent described later becomes a crosslinking origin, or the functional group reacts with an unsaturated group in an unsaturated group-containing compound described later And those which make it possible to introduce an unsaturated group into the side chain of the acrylic polymer.
 官能基含有モノマー中の前記官能基としては、例えば、水酸基、カルボキシ基、アミノ基、エポキシ基等が挙げられる。
 すなわち、官能基含有モノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
As said functional group in a functional group containing monomer, a hydroxyl group, a carboxy group, an amino group, an epoxy group etc. are mentioned, for example.
That is, as a functional group containing monomer, a hydroxyl group containing monomer, a carboxy group containing monomer, an amino group containing monomer, an epoxy group containing monomer etc. are mentioned, for example.
 前記水酸基含有モノマーとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;ビニルアルコール、アリルアルコール等の非(メタ)アクリル系不飽和アルコール((メタ)アクリロイル骨格を有しない不飽和アルコール)等が挙げられる。 Examples of the hydroxyl group-containing monomer include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (meth) Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; non (meth) acrylics such as vinyl alcohol and allyl alcohol A saturated alcohol (unsaturated alcohol which does not have a (meth) acryloyl frame) etc. are mentioned.
 前記カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸(エチレン性不飽和結合を有するモノカルボン酸);フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸(エチレン性不飽和結合を有するジカルボン酸);前記エチレン性不飽和ジカルボン酸の無水物;2-カルボキシエチルメタクリレート等の(メタ)アクリル酸カルボキシアルキルエステル等が挙げられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citraconic Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the above-mentioned ethylenically unsaturated dicarboxylic acids; (meth) acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate and the like Be
 官能基含有モノマーは、水酸基含有モノマー、カルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。 The functional group-containing monomer is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, and more preferably a hydroxyl group-containing monomer.
 前記アクリル系重合体を構成する官能基含有モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The functional group-containing monomer constituting the acrylic polymer may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 前記アクリル系重合体において、官能基含有モノマー由来の構成単位の含有量は、構成単位の全量に対して、1~35質量%であることが好ましく、2~32質量%であることがより好ましく、3~30質量%であることが特に好ましい。 In the acrylic polymer, the content of the structural unit derived from the functional group-containing monomer is preferably 1 to 35% by mass, and more preferably 2 to 32% by mass, with respect to the total amount of the structural units. And 3 to 30% by mass is particularly preferable.
 前記アクリル系重合体は、(メタ)アクリル酸アルキルエステル由来の構成単位、及び官能基含有モノマー由来の構成単位以外に、さらに、他のモノマー由来の構成単位を有していてもよい。
 前記他のモノマーは、(メタ)アクリル酸アルキルエステル等と共重合可能なものであれば特に限定されない。
 前記他のモノマーとしては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、ギ酸ビニル、酢酸ビニル、アクリロニトリル、アクリルアミド等が挙げられる。
The acrylic polymer may further have a structural unit derived from another monomer in addition to the structural unit derived from the (meth) acrylic acid alkyl ester and the structural unit derived from the functional group-containing monomer.
The other monomer is not particularly limited as long as it is copolymerizable with (meth) acrylic acid alkyl ester and the like.
Examples of the other monomers include styrene, α-methylstyrene, vinyl toluene, vinyl formate, vinyl acetate, acrylonitrile, acrylamide and the like.
 前記アクリル系重合体を構成する前記他のモノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The other monomer constituting the acrylic polymer may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 前記アクリル系重合体は、上述の非エネルギー線硬化性の粘着性樹脂(I-1a)として使用できる。
 一方、前記アクリル系重合体中の官能基に、エネルギー線重合性不飽和基(エネルギー線重合性基)を有する不飽和基含有化合物を反応させたものは、上述のエネルギー線硬化性の粘着性樹脂(I-2a)として使用できる。
The acrylic polymer can be used as the above-mentioned non-energy ray curable tackifying resin (I-1a).
On the other hand, those in which the unsaturated group-containing compound having an energy ray polymerizable unsaturated group (energy ray polymerizable group) is reacted with the functional group in the acrylic polymer have the above-mentioned energy ray curable tackiness It can be used as a resin (I-2a).
 粘着剤組成物(I-1)が含有する粘着性樹脂(I-1a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The adhesive resin (I-1a) contained in the adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are optionally It can be selected.
 粘着剤組成物(I-1)において、粘着剤組成物(I-1)の総質量に対する、粘着性樹脂(I-1a)の含有量の割合は、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、15~90質量%であることが特に好ましい。 In the pressure-sensitive adhesive composition (I-1), the ratio of the content of the adhesive resin (I-1a) to the total mass of the pressure-sensitive adhesive composition (I-1) is preferably 5 to 99% by mass 10 to 95% by mass is more preferable, and 15 to 90% by mass is particularly preferable.
[エネルギー線硬化性化合物]
 粘着剤組成物(I-1)が含有する前記エネルギー線硬化性化合物としては、エネルギー線重合性不飽和基を有し、エネルギー線の照射により硬化可能なモノマー又はオリゴマーが挙げられる。
 エネルギー線硬化性化合物のうち、モノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-へキサンジオール(メタ)アクリレート等の多価(メタ)アクリレート;ウレタン(メタ)アクリレート;ポリエステル(メタ)アクリレート;ポリエーテル(メタ)アクリレート;エポキシ(メタ)アクリレート等が挙げられる。
 エネルギー線硬化性化合物のうち、オリゴマーとしては、例えば、上記で例示したモノマーが重合してなるオリゴマー等が挙げられる。
 エネルギー線硬化性化合物は、分子量が比較的大きく、粘着剤層の貯蔵弾性率を低下させにくいという点では、ウレタン(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマーが好ましい。
[Energy ray curable compound]
Examples of the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1) include monomers or oligomers which have an energy ray-polymerizable unsaturated group and can be cured by irradiation of energy rays.
Among the energy ray-curable compounds, as a monomer, for example, trimethylolpropane tri (meth) acrylate, pentaerythritol (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4 -Multivalent (meth) acrylates such as -butylene glycol di (meth) acrylate and 1,6-hexanediol (meth) acrylate; urethane (meth) acrylate; polyester (meth) acrylate; polyether (meth) acrylate; epoxy ( Meta) acrylate etc. are mentioned.
Among the energy ray-curable compounds, examples of the oligomers include oligomers formed by polymerization of the monomers exemplified above.
The energy ray-curable compound is preferably a urethane (meth) acrylate or a urethane (meth) acrylate oligomer in that the molecular weight is relatively large and the storage elastic modulus of the pressure-sensitive adhesive layer is hardly reduced.
 粘着剤組成物(I-1)が含有する前記エネルギー線硬化性化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
 前記粘着剤組成物(I-1)において、粘着剤組成物(I-1)の総質量に対する、前記エネルギー線硬化性化合物の含有量の割合は、1~95質量%であることが好ましく、5~90質量%であることがより好ましく、10~85質量%であることが特に好ましい。 In the pressure-sensitive adhesive composition (I-1), the ratio of the content of the energy ray-curable compound to the total mass of the pressure-sensitive adhesive composition (I-1) is preferably 1 to 95% by mass. The content is more preferably 5 to 90% by mass, and particularly preferably 10 to 85% by mass.
[架橋剤]
 粘着性樹脂(I-1a)として、(メタ)アクリル酸アルキルエステル由来の構成単位以外に、さらに、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、粘着剤組成物(I-1)は、さらに架橋剤を含有することが好ましい。
[Crosslinking agent]
When the acrylic polymer having a structural unit derived from a functional group-containing monomer in addition to a structural unit derived from a (meth) acrylic acid alkyl ester is used as the adhesive resin (I-1a), a pressure-sensitive adhesive composition ( It is preferable that I-1) further contains a crosslinking agent.
 前記架橋剤は、例えば、前記官能基と反応して、粘着性樹脂(I-1a)同士を架橋するものである。
 架橋剤としては、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのアダクト体等のイソシアネート系架橋剤(イソシアネート基を有する架橋剤);エチレングリコールグリシジルエーテル等のエポキシ系架橋剤(グリシジル基を有する架橋剤);ヘキサ[1-(2-メチル)-アジリジニル]トリフオスファトリアジン等のアジリジン系架橋剤(アジリジニル基を有する架橋剤);アルミニウムキレート等の金属キレート系架橋剤(金属キレート構造を有する架橋剤);イソシアヌレート系架橋剤(イソシアヌル酸骨格を有する架橋剤)等が挙げられる。
 粘着剤の凝集力を向上させて粘着剤層の粘着力を向上させる点、及び入手が容易である等の点から、架橋剤はイソシアネート系架橋剤であることが好ましい。
The crosslinking agent, for example, reacts with the functional group to crosslink the adhesive resin (I-1a).
Crosslinking agents include, for example, tolylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, isocyanate-based crosslinking agents such as adducts of these diisocyanates (crosslinking agents having an isocyanate group); epoxy-based crosslinking agents such as ethylene glycol glycidyl ether ( Crosslinking agent having glycidyl group); Aziridine type crosslinking agent such as hexa [1- (2-methyl) -aziridinyl] trifosphatriazine (crosslinking agent having aziridinyl group); Metal chelate type crosslinking agent such as aluminum chelate (metal Crosslinkers having a chelate structure); isocyanurate crosslinkers (crosslinkers having an isocyanuric acid skeleton) and the like.
The cross-linking agent is preferably an isocyanate-based cross-linking agent from the viewpoint of improving the cohesion of the pressure-sensitive adhesive to improve the adhesion of the pressure-sensitive adhesive layer and being easy to obtain.
 粘着剤組成物(I-1)が含有する架橋剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The crosslinking agent contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be optionally selected.
 前記粘着剤組成物(I-1)において、架橋剤の含有量は、粘着性樹脂(I-1a)の含有量100質量部に対して、0.01~50質量部であることが好ましく、0.1~20質量部であることがより好ましく、0.3~15質量部であることが特に好ましい。 In the pressure-sensitive adhesive composition (I-1), the content of the crosslinking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-1a), The amount is more preferably 0.1 to 20 parts by mass, and particularly preferably 0.3 to 15 parts by mass.
[光重合開始剤]
 粘着剤組成物(I-1)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する粘着剤組成物(I-1)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。
[Photoinitiator]
The pressure-sensitive adhesive composition (I-1) may further contain a photopolymerization initiator. The pressure-sensitive adhesive composition (I-1) containing a photopolymerization initiator sufficiently proceeds curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
 前記光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール等のベンゾイン化合物;アセトフェノン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のアセトフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;ベンジルフェニルスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド化合物;1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール化合物;アゾビスイソブチロニトリル等のアゾ化合物;チタノセン等のチタノセン化合物;チオキサントン等のチオキサントン化合物;パーオキサイド化合物;ジアセチル等のジケトン化合物;ベンジル;ジベンジル;ベンゾフェノン;2,4-ジエチルチオキサントン;1,2-ジフェニルメタン;2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン;2-クロロアントラキノン等が挙げられる。
 また、前記光重合開始剤としては、例えば、1-クロロアントラキノン等のキノン化合物;アミン等の光増感剤等を用いることもできる。
Examples of the photopolymerization initiator include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate and benzoin dimethyl ketal; acetophenone, 2-hydroxy Acetophenone compounds such as -2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4,6-trimethylbenzoyl) phenyl phosphine Oxides, acyl phosphine oxide compounds such as 2,4,6-trimethyl benzoyl diphenyl phosphine oxide; sulfides such as benzyl phenyl sulfide and tetramethylthiuram monosulfide Substances; α-ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; azo compounds such as azobisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; diketone compounds such as diacetyl; Benzophenone; 2,4-diethylthioxanthone; 1,2-diphenylmethane; 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone; 2-chloroanthraquinone and the like.
Further, as the photopolymerization initiator, for example, quinone compounds such as 1-chloroanthraquinone and the like; photosensitizers such as amine and the like can also be used.
 粘着剤組成物(I-1)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 粘着剤組成物(I-1)において、光重合開始剤の含有量は、前記エネルギー線硬化性化合物の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。 In the pressure-sensitive adhesive composition (I-1), the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the energy ray-curable compound, and 0 The content is more preferably in the range of 03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
[その他の添加剤]
 粘着剤組成物(I-1)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
 前記その他の添加剤としては、例えば、帯電防止剤、酸化防止剤、軟化剤(可塑剤)、充填材(フィラー)、防錆剤、着色剤(顔料、染料)、増感剤、粘着付与剤、反応遅延剤、架橋促進剤(触媒)等の公知の添加剤が挙げられる。
 なお、反応遅延剤とは、例えば、粘着剤組成物(I-1)中に混入している触媒の作用によって、保存中の粘着剤組成物(I-1)において、目的としない架橋反応が進行するのを抑制するものである。反応遅延剤としては、例えば、触媒に対するキレートによってキレート錯体を形成するものが挙げられ、より具体的には、1分子中にカルボニル基(-C(=O)-)を2個以上有するものが挙げられる。
[Other additives]
The pressure-sensitive adhesive composition (I-1) may contain other additives which do not correspond to any of the components described above, as long as the effects of the present invention are not impaired.
Examples of the other additives include antistatic agent, antioxidant, softener (plasticizer), filler (filler), rust inhibitor, coloring agent (pigment, dye), sensitizer, tackifier Well-known additives, such as a reaction retarder, a crosslinking accelerator (catalyst), etc. are mentioned.
The reaction retarder means, for example, an unintended cross-linking reaction in the adhesive composition (I-1) during storage by the action of a catalyst mixed in the adhesive composition (I-1). It is to control progress. The reaction retarder includes, for example, those which form a chelate complex by chelating to a catalyst, and more specifically, those having two or more carbonyl groups (-C (= O)-) in one molecule It can be mentioned.
 粘着剤組成物(I-1)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The other additives contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 粘着剤組成物(I-1)のその他の添加剤の含有量は、特に限定されず、その種類に応じて適宜選択すればよい。 The content of the other additives in the pressure-sensitive adhesive composition (I-1) is not particularly limited, and may be appropriately selected according to the type.
[溶媒]
 粘着剤組成物(I-1)は、溶媒を含有していてもよい。粘着剤組成物(I-1)は、溶媒を含有していることで、塗工対象面への塗工適性が向上する。
[solvent]
The pressure-sensitive adhesive composition (I-1) may contain a solvent. The pressure-sensitive adhesive composition (I-1) contains a solvent, whereby the coating suitability to the surface to be coated is improved.
 前記溶媒は有機溶媒であることが好ましく、前記有機溶媒としては、例えば、メチルエチルケトン、アセトン等のケトン;酢酸エチル等のエステル(カルボン酸エステル);テトラヒドロフラン、ジオキサン等のエーテル;シクロヘキサン、n-ヘキサン等の脂肪族炭化水素;トルエン、キシレン等の芳香族炭化水素;1-プロパノール、2-プロパノール等のアルコール等が挙げられる。 The solvent is preferably an organic solvent, and examples of the organic solvent include ketones such as methyl ethyl ketone and acetone; esters such as ethyl acetate (carboxylic acid esters); ethers such as tetrahydrofuran and dioxane; cyclohexane, n-hexane, etc. Aliphatic hydrocarbons; aromatic hydrocarbons such as toluene and xylene; alcohols such as 1-propanol and 2-propanol.
 前記溶媒としては、例えば、粘着性樹脂(I-1a)の製造時に用いたものを粘着性樹脂(I-1a)から取り除かずに、そのまま粘着剤組成物(I-1)において用いてもよいし、粘着性樹脂(I-1a)の製造時に用いたものと同一又は異なる種類の溶媒を、粘着剤組成物(I-1)の製造時に別途添加してもよい。 As the solvent, for example, one used in the production of the adhesive resin (I-1a) may be used as it is in the adhesive composition (I-1) without removing it from the adhesive resin (I-1a) Alternatively, the same or a different type of solvent as that used in the production of the adhesive resin (I-1a) may be separately added in the production of the pressure-sensitive adhesive composition (I-1).
 粘着剤組成物(I-1)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The solvent contained in the pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 粘着剤組成物(I-1)の溶媒の含有量は、特に限定されず、適宜調節すればよい。 The content of the solvent in the pressure-sensitive adhesive composition (I-1) is not particularly limited, and may be appropriately adjusted.
<粘着剤組成物(I-2)>
 前記粘着剤組成物(I-2)は、上述の様に、非エネルギー線硬化性の粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(I-2a)を含有する。
<Adhesive composition (I-2)>
The pressure-sensitive adhesive composition (I-2) is, as described above, an energy ray-curable adhesive resin in which an unsaturated group is introduced into the side chain of the non-energy ray-curable adhesive resin (I-1a). (I-2a) is contained.
[粘着性樹脂(I-2a)]
 前記粘着性樹脂(I-2a)は、例えば、粘着性樹脂(I-1a)中の官能基に、エネルギー線重合性不飽和基を有する不飽和基含有化合物を反応させることで得られる。
[Adhesive resin (I-2a)]
The adhesive resin (I-2a) can be obtained, for example, by reacting a functional group in the adhesive resin (I-1a) with an unsaturated group-containing compound having an energy beam polymerizable unsaturated group.
 前記不飽和基含有化合物は、前記エネルギー線重合性不飽和基以外に、さらに粘着性樹脂(I-1a)中の官能基と反応することで、粘着性樹脂(I-1a)と結合可能な基を有する化合物である。
 前記エネルギー線重合性不飽和基としては、例えば、(メタ)アクリロイル基、ビニル基(エテニル基)、アリル基(2-プロペニル基)等が挙げられ、(メタ)アクリロイル基が好ましい。
 粘着性樹脂(I-1a)中の官能基と結合可能な基としては、例えば、水酸基又はアミノ基と結合可能なイソシアネート基及びグリシジル基、並びにカルボキシ基又はエポキシ基と結合可能な水酸基及びアミノ基等が挙げられる。
The unsaturated group-containing compound can be bonded to the adhesive resin (I-1a) by further reacting with the functional group in the adhesive resin (I-1a) in addition to the energy beam polymerizable unsaturated group It is a compound having a group.
Examples of the energy ray polymerizable unsaturated group include (meth) acryloyl group, vinyl group (ethenyl group), allyl group (2-propenyl group) and the like, and (meth) acryloyl group is preferable.
Examples of the group capable of binding to a functional group in the adhesive resin (I-1a) include, for example, an isocyanate group and a glycidyl group capable of binding to a hydroxyl group or an amino group, and a hydroxy group and amino group capable of binding to a carboxy group or an epoxy group. Etc.
 前記不飽和基含有化合物としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート、グリシジル(メタ)アクリレート等が挙げられる。 Examples of the unsaturated group-containing compound include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, glycidyl (meth) acrylate and the like.
 粘着剤組成物(I-2)が含有する粘着性樹脂(I-2a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The adhesive resin (I-2a) contained in the adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are optionally It can be selected.
 粘着剤組成物(I-2)において、粘着剤組成物(I-2)の総質量に対する、粘着性樹脂(I-2a)の含有量の割合は、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、10~90質量%であることが特に好ましい。 In the pressure-sensitive adhesive composition (I-2), the ratio of the content of the adhesive resin (I-2a) to the total mass of the pressure-sensitive adhesive composition (I-2) is preferably 5 to 99% by mass It is more preferably 10 to 95% by mass, and particularly preferably 10 to 90% by mass.
[架橋剤]
 粘着性樹脂(I-2a)として、例えば、粘着性樹脂(I-1a)におけるものと同様の、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、粘着剤組成物(I-2)は、さらに架橋剤を含有していてもよい。
[Crosslinking agent]
When the above-mentioned acrylic polymer having a structural unit derived from a functional group-containing monomer similar to that in the adhesive resin (I-1a) is used as the adhesive resin (I-2a), for example, I-2) may further contain a crosslinking agent.
 粘着剤組成物(I-2)における前記架橋剤としては、粘着剤組成物(I-1)における架橋剤と同じものが挙げられる。
 粘着剤組成物(I-2)が含有する架橋剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
Examples of the crosslinking agent in the pressure-sensitive adhesive composition (I-2) include the same as the crosslinking agent in the pressure-sensitive adhesive composition (I-1).
The crosslinking agent contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be optionally selected.
 前記粘着剤組成物(I-2)において、架橋剤の含有量は、粘着性樹脂(I-2a)の含有量100質量部に対して、0.01~50質量部であることが好ましく、0.1~20質量部であることがより好ましく、0.3~15質量部であることが特に好ましい。 In the pressure-sensitive adhesive composition (I-2), the content of the crosslinking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-2a), The amount is more preferably 0.1 to 20 parts by mass, and particularly preferably 0.3 to 15 parts by mass.
[光重合開始剤]
 粘着剤組成物(I-2)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する粘着剤組成物(I-2)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。
[Photoinitiator]
The pressure-sensitive adhesive composition (I-2) may further contain a photopolymerization initiator. The pressure-sensitive adhesive composition (I-2) containing a photopolymerization initiator sufficiently proceeds a curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
 粘着剤組成物(I-2)における前記光重合開始剤としては、粘着剤組成物(I-1)における光重合開始剤と同じものが挙げられる。
 粘着剤組成物(I-2)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The photopolymerization initiator in the pressure-sensitive adhesive composition (I-2) may be the same as the photopolymerization initiator in the pressure-sensitive adhesive composition (I-1).
The photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 粘着剤組成物(I-2)において、光重合開始剤の含有量は、粘着性樹脂(I-2a)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。 In the pressure-sensitive adhesive composition (I-2), the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-2a) The amount is more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
[その他の添加剤]
 粘着剤組成物(I-2)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
 粘着剤組成物(I-2)における前記その他の添加剤としては、粘着剤組成物(I-1)におけるその他の添加剤と同じものが挙げられる。
 粘着剤組成物(I-2)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[Other additives]
The pressure-sensitive adhesive composition (I-2) may contain other additives which do not correspond to any of the components described above, as long as the effects of the present invention are not impaired.
Examples of the other additives in the pressure-sensitive adhesive composition (I-2) include the same as the other additives in the pressure-sensitive adhesive composition (I-1).
The other additives contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be optionally selected.
 粘着剤組成物(I-2)のその他の添加剤の含有量は、特に限定されず、その種類に応じて適宜選択すればよい。 The content of the other additives in the pressure-sensitive adhesive composition (I-2) is not particularly limited, and may be appropriately selected according to the type.
[溶媒]
 粘着剤組成物(I-2)は、粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
 粘着剤組成物(I-2)における前記溶媒としては、粘着剤組成物(I-1)における溶媒と同じものが挙げられる。
 粘着剤組成物(I-2)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 粘着剤組成物(I-2)の溶媒の含有量は、特に限定されず、適宜調節すればよい。
[solvent]
The pressure-sensitive adhesive composition (I-2) may contain a solvent for the same purpose as the pressure-sensitive adhesive composition (I-1).
The solvent in the pressure-sensitive adhesive composition (I-2) may be the same as the solvent in the pressure-sensitive adhesive composition (I-1).
The solvent contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
The content of the solvent in the pressure-sensitive adhesive composition (I-2) is not particularly limited, and may be appropriately adjusted.
<粘着剤組成物(I-3)>
 前記粘着剤組成物(I-3)は、上述の様に、前記粘着性樹脂(I-2a)と、エネルギー線硬化性化合物と、を含有する。
<Pressure-sensitive adhesive composition (I-3)>
The pressure-sensitive adhesive composition (I-3) contains, as described above, the pressure-sensitive adhesive resin (I-2a) and an energy ray-curable compound.
 粘着剤組成物(I-3)において、粘着剤組成物(I-3)の総質量に対する、粘着性樹脂(I-2a)の含有量の割合は、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、15~90質量%であることが特に好ましい。 In the pressure-sensitive adhesive composition (I-3), the ratio of the content of the adhesive resin (I-2a) to the total mass of the pressure-sensitive adhesive composition (I-3) is preferably 5 to 99% by mass 10 to 95% by mass is more preferable, and 15 to 90% by mass is particularly preferable.
[エネルギー線硬化性化合物]
 粘着剤組成物(I-3)が含有する前記エネルギー線硬化性化合物としては、エネルギー線重合性不飽和基を有し、エネルギー線の照射により硬化可能なモノマー及びオリゴマーが挙げられ、粘着剤組成物(I-1)が含有するエネルギー線硬化性化合物と同じものが挙げられる。
 粘着剤組成物(I-3)が含有する前記エネルギー線硬化性化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[Energy ray curable compound]
Examples of the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-3) include monomers and oligomers which have an energy ray-polymerizable unsaturated group and can be cured by irradiation of energy rays, and the pressure-sensitive adhesive composition The same as the energy ray-curable compound contained in the compound (I-1) can be mentioned.
The energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
 前記粘着剤組成物(I-3)において、前記エネルギー線硬化性化合物の含有量は、粘着性樹脂(I-2a)の含有量100質量部に対して、0.01~300質量部であることが好ましく、0.03~200質量部であることがより好ましく、0.05~100質量部であることが特に好ましい。 In the pressure-sensitive adhesive composition (I-3), the content of the energy ray-curable compound is 0.01 to 300 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-2a) Is more preferably 0.03 to 200 parts by mass, and particularly preferably 0.05 to 100 parts by mass.
[光重合開始剤]
 粘着剤組成物(I-3)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する粘着剤組成物(I-3)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。
[Photoinitiator]
The pressure-sensitive adhesive composition (I-3) may further contain a photopolymerization initiator. The pressure-sensitive adhesive composition (I-3) containing a photopolymerization initiator sufficiently proceeds curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
 粘着剤組成物(I-3)における前記光重合開始剤としては、粘着剤組成物(I-1)における光重合開始剤と同じものが挙げられる。
 粘着剤組成物(I-3)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The photopolymerization initiator in the pressure-sensitive adhesive composition (I-3) may be the same as the photopolymerization initiator in the pressure-sensitive adhesive composition (I-1).
The photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 粘着剤組成物(I-3)において、光重合開始剤の含有量は、粘着性樹脂(I-2a)及び前記エネルギー線硬化性化合物の総含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。 In the pressure-sensitive adhesive composition (I-3), the content of the photopolymerization initiator is 0.01 to 100 parts by mass relative to the total content of the adhesive resin (I-2a) and the energy ray-curable compound. The amount is preferably 20 parts by mass, more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
[その他の添加剤]
 粘着剤組成物(I-3)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
 前記その他の添加剤としては、粘着剤組成物(I-1)におけるその他の添加剤と同じものが挙げられる。
 粘着剤組成物(I-3)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[Other additives]
The pressure-sensitive adhesive composition (I-3) may contain other additives which do not correspond to any of the components described above, as long as the effects of the present invention are not impaired.
Examples of the other additives include the same as the other additives in the pressure-sensitive adhesive composition (I-1).
The other additives contained in the pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be optionally selected.
 粘着剤組成物(I-3)のその他の添加剤の含有量は、特に限定されず、その種類に応じて適宜選択すればよい。 The content of the other additives in the pressure-sensitive adhesive composition (I-3) is not particularly limited, and may be appropriately selected according to the type.
[溶媒]
 粘着剤組成物(I-3)は、粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
 粘着剤組成物(I-3)における前記溶媒としては、粘着剤組成物(I-1)における溶媒と同じものが挙げられる。
 粘着剤組成物(I-3)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 粘着剤組成物(I-3)の溶媒の含有量は、特に限定されず、適宜調節すればよい。
[solvent]
The pressure-sensitive adhesive composition (I-3) may contain a solvent for the same purpose as the pressure-sensitive adhesive composition (I-1).
The solvent in the pressure-sensitive adhesive composition (I-3) may be the same as the solvent in the pressure-sensitive adhesive composition (I-1).
The solvent contained in the pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
The content of the solvent in the pressure-sensitive adhesive composition (I-3) is not particularly limited, and may be appropriately adjusted.
<粘着剤組成物(I-1)~(I-3)以外の粘着剤組成物>
 ここまでは、粘着剤組成物(I-1)、粘着剤組成物(I-2)及び粘着剤組成物(I-3)について主に説明したが、これらの含有成分として説明したものは、これら3種の粘着剤組成物以外の全般的な粘着剤組成物(本明細書においては、「粘着剤組成物(I-1)~(I-3)以外の粘着剤組成物」と称する)でも、同様に用いることができる。
<Adhesive Composition Other than Adhesive Composition (I-1) to (I-3)>
Up to this point, the pressure-sensitive adhesive composition (I-1), the pressure-sensitive adhesive composition (I-2) and the pressure-sensitive adhesive composition (I-3) have been mainly described, but those described as the components thereof are General pressure-sensitive adhesive compositions other than these three pressure-sensitive adhesive compositions (herein referred to as "pressure-sensitive adhesive compositions other than pressure-sensitive adhesive compositions (I-1) to (I-3)") But it can be used as well.
 粘着剤組成物(I-1)~(I-3)以外の粘着剤組成物としては、エネルギー線硬化性の粘着剤組成物以外に、非エネルギー線硬化性の粘着剤組成物も挙げられる。
 非エネルギー線硬化性の粘着剤組成物としては、例えば、アクリル系樹脂、ウレタン系樹脂、ゴム系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリビニルエーテル、ポリカーボネート、エステル系樹脂等の、非エネルギー線硬化性の粘着性樹脂(I-1a)を含有する粘着剤組成物(I-4)が挙げられ、アクリル系樹脂を含有するものが好ましい。
As the pressure-sensitive adhesive composition other than the pressure-sensitive adhesive compositions (I-1) to (I-3), in addition to the energy ray-curable pressure-sensitive adhesive composition, non-energy ray-curable pressure-sensitive adhesive compositions can also be mentioned.
As a non-energy ray curable pressure-sensitive adhesive composition, for example, non-energy ray curing such as acrylic resin, urethane resin, rubber resin, silicone resin, epoxy resin, polyvinyl ether, polycarbonate, ester resin, etc. And the pressure-sensitive adhesive composition (I-4) containing the adhesive resin (I-1a), and those containing an acrylic resin are preferable.
 粘着剤組成物(I-1)~(I-3)以外の粘着剤組成物は、1種又は2種以上の架橋剤を含有することが好ましく、その含有量は、上述の粘着剤組成物(I-1)等の場合と同様とすることができる。 The pressure-sensitive adhesive composition other than the pressure-sensitive adhesive compositions (I-1) to (I-3) preferably contains one or more crosslinking agents, and the content thereof is the pressure-sensitive adhesive composition described above The same can be applied to the case of (I-1) and the like.
<粘着剤組成物(I-4)>
 粘着剤組成物(I-4)で好ましいものとしては、例えば、前記粘着性樹脂(I-1a)と、架橋剤と、を含有するものが挙げられる。
<Pressure-sensitive adhesive composition (I-4)>
Preferred examples of the pressure-sensitive adhesive composition (I-4) include those containing the above-mentioned adhesive resin (I-1a) and a crosslinking agent.
[粘着性樹脂(I-1a)]
 粘着剤組成物(I-4)における粘着性樹脂(I-1a)としては、粘着剤組成物(I-1)における粘着性樹脂(I-1a)と同じものが挙げられる。
 粘着剤組成物(I-4)が含有する粘着性樹脂(I-1a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[Adhesive resin (I-1a)]
Examples of the adhesive resin (I-1a) in the adhesive composition (I-4) include the same ones as the adhesive resin (I-1a) in the adhesive composition (I-1).
The adhesive resin (I-1a) contained in the adhesive composition (I-4) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are optionally It can be selected.
 粘着剤組成物(I-4)において、粘着剤組成物(I-4)の総質量に対する、粘着性樹脂(I-1a)の含有量の割合は、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、15~90質量%であることが特に好ましい。 In the pressure-sensitive adhesive composition (I-4), the ratio of the content of the adhesive resin (I-1a) to the total mass of the pressure-sensitive adhesive composition (I-4) is preferably 5 to 99% by mass 10 to 95% by mass is more preferable, and 15 to 90% by mass is particularly preferable.
[架橋剤]
 粘着性樹脂(I-1a)として、(メタ)アクリル酸アルキルエステル由来の構成単位以外に、さらに、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、粘着剤組成物(I-4)は、さらに架橋剤を含有することが好ましい。
[Crosslinking agent]
When the acrylic polymer having a structural unit derived from a functional group-containing monomer in addition to a structural unit derived from a (meth) acrylic acid alkyl ester is used as the adhesive resin (I-1a), a pressure-sensitive adhesive composition ( It is preferable that I-4) further contains a crosslinking agent.
 粘着剤組成物(I-4)における架橋剤としては、粘着剤組成物(I-1)における架橋剤と同じものが挙げられる。
 粘着剤組成物(I-4)が含有する架橋剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
Examples of the crosslinking agent in the pressure-sensitive adhesive composition (I-4) include the same as the crosslinking agents in the pressure-sensitive adhesive composition (I-1).
The crosslinking agent contained in the pressure-sensitive adhesive composition (I-4) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be optionally selected.
 前記粘着剤組成物(I-4)において、架橋剤の含有量は、粘着性樹脂(I-1a)の含有量100質量部に対して、0.01~50質量部であることが好ましく、0.1~47質量部であることがより好ましく、0.3~44質量部であることが特に好ましい。 In the pressure-sensitive adhesive composition (I-4), the content of the crosslinking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-1a), The amount is more preferably 0.1 to 47 parts by mass, and particularly preferably 0.3 to 44 parts by mass.
[その他の添加剤]
 粘着剤組成物(I-4)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
 前記その他の添加剤としては、粘着剤組成物(I-1)におけるその他の添加剤と同じものが挙げられる。
 粘着剤組成物(I-4)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[Other additives]
The pressure-sensitive adhesive composition (I-4) may contain other additives which do not correspond to any of the components described above, as long as the effects of the present invention are not impaired.
Examples of the other additives include the same as the other additives in the pressure-sensitive adhesive composition (I-1).
The other additives contained in the pressure-sensitive adhesive composition (I-4) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be optionally selected.
 粘着剤組成物(I-4)のその他の添加剤の含有量は、特に限定されず、その種類に応じて適宜選択すればよい。 The content of the other additives in the pressure-sensitive adhesive composition (I-4) is not particularly limited, and may be appropriately selected according to the type.
[溶媒]
 粘着剤組成物(I-4)は、粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
 粘着剤組成物(I-4)における前記溶媒としては、粘着剤組成物(I-1)における溶媒と同じものが挙げられる。
 粘着剤組成物(I-4)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 粘着剤組成物(I-4)の溶媒の含有量は、特に限定されず、適宜調節すればよい。
[solvent]
The pressure-sensitive adhesive composition (I-4) may contain a solvent for the same purpose as the pressure-sensitive adhesive composition (I-1).
The solvent in the pressure-sensitive adhesive composition (I-4) may be the same as the solvent in the pressure-sensitive adhesive composition (I-1).
The solvent contained in the pressure-sensitive adhesive composition (I-4) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
The content of the solvent in the pressure-sensitive adhesive composition (I-4) is not particularly limited, and may be appropriately adjusted.
 本発明の樹脂膜形成用複合シートにおいては、後述する樹脂膜形成用フィルムがエネルギー線硬化性である場合、粘着剤層は非エネルギー線硬化性であることが好ましい。これは、粘着剤層がエネルギー線硬化性であると、エネルギー線の照射によって樹脂膜形成用フィルムを硬化させるときに、粘着剤層も同時に硬化するのを抑制できないことがあるためである。粘着剤層が樹脂膜形成用フィルムと同時に硬化してしまうと、樹脂膜形成用フィルムの硬化物及び粘着剤層がこれらの界面において剥離不能な程度に貼り付いてしまうことがある。その場合、樹脂膜形成用フィルムの硬化物、すなわち樹脂膜を裏面に備えた半導体チップ(すなわち樹脂膜付き半導体チップ)を、粘着剤層の硬化物を備えた支持シートから剥離させることが困難となり、樹脂膜付き半導体チップを正常にピックアップできなくなってしまう。本発明における支持シートで、粘着剤層を非エネルギー線硬化性のものとすることで、このような不具合を確実に回避でき、樹脂膜付き半導体チップをより容易にピックアップできる。 In the composite sheet for resin film formation of the present invention, when the film for resin film formation to be described later is energy ray curable, the pressure-sensitive adhesive layer is preferably non-energy ray curable. This is because when the pressure-sensitive adhesive layer is energy beam curable, when the resin film-forming film is cured by irradiation with energy rays, it may not be possible to suppress the pressure-sensitive adhesive layer from being cured simultaneously. When the pressure-sensitive adhesive layer is cured simultaneously with the resin film-forming film, the cured product of the resin film-forming film and the pressure-sensitive adhesive layer may stick to such an extent that they can not be peeled off at these interfaces. In that case, it becomes difficult to peel off the cured product of the resin film-forming film, that is, the semiconductor chip having the resin film on the back surface (that is, the semiconductor chip with a resin film) from the support sheet provided with the cured product of the pressure sensitive adhesive layer. The resin film-coated semiconductor chip can not be properly picked up. By making the adhesive layer non-energy ray curable in the support sheet of the present invention, such a defect can be reliably avoided, and the semiconductor chip with a resin film can be picked up more easily.
 ここでは、粘着剤層が非エネルギー線硬化性である場合の効果について説明したが、支持シートの樹脂膜形成用フィルムと直接接触している層が粘着剤層以外の層であっても、この層が非エネルギー線硬化性であれば、同様の効果を奏する。 Here, although the effect when the pressure-sensitive adhesive layer is non-energy ray curable has been described, even if the layer in direct contact with the resin film-forming film of the support sheet is a layer other than the pressure-sensitive adhesive layer, If the layer is non-energy radiation curable, the same effect can be obtained.
<<粘着剤組成物の製造方法>>
 粘着剤組成物(I-1)~(I-3)や、粘着剤組成物(I-4)等の粘着剤組成物(I-1)~(I-3)以外の粘着剤組成物は、前記粘着剤と、必要に応じて前記粘着剤以外の成分等の、粘着剤組成物を構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
<< Method of producing pressure-sensitive adhesive composition >>
Pressure-sensitive adhesive compositions other than pressure-sensitive adhesive compositions (I-1) to (I-3) and pressure-sensitive adhesive compositions (I-1) to (I-3) such as pressure-sensitive adhesive composition (I-4) It is obtained by blending the pressure-sensitive adhesive and, if necessary, each component for constituting the pressure-sensitive adhesive composition, such as components other than the pressure-sensitive adhesive.
There is no particular limitation on the order of addition of each component at the time of blending, and two or more components may be added simultaneously.
When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by previously diluting any compounding component other than the solvent A solvent may be used by mixing with these compounding ingredients without storage.
The method of mixing each component at the time of compounding is not particularly limited, and a method of mixing by rotating a stirrer or a stirring blade, etc .; a method of mixing using a mixer; a method of adding ultrasonic waves and mixing, etc. It may be selected as appropriate.
The temperature and time of addition and mixing of the respective components are not particularly limited as long as the respective blended components do not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
◇樹脂膜形成用複合シートの製造方法
 本発明の樹脂膜形成用複合シートは、上述の各層を対応する位置関係となるように順次積層することで製造できる。各層の形成方法は、先に説明したとおりである。
 例えば、支持シートを製造するときに、基材上に粘着剤層を積層する場合には、基材上に上述の粘着剤組成物を塗工し、必要に応じて乾燥させればよい。
Method for Producing Composite Sheet for Forming Resin Film The composite sheet for forming a resin film of the present invention can be produced by sequentially laminating the above-described layers so as to have a corresponding positional relationship. The method of forming each layer is as described above.
For example, in the case of laminating a pressure-sensitive adhesive layer on a substrate when manufacturing a support sheet, the above-mentioned pressure-sensitive adhesive composition may be coated on the substrate and dried as necessary.
 一方、例えば、基材上に積層済みの粘着剤層の上に、さらに樹脂膜形成用フィルムを積層する場合には、粘着剤層上に樹脂膜形成用組成物を塗工して、樹脂膜形成用フィルムを直接形成することが可能である。樹脂膜形成用フィルム以外の層も、この層を形成するための組成物を用いて、同様の方法で、粘着剤層の上にこの層を積層できる。このように、いずれかの組成物を用いて、連続する2層の積層構造を形成する場合には、前記組成物から形成された層の上に、さらに組成物を塗工して新たに層を形成することが可能である。ただし、これら2層のうちの後から積層する層は、別の剥離フィルム上に前記組成物を用いてあらかじめ形成しておき、この形成済みの層の前記剥離フィルムと接触している側とは反対側の露出面を、既に形成済みの残りの層の露出面と貼り合わせることで、連続する2層の積層構造を形成することが好ましい。このとき、前記組成物は、剥離フィルムの剥離処理面に塗工することが好ましい。剥離フィルムは、積層構造の形成後、必要に応じて取り除けばよい。 On the other hand, for example, in the case of further laminating a film for resin film formation on the pressure-sensitive adhesive layer laminated on the substrate, the composition for resin film formation is coated on the pressure-sensitive adhesive layer, and the resin film is formed. It is possible to form the forming film directly. A layer other than the film for resin film formation can also laminate this layer on an adhesive layer by the same method using the composition for forming this layer. As described above, in the case of forming a continuous two-layer laminated structure using any of the compositions, the composition is further coated on the layer formed of the composition to form a new layer. It is possible to form However, of these two layers, the layer to be laminated later is formed in advance using the composition on another release film, and the side of the formed layer in contact with the release film is It is preferable to form a continuous two-layered laminated structure by bonding the opposite exposed surface to the exposed surface of the remaining layer that has already been formed. At this time, the composition is preferably applied to the release-treated surface of the release film. The release film may be removed as necessary after the formation of the laminated structure.
 例えば、基材上に粘着剤層が積層され、前記粘着剤層上に樹脂膜形成用フィルムが積層されてなる樹脂膜形成用複合シート(換言すると、支持シートが基材及び粘着剤層の積層物である樹脂膜形成用複合シート)を製造する場合には、基材上に粘着剤組成物を塗工し、必要に応じて乾燥させることで、基材上に粘着剤層を積層しておき、別途、剥離フィルム上に樹脂膜形成用組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に樹脂膜形成用フィルムを形成しておく。そして、この樹脂膜形成用フィルムの露出面を、基材上に積層済みの粘着剤層の露出面と貼り合わせて、樹脂膜形成用フィルムを粘着剤層上に積層することで、樹脂膜形成用複合シートが得られる。 For example, a composite sheet for resin film formation in which an adhesive layer is laminated on a substrate and a film for resin film formation is laminated on the adhesive layer (in other words, a support sheet is a laminate of a substrate and an adhesive layer) In the case of producing a composite sheet for forming a resin film), the pressure-sensitive adhesive composition is coated on a substrate, and dried as needed, thereby laminating the pressure-sensitive adhesive layer on the substrate Every time, separately, the composition for resin film formation is coated on the release film, and dried as needed, thereby forming the film for resin film formation on the release film. Then, the exposed surface of the resin film-forming film is attached to the exposed surface of the pressure-sensitive adhesive layer laminated on the substrate, and the resin film-forming film is laminated on the pressure-sensitive adhesive layer to form a resin film. Composite sheet is obtained.
 なお、基材上に粘着剤層を積層する場合には、上述の様に、基材上に粘着剤組成物を塗工する方法に代えて、剥離フィルム上に粘着剤組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に粘着剤層を形成しておき、この層の露出面を、基材の一方の表面と貼り合わせることで、粘着剤層を基材上に積層してもよい。
 いずれの方法においても、剥離フィルムは目的とする積層構造を形成後の任意のタイミングで取り除けばよい。
In addition, when laminating an adhesive layer on a base material, it replaces with the method of coating an adhesive composition on a base material as mentioned above, and applies an adhesive composition on a peeling film. If necessary, the pressure-sensitive adhesive layer is formed on the release film, and the exposed surface of this layer is bonded to one surface of the substrate to form the pressure-sensitive adhesive layer on the substrate. It may be stacked.
In any of the methods, the release film may be removed at any timing after formation of the intended laminated structure.
◇樹脂膜形成用複合シートの使用方法
 本発明の樹脂膜形成用複合シートは、例えば、以下に示す方法で使用できる。
 すなわち、まず、半導体ウエハの裏面に、樹脂膜形成用複合シートを、その樹脂膜形成用フィルムによって貼付する。
Method of Using Composite Sheet for Forming Resin Film The composite sheet for forming a resin film of the present invention can be used, for example, by the following method.
That is, first, the composite sheet for resin film formation is attached to the back surface of the semiconductor wafer by the film for resin film formation.
 次いで、樹脂膜形成用フィルムがエネルギー線硬化性である場合には、樹脂膜形成用フィルムをエネルギー線の照射によってエネルギー線硬化させて樹脂膜とするか、又はエネルギー線硬化させさせずにそのままとしておき、樹脂膜形成用フィルムが非エネルギー線硬化性である場合には、樹脂膜形成用フィルムをそのままとしておく。そして、ブレードダイシングによって、半導体ウエハを樹脂膜形成用フィルム又は樹脂膜ごと分割して、半導体チップとする。このとき、半導体チップのサイズが小さくなるように調節することが好ましい。より具体的には、半導体チップの1辺の長さは、4mm以下であることが好ましく、例えば、3.5mm以下、3mm以下及び2.5mm以下等のいずれかであってもよい。 Then, when the resin film-forming film is energy ray curable, the resin film forming film is energy ray cured by irradiation of energy rays to form a resin film or as it is without energy ray curing. However, when the resin film-forming film is non-energy ray curable, the resin film-forming film is left as it is. Then, the semiconductor wafer is divided together with the resin film formation film or the resin film by blade dicing to obtain a semiconductor chip. At this time, it is preferable to adjust the size of the semiconductor chip to be smaller. More specifically, the length of one side of the semiconductor chip is preferably 4 mm or less, and may be, for example, 3.5 mm or less, 3 mm or less, or 2.5 mm or less.
 次いで、半導体チップを、この樹脂膜形成用フィルム又は樹脂膜が裏面に貼付された状態のまま(すなわち、樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップとして)、支持シートから引き離してピックアップする。このとき、本発明の樹脂膜形成用フィルムを用いていることで、サイズが小さい樹脂膜形成用フィルム付き半導体チップ又は樹脂膜付き半導体チップであっても、これらを支持シートからピックアップするときに、支持シートへの樹脂膜形成用フィルム又は樹脂膜の残存を抑制できる。 Next, the semiconductor chip is separated from the support sheet with the resin film-forming film or the resin film attached to the back surface (that is, as a resin film-forming film-attached semiconductor chip or resin film-attached semiconductor chip) and picked up Do. At this time, by using the film for resin film formation of the present invention, even when the semiconductor chip with a film for resin film formation or the resin film with a resin film having a small size is picked up from the support sheet, It is possible to suppress the remaining of the resin film-forming film or the resin film on the support sheet.
 なお、樹脂膜形成用フィルムが熱硬化性である場合(例えば、樹脂膜形成用フィルムがエネルギー線硬化性ではなく熱硬化性である場合、又は、エネルギー線硬化性及び熱硬化性の両方の特性を有する場合)には、半導体チップに貼付されている、樹脂膜形成用フィルム又は熱硬化していない樹脂膜は、ピックアップの終了までの間、熱硬化させないことが好ましい。すなわち、本発明の熱硬化性樹脂膜形成用フィルムは、半導体チップのピックアップ後に熱硬化させることが好ましい。
 また、エネルギー線硬化性樹脂膜形成用フィルムをエネルギー線硬化させずに、ブレードダイシングを行った場合には、ブレードダイシング後のいずれかの段階で、半導体チップの裏面に貼付されている樹脂膜形成用フィルムをエネルギー線硬化させて、樹脂膜としてもよいし、エネルギー線硬化させなくてもよい。
In addition, when the film for resin film formation is thermosetting (For example, when the film for resin film formation is not energy ray curable but thermosetting, or the characteristic of both energy ray curing and thermosetting) In the case where the semiconductor film is formed, it is preferable not to thermally cure the resin film-forming film or the resin film which has not been thermally cured, which is attached to the semiconductor chip, until the end of the pickup. That is, it is preferable that the thermosetting resin film-forming film of the present invention be thermally cured after picking up the semiconductor chip.
Moreover, when blade dicing is performed without energy ray curing the film for energy ray curable resin film formation, resin film formation stuck on the back surface of the semiconductor chip at any stage after blade dicing. The film for energy may be energy ray cured to be a resin film or may not be energy ray cured.
 以降は従来法と同様の方法で、樹脂膜の用途に応じて、目的とする半導体装置を作製すればよい。
 例えば、樹脂膜形成用フィルム又は樹脂膜をフィルム状接着剤として用いる場合には、半導体チップを基板の回路面にフィルム状接着剤によってダイボンディングし、必要に応じて、この半導体チップにさらに半導体チップを1個以上積層して、ワイヤボンディングを行った後、全体を樹脂により封止することで、半導体パッケージとする。そして、この半導体パッケージを用いて、目的とする半導体装置を作製する。
 例えば、樹脂膜形成用フィルムを保護膜形成用フィルムとして(換言すると、樹脂膜を保護膜として)用いる場合には、保護膜付き半導体チップを基板の回路面にフリップチップ接続した後、半導体パッケージとする。そして、この半導体パッケージを用いて、目的とする半導体装置を作製すればよい。なお、この場合には、樹脂膜形成用フィルムの硬化による樹脂膜(保護膜)の形成は、ブレードダイシングの前後のいずれのタイミングでも行うことができる。
After that, the target semiconductor device may be manufactured according to the application of the resin film by the same method as the conventional method.
For example, in the case of using a film for resin film formation or a resin film as a film-like adhesive, the semiconductor chip is die-bonded to the circuit surface of the substrate with a film-like adhesive, and if necessary, the semiconductor chip is further semiconductor chip After laminating one or more pieces and performing wire bonding, the whole is sealed with a resin to obtain a semiconductor package. Then, using this semiconductor package, a target semiconductor device is manufactured.
For example, when using a film for resin film formation as a film for protective film formation (in other words, a resin film as a protective film), a semiconductor chip with a protective film is flip chip connected to the circuit surface of the substrate, Do. Then, a target semiconductor device may be manufactured using this semiconductor package. In this case, the formation of the resin film (protective film) by curing of the film for resin film formation can be performed at any timing before and after blade dicing.
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of specific examples. However, the present invention is not limited at all to the examples shown below.
<樹脂膜形成用組成物の製造原料>
 樹脂膜形成用組成物の製造に用いた原料を以下に示す。
[重合体成分(A)]
 (A)-1:アクリル酸n-ブチル(55質量部)、アクリル酸メチル(10質量部)、メタクリル酸グリシジル(20質量部)及びアクリル酸2-ヒドロキシエチル(15質量部)を共重合してなるアクリル系樹脂(重量平均分子量800000、ガラス転移温度-28℃)。
[熱硬化性成分(B)]
・エポキシ樹脂(B1)
 (B1)-1:液状ビスフェノールA型エポキシ樹脂及びアクリルゴム微粒子の混合物(日本化薬社製「BPA328」、エポキシ当量235g/eq)
 (B1)-2:ジシクロペンタジエン型エポキシ樹脂(日本化薬社製「XD-1000-L」、エポキシ当量248g/eq)
 (B1)-3:ジシクロペンタジエン型エポキシ樹脂(DIC社製「エピクロンHP-7200HH」、エポキシ当量255~260g/eq)
・熱硬化剤(B2)
 (B2)-1:ジシアンジアミド(熱活性潜在性エポキシ樹脂硬化剤、ADEKA社製「アデカハードナーEH-3636AS」、活性水素量21g/eq)
[硬化促進剤(C)]
 (C)-1:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製「キュアゾール2PHZ」)
[充填材(D)]
 (D)-1:球状シリカ(アドマテックス社「SC2050」)
[カップリング剤(E)]
 (E)-1:γ-グリシドキシプロピルトリメトキシシランを付加させたシリケート化合物(三菱化学社製「MKCシリケートMSEP2」)
[架橋剤(F)]
 (F)-1:トリメチロールプロパンのトリレンジイソシアネート三量体付加物(トーヨーケム社製「BHS8515」)
[エネルギー線硬化性樹脂(G)]
 (G)-1:トリシクロデカンジメチロールジアクリレート(日本化薬社製「KAYARAD R-684」、紫外線硬化性樹脂)
[光重合開始剤(H)]
 光重合開始剤(H)-1:1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン社製「IRGACURE 184」)
<Production raw material of composition for resin film formation>
The raw materials used for the production of the composition for resin film formation are shown below.
[Polymer component (A)]
(A) -1: A copolymer of n-butyl acrylate (55 parts by mass), methyl acrylate (10 parts by mass), glycidyl methacrylate (20 parts by mass) and 2-hydroxyethyl acrylate (15 parts by mass) Acrylic resin (weight average molecular weight 800000, glass transition temperature-28 ° C).
[Thermosetting component (B)]
・ Epoxy resin (B1)
(B1) -1: A mixture of liquid bisphenol A type epoxy resin and acrylic rubber fine particles (Nippon Kayaku Co., Ltd. "BPA 328", epoxy equivalent 235 g / eq)
(B1) -2: dicyclopentadiene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd. "XD-1000-L", epoxy equivalent 248 g / eq)
(B1) -3: Dicyclopentadiene type epoxy resin ("Epiclon HP-7200HH" manufactured by DIC, epoxy equivalent: 255 to 260 g / eq)
・ Heat curing agent (B2)
(B2) -1: Dicyandiamide (Thermally active latent epoxy resin curing agent, "ADEKA HARDNER EH-3636 AS" manufactured by ADEKA, active hydrogen content 21 g / eq)
[Hardening accelerator (C)]
(C) -1: 2-phenyl-4,5-dihydroxymethylimidazole ("Cuazole 2PHZ" manufactured by Shikoku Kasei Kogyo Co., Ltd.)
[Filler (D)]
(D) -1: Spherical silica (AD MATEX Corporation "SC 2050")
[Coupling agent (E)]
(E) -1: a silicate compound to which γ-glycidoxypropyltrimethoxysilane is added ("MKC Silicate MSEP2" manufactured by Mitsubishi Chemical Corporation)
[Crosslinking agent (F)]
(F) -1: Tolylene diisocyanate trimer adduct of trimethylolpropane ("BHS 8515" manufactured by Toyochem Co., Ltd.)
[Energy ray curable resin (G)]
(G) -1: tricyclodecane dimethylol diacrylate ("KAYARAD R-684" manufactured by Nippon Kayaku Co., Ltd., UV curable resin)
[Photoinitiator (H)]
Photopolymerization initiator (H) -1: 1-hydroxycyclohexyl phenyl ketone ("IRGACURE 184" manufactured by BASF Japan Ltd.)
<樹脂膜形成用複合シートの製造>
[実施例1]
(熱硬化性樹脂膜形成用組成物(III-1)の製造)
 表1に示すように、重合体成分(A)-1(9.56質量部)、エポキシ樹脂(B1)-1(12.75質量部)、エポキシ樹脂(B1)-2(12.75質量部)、エポキシ樹脂(B1)-3(25.50質量部)、熱硬化剤(B2)-1(1.08質量部)、硬化促進剤(C)-1(1.08質量部)、充填材(D)-1(30.00質量部)、カップリング剤(E)-1(0.38質量部)、架橋剤(F)-1(0.32質量部)、エネルギー線硬化性樹脂(G)-1(6.37質量部)、及び光重合開始剤(H)-1(0.20質量部)を混合し、さらにメチルエチルケトンで固形分の濃度が55質量%となるように希釈して、熱硬化性樹脂膜形成用組成物(III-1)を得た。なお、ここに示すメチルエチルケトン以外の成分の配合量は、すべて固形分量である。
<Manufacture of composite sheet for resin film formation>
Example 1
(Production of composition for forming thermosetting resin film (III-1))
As shown in Table 1, polymer component (A) -1 (9.56 parts by mass), epoxy resin (B1) -1 (12.75 parts by mass), epoxy resin (B1) -2 (12.75 parts by mass) Parts), epoxy resin (B1) -3 (25.50 parts by mass), thermosetting agent (B2) -1 (1.08 parts by mass), curing accelerator (C) -1 (1.08 parts by mass), Filler (D) -1 (30.00 parts by mass), coupling agent (E) -1 (0.38 parts by mass), crosslinking agent (F) -1 (0.32 parts by mass), energy ray curable Resin (G) -1 (6.37 parts by mass) and photopolymerization initiator (H) -1 (0.20 parts by mass) are mixed, and the concentration of solids in methyl ethyl ketone is 55% by mass. The composition was diluted to obtain a thermosetting resin film-forming composition (III-1). In addition, the compounding quantity of components other than methyl ethyl ketone shown here is all solid content.
(樹脂膜形成用フィルムの製造)
 ポリエチレンテレフタレート(PET)製フィルムの片面がシリコーン処理により剥離処理されてなる剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)の前記剥離処理面に、上記で得られた組成物(III-1)を塗工し、100℃で1分乾燥させることにより、厚さが20μmである樹脂膜形成用フィルムを形成した。
 さらに、この樹脂膜形成用フィルムの露出面(前記剥離フィルムを備えている側とは反対側の表面)に、別途、ポリエチレンテレフタレート(PET)製フィルムの片面がシリコーン処理により剥離処理されてなる剥離フィルム(リンテック社製「SP-PET502150」、厚さ50μm)の前記剥離処理面を貼り合わせて、樹脂膜形成用フィルムの両面に剥離フィルムが積層された積層フィルムを作製した。
(Production of film for resin film formation)
The composition obtained in the above (III) was applied to the release-treated side of a release film (“SP-PET 381031” manufactured by Lintec, thickness 38 μm) in which one side of a polyethylene terephthalate (PET) film was release-treated by silicone treatment The resin composition for forming a resin film having a thickness of 20 μm was formed by coating the above No. 1) and drying at 100 ° C. for 1 minute.
In addition, on the exposed surface of the film for resin film formation (the surface opposite to the side provided with the above-mentioned release film), separately, the release is carried out by silicone treatment of one side of the polyethylene terephthalate (PET) film. The release-treated surface of a film ("SP-PET 502150" manufactured by Lintec Corp., thickness 50 μm) was laminated to prepare a laminated film in which the release film was laminated on both sides of the resin film-forming film.
(樹脂膜形成用複合シートの製造)
 上記で得られた積層フィルムから、後から貼り合わせた剥離フィルムを取り除いて、樹脂膜形成用フィルムを露出させた。
 エチレン-メタクリル酸共重合体(EMAA)製フィルム(厚さ40μm)及びポリプロピレン(PP)製フィルム(厚さ50μm)が積層されてなる2層構造のフィルム(2層の合計の厚さ90μm)を基材として用い、そのポリプロピレン製フィルム側の表面に、上記の樹脂膜形成用フィルムの新たに露出させた面を貼り合わせることで、基材(支持シート)及び樹脂膜形成用フィルムが積層されてなる樹脂膜形成用複合シートを得た。
(Manufacture of composite sheet for resin film formation)
The peeling film stuck afterward was removed from the laminated film obtained above, and the film for resin film formation was exposed.
A two-layer film (total thickness of 90 μm of two layers) comprising a film (thickness 40 μm) made of ethylene-methacrylic acid copolymer (EMAA) and a film (thickness 50 μm) made of polypropylene (PP) The substrate (support sheet) and the resin film-forming film are laminated by bonding the newly exposed surface of the above-mentioned resin film-forming film to the surface on the polypropylene film side, which is used as the substrate. A composite sheet for resin film formation was obtained.
<樹脂膜形成用フィルムの評価>
(第1試験片の吸水率)
 上記で得られた複数枚の樹脂膜形成用フィルムを積層して貼り合わせ、合計の厚さが200μmである積層体を作製した。次いで、この積層体を、50mm×50mmの大きさに打ち抜く(切断する)ことで、大きさが50mm×50mm、厚さが200μmの第1積層体を作製した。次いで、紫外線照射装置(リンテック社製「RAD-2000 m/12」)を用いて、照度220mW/cm、光量120mJ/cmの条件で、この第1積層体に紫外線を照射することで、第1積層体を紫外線硬化させて、熱硬化していない第1硬化物を作製した。この第1硬化物を第1試験片として用い、直ちにその質量Wを測定した。次いで、この第1試験片を23℃の純水中に2時間浸漬し、純水中から取り出し、表面に付着している余分の水滴を除去した後、この浸漬後の第1試験片の質量Wを測定した。次いで、式「(W-W)/W×100」により、第1試験片の吸水率(%)を算出した。なお、第1試験片の純水中への浸漬時には、第1試験片全体が純水に完全に浸るように、十分な量の純水を用いた。結果を表1に示す。
<Evaluation of film for resin film formation>
(Water absorption of first test piece)
The plurality of resin film-forming films obtained above were laminated and bonded to prepare a laminate having a total thickness of 200 μm. Next, this laminate was punched (cut) to a size of 50 mm × 50 mm to produce a first laminate having a size of 50 mm × 50 mm and a thickness of 200 μm. Then, the first laminate is irradiated with ultraviolet light using an ultraviolet irradiation apparatus ("RAD-2000 m / 12" manufactured by Lintec Corporation) under the conditions of an illuminance of 220 mW / cm 2 and a light quantity of 120 mJ / cm 2 . The first laminate was UV-cured to produce a first cured product which was not thermally cured. This first cured product was used as a first test piece, and its mass W A was measured immediately. Next, the first test piece is immersed in pure water at 23 ° C. for 2 hours, taken out of the pure water, and after removing excess water droplets adhering to the surface, the mass of the first test piece after this immersion W B was measured. Subsequently, the water absorption (%) of the first test piece was calculated by the formula “(W B −W A ) / W A × 100”. When immersing the first test piece in pure water, a sufficient amount of pure water was used so that the entire first test piece was completely immersed in pure water. The results are shown in Table 1.
(第2試験片の粘着力変化率)
 6インチシリコンミラーウエハ(厚さ350μm)の全面に、上記で得られた樹脂膜形成用フィルムを40℃に加熱して貼付した。そして、シリコンミラーウエハからはみ出している樹脂膜形成用フィルムを切り取り、除去した。さらに、樹脂膜形成用フィルムの露出面(換言すると、シリコンミラーウエハを備えている側とは反対側の表面)の複数個所に、幅25mm、長さ200mm、厚さ70μmの強粘着テープを貼付し、この強粘着テープの外周に沿って、樹脂膜形成用フィルムに切り込みを形成した。以上により、第2積層体を作製した。次いで、紫外線照射装置(リンテック社製「RAD-2000 m/12」)を用いて、照度220mW/cm、光量120mJ/cmの条件で、第2積層体中の樹脂膜形成用フィルムに紫外線を照射することで、樹脂膜形成用フィルムを紫外線硬化させて、熱硬化していない第2硬化物とした。この第2硬化物を備えた第2積層体(硬化済み第2積層体)を第2試験片として用い、直ちにこの第2試験片を、温度23℃、相対湿度50%の環境下で30分静置して経時させた。次いで、直ちにこの経時後の第2試験片のうち、1箇所の強粘着テープの貼付箇所において、23℃の環境下で、第2硬化物とシリコンミラーウエハとの間の経時後粘着力(浸漬前粘着力)PA1を測定した。次いで、この経時後の第2試験片を23℃の純水中に2時間浸漬した。次いで、この第2試験片を純水中から取り出し、表面に付着している余分の水滴を除去した後、直ちにこの浸漬後の第2試験片のうち、他の1箇所の強粘着テープの貼付箇所において、23℃の環境下で、第2硬化物とシリコンミラーウエハとの間の浸漬後粘着力PB1を測定した。次いで、式「(|PB1-PA1|)/PA1×100」により、第2試験片の粘着力変化率(%)を算出した。このように、浸漬前粘着力及び浸漬後粘着力は、同一の第2試験片中の異なる箇所で連続的に測定した。また、第2試験片の純水中への浸漬時には、第2試験片全体が純水に完全に浸るように、十分な量の純水を用いた。
(% Change in adhesion of second test piece)
The resin film-forming film obtained above was attached by heating to 40 ° C. on the entire surface of a 6-inch silicon mirror wafer (thickness 350 μm). Then, the resin film-forming film protruding from the silicon mirror wafer was cut and removed. Furthermore, a 25-mm-wide, 200-mm-long, 70-μm-thick strong adhesive tape is attached to multiple locations on the exposed surface of the resin film-forming film (in other words, the surface opposite to the silicon mirror wafer side). Then, cuts were formed in the resin film-forming film along the outer periphery of the strong adhesive tape. By the above, the 2nd laminated body was produced. Next, using a UV irradiation apparatus ("RAD-2000 m / 12" manufactured by LINTEC Corporation), UV light is applied to the resin film-forming film in the second laminate under the conditions of illuminance 220 mW / cm 2 and light quantity 120 mJ / cm 2 The film for resin film formation was ultraviolet-cured by irradiating the resin film to obtain a second cured product which was not thermally cured. A second laminate (cured second laminate) including the second cured product is used as a second test piece, and the second test piece is immediately treated for 30 minutes in an environment of a temperature of 23 ° C. and a relative humidity of 50%. Let stand and let it age. Then, immediately after the passage of time between the second cured product and the silicon mirror wafer, the adhesion (immersion (immersion) between the second cured product and the silicon mirror wafer in an environment of 23.degree. Pre-adhesiveness) PA1 was measured. Then, the second test piece after this aging was immersed in pure water at 23 ° C. for 2 hours. Next, the second test piece is taken out of pure water, excess water droplets adhering to the surface are removed, and immediately after the immersion, the other one of the second test pieces is stuck with another strong adhesive tape. in places, under 23 ° C. environment was measured after immersion adhesive strength P B1 between the second cured silicon mirror wafer. Subsequently, the adhesive force change rate (%) of the second test piece was calculated by the formula “(| P B1 −P A1 |) / P A1 × 100”. Thus, the pre-immersion adhesion and the post-immersion adhesion were measured continuously at different points in the same second test piece. In addition, when immersing the second test piece in pure water, a sufficient amount of pure water was used so that the entire second test piece was completely immersed in pure water.
 なお、浸漬前粘着力及び浸漬後粘着力の測定時には、いずれも島津製作所社製万能引張試験機「オートグラフ」を用いて、第2硬化物を引き剥がしたときに生じる2面の剥離面の為す角度が180°となるように、剥離速度300mm/minで、第2試験片において第2硬化物及び前記強粘着テープの積層物を引き剥がす、いわゆる180°剥離を行った。そして、このときの剥離力(mN/25mm)を測定して、これをそれぞれ浸漬前粘着力及び浸漬後粘着力とした。結果を表1に示す。 In addition, at the time of the measurement of the adhesive force before immersion and the adhesive force after immersion, the two peeling surfaces which are produced when the second cured product is peeled off using the universal tensile tester “Autograph” manufactured by Shimadzu Corporation. The laminate of the second cured product and the strong pressure-sensitive adhesive tape was peeled off from the second test piece at a peeling speed of 300 mm / min so that the formed angle was 180 °, so-called 180 ° peeling was performed. And the peeling force (mN / 25 mm) at this time was measured, and this was made into the adhesion power before immersion, and the adhesion power after immersion, respectively. The results are shown in Table 1.
(第3試験片のヤング率、破断伸度及び破断応力)
 上記で得られた複数枚の樹脂膜形成用フィルムを積層し、合計の厚さが200μmである積層体を作製した。次いで、この積層体を、15mm×150mmの大きさに打ち抜く(切断する)ことで、大きさが15mm×150mm、厚さが200μmの第3積層体を作製した。次いで、紫外線照射装置(リンテック社製「RAD-2000 m/12」)を用いて、照度220mW/cm、光量120mJ/cmの条件で、この第3積層体に紫外線を照射することで、第3積層体を紫外線硬化させて、熱硬化していない第3硬化物を作製した。この第3硬化物を第3試験片として用い、この第3試験片について、23℃の環境下で、JIS K 7127に準拠して、試験速度を200mm/minとして引張試験を行い、ヤング率(浸漬前ヤング率)(MPa)を測定した。
 別途、同じ第3試験片を23℃の純水中に2時間浸漬した。次いで、直ちにこの浸漬後の第3試験片について、23℃の環境下で、同じ方法で引張試験を行い、ヤング率(浸漬後ヤング率)(MPa)を測定した。なお、第3試験片の純水中への浸漬時には、第3試験片全体が純水に完全に浸るように、十分な量の純水を用いた。結果を表1に示す。
(Young's modulus, breaking elongation and breaking stress of the third test piece)
The plurality of resin film-forming films obtained above were laminated to prepare a laminate having a total thickness of 200 μm. Next, the laminate was punched (cut) to a size of 15 mm × 150 mm to produce a third laminate having a size of 15 mm × 150 mm and a thickness of 200 μm. Then, the third laminate is irradiated with ultraviolet light using an ultraviolet irradiation apparatus ("RAD-2000 m / 12" manufactured by Lintec Corporation) under the conditions of an illuminance of 220 mW / cm 2 and a light quantity of 120 mJ / cm 2 . The third laminate was subjected to ultraviolet curing to prepare a third cured product which was not thermally cured. Using this third cured product as a third test piece, the third test piece is subjected to a tensile test at a test speed of 200 mm / min in an environment of 23 ° C. in accordance with JIS K 7127 to obtain a Young's modulus ( Young's modulus before immersion (MPa) was measured.
Separately, the same third test piece was immersed in pure water at 23 ° C. for 2 hours. Then, a tensile test was immediately performed on the third test piece after this immersion in the same method under an environment of 23 ° C., and Young's modulus (Young's modulus after immersion) (MPa) was measured. When immersing the third test piece in pure water, a sufficient amount of pure water was used so that the entire third test piece was completely immersed in pure water. The results are shown in Table 1.
 また、上記の第3試験片の浸漬前ヤング率及び浸漬後ヤング率の測定時に、第3試験片が破断したときの第3試験片の伸びから、第3試験片の浸漬前破断伸度(%)及び浸漬後破断伸度(%)をそれぞれ求め、第3試験片が破断したときに第3試験片に加えられていた力から、浸漬前破断応力(MPa)及び浸漬後破断応力(MPa)をそれぞれ求めた。結果を表1に示す。 In addition, when measuring the Young's modulus before immersion and the Young's modulus after immersion of the third test piece described above, the elongation before breakage before immersion of the third test piece from the elongation of the third test piece when the third test piece breaks %) And the breaking elongation (%) after immersion, and from the force applied to the third test piece when the third test piece broke, the breaking stress before immersion (MPa) and the breaking stress after immersion (MPa) For each). The results are shown in Table 1.
<樹脂膜形成用複合シートの評価>
(樹脂膜付き半導体チップのピックアップ適性(樹脂膜付き半導体チップの製造適性))
 テープラミネーター(リンテック社製「RAD3510」)を用いて、8インチシリコンミラーウエハに、バックグラインドテープ(リンテック社製「ADWILL E-8180HR」)を貼付した。次いで、グラインダー(ディスコ社製「DGP8760」)を用いて、8インチシリコンミラーウエハのバックグラインドテープが貼付されている側とは反対側の面を研削し、シリコンミラーウエハの厚さを350μmとした。そして、このシリコンミラーウエハを、研削後72時間放置した。次いで、ウエハマウンター(リンテック社製「RAD2700」)を用いて、この放置後のシリコンミラーウエハの研削面に、上記で得られた樹脂膜形成用複合シートを40℃に加熱して、その樹脂膜形成用フィルムによって、20mm/secの貼付速度で貼付した。次いで、バックグラインドテープを取り除いた後、紫外線照射装置(リンテック社製「RAD-2000 m/12」)を用いて、照度230mW/cm、光量120mJ/cmの条件で、この樹脂膜形成用複合シート中の樹脂膜形成用フィルムに紫外線を照射することで、樹脂膜形成用フィルムを紫外線硬化させて、熱硬化していない樹脂膜を作製した。次いで、ダイシング装置(ディスコ社製「DFD6361」)を用いて、シリコンミラーウエハを樹脂膜ごと、1.0L/minの流量で冷却水をかけながらダイシングすることにより、大きさが2mm×2mmのシリコンチップへと個片化した。
<Evaluation of composite sheet for resin film formation>
(Pick-up aptitude of semiconductor chip with resin film (production aptitude of semiconductor chip with resin film))
A back grind tape ("ADWILL E-8180 HR" manufactured by Lintec Corporation) was attached to an 8-inch silicon mirror wafer using a tape laminator ("RAD 3510" manufactured by Lintec Corporation). Next, using a grinder (DCP "DGP 8760"), the surface of the 8-inch silicon mirror wafer opposite to the side on which the back grind tape is attached was ground to make the silicon mirror wafer 350 μm thick. . Then, the silicon mirror wafer was left to stand for 72 hours after grinding. Next, using the wafer mounter (“RAD 2700” manufactured by Lintec Corporation), the composite sheet for resin film formation obtained above is heated to 40 ° C. on the ground surface of the silicon mirror wafer after this standing and the resin film It stuck by the film for formations at the sticking speed of 20 mm / sec. Next, after removing the back grind tape, using a UV irradiation apparatus ("RAD-2000 m / 12" manufactured by LINTEC Corporation), for forming this resin film under the conditions of illuminance 230 mW / cm 2 and light quantity 120 mJ / cm 2 The resin film-forming film in the composite sheet was irradiated with ultraviolet rays to cause ultraviolet curing of the resin film-forming film, thereby producing a resin film which was not thermally cured. Then, using a dicing apparatus (“DFD6361” manufactured by Disco Corporation), the silicon mirror wafer is diced together with a resin film while applying cooling water at a flow rate of 1.0 L / min to form silicon of 2 mm × 2 mm in size. It was separated into chips.
 ダイシング後の多数の樹脂膜付きシリコンチップが支持シートに固定化されているワークを、23℃の純水中に2時間浸漬した。次いで、ピックアップ・ダイボンディング装置(キャノンマシナリー社製「BESTEM-D02」)を用いて、この浸漬後のワークにおいて、樹脂膜付きシリコンチップを支持シート(前記基材)から引き離してピックアップする操作を100回行った。このときのピックアップは、1個の樹脂膜付きシリコンチップを1本のピンで突き上げる方式とし、突上速度を20mm/sとし、突上量を200μmとした。次いで、光学顕微鏡(キーエンス社製「VHX-100」)を用いて、操作終了後の支持シートにおける樹脂膜付きシリコンチップを備えていた側の表面を観察し、樹脂膜の残存の有無を確認した。そして、支持シートの前記表面において、樹脂膜付きシリコンチップを備えていた100箇所のうち、樹脂膜が残存している箇所の数から、ピックアップが正常に行われなかった回数、すなわち、ピックアップ適性での不良数を特定した。支持シートの前記表面において、樹脂膜が残存している箇所では、樹脂膜付きシリコンチップを正常にピックアップできなかったと判断される。結果を表1に示す。表1中の評価結果の欄のうち、「ピックアップ適性での不良数」の欄に、本項目の評価結果を示している。 The work in which a large number of silicon chips with a resin film after dicing were immobilized on a support sheet was immersed in pure water at 23 ° C. for 2 hours. Then, using a pick-up / die bonding apparatus ("BESTEM-D02" manufactured by CANON MACHINERY CO., LTD.), In the work after this immersion, an operation of pulling away the silicon chip with a resin film from the support sheet (the base material) I went there. The pickup at this time was a method in which one silicon chip with a resin film was pushed up with one pin, the rising speed was 20 mm / s, and the amount of rising was 200 μm. Then, using an optical microscope ("VHX-100" manufactured by Keyence Corporation), the surface on the side provided with the silicon chip with a resin film in the support sheet after the operation was observed to confirm the presence or absence of the resin film remaining. . Then, on the surface of the support sheet, the number of places where the resin film remains out of the 100 places provided with the silicon chip with a resin film indicates the number of times the pickup was not performed normally, that is, the pickup aptitude The number of defects of was identified. On the surface of the support sheet, it is determined that the resin film-coated silicon chip could not be properly picked up at the portion where the resin film remains. The results are shown in Table 1. Of the evaluation result columns in Table 1, the evaluation results of this item are shown in the "number of defects in pickup aptitude" column.
<樹脂膜形成用フィルム及び樹脂膜形成用複合シートの製造並びに評価>
[実施例2~3、比較例1~2]
 熱硬化性樹脂膜形成用組成物(樹脂膜形成用フィルム)の各成分の含有量を、表1に示すとおりとした点以外は、実施例1の場合と同じ方法で、樹脂膜形成用フィルム及び樹脂膜形成用複合シートを製造し、評価した。結果を表1に示す。
 なお、表1中の含有成分の欄の「-」との記載は、熱硬化性樹脂膜形成用組成物がその成分を含有していないことを意味する。
<Production and evaluation of resin film-forming film and resin film-forming composite sheet>
[Examples 2 to 3, Comparative Examples 1 to 2]
A film for resin film formation was the same method as in Example 1 except that the content of each component of the composition for thermosetting resin film formation (film for resin film formation) was as shown in Table 1. And the composite sheet for resin film formation was manufactured and evaluated. The results are shown in Table 1.
In addition, the description of "-" in the column of the component in Table 1 means that the composition for thermosetting resin film formation does not contain the component.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記結果から明らかなように、実施例1~3では、樹脂膜付きシリコンチップのピックアップ適性での不良数が4以下に抑制されていた。 As is clear from the above results, in Examples 1 to 3, the number of defects in pick-up suitability of the silicon chip with a resin film was suppressed to 4 or less.
 実施例1~3では、第1試験片の吸水率が0.24~0.50%であり、第2試験片の粘着力変化率が16.5~38.4%であった。第2硬化物とシリコンミラーウエハとの間の、浸漬前粘着力(経時後粘着力)PA1の測定時と、浸漬後粘着力PB1の測定時に、目視により第2試験片の剥離箇所を観察したところ、実施例1~3では、浸漬前後のいずれにおいても、第2試験片の第2硬化物中で凝集破壊が生じていた。
 すなわち、実施例1~3の樹脂膜形成用フィルムのエネルギー線硬化物は、吸水率が低く、浸漬(吸水)前後での粘着力の変化が抑制されており、浸漬後においても、ピックアップ適性が優れていた。
In Examples 1 to 3, the water absorption rate of the first test piece was 0.24 to 0.50%, and the adhesive strength change rate of the second test piece was 16.5 to 38.4%. Between the second cured product and the silicon mirror wafer, and the measurement of immersion before adhesion (after aging adhesive force) P A1, when measuring after immersion adhesive strength P B1, the peeling off of the second specimen visually As observed, in Examples 1 to 3, cohesive failure occurred in the second cured product of the second test piece before and after immersion.
That is, the energy ray cured product of the film for forming a resin film of Examples 1 to 3 has a low water absorption rate, and the change in adhesive strength before and after immersion (water absorption) is suppressed, and the pickup aptitude is improved even after immersion. It was excellent.
 また、実施例1~3では、第3試験片の浸漬後ヤング率が20.7~104.5MPaであり、実施例1~3の樹脂膜形成用フィルムのエネルギー線硬化物は、ピックアップ時に目的外の箇所での切断が起こり難いものであり、より好ましい特性を有していた。さらに、実施例1~3では、第3試験片の浸漬後破断伸度が25~384%であり、第3試験片の浸漬後破断応力が0.9~4.6MPaであった。 Moreover, in Examples 1 to 3, the Young's modulus after immersion of the third test piece is 20.7 to 104.5 MPa, and the energy ray cured product of the film for forming a resin film of Examples 1 to 3 is intended for pickup Cleavage at the outside location was less likely to occur and had more desirable properties. Furthermore, in Examples 1 to 3, the breaking elongation after immersion of the third test piece was 25 to 384%, and the breaking stress after immersion of the third test piece was 0.9 to 4.6 MPa.
 これに対して、比較例1では、樹脂膜付きシリコンチップのピックアップ適性での不良数が56であり、明らかにピックアップ適性に劣っていた。 On the other hand, in Comparative Example 1, the number of defects in the pick-up aptitude of the silicon chip with a resin film was 56, and the pick-up aptitude was clearly inferior.
 比較例1では、第1試験片の吸水率が0.96%であり、高水準であった。
 一方、実施例1~3の場合と同様に、浸漬前粘着力(経時後粘着力)PA1の測定時と、浸漬後粘着力PB1の測定時に、目視により第2試験片の剥離箇所を観察したところ、浸漬後においては、第2硬化物とシリコンミラーウエハとの間で界面破壊が生じていたが、浸漬前においては、第2硬化物と強粘着テープとの間で界面破壊が生じており、第2硬化物とシリコンミラーウエハとは、密着したままであった。すなわち、比較例1では、浸漬前の剥離力が、第2硬化物とシリコンミラーウエハとの間の粘着力を表してはおらず、剥離力の測定値が23584(mN/25mm)であったことから、第2硬化物とシリコンミラーウエハとの間の粘着力は、23584(mN/25mm)より大きく、第2試験片の粘着力変化率が66.0%よりも大きいことを確認するにとどまった。ただし、前記粘着力変化率が高水準であることは確認できた。
 すなわち、比較例1の樹脂膜形成用フィルムのエネルギー線硬化物は、吸水率が高目であり、浸漬(吸水)前後での粘着力の変化が抑制されておらず、浸漬後において、ピックアップ適性の点で、好ましい特性を有していなかった。
In Comparative Example 1, the water absorption of the first test piece was 0.96%, which was a high level.
On the other hand, as in the case of Examples 1-3, and the measurement of immersion before adhesion (after aging adhesive force) P A1, when measuring after immersion adhesive strength P B1, the peeling off of the second specimen visually According to the observation, interface failure occurred between the second cured product and the silicon mirror wafer after immersion, but interface failure occurred between the second cured product and the strong adhesive tape before immersion. The second cured product and the silicon mirror wafer remained in close contact with each other. That is, in Comparative Example 1, the peeling force before immersion did not represent the adhesion between the second cured product and the silicon mirror wafer, and the measured value of the peeling force was 23584 (mN / 25 mm). From the above, it is confirmed that the adhesion between the second cured product and the silicon mirror wafer is larger than 23584 (mN / 25 mm), and the change in adhesion of the second test piece is larger than 66.0%. The However, it was confirmed that the change rate of the adhesive strength was high.
That is, the energy ray cured product of the film for forming a resin film of Comparative Example 1 has a high water absorption coefficient, and the change in adhesive strength before and after immersion (water absorption) is not suppressed, and the pickup aptitude after immersion In terms of point, it did not have favorable characteristics.
 また、比較例1では、第3試験片の浸漬後ヤング率が1.0MPaであり、比較例1の樹脂膜形成用フィルムのエネルギー線硬化物は、ピックアップ時に目的外の箇所での切断が起こり易いものであり、この点でも好ましい特性を有していなかった。 Moreover, in Comparative Example 1, the Young's modulus after immersion of the third test piece is 1.0 MPa, and the energy ray-cured product of the film for resin film formation of Comparative Example 1 is cut at an unintended location during pickup. It was easy and did not have favorable characteristics in this respect either.
 比較例2でも、樹脂膜付き半導体チップのピックアップ適性での不良数が45であり、明らかにピックアップ適性に劣っていた。 Also in Comparative Example 2, the number of defects in the pick-up suitability of the semiconductor chip with a resin film was 45, and the pick-up suitability was clearly inferior.
 比較例2では、第1試験片の吸水率が0.62%であり、高水準であった。
 一方、比較例2でも、比較例1の場合と同様に、浸漬後においては、第2硬化物とシリコンミラーウエハとの間で界面破壊が生じていたが、浸漬前においては、第2硬化物と強粘着テープとの間で界面破壊が生じており、第2硬化物とシリコンミラーウエハとは、密着したままであった。すなわち、比較例2でも、浸漬前の剥離力が、第2硬化物とシリコンミラーウエハとの間の粘着力を表してはおらず、剥離力の測定値が25877(mN/25mm)であったことから、第2硬化物とシリコンミラーウエハとの間の粘着力は、25877(mN/25mm)より大きく、第2試験片の粘着力変化率が69.0%よりも大きいことを確認するにとどまった。ただし、前記粘着力変化率が高水準であることは確認できた。
 すなわち、比較例2の樹脂膜形成用フィルムのエネルギー線硬化物も、吸水率が高目であり、浸漬(吸水)前後での粘着力の変化が抑制されておらず、浸漬後において、ピックアップ適性の点で、好ましい特性を有していなかった。
In Comparative Example 2, the water absorption rate of the first test piece was 0.62%, which was a high level.
On the other hand, also in Comparative Example 2, as in the case of Comparative Example 1, interface breakage occurred between the second cured product and the silicon mirror wafer after immersion, but before immersion, the second cured product An interfacial failure occurred between the second adhesive and the strong adhesive tape, and the second cured product and the silicon mirror wafer remained in close contact with each other. That is, even in Comparative Example 2, the peeling force before immersion did not represent the adhesion between the second cured product and the silicon mirror wafer, and the measured value of the peeling force was 25877 (mN / 25 mm). From the above, it is confirmed that the adhesion between the second cured product and the silicon mirror wafer is larger than 25877 (mN / 25 mm), and the change in adhesion of the second test piece is larger than 69.0%. The However, it was confirmed that the change rate of the adhesive strength was high.
That is, the energy ray cured product of the film for resin film formation of Comparative Example 2 also has a high water absorption coefficient, and the change in the adhesive strength before and after immersion (water absorption) is not suppressed, and the pickup suitability after immersion In terms of point, it did not have favorable characteristics.
 また、比較例2では、第3試験片の浸漬後ヤング率が5.1MPaであり、比較例2の樹脂膜形成用フィルムのエネルギー線硬化物も、ピックアップ時に目的外の箇所での切断が起こり易いものであり、この点でも好ましい特性を有していなかった。 Further, in Comparative Example 2, the Young's modulus after immersion of the third test piece is 5.1 MPa, and the energy beam cured product of the film for resin film formation of Comparative Example 2 is also cut at an unintended location during pickup. It was easy and did not have favorable characteristics in this respect either.
 本発明は、半導体装置の製造に利用可能である。 The present invention is applicable to the manufacture of semiconductor devices.
 101,102,103,104,105・・・樹脂膜形成用複合シート、1・・・支持シート、11・・・基材、12・・・粘着剤層、13,23・・・樹脂膜形成用フィルム 101, 102, 103, 104, 105 ... composite sheet for resin film formation, 1 ... support sheet, 11 ... base material, 12 ... adhesive layer, 13, 23 ... resin film formation Film

Claims (4)

  1.  樹脂膜形成用フィルムであって、
     複数枚の前記樹脂膜形成用フィルムが積層されてなる、大きさが50mm×50mm、厚さが200μmの第1積層体を作製し、
     前記樹脂膜形成用フィルムがエネルギー線硬化性である場合には、前記第1積層体をエネルギー線硬化させた第1硬化物を第1試験片とし、前記樹脂膜形成用フィルムが非エネルギー線硬化性である場合には、前記第1積層体を第1試験片として、前記第1試験片を純水中に2時間浸漬したとき、前記第1試験片の吸水率が0.55%以下であり、かつ、
     前記樹脂膜形成用フィルムがシリコンミラーウエハに貼付されてなる第2積層体を作製し、
     前記樹脂膜形成用フィルムがエネルギー線硬化性である場合には、前記第2積層体中の前記樹脂膜形成用フィルムをエネルギー線硬化させて第2硬化物とした後の硬化済み第2積層体を第2試験片とし、前記第2試験片を温度23℃、相対湿度50%の環境下で30分静置して経時させたときの、前記第2硬化物と前記シリコンミラーウエハとの間の経時後粘着力を測定し、経時後の前記第2試験片を純水中に2時間浸漬したときの、前記第2硬化物と前記シリコンミラーウエハとの間の浸漬後粘着力を測定したとき、前記経時後粘着力及び浸漬後粘着力から算出される前記第2試験片の粘着力変化率が、60%以下であるか、又は、
     前記樹脂膜形成用フィルムが非エネルギー線硬化性である場合には、前記第2積層体を第2試験片とし、前記第2試験片を温度23℃、相対湿度50%の環境下で30分静置して経時させたときの、前記樹脂膜形成用フィルムと前記シリコンミラーウエハとの間の経時後粘着力を測定し、経時後の前記第2試験片を純水中に2時間浸漬したときの、前記樹脂膜形成用フィルムと前記シリコンミラーウエハとの間の浸漬後粘着力を測定したとき、前記経時後粘着力及び浸漬後粘着力から算出される前記第2試験片の粘着力変化率が、60%以下である、樹脂膜形成用フィルム。
    It is a film for resin film formation,
    Producing a first laminate having a size of 50 mm × 50 mm and a thickness of 200 μm, in which a plurality of films for resin film formation are laminated;
    When the film for resin film formation is energy ray curable, a first cured product obtained by energy ray curing the first laminate is used as a first test piece, and the film for resin film formation is non-energy ray cured When the first test piece is immersed in pure water for 2 hours using the first laminate as a first test piece, the water absorption of the first test piece is 0.55% or less. Yes, and
    Producing a second laminate in which the resin film-forming film is attached to a silicon mirror wafer;
    In the case where the resin film-forming film is energy beam curable, a cured second laminate after the resin film-forming film in the second laminate is energy beam cured to form a second cured product Between the second cured product and the silicon mirror wafer when the second test piece is allowed to stand for 30 minutes under an environment of a temperature of 23.degree. C. and a relative humidity of 50% for 30 minutes. The adhesion after the aging was measured, and the adhesion after the immersion between the second cured product and the silicon mirror wafer was measured when the second specimen after the aging was immersed in pure water for 2 hours. When the change in adhesion strength of the second test piece calculated from the adhesion after aging and the adhesion after immersion is 60% or less, or
    When the film for resin film formation is non-energy ray curable, the second laminate is used as a second test piece, and the second test piece is heated for 30 minutes under an environment of a temperature of 23 ° C. and a relative humidity of 50%. The adhesion after the aging of the resin film-forming film and the silicon mirror wafer was measured after standing and aging, and the second test piece after aging was immersed in pure water for 2 hours. When the adhesion after immersion between the resin film-forming film and the silicon mirror wafer is measured, the change in adhesion of the second test piece calculated from the adhesion after time and the adhesion after immersion The film for resin film formation whose rate is 60% or less.
  2.  複数枚の前記樹脂膜形成用フィルムが積層されてなる、大きさが15mm×150mm、厚さが200μmの第3積層体を作製し、前記樹脂膜形成用フィルムがエネルギー線硬化性である場合には、前記第3積層体をエネルギー線硬化させた第3硬化物を第3試験片とし、前記樹脂膜形成用フィルムが非エネルギー線硬化性である場合には、前記第3積層体を第3試験片として、前記第3試験片を純水中に2時間浸漬したとき、JIS K 7127に準拠した引張試験で、試験速度を200mm/minとして測定された、浸漬後の前記第3試験片のヤング率が、15MPa以上である、請求項1に記載の樹脂膜形成用フィルム。 A third laminate having a size of 15 mm × 150 mm and a thickness of 200 μm, in which a plurality of the resin film-forming films are laminated, is prepared, and the resin film-forming film is energy beam curable. The third cured product obtained by energy beam curing the third laminate is used as a third test piece, and when the resin film-forming film is non-energy beam curable, the third laminate is As a test piece, when the third test piece is immersed in pure water for 2 hours, it is a tensile test based on JIS K 7127, and the test speed is measured as 200 mm / min. The film for resin film formation of Claim 1 whose Young's modulus is 15 Mpa or more.
  3.  前記樹脂膜形成用フィルムが充填材を含有し、
     前記樹脂膜形成用フィルムにおいて、前記樹脂膜形成用フィルムの総質量に対する、前記充填材の含有量の割合が、25~75質量%である、請求項1又は2に記載の樹脂膜形成用フィルム。
    The resin film-forming film contains a filler,
    The film for resin film formation according to claim 1 or 2, wherein in the film for resin film formation, the ratio of the content of the filler to the total mass of the film for resin film formation is 25 to 75% by mass. .
  4.  支持シートを備え、前記支持シート上に、樹脂膜形成用フィルムを備えてなり、
     前記樹脂膜形成用フィルムが、請求項1~3のいずれか一項に記載の樹脂膜形成用フィルムである、樹脂膜形成用複合シート。
    A support sheet is provided, and a film for resin film formation is provided on the support sheet,
    The composite sheet for resin film formation, wherein the film for resin film formation is a film for resin film formation according to any one of claims 1 to 3.
PCT/JP2018/018248 2017-07-06 2018-05-11 Resin film forming film and resin film forming composite sheet WO2019008898A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MYPI2019007673A MY194458A (en) 2017-07-06 2018-05-11 Resin film forming film and resin film forming composite sheet
SG11201913224TA SG11201913224TA (en) 2017-07-06 2018-05-11 Resin film forming film and resin film forming composite sheet
CN201880042700.3A CN110831766B (en) 2017-07-06 2018-05-11 Film for forming resin film and composite sheet for forming resin film
KR1020197038836A KR102507152B1 (en) 2017-07-06 2018-05-11 Film for resin film formation and composite sheet for resin film formation
JP2019528382A JP7044780B2 (en) 2017-07-06 2018-05-11 Resin film forming film and resin film forming composite sheet
PH12020500005A PH12020500005A1 (en) 2017-07-06 2020-01-02 Resin film forming film and resin film forming composite sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-132980 2017-07-06
JP2017132980 2017-07-06

Publications (1)

Publication Number Publication Date
WO2019008898A1 true WO2019008898A1 (en) 2019-01-10

Family

ID=64950807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018248 WO2019008898A1 (en) 2017-07-06 2018-05-11 Resin film forming film and resin film forming composite sheet

Country Status (8)

Country Link
JP (1) JP7044780B2 (en)
KR (1) KR102507152B1 (en)
CN (1) CN110831766B (en)
MY (1) MY194458A (en)
PH (1) PH12020500005A1 (en)
SG (1) SG11201913224TA (en)
TW (1) TWI743361B (en)
WO (1) WO2019008898A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471879B2 (en) * 2020-03-18 2024-04-22 リンテック株式会社 Film-like adhesive and dicing die bonding sheet
JP7471880B2 (en) * 2020-03-18 2024-04-22 リンテック株式会社 Film-like adhesive and dicing die bonding sheet
JP7387510B2 (en) * 2020-03-26 2023-11-28 リンテック株式会社 Protective film-forming film, protective film-forming composite sheet, and method for transporting workpieces with protective film-forming film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317758A (en) * 2004-04-28 2005-11-10 Shin Etsu Polymer Co Ltd Electronic component holder
JP2011501233A (en) * 2007-10-25 2011-01-06 コーロン インダストリーズ,インコーポレイテッド Film-type photosensitive transfer material
WO2015046529A1 (en) * 2013-09-30 2015-04-02 リンテック株式会社 Composite sheet for resin film formation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4732472B2 (en) 2007-03-01 2011-07-27 日東電工株式会社 Thermosetting die bond film
JP5390209B2 (en) 2009-02-04 2014-01-15 日東電工株式会社 Thermosetting die bond film
JP4717156B1 (en) * 2010-11-01 2011-07-06 協和界面科学株式会社 Peel test device
WO2015105002A1 (en) * 2014-01-08 2015-07-16 リンテック株式会社 Composite sheet for protective-film formation
WO2017010385A1 (en) * 2015-07-10 2017-01-19 日東電工株式会社 Solar module, solar module manufacturing method, and solar cell wiring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317758A (en) * 2004-04-28 2005-11-10 Shin Etsu Polymer Co Ltd Electronic component holder
JP2011501233A (en) * 2007-10-25 2011-01-06 コーロン インダストリーズ,インコーポレイテッド Film-type photosensitive transfer material
WO2015046529A1 (en) * 2013-09-30 2015-04-02 リンテック株式会社 Composite sheet for resin film formation

Also Published As

Publication number Publication date
CN110831766A (en) 2020-02-21
KR20200026833A (en) 2020-03-11
SG11201913224TA (en) 2020-01-30
JPWO2019008898A1 (en) 2020-05-21
MY194458A (en) 2022-11-30
TWI743361B (en) 2021-10-21
KR102507152B1 (en) 2023-03-07
JP7044780B2 (en) 2022-03-30
CN110831766B (en) 2021-09-21
TW201907491A (en) 2019-02-16
PH12020500005A1 (en) 2021-01-11

Similar Documents

Publication Publication Date Title
JP6914698B2 (en) Composite sheet for resin film formation
JP7014875B2 (en) Method for manufacturing a film for forming a thermosetting protective film, a composite sheet for forming a protective film, and a chip
JPWO2019172438A1 (en) Method for manufacturing composite sheet for forming protective film and semiconductor chip with protective film
JP7071916B2 (en) Manufacturing method of semiconductor chip with protective film and manufacturing method of semiconductor device
JP7044780B2 (en) Resin film forming film and resin film forming composite sheet
JP2018056282A (en) Manufacturing method of semiconductor chip with protection film, and manufacturing method of semiconductor device
CN111417513B (en) Composite sheet for forming protective film and method for manufacturing semiconductor chip with protective film
JP6979081B2 (en) A method for manufacturing a protective film forming film, a protective film forming composite sheet, and a semiconductor chip.
JP7086986B2 (en) A method for manufacturing a protective film forming film, a protective film forming composite sheet, and a semiconductor chip.
WO2019082968A1 (en) Composite sheet for forming protective film and method for manufacturing semiconductor chip
WO2019082969A1 (en) Protective-membrane-forming composite sheet, and method for manufacturing semiconductor chip
JP2022089876A (en) Film for forming protective film and composite sheet for forming protective film
JP6686241B1 (en) Protective film forming film, protective film forming composite sheet, inspection method and identification method
JP7039460B2 (en) Composite sheet for forming a protective film
TW202115433A (en) Support sheet, film for forming protective film, composite sheet for forming protective film, and method for manufacturing workpiece with protective film in which the composite sheet for forming protective film includes a support sheet and a film for forming protective film on one side of the support sheet
JP2019062107A (en) Composite sheet for resin film formation
WO2019082961A1 (en) Composite sheet for forming protective film and method for manufacturing semiconductor chip
JP2019062108A (en) Composite sheet for resin film formation
JP7465099B2 (en) Composite sheet for forming protective film, and method for manufacturing chip with protective film
JP6938477B2 (en) Composite sheet for forming a protective film
JP2022146565A (en) Protective film-forming film, protective film-forming composite sheet, and wafer recycling method
WO2020116288A1 (en) Composite sheet for protective film formation and method for producing semiconductor chip
JP2022146567A (en) Protective membrane-forming film, composite sheet for forming protective membrane, method for producing processed workpiece with protective membrane and method for producing workpiece with protective membrane
JP2023147738A (en) Film for forming protective coat, composite sheet for forming protective coat, method for manufacturing semiconductor device, and use of film for forming protective coat
JP2021040099A (en) Film for protection film formation, composite sheet for protection film formation, and method for manufacturing protection film-attached work product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528382

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197038836

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828396

Country of ref document: EP

Kind code of ref document: A1